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Abstract

Proving the Majorana nature of neutrinos would establish physics beyond the Standard
Model of particle physics, by demonstrating that neutrinos are their own antiparticles. To
date, the best candidate for this proof is the observation of the neutrinoless double beta decay.
The EXO-200 experiment searches for the neutrinoless double beta decay in '*6Xe with an
ultra-low background time projection chamber filled with liquid xenon. The current generation
of experiments are sensitive to half-lives of this extremely rare decay of up to ~10%% yr. The main
challenge for any experiment that searches for the neutrinoless double beta decay is therefore
to reduce background. Primarily, background reduction is achieved during measurement by
evaluating the kinetic energy of the decay products but also by applying particle identification
techniques.

In this thesis, deep learning based methods are adapted for data analysis in EXO-200 from
approaches used in image recognition. These algorithms are developed in order to improve
the sensitivity to the half-life of the neutrinoless double beta decay. A deep neural network is
trained to reconstruct the kinetic energy deposited in the detector. In particular, this algorithm
outperforms the traditional EXO-200 reconstruction in terms of energy resolution by 10 % (12 %)
in Phase-I (Phase-II) of EXO-200 operation at the decay energy of the neutrinoless double
beta decay. In an additional study, deep neural networks are developed to discriminate double
beta decays from the dominant background interactions. The discrimination power of these
algorithms exceeds those of other discriminators which utilize classical machine learning methods.
In order to confirm a robust performance, the deep neural networks of both studies are validated
on Monte Carlo simulated data and on measured data.

The deep learning based discriminator developed in this thesis contributes significantly to the
most recent search for neutrinoless double beta decay of the EXO-200 experiment published in
Phys. Rev. Lett. 123 (161802). This analysis outperforms other potential analysis configurations
and provides the most stringent median half-life sensitivity of 5.0 - 10%° yr at the 90 % confidence
level. The half-life sensitivity is further increased by utilizing the energy reconstructed by
the deep neural network. This represents the best analysis configuration and results in an
improvement in sensitivity by ~35 % compared to the baseline analysis. These improvements
highlight the value of deep learning based methods in complex data analyses for current and
future experiments. Additional improvements represent a promising path toward a potential
observation of the neutrinoless double beta decay.






Kurzzusammenfassung

Der Nachweis der Majorana-Natur von Neutrinos wiirde Physik jenseits des Standardmodells
der Elementarteilchenphysik etablieren, indem sie zeigt, dass Neutrinos ihre eigenen Antiteilchen
sind. Die Beobachtung des neutrinolosen Doppel-Betazerfalls ist bis heute der beste Kandidat fiir
diesen Nachweis. Das EX0O-200 Experiment sucht nach dem neutrinolosen Doppel-Betazerfall
von ¥6Xe mit einer hochreinen Zeitprojektionskammer, die mit fliissigem Xenon gefiillt ist.
Die aktuelle Generation von Experimenten ist empfindlich auf die Halbwertszeit dieses extrem
seltenen Zerfalls von bis zu ~10%6 yr. Die gréBite Herausforderung fiir jedes Experiment, das
nach dem neutrinolosen Doppel-Betazerfall sucht, besteht daher darin, den Hintergrund zu
reduzieren. In erster Linie wird dies wihrend der Messung durch die Bestimmung der kinetischen
Energie der Zerfallsprodukte, aber auch durch den Einsatz von Partikelidentifizierungstechniken
erreicht.

In dieser Abschlussarbeit werden Deep Learning Methoden aus der Bilderkennung fiir die
Datenanalyse in EXO-200 adaptiert. Diese Algorithmen werden entwickelt, um die Empfindlich-
keit gegeniiber der Halbwertszeit des neutrinolosen Doppel-Betazerfalls zu verbessern. Ein Deep
Neural Network wird trainiert, um die im Detektor deponierte kinetische Energie zu rekonstru-
ieren. Insbesondere iibertrifft dieser Algorithmus die traditionelle EXO-200-Rekonstruktion in
Bezug auf die Energieauflosung um 10 % (12 %) in Phase-I (Phase-1I) von EXO-200 bei der Zer-
fallsenergie des neutrinolosen Doppelt-Betazerfalls. In einer weiteren Studie werden Deep Neural
Networks entwickelt, um Doppel-Betazerfille von den dominanten Hintergrundereignissen zu
trennen. Die Unterscheidungskraft dieser Algorithmen iibertrifft die anderer Diskriminatoren,
die klassische Machine Learning Methoden verwenden. Um eine robuste Funktion zu bestétigen,
werden die Deep Neural Networks beider Studien anhand von Monte Carlo Simulationsdaten
und Messdaten validiert.

Der in dieser Arbeit entwickelte Deep Learning basierte Diskriminator trigt wesentlich zur
jiingsten Suche nach dem neutrinolosen Doppelt-Betazerfall des EXO-200-Experiments bei, die
in Phys. Rev. Lett. 123 (161802) veroffentlicht ist. Diese Analyse iibertrifft andere potenzielle
Analysekonfigurationen und bietet die hochste mittlere Sensitivitdt auf die Halbwertszeit
von 5.0 - 102 yr bei einem Konfidenzniveau von 90 %. Die Sensitivitit auf die Halbwertszeit
wird durch die Verwendung der durch das Deep Neural Network rekonstruierten Energie weiter
erhoht. Dies stellt die beste Analysekonfiguration dar und fithrt zu einer Verbesserung der
Empfindlichkeit um ~35 % im Vergleich zur Basisanalyse. Diese Verbesserungen verdeutlichen
den hohen Stellenwert von Deep Learning basierten Methoden in komplexen Datenanalysen fiir
aktuelle und zukiinftige Experimente. Weitere Verbesserungen stellen einen vielversprechenden
Weg zu einer moglichen Beobachtung des neutrinolosen Doppelt-Betazerfalls dar.
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Chapter 1
Introduction

Since the discovery of the Higgs boson [1-3], all fundamental particles predicted by the Standard
Model of particle physics have been observed. However, there is definitive proof of physics
beyond the Standard Model to explain dark matter [4] and neutrino oscillations [5-7]. After
several decades of research [8], some fundamental properties of neutrinos remain unknown. The
experimental observation of neutrino oscillations established that they carry a non-zero mass.
This raises the question of their absolute mass scale. In addition, it remains unclear if neutrinos
are Majorana particles [9] which would imply that they are their own antiparticles. This
contradicts the current description but would advance our understanding about the asymmetry
of matter and antimatter in the Universe [10, 11].

To date, the search for neutrinoless double beta decay [12, 13] is the most promising candidate
to probe the Majorana nature of neutrinos. A variety of experiments search for this hypothetical
decay in different nuclei. The EXO-200 experiment operated a time projection chamber filled
with liquid xenon to search for this decay in the isotope 36Xe. It completed data acquisition
in 2018 and is among the most sensitive experiments in this field of research [14]. The current
generation of experiments reach sensitivities on the half-life of this decay of up to ~10%¢ yr [15].
Because the decay occurs extremely rarely, if it exists at all, the main challenge of experimental
approaches is to reduce background in order to avoid false positive observations. In operation,
the most important measure to unambiguously identify the neutrinoless double beta decay is the
kinetic energy of the decay electrons. For the decay, a characteristic decay energy is expected,
whereas for the standard double beta decay [16], a fraction of the energy is transferred to the
neutrinos and remains undetected. To reduce background from this decay channel as well as
from other interactions in the detector, a precise energy measurement is crucial. Furthermore,
background can be suppressed by particle identification techniques that discriminate candidate
double beta decays from background interactions.

Machine learning and deep learning techniques in particular demonstrated superhuman
performance in several domains over the last years [17, 18]. Especially the availability of
increased computing power together with large public datasets have boosted this development.
Today, we encounter machine learning systems in our everyday life, for example when using
search engines. Also, in particle physics, these techniques revolutionize the approach to data
analysis [19]. The advantages of these methods become apparent for information-rich and
data-intensive experiments. Since a few years, the number of deep learning applications in
particle physics experiments has increased drastically and is expected to become an even more
essential part in the toolkit of future experiments.



2 1. Introduction

Within the scope of this thesis, deep learning methods are adapted for data analysis in the
EXO-200 experiment. These algorithms are utilized to improve the analysis of key parameters in
order to increase the sensitivity to the half-life of neutrinoless double beta decay. The approach
is motivated by the recent success of deep learning in the field of computer vision [20]. Because
experimental data in EXO-200 is conceptually similar to images, deep neural networks are
applicable naturally. The application of deep learning techniques in particle physics experiments
in general represents a promising path to increase the discovery potential of present and future
experiments.

In this thesis, Chapter 2 presents the theoretical background of neutrinoless double beta decay
and its implication for particle physics. In addition, the experimental aspects for a successful
search for this decay are presented with a focus on the EXO-200 experiment and its functionality.
Chapter 3| introduces the basic concepts of deep neural networks and how these particular
techniques are associated to the general field of machine learning algorithms. Chapter 4/ presents
a novel approach for reconstruction of the ionization charge energy in EXO-200 with deep
neural networks. Chapter 5| presents deep neural networks that discriminate double beta decays
from the dominant background interactions. In Chapter 6, the detailed analysis concept of
searches for neutrinoless double beta decay in EXO-200 is presented. The application of the
developed deep neural networks presented in the previous chapters for the search of this decay
is presented and is compared to traditional analysis concepts. Chapter 7 provides a summary of
the results presented in this thesis and an outlook on potential further improvements by deep
learning based analyses in particle physics experiments.



Chapter 2

The Neutrinoless Double Beta Decay

Contents
2.1 Theory of the neutrinoless double beta decay . . . . . . . . .. ... 4
2.1.1 TImplications on theoretical physics . . . . . . . . .. ... .. ... 7
2.1.2  Experimental approach . . . . . .. .. .00 0oL 10
2.2 The EXO-200 experiment . . . . . . . . . . .. .. ... ....... 14
2.2.1 Conceptual design . . . . . . . . . ..o 14
2.2.2  Working principle . . . . . . ..o 0oL 17
2.2.3 Overview of the detector Monte Carlo simulations . . . . . . . . . .. 18
2.2.4  Overview of the event reconstruction and data analysis . . . . . . .. 19

This chapter presents a brief overview of the physics related to the neutrinoless double beta
decay. The theoretical requirements to allow this hypothetical decay are discussed and its
implications to particle physics beyond an observation solely. Also, aspects that contribute to a
successful experimental approach are presented.

The EXO-200 experiment is currently among the most sensitive experiments that search
for the neutrinoless double beta decay. Its conceptual design and the working principle of the
detector is discussed. Further, a short overview of the detector Monte Carlo (MC) simulations,
the event reconstruction and the higher level data analysis is given.
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2.1 Theory of the neutrinoless double beta decay

The double beta decay (2v/3) is a second-order decay weak interaction that is allowed in
the Standard Model of particle physics (SM). It was first suggested by M. Goeppert-Mayer
in 1935 [16]. Its general decay scheme is shown in Equation 2.1 and the corresponding Feynman
diagram is shown in Figure 2.2a.

IX = 5 4Y + 2" + 27, (2.1)

186Xe — 138Ba 4 2¢~ + 20, (example) .

This decay can occur in some unstable nuclei that cannot undergo single beta decay (8) due
to energetic constraints given by the semi-empirical mass formula [21] shown in Equation 2.2.
For these nuclei, the decay products of 5 decays are energetically disfavored whereas those of
double beta decays (f3) are energetically favored as is shown in Figure 2.1. More details on the
formula are given in Ref. [21].

Ep=ayA—agA® —ap(N = 2)* AV —acZ? AP +§-apA™" . (2.2)

Under certain conditions, nuclei could decay via the the neutrinoless double beta decay (0v/33)
which is a decay beyond the Standard Model. It was first suggested by W.H. Furry in 1939 [12].
In this hypothetical decay, no neutrinos are emitted as is shown in Equation 2.3 and in the
Feynman diagram in Figure 2.2b.

IX = 5 Y +2e” (2.3)

186Xe — 138Ba + 2¢~  (example) .

\ Even-A

M(A,Z)

zZ-2 Z-1 z Z+1 Z+2

Figure 2.1: Mass parabolas for nuclear isobars with even mass number A. Even-even nu-
clei (blue) have lower masses compared to odd-odd nuclei (red). The 3 decay from (a) to (b)
is energetically forbidden whereas the 33 decay from (a) to (c) is allowed. Taken from [22].
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d u d u
W_ ~ e~ W_ \\. e~
~— z
7 vM X
,,4 e~ ,: e~
W, W,
P— ) P— )
d u d u
(a) (b)

Figure 2.2: Feynman diagrams at tree-level of the 2v33 decay (a) and the Ov 58 decay (b).

To make this decay possible, neutrinos must be Majorana particles [9] which implies that
neutrinos are their own antiparticles. However, neutrinos, as well as the other fermions, are
described as Dirac particles in the Standard Model. In this description, particles are distinct
from their antiparticles. Furthermore, to allow Ov33 decay, neutrinos are required to have a
non-zero mass which allows them to change their helicity.

Several experiments [5-7] observed neutrino flavor oscillations which demonstrates that at
least some light neutrinos are massive particles. Measurements confirm only three light active
neutrino flavors with my, < mz/2, where my is the mass of the Z boson [23|. However, additional
light sterile or heavy neutrinos may exist [4]. The existence of neutrino oscillations implies
that the neutrino flavor eigenstates |v,), with a = e, u, 7, participate in weak interactions. The
flavor eigenstates are different from the propagating mass eigenstates |v;), with ¢ = 1,2,3. The
flavor eigenstates can be expressed as a linear combination of the mass eigenstates:

Va) = Z Ugilvi) (2.4)

where U is the (3 x 3) PMNS neutrino mixing matrix [24, 25]:

Uel UeQ Ue3
U=|Un Up Us|= (2.5)
U’Tl UT2 U’T‘3
—i6
c12€13 512€13 s13e” !
= | —S12C€23 — C12523513¢€ C12C23 — $12523513€ sg3ci3 | x diag (1,e72 e 2 .

is is
512823 — C12C23813€'°  —C12823 — S12¢23513€"°  C23C13

Here, the abbreviations represent ¢;; = cosf;; and s;; = sin§;; with the angles (612, 613, 623).
The matrix further contains the phases (0, ae1, a31). ¢ is the Dirac-phase that is responsible
for potential CP violation in the lepton sector. If neutrinos are Dirac particles, the Majorana
phases a1 and as; vanished [4, 26].
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Counts

2vpp

0vBB

Qpp

Total electron energy

Figure 2.3: Sum kinetic energy spectra of emitted electrons in 2058 and hypothetical Ov 56
decay. Taken from [28].

The release of energy from a double beta (33) decay, either 2v58 or Ov33, is given by the
Q value:
Q = M; — My —2m, , (2.6)

where M; and M/ are the energy levels of the initial and final nuclei. For 2v33 decays, the
final state is a leptonic four-body state where the sum of the kinetic energy of both emitted
electrons forms a continuous spectrum from zero to the ) value. The recoil energy of the final
nucleus is negligible. However, for Ov33 decays, this spectrum is monoenergetic at the @ value
since no neutrinos are emitted as is shown in Figure 2.3 [27].

While the 2v45 decay conserves both baryon and lepton numbers separately, the Ov 55 decay
is explicitly a leptogenic process by creating two out-going leptons (AL = +2) and thus violates
the lepton number conservation. While the standard Orv58 decay mechanism is the exchange of
a light Majorana neutrino, several other potential mechanisms exist that could mediate this
decay [29]. Nevertheless, the “black-box” Schechter-Valle theorem ensures that any observation
of Ov(8 decay also inevitably proves the Majorana nature of neutrinos, regardless of the exact
decay mechanism [13]. In the standard mechanism, the parent nucleus emits a pair of virtual
W~ bosons which exchange a Majorana neutrino. Conceptually, during the exchange of a light
neutrino, an antineutrino is emitted from one W~ boson and is absorbed as a neutrino by the
other boson. To be absorbed by the electroweak current with a flipped helicity, neutrinos must
be massive Majorana neutrinos. Thus, they have a non-zero negative helicity component on
the order of O(m/E). The amplitude of the Ov/38 decay is related to the effective Majorana
neutrino mass:

mgs = = (2.7)

2
§ , m; Uei
)
2

2 2 2 2 i« asz]—20
= ‘m1012613 + m2812013e 21 + m3513 ( 31 )

e' ,
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where m; are the masses of the three neutrino mass eigenstates, following the syntax introduced
in Equation 2.5. The rate I'% for this mechanism which is the inverse of the half-life of the
Ovf5 decay is given by [30]:

-1
= (T%) " = Gou (@, 2) - [Mo[* - 3 (2.8)

where Gy, (Q, Z) is the phase space factor and My, is the nuclear matrix element. From
Equation 2.8 it follows that a measurement of the half-life Tl% for a given nucleus can be
translated directly to a measurement of the effective Majorana mass |mgs|. This measure is
independent of the nucleus. Accordingly, a lower limit on the half-life translates to an upper
limit on the neutrino Majorana mass. These predictions are subject to substantial systematic
uncertainties arising mostly from calculating nuclear matrix elements Mj,,. Depending on the
calculation, the results differ by factors up to ~3 from each other [4]. Furthermore, the value of
the axial coupling constant g4 affects the nuclear matrix element by My, ~ gEz. Measurements
of 2v35 decay rates indicate a quenching of the vacuum value g4 = —1.2723 + 0.0023 [4]. If this
quenching occurs in Ov 35 decay, which is not known to date [26], the Ov/33 decay is consequently
delayed which results in an increased half-life. Nevertheless, an observation of the Ov 35 decay
would inevitably prove the Majorana nature of neutrinos.

2.1.1 Implications on theoretical physics

The discovery of neutrino oscillations was a first hint for new physics beyond the Standard
Model [5-7]. These results confirmed that at least two neutrino mass eigenstates have non-
zero mass and also indicate that the description of neutrinos in the Standard Model must
be extended. To date, neutrino oscillations are confirmed by measurements of the squared
mass differences (Am2;, |Am3;|) and the mixing angles (sin? a3, sin? 619, sin? 13). However,
oscillation experiments are neither sensitive to the sign of Am3; nor to the absolute neutrino
mass scale. This ambiguity results in two possible hierarchies of the mass eigenstates m;
which are shown in Figure 2.4. Possible realizations in nature are the normal mass hierarchy
with m1 < mo < mg and the inverted hierarchy with ms < m; < mg. Equation 2.8/ directly
links a Ov33 half-life to the effective Majorana mass mgs and thus to the neutrino oscillation
parameters. This implies that an observation of Ov33 decay could constrain or identify which
neutrino mass hierarchy is realized in nature. In addition, next-generation experiments might
also be able to answer this question [31].

The sum of the three mass eigenstates myot = Zl m; can be constrained by cosmological
observations. While these constraints are model-dependent, the Planck experiment currently
places the most stringent limit on my. < 0.12eV at the 95 % confidence level (CL) [33]. In
parallel, earth-based experiments study the endpoint spectrum of § decays which provides
information on the effective neutrino mass of the electron antineutrino. Since the electron
neutrino is a mixture of the three mass eigenstates, its mass corresponds to m% => m? ‘U 621|
The KATRIN experiment measures the endpoint spectrum of Tritium 3H and aims to improve
the best existing limit of 2.05eV [34, 35] with a sensitivity of mg < 0.2eV [36]. Figure 2.5
shows the constraints on the effective neutrino Majorana mass mgg as a function of the lightest
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2
AI'na\tm
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Figure 2.4: Shown are the neutrino masses and their mixing for both possible neutrino
hierarchies. The normal hierarchy is shown left and the inverted one right. The flavor
content in the mass eigenstates is denoted by color as a function of the CP violating phase 9.
Taken from [32].

neutrino eigenstate mpyi, (left), the sum myq (center), and the effective electron neutrino
mass mg (right) for both possible mass hierarchies.

From our current understanding, the Big Bang produced equal parts of matter and antimatter.
As the Universe expands and cools, matter and antimatter would annihilate into electromagnetic
radiation. But this contradicts the matter-dominated nature of the Universe. As an observation
of Ov /5 decay would imply lepton number violation and could give rise to leptogenesis, this
could help to understand the asymmetry between matter and antimatter in the Universe.
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Figure 2.5: Predictions on the effective Majorana mass mgg as a function of the lightest
neutrino mass mmin (left), the sum mo; (center), and the effective neutrino mass mg (right)
in the case of the normal (blue) and the inverted (red) mass hierarchy. The hatched areas
correspond to the allowed regions due to unknown Majorana phases. The solid lines take

uncertainties on the oscillation parameters into account. Taken from [4].
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2.1.2 Experimental approach

The observation of a single Ov55 decay would already prove the Majorana nature of neutrinos.
However, assigning a candidate event unambiguously to a Ov56 decay as opposed to a 2v36
decay or any other background interaction is extremely challenging. In order to probe an
exemplary Majorana neutrino mass of mgg = 50meV, the corresponding Ov33 half-life is
about T, 1(}’2’ = ~10%6 - 102" yr. This exceeds the age of the Universe of 10° yr by many orders of
magnitude. Under these assumptions, to observe a single Ov33 decay per year, an experiment
must operate about 100kg of a potential Ovf3 decay isotope. Experimental inefficiencies
will further increase the required amount of decay isotope. The figure of merit of different
experimental concepts of 0v 33 searches is the sensitivity to mgs and thus to the Ov33 half-life of
the chosen (6 isotope. Sticking to the example of an idealized experiment with no background,
the experiment could place a lower limit on the Ov/35 half-life or an upper limit limit on the
Majorana neutrino mass, provided no Ov56 decay was observed. This limit depends on several

1/ 1\
mgg X \/: <Mt> ; (2.9)

where Mt is the exposure of the mass M of the G5 isotope over a time ¢ and € is the signal
detection efficiency.

parameters:

Background control and suppression are among the key ingredients for a successful Ov 56
experiment. The background level b in an experiment is given by:

b=c-Mt-AE (2.10)

assuming a proportional accumulation of background with a rate c¢. The background rate
is usually given in units of kg7!yr~'keV~!. AFE denotes the energy window around the
Q value that is defined by the energy resolution. As opposed to the background-free example
in Equation 2.9, the corresponding experiment with a background level b can place an upper

1 [cAE\
mgg o< \/: ( 7 ) : (2.11)

If the background near the @) value is not uniform in energy, the background rate ¢ will depend
on the energy window AFE. In addition, it can depend significantly on the mass. This is the
case for external background that is shielded by outer parts of the decay mass. Even with
these simplified examples, the drastic impact of background on the success of Ov33 experiments
becomes clear and motivates any efforts to reduce backgrounds.

limit on mgz which depends on:

For the search for Ovg3 decay, 2v338 decays reflect an intrinsic background that cannot be
suppressed systematically. The only difference in the signatures of both decays is the energy
deposited in the detector, because the emitted neutrinos from a 2v3838 decay leave the detector
without interaction. The energy distributions of both decays are shown in Figure 2.3. This
implies that the energy measurement must be sufficiently precise to be able to distinguish 2v56
from candidate Ov 35 decays. For current experiments that operate time projection chambers or
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Figure 2.6: Cosmic muon flux as a function of the vertical depth given in meters water
equivalent (mwe) for several underground laboratories. The solid line shows a parametrization
with a flat overburden. Taken from [22].

crystal based detectors, the energy resolution is sufficient so that 2068 decays do not contribute
significantly to the background level. Nevertheless, any improvement to energy resolution results
in a narrower energy window AFE around the () value and thus improves the signal-to-noise
ratio.

Further aspects to reduce the background contamination include careful material selection of
radiopure detector components. Detector concepts that allow particle identification, i.e. dis-
criminating 48 decays from background v and « interactions during data analysis, outperform
simple calorimeter concepts in terms of background suppression. The ability to tag the daughter
ion of 2v45 and candidate OvG8 decays provides another powerful tool to reject most of the
remaining backgrounds. Together with a decent energy resolution, such an experiment can
effectively be operated background-free. Since the technical realization is challenging, it was
not utilized in Ov5 experiments so far. However, it is being developed as a potential upgrade
for the next-generation experiment nEXO [37, 38].

Different experimental concepts have different capabilities to reject or suppress background.
Due to the high interaction probability of « particles, they interact mostly close to material
surfaces. Most detector concepts can handle this type of background by e.g. event position
reconstruction. Background from atmospheric muons is suppressed passively by placing the
experiment underground. The muon flux for different underground facilities is shown in
Figure 2.6. Remaining muon interactions are usually monitored by active muon veto systems
surrounding the actual Ov33 detector. While muon interactions can be suppressed successfully
with these measures, cosmogenic activation from neutrons that result from muon interactions
represents a risk of increasing the radioactivity of the detector components. Remaining
background originate mostly from trace radioactive impurities in the detector components and
from natural radioactivity external to the detector. The latter contribution is usually reduced
by passive shields that absorb this background.
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Besides controlling the background level in a real experiment, another key requirement is a
high signal detection efficiency. As indicated by Equation 2.11, improving the sensitivity to mgs
by doubling the signal efficiency € is equivalent to using four times the isotope mass [39]. To
achieve a high signal detection efficiency, homogeneous detector concepts are favored where the
source material is at the same time the detection medium. These concepts do not lose efficiency
from e.g. geometric acceptance or absorption in the source material itself.

The Ovf35 decay could in principle be observed in 35 isotopes. However, several aspects need
to be taken into account in order to choose an isotope where an observation is more likely and
technically feasible. From theoretical aspects (see Equation 2.8) isotopes are favored where the
phase space factors and nuclear matrix elements maximize the Ov33 decay rate for a particular
Majorana neutrino mass. From background control aspects, isotopes with high ) values are
favorable since most natural backgrounds have energies below ~3 MeV. As discussed in the
example above, large masses of the Ovg3 isotope are needed to achieve a competitive Ov 56
sensitivity. This already eliminates some rare and expensive isotopes. Another desirable
aspect of isotopes is enrichment in order to produce concentrated masses of the Ov33 isotope
at a reasonable price. Especially for detector concepts without excellent energy resolution,
isotopes with a slow 2v33 decay rate of the corresponding isotope are preferred to constrain this
background contribution. For detector concepts with excellent energy resolution, this aspect is
not relevant as the background contribution of 2v33 decays is negligible.

The various aspects contributing to the design of a successful experiment allow for different
detector concepts each with their intrinsic advantages and disadvantages. The key parameters
of selected current and next-generation experiments are shown in Table 2.1. More details on
next-generation experiments are discussed in Ref. [40]. Some of the current and next-generation
experiments are:

CUORE deploys TeOq-crystals in an ultra-low temperature cryostat and pursues a bolometric
detector concept where the source material equals the detector medium. An advantage is
the high natural abundance of the 0v33 isotope 3Te which mitigates the need of isotope
enrichment. Deposited energy in a crystal is measured as a temperature increase which allows
for an excellent energy resolution. However, since the crystals cannot be grown very large,
many of these crystals are organized in strings as opposed to a single monolithic detector
volume [41].

GERDA deploys Ge-crystals enriched in "®Ge that are immersed in a cryostat of liquid argon.
The advantages of this detector concept are an excellent energy resolution and low background
levels. However, similar to the CUORE experiment, the crystal-based concept does not allow
for a monolithic detector [15]. After an intermediate upgrade, the next-generation experiment
LEGEND will deploy ~1000kg of "Ge [42].

KamLAND-Zen searches for the 0v33 decay in 39Xe with the previously existing detector
infrastructure of the KamLAND experiment [43]. The experiment consists of a liquid
scintillator loaded with xenon which is enriched in ®6Xe. While the detector concept
suffers from modest energy resolution, it benefits from a high deployed isotope mass and a
straightforward way to scale the monolithic detector to even larger mass [44].
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NEXT will use a time projection chamber of high-pressure gaseous xenon enriched in *6Xe
to search for the OvA33 decay in '36Xe. Key advantages of this concepts are the excellent
energy resolution and the topological event information by measuring both the ionization
and scintillation signatures. With these features, backgrounds can be rejected effectively [45].

SNO-+ will search for the 033 decay in '39Te with the existing detector infrastructure of the
SNO detector [46]. The detector concept is a liquid scintillator loaded with natural tellurium.
Similar to the KamLAND-Zen experiment, the detector concept suffers from modest energy
resolution. However, it offers the possibility to deploy much source material and a monolithic
design [47].

EXO0-200 and nEXO uses and will use a time projection chamber filled with liquid xenon
enriched in 13%Xe. Key advantages are the multiparameter analysis concept that is based on
the measurement of ionization and scintillation signatures. Furthermore, the high density
of liquid xenon in a monolithic detector concepts provides an intrinsic self-shielding by the
xenon from external background [14, 37, 48]. More details are discussed in Section 2.2.

Table 2.1: List of current and next-generation Ovf35 experiments. The energy resolution
is given at the @ value (FWHM). The reported Ov[5 half-life limits and sensitivities are
given at the 90 % confidence level (CL). For next-generation experiments, the Ov33 half-life
sensitivity denotes the median 30 discovery sensitivity after 5yr of livetime. Numbers for
next-generation experiments are taken from [40].

Current Isotopic Energy Half-life
. Nucleus : L Reference
Experiment Exposure Resolution Limit
kg yr] [keV] [10%° yr]
CUORE 130Te 24.0 7.4 1.5 [41]
EXO0-200 136Xe 234.1 66 3.5 [14]
GERDA 6Ge 82.4 3.3 9 [15]
KAMLAND-Zen  !35Xe 126 270 10.7 [44]
Next-generation Nucleus Isotopic Energy Half-life Important
Experiment Mass Resolution Sensitivity Publications
[kg] [keV] [yr]
NEXT 136X e 1367 12 5.3-10% [45]
SNO+ 130Te  7.9.103 135 4.8 -10% [47]
LEGEND 6Ge 873 3 4.5 - 1077 [42]

nEXO 136Xe  4.5-103 58 4.1-10%" [37, 48]
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2.2 The EXO-200 experiment

2.2.1 Conceptual design

The EXO-200 experiment was located in the Waste Isolation Pilot Plant (WIPP) in New
Mexico (USA) and completed data taking in December 2018. To date, the experiment is
among the most sensitive experiments to search for the hypothetical Ov33 decay, in particular
in 136Xe. The experiment was operated in two phases; a Phase-I from 2011 to 2014 and,
after upgrades to the detector, a Phase-II from 2016 to 2018. The main components of the
EXO-200 detector are shown in Figure 2.7. The detector itself is a single phase time projection
chamber (TPC) filled with liquid xenon (LXe) enriched to 80.6 % in 136Xe [49]. Key advantages
of the EX0-200 design are the monolithic detector where the source material is identical to
the detection medium, and the complementary measurement of ionization and scintillation
signals. The signal formation is explained in detail in Section 2.2.2. To operate the TPC at LXe
conditions at about —110°C, it is surrounded by a thermal bath of cryofluid which is housed in
a double-walled vacuum-insulated cryostat that shields it thermally. This again is surrounded
by a lead shield in order to suppress external background [50, 51].

The TPC is double-sided with respect to the common cathode at the center and is shown
schematically in Figure 2.8. It has a length of ~44 cm and a diameter of ~40cm. An electric
field is applied in both sub-TPCs. A picture of one sub-TPC is shown in Figure 2.9. Field
shaping rings ensure a homogeneous electric field in the TPC. Both sub-TPCs are equipped with
identical detector systems, each consisting of two crossed wire planes for ionization detection
and an array of 234 large area avalanche photodiodes (APDs) for scintillation light detection [52].
The scintillation light is collected and detected simultaneously by both APD arrays since the
cathode is optically transparent (~90 %) to xenon scintillation light at 178 nm. To reduce the
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Figure 2.7: Conceptual design of the EXO-200 experiment. Taken from [50].
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Figure 2.8: Schematic view of the double-sided EXO-200 TPC. Both sub-TPCs share a
common cathode (blue) and are each equipped with detector systems consisting of a V-wire
plane (red), a U-wire plane (green), and an array of APDs (black). Field shaping rings (brown)
ensure a homogeneous electric field between the cathode to the crossed wire planes. Taken
from [53].

number of readout channels, the APD array is grouped in 37 APD gangs. To increase the yield
of optical light, the inner lateral sides of the TPC are covered with PTFE tiles which act as
reflectors. For ionization charge detection, an electric field guides the secondary charges to the
corresponding wire planes. The cathode is biased at —8kV in Phase-I1 of EXO-200 operation
and at —12kV in Phase-II to improve the energy resolution. The first wire plane sees induced
charge and shields the second wire plane which acts as the anode. These wires also see induced
charge but more importantly they collect the drifting charge. The wires in both planes are
segmented with a pitch of 3mm and are read out in 38 wire triplets per plane, resulting in
an effective wire pitch of 9mm. The signals are read out by charge-sensitive preamplifiers.
The wire planes are offset by 6 mm from each other and the APD array is offset by 6 mm
from the anode plane. The induction wire plane is referred to as V-wire plane and the anode
plane as U-wire plane. The electric drift field in the bulk volume is 380 Vem ™! (567 Vem™!)
in Phase-I (Phase-II) and the electric field between both wire planes is 778 Vem™!. In this
arrangement, the V-wire plane does not collect charge but is completely transparent to it [51].

Great effort is taken to reduce background in the detector [50, 51]. The background level
is a key parameter for any Ovf3 experiment (see Section 2.1.2). Several aspects contribute
to accomplish a low background contamination. To reduce muon induced backgrounds, the
experiment is located underground at WIPP with an 16243% mwe overburden [55] as is shown
in Figure 2.6. With this overburden, the muon flux is reduced by about four orders of magnitude
compared to that observed at sea level [22, 55]. Remaining muons that interact in the EX0O-200
experiment are actively suppressed by a muon veto system located at four sides around the
detector which is shown in Figure 2.7. Radiation originating from sources external to the
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Figure 2.9: Picture of one of the two sub-TPCs installed in the EXO-200 TPC. The white
PTFE tiles inside the field shaping rings reflect the scintillation light emitted in the xenon
volume. Below the crossed wire planes, the empty platter is equipped with APDs in the
final assembly [54].

experiment, e.g. from the surrounding rock, is passively shielded by layers of lead, copper,
and coolant. Radioactive impurities in the internal detector components were minimized
prior to construction by a careful material selection process [56, 57| and by minimizing the
mass of the vessel components. Impurities in the LXe itself are reduced by permanently
re-circulating it through heated getters outside the cryostat. Besides the background reduction
aspects in detector construction, the EXO-200 detector design features multiple measures to
suppress and reject background in data analysis. For example, « particles interact mostly
close to the material surfaces and show a high light-to-charge ratio [58]. Using the 3D position
reconstruction capability of EXO-200 (see Section 2.2.4) and by measuring both the scintillation
and ionization signals (see Section 2.2.2 and 4.3.1), most this background can be rejected.
Furthermore, the monolithic detector design naturally reduces the background contamination
in the central LXe in the TPC by absorbing it in the outer LXe. This process is referred to as
self-shielding. Interactions of « particles can be distinguished to some extent from 2v88 and
candidate Ov 33 decays based on their number of localized energy deposits (see Section 2.2.4).
Additional information like the spatial distributions and the detailed event topology further
help to discriminate between penetrating ~ particles in contrast to 2v33 and candidate Ov36
decays. Such a discriminator is discussed in Chapter 5.
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2.2.2 Working principle

Particle interactions in the TPC deposit energy in the LXe. ~ particles interact with xenon
atoms and produce an energetic photoelectron while 2v33 and candidate Ov58 decays emit two
energetic electrons. Either way, these electrons gradually deposit their kinetic energy Ey in the
LXe by ionizing and exciting surrounding xenon atoms along their paths. This results in IV;
electron-ion Xe™ pairs and in Ny excited xenon atoms Xe*. In addition, some energy is lost in
undetectable channels such as atomic motion or “heat”. The energy transfer of the electrons
can thus be written as [14, 58]:

Ey = NiE; + Nox Eox + Nie | (212)

where F; and FEe denote the mean energy required to ionize and to excite a xenon atom. Some
energy is transferred to sub-excitation electrons with a mean kinetic energy e.

Through intermediate processes, the xenon ions can also be converted to excited xenon
atoms. The excited atoms form excited xenon dimers Xej which de-excite to the ground state
by emitting UV-scintillation light with a peak wavelength of 178 nm in LXe [59]. Since the
scintillation light is produced from the identical intermediate conversion, it is independent of the
initial process of either ionization or excitation. The scintillation light has two decay components
which arise from the de-excitation of either the singlet or the triplet state. However, since both
decay times are on the order of nanoseconds, they cannot be distinguished in EXO-200.

In the presence of an electric field, only a fraction 7 of electron-ion pairs may recombine while
the remaining charge is separated spatially and may be detected as Ny = (1 — r) N; electrons
or xenon ions. Then, assuming a recombination efficiency of one, the number of detectable
photons increases to Ny = Nex + rNj. Assuming no photon reduction processes, the mean
energy to produce a scintillation photon is [58, 60]:

Ey Wi

W = — =
v ny :I;—i—‘]\'/vCX/]\/'i7

(2.13)
where Wi = Eo/N; denotes the mean energy to ionize a xenon atom. Due to the specific density
of electron-ion pairs along the track of an ionizing particle, the fraction r of recombination
further depends on the type of the ionizing particle. While it is Wﬂgﬁ’) = 21.6eV for « particles,
it is W§a) = 17.9¢V for a particles [58].

Both the number of photons IV, as well as the number of secondary electrons N, are measures
for the total energy Ey deposited by an ionizing particle. However, event-to-event fluctuations
in the recombination fraction translate to fluctuations in the numbers of photons and secondary
electrons, with both numbers being anti-correlated. This leads to a degradation of the energy
resolution of either signature [61]. By combining both complementary measurements, these
fluctuations cancel and improve the energy measurement drastically as is shown in Figure 2.10.
The analytical approach to combine both measurements in EXO-200 is discussed in Section 4.3.1.
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Figure 2.10: Calibration data of a 22*Th source. The anti-correlation of the scintillation and
ionization measurements is observed in (a). This recombination fluctuations cancel when

combining both signatures which leads to an improvement in energy resolution (b). Taken
from [62].

2.2.3 Overview of the detector Monte Carlo simulations

A detailed understanding and modeling of the detector is essential for the analysis approach
pursued by EXO-200. The Monte Carlo (MC) simulation consists of two separated stages and
produces electronic signals of all detector subsystems similar to those recorded in measured
data.

The first stage is performed using the GEANT4 software package, version 4.9.3p02 [63, 64].
The detailed detector geometry of the TPC and its internal components is implemented from
the CAD model, along with its surroundings. In this detector model, particle interactions and
energy deposits are simulated. The output of this simulation stage is a list of energy deposits
in the LXe volume.

The second stage calculates the response of the electronics to the energy deposits modeled
in the first stage. Therefore, a 2D model of the detector is implemented in this simulation to
model the drift of secondary electrons in the bulk volume. To improve the precision of the
simulation, a full 3D model is implemented near the wire planes. In the 2D model, the U- and
V-wires are parallel to each other and the V-wires lie directly above the U-wires as is shown
in Figure 2.11. The path of each energy deposition is sampled to cubic voxels with 0.2 pm
edges and is tracked in a finite element simulation. The weighting potential ¢ (x) and the
electric field FE (x) are used to calculate the induced signal at each time step for every affected
channel using the Shockley-Ramo theorem [65, 66]. Diffusion of the secondary electrons is
taken into account in the simulation. The diffusion depends on the orientation of the electric
field. The transverse diffusion coefficients Dt is expected to exceed the longitudinal diffusion
coefficients Dy, by Dt ~ 10Dy, [67]. The transverse diffusion op,. of secondary electrons is given
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Figure 2.11: Geometry of the wire planes showing the drift of ionization charges. As opposed
to the implementation in the 2D model shown here, in reality, the wire planes are crossed
by 60°. Taken from [68].

by:

opy =V Drta , (2.14)

where tq = /vy denotes the time required to drift a distance d with a drift velocity vq. The
drift velocity is set by the external electric field F via vq = pF, with p being the electron
mobility in LXe [58]. The transverse diffusion coefficient is measured in-situ in EXO-200 [53].
Raw waveform traces are calculated from the induced signals with the transfer functions of the
corresponding electronics. In order to make the simulated waveforms more realistic, randomized
measured noise traces are added to them.

The APD response is simulated in a simplified fashion to avoid tracing single photons. A
parametrized light response is used to determine the light yield on both APD planes. This
response function takes the position of the interactions into account as well as geometric and
optical factors. The number of photons per APD plane is divided equally over all channels
which is then used to calculate raw waveforms with the known transfer function. The simulation
does not include the recombination fluctuations in LXe that are discussed in Section 2.2.2/ since
key parameters are still subject to current research.

2.2.4 Overview of the event reconstruction and data analysis

The event reconstruction in EXO-200 consists of multiple stages. First, a signal finding algorithm
is used to identify signals in the raw waveform traces. This applies a matched filter in Fourier
space to the waveforms. Because the detector subsystems use different settings in the front-end
electronics, individual transfer functions are used to optimally find potential signals. The
filtered trace y(t) is given by:

y(t) = FHX(HH ()] (2.15)

where F is the Fourier transform (FT), X (f) is the FT of the original waveform trace z(t), and
H*(f) is the complex conjugate of the FT of the transfer function h(t) [51, 69]. Potential signals
on the filtered trace are found by identifying amplitudes that exceed a threshold determined
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on an event basis from the mean absolute deviation. To improve the ability to find multiple
signals close in time, found signals in the matched filter stage are “unshaped” to obtain the
original charge deposit ¢(t):

gty =F HHNHX()] (2.16)

where H~!(f) is the inverse transfer function. This unshaped trace is sensitive to nearby charge
deposits which are identified by a peak-search algorithm that finds additional signals.

After finding signals, the corresponding signal parameters are extracted. This is done by
minimizing a x? function that is based on the template model for the specific detector subsystem.
The results from the signal finding stage serve as initial fit values and to set the fit window. For
U-wire channels, the signal finding and parameter extraction stages are repeated twice; once
with the collection and once with the induction U-wire template. By comparing the x? of both
fit scenarios, signals may be tagged as induction-like, i.e. they do not contain net energy. As of
the EXO-200 Ovf35 search in 2019 [14], these signals tagged as induction-like further pass a stage
where a combined fit of collection and induction templates is performed to recover potentially
missed energy on the U-wires. This improvement was triggered by the results presented in
Section 4.2.3 and published in Ref. [70].

Signals on adjacent channels are grouped together if they are close in time. These bundles
are assumed to belong to a single physical event. Signals on U-wires are linked to signals on
V-wires by grouping all bundles in their most probable configuration. The resulting groups are
called charge clusters. In this clustering process, all potential combinations of U- and V-wire
bundles are matched. The best configuration is selected by minimizing a cost function that is
defined based on probability density functions (PDFs). These PDFs describe the time difference
and the amplitudes between U- and V-wire bundles and whether the resulting 2D position is
contained within the detector volume. The resulting charge clusters are associated to APD
bundles. The full 3D position is reconstructed with the measured drift velocity in LXe [53]
and the time difference between charge and scintillation clusters. It is noted that multiple
charge clusters can be associated to a single scintillation cluster, e.g. for v particles that interact
multiple times in the detector via the Compton scattering process. On the other hand, multiple
scintillation clusters cannot be associated to a charge cluster.

The orientation of the coordinate system is shown in Figure 2.13a. The event location (z,y)
is calculated from the coordinates associated with the wire plane coordinates (u,v) while the
z coordinate is calculated from the time difference of charge and scintillation clusters:

- f >0
e v—u or z (2.17)
U— else
1
dy — dyy - At for At < teo
2| = U VU feon or . (2.19)
dy — dvu — Varitt (At — teon) else

While the cathode is located at z = 0, dy denotes the distance of the U-wire plane to the
cathode and dyy the distance between both wire planes of a sub-TPC. At = ty — tapp denotes
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Figure 2.12: Illustration of example interactions categorized as “single-site” (SS) and
“multi-site” (MS). Taken from [54].

the measured time difference of associated charge and scintillation clusters. vqyis, denotes the
drift velocity in the bulk volume which is 1.7l mmps~! in Phase-I [53] and 1.83 mmps~! in
Phase-II. . is the drift time between both wire planes which is 2.940 ps (2.887 ps).

Thanks to the monolithic design of the EX0O-200 detector along with good position and energy
resolution, many background events can be distinguished from 2v33 and candidate Ov 55 decays.
As was discussed in Section 2.2.1, the dominant background sources are -y interactions originating
from remaining trace impurities in the detector materials. Typical interactions of ~y particles
and (8 decays are shown schematically in Figure 2.12. Events are labelled “single-site” (SS)
if all energy is reconstructed in a single location within dimensions of ~2—3mm. This is
observed for most 2vf5 decays. On the other hand, events are labelled “multi-site” (MS)
if there are multiple localized energy deposits in the detector. In the main energy range of
EXO-200 analysis (1000-3000keV), v particles mostly interact via the Compton scattering
process and usually interact multiple times in the LXe. Thus, these events are categorized as
MS. Interactions of v particles may be categorized as SS if they interact via the photoelectric
effect, if multiple Compton scattering processes occur too close to each other to be separated by
the event reconstruction, or if energy deposits are missed by event reconstruction. 2v33 decays
and « interactions may produce additional localized energy deposits due to bremsstrahlung and
thus are categorized as MS. For example, the fraction of SS events of Ov838 decays is predicted
in MC simulations to be ~75% whereas that of v particles is ~15% at £, = Q.

To monitor the TPC’s response to energy deposits, in particular from ~ interactions, radioac-
tive calibration sources are deployed near the TPC on a regular basis. Therefore, a dedicated
guide tube allows to inject sources into the coolant volume near the TPC to various source
locations that are shown in Figure 2.13b. For regular calibrations, a 22Th source is deployed
at source position S5 near the cathode in order to cover both sub-TPCs. Additional calibration
sources like 37Cs, %°Co, and ??Ra and additional source positions are used during extended
calibration campaigns. The regular calibration measurements are used to evaluate the energy
response and the electron lifetime in LXe which is discussed in Section 4.3.

The gains of individual U-wire channels are monitored periodically by dedicated charge
injection measurements. A precisely known amount of charge is injected to individual wires
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Figure 2.13: (a) shows the coordinate systems (u,v, z) and (x,y, z), projections of both the
hexagonal active and fiducial LXe and of the PTFE panels. (b) shows the location of
calibration sources around the TPC. The cathode is located at the center and is biased via
the HV feedthrough. Taken from [51].

and their response is measured in units of electrons per ADC count. In addition, the gains are
calculated from 2?8Th source calibration data. Both measurements are highly correlated and
result in a mean gain of ~380e/ADC with a variation of 30 % between the channels. The V-wire
channels are also monitored with dedicated charge injection measurements. The response of
the APDs is monitored periodically using an external laser. However, the variation is absorbed
in an APD light map f(r, ¢, z) that corrects the amount of collected light as a function of the
location of the energy deposit. The light yield dominantly depends on the event position due
to solid angle effects and due to variations in the APD response [51].

Besides calibrations and corrections, several event selection criteria are applied in the analysis
of low-background (LB) physics data. These include a dead-time after the muon veto system
is triggered or an event in the TPC was tagged as muon in order to reject muon induced
events. The time difference of consecutive events is required to be at least 0.1s in order to
remove fast S-a coincidences that occur from ??°Rn and ???Rn radioactive impurities as well
as other correlated decays [14]. Pile-up events with multiple scintillation clusters are rejected.
Also, events with high light-to-charge ratios are rejected which removes background from
a particles (see Section 2.2.2 and Ref. [58]). In addition, all particle interactions are required to
be associated with a full 3D position. For some charge clusters, in particular those with low
energy deposits, the position reconstruction fails. As of the EXO-200 0v38 search in 2019 [14],
this selection cut is relaxed to only require at least 60 % of the total energy to have an associated
3D position. This cut is discussed in detail in Section 6.1.4. The event position of all particle
interactions is required to be reconstructed in a fiducial volume. By definition, it extends to
a distance of 10 mm from the cylindrical PTFE, the cathode plane, and the V-wire plane. In
addition, motivated by the profile of the wire planes, the energy deposits are required to lie in
a hexagon in the xy plane with an apothem of 162 mm. The fiducial volume selection criterion
is applied to exclude regions of the TPC near the material surfaces with increased discrepancies
in MC simulations. The energy threshold for Ov 33 searches is 1000keV [14, 51].
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Machine Learning is a popular concept in artificial intelligence which is introduced in this
chapter. While many different approaches exist within machine learning, the state of the art
concept is deep learning. This concept has proven to be applicable to a variety of problems

with superior performance.

This chapter introduces deep neural networks which are used in deep learning. The concept
of these networks is discussed based on multilayer neural networks. These networks are also
utilized to discuss the general training procedure for deep neural networks. Finally, convolutional

neural networks are introduced which have proven to outperform other approaches especially in

the field of image recognition. Besides theoretical concepts, also practical considerations are

outlined.
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3.1 Machine learning

Currently, the most popular field in artificial intelligence is machine learning (ML). This sub-field
covers algorithms that are able to correctly interpret input data without explicit instructions
how to process it. Instead, the network is trained to do so implicitly by pursuing specific
objectives [71]. A widely used definition of algorithms belonging to machine learning is:

A computer program is said to learn from experience E with respect to some class of
tasks T" and performance measure P, if its performance at tasks in 7', as measured
by P, improves with experience F.

(T.M. Mitchell)

Based on this formal definition, many different methods and techniques exist to construct
machine learning algorithms. While common choices of tasks 7', performance measures P, and
experiences E are discussed here, a more detailed overview is given in Ref. [71].

The task T describes how to process a given input. Common tasks include classification,
regression, and synthesis. In classification, an algorithm f processes an input * € R" and
assigns it to a category k. Mathematically, this corresponds to f: R™ — {1,..., K} where K
denotes the number of different categories. In addition, more advanced classification tasks exist
that map the input to multiple categories or to a probability distribution over all categories. A
popular application in industry includes object recognition in images. In regression tasks, an
algorithm f produces a continuous output f : R™ — R. The difference to classification tasks is
the natural ordering provided by R while the categories in classification tasks are not ordered
logically. For synthesis tasks, new samples are generated by an algorithm, i.e. f: R” — R™.
For example, this includes the generation of images from random numbers according to the
reference dataset used in training. In other applications, a corrupted input & € R™ is processed
to an output @ € R™ to remove noise [71] or to refine the accuracy of simulated samples [72].

The performance measure P denotes the metric that is used to evaluate the ability of an
algorithm to perform the task 7'. While different metrics exist, the exact choice of suitable
measure depends on the specific task. The ability to process new data is usually evaluated on
an independent validation dataset. The choice of performance measure affects the behaviour
of the trained algorithm. For example, for regression tasks, the effect of rare but large errors
in contrast to many medium-sized errors in the prediction is a tradeoff that depends on the
specific application.

The experience E is used to improve the performance measure P on a task T in training.
Common types of training procedures are supervised and unsupervised learning. The latter
concept aims at finding useful patterns in an unlabelled training dataset. During unsupervised
training, the algorithm learns the underlying probability distribution that describes the training
dataset. This knowledge can be used for data synthesis or to cluster data with similar attributes.
In contrast to this concept, in supervised learning each training sample x is associated to a target
label y. The algorithm predicts g from the input . During training, a loss function L (y, 9) is
used to quantify and optimize the performance measure. Classification and regression tasks are
usually trained via supervised learning.
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Machine learning algorithms consist of a models which are fed with samples during training
in order to learn to correctly interpret it according to some objective function. In a successful
application, the model has learnt a representation of the training data and is able to also
correctly interpret new, unseen data. Many different types of model concepts exist, such as
support vector machines, decision trees, and neural networks [71]. Classical machine learning
techniques require to manually engineer features from the data based on prior knowledge.
However, neural networks are capable to learn these features by themselves during training
with little pre-processing required. The concept of neural networks is inspired by biological
neural networks. In computer science, neural networks consist of a collection of neurons, also
called units, that are aggregated into layers. Units of different layers can be connected to each
other which implies a flow of information between these units. Historically, “shallow” neural
networks were used with only a few hidden layers which denote the layers between the input
and output layers. While there is theoretical prove that a shallow neural network is sufficient to
represent any function [73], this approach is not practicable. Deep learning (DL) represents a
class of advanced concepts that stack multiple layers on top of each other. With this hierarchical
approach, complex representations (features) can be extracted by combining simpler features
captured in preceding layers. This capability renders deep learning techniques very powerful and
flexible for numerous applications. Accordingly, these neural networks are called deep neural
networks. This is the state of the art approach to solve many real-world problems like object
and speech recognition in a wide variety of fields in research and industry [17, 18, 74-77].

3.2 Deep neural networks

3.2.1 Multilayer neural networks

The basic concept of deep neural networks is multilayer neural networks. A simple example
with two hidden layers is shown in Figure |3.1. The nodes represent mathematical operations
and the lines represent weighted connections between the nodes. Since each node is connected
to every node in the previous and the next layer, these layers are called fully connected layers.
The output yx(x) of a node k in the first hidden layer is computed for an input feature vector x
according to:

K
@) =0 (z) =0 | Y wiz; +b0 | (3.1)
j=1

where w,%) denotes the weights of the connection between a node j in the input layer and the

node k in the first hidden layer. b,(gl) denotes the bias. zj is further processed by a non-linear
activation function o. Figure 3.2 shows the workflow to calculate Equation 3.1/ for a single unit.
For the example neural network shown in Figure 3.1, the sum spans over K = 4 input features
while Equation 3.1 is evaluated for all nodes k£ = 1,...,3 in the first hidden layer. Currently,
the most common non-linear activation function is the rectified linear unit (ReLU):

ReLU(z) = max (0, 2) . (3.2)
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Figure 3.1: Illustration of a simple neural network that consists of four input features, two
hidden layers with three nodes each and an output layer with a single node. The connections

represent weights. Taken from [78].
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Figure 3.2: Illustration of a unit in a hidden layer of a neural network. The output of the
node is calculated based on the output of the previous layer, the weights of their connections,
and a bias term. Taken from [78].

Sigmoidal functions are commonly used for the output layer of classification tasks, while for
regression tasks the identity o(z) = z is used here.

Stacking multiple layers, the output yx(x) of a node k in the second hidden layer can be
written by stacking Equation 3.1. This is because the nodes in the first hidden layer k € K1)
are connected to those in the second hidden layer k € K(?) according to:

K@) K@
yp(z) = 0@ Z w,(é)a(l) Z wj(-?a:i + bg»l) + b,(f) . (3.3)
j=1 i=1

(n)

Generally, the output z;” of a node k in layer n depends on the output of the previous
layer (n — 1) and can be calculated recursively based on the input z(!) by:

K(n—1)

@) =0t ST g e ) (3.4)
j=1
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Evaluating this operation for every node in every layer successively is called forward propagation.
Here, the information flows only in one direction through the network, i.e. from the input to
the output layer. This type of networks is called feed-forward networks. Other concepts exist,
e.g. with cyclic connections [71]. Introducing an additional virtual unit in each layer with a fixed
activation of 1, the bias vectors b can be absorbed in the weights vectors w. This simplifies
the notation so that the weights w represents both vectors [79]. Using Equation 3.4, neural
networks can be described as a set of parametric non-linear functions which map an input
vector @ to an output ¢j. For a fixed set of weights w, these networks produce a deterministic
output for a given input.

3.2.2 Network training

The performance of a network is improved in a training process. Training in this context
represents adjusting the weights w in such a way that the performance E(w) improves with
respect to a loss function. For regression tasks, a common choice of loss function is the mean
squared error over a set of IV samples:

N
Lo(w) = 5= 3 19 (@ w) — v (35)
n=1

where ¢ (2, w) is the output of the network calculated based on Equation 3.4. y, is the target
which is provided in supervised training.

The goal of the training is to find a set of weights w that optimizes the performance
measure F(w). During training, small changes to the weights w — w + dw induce a change
in the performance 0E ~ dw’ VE(w). The optimum set of weights is then given where the
gradient of E (w) with respect to w vanishes which implies that the performance measure
would not improve by further changes to w:

VE(w) =0, (3.6)

where the corresponding point E(w) is neither a maximum nor a saddle point. Several local
minima in the parameter space fulfill this condition. However, the goal is to find the global
minimum. Since it cannot be found analytically in most scenarios, the optimization is solved
iteratively starting from a set of initial weights w(%):

w™D — ™ ¢ Al | (3.7)

where 7 denotes the iteration step and Aw(™ the weight update. In practice, many algo-
rithms calculate the weight update at each iteration step based on the gradient of the loss
function VE(w) which points towards the largest gradient. Thus, Equation 3.7 becomes:

w““J:uN?—UVE(w“O, (3.8)

where 1 > 0 denotes the learning rate and where the weights are updated in direction of the
negative gradient. This approach is known as gradient descent. However, more complex and
powerful optimization schemes exist [78].
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The gradients are usually calculated using the error backpropagation scheme. This means,
calculating the gradient of F(w) with respect to each weight w;;. The gradient is then used to
update the weight w;; in order to improve the performance E(w). Using the chain-rule, the
gradient can be written as:

oF o oFE 8zj
Owji - aizj@wji ’

(3.9)

where z; denotes the weighted sum affecting unit j as is discussed in Equation 3.1. Using this
equation and including the bias in the weight vector, the last term in Equation 3.9 simplifies
to 8w;i = ;. To simplify the notation, the error §; = 3—3 is introduced. Provided the mean
squared error is used as the loss function, as defined in Equation 3.5, the error for a unit in the

output layer is given by:

Ok = § (T, w) — Yy - (3.10)

Here, the identity was used as activation function of the output layer. In general, the gradients
are calculated backwards through the network from the output layer to the input layer. Thus,
the gradient for a unit j in a hidden layer depends on the succeeding units in the network by:

Z OF 0z (3.11)

823 Dz, 0z

where the sum is performed over all units £ in the next layer that are connected to unit j. We
denote the derivative of the activation function ¢’ (z;). The backpropagation formula is then
given by:
§; =o' (z5) Zwkjék . (3.12)
k

With this description, the errors are first evaluated for the units in the output layer via
Equation 3.10. Then, using these errors, those of the hidden layers can be evaluated recursively
via Equation 3.12.

During training, all available N samples are evaluated by the network with fixed weights
in the forward pass by recursively evaluating Equation 3.4/ and comparing the outputs to the
target values. Then, by recursively evaluating the backpropagation formula in Equation 3.12
and 3.9, the weights w;; are updated. The weight update can be evaluated using the gradient
descent introduced in Equation 3.8 in order to achieve an improved average performance F
over N samples:

LD 0 Y. 9B,
Wj

jZ

(3.13)

For large sets of training data, the set is usually split into small batches, and the weights are
updated based on the performance on every batch. This concept is called mini-batch training.
Mathematically, this corresponds to replacing NV in Equation 3.13 by the batch size and looping
over all batches recursively. A loop over all batches is called an epoch.

Prior to training, the weights of the network are initialized. If all units were initialized with
the same weights, they are identical and can therefore not learn meaningful representations. This
is mitigated by breaking their symmetry by initializing the weights with random numbers. In
practice, different initialization algorithms can lead to different performances and can accelerate
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the training process. A common choice is Glorot initialization [80], where the weights i in
layer j are initialized with random numbers from a uniform distribution U:

[ 6
nj—1+mn;  \l nj_1+n;

where n;_; and n; are the numbers of units in layer (j — 1) and in layer j.

w](-?) ~U

(3.14)

Since neural networks can contain a large amount of trainable weights, they can converge to
states that perfectly interpret the training data. However, they may fail to generalize on unseen
validation data. This problem is called overfitting. It is promoted by larger networks in terms
of number of trainable weights. It can be prevented or constrained by increasing the number
of samples in the training dataset. In addition, regularization techniques exist to eliminate or
reduce overfitting. Common techniques are for example the artificial extension of the training
set by data augmentation or the regularization of the network during training. For example,
with the dropout technique, only a fraction p < 1 of the units in a layer are used in training
while the other units are disabled. The set of disabled units is determined randomly for every
batch. With this technique, the network learns a more robust representation of the training
data by relying less on individual units. This results in better generalization capabilities on
unseen data [81]. Other regularization techniques add an additional penalty to the loss function
during training:

L'(w) = L(w) + AR(w) . (3.15)

In practice, common penalty functions R(w) include the L; = " |Jw]||; norm and the Ly = > ||w]|3
norm where the sums are performed over all weights in a network. The magnitude of the
penalty function is controlled by the hyperparameter A. While both penalty functions have
slightly different effects, they both promote small weight values. This constrains the impact of
individual, potentially large weights and thus reduces overfitting. The optimum regularization
technique depends on the specific application, network architecture, and training dataset.

In practice, a dataset is usually divided into a training and a validation set. The training
set is utilized in weight optimization. Being statistically independent from the training set,
the validation set is used to monitor the network performance and evaluates the generalization
capabilities of the network. A degraded performance on validation data compared to training
data indicates overfitting. After training, the set of weights of the neural network is usually
restored to the state where the performance on validation samples was best.
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3.2.3 Convolutional neural networks

Besides fully connected layers, there are other concepts to process the output from a previous
layer. One of these is the convolutional layer which was proposed in Ref. [82]. It became popular
after achieving superior results in image recognition compared to other approaches [17].

Convolutional layers exploit the structure of the input data by enforcing only local connectivity
between the units of subsequent layers. In this way, the spatial correlation of adjacent units
is captured. Conceptually, for one-dimensional data, this means that the input of a layer is
only a subset of n units from the previous layer. Furthermore, this so-called receptive field is
enforced to be spatially contiguous. Analogously for two-dimensional data, like images, the
dimension of the receptive field is n X m units. Many applications use quadratic receptive
fields with n = m. In addition, the weights are shared between the different receptive fields
to ensure translational invariance. This concept is motivated by the aim to capture the same
feature at any location of the input feature map. An example of two-dimensional data is shown
in Figure 3.3. Equation 3.1 is evaluated for each 3 x 3 receptive field (blue shaded) of the
4 x 4 input feature map (blue). The 3 x 3 grid which contains the trainable weights is called
kernel. The output feature map (green) represents the response between the input and the
kernel. The output feature map is produced by shifting the kernel over the input feature map
and evaluating Equation 3.1] at every location. Mathematically, convolutional layers perform a
discrete convolution of the input feature map with the kernel. In common applications, multiple
kernels are applied to an input feature map in a single convolutional layer. This is done because
each kernel extracts individual information from the input feature map. This allows to capture
different types of features at the same time.

The spatial dimensions of the output feature maps are usually smaller than those of the input
feature maps as is shown in Figure 3.3. However, for many practical applications, the spatial
dimensions are supposed to remain unchanged. To accomplish this, the input feature maps
are usually padded with zeros to artificially increase their spatial dimensions. This concept is
shown in Figure 3.4.

e »

Figure 3.3: Convolution of a 4 x 4 input feature map (blue) with a 3 x 3 kernel (blue shaded).
The resulting output feature map is shown in green. Taken from [83].
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Figure 3.4: Convolution of a 5 x 5 input feature map (blue) with a 3 x 3 kernel (blue shaded).
The input feature maps are padded with zeros (dashed) in order to maintain identical spatial
dimensions of input and output feature maps. The resulting output feature map is shown in
green. Taken from [83].
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Figure 3.5: Illustration of a simple convolutional neural network. The input (left) is processed
by a series of convolutional layers where each kernel in every layer produces a separate feature
map. Subsampling reduces the spatial dimensions of the feature maps. The convolutional
part is followed by a series of fully connected layers that lead to the final output layer (right).
Modified from [85].

Normally, several convolutional layers are stacked hierarchically. Higher-level features can
then be captured by combining lower-level features of previous layers. The output feature
maps of the final convolutional layer are flattened to a one-dimensional vector which serves as
input to a series of fully connected layers which are discussed in Section 3.2.1. These layers
perform the final reasoning by combining all individual feature maps. This architecture is called
convolutional neural network and an example is shown in Figure 3.5. To date, several variations
and extensions of the basic convolutional layers exist to further boost the performance of this
concept [77, 84].
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In training, the weights which define the kernels in the convolutional layers are adjusted.
The training approach is in principle identical to the one discussed for fully connected layers in
Section [3.2.2. Besides enforcing explicit knowledge about local correlation in the input data,
the convolutional layers also drastically reduce the amount of trainable weights. For example,
in a fully connected layer, an image of 100 x 100 pixels would correspond to 10000 units that
are all connected to the subsequent layer with a distinct trainable weight. With a hidden layer
of only 10 units, the number of trainable weights is on the order of 10°. On the other hand,
a convolutional layer with 10 distinct kernels of 3 x 3 receptive fields would correspond to
100 trainable weights. In general, the number of trainable weights for convolutional layers is
independent of the input size but is determined only by the kernel size and the number of
kernels.

A common approach for designing a convolutional neural network is to increase the number of
feature maps in subsequent layers. At the same time, the spatial dimensions of the feature maps
are reduced. The motivation of this approach is to increase the complexity of the representation
and to down-sample the dimensions gradually. This reduction is acceptable in most applications
since the exact location of features is not crucial. Rather, the relation between higher-level
features becomes important. One way to reduce the dimensions is to increase the stride s.
For unit strides (s = 1), the kernel is shifted over the input feature map one step at a time.
For larger strides (s > 1), the step size is increased so that some locations are skipped. For
example, in Figures 3.3/ and 3.4, a stride of s = 2 corresponds to skipping every second step.
Another concept is pooling, where a non-linear function is applied to each feature map. For
example, a 2 x 2 pooling layer together with a stride s = 2 evaluates the non-linear function in
non-overlapping partitions of the feature maps. While there are several non-linear functions
used in practice, the most common one is maximum pooling. This pooling operation takes
the maximum value of each receptive field. Intuitively, this can be interpreted by keeping the
most prominent response to a kernel and discarding the others in the receptive field of the
2 x 2 pooling layer. In this example, the spatial dimensions are reduced by 75 %. Using pooling
layers, the performance of the network is invariant to small shifts and distortions which also
improves its robustness [20].
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This chapter presents a new approach for the reconstruction of the ionization energy in EXO-200
with a deep neural network (DNN). After discussing the potential of this method, the components
and decisions made for training a DNN are presented. The DNN is designed such that it meets
the requirements specific to EX0-200 data analysis. The performance of the DNN based
reconstruction is evaluated and compared to the traditional energy reconstruction EX0O-200.

This is done on Monte Carlo (MC) simulated and measured data from calibration sources.

Parts of the results presented in this chapter are published in “Deep Neural Networks for
Energy and Position Reconstruction in EXO-200" in Journal of Instrumentation (JINST) [70]

and were presented at the Neutrino Conference (2018) [86].
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4.1 Goal and design of study

4.1.1 Motivation and training data preparation

A precise energy measurement is a key requirement for the identification of potential 0v 538
decays. The energy is the only experimental measure to distinguish 2v45 from OvG8 decays.
The signature of a Ovf5 signal is an excess of events at the () value in the energy spectrum.
In contrast, the electrons emitted in 2v55 decays produce a continuous energy spectrum as
discussed in Section 2.1. Due to the different spectral shapes, a moderate energy resolution
would suffice to distinguish 2v55 from Ov58 events as is shown in Figure 2.3. However, other
background which originates mostly from ~ particle interactions also produce events near the
@ value. The dominant components arise from long-lived radionuclides of the 23U and the
232Th decay chains. They would mask a potential observation of 0v33. To address this issue,
precise energy measurements are needed to reduce the background contributions at the ) value.
For a more detailed discussion of the background components in EXO-200 see Section 2.1.2.

As discussed in Section 2.2, ionizing radiation can deposit energy in the TPC. The produced
secondary ionization electrons are drifted toward the wire grid via a homogeneous electric drift
field that is applied between the wire and the cathode planes. The potentials of the V- and U-wire
planes are set so that the V-wire plane is transparent to drifting charge. This charge produces
an induction signal in the V-wire planes and is collected at the U-wire plane. Due to energy
conservation, the ionization and scintillation signatures are anti-correlated (see Figure 2.10).
The collected charge is delivered to the front-end electronics as current and is converted into
a voltage signal by a multi-stage amplification and signal shaping scheme. Afterwards, it is
converted into a 12-bit digital waveform by an analog-to-digital converter (ADC) sampled at a
rate of 1 MHz. After being triggered, the data acquisition (DAQ) records 2048 samples from all
channels. The samples are recorded symmetrically around the triggered sample. The triggering
module handles different trigger schemes, e.g. from the APDs, wires, or external triggers. The
U-wire waveforms of an example event are shown in Figure 4.1.

The energy deposit of primary particles is simulated with the GEANT4 software pack-
age |63, 64]. The detailed geometry of the EXO-200 detector is implemented in this simulation
that is used to model the interaction of particles in the detector. Ionizing charge is drifted
toward the wire planes and the resulting charge signals are determined using the Shockley-Ramo
theorem [65, 66]. Raw waveforms of the wire plane channels are generated in the simulation by
considering the readout electronics and by adding measured randomized noise waveforms. For
more details see Section 2.2.3 and Ref. [51].

For training a DNN to reconstruct the ionization energy, several design choices were made.
First, the training data is produced in the EXO-200 software framework for two classes of
events, v events and Ovg3 events. The MC simulations takes the correlation of both primary
electrons emitted in Ovf5 decay into account in terms of energy and angular distributions [87].
The training set is populated with Ov83 and v events to equal parts. 95 % of the dataset are
for training and the remaining 5% for validation. The energy region on which the DNN is
trained determines the region it can be applied to later. Therefore, second, the energy of
simulated primary particles is restricted to 1000—3000 keV based on the main energy region
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Figure 4.1: U-wire waveforms of an example event showing the channel amplitudes as a
function of the time. The channels are offset for clarity. The waveforms are cropped in
time (light area) before being used as inputs of the DNN to reduce computational costs. For
clarity, the channels that contain any signal found by EXO-200 reconstruction are shown in
bold.

that EXO-200 uses for Ov56 decay searches [14]. v particles and Ovf35 decays are simulated from
a uniform distribution in energy and () value in this range. Third, the spatial distribution of
primary particles is simulated uniformly in the detector volume. The correlation of the spatial
coordinates and the energy of the training dataset are shown in Figure 4.2 for both event classes.
Instead of using uniformly distributed primary particles, spatial and energy distributions of
realistic particle sources, like v calibration sources, could be used for training. However, this
could introduce biases in the DNN’s prediction as will be discussed in Section 4.2.1. Some
event selection cuts are applied to the training data: FEvents are required to have at least one
reconstructed charge cluster. Further, all clusters need to have a well-reconstructed 3D position
as well as to be contained in a fiducial volume that is looser than that used for physics analyses.
In particular, the event selection does not cut multi-site events (MS). More details on event
selection cuts are discussed in Section 2.2.4.

The inputs for the DNN are grayscale images. They are built by arranging neighboring
channels next to each other. The channel amplitudes of U-wire waveforms are encoded as pixel
values. The images are cropped from 2048 samples to the samples in the region 10001350 in
order to reduce computational effort. This is indicated also in Figure 4.1. In MC simulations,
events are triggered by APD signals at sample 1024, so any signals on the U-wires are still
fully contained in the cropped image. Preprocessing further includes subtraction of a constant
baseline of each individual channel and correction for slightly different measured gains of the
electronics of individual channels that is discussed in Section 2.2.4.
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Figure 4.2: The distribution of deposited energy (left), the correlation of the x and y spatial
coordinates (center), and the distribution of z coordinates (right) are shown for Ovfs
events (a) and for v events (b). The combined dataset is used in training and validation
of the DNN. The primary particles are emitted uniformly in the detector volume in MC
simulations. Ovg3 decays have a random () value and ~ particles a random energy.
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4.1.2 Network architecture and training

The two U-wire images of both sub-TPCs are fed to the DNN separately. Each image has
dimensions of 350 x 38 pixels. The DNN architecture is shown in Figure 4.3, As the physics
contained in both images is identical, they pass through the same layers with the same
mathematical operations applied to them. This approach reduces the number of trainable
weights. The architecture contains nine convolutional layers with 16, 16, 32, 32, 64, 64, 128,
128 and 256 kernels. The feature maps of the last convolutional layer are flattened to a one-
dimensional vector. This vector serves as input to two successive fully connected layers with
32 and 8 units while the outputs of both network branches are added. The resulting output is
then mapped directly to the final output unit that represents the energy of the event that is
deposited in the TPC. The kernel sizes of the initial four convolutional layers are (5, 3), and
(3,3) for the remaining layers. To maintain the dimensions after the convolutional operation,
zero padding is applied to each layer which surrounds the image with zeros. In order to reduce
the dimension of the feature maps intentionally, the convolutional part includes five maximum
pooling layers with pool sizes of (4,1), (4,2), (2,2), (2,2) and (2,2). Throughout the network,
ReLU(z) = max(x,0) is used as non-linear activation function. Trainable weights are initialized
randomly using the Glorot algorithm [80] introduced in Equation 3.14. The DNN architecture
is implemented with the Keras library [88] using the Tensorflow backend [89].

During training, the DNN target variable in MC simulations consists of the summed energy
that is deposited on the wire channels. Energy that is lost on inactivate parts of the detector,
like the PTFE reflectors, is discarded as it cannot be reconstructed. The Adam optimizer [90]
is used to minimize the mean squared error Lo of predicted ¢; and target values y; over a batch

of n samples:
n

Ly = % Z (vi — 9i)° - (4.1)
7

Every 10 epochs, the learning rate of the optimizer is reduced by a factor 2. An additional

Ly regularization term weighted with 0.01 is applied to each layer (see Section 3.2.2). As

EXO-200 was operated in two phases with slightly different conditions (e.g. electric field), a

DNN is trained for each phase individually to optimally exploit all features available in data.

However, training data production, DNN architecture, and DNN training procedure are identical

for both DNNs. The training curve of the DNN used for Phase-II is shown in Figure 4.4.
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Figure 4.3: The network architecture used for the DNN. The input consists of two grayscale
images with dimensions of 350 x 38 pixels. After the convolutional part, the final feature
maps are transformed into a one-dimensional array and are fed to fully connected layers.
Both network branches which contain information from a single TPC share the same network
weights. The units of both branches are added before the final output layer. The output
layer has a single unit corresponding to the total deposited energy in that event.
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Figure 4.4: The performance measure Lo during training (blue) as a function of the epoch of

the DNN used for Phase-II data. Validation (red) is done with an independent part of the

dataset to monitor potential overfitting. No overfitting is observed here. The reduction of

the learning rate every 10 epochs results in a step-like behaviour in the curves that is best
visible for the training curve.

4.2 Performance on Monte Carlo simulated data

The performance of the trained DNN is tested on the exposure of the EXO-200 detector with
7 particles emitted from a radioactive 2?8Th calibration source in MC simulations. If not
stated otherwise, throughout this chapter, all calibration data is MC simulated or recorded
from a calibration source located at source position S5 (see Figure 2.13b). Similar to training
data, this simulation does not include xenon impurities, i.e. an infinite electron lifetime of
secondary electrons is assumed. The 22Th calibration source is suited for evaluation of the
energy reconstruction because it produces a prominent peak at 2615 keV. This peak corresponds
to the full absorption of the  particle emitted from the 2°8T1 decay. This energy is of particular
interest for EXO-200 reconstruction and calibration efforts due to its proximity to the ) value of
136Xe at 2458 keV. The correlation of the predicted energy of the DNN and the true MC energy
is shown in Figure 4.5. This shows a good agreement between the DNN energy reconstruction
and the target variable. However, a few outlier events exist, especially below the diagonal
line where the DNN predicts lower energy compared to the true energy deposited in the
detector. This corresponds to events, where the DNN misses some energy. Two dominant
effects contribute to this. First, these events may have low energy deposits that are below the
reconstruction threshold. Second, these events may contain complex mixtures of collection and
induction signals where the DNN partially fails to disentangle both signal types and thus cannot
predict the deposited energy correctly. The latter events will be discussed in more detail in
Section 4.2.3. Above the diagonal line, there is no significant accumulation of events. For these
events the DNN would predict more energy than there was actually deposited in the detector.
The residuals of the DNN prediction to the true MC energy do not show any energy-dependent
features. Due to electronics noise and limitations of the DNN reconstruction, the residuals are
broadened.
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Figure 4.5: Predicted energy of the DNN as a function of the true MC energy deposited in the
detector from a simulated 222Th calibration source. The lower left panel shows the residuals.
The residuals essentially follow a normal distribution shown in the right panel on linear scale.
The color shows the intensity on a logarithmic scale. To guide the eye, solid lines indicate

certain residual values in the left panels.
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4.2.1 Bias from a non-uniform training dataset

In addition to the training approach discussed in Section 4.1.1, here, the effect of a biased
training dataset on the DNN performance is discussed. For this approach, events from a
228Th calibration source in MC simulations are used to train the DNN. The corresponding
energy and spatial distributions are shown in Figure 4.6. Opposed to those of the baseline
training dataset (see Figure 4.2), the spatial distribution is biased towards large = coordinates
and the energy spectrum has distinct peaks. The most prominent one is the full absorption
peak of 2%8T1 at 2615 keV.

Validating a DNN trained on ??Th MC simulated data yields promising results at the
20877 full absorption peak. However, Figure 4.7 shows this DNN and another DNN trained
on data with a uniform energy distribution. Both DNNs are then used to reconstruct MC
simulated events of the radioactive 222Th calibration source, but with an MC energy spectrum
that is broadened by an artificial energy resolution of 90keV. This resolution is guided by
the charge-only energy resolution of ¢/E ~ 3.5% observed at the 208T1 full absorption peak
in Phase-I of EXO-200 operation. Comparing both spectra, the DNN trained on ?2Th data
shows undesired effects: The predicted energy of events near the 2°%T1 peak is shifted toward
the peak as is shown in the lower panel of Figure 4.7. This can be understood by the large
excess of 298T1 peak events in the training spectrum of 222Th compared to the peak’s vicinity
(see Figure 4.6). With this spectral feature, the average loss contribution in training introduces
a bias that favors events near the peak. Thereby, the resolution seems to be improved because
the peak is narrowed artificially. The DNN trained on a uniform energy spectrum is not biased
toward certain energies and guarantees a valid energy reconstruction over the entire energy
range without introducing systematic biases.
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Figure 4.6: The distribution of deposited energy (left), the correlation of the x and y spatial
coordinates (center), and the distribution of 2 coordinates (right). The 2?®Th calibration
source in MC simulations is located near the cathode outside the TPC.
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Figure 4.7: The MC energy spectrum (gray) as reconstructed by two DNNs that were trained
on different datasets (top). The MC simulated events are generated from a 2?8Th calibration
source whose energy spectrum is broadened by 90keV. One DNN was trained on the same
kind of MC simulated events but without broadening the MC energy (green) while the other
DNN was trained on a uniform energy spectrum (blue). The residuals to the true MC energy
are shown in the lower panel the the DNN trained on MC simulated ??®Th events. The color
denotes the intensity on a logarithmic scale. Taken from [70].
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4.2.2 Comparison of DNN and traditional EXO-200 reconstruction

Figure 4.8 shows the reconstructed energy spectra of a 228Th calibration source in MC simulations
for single-site (SS) and multi-site (MS) events separately. For the ??®Th spectra, the spectral
features, e.g. the 298TI full absorption peak at 2615keV, the corresponding single and double
escape peaks are reproduced by both the DNN and the traditional EXO-200 reconstruction
methods. To compare both reconstruction methods, the energy resolution at the 208T1 full
absorption peak is evaluated by fitting the peak region with the function:

f(E)=S(E,Ai,pu,0)+ B(E, Ay, p,0) (4.2)

= Aq -exp (—(EQ;QM)2> + As - <1 —erf <E\[;'u>> )

In this simplified approach, the peak is modeled by a Gaussian distribution and the background

contribution near the peak by a Gaussian error function. Both functions share the mean p and
standard deviation o parameters. The resulting energy resolution values are shown in Table 4.1.
The energy resolution of the DNN outperforms that of the traditional EXO-200 reconstruction
in both SS and MS events. A major contribution to the resolution is the electronics noise that
is added to the simulated waveforms. Besides energy resolution, the agreement in the region
between the Compton shoulder and the full absorption peak is significantly improved by the
DNN (see Figure 4.8a). This effect will be discussed in more detail in Section 4.2.3. Similarly,
for simulated Ov/3 decays, the DNN shows a superior energy resolution of (0.65 4 0.01) % for
SS events.
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Figure 4.8: Energy spectra reconstructed from MC simulated events of a radioactive 2?8Th cal-
ibration source. (a) shows SS events and (b) shows MS events. The spectra of energy
deposited in the detector is known in MC simulations is shown in shaded gray. The spectra
are reconstructed by the DNN (blue) and the traditional EXO-200 reconstruction (red). The
insets show a zoom to the 208T1 full absorption peak at 2615keV on a linear scale.
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Table 4.1: Energy resolution ¢/E observed at the 2°°T1 ~ line at 2615 keV for a ?2®Th calibration
source in MC simulations. The resolution is determined for the DNN and the traditional
EXO-200 reconstruction in all events, and in single-site (SS) and multi-site (MS) events

separately.
Event type Energy resolution ¢/E [%)] Relative
DNN Trad. improvement [%]
all 1.074+£0.03 1.19+0.02 10.1£0.4
SS 0.70£0.01 0.96 £0.03 27.14+1.0
MS 1.174+0.02 1.24+0.02 5.6+ 0.2
B MC-Trad (o= 28.1keV)
B MC-DNN (0= 19.1keV)
mm Trad -DNN (0= 25.2 keV)
2004
S 100{*.
<
3 >
|
T —100/
—200{. 0
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Figure 4.9: The correlation of residuals of Ery,q and Epnn with respect to the true MC

energy deposited in the detector Eyi¢ for simulated Ov 35 events. The intensity is denoted

by color on a logarithmic scale. The projections are shown for both axes (red, blue) and to
the diagonal line (green) on a linear scale. Adapted from [70].

The correlation between the residuals of both reconstruction methods with respect to the
true energy deposited in the detector for MC simulated 0v35 events is shown in Figure 4.9. The
tilted contour lines represent a positive correlation of these residuals. This correlation indicates
an effect from the electronics noise on the waveforms. This noise affects the energy estimation
of both methods in a similar way which results in a positive correlation of their residuals.

The energy resolution /@ of DNN and traditional EXO-200 reconstruction for simulated
Ov 3B SS events is shown in Figure 4.10 as a function of the event position in the radial plane R
and the height Z together with their projections. The true position of the energy deposit is
known in MC simulations. The detector is split into equally sized slices in Z and into slices in R
such that all segments contain the same volume. Besides the improvement in energy resolution
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Figure 4.10: The center panel shows the energy resolution for simulated Ov58 SS events
as a function of the radius R and the height Z reconstructed by the DNN. The top and
right panels show the projections for the DNN (blue) and, in addition, for the traditional
EXO-200 (red) reconstruction.

with the DNN reconstruction, its variation over R is on the same level compared to that of the
traditional EXO-200 reconstruction. In Z, both methods show a trend toward worse resolution
in direction to the cathode. This trend is understood to arise from an increasing extent of the
drifting charge cloud due to diffusion for events with longer drift paths. Thereby, the fraction of
events that deposit energy on multiple rather than on single U-wires increases. With multiple
active wires, the electronics noise contributions add up which leads to a worse energy resolution
of events near the cathode. The asymmetry of the energy resolution in Z with respect to the
cathode at Z = 0 is not understood thoroughly but is observed by both reconstruction methods.
This suggests that it is an intrinsic feature of the EX0O-200 TPC design rather than a drawback
of the DNN energy measurement.

4.2.3 Mixed induction and collection signals

Besides the improved energy resolution on MC simulated events, the DNN shows an improved
agreement in the region between the Compton shoulder and the 20%T1I full absorption peak as is
shown in Figure 4.8a. This region is of particular interest to EX0O-200 as it contains the @) value
of 136Xe. The improved agreement is understood to arise from two main processes. First, the
DNN is able to reconstruct smaller energy deposits that are below the reconstruction threshold
of the conventional method. Second, the DNN can better disentangle complex signatures of
collection signals that are superimposed by induction signals [70]. Figure 4.11 shows a raw
waveform that is fitted by a template function for either a collection, induction, or mixed signal.
Until the Ov(5 search in 2018 [91], EXO-200 reconstruction applied template fits to raw data
for either collected or induced charge signals. Based on the comparison of x? of both fits,
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Figure 4.11: Example signal on U-wires. The graph shows a template fit from either col-
lected (red) or induced (blue) charge only. The improved reconstruction applies a template
fit of combined signals (green) which best matches the signal.

the scenario with the lower performance was discarded. If flagged as a pure induction signal,
the reconstructed energy is set to EFmyaq = 0. This binary nature in the event reconstruction
process led to missing energy. Based on the results in Ref. [70], EXO-200 reconstruction was
improved by applying template fits of both signal types to allow for entangled signals of collected
and induced charge in wires. This reconstruction was used in the most recent Ov55 search
in 2019 [14] and recovered energy that was previously missed for mixed signals. Figure 4.12
shows the impact on MC simulated events of the 2°8T1 full absorption peak at E = 2615keV.
The traditional EXO-200 reconstruction with (red) and without (orange) improved template
fit is shown. The proper modeling of mixed signals recovers some energy that was previously
flagged as induction and thus missed (gray). However, the DNN (blue) still outperforms the
improved reconstruction.

Interactions that originate from the ?*2Th decay chain represent a dominant background
in low-background (LB) physics data. This background component presents the 208T1 full
absorption peak at E = 2615keV which is right above the @ value of *Xe. Missing a part
of the deposited energy of these events in reconstruction represents a direct risk of increasing
the background in the ROI around ). Furthermore, since this effect is not modeled in the MC
simulations, it worsens the spectral agreement between measured data and MC simulations.
The impact of this effect on the reconstruction of measured data is discussed in Section 4.3.2.



4.3. Performance on measured data 47

Data
= Trad

Trad (no Ind)
= DNN

Ind. Tag

10—1_

10—2_

Normalized counts

Reference
energies
— Q of 13%Xe

— 2087

== +20 noise

10741 'l " y y
2400 2500 2600 2700
Energy [keV]

Figure 4.12: Energy spectra of MC simulated 2°®T1I full absorption peak events which de-
posit 2615keV (green solid) in the detector volume. The spectra reconstructed by the
DNN (blue) and by the traditional EXO-200 reconstruction are shown with (red) and with-
out (orange) improved mixed signal modeling. For reference, the expected broadening due to
noise only (o ~ 16keV [70], green dashed) and the @ value of 36Xe (black) are shown. The
distribution of events labelled as induction signals in EX0O-200 reconstruction are shaded

gray.
4.3 Performance on measured data

In order to apply the DNN on measured data, two aspects need to be taken into account.
First, the liquid xenon in the detector contains electronegative impurities which lead to a finite
electron lifetime of secondary electrons:

N.(t) = No - exp (—t> 7 (43)

where N, is the initial number of secondary electrons, 7. the electron lifetime in LXe, and ¢
the drift time. The electron lifetime 7. is measured regularly with source calibration data. To
correct for the finite electron lifetime, all ionization signals are multiplied by a factor of exp (¢/r.)
in EXO-200 reconstruction [51]. The time-average electron lifetime is about 4.5ms (3.0 ms) for
Phase-I (Phase-II), leading to a correction factor of 2.6 % (3.6 %) for maximum drift lengths from
the cathode to the wires. Since the DNN does not predict the energy of individual ionization
signals but the sum energy over all ionization signals that belong to a scintillation signal, this
correction was adjusted. For events with single ionization signals, the same correction like in
the traditional EXO-200 reconstruction was used. For events with multiple ionization signals,
the correction factor is calculated from the most energetic cluster found by the traditional
EXO-200 reconstruction. This approximation is necessary because the DNN predicts the total
energy deposited in an event in contrast to the energy of individual charge clusters.
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Figure 4.13: The energy predicted by the DNN as a function of the energy from the traditional
EXO-200 reconstruction. The data represents measured SS events from a 222Th calibration
source. The lower left panel shows the residuals. The color denotes the intensity on a
logarithmic scale. To guide the eye, solid lines indicate certain residual values in the left
panels. The projection of residuals is shown in the right panel on a linear scale. The excess
in positive residuals is best visible in the lower left panel for 2°8T1 full absorption peak events.
The dashed line represents Epny = 2615keV.

Second, in measured data there are several trigger strategies. For high energies, nearly all
events are triggered by scintillation channels, while for lower energies, a significant fraction of
events is triggered by ionization channels. Depending on the triggered channel, the signals on
the U-wires used as input for the DNN are shifted compared to those in MC simulations. To
account for this, the region of the selected window used by the DNN is shifted to ensure a fixed
position relative to the scintillation signal. If necessary, the cropped waveforms are padded
with zeros.

The correlation of Fry.q and Epny for measured data of a 222Th calibration source is shown
in Figure 4.13. As there is no true energy label in measured data, the reconstruction error where
both methods show a large discrepancy cannot be assigned to either reconstruction method
unambiguously. However, in general a good agreement on an event basis is observed as most
events are distributed around the diagonal line. The residuals of both methods are unbiased
over the entire energy range, i.e. are centered at zero. However, they show an asymmetric excess
of events. The excess events are due to the traditional EX0O-200 reconstruction missing some
energy while the DNN reconstruction mostly recovers that energy as was discussed previously
for MC simulated events.
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Figure 4.14: Example of a MC based fit (blue) to charge-only 2?°Ra calibration data (black)
recorded in Phase-II for SS events. The spectrum predicted in MC simulations is shown in
red. The energy calibration and resolution functions are fitted simultaneously.

To compare the DNN and the traditional EXO-200 energy reconstruction quantitatively,
the baseline EXO-200 calibration procedure is pursued. The energy scale is calibrated on a
weekly basis from 22Th source calibration data for SS and MS events separately. The linear
calibration function is

E(Eo) = por + p1eEo , (4.4)

where Ej is the uncalibrated energy. The energy calibration E(FEy) and the energy resolu-
tion o(E) functions are fitted simultaneously in order to smear the MC simulated spectra

by:

UZ(E) = O-glec + p%RE . (45)

Oelec denotes the electronic noise contribution and p% rE represents statistical fluctuations. An
example fit to 2?°Ra data is shown in Figure 4.14.

The weekly energy resolution ¢/E observed at the 2°®TI full absorption peak in SS events
is shown in Figure 4.15. The energy resolution improves in Phase-II due to improvements
to electronics and due to raising the cathode voltage from —8kV to —12kV. Comparing the
weekly energy resolution of the DNN and the traditional EXO-200 reconstruction, the DNN
outperforms it in almost every week. Without weighting the weeks by livetime, the average
DNN energy resolution is 3.40 % (2.97 %) for Phase-1 (Phase-1I) whereas that of the traditional
EXO0O-200 reconstruction is 3.46 % (3.06 %). The relative improvement of the DNN over the
traditional EXO-200 reconstruction is 1.7 % (2.9 %) for Phase-I (Phase-II). The variation over
time of both reconstruction methods is on a similar level and is dominated by variations in the
conditions from operating the detector.
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Figure 4.15: The weekly charge-only energy resolution at the 2°®T1 full absorption peak for
SS events is shown in the top panels. The left panels show Phase-1 of EXO-200 operation
and the right ones Phase-II. The cathode voltage is —8kV (—12kV) in Phase-I1 (Phase-II).
The bottom panels show the relative improvement of the DNN over the traditional EXO-200
reconstruction. Horizontal lines in all panels indicate the mean values.

The weekly calibration of the energy scale is merged into an average calibration by smearing
the MC simulated spectra by the weekly resolution parameters, weighted by the livetime in each
week. Measured data from different calibration sources located at different source positions
is combined to reflect positions near the cathode (S5, S11) and near the anodes (S2, S8) (see
Figure 2.13b). Both classes are then weighted uniformly in the average calibration to account for
spatial differences. To account for time and position-dependent variations, the calibration and
resolution functions used for the average calibration are extended by a quadratic term [51]:

E(Ey) = por + pieFo + panEj (4.6)
0*(E) = 0%ec + PirE + p3pE” . (4.7)

The average charge-only energy resolution of the DNN for SS events is ¢/Q = 3.33 % (2.85 %)
for Phase-I (Phase-1I). Compared to the resolution of the traditional EXO-200 reconstruction,
this represents an improvement of 1.5% (3.4 %).

The calibrated SS charge-only energy spectra of %°Co, 226Ra, and ??®Th calibration sources
in Phase-IT of EXO-200 operation are shown in Figure 4.16 (top panel). The spectra by the
DNN and the traditional EXO-200 (not shown) reconstruction agree well. Measured data and
MC simulations show overall good spectral agreement within 20 % for both reconstruction
methods (bottom panel). Below 1100keV and in the region between the 2°°TI full absorption
peak and its Compton edge, the simulation shows slightly worse agreement in both reconstruction
methods. The second discrepancy is well known in EXO-200 data analysis. The DNN shows
slightly improved agreement for ?26Ra source calibration data compared to the traditional
EXO-200 reconstruction. The overall very similar spectral agreement between measured data
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Figure 4.16: The top panel shows the calibrated charge-only energy SS spectra of calibration
sources (°°Co, 2?6Ra, 2?8Th) reconstructed by the DNN in measured data (circles) and MC
simulations (lines). The bottom panel shows the ratios between measured data and MC
simulations for the DNN (solid) and the traditional EXO-200 (open) reconstruction.

and MC simulations for DNN and the traditional EXO-200 reconstruction confirms an unbiased
ionization energy measurement of the DNN on data.

The DNN reconstruction in terms of spatial detector uniformity as a function of the event
position is shown in Figure 4.17. It is shown as a function of the radial plane R and the
height Z for 28 Th source calibration SS data. Additionally, the projections are shown. The
event position is determined in EXO-200 reconstruction. The detector is split into slices in Z
and R so that all segments contain the same volume. The energy resolution ¢/E at the 29°TI
full absorption peak at 2615 keV shows a trend toward better resolution near the walls. In Z,
the resolution is mostly flat over the detector. Overall, the variations observed over the detector
volume are on the same level compared to the traditional EXO-200 reconstruction. Compared
to the trend in Z that is observed in MC simulations, the effect of diffusion is subdominant in
data. This is due to the anti-correlated fluctuation of ionization and scintillation signals which
smears the energy measurement of both signatures. Improving the energy measurement by
combining both channels will be discussed in the next section.
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Figure 4.17: The energy resolution o/E at the 208TI full absorption peak from calibration
SS data recorded with a 228Th source is shown as a function of the radius R and the height Z
in the center panel reconstructed by the DNN. The top and right panels show the projections
for the DNN (blue) and, in addition, for the traditional EXO-200 (red) reconstruction. As
opposed to MC simulations, the true event position is unknown in measured data. Instead,
the event position as reconstructed by EXO-200 is used.

4.3.1 Combination of ionization and scintillation signatures

The signatures of ionization charge and scintillation light fluctuate due to a varying fraction of
recombination of secondary electrons in the liquid xenon. This effect is discussed in Section 2.2.2.
By measuring both signatures and combining them, these fluctuations cancel and the energy
measurement becomes more precise compared to those of the individual channels. The correlation
in both channels is shown in Figure 4.18. The optimum energy variable is calculated by joining
both channels to a “combined energy”

Eeomp = Fy-cosf + Eg -sinf | (4.8)

where Ej is the energy measured in the ionization channel and Eg is the scintillation channel.
The angle 0 is used to combine the two energy measurements E1 and Fg. The angle is chosen
to minimize the energy resolution at the @ value.

The optimum angle 6 is identified on a weekly basis from 222Th source calibration data in
a three-step scan. An initial coarse scan over 6 is followed by two finer scans near the found
optimum angle from the previous step. For each angle, a MC based fit to the combined energy
spectrum determines the energy resolution at (). Figure 4.19 shows an example MC based fit
to the energy spectrum after combination by the corresponding optimum angle. This energy
spectrum resolves peaks considerably better compared to the charge-only energy spectrum
of corresponding data shown in Figure 4.14. For each scan over different angles, the energy
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Figure 4.18: The center panel shows the correlation of scintillation energy and DNN ionization
energy for 22Th calibration data. The color denotes the intensity and is set to gray for
low intensities for clarity. The top and right panels show the projections to both axes. By
optimally combining both signatures, the anti-correlated fluctuations cancel and the energy
resolution is improved significantly which is best visible at the 2%T1 full absorption peak
at 2615 keV.

resolution at @) as a function of the angle is fitted by a quadratic function. Figure 4.20 shows
the procedure for determining the optimum angle 6 for an example week.

After determining the angles that optimally combine ionization and scintillation signals, the
subsequent calibration procedure is identical to the one described in Section 4.3 for ionization
signals. A linear calibration is applied on a weekly basis from 222Th source calibration data. The
weekly energy resolution o/E observed at the 208T1 full absorption peak in SS events measured
with a 228Th calibration source is shown in Figure 4.21. The improvement in energy resolution
in Phase-II is due to improvements to electronics and to the raised electric field strength.
The stability in energy resolution in Phase-II is improved by upgraded frontend electronics
of the APDs that reduce the readout excess noise which caused the fluctuations in Phase-I.
The weekly energy resolution of the DNN reconstruction outperforms that of the traditional
EXO-200 reconstruction in almost every week. Without weighting the weeks by livetime, the
average DNN energy resolution is 1.33 % (1.05 %) for Phase-I (Phase-IT) whereas that of the
traditional EXO-200 reconstruction is 1.37 % (1.12 %). This represents a relative improvement
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Figure 4.19: Example of a MC based fit (blue) to 2°Ra calibration data (black) recorded in
Phase-II for SS events. The energy is calculated by combining the ionization and scintillation

measurements. The spectrum predicted in MC simulations is shown in red. The energy
calibration and resolution functions are fitted simultaneously.
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Figure 4.20: Combined energy resolution ¢/@ as a function of the angle #. After a coarse
scan (a), the angle is scanned in the next step (b) near the optimum angle (yellow) determined
by fitting a quadratic function (blue) to data (black). Finally, the best-fit angle (red star) of
the fine scan (c) is used to combine ionization and scintillation energy measurements.
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Figure 4.21: The top panels show the weekly energy resolution at the 2°8T1 ~ line for SS events
after combining the ionization and scintillation signals. The left panels show Phase-I of
EXO-200 operation and the right ones Phase-II. The cathode voltage is —8kV (—12kV) in
Phase-1 (Phase-1I). The bottom panels show the relative improvement of the DNN over the
traditional EXO-200 reconstruction. Horizontal lines in all panels indicate the mean values.

of the DNN reconstruction of 2.9 % (6.3 %) for Phase-I (Phase-II) over the traditional EXO-200
reconstruction. The weekly calibration from 2?8Th calibration data is then used to determine an
average calibration from all source calibration data following Equation 4.6/ and 4.7. The average
energy resolution of the DNN for SS events is /@ = 1.22% (1.01 %) for Phase-I (Phase-II).
For comparison, the resolution of traditional EXO-200 reconstruction is 1.35% (1.15%). This
represents a relative improvement in energy resolution of the DNN over the traditional EX0O-200
reconstruction by 10% (12 %) for Phase-I (Phase-1I). The calibrated SS energy spectra of
60Co, ?26Ra and ??)Th calibration sources in Phase-II of EXO-200 operation are shown in
Figure 4.22 (top panel). The spectra by the DNN and the traditional EXO-200 (not shown)
reconstruction agree well. Measured data and MC simulations show an overall good spectral
agreement within 20 % for both reconstruction methods (bottom panel). The discrepancy at
the low energy tail of the 2°T1I ~ line is known for several EXO-200 analyses and is present in
both reconstruction methods. The overall similar spectral agreement for both methods confirms
an unbiased and robust energy measurement of the DNN.

The energy resolution ¢/E as a function of energy is shown in Figure 4.23 for Phase-1T of
EXO-200 operation. In general, the resolution improves with increasing energy for both DNN
and traditional EXO-200 reconstruction. The resolution is degraded in MS events compared to
SS events. The resolution of the DNN is improved by about 2 % throughout the entire energy
range over the traditional EXO-200 reconstruction. In SS events, the resolution from the DNN
measurement outperforms that of the traditional EXO-200 reconstruction. In Phase-I, the
improvement increases from 1 % at 1000 keV to 12 % at 3000 keV. In Phase-II, the corresponding
improvement is from 4 % to 14 % in that energy range. A key contribution to the improvement
is understood to be the improved disentangling of mixed collection and induction signals
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Figure 4.22: The top panel shows the SS energy spectra after combining the ionization and
scintillation signals of calibration sources (°Co, 2?6Ra, ??*Th) reconstructed by the DNN in
measured data (circles) and MC simulations (lines). The bottom panel shows the ratios of
measured data and MC simulations for the DNN (solid) and the traditional EXO-200 (open)
reconstruction.

with the DNN (see Section 4.2.3). Since induction signals on U-wires occur more often with
increasing energy, the improvement in energy resolution becomes larger with increasing energy.
At Q@ = 2458keV, the improvement in energy resolution with the DNN is 10% (12%) in
Phase-I (Phase-II) over the traditional EXO-200 reconstruction. The energy resolution at @) as
a function of the date of submission is shown in Figure 4.24. It shows previously published
analyses of EXO-200 together with the results of the DNN presented here. For a fair comparison,
only analyses that use the MC based fit calibration procedure are shown. These include the
2v/38 search published in 2014 [51] and the Ov(3 searches published in 2014 [49], 2018 [91],
and 2019 [14]. This comparison reveals the big improvement in energy resolution with the DNN
reconstruction in both phases of EX0O-200 operation.
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Figure 4.23: The energy resolution o/E as a function of the energy is shown separately for
SS (dark, bottom curves) and MS (light, top curves) events in Phase-II for the DNN (blue) and
the traditional EXO-200 (red) reconstruction. The bands (shaded) indicate the fluctuations
observed from weekly calibrations. The ROI, Q + 20, defined by the traditional EX0O-200
reconstruction is indicated as green band. The ROI defined by the DNN is not shown
separately as it is only slightly smaller.
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Figure 4.24: The energy resolution o/@ at Q) = 2458keV for SS events is shown as a function of
the date of submission. The results of the traditional EXO-200 reconstruction are shown (cir-

cles) and those of the DNN (stars). Results for Phase-I (purple) and Phase-II (green) are
shown separately.
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4.3.2 Background reduction in the ROI of 0vg3

Besides improving the energy resolution, the DNN also improves the capability to disentangle
complex signatures of mixed collection and induction signals compared to the traditional
EXO-200 reconstruction [70]. This ability recovers energy in mixed signals that is partially
missed by the traditional EXO-200 reconstruction. For MC simulations, this is discussed in
Section 4.2.3.

A dominant background contribution in the ROI around the @ value of '35Xe are events that
originate from naturally occurring 2*>Th decay chain components. These arise in the materials
surrounding the liquid xenon. This contribution includes the 2°8T1 v line at 2615 keV. Missing
a fraction of energy in reconstruction for these events presents an immediate risk of increasing
the background contribution B in the ROI. Since the background contribution is related to the
half-life sensitivity for a particular isotope exposure via Tl% x 1/\/B (see Equation 2.11), this
directly affects the Ovg8 half-life sensitivity of EXO-200.

The improvement in 0vA33 half-life sensitivity from the reduced contribution of 232Th decay
chain events in the ROI can be estimated using ??®Th source calibration data. This data
also presents the 208T1 v line that is expected to leak into the ROI if energy is missed in
reconstruction. Figure 4.25 shows the corresponding SS energy spectra (top panel). The bottom
panel shows the ratio of the DNN and the traditional EXO-200 reconstruction. The ROI is
usually defined as the region of @ + 20. Due to improvements to energy resolution and to
disentangling mixed collection and induction signals, this ratio falls below one in the ROL.
This indicates a reduction of background events using the DNN over the traditional EXO-200
reconstruction. The relative improvement to the half-life sensitivity can be estimated by:

T11?2NN B BTrad A
T'Trad - BDNN ° ( 9)

1/2

To assess the background in the ROI, the best-fit values of the background determined in
the most recent EX0O-200 0v(35 search are used [14]. The fit concept is discussed in Section 6.1.
The background component specific to 232Th, B%\ffg?ﬂ, is scaled by the relative reduction of
events 7PN of the DNN over the traditional EXO-200 reconstruction observed in 228Th source
calibration data. The contribution from other background components, being mostly events
from the 238U decay chain and from ®"Xe, are left unchanged. The estimated background
using the DNN reconstruction is:

BONN _ pTrad _ pTrad . ,DNN (4.10)

with the best-fit value of number of events for the total background in the ROI BTd = 32.3 4 2.3
(30.9 £ 2.4) for Phase-I (Phase-II). The corresponding number of the 232Th background contri-
bution is BIrad, ., =10.0 (8.2) [14].
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Figure 4.25: The top panel shows the SS energy spectra of ??2Th source calibration
data recorded in Phase-I of EXO-200 operation for the DNN (blue) and the traditional
EXO0-200 (red) reconstruction. The lower panel shows the ratio of both methods. Colored
vertical lines represent the ROI, @ + 20, around the @ value (black).

Table 4.2 shows the reduction of background events n°~N in the ROI and the corresponding
estimation on the improvement to half-life sensitivity. With this simplified measure for half-
life sensitivity improvement, the DNN is better by 4.3 % (2.9 %) for Phase-I (Phase-II). The
improvement is larger in Phase-I compared to Phase-II since the relative background contribution
of 232Th is larger. In addition, the energy resolution in Phase-I is worse which broadens the
ROI around the @ value and the dominant 2°T1 ~ line.
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Table 4.2: Estimation of half-life sensitivity improvement from reduced 232Th background levels
in the ROI with the DNN over the traditional EXO-200 reconstruction. The numbers are
evaluated for 2?8 Th source calibration SS data that also presents the 293T1 v line. “Fixed ROI”
represents the results based on the ROI of the traditional EX0O-200 reconstruction and
“new ROI” those of the ROI determined from the corresponding energy resolution at the
Q value.

T Resolution Reduction 7 of Sensitivity
pe . .
Y o/E Q@ 232Th events in improvement

2615keV  2458keV fixed ROI new ROI

Trad  1.29 % 1.35 % - -
DNN  1.16 % 1.22 % 13.7 % 26.1 % 4.3 %

Phase-1I

Trad 1.11 % 1.15 %

Phase-IT B B N
W DNN 097T% 101%  TA% 208 % 2.9 %

4.4 Summary

In this chapter, an alternative approach was presented for the reconstruction of the ionization
energy in the EX0O-200 detector. The new reconstruction method is based on a deep neural
network (DNN). Several performance checks validate a robust energy reconstruction of the
developed DNN. However, performing the training with ill-suited data can introduce a bias.
These problems were mitigated successfully by a careful composition of the training dataset.
In terms of spatial uniformity, the DNN shows very similar performance on MC simulations
and on measured data compared to the traditional EXO-200 reconstruction. The stability in
time of the DNN reconstruction shows a similar variation as that of the traditional EXO-200
reconstruction which implies that it is dominated by variations in the operation of the detector.
These tests confirm the robust energy reconstruction by the DNN on both MC simulated and
measured data.

The energy resolution observed with the DNN based energy measurement outperforms
that of the traditional EXO-200 reconstruction for both MC simulated and measured data
in both phases of EXO-200 operation. The improvements in reconstructing the ionization
energy translate to improvements in the combined energy measurement of ionization and
scintillation. Both energy measures, from ionization only and from the combination with the
scintillation measurement, show good spectral agreement between measured data and MC
simulations for source calibration data. The big improvement in energy resolution of 10 % (12 %)
in Phase-I (Phase-II) with the DNN reconstruction shows the strong potential of DNN based
methods for other complex analyses. The promising results presented here further pave the
way for evaluation of a potential improvement to the O3 half-life sensitivity using the DNN
based energy reconstruction. This study is presented in Chapter 6.
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This chapter presents several deep neural network (DNN) based concepts to discriminate double
beta decays from the most dominant background in EXO-200 which is - interactions. After
discussing the design choices made to train the DNN for this task, the performance of the DNN
is validated in Monte Carlo (MC) simulations. The DNN is compared to the boosted decision
tree (BDT) based discriminator that was used in the EXO-200 Ov5 search in 2018 [91]. The
spectral agreement between measured data and MC simulations is evaluated for signal and

background events.

The study presented in this chapter contribute to the publication “Search for Neutrinoless
Double-Beta Decay with the Complete EXO-200 Dataset” [14] published in Physical Review

Letters (PRL).
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5.1 Goal and design of study

5.1.1 Motivation and training data preparation

Having multiple parameters to discriminate candidate Ov /33 decays from other interactions is a
very important feature of the EXO-200 experiment. This implies that the EXO-200 experiment
is not a simple counting experiment but pursues a multi-parameter analysis. Since most
backgrounds originate from - sources external to the xenon volume, the spatial distribution
contains additional information on the signal type. In previous analyses, this information was
captured via the so-called standoff distance rsp which measures the minimum distance of an
event to the closest material surface excluding the cathode. Furthermore, the detailed shape
and topology of signals can be used to discriminate double beta (43) decays from « particle
interactions. This information was first captured via a boosted decision tree (BDT) in Ref. [92]
and was later used in the EXO-200 Ov 5 search in 2018 [91] which led to an improvement in Ov 33
half-life sensitivity of ~15%. This large improvement from a signal-background discriminator
motivates the evaluation of a deep neural network (DNN) based discriminator.

Different design choices are possible for this discriminator. The design choices of the baseline
concept are made to pursue the following goals, while alternative concepts will be discussed in
Section 5.4.

1. Maximizing the topological discrimination power between signal 556 decays and background
~ particle interactions.

2. Being able to evaluate the DNN in both measured data and MC simulations as well as
for signal and background events.

3. Keeping a reasonable level of spectral agreement between measured data and MC simula-
tions in the DNN discriminator variable.

The first goal, maximizing the discrimination power of 53 and « events, is achieved by training
the DNN over the energy range of 1000—3000keV. In particular, the discriminator does
not focus on Ovf5 events at Q = 2458 keV but is trained over a broad energy distribution.
The signal g8 and background v events are simulated to have the same spatial and energy
distributions. That way, the discrimination is based on topological features only. By this design
choice, the DNN does not know about differences in spatial distributions between 5 decays and
~ interactions. While 48 decays occur uniformly in the detector volume in low-background (LB)
physics data, v interactions occur mostly close to material surfaces. The definition of single-
site (SS) and multi-site (MS) events that is used as a binary classifier in EXO-200 data analysis
is not known to the DNN explicitly. However, the DNN is expected to learn a highly correlated
and continuous representation of this definition implicitly.

The second goal motivates the design of a general 5 over an explicit Ov58 discriminator.
Discriminators of both designs can be validated on MC simulations. With a 58 discriminator,
the signal class can be validated with measured 2v58 data. However, for a Ovg8 discriminator,
corresponding measured data is not available which can be used for validation since it is a
hypothetical decay. For background events, measured data is available for validation from
source calibration measurements.
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Figure 5.1: Re-generated U-wire waveforms of the identical example event shown in Figure 4.1.
The channel amplitudes are shown as a function of time. The channels are offset for clarity.
The gray channels do not contain signals and are exactly zero.

The third goal is to keep the spectral agreement between measured data and MC simulations
on an acceptable level. This implies that any DNN concept that utilizes the raw V-wire signals
is disfavored since they are not modelled in MC simulations to the precision of the U-wires.
Nevertheless, alternative DNN concepts that use V-wires are discussed in Section [5.4. Also,
due to this third goal, two DNN concepts are pursued in this study that differ by their input
images:

DNN-Raw is fed with the identical images as the DNN used for energy measurement discussed
in Chapter 4. An example event is shown in Figure 4.1. The inputs for this DNN concept
are grayscale images built by arranging neighboring U-wire channels next to each other
and encoding the raw amplitudes of the U-wire waveforms as pixel values for both TPCs
separately. This approach has the advantage of not relying on the traditional EXO-200
reconstruction as it directly exploits the raw waveforms.

DNN-Recon is fed with images where the raw waveforms are replaced by those that are
re-generated from the best-fit signals of collection and induction templates found by the
traditional EXO-200 reconstruction. An example event for this concept is shown in Figure 5.1
where the identical event for the DNN-Raw concept is shown in Figure 4.1. The DNN-Recon
concept is pursued in order to mitigate inaccuracies in modelling the raw U-wire signals in
MC simulations. Further, the prediction of this DNN discriminator is guaranteed to be based
only on features already known to the traditional EXO-200 reconstruction which supports the
understanding of the DNN discriminators performance. On the other hand, the discrimination
power may be limited by the precision of the traditional EXO-200 reconstruction. In particular,
this applies to small energy deposits captured by DNN-Raw that are below the threshold
of EXO-200 reconstruction. It also applies to entangled collection and induction signals
where DNN approaches proved to outperform the traditional EXO-200 reconstruction (see
Section 4.2.3).

In fact, the same dataset was used for training the discriminator DNNs as for the DNN used
for energy measurement that is discussed in Chapter 4. The training data is produced in MC
simulations for two classes of events: background-like, composed of + particle interactions with
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a uniform energy distribution in the range of 1000 —-3000keV; and signal-like Ov33 decays with
a random decay energy () restricted to the same energy range. The locations of the interactions
of both event classes are simulated uniformly in the detector volume to focus discrimination
on the topological event characteristics only. The dataset is populated evenly with events of
both classes and is divided into statistically independent datasets for training (90 %) and for
validation (10 %).

5.1.2 Network architecture and training

The basic concept of the DNN architecture and the way the input data is processed and fed to
it is equivalent to the approach described in Section 4.1.2. Again, the U-wire images of both
TPCs are fed to the DNN separately where each image has a dimension of 350 x 38 pixels.
Both images pass through the same layers with the same mathematical operations applied
to them in order to reduce the number of free parameters of the DNN. Both TPC branches
are concatenated immediately before the output of the DNN. The architecture that is used
is inspired by the Inception architecture which was proposed by Google [84]. The concept of
Inception is built on Convolutional Neural Networks by combining convolutional layers with
different sized receptive fields in parallel. With this approach, the DNN is able to capture both
small and big features at the same time. These parallel feature maps are merged before being
fed to the subsequent layer.

The complete architecture consists of a stem followed by 10 Inception blocks. The stem
consists of 3 convolutional layers with 32, 32 and 64 kernels and a (4,2) maximum pooling
layer before the last convolutional layer. The Inception part includes 3 maximum pooling layers
after the 2, 4 and 6 Inception blocks with (2,2), (2,1) and (2,1) pool sizes in order to reduce
the spatial dimensions intentionally. To maintain the spatial dimensions in the convolutional
operation, zero padding is applied to each layer. This operation surrounds the image with
zeros. Also, batch normalization is applied with each convolutional layer. This technique acts
as a regularizer that helps to prevent overfitting and renders the training more robust [93].
After the last Inception block, the spatial average of each feature map is calculated rather
than applying a fully connected part. This design choice helps to prevent overfitting during
training. By removing the spatial information, the DNN is more robust to spatial translation
in the input image, i.e. in the detector volume [94]. The vectors which contain the averages
over feature maps from both TPC branches are concatenated and fed to the last layer which
is responsible for the final discrimination. Throughout the network, the ReLU(z) = max(z,0)
activation function is used. In the last classification layer the softmax activation function is
used instead: -

U(Z)i:% fori=1,...,K and z = (21,...,2K) . (5.1)

> j=1€7
The softmax function maps each component z; of a non-normalized input vector z to the
interval o(z); € (0,1) while ensuring 3-% | o(2); = 1. This activation function is commonly
used for classification tasks as it allows to interpret the outputs of the DNN as a probability
distribution over the predicted output classes. Trainable weights are initialized using the Glorot
algorithm [80] discussed in Equation 3.14. The DNN architecture is implemented with the
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Figure 5.2: The network architecture used for the DNN-Raw and DNN-Recon concepts. The
input consists of two images with a dimension of 350 x 38 pixels each. A stem containing
3 convolutional layer is followed by 10 Inception blocks. Each block includes parallel
convolutional layers with receptive fields of different sizes in order to be sensitive to different
sized features. The resulting feature maps are concatenated at the end of the block. The
spatial dimensions of the feature maps are reduced at several steps to save computation time.
The final feature maps are transformed into a one-dimensional array. Both branches which
contain information from the individual TPCs share the same network weights. Before the
final output, the units of both branches are concatenated. The last layer has two units which
correspond to the probability of the event belonging to either signal or background class.

Keras library [88] using the Tensorflow backend [89]. The architecture is shown in Figure 5.2.

In MC simulations, the target variable is known. Background ~ events are assigned to class 0
and signal 83 events to class 1. The dissimilarity between the target distribution p and the
predicted distribution ¢ can be described by the cross entropy H (p, q):

K
H(p,q) = =Y _ p(k)log (q(k)) , (5:2)
k

where K is the number of classes. In training, the Adam optimizer [90] is used to minimize the
mean cross entropy L over a batch of NV samples:

N
b=y S H ) Gx)
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Figure 5.3: The loss curves of the training of DNN-Raw used for Phase-1I (a) in validation (red)
and training (blue) data. Both curves are used to monitor potential overfitting which is
not observed here. In parallel, the accuracy (b) is monitored which reflects the fraction of
correctly identified events.

For classifiers with only two classes (K = 2), the predicted and target values of both classes
can be written as p € {py—1 =y, py—0 = 1 —y} and q € {gy=1 = U, @y=0 = 1 — y}. Then, the
mean cross entropy can be written as [71]:

1 N

L= N2 [yi log (9:) + (1 — ;) log (1 — 4;)] - (5.4)

Both DNN concepts (DNN-Raw and DNN-Recon) are trained on the identical events in MC
simulations and with the identical DNN architecture and training procedure. The only difference
is the input images. There are two DNNs trained for each DNN concept since EXO-200 was
operated in two phases with slightly different conditions. This helps to optimally capture all
features available in training data for the individual phases. However, the DNNs of both phases
of EXO-200 operation are identical in terms of DNN architecture, training data production, and
training directives. The training curves of DNN-Raw used for Phase-1I are shown in Figure 5.3.
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5.2 Performance on Monte Carlo simulated data

The performance of both DNN concepts, DNN-Raw and DNN-Recon, is validated in MC
simulations. For this, the 10 % from the training dataset reserved for validation is used. In
addition, MC simulations that correspond to measured data, like 2033 or source calibration
data, are used.

The distributions of the DNN-Raw discriminator from the validation dataset are shown in
Figure 5.4. They are separated by the target variable into background (blue) and signal (red)
class. Besides showing all events from the dataset (left), the corresponding distributions are
shown for SS (center) and MS (right) events. Although, the SS/Ms definition used in EXO-200
data analysis is already a binary classifier used to discriminate signal 55 from background
events, the DNN can access additional discrimination power in both channels.

To infer the discrimination power of a binary classifier, a common measure is the receiver
operating characteristic (ROC) curve [95, 96]. It shows the signal efficiency as a function of
the background rejection power as the cutoff value is varied. DNN discriminators, like other
continuous discriminators, can be converted to binary classifiers by introducing a cutoff value
that maps the predictions to either class. A perfect discriminator produces a point in the ROC
curve at (1,1). This implies that there is no loss in signal efficiency while the background is fully
rejected. A random discriminator would produce points along the bisector of the ROC curve
where the loss in signal efficiency changes linearly with the background rejection. To compare
ROC curves, the area under the curve (AUC) can be used to condense the discrimination
power to a single number. While a perfect discriminator would have an AUC of 1, the random
discriminator has an AUC of 0.5. However, condensing the performance of a discriminator
to a single number represents a loss of information and may promote misinterpretation [97].
Since the ROC curve depends on the prevalence of both classes, here, it is only used to directly
compare different discriminators based on the same data. Also, datasets with a high imbalance
between the classes must be interpreted with high caution [97]. Various metrics exist to analyze
and interpret discriminators and classifiers besides ROC analysis [98].
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Figure 5.4: Distribution of the DNN-Raw variable in Phase-II for signal (red) and back-
ground (blue) validation events. (a) shows all events, (b) and (c) only those belonging to
the SS and MS class, respectively.
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The conversion from a continuous discriminator to a binary classifier causes a loss of informa-
tion. It is no longer known how reliable the prediction was. If the DNNs were used as binary
classifiers, a common concept is to select the cutoff value based on the Youden’s J statistic [99].
Graphically, the optimum cutoff value can be chosen by maximizing the height above the chance
line of a random discriminator.

The ROC analysis is only used as initial metric to evaluate the performance of different DNN
discriminator concepts and to compare them to alternative approaches existing in EX0-200
data analysis. The final metric relevant for EX0-200 is the Ovg3 half-life sensitivity that is
discussed in Chapter 6.

5.2.1 Comparison of DNN and EXO-200 BDT

To evaluate their performances, both DNN concepts are compared to the BDT discriminator
which was used in the EXO-200 Ov/8 search in 2018 [91]. This BDT was only used in SS
events as toy studies indicated no additional improvement to O3 half-life sensitivity when
using it in MS events. The BDT comprises two variables which contain topological information
and another variable which contains spatial information. Topological variables were chosen
to describe the extent of signals in Z dimension via the rise time of U-wire signals and in
U dimension via the number of affected U-wire channels. The spatial information is captured
via the standoff distance [91].

In contrast to the training dataset, in low-background (LB) physics data,  particles originate
from sources external to the xenon. Thus, v interactions predominantly occur close to material
surfaces while 2056 and hypothetical Ov 35 decays occur uniformly distributed in the xenon
volume. By design, the DNN discriminators do not capture this spatial difference but focus
on topological discrimination only. Different DNN concepts which capture spatial information
are discussed in Section 5.2.2. Thus, for a fair comparison of DNN and BDT discriminators,
the DNN discriminator is combined with the standoff distance in order to also include spatial
discrimination power. Both variables are wrapped in a BDT discriminator. Their distributions
for LB data in MC simulations are shown in Figure [5.5. This approach is only used for
qualitative performance checks and comparisons in this chapter. The half-life sensitivity to Ov 56
for analysis configurations including a DNN discriminator is discussed in Chapter 6. Alternative
DNN based concepts that directly exploit spatial information are discussed in Section 5.4.

Figure 5.6a shows the ROC curves of the DNN-Raw and the BDT discriminators. It shows
LB physics data in MC simulations consisting of Ovg3 decays and background events from the
dominant background in the ROI of Ov33 which is from the decay chains of 232Th and 238U.
The AUC of the DNN exceeds that of the BDT. However, there are points of the ROC curves
where the BDT outperforms the DNN by also capturing spatial information. This deficit
is compensated by the discriminator that combines the DNN-Raw and the standoff distance
variable. This discriminator then covers naturally the pure DNN but also the BDT discriminator
at all points of the ROC curve. This implies an improved discrimination of g8 and ~ events with
the DNN based approach over the BDT based approach and suggests a potential improvement
to Ovf6 half-life sensitivity.
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Figure 5.6: ROC curves of several discriminators for SS events from the dominant background
in the ROI and Ovf33 decays in MC simulations. The area under the curve is given in
brackets. The ROC curve of DNN-Raw (green) improves after including spatial information
via the standoff distance (red). It then completely covers the curve of the BDT (blue)
that was used in the EXO-200 Ov/3 search in 2018 [91] (a). Combined with the standoff
distance, DNN-Recon (pink) also outperforms the BDT while showing a slightly degraded
discrimination power compared to DNN-Raw (b).

Figure 5.6b shows the ROC curves comparing DNN-Raw and DNN-Recon, both combined
with the standoff distance, and the BDT used in the EXO-200 0v/8 search in 2018 [91]. The
DNN-Recon concept yields a slightly degraded discrimination power compared to DNN-Raw.
This is expected since DNN-Recon is limited to the precision of EXO-200 reconstruction
whereas DNN-Raw can fully exploit any information available in the raw waveforms. Both
DNN discriminator concepts outperform the BDT discriminator at all points of the ROC curve
which implies potential for improving the Ov 35 half-life sensitivity with DNN discriminators.
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Figure 5.7: Comparison of ROC curves of BDT [91] and DNN-Raw combined with standoff
distance for all (a), 1 U-wire (b), and 2 U-wire (c) SS events. The area under the curve is
given in brackets.

In order to evaluate why the DNN discriminators in combination with the standoff distance
variable outperform the BDT discriminator, the dataset of SS events is further divided into two
distinct classes. Figure 5.7 shows the comparison of ROC curves of DNN-Raw and the BDT
for all SS events (left), and for those affecting only 1 (center) or 2 (right) U-wires. Most of the
improvement of the DNN based approach is seen for 2 U-wire SS events for which the BDT
discriminator is less powerful. This becomes clear by the ROC curves and when comparing
their AUC values. On the other hand, the DNN has an even improved discrimination power
for 2 compared to 1 U-wires events. The inferior performance of the BDT on these events is
understood from the fact that for each reconstructed signal an individual rise time is measured.
But since the BDT only takes scalar values as input, two values are condensed to a single number
by taking the maximum value. This represents a loss of information for the BDT discriminator.
On the other hand, for these events, the DNN discriminator uses both signals and can therefore
constrain the spatial extensions even better than for 1 U-wire events. Extensions to the BDT
that focus on improving the discrimination power in particular for 2 U-wire SS events were
discussed internally in EXO-200. However, they did not reach the discrimination power of the
DNN based approaches.

Both DNN concepts, DNN-Raw and DNN-Recon, outperform the BDT discriminator used in
the EX0O-200 0vB search in 2018 [91] in terms of discrimination power. The big advantage of
the DNN over the BDT is that it alleviates the need to manually engineer weak discriminator
variables from the raw data. Instead, it allows for using the raw data directly as input. This
is of particular benefit for complex event signatures which contain multiple and potentially
overlapping signals. For these events, the BDT shows degraded performance whereas that of
the DNNs even improves. The DNN-Recon concept has the advantage that its predictions are
guaranteed to be completely based on information that is known to EXO-200 reconstruction.
This makes it more comprehensible than the DNN-Raw concept. Instead of re-generating the
input images for the DNN-Recon concept, the best-fit parameters from template fits to the
raw waveform traces could be directly used as input to a DNN. This would bypass the need
to re-generate the entire event and would reduce the input to a few numbers. However, the
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approach presented here offers a natural solution of local correlation and to handle a varying
numbers of signals in events. Further, criticism of DNNs being a black-box can be addressed
by this concept more easily than for the DNN-Raw concept. As only certain signal types can
be re-generated for the input to DNN-Recon, their effects on the DNN’s prediction can be
evaluated easily. For example, this includes the effect of induction U-wire signals on the DNN
prediction. Of course, the DNN’s discrimination power is limited to the precision of EX0-200
reconstruction which explains the slightly degraded performance compared to DNN-Raw.

5.2.2 DNN validation

To gain insight into the DNN, its performance is evaluated for different scenarios in MC
simulations. These tests verify a robust performance by showing that the prediction is correlated
to physically relevant topological features that distinguish 55 from + events. Furthermore,
potential biases of the DNN may be revealed by these tests.

The correlation of the DNN discriminator is evaluated as a function of the true event size. For
this test, the spatial dimension is determined in MC simulations. The event size represents the
maximum distance between energy deposits in liquid xenon that exceed the detection threshold
of ~20keV. (B decays tend to have a smaller spatial extension than « particle interactions.
This can be understood from the fact that v interactions produce a single photo-electron via
photoelectric effect which contains the total deposited energy. On the other hand, the energy
in 66 decays is partitioned over two electrons. Both electrons usually comprise angles of less
than 180° and the range of electrons does not scale linearly with energy, leading to smaller
spatial extensions of 55 over  events on average. In addition, v particles often interact multiple
times in the detector volume via Compton scattering effect, leading to multiple spatially distinct
energy deposits. Both g3 and v events may produce additional small, separated energy deposits
due to bremsstrahlung. The distribution of spatial extensions of 2033 and ??Ra calibration
data in MC simulations is shown in the top panel in Figure 5.8 for all events, i.e. for SS and
MS events. The hypothesis is that the DNNs capture the differences in spatial extension of
B8 and  events and correlate their predictions on these differences. The bottom panel in
Figure 5.8 shows the fraction of correctly predicted events for DNN-Raw and DNN-Recon
of both signal 2033 and background ??°Ra events as a function of the true event size. The
predictions of the DNN are converted into classifications with the cutoff value determined
from the Youden’s J statistic [99]. Basically all signal events with small spatial extension
and background events with large spatial extension are classified correctly. This confirms the
hypothesis that the DNNs strongly correlate their predictions to the event size. The offset in
the curves between DNN-Raw and DNN-Recon is expected to arise from the finite precision of
EXO-200 reconstruction, especially for small energy deposits.
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Figure 5.8: The top panel shows the distributions of event sizes which are known in MC
simulations for signal 2v33 (blue) and background ??Ra (green) events. The filled areas
show the distributions that are classified correctly by DNN-Raw. The prediction cutoff value
is determined based on the Youden’s J statistic [99]. The bottom panel shows the fraction
of correctly classified events for DNN-Raw (dark) and DNN-Recon (light).

By design, the DNN discriminators should not be biased spatially since they are trained
on uniformly distributed events in the detector volume. In LB physics data, hypothetical
signal OvG3 events are indeed distributed uniformly in the xenon volume, whereas the dominant
background v particles originate from the materials of the TPC vessel. Thus, background
~ events mostly occur close to the detector walls. The top panel in Figure 5.9 shows the standoff
distance distribution for signal 2v33 and background 2?Ra events in MC simulations. The bins
are chosen to contain an equal xenon volume. The bottom panel shows the fraction of correctly
classified events for DNN-Raw and the BDT used in the EXO-200 Ov33 search in 2018 [91].
The cutoff value is determined analogously to Figure 5.8, Unlike the BDT which explicitly
uses spatial information, the DNN-Raw discriminator variable is independent of the standoff
distance. This confirms that the DNN is not biased spatially.
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5.3 Performance on measured data

The DNN discriminators are applied to measured data. To account for different trigger strategies,
the DNN input images are processed analogously to the approach discussed for the DNN energy
measurement in Section 4.3. This implies, adjusting the window of the input image relative to
the trigger. However, for the DNN discriminators there is no need to apply a correction that
accounts for the finite electron lifetime.

For a successful use of the DNN discriminators in Ov38 searches, the spectral agreement
between measured data and MC simulations must not be overly degraded. Any discrepancies in
the agreement are taken into account as systematic uncertainties and thus decrease the sensitivity
of a Ov@B analysis configuration. This is discussed in more detail in Section 6.1.4. The spectral
agreement is evaluated for DNN-Raw and DNN-Recon on both signal and background data.
Calibration source data of 222Th, 226Ra, and %°Co is used to evaluate the spectral agreement on
background v data. Signal 83 data is not available from calibration measurements, but 2v56
data is recorded in LB physics data. However, this dataset is contaminated by background
v events. To extract the 2vf33 events, a maximum likelihood (ML) model is fitted to the
the energy spectrum of LB physics data whereas the ROI around the ) value is blinded.
More information on the fit is given in Section 6.1. Measured 2v38 data is extracted by
subtracting all background components in LB data according to their best-fit values. While
the number of available 2v55 events is limited, this background-subtracted 2v/33 data still is
the best proxy for signal 55 events recorded by EXO-200. Figure 5.10 shows the best-fit LB
distributions of DNN-Recon (black) for SS (left) and MS (right) events. The best-fit background
distribution (green) in MC simulations is subtracted from the LB physics data to build the
background-subtracted 233 dataset (blue).

The spectral agreement between measured data and MC simulations is shown in Figure 5.11
for DNN-Raw (top) and DNN-Recon (bottom). Background-subtracted 2v33 data is used as
proxy for signal data (black), and background ~ data (red) consists of calibration data from a
226Ra source located near the cathode outside the TPC. The agreement is shown for all (left),
SS (center), and MS (right) events separately. The spectral agreement is improved in v data
compared to background-subtracted 2v556 LB data. In SS events, there is an overall shift in
MC simulations compared to measured data toward lower discriminator values, i.e. toward
more background-like predictions. This shift is visible as a slope in the ratio of measured
data and MC simulations that is present in both DNN concepts. This trend represents a risk
to the applicability in Ov58 searches by introducing a systematic bias when fitting the MC
simulated spectra to LB physics data. Its impact on the Orv538 half-life sensitivity is discussed
in Section 6.1.4. The binary SS/ms classification of EXO-200 reconstruction further introduces
discrepancies in the DNN agreement between measured data and MC simulations. This is
perceptible when omitting the SS/Ms classification as this improves the spectral agreement. This
effect is expected since the SS/Ms classifier and the DNN discriminators are correlated by their
design goal. Any discrepancies in the binary classifier are propagated to the spectral agreement
of the DNN discriminator variables. Thus, the spectral agreement between measured data and
MC simulations is improved when not discriminating SS from MS events.
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Figure 5.10: The distributions of the DNN-Recon discriminator for the best fit to LB physics
data in SS events (left) and in MS events (right) in measured data (circles) and in MC
simulations (lines) recorded in Phase-II of EXO-200 operation. Background-subtracted 2v33
events (blue) in LB physics data are extracted from the total dataset (black) by subtracting
the best-fit background contributors in MC simulations (green).

DNN-Raw shows a degraded agreement between measured data and MC simulations compared
to DNN-Recon. This is understood to arise from two dominant aspects. First, inaccuracies in
modelling the raw pulse shapes in MC simulations affect only DNN-Raw which is trained on raw
signals. For DNN-Recon, this problem does not exist because it is trained on signals found by
EXO-200 reconstruction and the same analytical waveform template is used in reconstruction
of measured and simulated waveforms. Second, inaccuracies in modelling complex effects in
EXO-200 like induction on U-wires and diffusion at the raw waveform level directly affect the
spectral agreement of DNN-Raw. For DNN-Recon, these effects are shielded to some degree
by the precision of EX0O-200 reconstruction while causing a slightly degraded discrimination
power (see Figure 5.6b).

The discrepancies between measured data and MC simulations can be mitigated by profiling
the DNN discriminator variables at the cost of losing discrimination power. This approach
is beneficial as long as the impact of reduced systematic uncertainties outweighs the loss of
discrimination power. Profiling the variables between 0, 0.3, 0.6 and 1 improves the spectral
agreement, especially for the bins containing the majority of 2v438 events. Analogously to the
fine binned scenario, the spectral agreement of DNN-Raw is worse than that of DNN-Recon.
The impact of the spectral agreement to the Ov35 half-life sensitivity is discussed in more detail
in Section 6.1.4.
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Figure 5.11: The spectral agreement between measured data and MC simulations is shown for
DNN-Raw (top row) and DNN-Recon (bottom row). The top panels show the distributions
in measured data and MC simulations while the bottom panels show their ratios. Background
7 data (red) represents data from a 2?Ra calibration source located near the cathode outside
the TPC. Signal 5 data (black) is from background-subtracted 2v(33 LB data. The spectral
agreement is shown individually for all events (left), SS events (center) and MS events (right).
In addition, the bottom panels show the ratios of measured and MC simulated data when
profiling the DNN discriminators between 0, 0.3, 0.6 and 1.
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5.4 Alternative discriminator concepts

The concepts presented so far focused on topological discrimination only while ignoring any
differences in spatial distributions between signal G5 and background + events present in
LB physics data. Although these concepts are valid, here, different concepts are discussed that
to also capture spatial information directly.

In order to capture spatial information, the background ~ data in the training dataset is
replaced by v particle interactions that are no longer distributed uniformly in the detector
volume. The signal 55 data is kept unchanged, since in LB physics data, 2v88 and hypothetical
Ovf6 decays occur uniformly in the xenon volume. The new background data is shown in
Figure 5.12 and consists of v particles emitted in MC simulations by the materials of the TPC
vessel. This represents the dominant background contribution in LB physics data, especially in
the ROI of Ov(35 [14]. Thus, the DNN is trained on a realistic spatial distribution with respect
to the v background in LB physics data. However, unlike LB physics data, the 55 and ~y energy
distributions used for training the DNN are still uniform in order to not introduce a bias to the
discriminator in terms of in energy.

The new dataset is used to train a DNN on raw U-wire signals. The DNN architecture is
identical to that of the baseline DNN concept shown in Figure 5.2. This DNN concept (DNN-U)
is sensitive to differences in spatial distributions of v and 83 events as is shown in Figure 5.13.
Background « events are more likely to be identified correctly near the material surface. The
trend is inverse for signal Ov 38 events. However, since this DNN is trained on U-wires only, the
full 3D spatial information is not available to the DNN. Instead, only the U and Z coordinates
of the event position are fully available to the DNN. While the V-wires are not known to the
DNN, the V coordinate of the event position is still partially available since both wire planes
are crossed by 60° and thus are not fully uncorrelated (see Figure 2.9). This explains why the
DNN identifies background and signal events mostly uniformly as a function of the V' position.
The corresponding ROC curve is shown in Figure 5.14 (red). It improves compared to the
baseline DNN concept (black) that was trained on a uniform spatial distribution of background
v events (see Figure 5.6a). However, it does not completely achieve the discrimination power of
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Figure 5.12: Correlation of the z and y spatial coordinates (left) and the distribution of
z coordinates (right) of the new background dataset which represents ~ particle interactions.
The ~ particles are emitted in MC simulations by the TPC vessel materials which represents
the dominant v background in the ROI of Ov33.
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Figure 5.13: The panels show the fraction of correctly classified signal Ovgs (blue) and
background ~ (green) SS events as a function of the event position in the U (top), V' (center)
and Z (bottom) coordinates. Shown are curves for the DNNs trained on U-wires (dark)
and on U- and V-wires (light). The prediction cutoff value is determined based on the
Youden’s J statistic [99]. Background ~ events represent the main background in the ROI
which occurs predominantly close to the material surfaces while signal Ov33 events are
distributed uniformly in the xenon volume.

that DNN in combination with the standoff distance due to the partial loss of spatial information
in V position.

The full spatial information can be captured when training a DNN on U- and V-wires at
the same time (DNN-U+V). The input to this DNN-U+V is 4 grayscale images consisting of
350 x 38 pixels each. An example input image is shown in Figure 5.15. Otherwise, the DNN
architecture is kept unchanged to the one of the baseline DNN (see Figure 5.2). This concept,
DNN-U+V, is now sensitive to the full 3D spatial information as is shown in Figure 5.13. The
classification as a function of the U and Z coordinates of the event position follows the trend of
DNN-U. In V position, DNN-U+V is able to reject background ~ events more efficiently toward
the material surface while DNN-U was mostly unaffected by this spatial component. Using this
additional spatial information, the ROC curve of DNN-U+V (green) in Figure 5.14 outperforms
that of DNN-U (red). Furthermore, it slightly outperforms that of the baseline DNN combined
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Figure 5.14: The ROC curves are shown for different DNN concepts from SS events of the main
~ background to the ROI and signal Ov35 in MC simulations. For reference, the baseline
DNN (black) combined with the standoff distance and the BDT (gray) used in the EXO-200
Ov/38 search in 2018 [91] are shown. All concepts shown here capture spatial information and
thus outperform the baseline DNN shown in Figure|5.6a. The DNN concepts discussed include
those trained on U-wires only (DNN-U, red), on U- and V-wires (DNN-U+V, green), and
on U-wires with additional information about the charge clusters of an event (DNN-U+CC,
blue). The area under the curve is given in brackets.

with the standoff distance (black). This is due to not only adding additional spatial information
with the raw V-wire waveforms but also adding additional topological information.

Using both U- and V-wires also has disadvantages since the raw V-wire waveforms are not
modelled to the precision of the raw U-wire waveforms. This is due to the higher complexity of
the signatures on V-wire channels. Consequently, the spectral agreement between measured
data and MC simulations is degraded for the DNN-U+V concept. To quantify and compare
the agreement to other DNN concepts, the error weighted average 7 of the absolute residuals
between measured data and MC simulations is used:

Sw; - | Data — MC
po il (M) 7 (5.5)
Zj wj MC i

where the sums span over all bins ¢ and 7, and the uncertainty contributing to wj; is calculated
assuming Poisson statistics. The spectral agreement of the DNN-U+V variable between
measured data and MC simulations is shown in Figure 5.16b. The data represents interactions
from ~ particles emitted from a 222Th source located near the cathode outside the TPC. Using
Equation 5.5, the average residual is (16.4 £ 0.7) %. For comparison, it is (8.8 £ 0.4) % for the
baseline DNN concept (see Figure 5.16a). So, while improving the discrimination power when
using both U- and V-wires, the spectral agreement is worsened at the same time. Insufficient
spectral agreement limits the applicability of the discriminator for Orv58 searches as will be
discussed in Chapter 6.
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Figure 5.15: U-wire (bottom) and V-wire (top) waveforms of the identical example event
shown in Figure 4.1/ and 5.1. The channel amplitudes are shown as a function of time. The
channels are offset for clarity and the channels are shown in bold that contain any signal
found by EXO-200 reconstruction.

To bypass the limitations from using raw V-wires while still capturing the full 3D spatial infor-
mation, another DNN concept is evaluated. This concept (DNN-U+CC) builds on the baseline
DNN concept of training on uniform spatial v and §5 distribution. The DNN architecture is
extended by a second branch which combines topological and spatial information. The spatial
information is fed to the DNN via a vector containing the 3D positions and energies (u, v, z, E) of
all charge clusters found in EXO-200 reconstruction. The vector containing purely topological
information and the additional vector are concatenated before passing through three fully
connected layers with a decreasing number of neurons. Then, another DNN output predicts
the signal-likeness of the event. The architecture of this DNN concept is shown in Figure 5.17.
This DNN provides two separate predictions. One is fully based on topological information and
the other combines topological and spatial information. To improve the training procedure, the
topological DNN branch is pre-trained separately and its weights are frozen during training
of the appended branch. The ROC curve of this DNN is shown in Figure 5.14 (blue). The
discrimination power exceeds that of the DNN that uses U-wires (red) only which is due to
exploiting the full 3D spatial information. Furthermore, it slightly outperforms the baseline
DNN combined with the standoff distance (black). This could be due to combining topological
and spatial information at an earlier, higher dimensional stage compared to combining both
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Figure 5.16: The top panels show the spectral agreement for SS events of different DNN
concepts of a 228Th calibration source located near the cathode outside the TPC in measured
data (circles) and MC simulations (lines). The bottom panels show the corresponding
ratios. (a) shows the baseline DNN concept, (b) the DNN concept trained on U- and
V-wires (DNN-U+V), and (c¢) the DNN concept trained on U-wires together with charge
cluster variables (DNN-U+CC).

pieces of information at the very end in another discriminator. However, it does not reach the
discrimination power of DNN-U+V. First, this is due to relying on EXO-200 reconstruction
compared to raw waveforms for spatial information. Second, using raw V-wires adds some
additional topological information that is not available in this concept. The spectral agreement
of this DNN concept is shown in Figure 5.16¢ with an average residual of (6.0 &+ 0.4) %. This
implies that with the DNN-U+4CC concept, the full 3D spatial information can be exploited
similar to the DNN trained on U- and V-wires while the spectral agreement is still on the level
of the DNN concept trained on U-wires only.
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Figure 5.17: The DNN architecture is an extension of the one discussed in Figure 5.2.
Additional spatial information is added to the vector that contains topological information.
The additional information is the energy F and the coordinates (u,v, z, E) of every charge
cluster as found by EXO-200 reconstruction. This extended vector is passed through three
fully connected layers with decreasing numbers of units (256, 64 and 16). The final network

output of two units represents the probability of the event belonging to either signal or
background class.
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5.5 Summary

This chapter presented a deep neural network based approach to discriminate signal §38 from
background v events in EXO-200. Two baseline concepts are evaluated; one using raw U-wire
waveforms (DNN-Raw) and one using U-wire waveforms re-generated from signals found by
EXO0-200 reconstruction (DNN-Recon). Several checks in MC simulations validate a robust
discrimination based on physically relevant features. By design, these concepts fully focus on
topological features while they do not capture spatial differences between both event classes
that are present in low-background physics data. This design choice is motivated by avoiding
the need to assume a prior spatial background distribution. Then, the DNN can be applied to
any physics analysis without introducing a potential bias from differences in spatial distribution
in training and in physics data. Alternative DNN concepts were discussed which are able to
also incorporate spatial features in the discriminator.

The presented DNN concepts outperform the discrimination power of the BDT that was used
in the EXO-200 Ov33 search in 2018 [91]. Also, in contrast to the BDT, the DNNs are not
limited to SS events but are trained independent from this definition. They can be applied to all
events likewise. The spectral agreement of the discriminator variables between measured data
and MC simulations was evaluated on - source calibration data and on background-subtracted
2v /5 data. In general, DNN-Recon shows better spectral agreement than DNN-Raw. Profiling
the DNN variables between 0, 0.3, 0.6 and 1 improves the agreement at the cost of discrimination
power.

The promising performance of the DNN discriminators presented here pave the way for a
potential increase of the sensitivity to the half-life of Ov 35 decay. This study will be presented
in Chapter 6.
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This chapter presents the detailed analysis concept of searches for neutrinoless double beta
decay (0v/383) in EXO-200. This concept was used for the searches in Refs. [14, 49, 91, 100]. The
results of the Ov 3 search which utilizes a deep neural network (DNN) based discriminator are
presented which is introduced in Chapter 5. These results contribute to the publication “Search
for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset” [14] published in
Physical Review Letters (PRL). In addition, this chapter discusses analysis concepts that utilize
the DNN based energy measurement introduced in Chapter |4 instead of the traditional EXO-200
energy measurement. Potential improvements to Ovg3 half-life sensitivity gained by concepts
that utilize DNN based variables are presented and compared to traditional approaches.
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6.1 Analysis concept

6.1.1 Likelihood fit model

In EXO-200, the search for Ov33 decay is performed with a binned maximum likelihood (ML)
fit. For computational reasons, the negative log-likelihood (NLL) model £ = —1In L is fitted to
low-background (LB) physics data. It is based on the model built in Ref. [51] which was used
for EXO-200 Ov35 searches in Refs. [14, 49, 91, 100]. The single-site (SS) and multi-site (MS)
data is fitted simultaneously. The full model is

L= LSS + LMS + G1(:onstr 5 (61)

where Geonstr are Gaussian constraints. In the fit, £ is minimized. For each multiplic-
ity m € {SS, MS}, the likelihood function is

Lo =—InLp =Y [u" = (kissIn ()] (6.2)

i
where £} . is the number of events in bin 7 observed in LB physics data with multiplicity m.
pi* is the expected number of events from the fit model. The sum proceeds over all bins in all

fit observables. The expected number of events /" in a bin 7 is calculated by:

M;n(&n,N):/ F™(s,n,N,y) dy , (6.3)
ith bin
where s = {s0, ..., SNppp + denotes the SS fraction, (55/(ss+Ms)). n = {no, ..., nNpyp | denotes

the total number of events for each PDF that contributes to the model. The complete model is
discussed in Section 6.1.3 and consists of Nppr PDFs. IV is an overall normalization parameter
that carries the uncertainty on the signal detection efficiency. This uncertainty is discussed
in Section 6.1.4. The integral in the i*® bin is performed for the fit observables y that always
include the energy E but can also include further observables [100]. Different fit configurations
are discussed in Section 6.1.2. The integrand function F" is defined as:

NppF
F% (s,n,N,y) =N Z n;s; f55 (y) (6.4)
NPJDF
FMS (s,m,N,y) =N Y n;(1—s5) ;" (v) . (6.5)
J

These functions sum over all PDFs f7* (y) that are included in the fit model with the SS frac-
tion s; and the number of events n; that are associated to to PDF j. The PDF f7" (y) itself is
a function of the set of observables y used in the fit.

Systematic uncertainties are included in the negative log-likelihood function £ by additional
Gaussian constraints which are summarized by Geonstr in Equation 6.1. Each constraint
contributes the following term to L:

Gconstr (P7 Po> Z) =0.5 (p - pO)T 271 (p - pO) ) (6'6)
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where p denotes the constrained parameters and p, their expectation values. X is the covariance
matrix:
Var(p1)  Cov(pi,p2)
> (p) = | Cov(pz, p1) Var(p2) RN (6.7)

For uncorrelated parameters p; in p, Equation 6.6 simplifies to contributions of:

Gconstr (Pa Po; Z)Z =0.5 (pzp(),z) 5 (68)

g

where pg; is the expected value and o; = /X (p),; is the error of p;. In the most recent
EXO0-200 0v/38 search in 2019 [14], Geonstr comprises five different constraints:

e The SS fractions s are constrained to the values observed in Monte Carlo (MC) simulations
for each PDF sg; using the error osg determined from source calibration data via
0.5 ((si=50.1)/(0ss50.))>. A 85 % correlation between the SS fraction errors of y-like PDFs
is included in the constraint motivated by the level of correlation observed in source
calibration data [91].

e The overall normalization N is constrained to one with the error on the signal detection
efficiency o via 0.5 (N=1/oy)?.

e An additive normalization is constrained to zero for PDFs that contribute to the ROI.
This constraint is used to explicitly take discrepancies into account that affect the ROI.
The error on this normalization is determined from background model inadequacies and
differences in spectral agreement between measured data and MC simulations.

e The measured activity of 222Rn and its daughter nuclei is used to constrain the activity
of three background fit components measured to 10 % precision. A correlation of 90 %
between the components is used [51].

e The relative fractions of PDFs related to neutron capture are constrained within 20 % to
the values observed in MC simulations [101].

More details on systematic uncertainties and their evaluations are discussed in Section 6.1.4.
Since the energy scale is calibrated from + calibration sources (E,), potential differences to
the energy scale for g-like and f3-like components (E3) are accounted for in the ML fit by a
scaling factor B:

Eg = BE, . (6.9)

The factor B is optimized in the ML fit. However, it is found to be consistent with unity within
uncertainty [14].
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6.1.2 Analysis configurations

In contrast to simple counting experiments, EXO-200 uses an analysis concept based on a
maximum likelihood fit of MC simulated spectra to LB physics data. By this concept, the
MC simulated spectra of the different fit model components are used to model the background
in the ROI of the Ov55 decay. This implies that the data outside the ROI helps to model
the background in the ROI. This approach is superior to analysis concepts which focus only
on the ROI of Ov/3. In addition, EXO-200 data analysis distinguishes single-site (SS) from
multi-site (MS) events in order to discriminate 7 from 3 events, as discussed in Section 2.2.4.
For example, the SS fraction of O35 decays is predicted in MC simulations to be ~75 % whereas
that of v particles with E, = @ is ~15%. This implies that the purity of §3-like components
is increased in the SS data which improves the ability to identify candidate Ov/35 decays in
LB physics data. Moreover, the MS data helps to constrain the 7-like background components
in the SS data since both spectra are connected by the SS fraction in Equations 6.4 and 6.5.

In previous analyses, different sets of observables y were used to search for the Ov55 decay.
The observables were chosen to reach the best sensitivity to the 033 half-life. The first search
for Ov 3B decay of EXO-200 in 2012 [100] was performed with a fit to the energy spectra only
which were split into SS and MS events. An improved set of fit observables was used in the
EXO-200 0Ovf5 search in 2014 [49] by using the energy F and the standoff distance rgp as fit
observables (y = (F,rgp)). This configuration exploits additional knowledge about the spatial
distributions of the individual model components. For example, the dominant v background
in the ROI of Ov33 decay originates from sources external to the xenon and thus occurs more
frequently close to the material surfaces. In contrast, 2v43 and hypothetical Ov58 decays
are distributed uniformly in the xenon volume. More details about the standoff distance are
discussed in Section 5.2.2. Further improvement to the half-life sensitivity is achieved by not
only exploiting spatial information in the fit but also detailed topological information beyond
simple SS/ms classification. In the EXO-200 Ov35 search in 2018 [91], fit observables included
the energy F and a BDT discriminator in SS events (y>° = (E,BDT), yM® = E). This BDT
incorporates two topological variables and the standoff distance. More details on the BDT are
discussed in Section 5.2.1. The topological variables discriminate signal 43 from background
~ events based on the detailed signal shape. The BDT is not applied in MS data as toy studies
indicated that using it there does not enhance the sensitivity [91]. The most recent EXO-200
Ovf8 search in 2019 [14] includes three fit observables; energy E, standoff distance rgp, and
a DNN discriminator (y = (E,rsp, DNN)). This fit concept is shown in Figure 6.1. The
observables are used in both SS and MS data. Spatial and topological information is separated.
Topological discrimination is achieved with the DNN discussed in Chapter 5. This analysis
configuration proved to achieve the best Ovg3 half-life sensitivity in toy studies among all
configurations considered. The results of this analysis are discussed in Sections 6.2.1 and 6.2.2.

The OvfF5 half-life sensitivities of analysis configurations where the traditional EXO-200
energy measurement Emy,q is replaced by the DNN energy Fpnn are discussed in Section 6.2.3.
This DNN is introduced in Chapter 4.
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Figure 6.1: Fit configuration used in the EXO-200 Ov3 search in 2019 [14]. The observables
energy, standoff distance, and a DNN discriminator are used in both SS and MS events while
both event classes are connected by the SS fraction.

6.1.3 Background model

In MC simulations, an accurate model is necessary to understand the recorded LB physics data
and to produce meaningful results. This is especially true for the analysis concept pursued by
EXO-200 which relies on a maximum likelihood fit of the individual background components.
It relies on precise modeling the spectral shape of individual background components. The
model used to fit the LB physics data represents all significant components recorded in data. It
comprises:

e Ovf5: signal
e [Xe decays
— 2v8
_ 137x,
_ 135%,
e 232Th decay chain
— Near component: TPC vessel copper components
— Remote component: inner cryostat
e 238U.like (those presenting the 2'4Bi line at 2.44 MeV)
— Near component: TPC vessel copper components
— Remote component: radon in the air gap
— LXe component
- 22Rn decay chain in the inactive LXe
- 214Bj on the cathode surface
. 214Ph in the active LXe
e 59Co decay
— Near component: TPC vessel copper components

— Remote component: source guide tube
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e Other decays in the vessel copper components
_ 40K
_ 657,
e Neutron capture components
— 'H in coolant
— 93Cu and %5Cu in the outer cryostat, inner cryostat, and TPC vessel
— 136Xe de-excitation vy

The energy threshold is 1 MeV for the most recent Ov33 search in 2019 [14]. In contrast to
previous studies [51], 5Mn is removed from the model since its +y line at 834 keV is more than 50
below the energy threshold. The individual components are simulated using GEANT4 [63, 64].
The decay chains of 232Th and ?*®*U are simulated assuming secular equilibrium.

Near components in the background model represent components arising from natural
radioactive impurities in the TPC vessel. The vessel comprises the Cu vessel itself, but also
materials in the TPC from the APD support materials, the wire plane support materials, the
field rings, and the cathode plane materials, among others (see Figure 2.9). Remote components
arise from either the inner cryostat, the outer cryostat, or the air gap between cryostat and
lead wall which are shown in Figure 2.7. Additional potential remote components are highly
correlated to the default ones used and are thus not included in the fit separately. This implies
that the best-fit values for remote components also include contributions from those remote
components. To account for this inaccuracy, the errors that arise from the exact choice of
remote components are considered in the ML fit as systematic errors.

6.1.4 Systematic uncertainties

The Ovf35 half-life sensitivity is affected by systematic uncertainties due to the low statistics
nature of OvfB8 searches. Systematic uncertainties which arise from imperfections in the
MC simulation or detector understanding negatively affect the Ovg3 sensitivity. They are
incorporated as constraints in the maximum likelihood (ML) fit discussed in Section 6.1.1.

The 0v(5 signal detection efficiency e is raised in the EXO-200 0v53 search in 2019 [14]
to (97.8 £3.0) % in Phase-I and to (96.4 £ 3.0) % in Phase-II. The uncertainty on the signal
detection efficiency oy is used to constrain the overall normalization N in the ML fit discussed
in Section [6.1.1. The improvement in signal detection efficiency compared to previous searches
is mostly caused by relaxing two event selection cuts. On the one hand, the minimum time
required for subsequent events is relaxed from 1s to 0.1s. This event selection cut is introduced
in order to reject time-correlated background events. On the other hand, events with a
missing 3D position are not cut from the analysis if at least 60 % of the total event energy is
reconstructed with a full 3D position. These events were cut in previous Ov /3 searches. The
relaxed 3D position selection cut only recovers MS events. Additional event selection cuts that
did not change compared to previous Ov35 searches are discussed in Section 2.2.4.



6.1. Analysis concept 91

0'5 C T T T
5 0.4

0.1 — Full 3D
— Partial 3D o

1000 1400 1800 2200 2600
Energy [keV]

Figure 6.2: SS fraction, SS/(ss+Ms), as a function of DNN energy for source calibration
data (circles) and MC simulations (lines) in Phase-IT using a 2?8Th source located near the
cathode. The 3D cut criterion (“Full 3D”, blue) used in previous Ovf3 searches [49, 91, 100]
is compared to the relaxed criterion (“Partial 3D”, red) used in the Ovf33 search in 2019 [14].
The ROI of 0v36 is highlighted in yellow.

The next paragraphs discuss different uncertainties that are considered in the ML fit. The
resulting uncertainties are discussed for the fit configuration (y = (Eyaq, 7sp, DNN)) that is
used in the O3 search in 2019 [14] and for fit configurations that are based on the DNN energy
measurement Fpny. The systematic uncertainties are evaluated with the events in the ROI
around the @ value being blinded. This means that candidate Ov/35 decays are not considered
while improving the data analysis and evaluating systematic uncertainties. The statistical
uncertainties on the systematic errors are not incorporated in the maximum likelihood (ML) fit
and thus are omitted in this discussion.

SS fraction error

In previous analyses, all individual reconstructed charge clusters were required to have a
reconstructed 3D position (“Full 3D”). Since the V-wires have an increased reconstruction
threshold (~200keV) compared to the U-wires (~90keV) [14], some charge clusters are recon-
structed well on the U-wires but lack corresponding V-wire signals. Thus, the z coordinate
is reconstructed but the zy coordinates are missing. As of the Ovf5 search in 2019 [14], the
event selection criteria are relaxed. Now, only those events are removed from the analysis
whose energy deposits with incomplete 3D position make up >40 % of the total event energy
while all other events are kept (“Partial 3D”). The SS fractions, SS/(ss+Ms), as a function of
energy reconstructed by the DNN, Epnn, with the full and partial 3D cut criteria are shown
in Figure 6.2 for source calibration data of a 2?Th source located near the cathode. As the
relaxed cut criterion only recovers MS events, the SS fraction is reduced. This relaxed cut
criterion contributes to the increase in signal detection efficiency € to nearly one. By applying a
discriminator to MS events, as opposed to only SS events as in the Ovf5 search in 2018 [91],
the Ov 33 half-life sensitivity improves from the additional information in MS events.
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Figure 6.3: SS fraction, SS/(ss+Ms), as a function of DNN energy for calibration sources
located near the cathode. Measured data (circles) and MC simulations (lines) are shown
for ©°Co (green), 225Ra (blue), and #28Th (red) calibration sources in Phase-II. The ROI of
Ov 3B is highlighted in yellow. The bottom panel shows the ratios between measured data
and MC simulations. Adapted from [14].

The error related to the SS fraction, SS/(ss+Ms), is estimated by comparing the predicted
fraction in MC simulations to that observed in source calibration data. Figure 6.3/ shows the
agreement in source calibration data between measurement and MC simulations with the partial
3D cut criterion for the DNN energy measurement discussed in Chapter 4. The corresponding
figure for the traditional EXO-200 reconstruction is shown in Ref. [14]. The error is determined
over the full energy range of 1-3MeV. It reflects the error weighted average of the absolute
residuals between measured data and MC simulations as introduced in Equation 5.5. To
account for spatial variations in the detector volume, the average error observed in 222Th source
calibration data at four different source locations is used. These contain locations near the anode
planes (52, S8) and two locations near the cathode (S5, S11) which are shown in Figure 2.13b.

The SS fraction error is 5.8 % (4.6 %) in Phase-1 (Phase-II) for the partial 3D cut criterion
with the traditional EXO-200 energy measurement. This observable is used in the 0v33
search in 2019 [14]. The corresponding errors for the DNN energy are shown in Table 6.1
for both 3D cut criteria. With the full 3D cut criterion, the SS fraction error for the DNN
is 5.4% (5.2%) in Phase-I (Phase-II). With the partial 3D cut criterion, the error increases
slightly to 6.2% (5.5%). The SS fraction error is incorporated in the ML fit as constraint
(see Section 6.1). Comparing the SS fraction error of the DNN and the traditional EXO-200
energy, the DNN shows a slightly increased error. The reason for this could be the approach
used for correcting for the finite electron lifetime which is only an approximation in MS events.
More details are discussed in Section |4.3. To bypass this approximation, Epnn could be only
used in SS events, where the correction is applied properly, and Ery,q in MS events, where the
correction can be applied for each charge cluster individually.
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Table 6.1: SS fraction, SS/(ss+Ms), error for the DNN energy Epnn from a ?2°Th calibration
source at different locations near the cathode (S5, S11) and near the anodes (S2, S8). Errors
are shown for Phase-I and Phase-II and for the full and partial 3D cut criteria. The total
error is the average error from different locations and is incorporated as constraint in the
ML fit discussed in Section 6.1.1.

Full 3D [%] Partial 3D [%]
Phase-I Phase-II Phase-I  Phase-I1

Location ID

3.0£01 3.0+01 32+01 26=+£0.1

Cathode
56+0.8 6.84+03 51£08 7.5+£0.2
S2 49407 58£03 6.6+07 57+£0.3
Anode
S8 72+12 52403 96+1.1 6.14+0.3
Total 5.4 5.2 6.2 5.5

Table 6.2: Locations of remote background components that are alternated in order to evaluate
the impact from the exact choice of components to the ROI background.

Source Default location Alternative location
22T inner cryostat <+— HFE

287 air gap <+— inner cryostat

60Co guide tube <— inner cryostat

Background model error

The error arising from the choice of background components presented in Section 6.1.3 and their
detailed locations is evaluated for remote components that contribute to the ROI. The error
is estimated by alternating the components from the default locations to their most-plausible
alternatives as shown in Table 6.2. The energy distributions of these background components are
shown in Figure |6.4. The expected number of events in the ROI from the fit to the LB physics
data blinded around the ROI of the alternative model is compared to the corresponding fit
with the default fit model. The relative changes in the numbers of ROI events from alternating
individual components are added in quadrature. This systematic error from the choice of the
background model is considered as contribution to the ROI normalization error discussed in
Section 6.1.1.

The background model error for the fit configuration (y = (Eryaq,7sp, DNN)) used in
the Ovf8 search in 2019 [14] with the traditional EXO-200 energy FEryaq is 4.0% (4.6 %) in
Phase-I (Phase-1I). The corresponding background model errors using the DNN energy Epnn are
shown in Table 6.2 for both phases of EXO-200 operation. For the fit configurations y = Epnn,
the background model error is 6.2 % (4.6 %) in Phase-I (Phase-II). For the fit configuration
y = (Epnn,rsp, DNN), the corresponding error is 4.1% (4.1 %) in Phase-I (Phase-II). As
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Figure 6.4: Energy spectra of remote background components contributing to the ROI
(2Th: red, 2%®U: blue, %°Co: green) from the default (dark) and their most plausible
alternative (light) locations. The ROI of Ovf5 is highlighted in yellow. The locations used
for the individual components are shown in Table 6.2.

Table 6.3: Background model errors for different fit configurations using the DNN energy
measurement Epny in Phase-I and Phase-II. The errors arise from the choices of location
for far background components that are not known precisely. The total error is the quadratic
sum of the individual components and contributes to the ROI normalization error in the ML

fit discussed in Section 6.1.1.

1D Fit [%] 3D Fit [%]
Source
Phase-I Phase-II Phase-I Phase-I1
23877 1.2 1.0 1.1 0.7
2327 6.1 4.5 3.8 4.0
60Co 0.1 0.0 1.3 0.2
Total 6.2 4.6 4.1 4.1

expected from Figure 6.4, the error arising from the location of the remote 2*>Th component
dominates the background model error in all configurations. On the other hand, the choice
of the %9Co far location only has a negligible impact on the number of ROI events since very
few events contribute to the ROI. Comparing the energy measurements Epnn and Emyaq, the
background model errors are on the same level. This confirms the robustness of the DNN

energy measurement.
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Spectral shape error

The discrepancies in spectral agreement between measured data and MC simulations contribute
to the ROI normalization error. In MC simulations, a large number (~1000) of toy datasets is
drawn from the best-fit background model. The toy data is generated after correcting the PDF's
by the residual differences between measured data and MC simulations. 5-like SS toy data
is corrected by the spectral disagreement observed in background-subtracted 2v3G3 data while
~-like toy data is corrected by the discrepancy observed in source calibration data. Details on
the background-subtracted 2v55 data are discussed in Section 5.3. Each toy data realization
is then fitted with the nominal PDFs. The relative bias between the drawn and the best-fit
numbers of events in the ROI determines the spectral shape error. For fit configurations that
use multiple observables, the error is evaluated for each observable individually. To determine
the spectral shape error, the biases in ROI counts observed in each observable are added in
quadrature. To further consider spatial differences, the error is evaluated on calibration data
from sources located near the cathode (S5) and near the anode (S2). The final spectral shape
error is estimated as the average error over both source locations.

The spectral agreement using the DNN energy measurement Epnn is shown in Figure 6.5 for
different calibration sources located near the cathode outside the TPC. The spectral agreements
between measured data and MC simulations of the DNN-Recon discriminator variable (see
Chapter 5) and the standoff distance are shown in Figure 6.6. It shows ~-like events from a
226Ra, source located near the cathode outside the TPC and background-subtracted 233 data.
In addition, the distributions of Ov 35 decay in MC simulations are shown. The spectral shape
error for the fit configuration (y = (Etyad, 7sp, DNN)) used in the Ov/3 search in 2019 [14]
with the traditional EXO-200 energy measurement Ey,q is 5.8 % (4.4 %) in Phase-I (Phase-II).
The errors with the DNN energy measurement, Fpny, are shown in Table 6.4 for both phases
of EXO-200 operation. The errors given for “Placebo” are calculated from toy data drawn
from nominal PDF's, i.e. without correcting by spectral differences of measured data and MC
simulations. This error arises from fluctuations in MC simulations and from the low statistics
nature of the Ovg3 search. The errors are dominated by the error observed in the energy
observable and increase as the source position approaches the anode. For the 1D fit configuration
(y = Epnn), the spectral shape error is 2.3% (3.4 %) in Phase-I (Phase-II). For the 3D fit
configuration (y = (Epnn, rsp, DNN)), it is 4.9 % (5.9 %) in Phase-I (Phase-II). Comparing
the measurements EpnN and Eryaq, the spectral shape error is slightly improved (degraded) in
Phase-I (Phase-II). Since two thirds of the observables are identical in the 3D fit configuration,
this small change in spectral shape error further confirms the robustness of the DNN energy
measurement.
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Figure 6.5: Spectral agreement in Epnn for measured calibration data (circles) and MC
simulations (lines) in Phase-II using %°Co (green), 2?Ra (blue), and ??8Th (red) sources
located near the cathode for SS (top half) and MS (bottom half) events. The bottom panels
show the ratios between measured data and MC simulations. Adapted from [14].
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Figure 6.6: Distributions of measured data (circles) and MC simulations (lines) in Phase-1I for
the DNN-Recon variable (left) and the standoff distance (right) for SS (top) and MS (bottom)
events. Data from a ??°Ra (blue) calibration source located near the cathode represents
~-like events and background-subtracted 2v53 data (black) represents /33-like events. The
distributions of Ov 35 decay predicted in MC simulations are shown in red. Taken from [14].
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Table 6.4: Spectral shape errors for different fit configurations using the DNN energy mea-
surement Fpnn in Phase-I and Phase-II. The errors arise from differences in measured data
and MC simulations that are evaluated for each fit observable individually and added in
quadrature. The total error represents the average of the errors observed from calibration
sources located near the cathode and anode. It contributes to the ROI normalization error
in the ML fit discussed in Section 6.1. “Placebo” is discussed in the text and does not

contribute to the total error.

1D Fit [%)] 3D Fit [%]
Source
Phase-I Phase-II Phase-I Phase-I1
Placebo 0.3 1.4 0.2 2.9
Cathode 0.1 3.6 2.8 4.6
Anode 4.4 3.2 7.0 7.1
Total 2.3 3.4 4.9 5.9

For the Ovf5 search in 2019 [14], DNN-Recon is used as topological discriminator. Even
though DNN-Raw suggests an improved discrimination power as discussed in Section [5.2.1,
the spectral agreement between measured data and MC simulations is degraded for this DNN
concept (see Section 5.3). In an analysis configuration of 10 bins uniform in the discriminator
variable, the resulting spectral shape error is found to be ~30% for DNN-Raw and ~10 % for
DNN-Recon in Phase-II. Since this error is considered in the ML fit, the resulting O 55 half-life
sensitivity is lower for DNN-Raw even though DNN-Raw outperforms DNN-Recon in terms of
discrimination power. Moreover, the extent of spectral disagreement for DNN-Raw leads to
unstable ML fit results. The spectral shape error can be mitigated by profiling the DNN-Recon
variable between 0, 0.3, 0.6 and 1 at the cost of discrimination power. While toy studies
indicated no significant loss in discrimination power for this fit configuration, the spectral shape
error decreases from ~10% to 4.4 % in Phase-II. Finally, the spectral error proved to be the
critical argument to use DNN-Recon over DNN-Raw for the Ov5 search in 2019 [14] in a fit
configuration with three bins.
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Table 6.5: Summary of systematic error contributions. The 1D fit configuration represents
y = Epnn and the 3D fit configuration represents y = (Ex, rsp, DNN) with Ex denoting
either EpnN or Emyaq. The errors for Emy,q in the 3D fit configuration are taken from
Ref. [14]. The indented errors are the individual components of the ROI normalization error
which are added in quadrature.

Phase-T [%] Phase-IT [%]
Energy — EpnN Emrad EpnN Etrad

Error |  Fit configuration — 1D 3D 3D 1D 3D 3D
SS fraction 6.2 5.8 5.5 4.6
Overall normalization 3.1 3.1 3.1 3.1
ROI normalization 6.8 66 7.1 5.8 7.2 6.5
Spectral shape agreement 23 49 58 34 59 44
Background model 6.2 41 4.0 46 41 4.6
Other [91] 1.5 1.5 1.2 1.2

Summary

The individual contributions to the error on the ROI normalization and on the overall normal-
ization are summarized in Table 6.5 together with the uncertainty on the SS fraction. The
uncertainties for the fit configuration (y = (E1yad, 7sp, DNN)) used in the Ov58 search in 2019
are taken from Ref. [14]. The uncertainties evaluated for the DNN energy, EpNN, are given
for the 1D and 3D fit configurations. The contribution “Other” to the ROI normalization
error is not re-evaluated for the EXO-200 Ov3 search in 2019 [14] but is taken from that
in 2018 [91] since it is unchanged. It accounts for spatial and temporal variations in energy
resolution. Similar to the spectral shape error, these variations are used to generate toy data to
estimate the error related to energy resolution. The corresponding error is 1.5% (1.2 %) for
Phase-I (Phase-II). The improvement in Phase-II arises from a lower variation in the energy
resolution in time as is shown in Figure 4.21. This contribution is not re-evaluated for Fpny
since its variations are observed to be on a similar level as those of Emy,q as is discussed in
Section 4.3.

Overall, for the 3D fit configuration, there is no overly increase in the error on the ROI
normalization. This is achieved by reducing the impact of discrepancies between measured data
and MC simulations in the DNN discriminator variable by profiling it to three bins. At the
same time, the error from the choice of background model is reduced when exploiting additional
spatial and topological information in the ML fit. Comparing both energy measurements,
Epny and Eryag, the resulting uncertainties for the 3D fit configuration are on a similar
level. The evaluation of the systematic uncertainties has shown that using the DNN energy
measurement does not impair the systematic uncertainties significantly. This implies that the
improvements in energy resolution with the DNN energy can translate to improvements in 0v 36
half-life sensitivity.
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6.2 Results

6.2.1 Published 0r33 half-life sensitivity

The search for Ov 55 decay represents a low statistics search that is prone to statistical fluctuations
of the background. Thus, a Ov35 half-life limit strongly depends on the particular realization
in nature of background in the ROI and is therefore not the optimum metric to compare the
performance of different analysis configurations and experiments. The Ovg3 half-life sensitivity
is a more robust metric. It represents the median OvG5 half-life limit when performing the
experiment in many statistical realizations in MC simulations. The Ov8 half-life (limit) at the
90 % confidence level (CL) is given by:

Na/m-f-m-L
n/6 ’
where Ny = 6.022 - 102> mol ! is the Avogadro number, M = 0.135514kgmol ! is the '35Xe
molar mass [49], f = 80.6 % is the enrichment fraction [49] of the LXe in EXO-200 with a mass in
the fiducial volume of m = 92.40kg [49]. L is the detector livetime, n is the best-fit (upper limit)
number of Ov58 decays, and € is the signal detection efficiency in the fiducial volume. After

quality cuts, the detector livetime L in the fiducial volume is 117.4kgyr (116.7kgyr) in
Phase-I (Phase-II). The signal detection efficiency e is (97.8 + 3.0) % ((96.4 & 3.0) %).

To estimate the Ov35 half-life sensitivity, the experiment is performed ~1000 times in MC
simulations. Toy data is generated using the best-fit background model from a fit that uses

Ti), = In(2) (6.10)

energy as the only observable (y = Emyaq) while the ROT is blinded. To allow a fair comparison
between different analysis configurations (see Section 6.1.2), the identical background model
from the energy only fit configuration is used for all potential analysis configurations. For each
experiment in MC simulations, the true number of Ov55 decays is profiled from 0—50 which is
sufficient to cover the 90 % CL. The profiles of representative pseudo-experiments are shown
for the 1D and 3D fit configurations with Emy,.q in Figure 6.7a in Phase-II. The limits at the
1o CL and 90 % CL represent the intersections of the profile-likelihood curve with AL = 0.5
and AL ~ 1.35, respectively. AL is defined as:

AL =L — Lhest (6.11)

where Lyt denotes the best-fit negative log-likelihood. The improvement of the 3D fit
configuration is reflected by a decreased upper limit n on the number of Ov55 decays. To
account for different livetimes L and signal detection efficiencies € in both phases of EX0O-200
operation, the phases are combined by adding the profiles 7/cL, instead of only the profiles n.
Each pseudo-experiment in Phase-I is randomly assigned to one of Phase-II. A representative
example is shown in Figure 6.7b.

The OvG5 half-life sensitivity is evaluated using the upper limit n/er at the 90 % CL in
Equation 6.10. The resulting sensitivities from pseudo-experiments are shown in Figure 6.8
for the baseline 1D (y = Eryaq, green) and the 3D fit configurations (y = (E1yad, 7sp, DNN),
blue) for both phases of EXO-200 operation and for their combination. Using more information
in the ML fit in addition to the energy observable improves the sensitivity. Analogously, the
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Figure 6.7: The profile-likelihood for Ov 35 counts of representative pseudo-experiments in MC
simulations from the baseline 1D (y = Eryaq, blue) and the 3D (y = (Eqyad, 7sp, DNN), red)
fit configuration is shown in (a). The points represent fits to the MC toy data and the
lines represent interpolations between the points. The corresponding curves scaled by
livetime L and signal detection efficiency € for the 3D fit configuration in Phase-I (blue) and
Phase-II (red) are shown in (b). The combined curve of Phase-I+II (black) is obtained by
adding the scaled profiles of both phases. The horizontal dashed lines (green) represent the
lo CL and 90 % CL.

Table 6.6: Summary of median OvfF3 half-life sensitivities at the 90 % CL for individual
phases and their combination on profile level and for the baseline 1D (y = Ey,q) and the
3D (y = (Fmvad, 7sp, DNN)) fit configurations. All numbers in 10?5 yr.

Fit Phase-I Phase-II Phase-I+I1

1D 2.5 2.7 3.9
3D 3.3 3.4 5.0

median Ov(38 half-life sensitivity is evaluated using the median upper limit »/eL at the 90 % CL.
The resulting median sensitivities are shown in Table 6.6 for the baseline 1D (y = Emyaq) and
the 3D (y = (E1yvaq, 7sp, DNN)) fit configurations. The combined median half-life sensitivity
on the 0vA38 decay using the DNN discriminator is 5.0 - 10%° yr with the complete dataset of
EXO-200 operation. Using additional event information besides energy and SS/Ms discrimination
with the standoff distance rsp and the DNN discriminator leads to a ~25% improvement in
sensitivity over the baseline analysis configuration [14]. This increase proves the strong potential
of a multi-parameter analysis as pursued by EXO-200. This fit configuration outperforms
the one used in the previous EX0-200 0vf3 search in 2108 [91] with ¥ = (E1yaq, BDT) and

yMS = Eqy.q and achieves a 10 % improvement in Ov(3 half-life sensitivity.
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Figure 6.8: 0v3 half-life sensitivities at the 90 % CL from pseudo-experiments in MC simu-
lations for Phase-I (top), Phase-II (center) and their combination (bottom). The median
sensitivities are shown in red. The 68 % confidence intervals (CI) are shown for the base-
line 1D (y = Emyag, green) and the 3D (y = (Eqyaq, 7sp, DNN), blue) [14] fit configurations.

6.2.2 Published 0rj3 half-life data limit

The events in the ROI are un-blinded after evaluating the systematic uncertainties (see Sec-
tion 6.1.4) and the median O35 half-life sensitivities of different potential analysis configurations
considered for this Ov 48 search (see Section 6.2.1). ML fits (see Equation 6.1) are performed to
the complete datasets of Phase-I and Phase-II separately including all systematic uncertainties.
The primary analysis in the EXO-200 0v 33 search in 2019 [14] is the 3D fit configuration with
Y = (ETvad, rsp, DNN) selected based on the best median 0v35 half-life sensitivity. The best-fit
results are shown in Figure 6.9.

The figure shows the low-background (LB) physics data (points) and best-fit (blue) for Phase-I
and Phase-II separately. Dashed lines represent different background contributions, the filled
area the 2v55 decay, and the purple line the Ov 338 decay. The projections to the energy observable
in SS events are shown in the left panels for Phase-I (top) and Phase-II (right). Studentized
residuals between LB physics data and best-fit model are shown beneath the SS energy
spectra. The projections of residuals are shown which typically follow normal distributions.
Deviations that affect the ROI are taken into account by the systematic uncertainties discussed
in Section |6.1.4. The width of the energy bins is 15 keV below 2800keV and 30keV above. The
insets in the left panels show the region near the ROI in SS events where the () + 20 region is
highlighted in red. The bottom right panels show the energy spectra in MS events in Phase-1
and Phase-II. The top right panels show projections to the DNN-Recon discriminator for
events near the ROI (2395-2530keV) in SS (left) and MS (right) events for Phase-I (top) and
Phase-1II (bottom). The best-fit numbers of background events in the ROI, Q+20, are 32.3 + 2.3
in Phase-1 and 30.9 + 2.4 in Phase-II. This corresponds to background rates in the fiducial
LXe of (1.740.2) - 103 kg ! yr ' keV~! in Phase-I and (1.9 £0.2) - 10 3kg tyr ' keV~! in
Phase-II. In LB physics data, 39 (26) events were recorded in Phase-I (Phase-II) in this energy
range. This implies an over-fluctuation of events in the ROI in Phase-I, while in Phase-II, there
is a slight under-fluctuation of events [14].
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Figure 6.9: Best-fit model (blue) from the 3D fit configuration (y = (Etyad, 7sp, DNN)) to low-background physics data (points).
Individual background components are shown by dashed lines and 2v33 decays by filled area. Projections to the energy observable
in SS events (left) are shown for Phase-I (top) and Phase-II (bottom). The residuals of best-fit model and LB physics data are
shown below. The insets show the regions near the ROI of 0v53 decay which is highlighted in red. The best fits in MS events are
shown on the bottom right panels in Phase-I (top) and Phase-II (bottom). Projections to the DNN discriminator for events near
the ROI are shown in the top right panels separated in SS (left) and MS (right) events in Phase-I (top) and Phase-II (bottom).
Taken from [14 .
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Figure 6.10: Profile-likelihood curves for the number of Ov38 decays from the fit to LB physics
data (see Figure 6.9). The number of events is scaled by livetime L and signal detection
efficiency € for Phase-I (blue) and Phase-1II (red). The combined curve of Phase-I+II (black)
is obtained by adding the scaled profiles of both phases. The horizontal dashed lines (green)
represent the 1o CL and 90 % CL.

With the completed dataset of EXO-200, no statistically significant evidence for OvG38 decay
is observed. Due to the over-fluctuation of ROI events in Phase-1, the best-fit number of 0v 56
decays exceeds zero (7.1), which however is not significant. The best fit in Phase-II is consistent
with zero Ovf3 decays. The lower limit on the OvfG3 half-life at the 90 % CL is evaluated by
a profile likelihood scan that is shown in Figure 6.10. The lower limit on the Ovg3 half-life
at the 90% CL is T}y, > 1.7-10% yr for Phase-I and T7); > 4.3 - 10% yr for Phase-Il. When
combining both phases, a lower limit of Tl% > 3.5-10%° yr at the 90 % CL can be placed on the
half-life of 0v33 decay in '3%Xe.

Using the nuclear matrix elements of Refs. [102-106], the phase space factor of Ref. [107],
and Equation 2.8, the combined lower limit Tl% corresponds to an upper limit on the Majorana
neutrino mass of mgg < 93-286meV. The range of upper limits arises from different nuclear
matrix element calculations.

The evolution of all EXO-200 Ov33 search results so far is shown in Figure 6.11. The
lower limit on the Ov /35 half-life falls below the median sensitivity after the first Ov33 search
in 2012 [100]. This is due to an over-fluctuation of events in the ROI while accumulating
additional exposure in subsequent searches. The projected evolution of the half-life sensitivity
is shown based on the first Ovf33 search. The sensitivity is expected to improve from an
increased exposure via o< v/ Mt as is introduced in Equation 2.11. The subsequent 0v/33 searches
exceed this projection due to improvements to data analysis. This illustrates the potential of
multi-parameter searches over simple counting experiments.
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Figure 6.11: The evolution of EXO-200 0v33 search results. The median Ovg38 half-life
sensitivities (red) and the 68 % confidence intervals (blue) are shown. The corresponding data
limits are shown in black. The EXO-200 0v3 searches include those in 2012 [100], 2014 [49],
2018 [91] and the one discussed here in 2019 [14]. The projection of half-life sensitivity from
increased exposure only via o< /Mt is shown by dashed line (see Equation 2.11). Taken
from [54].

6.2.3 Ov(B half-life sensitivity with the DNN energy

Since the ROI events are blinded for analysis, the half-life limit on 0r88 decay cannot be
evaluated for the DNN energy measurement Epnn which is discussed in Chapter 4. These
events are only un-blinded for official Ov35 searches of the entire collaboration. ML fits (see
Equation 6.1) are performed to the complete blinded datasets of Phase-I1 and Phase-II separately
for the 1D (y = Epnn) and the 3D (y = (Epnn,rsp, DNN)) fit configurations. The ML fits
include all systematic uncertainties discussed in Section |6.1.4. The best-fit results for the 3D fit
configuration are shown in Figure 6.12. The figure shows the LB physics data (points) and
best-fit model (blue) in SS events for Phase-I (top half) and Phase-II (bottom half). Dashed
lines represent different background contributions and the filled area represents the 2v 33 decay.
The 0v58 decay is excluded from the fit model (see Section 6.1.3), since the SS events near
the @ value of the Ov33 decay are blinded in the region of 2347 —-2569keV. The left panels
show the projections to the DNN energy observable. Studentized residuals between LB physics
data and best-fit model are shown beneath the corresponding energy spectra. The projections
of residuals are shown which typically follow normal distributions. The width of the energy
bins is 15keV below 2800keV and 30keV above. The right panels show projections to the
DNN-Recon discriminator in SS events.
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Figure 6.12: Best-fit model (blue) from the 3D fit configuration (y = (Epnn, 7sp, DNN)) to
LB physics data (points) for Phase-I (top half) and Phase-II (bottom half). Individual
background components are shown by dashed lines and 2v33 decays by filled area. The left
panels show projections to the energy observable in SS events while the residuals of best-fit
model and LB physics data are shown below. The right panels show projections to the DNN
discriminator observable in SS events. Since the region around the @ value of OvG5 decay is
blinded for analysis, no data from that region is included in the ML fit.

The Ov(8 half-life sensitivity is estimated for fit configurations that use the DNN energy
measurement Fpny . The procedure to determine the half-life sensitivity for these configurations
follows exactly the one discussed in Section 6.2.1. The half-life sensitivity is evaluated using
pseudo-experiments in MC simulations where the systematic uncertainties are considered that
are discussed in Section 6.1.4. Analogously to the comparison of the 1D and 3D fit configurations
based on FEmy.q, here, the identical best-fit background model is used. It is determined in a
1D fit configuration with y = E1.aq while the ROI is blinded.

The 0v 38 half-life sensitivities at the 90 % CL are shown in Figure 6.13 for both phases of
EXO-200 operation separately and for their combination. The results based on the traditional
EXO-200 energy measurement Ery,q are those also shown in Figure 6.8, The resulting median
Ov 3B half-life sensitivities for analyses using the DNN energy measurement Epny are shown in
Table 6.7. The corresponding results with the traditional EXO-200 energy measurement Fmyaq
are given in Table 6.6. The 1D fit configuration with Epny achieves a ~10 % improvement in
median Ov 35 half-life sensitivity over the corresponding fit configuration with Ery,q. For the
3D fit configuration, the corresponding improvement is ~8 %. The best analysis configuration
with y = (Epnn, rsp, DNN) achieves a ~35 % improvement in median Ov33 half-life sensitivity
over the baseline analysis with y = Emyag.
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Figure 6.13: 0v33 half-life sensitivities at the 90 % CL are shown from pseudo-experiments
in MC simulations for Phase-I (top), Phase-II (center) and their combination (bottom).
The median half-life sensitivities are given in red and the data limits, where available from
Ref. [14], in black. Half-life sensitivities for 1D (y = Ex) and 3D (y = (Ex, rsp, DNN)) fit
configurations are shown where Fx denotes either Epnyn or Ervaq. The bands reflect the
68 % CI for analyses with Eryaq (green) and with Epny (blue), respectively.

Table 6.7: Summary of median OvfF5 half-life sensitivities at the 90% CL for individ-
ual phases and their combination on profile level and for the 1D (y = Epnn) and
3D (y = (Epnn,Tsp, DNN)) fit configurations. All numbers in 10%° yr. The corresponding
results for analysis configurations with Ery,q are shown in Table 6.6.

Fit Phase-I Phase-II Phase-I+4I1

1D 2.7 3.0 4.3
3D 3.5 3.7 5.4
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6.3 Summary

This chapter discussed the analysis concept pursued by EXO-200 for 0v33 searches in 2%Xe
which is based on a maximum likelihood (ML) approach. The energy spectra in SS and MS
events are fitted simultaneously while being linked to each other by the SS fraction. Additional
fit observables besides energy can be used to exploit more information in the ML fit. These
may include spatial or detailed topological information. Several systematic uncertainties are
considered in the ML fit where the dominant contributors are re-evaluated for the analysis
configurations discussed. This multi-parameter analysis approach is superior to simple counting
experiments.

The deep neural network (DNN) discriminator discussed in Chapter 5, in particular DNN-Recon,
is used in the EXO-200 0v35 search in 2019 [14] as a topological discriminator of 43 decays
and background ~ interactions. In addition, the standoff distance is used to incorporate spatial
information in the ML fit. Together with energy, this 3D fit approach provides the best
sensitivity among all configurations considered, leading to a median Ov/35 half-life sensitivity
of 5.0 - 10%° yr at the 90 % CL. The corresponding lower limit on the half-life of 0v33 in 135Xe
is Tl% > 3.5-10%° yr at the 90 % CL. Compared to the baseline analysis using only the energy,
this represents an improvement by ~25 % in 0v33 half-life sensitivity. This illustrates the high
potential of the multi-parameter analysis concept pursued by EXO-200 for Ov 33 searches.

The DNN energy measurement, which is discussed in Chapter |4, shows an improved energy
resolution compared to the traditional EXO-200 reconstruction. These improvements translate
to an improved median Ov/5 half-life sensitivity after re-evaluating all significant contributions
to systematic uncertainties. The increase in median Ov3 half-life sensitivity is ~10 % when
replacing the traditional EXO-200 energy observable in the baseline analysis by the DNN based
observable. Using the DNN energy in the 3D fit configuration together with the standoff distance
and the DNN discriminator provides a ~35 % increase in median 0v/33 half-life sensitivity relative
to using the traditional EXO-200 energy only. This analysis configuration where two of three fit
observables are based on DNNs provides the most stringent sensitivity. The large improvement
in Ov(B half-life sensitivity from a mostly DNN driven analysis increases the probability to
observe the Ov 5 decay.






Chapter 7
Conclusion and Outlook

The neutrinoless double beta decay [12, 13] offers the most promising opportunity to answer
fundamental questions about the nature of neutrinos. An observation of this decay would
establish physics beyond the Standard Model of particle physics by proving that neutrinos
are their own antiparticles [9]. This would have further implications on our understanding
of neutrinos. The observation of the neutrinoless double beta decay would potentially help
to identify the neutrino mass hierarchy and to understand the asymmetry between matter
and antimatter in the Universe [10, 11]. A variety of different nuclei can undergo standard
double beta decay [16]. These isotopes can be utilized to search for neutrinoless double beta
decay. Nevertheless, the key performance requirements are shared among different experimental
approaches. Current experiments provide a sensitivity to the half-life of this extremely rare
decay of up to ~1026 yr [15]. This illustrates why the main challenge for any experiment is to
reduce the background. To achieve this in data analysis, a precise measurement of the kinetic
energy of the decay products and good particle identification capabilities are required.

The EXO-200 experiment operated an ultra-low background time projection chamber filled
with liquid xenon [14]. It completed data acquisition in 2018 and is among the most sensitive
experiments that search for the neutrinoless double beta decay. A key advantage of this
detector concept is its monolithic design that shields inner xenon from external background.
In addition, a multi-parameter analysis allows to discriminate single from multiple localized
particle interactions and enables strong background rejection capabilities. The analysis is based
on measuring the ionization charge and scintillation light that are emitted from energy deposits
in the xenon. These complementary measurements provide an optimized energy measurement
as well as a full 3D position reconstruction.

The subject of this thesis was to improve the half-life sensitivity to the neutrinoless double
beta decay of the EXO-200 experiment by applying deep learning methods in data analysis.
Two main studies contributed to this objective. First, an energy reconstruction method based
on a deep neural network was developed that directly exploits raw ionization charge signals.
In particular, this algorithm outperforms the traditional EXO-200 energy reconstruction and
achieves an improvement in energy resolution. Parts of this study are published in Ref. [70]
by the EXO-200 collaboration. Second, deep neural networks were developed to discriminate
double beta decays from background interactions. Exploiting the ionization charge signals, the
deep neural network approach outperforms other discriminators that utilize classical machine
learning techniques. This study contributed to the most recent search for neutrinoless double
beta decay published by the EXO-200 collaboration in Ref. [14].
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The deep neural network that is used to reconstruct the ionization energy from raw data
was designed to optimally exploit the EXO-200 detector design and especially its two-sided
symmetry. It was shown that a biased training dataset results in a biased performance of
the deep neural network. This highlights the importance of a well-balanced training dataset
which was used for the baseline deep neural network. The deep neural network is validated
on source calibration data in both Monte Carlo simulations and measured data. Analogously
to the traditional EXO-200 reconstruction, the ionization charge energy reconstructed by the
deep neural network was combined with the complementary scintillation energy to optimize the
energy measurement. The improvements of the deep neural network translated to improvements
in the combined energy measurement. The deep learning based reconstruction achieved an
energy resolution of 1.22% (1.01%) for single-site events at the decay energy of 13¢Xe in
Phase-I (Phase-II) of EXO-200 operation. This energy resolution represents an improvement
of 10% (12 %) compared to the traditional EXO-200 reconstruction. The robustness of the
deep neural network reconstruction was validated. It was found that the variations in time and
over the detector volume are on the same level as those observed with the traditional EXO-200
reconstruction. Furthermore, the similar spectral agreement between measured data and Monte
Carlo simulations confirmed a robust performance of the deep neural network approach.

In an additional study, deep neural networks were developed to discriminate double beta
decays from the dominant background in the EXO-200 experiment which represents v par-
ticle interactions. In this study, a similar network architecture was used like in the energy
reconstruction study that exploits detector symmetries. Also, to not introduce a bias to the
network, particular focus was laid on the design of the training dataset. Besides using the raw
ionization signals (DNN-Raw), another concept was discussed that exploits the re-generated
signals from those found by the traditional EXO-200 reconstruction (DNN-Recon). Both deep
neural network concepts were validated on measured data and Monte Carlo simulations. Both
concepts outperformed the boosted decision tree (BDT) based discriminator that was used in
the EXO-200 search for neutrinoless double beta decay in 2018 [91]. It was shown that both
deep neural network concepts correlate the identification of double beta decays and background
interactions to physically relevant parameters. This validates their robust performance. While
the DNN-Raw concept slightly outperformed the DNN-Recon concept in terms of discrimi-
nation power, it showed a degraded spectral agreement between measured data and Monte
Carlo simulations. Alternative concepts of deep neural networks that are able to capture
additional spatial information were discussed. These deep neural networks exploited the full 3D
spatial information while not impairing the spectral agreement between measured data and
Monte Carlo simulations. However, this alternative approach requires to assume a prior spatial
distribution of background. To search for neutrinoless double beta decay, trade studies favored
the DNN-Recon discriminator concept among the other approaches.

A potential improvement of the half-life sensitivity to the neutrinoless double beta decay
of the EXO-200 experiment was evaluated for the developed deep learning based analysis
methods. EXO-200 pursues a multi-parameter analysis based on a maximum likelihood fit
of the Monte Carlo simulated spectra to measured data. In this analysis concept, additional
information besides the event energy can be exploited to further constrain background. The
DNN-Recon concept was used in the most recent EXO-200 search for neutrinoless double beta



111

decay in !3Xe to discriminate double beta decays from background interactions [14]. This
search exploited a 3D maximum likelihood fit of energy, DNN-Recon discriminator and spatial
information. This analysis configuration results in a median half-life sensitivity of 5.0 - 10%° yr
at the 90 % confidence level which provides the most stringent sensitivity to the neutrinoless
double beta decay among all other analysis configurations within EXO-200. This represents an
improvement in sensitivity by ~25% compared to only utilizing the event energy. After un-
blinding, no statistically significant evidence for the neutrinoless double beta decay is observed
in the complete dataset of Phase-I and Phase-II of EXO-200. This corresponds to a lower
half-life limit of 3.5 - 10%° yr at the 90 % confidence level or to an upper limit on the effective
Majorana neutrino mass of mgz < 93286 meV. In order to replace the energy measurement
of the traditional EXO-200 reconstruction with the one provided by the deep neural network,
all significant systematic uncertainties that contribute to the maximum likelihood fit were
re-evaluated. The resulting median half-life sensitivity to the neutrinoless double beta decay
in an energy-only analysis configuration was improved by ~10% compared to the traditional
EXO-200 reconstruction. Likewise, the median half-life sensitivity is improved by ~35 % when
using the deep neural network based energy measurement in a 3D analysis configuration in
combination with the deep neural network based discriminator and a spatial variable. In this
analysis configuration, two of three fit observables are provided by deep neural networks. It
was shown that the remaining spatial information can also be captured successfully by the deep
neural network based discriminator. This highlights the big potential of deep learning based
analyses.

A fully deep learning based search for neutrinoless double beta decay is within reach. The
remaining spatial information in the fit could also be provided by a separate deep neural network
which reconstructs the full 3D position. This has already been successfully demonstrated where
a deep neural network outperformed the traditional position reconstruction in EXO-200 [108].
In addition to the pure proof of concept, this analysis configuration is expected to increase
the sensitivity to the half-life of this hypothetical decay. As was discussed for the DNN-Raw
discriminator concept, a precise understanding and modeling of the detector is crucial for
low background experiments like EX0O-200. This argument is reinforced for deep learning
based analyses that directly exploit low-level information from raw signals instead of high-level
variables. Any discrepancies between measured data and Monte Carlo simulations negatively
impact the success of such analyses. This type of discrepancies can probably be mitigated
in the near future by generative neural networks, like generative adversarial networks that
are able to refine the Monte Carlo simulations [72]. The increasing number of deep learning
based applications over the last years provides a bright prospect to an increasing impact to
future experiments. The nEXO experiment is a next-generation experiment that builds on the
success of the EXO-200 experiment [37]. It will achieve a half-life sensitivity to the neutrinoless
double beta decay of ~1028 yr [48]. In addition, studies in Monte Carlo simulations indicate an
improvement in half-life sensitivity of ~30 % by utilizing deep neural networks [109]. Enhancing
the current sensitivities by two orders of magnitude, nEXO will fully cover the phase space
of the inverted neutrino mass hierarchy. The nEXO experiment will be a big step toward a
potential observation of the neutrinoless double beta decay and so to uncover the fundamental
nature of neutrinos.
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