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Abstract

Proving the Majorana nature of neutrinos would establish physics beyond the Standard

Model of particle physics, by demonstrating that neutrinos are their own antiparticles. To

date, the best candidate for this proof is the observation of the neutrinoless double beta decay.

The EXO-200 experiment searches for the neutrinoless double beta decay in 136Xe with an

ultra-low background time projection chamber filled with liquid xenon. The current generation

of experiments are sensitive to half-lives of this extremely rare decay of up to ∼1026 yr. The main

challenge for any experiment that searches for the neutrinoless double beta decay is therefore

to reduce background. Primarily, background reduction is achieved during measurement by

evaluating the kinetic energy of the decay products but also by applying particle identification

techniques.

In this thesis, deep learning based methods are adapted for data analysis in EXO-200 from

approaches used in image recognition. These algorithms are developed in order to improve

the sensitivity to the half-life of the neutrinoless double beta decay. A deep neural network is

trained to reconstruct the kinetic energy deposited in the detector. In particular, this algorithm

outperforms the traditional EXO-200 reconstruction in terms of energy resolution by 10 % (12 %)

in Phase-I (Phase-II) of EXO-200 operation at the decay energy of the neutrinoless double

beta decay. In an additional study, deep neural networks are developed to discriminate double

beta decays from the dominant background interactions. The discrimination power of these

algorithms exceeds those of other discriminators which utilize classical machine learning methods.

In order to confirm a robust performance, the deep neural networks of both studies are validated

on Monte Carlo simulated data and on measured data.

The deep learning based discriminator developed in this thesis contributes significantly to the

most recent search for neutrinoless double beta decay of the EXO-200 experiment published in

Phys. Rev. Lett. 123 (161802). This analysis outperforms other potential analysis configurations

and provides the most stringent median half-life sensitivity of 5.0 · 1025 yr at the 90 % confidence

level. The half-life sensitivity is further increased by utilizing the energy reconstructed by

the deep neural network. This represents the best analysis configuration and results in an

improvement in sensitivity by ∼35 % compared to the baseline analysis. These improvements

highlight the value of deep learning based methods in complex data analyses for current and

future experiments. Additional improvements represent a promising path toward a potential

observation of the neutrinoless double beta decay.





Kurzzusammenfassung

Der Nachweis der Majorana-Natur von Neutrinos würde Physik jenseits des Standardmodells

der Elementarteilchenphysik etablieren, indem sie zeigt, dass Neutrinos ihre eigenen Antiteilchen

sind. Die Beobachtung des neutrinolosen Doppel-Betazerfalls ist bis heute der beste Kandidat für

diesen Nachweis. Das EXO-200 Experiment sucht nach dem neutrinolosen Doppel-Betazerfall

von 136Xe mit einer hochreinen Zeitprojektionskammer, die mit flüssigem Xenon gefüllt ist.

Die aktuelle Generation von Experimenten ist empfindlich auf die Halbwertszeit dieses extrem

seltenen Zerfalls von bis zu ∼1026 yr. Die größte Herausforderung für jedes Experiment, das

nach dem neutrinolosen Doppel-Betazerfall sucht, besteht daher darin, den Hintergrund zu

reduzieren. In erster Linie wird dies während der Messung durch die Bestimmung der kinetischen

Energie der Zerfallsprodukte, aber auch durch den Einsatz von Partikelidentifizierungstechniken

erreicht.

In dieser Abschlussarbeit werden Deep Learning Methoden aus der Bilderkennung für die

Datenanalyse in EXO-200 adaptiert. Diese Algorithmen werden entwickelt, um die Empfindlich-

keit gegenüber der Halbwertszeit des neutrinolosen Doppel-Betazerfalls zu verbessern. Ein Deep

Neural Network wird trainiert, um die im Detektor deponierte kinetische Energie zu rekonstru-

ieren. Insbesondere übertrifft dieser Algorithmus die traditionelle EXO-200-Rekonstruktion in

Bezug auf die Energieauflösung um 10 % (12 %) in Phase-I (Phase-II) von EXO-200 bei der Zer-

fallsenergie des neutrinolosen Doppelt-Betazerfalls. In einer weiteren Studie werden Deep Neural

Networks entwickelt, um Doppel-Betazerfälle von den dominanten Hintergrundereignissen zu

trennen. Die Unterscheidungskraft dieser Algorithmen übertrifft die anderer Diskriminatoren,

die klassische Machine Learning Methoden verwenden. Um eine robuste Funktion zu bestätigen,

werden die Deep Neural Networks beider Studien anhand von Monte Carlo Simulationsdaten

und Messdaten validiert.

Der in dieser Arbeit entwickelte Deep Learning basierte Diskriminator trägt wesentlich zur

jüngsten Suche nach dem neutrinolosen Doppelt-Betazerfall des EXO-200-Experiments bei, die

in Phys. Rev. Lett. 123 (161802) veröffentlicht ist. Diese Analyse übertrifft andere potenzielle

Analysekonfigurationen und bietet die höchste mittlere Sensitivität auf die Halbwertszeit

von 5.0 · 1025 yr bei einem Konfidenzniveau von 90 %. Die Sensitivität auf die Halbwertszeit

wird durch die Verwendung der durch das Deep Neural Network rekonstruierten Energie weiter

erhöht. Dies stellt die beste Analysekonfiguration dar und führt zu einer Verbesserung der

Empfindlichkeit um ∼35 % im Vergleich zur Basisanalyse. Diese Verbesserungen verdeutlichen

den hohen Stellenwert von Deep Learning basierten Methoden in komplexen Datenanalysen für

aktuelle und zukünftige Experimente. Weitere Verbesserungen stellen einen vielversprechenden

Weg zu einer möglichen Beobachtung des neutrinolosen Doppelt-Betazerfalls dar.
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Chapter 1

Introduction

Since the discovery of the Higgs boson [1–3], all fundamental particles predicted by the Standard

Model of particle physics have been observed. However, there is definitive proof of physics

beyond the Standard Model to explain dark matter [4] and neutrino oscillations [5–7]. After

several decades of research [8], some fundamental properties of neutrinos remain unknown. The

experimental observation of neutrino oscillations established that they carry a non-zero mass.

This raises the question of their absolute mass scale. In addition, it remains unclear if neutrinos

are Majorana particles [9] which would imply that they are their own antiparticles. This

contradicts the current description but would advance our understanding about the asymmetry

of matter and antimatter in the Universe [10, 11].

To date, the search for neutrinoless double beta decay [12, 13] is the most promising candidate

to probe the Majorana nature of neutrinos. A variety of experiments search for this hypothetical

decay in different nuclei. The EXO-200 experiment operated a time projection chamber filled

with liquid xenon to search for this decay in the isotope 136Xe. It completed data acquisition

in 2018 and is among the most sensitive experiments in this field of research [14]. The current

generation of experiments reach sensitivities on the half-life of this decay of up to ∼1026 yr [15].

Because the decay occurs extremely rarely, if it exists at all, the main challenge of experimental

approaches is to reduce background in order to avoid false positive observations. In operation,

the most important measure to unambiguously identify the neutrinoless double beta decay is the

kinetic energy of the decay electrons. For the decay, a characteristic decay energy is expected,

whereas for the standard double beta decay [16], a fraction of the energy is transferred to the

neutrinos and remains undetected. To reduce background from this decay channel as well as

from other interactions in the detector, a precise energy measurement is crucial. Furthermore,

background can be suppressed by particle identification techniques that discriminate candidate

double beta decays from background interactions.

Machine learning and deep learning techniques in particular demonstrated superhuman

performance in several domains over the last years [17, 18]. Especially the availability of

increased computing power together with large public datasets have boosted this development.

Today, we encounter machine learning systems in our everyday life, for example when using

search engines. Also, in particle physics, these techniques revolutionize the approach to data

analysis [19]. The advantages of these methods become apparent for information-rich and

data-intensive experiments. Since a few years, the number of deep learning applications in

particle physics experiments has increased drastically and is expected to become an even more

essential part in the toolkit of future experiments.



2 1. Introduction

Within the scope of this thesis, deep learning methods are adapted for data analysis in the

EXO-200 experiment. These algorithms are utilized to improve the analysis of key parameters in

order to increase the sensitivity to the half-life of neutrinoless double beta decay. The approach

is motivated by the recent success of deep learning in the field of computer vision [20]. Because

experimental data in EXO-200 is conceptually similar to images, deep neural networks are

applicable naturally. The application of deep learning techniques in particle physics experiments

in general represents a promising path to increase the discovery potential of present and future

experiments.

In this thesis, Chapter 2 presents the theoretical background of neutrinoless double beta decay

and its implication for particle physics. In addition, the experimental aspects for a successful

search for this decay are presented with a focus on the EXO-200 experiment and its functionality.

Chapter 3 introduces the basic concepts of deep neural networks and how these particular

techniques are associated to the general field of machine learning algorithms. Chapter 4 presents

a novel approach for reconstruction of the ionization charge energy in EXO-200 with deep

neural networks. Chapter 5 presents deep neural networks that discriminate double beta decays

from the dominant background interactions. In Chapter 6, the detailed analysis concept of

searches for neutrinoless double beta decay in EXO-200 is presented. The application of the

developed deep neural networks presented in the previous chapters for the search of this decay

is presented and is compared to traditional analysis concepts. Chapter 7 provides a summary of

the results presented in this thesis and an outlook on potential further improvements by deep

learning based analyses in particle physics experiments.



Chapter 2

The Neutrinoless Double Beta Decay

Contents

2.1 Theory of the neutrinoless double beta decay . . . . . . . . . . . . . 4

2.1.1 Implications on theoretical physics . . . . . . . . . . . . . . . . . . 7

2.1.2 Experimental approach . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The EXO-200 experiment . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Conceptual design . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Overview of the detector Monte Carlo simulations . . . . . . . . . . . 18

2.2.4 Overview of the event reconstruction and data analysis . . . . . . . . 19

This chapter presents a brief overview of the physics related to the neutrinoless double beta

decay. The theoretical requirements to allow this hypothetical decay are discussed and its

implications to particle physics beyond an observation solely. Also, aspects that contribute to a

successful experimental approach are presented.

The EXO-200 experiment is currently among the most sensitive experiments that search

for the neutrinoless double beta decay. Its conceptual design and the working principle of the

detector is discussed. Further, a short overview of the detector Monte Carlo (MC) simulations,

the event reconstruction and the higher level data analysis is given.
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2.1 Theory of the neutrinoless double beta decay

The double beta decay (2νββ) is a second-order decay weak interaction that is allowed in

the Standard Model of particle physics (SM). It was first suggested by M. Goeppert-Mayer

in 1935 [16]. Its general decay scheme is shown in Equation 2.1 and the corresponding Feynman

diagram is shown in Figure 2.2a.

A
ZX→ A

Z+2Y + 2e− + 2ν̄e (2.1)
136
54Xe→ 136

56Ba + 2e− + 2ν̄e (example) .

This decay can occur in some unstable nuclei that cannot undergo single beta decay (β) due

to energetic constraints given by the semi-empirical mass formula [21] shown in Equation 2.2.

For these nuclei, the decay products of β decays are energetically disfavored whereas those of

double beta decays (ββ) are energetically favored as is shown in Figure 2.1. More details on the

formula are given in Ref. [21].

EB = aVA− aSA2/3 − aF (N − Z)2 ·A−1 − aCZ2 ·A−1/3 + δ · aPA−1/2 . (2.2)

Under certain conditions, nuclei could decay via the the neutrinoless double beta decay (0νββ)

which is a decay beyond the Standard Model. It was first suggested by W.H. Furry in 1939 [12].

In this hypothetical decay, no neutrinos are emitted as is shown in Equation 2.3 and in the

Feynman diagram in Figure 2.2b.

A
ZX→ A

Z+2Y + 2e− (2.3)
136
54Xe→ 136

56Ba + 2e− (example) .

Figure 2.1: Mass parabolas for nuclear isobars with even mass number A. Even-even nu-

clei (blue) have lower masses compared to odd-odd nuclei (red). The β decay from (a) to (b)

is energetically forbidden whereas the ββ decay from (a) to (c) is allowed. Taken from [22].
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W−

d u

W−
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Figure 2.2: Feynman diagrams at tree-level of the 2νββ decay (a) and the 0νββ decay (b).

To make this decay possible, neutrinos must be Majorana particles [9] which implies that

neutrinos are their own antiparticles. However, neutrinos, as well as the other fermions, are

described as Dirac particles in the Standard Model. In this description, particles are distinct

from their antiparticles. Furthermore, to allow 0νββ decay, neutrinos are required to have a

non-zero mass which allows them to change their helicity.

Several experiments [5–7] observed neutrino flavor oscillations which demonstrates that at

least some light neutrinos are massive particles. Measurements confirm only three light active

neutrino flavors with mα < mZ/2, where mZ is the mass of the Z boson [23]. However, additional

light sterile or heavy neutrinos may exist [4]. The existence of neutrino oscillations implies

that the neutrino flavor eigenstates |να〉, with α = e, µ, τ , participate in weak interactions. The

flavor eigenstates are different from the propagating mass eigenstates |νi〉, with i = 1, 2, 3. The

flavor eigenstates can be expressed as a linear combination of the mass eigenstates:

|να〉 =
∑
i

Uαi|νi〉 , (2.4)

where U is the (3× 3) PMNS neutrino mixing matrix [24, 25]:

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 = (2.5)

=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

× diag
(

1, ei
α21
2 , ei

α31
2

)
.

Here, the abbreviations represent cij = cos θij and sij = sin θij with the angles (θ12, θ13, θ23).

The matrix further contains the phases (δ, α21, α31). δ is the Dirac-phase that is responsible

for potential CP violation in the lepton sector. If neutrinos are Dirac particles, the Majorana

phases α21 and α31 vanished [4, 26].
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Figure 2.3: Sum kinetic energy spectra of emitted electrons in 2νββ and hypothetical 0νββ

decay. Taken from [28].

The release of energy from a double beta (ββ) decay, either 2νββ or 0νββ, is given by the

Q value:

Q = Mi −Mf − 2me , (2.6)

where Mi and Mf are the energy levels of the initial and final nuclei. For 2νββ decays, the

final state is a leptonic four-body state where the sum of the kinetic energy of both emitted

electrons forms a continuous spectrum from zero to the Q value. The recoil energy of the final

nucleus is negligible. However, for 0νββ decays, this spectrum is monoenergetic at the Q value

since no neutrinos are emitted as is shown in Figure 2.3 [27].

While the 2νββ decay conserves both baryon and lepton numbers separately, the 0νββ decay

is explicitly a leptogenic process by creating two out-going leptons (∆L = +2) and thus violates

the lepton number conservation. While the standard 0νββ decay mechanism is the exchange of

a light Majorana neutrino, several other potential mechanisms exist that could mediate this

decay [29]. Nevertheless, the “black-box” Schechter-Valle theorem ensures that any observation

of 0νββ decay also inevitably proves the Majorana nature of neutrinos, regardless of the exact

decay mechanism [13]. In the standard mechanism, the parent nucleus emits a pair of virtual

W− bosons which exchange a Majorana neutrino. Conceptually, during the exchange of a light

neutrino, an antineutrino is emitted from one W− boson and is absorbed as a neutrino by the

other boson. To be absorbed by the electroweak current with a flipped helicity, neutrinos must

be massive Majorana neutrinos. Thus, they have a non-zero negative helicity component on

the order of O(m/E). The amplitude of the 0νββ decay is related to the effective Majorana

neutrino mass:

mββ =

∣∣∣∣∣∑
i

miU
2
ei

∣∣∣∣∣ = (2.7)

=
∣∣∣m1c

2
12c

2
13 +m2s

2
12c

2
13eiα21 +m3s

2
13ei(α31−2δ)

∣∣∣ ,
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where mi are the masses of the three neutrino mass eigenstates, following the syntax introduced

in Equation 2.5. The rate Γ0ν for this mechanism which is the inverse of the half-life of the

0νββ decay is given by [30]:

Γ0ν =
(
T 0ν

1/2

)−1
= G0ν (Q,Z) · |M0ν |2 ·m2

ββ , (2.8)

where G0ν (Q,Z) is the phase space factor and M0ν is the nuclear matrix element. From

Equation 2.8 it follows that a measurement of the half-life T 0ν
1/2 for a given nucleus can be

translated directly to a measurement of the effective Majorana mass |mββ |. This measure is

independent of the nucleus. Accordingly, a lower limit on the half-life translates to an upper

limit on the neutrino Majorana mass. These predictions are subject to substantial systematic

uncertainties arising mostly from calculating nuclear matrix elements M0ν . Depending on the

calculation, the results differ by factors up to ∼3 from each other [4]. Furthermore, the value of

the axial coupling constant gA affects the nuclear matrix element by M0ν ∼ g−2
A . Measurements

of 2νββ decay rates indicate a quenching of the vacuum value gA = −1.2723± 0.0023 [4]. If this

quenching occurs in 0νββ decay, which is not known to date [26], the 0νββ decay is consequently

delayed which results in an increased half-life. Nevertheless, an observation of the 0νββ decay

would inevitably prove the Majorana nature of neutrinos.

2.1.1 Implications on theoretical physics

The discovery of neutrino oscillations was a first hint for new physics beyond the Standard

Model [5–7]. These results confirmed that at least two neutrino mass eigenstates have non-

zero mass and also indicate that the description of neutrinos in the Standard Model must

be extended. To date, neutrino oscillations are confirmed by measurements of the squared

mass differences (∆m2
21, |∆m2

31|) and the mixing angles (sin2 θ23, sin2 θ12, sin2 θ13). However,

oscillation experiments are neither sensitive to the sign of ∆m2
31 nor to the absolute neutrino

mass scale. This ambiguity results in two possible hierarchies of the mass eigenstates mi

which are shown in Figure 2.4. Possible realizations in nature are the normal mass hierarchy

with m1 < m2 < m3 and the inverted hierarchy with m3 < m1 < m2. Equation 2.8 directly

links a 0νββ half-life to the effective Majorana mass mββ and thus to the neutrino oscillation

parameters. This implies that an observation of 0νββ decay could constrain or identify which

neutrino mass hierarchy is realized in nature. In addition, next-generation experiments might

also be able to answer this question [31].

The sum of the three mass eigenstates mtot =
∑

imi can be constrained by cosmological

observations. While these constraints are model-dependent, the Planck experiment currently

places the most stringent limit on mtot < 0.12 eV at the 95 % confidence level (CL) [33]. In

parallel, earth-based experiments study the endpoint spectrum of β decays which provides

information on the effective neutrino mass of the electron antineutrino. Since the electron

neutrino is a mixture of the three mass eigenstates, its mass corresponds to m2
β =

∑
im

2
i

∣∣U2
ei

∣∣.
The KATRIN experiment measures the endpoint spectrum of Tritium 3H and aims to improve

the best existing limit of 2.05 eV [34, 35] with a sensitivity of mβ < 0.2 eV [36]. Figure 2.5

shows the constraints on the effective neutrino Majorana mass mββ as a function of the lightest
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Figure 2.4: Shown are the neutrino masses and their mixing for both possible neutrino

hierarchies. The normal hierarchy is shown left and the inverted one right. The flavor

content in the mass eigenstates is denoted by color as a function of the CP violating phase δ.

Taken from [32].

neutrino eigenstate mmin (left), the sum mtot (center), and the effective electron neutrino

mass mβ (right) for both possible mass hierarchies.

From our current understanding, the Big Bang produced equal parts of matter and antimatter.

As the Universe expands and cools, matter and antimatter would annihilate into electromagnetic

radiation. But this contradicts the matter-dominated nature of the Universe. As an observation

of 0νββ decay would imply lepton number violation and could give rise to leptogenesis, this

could help to understand the asymmetry between matter and antimatter in the Universe.
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Figure 2.5: Predictions on the effective Majorana mass mββ as a function of the lightest

neutrino mass mmin (left), the sum mtot (center), and the effective neutrino mass mβ (right)

in the case of the normal (blue) and the inverted (red) mass hierarchy. The hatched areas

correspond to the allowed regions due to unknown Majorana phases. The solid lines take

uncertainties on the oscillation parameters into account. Taken from [4].
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2.1.2 Experimental approach

The observation of a single 0νββ decay would already prove the Majorana nature of neutrinos.

However, assigning a candidate event unambiguously to a 0νββ decay as opposed to a 2νββ

decay or any other background interaction is extremely challenging. In order to probe an

exemplary Majorana neutrino mass of mββ = 50 meV, the corresponding 0νββ half-life is

about T 0ν
1/2 = ∼1026 – 1027 yr. This exceeds the age of the Universe of 109 yr by many orders of

magnitude. Under these assumptions, to observe a single 0νββ decay per year, an experiment

must operate about 100 kg of a potential 0νββ decay isotope. Experimental inefficiencies

will further increase the required amount of decay isotope. The figure of merit of different

experimental concepts of 0νββ searches is the sensitivity to mββ and thus to the 0νββ half-life of

the chosen ββ isotope. Sticking to the example of an idealized experiment with no background,

the experiment could place a lower limit on the 0νββ half-life or an upper limit limit on the

Majorana neutrino mass, provided no 0νββ decay was observed. This limit depends on several

parameters:

mββ ∝
√

1

ε
·
(

1

Mt

)1/2

, (2.9)

where Mt is the exposure of the mass M of the ββ isotope over a time t and ε is the signal

detection efficiency.

Background control and suppression are among the key ingredients for a successful 0νββ

experiment. The background level b in an experiment is given by:

b = c ·Mt ·∆E , (2.10)

assuming a proportional accumulation of background with a rate c. The background rate

is usually given in units of kg−1 yr−1 keV−1. ∆E denotes the energy window around the

Q value that is defined by the energy resolution. As opposed to the background-free example

in Equation 2.9, the corresponding experiment with a background level b can place an upper

limit on mββ which depends on:

mββ ∝
√

1

ε
·
(
c∆E

Mt

)1/4

. (2.11)

If the background near the Q value is not uniform in energy, the background rate c will depend

on the energy window ∆E. In addition, it can depend significantly on the mass. This is the

case for external background that is shielded by outer parts of the decay mass. Even with

these simplified examples, the drastic impact of background on the success of 0νββ experiments

becomes clear and motivates any efforts to reduce backgrounds.

For the search for 0νββ decay, 2νββ decays reflect an intrinsic background that cannot be

suppressed systematically. The only difference in the signatures of both decays is the energy

deposited in the detector, because the emitted neutrinos from a 2νββ decay leave the detector

without interaction. The energy distributions of both decays are shown in Figure 2.3. This

implies that the energy measurement must be sufficiently precise to be able to distinguish 2νββ

from candidate 0νββ decays. For current experiments that operate time projection chambers or



2.1. Theory of the neutrinoless double beta decay 11

Figure 2.6: Cosmic muon flux as a function of the vertical depth given in meters water

equivalent (mwe) for several underground laboratories. The solid line shows a parametrization

with a flat overburden. Taken from [22].

crystal based detectors, the energy resolution is sufficient so that 2νββ decays do not contribute

significantly to the background level. Nevertheless, any improvement to energy resolution results

in a narrower energy window ∆E around the Q value and thus improves the signal-to-noise

ratio.

Further aspects to reduce the background contamination include careful material selection of

radiopure detector components. Detector concepts that allow particle identification, i.e. dis-

criminating ββ decays from background γ and α interactions during data analysis, outperform

simple calorimeter concepts in terms of background suppression. The ability to tag the daughter

ion of 2νββ and candidate 0νββ decays provides another powerful tool to reject most of the

remaining backgrounds. Together with a decent energy resolution, such an experiment can

effectively be operated background-free. Since the technical realization is challenging, it was

not utilized in 0νββ experiments so far. However, it is being developed as a potential upgrade

for the next-generation experiment nEXO [37, 38].

Different experimental concepts have different capabilities to reject or suppress background.

Due to the high interaction probability of α particles, they interact mostly close to material

surfaces. Most detector concepts can handle this type of background by e.g. event position

reconstruction. Background from atmospheric muons is suppressed passively by placing the

experiment underground. The muon flux for different underground facilities is shown in

Figure 2.6. Remaining muon interactions are usually monitored by active muon veto systems

surrounding the actual 0νββ detector. While muon interactions can be suppressed successfully

with these measures, cosmogenic activation from neutrons that result from muon interactions

represents a risk of increasing the radioactivity of the detector components. Remaining

background originate mostly from trace radioactive impurities in the detector components and

from natural radioactivity external to the detector. The latter contribution is usually reduced

by passive shields that absorb this background.
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Besides controlling the background level in a real experiment, another key requirement is a

high signal detection efficiency. As indicated by Equation 2.11, improving the sensitivity to mββ

by doubling the signal efficiency ε is equivalent to using four times the isotope mass [39]. To

achieve a high signal detection efficiency, homogeneous detector concepts are favored where the

source material is at the same time the detection medium. These concepts do not lose efficiency

from e.g. geometric acceptance or absorption in the source material itself.

The 0νββ decay could in principle be observed in 35 isotopes. However, several aspects need

to be taken into account in order to choose an isotope where an observation is more likely and

technically feasible. From theoretical aspects (see Equation 2.8) isotopes are favored where the

phase space factors and nuclear matrix elements maximize the 0νββ decay rate for a particular

Majorana neutrino mass. From background control aspects, isotopes with high Q values are

favorable since most natural backgrounds have energies below ∼3 MeV. As discussed in the

example above, large masses of the 0νββ isotope are needed to achieve a competitive 0νββ

sensitivity. This already eliminates some rare and expensive isotopes. Another desirable

aspect of isotopes is enrichment in order to produce concentrated masses of the 0νββ isotope

at a reasonable price. Especially for detector concepts without excellent energy resolution,

isotopes with a slow 2νββ decay rate of the corresponding isotope are preferred to constrain this

background contribution. For detector concepts with excellent energy resolution, this aspect is

not relevant as the background contribution of 2νββ decays is negligible.

The various aspects contributing to the design of a successful experiment allow for different

detector concepts each with their intrinsic advantages and disadvantages. The key parameters

of selected current and next-generation experiments are shown in Table 2.1. More details on

next-generation experiments are discussed in Ref. [40]. Some of the current and next-generation

experiments are:

CUORE deploys TeO2-crystals in an ultra-low temperature cryostat and pursues a bolometric

detector concept where the source material equals the detector medium. An advantage is

the high natural abundance of the 0νββ isotope 130Te which mitigates the need of isotope

enrichment. Deposited energy in a crystal is measured as a temperature increase which allows

for an excellent energy resolution. However, since the crystals cannot be grown very large,

many of these crystals are organized in strings as opposed to a single monolithic detector

volume [41].

GERDA deploys Ge-crystals enriched in 76Ge that are immersed in a cryostat of liquid argon.

The advantages of this detector concept are an excellent energy resolution and low background

levels. However, similar to the CUORE experiment, the crystal-based concept does not allow

for a monolithic detector [15]. After an intermediate upgrade, the next-generation experiment

LEGEND will deploy ∼1000 kg of 76Ge [42].

KamLAND-Zen searches for the 0νββ decay in 136Xe with the previously existing detector

infrastructure of the KamLAND experiment [43]. The experiment consists of a liquid

scintillator loaded with xenon which is enriched in 136Xe. While the detector concept

suffers from modest energy resolution, it benefits from a high deployed isotope mass and a

straightforward way to scale the monolithic detector to even larger mass [44].
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NEXT will use a time projection chamber of high-pressure gaseous xenon enriched in 136Xe

to search for the 0νββ decay in 136Xe. Key advantages of this concepts are the excellent

energy resolution and the topological event information by measuring both the ionization

and scintillation signatures. With these features, backgrounds can be rejected effectively [45].

SNO+ will search for the 0νββ decay in 130Te with the existing detector infrastructure of the

SNO detector [46]. The detector concept is a liquid scintillator loaded with natural tellurium.

Similar to the KamLAND-Zen experiment, the detector concept suffers from modest energy

resolution. However, it offers the possibility to deploy much source material and a monolithic

design [47].

EXO-200 and nEXO uses and will use a time projection chamber filled with liquid xenon

enriched in 136Xe. Key advantages are the multiparameter analysis concept that is based on

the measurement of ionization and scintillation signatures. Furthermore, the high density

of liquid xenon in a monolithic detector concepts provides an intrinsic self-shielding by the

xenon from external background [14, 37, 48]. More details are discussed in Section 2.2.

Table 2.1: List of current and next-generation 0νββ experiments. The energy resolution

is given at the Q value (FWHM). The reported 0νββ half-life limits and sensitivities are

given at the 90 % confidence level (CL). For next-generation experiments, the 0νββ half-life

sensitivity denotes the median 3σ discovery sensitivity after 5 yr of livetime. Numbers for

next-generation experiments are taken from [40].

Current
Nucleus

Isotopic Energy Half-life
Reference

Experiment Exposure Resolution Limit

[kg yr] [keV] [1025 yr]

CUORE 130Te 24.0 7.4 1.5 [41]

EXO-200 136Xe 234.1 66 3.5 [14]

GERDA 76Ge 82.4 3.3 9 [15]

KAMLAND-Zen 136Xe 126 270 10.7 [44]

Next-generation
Nucleus

Isotopic Energy Half-life Important

Experiment Mass Resolution Sensitivity Publications

[kg] [keV] [yr]

NEXT 136Xe 1367 12 5.3 · 1025 [45]

SNO+ 130Te 7.9 · 103 135 4.8 · 1026 [47]

LEGEND 76Ge 873 3 4.5 · 1027 [42]

nEXO 136Xe 4.5 · 103 58 4.1 · 1027 [37, 48]
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2.2 The EXO-200 experiment

2.2.1 Conceptual design

The EXO-200 experiment was located in the Waste Isolation Pilot Plant (WIPP) in New

Mexico (USA) and completed data taking in December 2018. To date, the experiment is

among the most sensitive experiments to search for the hypothetical 0νββ decay, in particular

in 136Xe. The experiment was operated in two phases; a Phase-I from 2011 to 2014 and,

after upgrades to the detector, a Phase-II from 2016 to 2018. The main components of the

EXO-200 detector are shown in Figure 2.7. The detector itself is a single phase time projection

chamber (TPC) filled with liquid xenon (LXe) enriched to 80.6 % in 136Xe [49]. Key advantages

of the EXO-200 design are the monolithic detector where the source material is identical to

the detection medium, and the complementary measurement of ionization and scintillation

signals. The signal formation is explained in detail in Section 2.2.2. To operate the TPC at LXe

conditions at about −110 ◦C, it is surrounded by a thermal bath of cryofluid which is housed in

a double-walled vacuum-insulated cryostat that shields it thermally. This again is surrounded

by a lead shield in order to suppress external background [50, 51].

The TPC is double-sided with respect to the common cathode at the center and is shown

schematically in Figure 2.8. It has a length of ∼44 cm and a diameter of ∼40 cm. An electric

field is applied in both sub-TPCs. A picture of one sub-TPC is shown in Figure 2.9. Field

shaping rings ensure a homogeneous electric field in the TPC. Both sub-TPCs are equipped with

identical detector systems, each consisting of two crossed wire planes for ionization detection

and an array of 234 large area avalanche photodiodes (APDs) for scintillation light detection [52].

The scintillation light is collected and detected simultaneously by both APD arrays since the

cathode is optically transparent (∼90 %) to xenon scintillation light at 178 nm. To reduce the

VETO PANELS

DOUBLE-WALLED 

CRYOSTAT

LXe VESSEL

LEAD SHIELDING

JACK AND FOOT

VACUUM PUMPS

FRONT END 

ELECTRONICS

HV FILTER AND 

FEEDTHROUGH

Figure 2.7: Conceptual design of the EXO-200 experiment. Taken from [50].
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Figure 2.8: Schematic view of the double-sided EXO-200 TPC. Both sub-TPCs share a

common cathode (blue) and are each equipped with detector systems consisting of a V-wire

plane (red), a U-wire plane (green), and an array of APDs (black). Field shaping rings (brown)

ensure a homogeneous electric field between the cathode to the crossed wire planes. Taken

from [53].

number of readout channels, the APD array is grouped in 37 APD gangs. To increase the yield

of optical light, the inner lateral sides of the TPC are covered with PTFE tiles which act as

reflectors. For ionization charge detection, an electric field guides the secondary charges to the

corresponding wire planes. The cathode is biased at −8 kV in Phase-I of EXO-200 operation

and at −12 kV in Phase-II to improve the energy resolution. The first wire plane sees induced

charge and shields the second wire plane which acts as the anode. These wires also see induced

charge but more importantly they collect the drifting charge. The wires in both planes are

segmented with a pitch of 3 mm and are read out in 38 wire triplets per plane, resulting in

an effective wire pitch of 9 mm. The signals are read out by charge-sensitive preamplifiers.

The wire planes are offset by 6 mm from each other and the APD array is offset by 6 mm

from the anode plane. The induction wire plane is referred to as V-wire plane and the anode

plane as U-wire plane. The electric drift field in the bulk volume is 380 V cm−1 (567 V cm−1)

in Phase-I (Phase-II) and the electric field between both wire planes is 778 V cm−1. In this

arrangement, the V-wire plane does not collect charge but is completely transparent to it [51].

Great effort is taken to reduce background in the detector [50, 51]. The background level

is a key parameter for any 0νββ experiment (see Section 2.1.2). Several aspects contribute

to accomplish a low background contamination. To reduce muon induced backgrounds, the

experiment is located underground at WIPP with an 1624+22
−21 mwe overburden [55] as is shown

in Figure 2.6. With this overburden, the muon flux is reduced by about four orders of magnitude

compared to that observed at sea level [22, 55]. Remaining muons that interact in the EXO-200

experiment are actively suppressed by a muon veto system located at four sides around the

detector which is shown in Figure 2.7. Radiation originating from sources external to the
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Figure 2.9: Picture of one of the two sub-TPCs installed in the EXO-200 TPC. The white

PTFE tiles inside the field shaping rings reflect the scintillation light emitted in the xenon

volume. Below the crossed wire planes, the empty platter is equipped with APDs in the

final assembly [54].

experiment, e.g. from the surrounding rock, is passively shielded by layers of lead, copper,

and coolant. Radioactive impurities in the internal detector components were minimized

prior to construction by a careful material selection process [56, 57] and by minimizing the

mass of the vessel components. Impurities in the LXe itself are reduced by permanently

re-circulating it through heated getters outside the cryostat. Besides the background reduction

aspects in detector construction, the EXO-200 detector design features multiple measures to

suppress and reject background in data analysis. For example, α particles interact mostly

close to the material surfaces and show a high light-to-charge ratio [58]. Using the 3D position

reconstruction capability of EXO-200 (see Section 2.2.4) and by measuring both the scintillation

and ionization signals (see Section 2.2.2 and 4.3.1), most this background can be rejected.

Furthermore, the monolithic detector design naturally reduces the background contamination

in the central LXe in the TPC by absorbing it in the outer LXe. This process is referred to as

self-shielding. Interactions of γ particles can be distinguished to some extent from 2νββ and

candidate 0νββ decays based on their number of localized energy deposits (see Section 2.2.4).

Additional information like the spatial distributions and the detailed event topology further

help to discriminate between penetrating γ particles in contrast to 2νββ and candidate 0νββ

decays. Such a discriminator is discussed in Chapter 5.
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2.2.2 Working principle

Particle interactions in the TPC deposit energy in the LXe. γ particles interact with xenon

atoms and produce an energetic photoelectron while 2νββ and candidate 0νββ decays emit two

energetic electrons. Either way, these electrons gradually deposit their kinetic energy E0 in the

LXe by ionizing and exciting surrounding xenon atoms along their paths. This results in Ni

electron-ion Xe+ pairs and in Nex excited xenon atoms Xe∗. In addition, some energy is lost in

undetectable channels such as atomic motion or “heat”. The energy transfer of the electrons

can thus be written as [14, 58]:

E0 = NiEi +NexEex +Niε , (2.12)

where Ei and Eex denote the mean energy required to ionize and to excite a xenon atom. Some

energy is transferred to sub-excitation electrons with a mean kinetic energy ε.

Through intermediate processes, the xenon ions can also be converted to excited xenon

atoms. The excited atoms form excited xenon dimers Xe∗2 which de-excite to the ground state

by emitting UV-scintillation light with a peak wavelength of 178 nm in LXe [59]. Since the

scintillation light is produced from the identical intermediate conversion, it is independent of the

initial process of either ionization or excitation. The scintillation light has two decay components

which arise from the de-excitation of either the singlet or the triplet state. However, since both

decay times are on the order of nanoseconds, they cannot be distinguished in EXO-200.

In the presence of an electric field, only a fraction r of electron-ion pairs may recombine while

the remaining charge is separated spatially and may be detected as Nq = (1− r)Ni electrons

or xenon ions. Then, assuming a recombination efficiency of one, the number of detectable

photons increases to Nγ = Nex + rNi. Assuming no photon reduction processes, the mean

energy to produce a scintillation photon is [58, 60]:

Wγ =
E0

Nγ
=

Wi

1 + Nex/Ni

, (2.13)

where Wi = E0/Ni denotes the mean energy to ionize a xenon atom. Due to the specific density

of electron-ion pairs along the track of an ionizing particle, the fraction r of recombination

further depends on the type of the ionizing particle. While it is W
(γ)
γ = 21.6 eV for γ particles,

it is W
(α)
γ = 17.9 eV for α particles [58].

Both the number of photons Nγ as well as the number of secondary electrons Nq are measures

for the total energy E0 deposited by an ionizing particle. However, event-to-event fluctuations

in the recombination fraction translate to fluctuations in the numbers of photons and secondary

electrons, with both numbers being anti-correlated. This leads to a degradation of the energy

resolution of either signature [61]. By combining both complementary measurements, these

fluctuations cancel and improve the energy measurement drastically as is shown in Figure 2.10.

The analytical approach to combine both measurements in EXO-200 is discussed in Section 4.3.1.
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(a) (b)

Figure 2.10: Calibration data of a 228Th source. The anti-correlation of the scintillation and

ionization measurements is observed in (a). This recombination fluctuations cancel when

combining both signatures which leads to an improvement in energy resolution (b). Taken

from [62].

2.2.3 Overview of the detector Monte Carlo simulations

A detailed understanding and modeling of the detector is essential for the analysis approach

pursued by EXO-200. The Monte Carlo (MC) simulation consists of two separated stages and

produces electronic signals of all detector subsystems similar to those recorded in measured

data.

The first stage is performed using the GEANT4 software package, version 4.9.3p02 [63, 64].

The detailed detector geometry of the TPC and its internal components is implemented from

the CAD model, along with its surroundings. In this detector model, particle interactions and

energy deposits are simulated. The output of this simulation stage is a list of energy deposits

in the LXe volume.

The second stage calculates the response of the electronics to the energy deposits modeled

in the first stage. Therefore, a 2D model of the detector is implemented in this simulation to

model the drift of secondary electrons in the bulk volume. To improve the precision of the

simulation, a full 3D model is implemented near the wire planes. In the 2D model, the U- and

V-wires are parallel to each other and the V-wires lie directly above the U-wires as is shown

in Figure 2.11. The path of each energy deposition is sampled to cubic voxels with 0.2 µm

edges and is tracked in a finite element simulation. The weighting potential φ (x) and the

electric field E (x) are used to calculate the induced signal at each time step for every affected

channel using the Shockley-Ramo theorem [65, 66]. Diffusion of the secondary electrons is

taken into account in the simulation. The diffusion depends on the orientation of the electric

field. The transverse diffusion coefficients DT is expected to exceed the longitudinal diffusion

coefficients DL by DT ' 10DL [67]. The transverse diffusion σDT
of secondary electrons is given
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Figure 2.11: Geometry of the wire planes showing the drift of ionization charges. As opposed

to the implementation in the 2D model shown here, in reality, the wire planes are crossed

by 60°. Taken from [68].

by:

σDT
=
√
DTtd , (2.14)

where td = d/vd denotes the time required to drift a distance d with a drift velocity vd. The

drift velocity is set by the external electric field E via vd = µE, with µ being the electron

mobility in LXe [58]. The transverse diffusion coefficient is measured in-situ in EXO-200 [53].

Raw waveform traces are calculated from the induced signals with the transfer functions of the

corresponding electronics. In order to make the simulated waveforms more realistic, randomized

measured noise traces are added to them.

The APD response is simulated in a simplified fashion to avoid tracing single photons. A

parametrized light response is used to determine the light yield on both APD planes. This

response function takes the position of the interactions into account as well as geometric and

optical factors. The number of photons per APD plane is divided equally over all channels

which is then used to calculate raw waveforms with the known transfer function. The simulation

does not include the recombination fluctuations in LXe that are discussed in Section 2.2.2 since

key parameters are still subject to current research.

2.2.4 Overview of the event reconstruction and data analysis

The event reconstruction in EXO-200 consists of multiple stages. First, a signal finding algorithm

is used to identify signals in the raw waveform traces. This applies a matched filter in Fourier

space to the waveforms. Because the detector subsystems use different settings in the front-end

electronics, individual transfer functions are used to optimally find potential signals. The

filtered trace y(t) is given by:

y(t) = F−1 [X(f)H∗(f)] , (2.15)

where F is the Fourier transform (FT), X(f) is the FT of the original waveform trace x(t), and

H∗(f) is the complex conjugate of the FT of the transfer function h(t) [51, 69]. Potential signals

on the filtered trace are found by identifying amplitudes that exceed a threshold determined
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on an event basis from the mean absolute deviation. To improve the ability to find multiple

signals close in time, found signals in the matched filter stage are “unshaped” to obtain the

original charge deposit q(t):

q(t) = F−1
[
H−1(f)X(f)

]
, (2.16)

where H−1(f) is the inverse transfer function. This unshaped trace is sensitive to nearby charge

deposits which are identified by a peak-search algorithm that finds additional signals.

After finding signals, the corresponding signal parameters are extracted. This is done by

minimizing a χ2 function that is based on the template model for the specific detector subsystem.

The results from the signal finding stage serve as initial fit values and to set the fit window. For

U-wire channels, the signal finding and parameter extraction stages are repeated twice; once

with the collection and once with the induction U-wire template. By comparing the χ2 of both

fit scenarios, signals may be tagged as induction-like, i.e. they do not contain net energy. As of

the EXO-200 0νββ search in 2019 [14], these signals tagged as induction-like further pass a stage

where a combined fit of collection and induction templates is performed to recover potentially

missed energy on the U-wires. This improvement was triggered by the results presented in

Section 4.2.3 and published in Ref. [70].

Signals on adjacent channels are grouped together if they are close in time. These bundles

are assumed to belong to a single physical event. Signals on U-wires are linked to signals on

V-wires by grouping all bundles in their most probable configuration. The resulting groups are

called charge clusters. In this clustering process, all potential combinations of U- and V-wire

bundles are matched. The best configuration is selected by minimizing a cost function that is

defined based on probability density functions (PDFs). These PDFs describe the time difference

and the amplitudes between U- and V-wire bundles and whether the resulting 2D position is

contained within the detector volume. The resulting charge clusters are associated to APD

bundles. The full 3D position is reconstructed with the measured drift velocity in LXe [53]

and the time difference between charge and scintillation clusters. It is noted that multiple

charge clusters can be associated to a single scintillation cluster, e.g. for γ particles that interact

multiple times in the detector via the Compton scattering process. On the other hand, multiple

scintillation clusters cannot be associated to a charge cluster.

The orientation of the coordinate system is shown in Figure 2.13a. The event location (x, y)

is calculated from the coordinates associated with the wire plane coordinates (u, v) while the

z coordinate is calculated from the time difference of charge and scintillation clusters:

x =

{
v − u for z > 0

u− v else
(2.17)

y =
1√
3

(u+ v) (2.18)

|z| =
{
dU − dVU · ∆t

tcoll
for ∆t < tcoll

dU − dVU − vdrift (∆t− tcoll) else
. (2.19)

While the cathode is located at z = 0, dU denotes the distance of the U-wire plane to the

cathode and dVU the distance between both wire planes of a sub-TPC. ∆t = tU − tAPD denotes
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Figure 2.12: Illustration of example interactions categorized as “single-site” (SS) and

“multi-site” (MS). Taken from [54].

the measured time difference of associated charge and scintillation clusters. vdrift denotes the

drift velocity in the bulk volume which is 1.71 mm µs−1 in Phase-I [53] and 1.83 mm µs−1 in

Phase-II. tcoll is the drift time between both wire planes which is 2.940 µs (2.887 µs).

Thanks to the monolithic design of the EXO-200 detector along with good position and energy

resolution, many background events can be distinguished from 2νββ and candidate 0νββ decays.

As was discussed in Section 2.2.1, the dominant background sources are γ interactions originating

from remaining trace impurities in the detector materials. Typical interactions of γ particles

and ββ decays are shown schematically in Figure 2.12. Events are labelled “single-site” (SS)

if all energy is reconstructed in a single location within dimensions of ∼2 – 3 mm. This is

observed for most 2νββ decays. On the other hand, events are labelled “multi-site” (MS)

if there are multiple localized energy deposits in the detector. In the main energy range of

EXO-200 analysis (1000 – 3000 keV), γ particles mostly interact via the Compton scattering

process and usually interact multiple times in the LXe. Thus, these events are categorized as

MS. Interactions of γ particles may be categorized as SS if they interact via the photoelectric

effect, if multiple Compton scattering processes occur too close to each other to be separated by

the event reconstruction, or if energy deposits are missed by event reconstruction. 2νββ decays

and γ interactions may produce additional localized energy deposits due to bremsstrahlung and

thus are categorized as MS. For example, the fraction of SS events of 0νββ decays is predicted

in MC simulations to be ∼75 % whereas that of γ particles is ∼15 % at Eγ = Q.

To monitor the TPC’s response to energy deposits, in particular from γ interactions, radioac-

tive calibration sources are deployed near the TPC on a regular basis. Therefore, a dedicated

guide tube allows to inject sources into the coolant volume near the TPC to various source

locations that are shown in Figure 2.13b. For regular calibrations, a 228Th source is deployed

at source position S5 near the cathode in order to cover both sub-TPCs. Additional calibration

sources like 137Cs, 60Co, and 226Ra and additional source positions are used during extended

calibration campaigns. The regular calibration measurements are used to evaluate the energy

response and the electron lifetime in LXe which is discussed in Section 4.3.

The gains of individual U-wire channels are monitored periodically by dedicated charge

injection measurements. A precisely known amount of charge is injected to individual wires
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Figure 2.13: (a) shows the coordinate systems (u, v, z) and (x, y, z), projections of both the

hexagonal active and fiducial LXe and of the PTFE panels. (b) shows the location of

calibration sources around the TPC. The cathode is located at the center and is biased via

the HV feedthrough. Taken from [51].

and their response is measured in units of electrons per ADC count. In addition, the gains are

calculated from 228Th source calibration data. Both measurements are highly correlated and

result in a mean gain of ∼380 e/ADC with a variation of 30 % between the channels. The V-wire

channels are also monitored with dedicated charge injection measurements. The response of

the APDs is monitored periodically using an external laser. However, the variation is absorbed

in an APD light map f(r, φ, z) that corrects the amount of collected light as a function of the

location of the energy deposit. The light yield dominantly depends on the event position due

to solid angle effects and due to variations in the APD response [51].

Besides calibrations and corrections, several event selection criteria are applied in the analysis

of low-background (LB) physics data. These include a dead-time after the muon veto system

is triggered or an event in the TPC was tagged as muon in order to reject muon induced

events. The time difference of consecutive events is required to be at least 0.1 s in order to

remove fast β-α coincidences that occur from 220Rn and 222Rn radioactive impurities as well

as other correlated decays [14]. Pile-up events with multiple scintillation clusters are rejected.

Also, events with high light-to-charge ratios are rejected which removes background from

α particles (see Section 2.2.2 and Ref. [58]). In addition, all particle interactions are required to

be associated with a full 3D position. For some charge clusters, in particular those with low

energy deposits, the position reconstruction fails. As of the EXO-200 0νββ search in 2019 [14],

this selection cut is relaxed to only require at least 60 % of the total energy to have an associated

3D position. This cut is discussed in detail in Section 6.1.4. The event position of all particle

interactions is required to be reconstructed in a fiducial volume. By definition, it extends to

a distance of 10 mm from the cylindrical PTFE, the cathode plane, and the V-wire plane. In

addition, motivated by the profile of the wire planes, the energy deposits are required to lie in

a hexagon in the xy plane with an apothem of 162 mm. The fiducial volume selection criterion

is applied to exclude regions of the TPC near the material surfaces with increased discrepancies

in MC simulations. The energy threshold for 0νββ searches is 1000 keV [14, 51].
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Machine Learning is a popular concept in artificial intelligence which is introduced in this

chapter. While many different approaches exist within machine learning, the state of the art

concept is deep learning. This concept has proven to be applicable to a variety of problems

with superior performance.

This chapter introduces deep neural networks which are used in deep learning. The concept

of these networks is discussed based on multilayer neural networks. These networks are also

utilized to discuss the general training procedure for deep neural networks. Finally, convolutional

neural networks are introduced which have proven to outperform other approaches especially in

the field of image recognition. Besides theoretical concepts, also practical considerations are

outlined.
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3.1 Machine learning

Currently, the most popular field in artificial intelligence is machine learning (ML). This sub-field

covers algorithms that are able to correctly interpret input data without explicit instructions

how to process it. Instead, the network is trained to do so implicitly by pursuing specific

objectives [71]. A widely used definition of algorithms belonging to machine learning is:

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured

by P , improves with experience E.

(T.M. Mitchell)

Based on this formal definition, many different methods and techniques exist to construct

machine learning algorithms. While common choices of tasks T , performance measures P , and

experiences E are discussed here, a more detailed overview is given in Ref. [71].

The task T describes how to process a given input. Common tasks include classification,

regression, and synthesis. In classification, an algorithm f processes an input x ∈ Rn and

assigns it to a category k. Mathematically, this corresponds to f : Rn → {1, . . . ,K} where K

denotes the number of different categories. In addition, more advanced classification tasks exist

that map the input to multiple categories or to a probability distribution over all categories. A

popular application in industry includes object recognition in images. In regression tasks, an

algorithm f produces a continuous output f : Rn → R. The difference to classification tasks is

the natural ordering provided by R while the categories in classification tasks are not ordered

logically. For synthesis tasks, new samples are generated by an algorithm, i.e. f : Rn → Rm.

For example, this includes the generation of images from random numbers according to the

reference dataset used in training. In other applications, a corrupted input x̃ ∈ Rn is processed

to an output x ∈ Rn to remove noise [71] or to refine the accuracy of simulated samples [72].

The performance measure P denotes the metric that is used to evaluate the ability of an

algorithm to perform the task T . While different metrics exist, the exact choice of suitable

measure depends on the specific task. The ability to process new data is usually evaluated on

an independent validation dataset. The choice of performance measure affects the behaviour

of the trained algorithm. For example, for regression tasks, the effect of rare but large errors

in contrast to many medium-sized errors in the prediction is a tradeoff that depends on the

specific application.

The experience E is used to improve the performance measure P on a task T in training.

Common types of training procedures are supervised and unsupervised learning. The latter

concept aims at finding useful patterns in an unlabelled training dataset. During unsupervised

training, the algorithm learns the underlying probability distribution that describes the training

dataset. This knowledge can be used for data synthesis or to cluster data with similar attributes.

In contrast to this concept, in supervised learning each training sample x is associated to a target

label y. The algorithm predicts ŷ from the input x. During training, a loss function L (y, ŷ) is

used to quantify and optimize the performance measure. Classification and regression tasks are

usually trained via supervised learning.
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Machine learning algorithms consist of a models which are fed with samples during training

in order to learn to correctly interpret it according to some objective function. In a successful

application, the model has learnt a representation of the training data and is able to also

correctly interpret new, unseen data. Many different types of model concepts exist, such as

support vector machines, decision trees, and neural networks [71]. Classical machine learning

techniques require to manually engineer features from the data based on prior knowledge.

However, neural networks are capable to learn these features by themselves during training

with little pre-processing required. The concept of neural networks is inspired by biological

neural networks. In computer science, neural networks consist of a collection of neurons, also

called units, that are aggregated into layers. Units of different layers can be connected to each

other which implies a flow of information between these units. Historically, “shallow” neural

networks were used with only a few hidden layers which denote the layers between the input

and output layers. While there is theoretical prove that a shallow neural network is sufficient to

represent any function [73], this approach is not practicable. Deep learning (DL) represents a

class of advanced concepts that stack multiple layers on top of each other. With this hierarchical

approach, complex representations (features) can be extracted by combining simpler features

captured in preceding layers. This capability renders deep learning techniques very powerful and

flexible for numerous applications. Accordingly, these neural networks are called deep neural

networks. This is the state of the art approach to solve many real-world problems like object

and speech recognition in a wide variety of fields in research and industry [17, 18, 74–77].

3.2 Deep neural networks

3.2.1 Multilayer neural networks

The basic concept of deep neural networks is multilayer neural networks. A simple example

with two hidden layers is shown in Figure 3.1. The nodes represent mathematical operations

and the lines represent weighted connections between the nodes. Since each node is connected

to every node in the previous and the next layer, these layers are called fully connected layers.

The output yk(x) of a node k in the first hidden layer is computed for an input feature vector x

according to:

yk(x) = σ (zk) = σ

 K∑
j=1

w
(1)
kj xj + b

(1)
k

 , (3.1)

where w
(1)
kj denotes the weights of the connection between a node j in the input layer and the

node k in the first hidden layer. b
(1)
k denotes the bias. zk is further processed by a non-linear

activation function σ. Figure 3.2 shows the workflow to calculate Equation 3.1 for a single unit.

For the example neural network shown in Figure 3.1, the sum spans over K = 4 input features

while Equation 3.1 is evaluated for all nodes k = 1, . . . , 3 in the first hidden layer. Currently,

the most common non-linear activation function is the rectified linear unit (ReLU):

ReLU(z) = max (0, z) . (3.2)
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Figure 3.1: Illustration of a simple neural network that consists of four input features, two

hidden layers with three nodes each and an output layer with a single node. The connections

represent weights. Taken from [78].

Figure 3.2: Illustration of a unit in a hidden layer of a neural network. The output of the

node is calculated based on the output of the previous layer, the weights of their connections,

and a bias term. Taken from [78].

Sigmoidal functions are commonly used for the output layer of classification tasks, while for

regression tasks the identity σ(z) = z is used here.

Stacking multiple layers, the output yk(x) of a node k in the second hidden layer can be

written by stacking Equation 3.1. This is because the nodes in the first hidden layer k ∈ K(1)

are connected to those in the second hidden layer k ∈ K(2) according to:

yk(x) = σ(2)

K(2)∑
j=1

w
(2)
kj σ

(1)

K(1)∑
i=1

w
(1)
ji xi + b

(1)
j

+ b
(2)
k

 . (3.3)

Generally, the output x
(n)
k of a node k in layer n depends on the output of the previous

layer (n− 1) and can be calculated recursively based on the input x(1) by:

x
(n)
k (x(n−1)) = σ(n−1)

K(n−1)∑
j=1

w
(n−1)
kj x

(n−1)
j + b

(n−1)
k

 . (3.4)
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Evaluating this operation for every node in every layer successively is called forward propagation.

Here, the information flows only in one direction through the network, i.e. from the input to

the output layer. This type of networks is called feed-forward networks. Other concepts exist,

e.g. with cyclic connections [71]. Introducing an additional virtual unit in each layer with a fixed

activation of 1, the bias vectors b can be absorbed in the weights vectors w. This simplifies

the notation so that the weights w represents both vectors [79]. Using Equation 3.4, neural

networks can be described as a set of parametric non-linear functions which map an input

vector x to an output ŷ. For a fixed set of weights w, these networks produce a deterministic

output for a given input.

3.2.2 Network training

The performance of a network is improved in a training process. Training in this context

represents adjusting the weights w in such a way that the performance E(w) improves with

respect to a loss function. For regression tasks, a common choice of loss function is the mean

squared error over a set of N samples:

L2(w) =
1

2N

N∑
n=1

‖ŷ (xn,w)− yn‖2 , (3.5)

where ŷ (xn,w) is the output of the network calculated based on Equation 3.4. yn is the target

which is provided in supervised training.

The goal of the training is to find a set of weights w that optimizes the performance

measure E(w). During training, small changes to the weights w → w + δw induce a change

in the performance δE ' δwT∇E(w). The optimum set of weights is then given where the

gradient of E (w) with respect to w vanishes which implies that the performance measure

would not improve by further changes to w:

∇E(w) = 0 , (3.6)

where the corresponding point E(w) is neither a maximum nor a saddle point. Several local

minima in the parameter space fulfill this condition. However, the goal is to find the global

minimum. Since it cannot be found analytically in most scenarios, the optimization is solved

iteratively starting from a set of initial weights w(0):

w(τ+1) = w(τ) + ∆w(τ) , (3.7)

where τ denotes the iteration step and ∆w(τ) the weight update. In practice, many algo-

rithms calculate the weight update at each iteration step based on the gradient of the loss

function ∇E(w) which points towards the largest gradient. Thus, Equation 3.7 becomes:

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
, (3.8)

where η > 0 denotes the learning rate and where the weights are updated in direction of the

negative gradient. This approach is known as gradient descent. However, more complex and

powerful optimization schemes exist [78].
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The gradients are usually calculated using the error backpropagation scheme. This means,

calculating the gradient of E(w) with respect to each weight wij . The gradient is then used to

update the weight wij in order to improve the performance E(w). Using the chain-rule, the

gradient can be written as:
∂E

∂wji
=
∂E

∂zj

∂zj
∂wji

, (3.9)

where zj denotes the weighted sum affecting unit j as is discussed in Equation 3.1. Using this

equation and including the bias in the weight vector, the last term in Equation 3.9 simplifies

to
∂zj
∂wji

= xi. To simplify the notation, the error δj ≡ ∂E
∂zj

is introduced. Provided the mean

squared error is used as the loss function, as defined in Equation 3.5, the error for a unit in the

output layer is given by:

δk = ŷ (xk,w)− yk . (3.10)

Here, the identity was used as activation function of the output layer. In general, the gradients

are calculated backwards through the network from the output layer to the input layer. Thus,

the gradient for a unit j in a hidden layer depends on the succeeding units in the network by:

δj ≡
∂E

∂zj
=
∑
k

∂E

∂zk

∂zk
∂zj

, (3.11)

where the sum is performed over all units k in the next layer that are connected to unit j. We

denote the derivative of the activation function σ′ (zj). The backpropagation formula is then

given by:

δj = σ′ (zj)
∑
k

wkjδk . (3.12)

With this description, the errors are first evaluated for the units in the output layer via

Equation 3.10. Then, using these errors, those of the hidden layers can be evaluated recursively

via Equation 3.12.

During training, all available N samples are evaluated by the network with fixed weights

in the forward pass by recursively evaluating Equation 3.4 and comparing the outputs to the

target values. Then, by recursively evaluating the backpropagation formula in Equation 3.12

and 3.9, the weights wji are updated. The weight update can be evaluated using the gradient

descent introduced in Equation 3.8 in order to achieve an improved average performance E

over N samples:

w
(τ+1)
ji = w

(τ)
ji − η

N∑
n

∂En

∂w
(τ)
ji

. (3.13)

For large sets of training data, the set is usually split into small batches, and the weights are

updated based on the performance on every batch. This concept is called mini-batch training.

Mathematically, this corresponds to replacing N in Equation 3.13 by the batch size and looping

over all batches recursively. A loop over all batches is called an epoch.

Prior to training, the weights of the network are initialized. If all units were initialized with

the same weights, they are identical and can therefore not learn meaningful representations. This

is mitigated by breaking their symmetry by initializing the weights with random numbers. In

practice, different initialization algorithms can lead to different performances and can accelerate
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the training process. A common choice is Glorot initialization [80], where the weights i in

layer j are initialized with random numbers from a uniform distribution U :

w
(0)
ji ∼ U

[
−
√

6

nj−1 + nj
,

√
6

nj−1 + nj

]
, (3.14)

where nj−1 and nj are the numbers of units in layer (j − 1) and in layer j.

Since neural networks can contain a large amount of trainable weights, they can converge to

states that perfectly interpret the training data. However, they may fail to generalize on unseen

validation data. This problem is called overfitting. It is promoted by larger networks in terms

of number of trainable weights. It can be prevented or constrained by increasing the number

of samples in the training dataset. In addition, regularization techniques exist to eliminate or

reduce overfitting. Common techniques are for example the artificial extension of the training

set by data augmentation or the regularization of the network during training. For example,

with the dropout technique, only a fraction p < 1 of the units in a layer are used in training

while the other units are disabled. The set of disabled units is determined randomly for every

batch. With this technique, the network learns a more robust representation of the training

data by relying less on individual units. This results in better generalization capabilities on

unseen data [81]. Other regularization techniques add an additional penalty to the loss function

during training:

L′(w) = L(w) + λR(w) . (3.15)

In practice, common penalty functionsR(w) include the L1 =
∑ ||w||1 norm and the L2 =

∑ ||w||22
norm where the sums are performed over all weights in a network. The magnitude of the

penalty function is controlled by the hyperparameter λ. While both penalty functions have

slightly different effects, they both promote small weight values. This constrains the impact of

individual, potentially large weights and thus reduces overfitting. The optimum regularization

technique depends on the specific application, network architecture, and training dataset.

In practice, a dataset is usually divided into a training and a validation set. The training

set is utilized in weight optimization. Being statistically independent from the training set,

the validation set is used to monitor the network performance and evaluates the generalization

capabilities of the network. A degraded performance on validation data compared to training

data indicates overfitting. After training, the set of weights of the neural network is usually

restored to the state where the performance on validation samples was best.
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3.2.3 Convolutional neural networks

Besides fully connected layers, there are other concepts to process the output from a previous

layer. One of these is the convolutional layer which was proposed in Ref. [82]. It became popular

after achieving superior results in image recognition compared to other approaches [17].

Convolutional layers exploit the structure of the input data by enforcing only local connectivity

between the units of subsequent layers. In this way, the spatial correlation of adjacent units

is captured. Conceptually, for one-dimensional data, this means that the input of a layer is

only a subset of n units from the previous layer. Furthermore, this so-called receptive field is

enforced to be spatially contiguous. Analogously for two-dimensional data, like images, the

dimension of the receptive field is n ×m units. Many applications use quadratic receptive

fields with n = m. In addition, the weights are shared between the different receptive fields

to ensure translational invariance. This concept is motivated by the aim to capture the same

feature at any location of the input feature map. An example of two-dimensional data is shown

in Figure 3.3. Equation 3.1 is evaluated for each 3 × 3 receptive field (blue shaded) of the

4× 4 input feature map (blue). The 3× 3 grid which contains the trainable weights is called

kernel. The output feature map (green) represents the response between the input and the

kernel. The output feature map is produced by shifting the kernel over the input feature map

and evaluating Equation 3.1 at every location. Mathematically, convolutional layers perform a

discrete convolution of the input feature map with the kernel. In common applications, multiple

kernels are applied to an input feature map in a single convolutional layer. This is done because

each kernel extracts individual information from the input feature map. This allows to capture

different types of features at the same time.

The spatial dimensions of the output feature maps are usually smaller than those of the input

feature maps as is shown in Figure 3.3. However, for many practical applications, the spatial

dimensions are supposed to remain unchanged. To accomplish this, the input feature maps

are usually padded with zeros to artificially increase their spatial dimensions. This concept is

shown in Figure 3.4.

Figure 3.3: Convolution of a 4× 4 input feature map (blue) with a 3× 3 kernel (blue shaded).

The resulting output feature map is shown in green. Taken from [83].
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Figure 3.4: Convolution of a 5× 5 input feature map (blue) with a 3× 3 kernel (blue shaded).

The input feature maps are padded with zeros (dashed) in order to maintain identical spatial

dimensions of input and output feature maps. The resulting output feature map is shown in

green. Taken from [83].

Figure 3.5: Illustration of a simple convolutional neural network. The input (left) is processed

by a series of convolutional layers where each kernel in every layer produces a separate feature

map. Subsampling reduces the spatial dimensions of the feature maps. The convolutional

part is followed by a series of fully connected layers that lead to the final output layer (right).

Modified from [85].

Normally, several convolutional layers are stacked hierarchically. Higher-level features can

then be captured by combining lower-level features of previous layers. The output feature

maps of the final convolutional layer are flattened to a one-dimensional vector which serves as

input to a series of fully connected layers which are discussed in Section 3.2.1. These layers

perform the final reasoning by combining all individual feature maps. This architecture is called

convolutional neural network and an example is shown in Figure 3.5. To date, several variations

and extensions of the basic convolutional layers exist to further boost the performance of this

concept [77, 84].
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In training, the weights which define the kernels in the convolutional layers are adjusted.

The training approach is in principle identical to the one discussed for fully connected layers in

Section 3.2.2. Besides enforcing explicit knowledge about local correlation in the input data,

the convolutional layers also drastically reduce the amount of trainable weights. For example,

in a fully connected layer, an image of 100× 100 pixels would correspond to 10 000 units that

are all connected to the subsequent layer with a distinct trainable weight. With a hidden layer

of only 10 units, the number of trainable weights is on the order of 105. On the other hand,

a convolutional layer with 10 distinct kernels of 3 × 3 receptive fields would correspond to

100 trainable weights. In general, the number of trainable weights for convolutional layers is

independent of the input size but is determined only by the kernel size and the number of

kernels.

A common approach for designing a convolutional neural network is to increase the number of

feature maps in subsequent layers. At the same time, the spatial dimensions of the feature maps

are reduced. The motivation of this approach is to increase the complexity of the representation

and to down-sample the dimensions gradually. This reduction is acceptable in most applications

since the exact location of features is not crucial. Rather, the relation between higher-level

features becomes important. One way to reduce the dimensions is to increase the stride s.

For unit strides (s = 1), the kernel is shifted over the input feature map one step at a time.

For larger strides (s > 1), the step size is increased so that some locations are skipped. For

example, in Figures 3.3 and 3.4, a stride of s = 2 corresponds to skipping every second step.

Another concept is pooling, where a non-linear function is applied to each feature map. For

example, a 2× 2 pooling layer together with a stride s = 2 evaluates the non-linear function in

non-overlapping partitions of the feature maps. While there are several non-linear functions

used in practice, the most common one is maximum pooling. This pooling operation takes

the maximum value of each receptive field. Intuitively, this can be interpreted by keeping the

most prominent response to a kernel and discarding the others in the receptive field of the

2× 2 pooling layer. In this example, the spatial dimensions are reduced by 75 %. Using pooling

layers, the performance of the network is invariant to small shifts and distortions which also

improves its robustness [20].
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This chapter presents a new approach for the reconstruction of the ionization energy in EXO-200

with a deep neural network (DNN). After discussing the potential of this method, the components

and decisions made for training a DNN are presented. The DNN is designed such that it meets

the requirements specific to EXO-200 data analysis. The performance of the DNN based

reconstruction is evaluated and compared to the traditional energy reconstruction EXO-200.

This is done on Monte Carlo (MC) simulated and measured data from calibration sources.

Parts of the results presented in this chapter are published in “Deep Neural Networks for

Energy and Position Reconstruction in EXO-200” in Journal of Instrumentation (JINST) [70]

and were presented at the Neutrino Conference (2018) [86].
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4.1 Goal and design of study

4.1.1 Motivation and training data preparation

A precise energy measurement is a key requirement for the identification of potential 0νββ

decays. The energy is the only experimental measure to distinguish 2νββ from 0νββ decays.

The signature of a 0νββ signal is an excess of events at the Q value in the energy spectrum.

In contrast, the electrons emitted in 2νββ decays produce a continuous energy spectrum as

discussed in Section 2.1. Due to the different spectral shapes, a moderate energy resolution

would suffice to distinguish 2νββ from 0νββ events as is shown in Figure 2.3. However, other

background which originates mostly from γ particle interactions also produce events near the

Q value. The dominant components arise from long-lived radionuclides of the 238U and the
232Th decay chains. They would mask a potential observation of 0νββ. To address this issue,

precise energy measurements are needed to reduce the background contributions at the Q value.

For a more detailed discussion of the background components in EXO-200 see Section 2.1.2.

As discussed in Section 2.2, ionizing radiation can deposit energy in the TPC. The produced

secondary ionization electrons are drifted toward the wire grid via a homogeneous electric drift

field that is applied between the wire and the cathode planes. The potentials of the V- and U-wire

planes are set so that the V-wire plane is transparent to drifting charge. This charge produces

an induction signal in the V-wire planes and is collected at the U-wire plane. Due to energy

conservation, the ionization and scintillation signatures are anti-correlated (see Figure 2.10).

The collected charge is delivered to the front-end electronics as current and is converted into

a voltage signal by a multi-stage amplification and signal shaping scheme. Afterwards, it is

converted into a 12-bit digital waveform by an analog-to-digital converter (ADC) sampled at a

rate of 1 MHz. After being triggered, the data acquisition (DAQ) records 2048 samples from all

channels. The samples are recorded symmetrically around the triggered sample. The triggering

module handles different trigger schemes, e.g. from the APDs, wires, or external triggers. The

U-wire waveforms of an example event are shown in Figure 4.1.

The energy deposit of primary particles is simulated with the GEANT4 software pack-

age [63, 64]. The detailed geometry of the EXO-200 detector is implemented in this simulation

that is used to model the interaction of particles in the detector. Ionizing charge is drifted

toward the wire planes and the resulting charge signals are determined using the Shockley-Ramo

theorem [65, 66]. Raw waveforms of the wire plane channels are generated in the simulation by

considering the readout electronics and by adding measured randomized noise waveforms. For

more details see Section 2.2.3 and Ref. [51].

For training a DNN to reconstruct the ionization energy, several design choices were made.

First, the training data is produced in the EXO-200 software framework for two classes of

events, γ events and 0νββ events. The MC simulations takes the correlation of both primary

electrons emitted in 0νββ decay into account in terms of energy and angular distributions [87].

The training set is populated with 0νββ and γ events to equal parts. 95 % of the dataset are

for training and the remaining 5 % for validation. The energy region on which the DNN is

trained determines the region it can be applied to later. Therefore, second, the energy of

simulated primary particles is restricted to 1000 – 3000 keV based on the main energy region
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Figure 4.1: U-wire waveforms of an example event showing the channel amplitudes as a

function of the time. The channels are offset for clarity. The waveforms are cropped in

time (light area) before being used as inputs of the DNN to reduce computational costs. For

clarity, the channels that contain any signal found by EXO-200 reconstruction are shown in

bold.

that EXO-200 uses for 0νββ decay searches [14]. γ particles and 0νββ decays are simulated from

a uniform distribution in energy and Q value in this range. Third, the spatial distribution of

primary particles is simulated uniformly in the detector volume. The correlation of the spatial

coordinates and the energy of the training dataset are shown in Figure 4.2 for both event classes.

Instead of using uniformly distributed primary particles, spatial and energy distributions of

realistic particle sources, like γ calibration sources, could be used for training. However, this

could introduce biases in the DNN’s prediction as will be discussed in Section 4.2.1. Some

event selection cuts are applied to the training data: Events are required to have at least one

reconstructed charge cluster. Further, all clusters need to have a well-reconstructed 3D position

as well as to be contained in a fiducial volume that is looser than that used for physics analyses.

In particular, the event selection does not cut multi-site events (MS). More details on event

selection cuts are discussed in Section 2.2.4.

The inputs for the DNN are grayscale images. They are built by arranging neighboring

channels next to each other. The channel amplitudes of U-wire waveforms are encoded as pixel

values. The images are cropped from 2048 samples to the samples in the region 1000 – 1350 in

order to reduce computational effort. This is indicated also in Figure 4.1. In MC simulations,

events are triggered by APD signals at sample 1024, so any signals on the U-wires are still

fully contained in the cropped image. Preprocessing further includes subtraction of a constant

baseline of each individual channel and correction for slightly different measured gains of the

electronics of individual channels that is discussed in Section 2.2.4.
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Figure 4.2: The distribution of deposited energy (left), the correlation of the x and y spatial

coordinates (center), and the distribution of z coordinates (right) are shown for 0νββ

events (a) and for γ events (b). The combined dataset is used in training and validation

of the DNN. The primary particles are emitted uniformly in the detector volume in MC

simulations. 0νββ decays have a random Q value and γ particles a random energy.
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4.1.2 Network architecture and training

The two U-wire images of both sub-TPCs are fed to the DNN separately. Each image has

dimensions of 350× 38 pixels. The DNN architecture is shown in Figure 4.3. As the physics

contained in both images is identical, they pass through the same layers with the same

mathematical operations applied to them. This approach reduces the number of trainable

weights. The architecture contains nine convolutional layers with 16, 16, 32, 32, 64, 64, 128,

128 and 256 kernels. The feature maps of the last convolutional layer are flattened to a one-

dimensional vector. This vector serves as input to two successive fully connected layers with

32 and 8 units while the outputs of both network branches are added. The resulting output is

then mapped directly to the final output unit that represents the energy of the event that is

deposited in the TPC. The kernel sizes of the initial four convolutional layers are (5, 3), and

(3, 3) for the remaining layers. To maintain the dimensions after the convolutional operation,

zero padding is applied to each layer which surrounds the image with zeros. In order to reduce

the dimension of the feature maps intentionally, the convolutional part includes five maximum

pooling layers with pool sizes of (4, 1), (4, 2), (2, 2), (2, 2) and (2, 2). Throughout the network,

ReLU(x) = max(x, 0) is used as non-linear activation function. Trainable weights are initialized

randomly using the Glorot algorithm [80] introduced in Equation 3.14. The DNN architecture

is implemented with the Keras library [88] using the Tensorflow backend [89].

During training, the DNN target variable in MC simulations consists of the summed energy

that is deposited on the wire channels. Energy that is lost on inactivate parts of the detector,

like the PTFE reflectors, is discarded as it cannot be reconstructed. The Adam optimizer [90]

is used to minimize the mean squared error L2 of predicted ŷi and target values yi over a batch

of n samples:

L2 =
1

2n

n∑
i

(yi − ŷi)2 . (4.1)

Every 10 epochs, the learning rate of the optimizer is reduced by a factor 2. An additional

L2 regularization term weighted with 0.01 is applied to each layer (see Section 3.2.2). As

EXO-200 was operated in two phases with slightly different conditions (e.g. electric field), a

DNN is trained for each phase individually to optimally exploit all features available in data.

However, training data production, DNN architecture, and DNN training procedure are identical

for both DNNs. The training curve of the DNN used for Phase-II is shown in Figure 4.4.
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Figure 4.3: The network architecture used for the DNN. The input consists of two grayscale

images with dimensions of 350× 38 pixels. After the convolutional part, the final feature

maps are transformed into a one-dimensional array and are fed to fully connected layers.

Both network branches which contain information from a single TPC share the same network

weights. The units of both branches are added before the final output layer. The output

layer has a single unit corresponding to the total deposited energy in that event.
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Figure 4.4: The performance measure L2 during training (blue) as a function of the epoch of

the DNN used for Phase-II data. Validation (red) is done with an independent part of the

dataset to monitor potential overfitting. No overfitting is observed here. The reduction of

the learning rate every 10 epochs results in a step-like behaviour in the curves that is best

visible for the training curve.

4.2 Performance on Monte Carlo simulated data

The performance of the trained DNN is tested on the exposure of the EXO-200 detector with

γ particles emitted from a radioactive 228Th calibration source in MC simulations. If not

stated otherwise, throughout this chapter, all calibration data is MC simulated or recorded

from a calibration source located at source position S5 (see Figure 2.13b). Similar to training

data, this simulation does not include xenon impurities, i.e. an infinite electron lifetime of

secondary electrons is assumed. The 228Th calibration source is suited for evaluation of the

energy reconstruction because it produces a prominent peak at 2615 keV. This peak corresponds

to the full absorption of the γ particle emitted from the 208Tl decay. This energy is of particular

interest for EXO-200 reconstruction and calibration efforts due to its proximity to the Q value of
136Xe at 2458 keV. The correlation of the predicted energy of the DNN and the true MC energy

is shown in Figure 4.5. This shows a good agreement between the DNN energy reconstruction

and the target variable. However, a few outlier events exist, especially below the diagonal

line where the DNN predicts lower energy compared to the true energy deposited in the

detector. This corresponds to events, where the DNN misses some energy. Two dominant

effects contribute to this. First, these events may have low energy deposits that are below the

reconstruction threshold. Second, these events may contain complex mixtures of collection and

induction signals where the DNN partially fails to disentangle both signal types and thus cannot

predict the deposited energy correctly. The latter events will be discussed in more detail in

Section 4.2.3. Above the diagonal line, there is no significant accumulation of events. For these

events the DNN would predict more energy than there was actually deposited in the detector.

The residuals of the DNN prediction to the true MC energy do not show any energy-dependent

features. Due to electronics noise and limitations of the DNN reconstruction, the residuals are

broadened.
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Figure 4.5: Predicted energy of the DNN as a function of the true MC energy deposited in the

detector from a simulated 228Th calibration source. The lower left panel shows the residuals.

The residuals essentially follow a normal distribution shown in the right panel on linear scale.

The color shows the intensity on a logarithmic scale. To guide the eye, solid lines indicate

certain residual values in the left panels.



4.2. Performance on Monte Carlo simulated data 41

4.2.1 Bias from a non-uniform training dataset

In addition to the training approach discussed in Section 4.1.1, here, the effect of a biased

training dataset on the DNN performance is discussed. For this approach, events from a
228Th calibration source in MC simulations are used to train the DNN. The corresponding

energy and spatial distributions are shown in Figure 4.6. Opposed to those of the baseline

training dataset (see Figure 4.2), the spatial distribution is biased towards large x coordinates

and the energy spectrum has distinct peaks. The most prominent one is the full absorption

peak of 208Tl at 2615 keV.

Validating a DNN trained on 228Th MC simulated data yields promising results at the
208Tl full absorption peak. However, Figure 4.7 shows this DNN and another DNN trained

on data with a uniform energy distribution. Both DNNs are then used to reconstruct MC

simulated events of the radioactive 228Th calibration source, but with an MC energy spectrum

that is broadened by an artificial energy resolution of 90 keV. This resolution is guided by

the charge-only energy resolution of σ/E ≈ 3.5 % observed at the 208Tl full absorption peak

in Phase-I of EXO-200 operation. Comparing both spectra, the DNN trained on 228Th data

shows undesired effects: The predicted energy of events near the 208Tl peak is shifted toward

the peak as is shown in the lower panel of Figure 4.7. This can be understood by the large

excess of 208Tl peak events in the training spectrum of 228Th compared to the peak’s vicinity

(see Figure 4.6). With this spectral feature, the average loss contribution in training introduces

a bias that favors events near the peak. Thereby, the resolution seems to be improved because

the peak is narrowed artificially. The DNN trained on a uniform energy spectrum is not biased

toward certain energies and guarantees a valid energy reconstruction over the entire energy

range without introducing systematic biases.
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Figure 4.6: The distribution of deposited energy (left), the correlation of the x and y spatial

coordinates (center), and the distribution of z coordinates (right). The 228Th calibration

source in MC simulations is located near the cathode outside the TPC.
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Figure 4.7: The MC energy spectrum (gray) as reconstructed by two DNNs that were trained

on different datasets (top). The MC simulated events are generated from a 228Th calibration

source whose energy spectrum is broadened by 90 keV. One DNN was trained on the same

kind of MC simulated events but without broadening the MC energy (green) while the other

DNN was trained on a uniform energy spectrum (blue). The residuals to the true MC energy

are shown in the lower panel the the DNN trained on MC simulated 228Th events. The color

denotes the intensity on a logarithmic scale. Taken from [70].
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4.2.2 Comparison of DNN and traditional EXO-200 reconstruction

Figure 4.8 shows the reconstructed energy spectra of a 228Th calibration source in MC simulations

for single-site (SS) and multi-site (MS) events separately. For the 228Th spectra, the spectral

features, e.g. the 208Tl full absorption peak at 2615 keV, the corresponding single and double

escape peaks are reproduced by both the DNN and the traditional EXO-200 reconstruction

methods. To compare both reconstruction methods, the energy resolution at the 208Tl full

absorption peak is evaluated by fitting the peak region with the function:

f(E) = S(E,A1, µ, σ) +B(E,A2, µ, σ) (4.2)

= A1 · exp

(
−(E − µ)2

2σ2

)
+A2 ·

(
1− erf

(
E − µ√

2σ

))
.

In this simplified approach, the peak is modeled by a Gaussian distribution and the background

contribution near the peak by a Gaussian error function. Both functions share the mean µ and

standard deviation σ parameters. The resulting energy resolution values are shown in Table 4.1.

The energy resolution of the DNN outperforms that of the traditional EXO-200 reconstruction

in both SS and MS events. A major contribution to the resolution is the electronics noise that

is added to the simulated waveforms. Besides energy resolution, the agreement in the region

between the Compton shoulder and the full absorption peak is significantly improved by the

DNN (see Figure 4.8a). This effect will be discussed in more detail in Section 4.2.3. Similarly,

for simulated 0νββ decays, the DNN shows a superior energy resolution of (0.65± 0.01) % for

SS events.
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Figure 4.8: Energy spectra reconstructed from MC simulated events of a radioactive 228Th cal-

ibration source. (a) shows SS events and (b) shows MS events. The spectra of energy

deposited in the detector is known in MC simulations is shown in shaded gray. The spectra

are reconstructed by the DNN (blue) and the traditional EXO-200 reconstruction (red). The

insets show a zoom to the 208Tl full absorption peak at 2615 keV on a linear scale.
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Table 4.1: Energy resolution σ/E observed at the 208Tl γ line at 2615 keV for a 228Th calibration

source in MC simulations. The resolution is determined for the DNN and the traditional

EXO-200 reconstruction in all events, and in single-site (SS) and multi-site (MS) events

separately.

Event type
Energy resolution σ/E [%] Relative

DNN Trad. improvement [%]

all 1.07± 0.03 1.19± 0.02 10.1± 0.4

SS 0.70± 0.01 0.96± 0.03 27.1± 1.0

MS 1.17± 0.02 1.24± 0.02 5.6± 0.2
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Figure 4.9: The correlation of residuals of ETrad and EDNN with respect to the true MC

energy deposited in the detector EMC for simulated 0νββ events. The intensity is denoted

by color on a logarithmic scale. The projections are shown for both axes (red, blue) and to

the diagonal line (green) on a linear scale. Adapted from [70].

The correlation between the residuals of both reconstruction methods with respect to the

true energy deposited in the detector for MC simulated 0νββ events is shown in Figure 4.9. The

tilted contour lines represent a positive correlation of these residuals. This correlation indicates

an effect from the electronics noise on the waveforms. This noise affects the energy estimation

of both methods in a similar way which results in a positive correlation of their residuals.

The energy resolution σ/Q of DNN and traditional EXO-200 reconstruction for simulated

0νββ SS events is shown in Figure 4.10 as a function of the event position in the radial plane R

and the height Z together with their projections. The true position of the energy deposit is

known in MC simulations. The detector is split into equally sized slices in Z and into slices in R

such that all segments contain the same volume. Besides the improvement in energy resolution
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Figure 4.10: The center panel shows the energy resolution for simulated 0νββ SS events

as a function of the radius R and the height Z reconstructed by the DNN. The top and

right panels show the projections for the DNN (blue) and, in addition, for the traditional

EXO-200 (red) reconstruction.

with the DNN reconstruction, its variation over R is on the same level compared to that of the

traditional EXO-200 reconstruction. In Z, both methods show a trend toward worse resolution

in direction to the cathode. This trend is understood to arise from an increasing extent of the

drifting charge cloud due to diffusion for events with longer drift paths. Thereby, the fraction of

events that deposit energy on multiple rather than on single U-wires increases. With multiple

active wires, the electronics noise contributions add up which leads to a worse energy resolution

of events near the cathode. The asymmetry of the energy resolution in Z with respect to the

cathode at Z = 0 is not understood thoroughly but is observed by both reconstruction methods.

This suggests that it is an intrinsic feature of the EXO-200 TPC design rather than a drawback

of the DNN energy measurement.

4.2.3 Mixed induction and collection signals

Besides the improved energy resolution on MC simulated events, the DNN shows an improved

agreement in the region between the Compton shoulder and the 208Tl full absorption peak as is

shown in Figure 4.8a. This region is of particular interest to EXO-200 as it contains the Q value

of 136Xe. The improved agreement is understood to arise from two main processes. First, the

DNN is able to reconstruct smaller energy deposits that are below the reconstruction threshold

of the conventional method. Second, the DNN can better disentangle complex signatures of

collection signals that are superimposed by induction signals [70]. Figure 4.11 shows a raw

waveform that is fitted by a template function for either a collection, induction, or mixed signal.

Until the 0νββ search in 2018 [91], EXO-200 reconstruction applied template fits to raw data

for either collected or induced charge signals. Based on the comparison of χ2 of both fits,
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Figure 4.11: Example signal on U-wires. The graph shows a template fit from either col-

lected (red) or induced (blue) charge only. The improved reconstruction applies a template

fit of combined signals (green) which best matches the signal.

the scenario with the lower performance was discarded. If flagged as a pure induction signal,

the reconstructed energy is set to ETrad = 0. This binary nature in the event reconstruction

process led to missing energy. Based on the results in Ref. [70], EXO-200 reconstruction was

improved by applying template fits of both signal types to allow for entangled signals of collected

and induced charge in wires. This reconstruction was used in the most recent 0νββ search

in 2019 [14] and recovered energy that was previously missed for mixed signals. Figure 4.12

shows the impact on MC simulated events of the 208Tl full absorption peak at E = 2615 keV.

The traditional EXO-200 reconstruction with (red) and without (orange) improved template

fit is shown. The proper modeling of mixed signals recovers some energy that was previously

flagged as induction and thus missed (gray). However, the DNN (blue) still outperforms the

improved reconstruction.

Interactions that originate from the 232Th decay chain represent a dominant background

in low-background (LB) physics data. This background component presents the 208Tl full

absorption peak at E = 2615 keV which is right above the Q value of 136Xe. Missing a part

of the deposited energy of these events in reconstruction represents a direct risk of increasing

the background in the ROI around Q. Furthermore, since this effect is not modeled in the MC

simulations, it worsens the spectral agreement between measured data and MC simulations.

The impact of this effect on the reconstruction of measured data is discussed in Section 4.3.2.
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Figure 4.12: Energy spectra of MC simulated 208Tl full absorption peak events which de-

posit 2615 keV (green solid) in the detector volume. The spectra reconstructed by the

DNN (blue) and by the traditional EXO-200 reconstruction are shown with (red) and with-

out (orange) improved mixed signal modeling. For reference, the expected broadening due to

noise only (σ ' 16 keV [70], green dashed) and the Q value of 136Xe (black) are shown. The

distribution of events labelled as induction signals in EXO-200 reconstruction are shaded

gray.

4.3 Performance on measured data

In order to apply the DNN on measured data, two aspects need to be taken into account.

First, the liquid xenon in the detector contains electronegative impurities which lead to a finite

electron lifetime of secondary electrons:

Ne(t) = Ne,0 · exp

(
− t

τe

)
, (4.3)

where Ne,0 is the initial number of secondary electrons, τe the electron lifetime in LXe, and t

the drift time. The electron lifetime τe is measured regularly with source calibration data. To

correct for the finite electron lifetime, all ionization signals are multiplied by a factor of exp (t/τe)

in EXO-200 reconstruction [51]. The time-average electron lifetime is about 4.5 ms (3.0 ms) for

Phase-I (Phase-II), leading to a correction factor of 2.6 % (3.6 %) for maximum drift lengths from

the cathode to the wires. Since the DNN does not predict the energy of individual ionization

signals but the sum energy over all ionization signals that belong to a scintillation signal, this

correction was adjusted. For events with single ionization signals, the same correction like in

the traditional EXO-200 reconstruction was used. For events with multiple ionization signals,

the correction factor is calculated from the most energetic cluster found by the traditional

EXO-200 reconstruction. This approximation is necessary because the DNN predicts the total

energy deposited in an event in contrast to the energy of individual charge clusters.
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Figure 4.13: The energy predicted by the DNN as a function of the energy from the traditional

EXO-200 reconstruction. The data represents measured SS events from a 228Th calibration

source. The lower left panel shows the residuals. The color denotes the intensity on a

logarithmic scale. To guide the eye, solid lines indicate certain residual values in the left

panels. The projection of residuals is shown in the right panel on a linear scale. The excess

in positive residuals is best visible in the lower left panel for 208Tl full absorption peak events.

The dashed line represents EDNN = 2615 keV.

Second, in measured data there are several trigger strategies. For high energies, nearly all

events are triggered by scintillation channels, while for lower energies, a significant fraction of

events is triggered by ionization channels. Depending on the triggered channel, the signals on

the U-wires used as input for the DNN are shifted compared to those in MC simulations. To

account for this, the region of the selected window used by the DNN is shifted to ensure a fixed

position relative to the scintillation signal. If necessary, the cropped waveforms are padded

with zeros.

The correlation of ETrad and EDNN for measured data of a 228Th calibration source is shown

in Figure 4.13. As there is no true energy label in measured data, the reconstruction error where

both methods show a large discrepancy cannot be assigned to either reconstruction method

unambiguously. However, in general a good agreement on an event basis is observed as most

events are distributed around the diagonal line. The residuals of both methods are unbiased

over the entire energy range, i.e. are centered at zero. However, they show an asymmetric excess

of events. The excess events are due to the traditional EXO-200 reconstruction missing some

energy while the DNN reconstruction mostly recovers that energy as was discussed previously

for MC simulated events.
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Figure 4.14: Example of a MC based fit (blue) to charge-only 226Ra calibration data (black)

recorded in Phase-II for SS events. The spectrum predicted in MC simulations is shown in

red. The energy calibration and resolution functions are fitted simultaneously.

To compare the DNN and the traditional EXO-200 energy reconstruction quantitatively,

the baseline EXO-200 calibration procedure is pursued. The energy scale is calibrated on a

weekly basis from 228Th source calibration data for SS and MS events separately. The linear

calibration function is

E(E0) = p0E + p1EE0 , (4.4)

where E0 is the uncalibrated energy. The energy calibration E(E0) and the energy resolu-

tion σ(E) functions are fitted simultaneously in order to smear the MC simulated spectra

by:

σ2(E) = σ2
elec + p2

1RE . (4.5)

σelec denotes the electronic noise contribution and p2
1RE represents statistical fluctuations. An

example fit to 226Ra data is shown in Figure 4.14.

The weekly energy resolution σ/E observed at the 208Tl full absorption peak in SS events

is shown in Figure 4.15. The energy resolution improves in Phase-II due to improvements

to electronics and due to raising the cathode voltage from −8 kV to −12 kV. Comparing the

weekly energy resolution of the DNN and the traditional EXO-200 reconstruction, the DNN

outperforms it in almost every week. Without weighting the weeks by livetime, the average

DNN energy resolution is 3.40 % (2.97 %) for Phase-I (Phase-II) whereas that of the traditional

EXO-200 reconstruction is 3.46 % (3.06 %). The relative improvement of the DNN over the

traditional EXO-200 reconstruction is 1.7 % (2.9 %) for Phase-I (Phase-II). The variation over

time of both reconstruction methods is on a similar level and is dominated by variations in the

conditions from operating the detector.
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Figure 4.15: The weekly charge-only energy resolution at the 208Tl full absorption peak for

SS events is shown in the top panels. The left panels show Phase-I of EXO-200 operation

and the right ones Phase-II. The cathode voltage is −8 kV (−12 kV) in Phase-I (Phase-II).

The bottom panels show the relative improvement of the DNN over the traditional EXO-200

reconstruction. Horizontal lines in all panels indicate the mean values.

The weekly calibration of the energy scale is merged into an average calibration by smearing

the MC simulated spectra by the weekly resolution parameters, weighted by the livetime in each

week. Measured data from different calibration sources located at different source positions

is combined to reflect positions near the cathode (S5, S11) and near the anodes (S2, S8) (see

Figure 2.13b). Both classes are then weighted uniformly in the average calibration to account for

spatial differences. To account for time and position-dependent variations, the calibration and

resolution functions used for the average calibration are extended by a quadratic term [51]:

E(E0) = p0E + p1EE0 + p2EE
2
0 (4.6)

σ2(E) = σ2
elec + p2

1RE + p2
2RE

2 . (4.7)

The average charge-only energy resolution of the DNN for SS events is σ/Q = 3.33 % (2.85 %)

for Phase-I (Phase-II). Compared to the resolution of the traditional EXO-200 reconstruction,

this represents an improvement of 1.5 % (3.4 %).

The calibrated SS charge-only energy spectra of 60Co, 226Ra, and 228Th calibration sources

in Phase-II of EXO-200 operation are shown in Figure 4.16 (top panel). The spectra by the

DNN and the traditional EXO-200 (not shown) reconstruction agree well. Measured data and

MC simulations show overall good spectral agreement within 20 % for both reconstruction

methods (bottom panel). Below 1100 keV and in the region between the 208Tl full absorption

peak and its Compton edge, the simulation shows slightly worse agreement in both reconstruction

methods. The second discrepancy is well known in EXO-200 data analysis. The DNN shows

slightly improved agreement for 226Ra source calibration data compared to the traditional

EXO-200 reconstruction. The overall very similar spectral agreement between measured data
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Figure 4.16: The top panel shows the calibrated charge-only energy SS spectra of calibration

sources (60Co, 226Ra, 228Th) reconstructed by the DNN in measured data (circles) and MC

simulations (lines). The bottom panel shows the ratios between measured data and MC

simulations for the DNN (solid) and the traditional EXO-200 (open) reconstruction.

and MC simulations for DNN and the traditional EXO-200 reconstruction confirms an unbiased

ionization energy measurement of the DNN on data.

The DNN reconstruction in terms of spatial detector uniformity as a function of the event

position is shown in Figure 4.17. It is shown as a function of the radial plane R and the

height Z for 228Th source calibration SS data. Additionally, the projections are shown. The

event position is determined in EXO-200 reconstruction. The detector is split into slices in Z

and R so that all segments contain the same volume. The energy resolution σ/E at the 208Tl

full absorption peak at 2615 keV shows a trend toward better resolution near the walls. In Z,

the resolution is mostly flat over the detector. Overall, the variations observed over the detector

volume are on the same level compared to the traditional EXO-200 reconstruction. Compared

to the trend in Z that is observed in MC simulations, the effect of diffusion is subdominant in

data. This is due to the anti-correlated fluctuation of ionization and scintillation signals which

smears the energy measurement of both signatures. Improving the energy measurement by

combining both channels will be discussed in the next section.
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Figure 4.17: The energy resolution σ/E at the 208Tl full absorption peak from calibration

SS data recorded with a 228Th source is shown as a function of the radius R and the height Z

in the center panel reconstructed by the DNN. The top and right panels show the projections

for the DNN (blue) and, in addition, for the traditional EXO-200 (red) reconstruction. As

opposed to MC simulations, the true event position is unknown in measured data. Instead,

the event position as reconstructed by EXO-200 is used.

4.3.1 Combination of ionization and scintillation signatures

The signatures of ionization charge and scintillation light fluctuate due to a varying fraction of

recombination of secondary electrons in the liquid xenon. This effect is discussed in Section 2.2.2.

By measuring both signatures and combining them, these fluctuations cancel and the energy

measurement becomes more precise compared to those of the individual channels. The correlation

in both channels is shown in Figure 4.18. The optimum energy variable is calculated by joining

both channels to a “combined energy”

Ecomb = EI · cos θ + ES · sin θ , (4.8)

where EI is the energy measured in the ionization channel and ES is the scintillation channel.

The angle θ is used to combine the two energy measurements EI and ES. The angle is chosen

to minimize the energy resolution at the Q value.

The optimum angle θ is identified on a weekly basis from 228Th source calibration data in

a three-step scan. An initial coarse scan over θ is followed by two finer scans near the found

optimum angle from the previous step. For each angle, a MC based fit to the combined energy

spectrum determines the energy resolution at Q. Figure 4.19 shows an example MC based fit

to the energy spectrum after combination by the corresponding optimum angle. This energy

spectrum resolves peaks considerably better compared to the charge-only energy spectrum

of corresponding data shown in Figure 4.14. For each scan over different angles, the energy
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Figure 4.18: The center panel shows the correlation of scintillation energy and DNN ionization

energy for 228Th calibration data. The color denotes the intensity and is set to gray for

low intensities for clarity. The top and right panels show the projections to both axes. By

optimally combining both signatures, the anti-correlated fluctuations cancel and the energy

resolution is improved significantly which is best visible at the 208Tl full absorption peak

at 2615 keV.

resolution at Q as a function of the angle is fitted by a quadratic function. Figure 4.20 shows

the procedure for determining the optimum angle θ for an example week.

After determining the angles that optimally combine ionization and scintillation signals, the

subsequent calibration procedure is identical to the one described in Section 4.3 for ionization

signals. A linear calibration is applied on a weekly basis from 228Th source calibration data. The

weekly energy resolution σ/E observed at the 208Tl full absorption peak in SS events measured

with a 228Th calibration source is shown in Figure 4.21. The improvement in energy resolution

in Phase-II is due to improvements to electronics and to the raised electric field strength.

The stability in energy resolution in Phase-II is improved by upgraded frontend electronics

of the APDs that reduce the readout excess noise which caused the fluctuations in Phase-I.

The weekly energy resolution of the DNN reconstruction outperforms that of the traditional

EXO-200 reconstruction in almost every week. Without weighting the weeks by livetime, the

average DNN energy resolution is 1.33 % (1.05 %) for Phase-I (Phase-II) whereas that of the

traditional EXO-200 reconstruction is 1.37 % (1.12 %). This represents a relative improvement
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Phase-II for SS events. The energy is calculated by combining the ionization and scintillation

measurements. The spectrum predicted in MC simulations is shown in red. The energy

calibration and resolution functions are fitted simultaneously.
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Figure 4.20: Combined energy resolution σ/Q as a function of the angle θ. After a coarse

scan (a), the angle is scanned in the next step (b) near the optimum angle (yellow) determined

by fitting a quadratic function (blue) to data (black). Finally, the best-fit angle (red star) of

the fine scan (c) is used to combine ionization and scintillation energy measurements.
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Figure 4.21: The top panels show the weekly energy resolution at the 208Tl γ line for SS events

after combining the ionization and scintillation signals. The left panels show Phase-I of

EXO-200 operation and the right ones Phase-II. The cathode voltage is −8 kV (−12 kV) in

Phase-I (Phase-II). The bottom panels show the relative improvement of the DNN over the

traditional EXO-200 reconstruction. Horizontal lines in all panels indicate the mean values.

of the DNN reconstruction of 2.9 % (6.3 %) for Phase-I (Phase-II) over the traditional EXO-200

reconstruction. The weekly calibration from 228Th calibration data is then used to determine an

average calibration from all source calibration data following Equation 4.6 and 4.7. The average

energy resolution of the DNN for SS events is σ/Q = 1.22 % (1.01 %) for Phase-I (Phase-II).

For comparison, the resolution of traditional EXO-200 reconstruction is 1.35 % (1.15 %). This

represents a relative improvement in energy resolution of the DNN over the traditional EXO-200

reconstruction by 10 % (12 %) for Phase-I (Phase-II). The calibrated SS energy spectra of
60Co, 226Ra and 228Th calibration sources in Phase-II of EXO-200 operation are shown in

Figure 4.22 (top panel). The spectra by the DNN and the traditional EXO-200 (not shown)

reconstruction agree well. Measured data and MC simulations show an overall good spectral

agreement within 20 % for both reconstruction methods (bottom panel). The discrepancy at

the low energy tail of the 208Tl γ line is known for several EXO-200 analyses and is present in

both reconstruction methods. The overall similar spectral agreement for both methods confirms

an unbiased and robust energy measurement of the DNN.

The energy resolution σ/E as a function of energy is shown in Figure 4.23 for Phase-II of

EXO-200 operation. In general, the resolution improves with increasing energy for both DNN

and traditional EXO-200 reconstruction. The resolution is degraded in MS events compared to

SS events. The resolution of the DNN is improved by about 2 % throughout the entire energy

range over the traditional EXO-200 reconstruction. In SS events, the resolution from the DNN

measurement outperforms that of the traditional EXO-200 reconstruction. In Phase-I, the

improvement increases from 1 % at 1000 keV to 12 % at 3000 keV. In Phase-II, the corresponding

improvement is from 4 % to 14 % in that energy range. A key contribution to the improvement

is understood to be the improved disentangling of mixed collection and induction signals
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Figure 4.22: The top panel shows the SS energy spectra after combining the ionization and

scintillation signals of calibration sources (60Co, 226Ra, 228Th) reconstructed by the DNN in

measured data (circles) and MC simulations (lines). The bottom panel shows the ratios of

measured data and MC simulations for the DNN (solid) and the traditional EXO-200 (open)

reconstruction.

with the DNN (see Section 4.2.3). Since induction signals on U-wires occur more often with

increasing energy, the improvement in energy resolution becomes larger with increasing energy.

At Q = 2458 keV, the improvement in energy resolution with the DNN is 10 % (12 %) in

Phase-I (Phase-II) over the traditional EXO-200 reconstruction. The energy resolution at Q as

a function of the date of submission is shown in Figure 4.24. It shows previously published

analyses of EXO-200 together with the results of the DNN presented here. For a fair comparison,

only analyses that use the MC based fit calibration procedure are shown. These include the

2νββ search published in 2014 [51] and the 0νββ searches published in 2014 [49], 2018 [91],

and 2019 [14]. This comparison reveals the big improvement in energy resolution with the DNN

reconstruction in both phases of EXO-200 operation.
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Figure 4.23: The energy resolution σ/E as a function of the energy is shown separately for

SS (dark, bottom curves) and MS (light, top curves) events in Phase-II for the DNN (blue) and

the traditional EXO-200 (red) reconstruction. The bands (shaded) indicate the fluctuations

observed from weekly calibrations. The ROI, Q± 2σ, defined by the traditional EXO-200

reconstruction is indicated as green band. The ROI defined by the DNN is not shown

separately as it is only slightly smaller.
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Figure 4.24: The energy resolution σ/Q at Q = 2458 keV for SS events is shown as a function of

the date of submission. The results of the traditional EXO-200 reconstruction are shown (cir-

cles) and those of the DNN (stars). Results for Phase-I (purple) and Phase-II (green) are

shown separately.
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4.3.2 Background reduction in the ROI of 0νββ

Besides improving the energy resolution, the DNN also improves the capability to disentangle

complex signatures of mixed collection and induction signals compared to the traditional

EXO-200 reconstruction [70]. This ability recovers energy in mixed signals that is partially

missed by the traditional EXO-200 reconstruction. For MC simulations, this is discussed in

Section 4.2.3.

A dominant background contribution in the ROI around the Q value of 136Xe are events that

originate from naturally occurring 232Th decay chain components. These arise in the materials

surrounding the liquid xenon. This contribution includes the 208Tl γ line at 2615 keV. Missing

a fraction of energy in reconstruction for these events presents an immediate risk of increasing

the background contribution B in the ROI. Since the background contribution is related to the

half-life sensitivity for a particular isotope exposure via T 0ν
1/2 ∝ 1/

√
B (see Equation 2.11), this

directly affects the 0νββ half-life sensitivity of EXO-200.

The improvement in 0νββ half-life sensitivity from the reduced contribution of 232Th decay

chain events in the ROI can be estimated using 228Th source calibration data. This data

also presents the 208Tl γ line that is expected to leak into the ROI if energy is missed in

reconstruction. Figure 4.25 shows the corresponding SS energy spectra (top panel). The bottom

panel shows the ratio of the DNN and the traditional EXO-200 reconstruction. The ROI is

usually defined as the region of Q ± 2σ. Due to improvements to energy resolution and to

disentangling mixed collection and induction signals, this ratio falls below one in the ROI.

This indicates a reduction of background events using the DNN over the traditional EXO-200

reconstruction. The relative improvement to the half-life sensitivity can be estimated by:

TDNN
1/2

TTrad
1/2

=

√
BTrad

BDNN
. (4.9)

To assess the background in the ROI, the best-fit values of the background determined in

the most recent EXO-200 0νββ search are used [14]. The fit concept is discussed in Section 6.1.

The background component specific to 232Th, BTrad
Th−232, is scaled by the relative reduction of

events ηDNN of the DNN over the traditional EXO-200 reconstruction observed in 228Th source

calibration data. The contribution from other background components, being mostly events

from the 238U decay chain and from 137Xe, are left unchanged. The estimated background

using the DNN reconstruction is:

BDNN = BTrad −BTrad
Th−232 · ηDNN , (4.10)

with the best-fit value of number of events for the total background in the ROI BTrad = 32.3± 2.3

(30.9± 2.4) for Phase-I (Phase-II). The corresponding number of the 232Th background contri-

bution is BTrad
Th−232 = 10.0 (8.2) [14].
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Figure 4.25: The top panel shows the SS energy spectra of 228Th source calibration

data recorded in Phase-I of EXO-200 operation for the DNN (blue) and the traditional

EXO-200 (red) reconstruction. The lower panel shows the ratio of both methods. Colored

vertical lines represent the ROI, Q± 2σ, around the Q value (black).

Table 4.2 shows the reduction of background events ηDNN in the ROI and the corresponding

estimation on the improvement to half-life sensitivity. With this simplified measure for half-

life sensitivity improvement, the DNN is better by 4.3 % (2.9 %) for Phase-I (Phase-II). The

improvement is larger in Phase-I compared to Phase-II since the relative background contribution

of 232Th is larger. In addition, the energy resolution in Phase-I is worse which broadens the

ROI around the Q value and the dominant 208Tl γ line.
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Table 4.2: Estimation of half-life sensitivity improvement from reduced 232Th background levels

in the ROI with the DNN over the traditional EXO-200 reconstruction. The numbers are

evaluated for 228Th source calibration SS data that also presents the 208Tl γ line. “Fixed ROI”

represents the results based on the ROI of the traditional EXO-200 reconstruction and

“new ROI” those of the ROI determined from the corresponding energy resolution at the

Q value.

Type
Resolution Reduction η of Sensitivity

σ/E @ 232Th events in improvement

2615 keV 2458 keV fixed ROI new ROI

Phase-I
Trad 1.29 % 1.35 % – – –

DNN 1.16 % 1.22 % 13.7 % 26.1 % 4.3 %

Phase-II
Trad 1.11 % 1.15 % – – –

DNN 0.97 % 1.01 % 7.4 % 20.8 % 2.9 %

4.4 Summary

In this chapter, an alternative approach was presented for the reconstruction of the ionization

energy in the EXO-200 detector. The new reconstruction method is based on a deep neural

network (DNN). Several performance checks validate a robust energy reconstruction of the

developed DNN. However, performing the training with ill-suited data can introduce a bias.

These problems were mitigated successfully by a careful composition of the training dataset.

In terms of spatial uniformity, the DNN shows very similar performance on MC simulations

and on measured data compared to the traditional EXO-200 reconstruction. The stability in

time of the DNN reconstruction shows a similar variation as that of the traditional EXO-200

reconstruction which implies that it is dominated by variations in the operation of the detector.

These tests confirm the robust energy reconstruction by the DNN on both MC simulated and

measured data.

The energy resolution observed with the DNN based energy measurement outperforms

that of the traditional EXO-200 reconstruction for both MC simulated and measured data

in both phases of EXO-200 operation. The improvements in reconstructing the ionization

energy translate to improvements in the combined energy measurement of ionization and

scintillation. Both energy measures, from ionization only and from the combination with the

scintillation measurement, show good spectral agreement between measured data and MC

simulations for source calibration data. The big improvement in energy resolution of 10 % (12 %)

in Phase-I (Phase-II) with the DNN reconstruction shows the strong potential of DNN based

methods for other complex analyses. The promising results presented here further pave the

way for evaluation of a potential improvement to the 0νββ half-life sensitivity using the DNN

based energy reconstruction. This study is presented in Chapter 6.
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This chapter presents several deep neural network (DNN) based concepts to discriminate double

beta decays from the most dominant background in EXO-200 which is γ interactions. After

discussing the design choices made to train the DNN for this task, the performance of the DNN

is validated in Monte Carlo (MC) simulations. The DNN is compared to the boosted decision

tree (BDT) based discriminator that was used in the EXO-200 0νββ search in 2018 [91]. The

spectral agreement between measured data and MC simulations is evaluated for signal and

background events.

The study presented in this chapter contribute to the publication “Search for Neutrinoless

Double-Beta Decay with the Complete EXO-200 Dataset” [14] published in Physical Review

Letters (PRL).
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5.1 Goal and design of study

5.1.1 Motivation and training data preparation

Having multiple parameters to discriminate candidate 0νββ decays from other interactions is a

very important feature of the EXO-200 experiment. This implies that the EXO-200 experiment

is not a simple counting experiment but pursues a multi-parameter analysis. Since most

backgrounds originate from γ sources external to the xenon volume, the spatial distribution

contains additional information on the signal type. In previous analyses, this information was

captured via the so-called standoff distance rSD which measures the minimum distance of an

event to the closest material surface excluding the cathode. Furthermore, the detailed shape

and topology of signals can be used to discriminate double beta (ββ) decays from γ particle

interactions. This information was first captured via a boosted decision tree (BDT) in Ref. [92]

and was later used in the EXO-200 0νββ search in 2018 [91] which led to an improvement in 0νββ

half-life sensitivity of ∼15 %. This large improvement from a signal-background discriminator

motivates the evaluation of a deep neural network (DNN) based discriminator.

Different design choices are possible for this discriminator. The design choices of the baseline

concept are made to pursue the following goals, while alternative concepts will be discussed in

Section 5.4.

1. Maximizing the topological discrimination power between signal ββ decays and background

γ particle interactions.

2. Being able to evaluate the DNN in both measured data and MC simulations as well as

for signal and background events.

3. Keeping a reasonable level of spectral agreement between measured data and MC simula-

tions in the DNN discriminator variable.

The first goal, maximizing the discrimination power of ββ and γ events, is achieved by training

the DNN over the energy range of 1000 – 3000 keV. In particular, the discriminator does

not focus on 0νββ events at Q = 2458 keV but is trained over a broad energy distribution.

The signal ββ and background γ events are simulated to have the same spatial and energy

distributions. That way, the discrimination is based on topological features only. By this design

choice, the DNN does not know about differences in spatial distributions between ββ decays and

γ interactions. While ββ decays occur uniformly in the detector volume in low-background (LB)

physics data, γ interactions occur mostly close to material surfaces. The definition of single-

site (SS) and multi-site (MS) events that is used as a binary classifier in EXO-200 data analysis

is not known to the DNN explicitly. However, the DNN is expected to learn a highly correlated

and continuous representation of this definition implicitly.

The second goal motivates the design of a general ββ over an explicit 0νββ discriminator.

Discriminators of both designs can be validated on MC simulations. With a ββ discriminator,

the signal class can be validated with measured 2νββ data. However, for a 0νββ discriminator,

corresponding measured data is not available which can be used for validation since it is a

hypothetical decay. For background events, measured data is available for validation from

source calibration measurements.
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Figure 5.1: Re-generated U-wire waveforms of the identical example event shown in Figure 4.1.

The channel amplitudes are shown as a function of time. The channels are offset for clarity.

The gray channels do not contain signals and are exactly zero.

The third goal is to keep the spectral agreement between measured data and MC simulations

on an acceptable level. This implies that any DNN concept that utilizes the raw V-wire signals

is disfavored since they are not modelled in MC simulations to the precision of the U-wires.

Nevertheless, alternative DNN concepts that use V-wires are discussed in Section 5.4. Also,

due to this third goal, two DNN concepts are pursued in this study that differ by their input

images:

DNN-Raw is fed with the identical images as the DNN used for energy measurement discussed

in Chapter 4. An example event is shown in Figure 4.1. The inputs for this DNN concept

are grayscale images built by arranging neighboring U-wire channels next to each other

and encoding the raw amplitudes of the U-wire waveforms as pixel values for both TPCs

separately. This approach has the advantage of not relying on the traditional EXO-200

reconstruction as it directly exploits the raw waveforms.

DNN-Recon is fed with images where the raw waveforms are replaced by those that are

re-generated from the best-fit signals of collection and induction templates found by the

traditional EXO-200 reconstruction. An example event for this concept is shown in Figure 5.1

where the identical event for the DNN-Raw concept is shown in Figure 4.1. The DNN-Recon

concept is pursued in order to mitigate inaccuracies in modelling the raw U-wire signals in

MC simulations. Further, the prediction of this DNN discriminator is guaranteed to be based

only on features already known to the traditional EXO-200 reconstruction which supports the

understanding of the DNN discriminators performance. On the other hand, the discrimination

power may be limited by the precision of the traditional EXO-200 reconstruction. In particular,

this applies to small energy deposits captured by DNN-Raw that are below the threshold

of EXO-200 reconstruction. It also applies to entangled collection and induction signals

where DNN approaches proved to outperform the traditional EXO-200 reconstruction (see

Section 4.2.3).

In fact, the same dataset was used for training the discriminator DNNs as for the DNN used

for energy measurement that is discussed in Chapter 4. The training data is produced in MC

simulations for two classes of events: background-like, composed of γ particle interactions with
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a uniform energy distribution in the range of 1000 – 3000 keV; and signal-like 0νββ decays with

a random decay energy Q restricted to the same energy range. The locations of the interactions

of both event classes are simulated uniformly in the detector volume to focus discrimination

on the topological event characteristics only. The dataset is populated evenly with events of

both classes and is divided into statistically independent datasets for training (90 %) and for

validation (10 %).

5.1.2 Network architecture and training

The basic concept of the DNN architecture and the way the input data is processed and fed to

it is equivalent to the approach described in Section 4.1.2. Again, the U-wire images of both

TPCs are fed to the DNN separately where each image has a dimension of 350 × 38 pixels.

Both images pass through the same layers with the same mathematical operations applied

to them in order to reduce the number of free parameters of the DNN. Both TPC branches

are concatenated immediately before the output of the DNN. The architecture that is used

is inspired by the Inception architecture which was proposed by Google [84]. The concept of

Inception is built on Convolutional Neural Networks by combining convolutional layers with

different sized receptive fields in parallel. With this approach, the DNN is able to capture both

small and big features at the same time. These parallel feature maps are merged before being

fed to the subsequent layer.

The complete architecture consists of a stem followed by 10 Inception blocks. The stem

consists of 3 convolutional layers with 32, 32 and 64 kernels and a (4, 2) maximum pooling

layer before the last convolutional layer. The Inception part includes 3 maximum pooling layers

after the 2, 4 and 6 Inception blocks with (2, 2), (2, 1) and (2, 1) pool sizes in order to reduce

the spatial dimensions intentionally. To maintain the spatial dimensions in the convolutional

operation, zero padding is applied to each layer. This operation surrounds the image with

zeros. Also, batch normalization is applied with each convolutional layer. This technique acts

as a regularizer that helps to prevent overfitting and renders the training more robust [93].

After the last Inception block, the spatial average of each feature map is calculated rather

than applying a fully connected part. This design choice helps to prevent overfitting during

training. By removing the spatial information, the DNN is more robust to spatial translation

in the input image, i.e. in the detector volume [94]. The vectors which contain the averages

over feature maps from both TPC branches are concatenated and fed to the last layer which

is responsible for the final discrimination. Throughout the network, the ReLU(x) = max(x, 0)

activation function is used. In the last classification layer the softmax activation function is

used instead:

σ(z)i =
ezi∑K
j=1 ezj

for i = 1, . . . ,K and z = (z1, . . . , zK) . (5.1)

The softmax function maps each component zi of a non-normalized input vector z to the

interval σ(z)i ∈ (0, 1) while ensuring
∑K

i=1 σ(z)i = 1. This activation function is commonly

used for classification tasks as it allows to interpret the outputs of the DNN as a probability

distribution over the predicted output classes. Trainable weights are initialized using the Glorot

algorithm [80] discussed in Equation 3.14. The DNN architecture is implemented with the
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Figure 5.2: The network architecture used for the DNN-Raw and DNN-Recon concepts. The

input consists of two images with a dimension of 350× 38 pixels each. A stem containing

3 convolutional layer is followed by 10 Inception blocks. Each block includes parallel

convolutional layers with receptive fields of different sizes in order to be sensitive to different

sized features. The resulting feature maps are concatenated at the end of the block. The

spatial dimensions of the feature maps are reduced at several steps to save computation time.

The final feature maps are transformed into a one-dimensional array. Both branches which

contain information from the individual TPCs share the same network weights. Before the

final output, the units of both branches are concatenated. The last layer has two units which

correspond to the probability of the event belonging to either signal or background class.

Keras library [88] using the Tensorflow backend [89]. The architecture is shown in Figure 5.2.

In MC simulations, the target variable is known. Background γ events are assigned to class 0

and signal ββ events to class 1. The dissimilarity between the target distribution p and the

predicted distribution q can be described by the cross entropy H (p, q):

H (p, q) = −
K∑
k

p(k) log (q(k)) , (5.2)

where K is the number of classes. In training, the Adam optimizer [90] is used to minimize the

mean cross entropy L over a batch of N samples:

L =
1

N

N∑
i

H (pi, qi) . (5.3)
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Figure 5.3: The loss curves of the training of DNN-Raw used for Phase-II (a) in validation (red)

and training (blue) data. Both curves are used to monitor potential overfitting which is

not observed here. In parallel, the accuracy (b) is monitored which reflects the fraction of

correctly identified events.

For classifiers with only two classes (K = 2), the predicted and target values of both classes

can be written as p ∈ {py=1 = y, py=0 = 1− y} and q ∈ {qy=1 = ŷ, qy=0 = 1− ŷ}. Then, the

mean cross entropy can be written as [71]:

L = − 1

N

N∑
i

[yi log (ŷi) + (1− yi) log (1− ŷi)] . (5.4)

Both DNN concepts (DNN-Raw and DNN-Recon) are trained on the identical events in MC

simulations and with the identical DNN architecture and training procedure. The only difference

is the input images. There are two DNNs trained for each DNN concept since EXO-200 was

operated in two phases with slightly different conditions. This helps to optimally capture all

features available in training data for the individual phases. However, the DNNs of both phases

of EXO-200 operation are identical in terms of DNN architecture, training data production, and

training directives. The training curves of DNN-Raw used for Phase-II are shown in Figure 5.3.
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5.2 Performance on Monte Carlo simulated data

The performance of both DNN concepts, DNN-Raw and DNN-Recon, is validated in MC

simulations. For this, the 10 % from the training dataset reserved for validation is used. In

addition, MC simulations that correspond to measured data, like 2νββ or source calibration

data, are used.

The distributions of the DNN-Raw discriminator from the validation dataset are shown in

Figure 5.4. They are separated by the target variable into background (blue) and signal (red)

class. Besides showing all events from the dataset (left), the corresponding distributions are

shown for SS (center) and MS (right) events. Although, the SS/MS definition used in EXO-200

data analysis is already a binary classifier used to discriminate signal ββ from background γ

events, the DNN can access additional discrimination power in both channels.

To infer the discrimination power of a binary classifier, a common measure is the receiver

operating characteristic (ROC) curve [95, 96]. It shows the signal efficiency as a function of

the background rejection power as the cutoff value is varied. DNN discriminators, like other

continuous discriminators, can be converted to binary classifiers by introducing a cutoff value

that maps the predictions to either class. A perfect discriminator produces a point in the ROC

curve at (1, 1). This implies that there is no loss in signal efficiency while the background is fully

rejected. A random discriminator would produce points along the bisector of the ROC curve

where the loss in signal efficiency changes linearly with the background rejection. To compare

ROC curves, the area under the curve (AUC) can be used to condense the discrimination

power to a single number. While a perfect discriminator would have an AUC of 1, the random

discriminator has an AUC of 0.5. However, condensing the performance of a discriminator

to a single number represents a loss of information and may promote misinterpretation [97].

Since the ROC curve depends on the prevalence of both classes, here, it is only used to directly

compare different discriminators based on the same data. Also, datasets with a high imbalance

between the classes must be interpreted with high caution [97]. Various metrics exist to analyze

and interpret discriminators and classifiers besides ROC analysis [98].
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Figure 5.4: Distribution of the DNN-Raw variable in Phase-II for signal (red) and back-

ground (blue) validation events. (a) shows all events, (b) and (c) only those belonging to

the SS and MS class, respectively.
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The conversion from a continuous discriminator to a binary classifier causes a loss of informa-

tion. It is no longer known how reliable the prediction was. If the DNNs were used as binary

classifiers, a common concept is to select the cutoff value based on the Youden’s J statistic [99].

Graphically, the optimum cutoff value can be chosen by maximizing the height above the chance

line of a random discriminator.

The ROC analysis is only used as initial metric to evaluate the performance of different DNN

discriminator concepts and to compare them to alternative approaches existing in EXO-200

data analysis. The final metric relevant for EXO-200 is the 0νββ half-life sensitivity that is

discussed in Chapter 6.

5.2.1 Comparison of DNN and EXO-200 BDT

To evaluate their performances, both DNN concepts are compared to the BDT discriminator

which was used in the EXO-200 0νββ search in 2018 [91]. This BDT was only used in SS

events as toy studies indicated no additional improvement to 0νββ half-life sensitivity when

using it in MS events. The BDT comprises two variables which contain topological information

and another variable which contains spatial information. Topological variables were chosen

to describe the extent of signals in Z dimension via the rise time of U-wire signals and in

U dimension via the number of affected U-wire channels. The spatial information is captured

via the standoff distance [91].

In contrast to the training dataset, in low-background (LB) physics data, γ particles originate

from sources external to the xenon. Thus, γ interactions predominantly occur close to material

surfaces while 2νββ and hypothetical 0νββ decays occur uniformly distributed in the xenon

volume. By design, the DNN discriminators do not capture this spatial difference but focus

on topological discrimination only. Different DNN concepts which capture spatial information

are discussed in Section 5.2.2. Thus, for a fair comparison of DNN and BDT discriminators,

the DNN discriminator is combined with the standoff distance in order to also include spatial

discrimination power. Both variables are wrapped in a BDT discriminator. Their distributions

for LB data in MC simulations are shown in Figure 5.5. This approach is only used for

qualitative performance checks and comparisons in this chapter. The half-life sensitivity to 0νββ

for analysis configurations including a DNN discriminator is discussed in Chapter 6. Alternative

DNN based concepts that directly exploit spatial information are discussed in Section 5.4.

Figure 5.6a shows the ROC curves of the DNN-Raw and the BDT discriminators. It shows

LB physics data in MC simulations consisting of 0νββ decays and background events from the

dominant background in the ROI of 0νββ which is from the decay chains of 232Th and 238U.

The AUC of the DNN exceeds that of the BDT. However, there are points of the ROC curves

where the BDT outperforms the DNN by also capturing spatial information. This deficit

is compensated by the discriminator that combines the DNN-Raw and the standoff distance

variable. This discriminator then covers naturally the pure DNN but also the BDT discriminator

at all points of the ROC curve. This implies an improved discrimination of ββ and γ events with

the DNN based approach over the BDT based approach and suggests a potential improvement

to 0νββ half-life sensitivity.
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Figure 5.5: Distribution of the DNN-Raw variable in Phase-II for SS events (a). Signal

events are simulated 0νββ decays (red) while background events (blue) represent the main

γ background to the ROI of 0νββ from 232Th and 238U. The standoff distance contains

information about the spatial distribution of both event classes (b). Combining both

variables to a more powerful discriminator in a BDT allows to consider both topological and

spatial information (c).
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Figure 5.6: ROC curves of several discriminators for SS events from the dominant background

in the ROI and 0νββ decays in MC simulations. The area under the curve is given in

brackets. The ROC curve of DNN-Raw (green) improves after including spatial information

via the standoff distance (red). It then completely covers the curve of the BDT (blue)

that was used in the EXO-200 0νββ search in 2018 [91] (a). Combined with the standoff

distance, DNN-Recon (pink) also outperforms the BDT while showing a slightly degraded

discrimination power compared to DNN-Raw (b).

Figure 5.6b shows the ROC curves comparing DNN-Raw and DNN-Recon, both combined

with the standoff distance, and the BDT used in the EXO-200 0νββ search in 2018 [91]. The

DNN-Recon concept yields a slightly degraded discrimination power compared to DNN-Raw.

This is expected since DNN-Recon is limited to the precision of EXO-200 reconstruction

whereas DNN-Raw can fully exploit any information available in the raw waveforms. Both

DNN discriminator concepts outperform the BDT discriminator at all points of the ROC curve

which implies potential for improving the 0νββ half-life sensitivity with DNN discriminators.
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Figure 5.7: Comparison of ROC curves of BDT [91] and DNN-Raw combined with standoff

distance for all (a), 1 U-wire (b), and 2 U-wire (c) SS events. The area under the curve is

given in brackets.

In order to evaluate why the DNN discriminators in combination with the standoff distance

variable outperform the BDT discriminator, the dataset of SS events is further divided into two

distinct classes. Figure 5.7 shows the comparison of ROC curves of DNN-Raw and the BDT

for all SS events (left), and for those affecting only 1 (center) or 2 (right) U-wires. Most of the

improvement of the DNN based approach is seen for 2 U-wire SS events for which the BDT

discriminator is less powerful. This becomes clear by the ROC curves and when comparing

their AUC values. On the other hand, the DNN has an even improved discrimination power

for 2 compared to 1 U-wires events. The inferior performance of the BDT on these events is

understood from the fact that for each reconstructed signal an individual rise time is measured.

But since the BDT only takes scalar values as input, two values are condensed to a single number

by taking the maximum value. This represents a loss of information for the BDT discriminator.

On the other hand, for these events, the DNN discriminator uses both signals and can therefore

constrain the spatial extensions even better than for 1 U-wire events. Extensions to the BDT

that focus on improving the discrimination power in particular for 2 U-wire SS events were

discussed internally in EXO-200. However, they did not reach the discrimination power of the

DNN based approaches.

Both DNN concepts, DNN-Raw and DNN-Recon, outperform the BDT discriminator used in

the EXO-200 0νββ search in 2018 [91] in terms of discrimination power. The big advantage of

the DNN over the BDT is that it alleviates the need to manually engineer weak discriminator

variables from the raw data. Instead, it allows for using the raw data directly as input. This

is of particular benefit for complex event signatures which contain multiple and potentially

overlapping signals. For these events, the BDT shows degraded performance whereas that of

the DNNs even improves. The DNN-Recon concept has the advantage that its predictions are

guaranteed to be completely based on information that is known to EXO-200 reconstruction.

This makes it more comprehensible than the DNN-Raw concept. Instead of re-generating the

input images for the DNN-Recon concept, the best-fit parameters from template fits to the

raw waveform traces could be directly used as input to a DNN. This would bypass the need

to re-generate the entire event and would reduce the input to a few numbers. However, the
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approach presented here offers a natural solution of local correlation and to handle a varying

numbers of signals in events. Further, criticism of DNNs being a black-box can be addressed

by this concept more easily than for the DNN-Raw concept. As only certain signal types can

be re-generated for the input to DNN-Recon, their effects on the DNN’s prediction can be

evaluated easily. For example, this includes the effect of induction U-wire signals on the DNN

prediction. Of course, the DNN’s discrimination power is limited to the precision of EXO-200

reconstruction which explains the slightly degraded performance compared to DNN-Raw.

5.2.2 DNN validation

To gain insight into the DNN, its performance is evaluated for different scenarios in MC

simulations. These tests verify a robust performance by showing that the prediction is correlated

to physically relevant topological features that distinguish ββ from γ events. Furthermore,

potential biases of the DNN may be revealed by these tests.

The correlation of the DNN discriminator is evaluated as a function of the true event size. For

this test, the spatial dimension is determined in MC simulations. The event size represents the

maximum distance between energy deposits in liquid xenon that exceed the detection threshold

of ∼20 keV. ββ decays tend to have a smaller spatial extension than γ particle interactions.

This can be understood from the fact that γ interactions produce a single photo-electron via

photoelectric effect which contains the total deposited energy. On the other hand, the energy

in ββ decays is partitioned over two electrons. Both electrons usually comprise angles of less

than 180° and the range of electrons does not scale linearly with energy, leading to smaller

spatial extensions of ββ over γ events on average. In addition, γ particles often interact multiple

times in the detector volume via Compton scattering effect, leading to multiple spatially distinct

energy deposits. Both ββ and γ events may produce additional small, separated energy deposits

due to bremsstrahlung. The distribution of spatial extensions of 2νββ and 226Ra calibration

data in MC simulations is shown in the top panel in Figure 5.8 for all events, i.e. for SS and

MS events. The hypothesis is that the DNNs capture the differences in spatial extension of

ββ and γ events and correlate their predictions on these differences. The bottom panel in

Figure 5.8 shows the fraction of correctly predicted events for DNN-Raw and DNN-Recon

of both signal 2νββ and background 226Ra events as a function of the true event size. The

predictions of the DNN are converted into classifications with the cutoff value determined

from the Youden’s J statistic [99]. Basically all signal events with small spatial extension

and background events with large spatial extension are classified correctly. This confirms the

hypothesis that the DNNs strongly correlate their predictions to the event size. The offset in

the curves between DNN-Raw and DNN-Recon is expected to arise from the finite precision of

EXO-200 reconstruction, especially for small energy deposits.
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Figure 5.8: The top panel shows the distributions of event sizes which are known in MC

simulations for signal 2νββ (blue) and background 226Ra (green) events. The filled areas

show the distributions that are classified correctly by DNN-Raw. The prediction cutoff value

is determined based on the Youden’s J statistic [99]. The bottom panel shows the fraction

of correctly classified events for DNN-Raw (dark) and DNN-Recon (light).

By design, the DNN discriminators should not be biased spatially since they are trained

on uniformly distributed events in the detector volume. In LB physics data, hypothetical

signal 0νββ events are indeed distributed uniformly in the xenon volume, whereas the dominant

background γ particles originate from the materials of the TPC vessel. Thus, background

γ events mostly occur close to the detector walls. The top panel in Figure 5.9 shows the standoff

distance distribution for signal 2νββ and background 226Ra events in MC simulations. The bins

are chosen to contain an equal xenon volume. The bottom panel shows the fraction of correctly

classified events for DNN-Raw and the BDT used in the EXO-200 0νββ search in 2018 [91].

The cutoff value is determined analogously to Figure 5.8. Unlike the BDT which explicitly

uses spatial information, the DNN-Raw discriminator variable is independent of the standoff

distance. This confirms that the DNN is not biased spatially.
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Figure 5.9: The top panel shows the standoff distance distributions of signal 2νββ (blue) and
226Ra (green) events in MC simulations. The filled areas show the distributions that are

classified correctly by DNN-Raw. The prediction cutoff value is determined based on the

Youden’s J statistic [99]. The bottom panel shows the fraction of correctly classified events

for DNN-Raw (dark) and BDT [91] (light).
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5.3 Performance on measured data

The DNN discriminators are applied to measured data. To account for different trigger strategies,

the DNN input images are processed analogously to the approach discussed for the DNN energy

measurement in Section 4.3. This implies, adjusting the window of the input image relative to

the trigger. However, for the DNN discriminators there is no need to apply a correction that

accounts for the finite electron lifetime.

For a successful use of the DNN discriminators in 0νββ searches, the spectral agreement

between measured data and MC simulations must not be overly degraded. Any discrepancies in

the agreement are taken into account as systematic uncertainties and thus decrease the sensitivity

of a 0νββ analysis configuration. This is discussed in more detail in Section 6.1.4. The spectral

agreement is evaluated for DNN-Raw and DNN-Recon on both signal and background data.

Calibration source data of 228Th, 226Ra, and 60Co is used to evaluate the spectral agreement on

background γ data. Signal ββ data is not available from calibration measurements, but 2νββ

data is recorded in LB physics data. However, this dataset is contaminated by background

γ events. To extract the 2νββ events, a maximum likelihood (ML) model is fitted to the

the energy spectrum of LB physics data whereas the ROI around the Q value is blinded.

More information on the fit is given in Section 6.1. Measured 2νββ data is extracted by

subtracting all background components in LB data according to their best-fit values. While

the number of available 2νββ events is limited, this background-subtracted 2νββ data still is

the best proxy for signal ββ events recorded by EXO-200. Figure 5.10 shows the best-fit LB

distributions of DNN-Recon (black) for SS (left) and MS (right) events. The best-fit background

distribution (green) in MC simulations is subtracted from the LB physics data to build the

background-subtracted 2νββ dataset (blue).

The spectral agreement between measured data and MC simulations is shown in Figure 5.11

for DNN-Raw (top) and DNN-Recon (bottom). Background-subtracted 2νββ data is used as

proxy for signal data (black), and background γ data (red) consists of calibration data from a
226Ra source located near the cathode outside the TPC. The agreement is shown for all (left),

SS (center), and MS (right) events separately. The spectral agreement is improved in γ data

compared to background-subtracted 2νββ LB data. In SS events, there is an overall shift in

MC simulations compared to measured data toward lower discriminator values, i.e. toward

more background-like predictions. This shift is visible as a slope in the ratio of measured

data and MC simulations that is present in both DNN concepts. This trend represents a risk

to the applicability in 0νββ searches by introducing a systematic bias when fitting the MC

simulated spectra to LB physics data. Its impact on the 0νββ half-life sensitivity is discussed

in Section 6.1.4. The binary SS/MS classification of EXO-200 reconstruction further introduces

discrepancies in the DNN agreement between measured data and MC simulations. This is

perceptible when omitting the SS/MS classification as this improves the spectral agreement. This

effect is expected since the SS/MS classifier and the DNN discriminators are correlated by their

design goal. Any discrepancies in the binary classifier are propagated to the spectral agreement

of the DNN discriminator variables. Thus, the spectral agreement between measured data and

MC simulations is improved when not discriminating SS from MS events.
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Figure 5.10: The distributions of the DNN-Recon discriminator for the best fit to LB physics

data in SS events (left) and in MS events (right) in measured data (circles) and in MC

simulations (lines) recorded in Phase-II of EXO-200 operation. Background-subtracted 2νββ

events (blue) in LB physics data are extracted from the total dataset (black) by subtracting

the best-fit background contributors in MC simulations (green).

DNN-Raw shows a degraded agreement between measured data and MC simulations compared

to DNN-Recon. This is understood to arise from two dominant aspects. First, inaccuracies in

modelling the raw pulse shapes in MC simulations affect only DNN-Raw which is trained on raw

signals. For DNN-Recon, this problem does not exist because it is trained on signals found by

EXO-200 reconstruction and the same analytical waveform template is used in reconstruction

of measured and simulated waveforms. Second, inaccuracies in modelling complex effects in

EXO-200 like induction on U-wires and diffusion at the raw waveform level directly affect the

spectral agreement of DNN-Raw. For DNN-Recon, these effects are shielded to some degree

by the precision of EXO-200 reconstruction while causing a slightly degraded discrimination

power (see Figure 5.6b).

The discrepancies between measured data and MC simulations can be mitigated by profiling

the DNN discriminator variables at the cost of losing discrimination power. This approach

is beneficial as long as the impact of reduced systematic uncertainties outweighs the loss of

discrimination power. Profiling the variables between 0, 0.3, 0.6 and 1 improves the spectral

agreement, especially for the bins containing the majority of 2νββ events. Analogously to the

fine binned scenario, the spectral agreement of DNN-Raw is worse than that of DNN-Recon.

The impact of the spectral agreement to the 0νββ half-life sensitivity is discussed in more detail

in Section 6.1.4.
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Figure 5.11: The spectral agreement between measured data and MC simulations is shown for

DNN-Raw (top row) and DNN-Recon (bottom row). The top panels show the distributions

in measured data and MC simulations while the bottom panels show their ratios. Background

γ data (red) represents data from a 226Ra calibration source located near the cathode outside

the TPC. Signal ββ data (black) is from background-subtracted 2νββ LB data. The spectral

agreement is shown individually for all events (left), SS events (center) and MS events (right).

In addition, the bottom panels show the ratios of measured and MC simulated data when

profiling the DNN discriminators between 0, 0.3, 0.6 and 1.
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5.4 Alternative discriminator concepts

The concepts presented so far focused on topological discrimination only while ignoring any

differences in spatial distributions between signal ββ and background γ events present in

LB physics data. Although these concepts are valid, here, different concepts are discussed that

to also capture spatial information directly.

In order to capture spatial information, the background γ data in the training dataset is

replaced by γ particle interactions that are no longer distributed uniformly in the detector

volume. The signal ββ data is kept unchanged, since in LB physics data, 2νββ and hypothetical

0νββ decays occur uniformly in the xenon volume. The new background data is shown in

Figure 5.12 and consists of γ particles emitted in MC simulations by the materials of the TPC

vessel. This represents the dominant background contribution in LB physics data, especially in

the ROI of 0νββ [14]. Thus, the DNN is trained on a realistic spatial distribution with respect

to the γ background in LB physics data. However, unlike LB physics data, the ββ and γ energy

distributions used for training the DNN are still uniform in order to not introduce a bias to the

discriminator in terms of in energy.

The new dataset is used to train a DNN on raw U-wire signals. The DNN architecture is

identical to that of the baseline DNN concept shown in Figure 5.2. This DNN concept (DNN-U)

is sensitive to differences in spatial distributions of γ and ββ events as is shown in Figure 5.13.

Background γ events are more likely to be identified correctly near the material surface. The

trend is inverse for signal 0νββ events. However, since this DNN is trained on U-wires only, the

full 3D spatial information is not available to the DNN. Instead, only the U and Z coordinates

of the event position are fully available to the DNN. While the V-wires are not known to the

DNN, the V coordinate of the event position is still partially available since both wire planes

are crossed by 60° and thus are not fully uncorrelated (see Figure 2.9). This explains why the

DNN identifies background and signal events mostly uniformly as a function of the V position.

The corresponding ROC curve is shown in Figure 5.14 (red). It improves compared to the

baseline DNN concept (black) that was trained on a uniform spatial distribution of background

γ events (see Figure 5.6a). However, it does not completely achieve the discrimination power of
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Figure 5.12: Correlation of the x and y spatial coordinates (left) and the distribution of

z coordinates (right) of the new background dataset which represents γ particle interactions.

The γ particles are emitted in MC simulations by the TPC vessel materials which represents

the dominant γ background in the ROI of 0νββ.
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Figure 5.13: The panels show the fraction of correctly classified signal 0νββ (blue) and

background γ (green) SS events as a function of the event position in the U (top), V (center)

and Z (bottom) coordinates. Shown are curves for the DNNs trained on U-wires (dark)

and on U- and V-wires (light). The prediction cutoff value is determined based on the

Youden’s J statistic [99]. Background γ events represent the main background in the ROI

which occurs predominantly close to the material surfaces while signal 0νββ events are

distributed uniformly in the xenon volume.

that DNN in combination with the standoff distance due to the partial loss of spatial information

in V position.

The full spatial information can be captured when training a DNN on U- and V-wires at

the same time (DNN-U+V). The input to this DNN-U+V is 4 grayscale images consisting of

350× 38 pixels each. An example input image is shown in Figure 5.15. Otherwise, the DNN

architecture is kept unchanged to the one of the baseline DNN (see Figure 5.2). This concept,

DNN-U+V, is now sensitive to the full 3D spatial information as is shown in Figure 5.13. The

classification as a function of the U and Z coordinates of the event position follows the trend of

DNN-U. In V position, DNN-U+V is able to reject background γ events more efficiently toward

the material surface while DNN-U was mostly unaffected by this spatial component. Using this

additional spatial information, the ROC curve of DNN-U+V (green) in Figure 5.14 outperforms

that of DNN-U (red). Furthermore, it slightly outperforms that of the baseline DNN combined
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Figure 5.14: The ROC curves are shown for different DNN concepts from SS events of the main

γ background to the ROI and signal 0νββ in MC simulations. For reference, the baseline

DNN (black) combined with the standoff distance and the BDT (gray) used in the EXO-200

0νββ search in 2018 [91] are shown. All concepts shown here capture spatial information and

thus outperform the baseline DNN shown in Figure 5.6a. The DNN concepts discussed include

those trained on U-wires only (DNN-U, red), on U- and V-wires (DNN-U+V, green), and

on U-wires with additional information about the charge clusters of an event (DNN-U+CC,

blue). The area under the curve is given in brackets.

with the standoff distance (black). This is due to not only adding additional spatial information

with the raw V-wire waveforms but also adding additional topological information.

Using both U- and V-wires also has disadvantages since the raw V-wire waveforms are not

modelled to the precision of the raw U-wire waveforms. This is due to the higher complexity of

the signatures on V-wire channels. Consequently, the spectral agreement between measured

data and MC simulations is degraded for the DNN-U+V concept. To quantify and compare

the agreement to other DNN concepts, the error weighted average r̄ of the absolute residuals

between measured data and MC simulations is used:

r̄ =

∑
iwi · |ri|∑
j wj

with ri =

(
Data−MC

MC

)
i

, (5.5)

where the sums span over all bins i and j, and the uncertainty contributing to wi is calculated

assuming Poisson statistics. The spectral agreement of the DNN-U+V variable between

measured data and MC simulations is shown in Figure 5.16b. The data represents interactions

from γ particles emitted from a 228Th source located near the cathode outside the TPC. Using

Equation 5.5, the average residual is (16.4± 0.7) %. For comparison, it is (8.8± 0.4) % for the

baseline DNN concept (see Figure 5.16a). So, while improving the discrimination power when

using both U- and V-wires, the spectral agreement is worsened at the same time. Insufficient

spectral agreement limits the applicability of the discriminator for 0νββ searches as will be

discussed in Chapter 6.
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Figure 5.15: U-wire (bottom) and V-wire (top) waveforms of the identical example event

shown in Figure 4.1 and 5.1. The channel amplitudes are shown as a function of time. The

channels are offset for clarity and the channels are shown in bold that contain any signal

found by EXO-200 reconstruction.

To bypass the limitations from using raw V-wires while still capturing the full 3D spatial infor-

mation, another DNN concept is evaluated. This concept (DNN-U+CC) builds on the baseline

DNN concept of training on uniform spatial γ and ββ distribution. The DNN architecture is

extended by a second branch which combines topological and spatial information. The spatial

information is fed to the DNN via a vector containing the 3D positions and energies (u, v, z, E) of

all charge clusters found in EXO-200 reconstruction. The vector containing purely topological

information and the additional vector are concatenated before passing through three fully

connected layers with a decreasing number of neurons. Then, another DNN output predicts

the signal-likeness of the event. The architecture of this DNN concept is shown in Figure 5.17.

This DNN provides two separate predictions. One is fully based on topological information and

the other combines topological and spatial information. To improve the training procedure, the

topological DNN branch is pre-trained separately and its weights are frozen during training

of the appended branch. The ROC curve of this DNN is shown in Figure 5.14 (blue). The

discrimination power exceeds that of the DNN that uses U-wires (red) only which is due to

exploiting the full 3D spatial information. Furthermore, it slightly outperforms the baseline

DNN combined with the standoff distance (black). This could be due to combining topological

and spatial information at an earlier, higher dimensional stage compared to combining both
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Figure 5.16: The top panels show the spectral agreement for SS events of different DNN

concepts of a 228Th calibration source located near the cathode outside the TPC in measured

data (circles) and MC simulations (lines). The bottom panels show the corresponding

ratios. (a) shows the baseline DNN concept, (b) the DNN concept trained on U- and

V-wires (DNN-U+V), and (c) the DNN concept trained on U-wires together with charge

cluster variables (DNN-U+CC).

pieces of information at the very end in another discriminator. However, it does not reach the

discrimination power of DNN-U+V. First, this is due to relying on EXO-200 reconstruction

compared to raw waveforms for spatial information. Second, using raw V-wires adds some

additional topological information that is not available in this concept. The spectral agreement

of this DNN concept is shown in Figure 5.16c with an average residual of (6.0± 0.4) %. This

implies that with the DNN-U+CC concept, the full 3D spatial information can be exploited

similar to the DNN trained on U- and V-wires while the spectral agreement is still on the level

of the DNN concept trained on U-wires only.
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Figure 5.17: The DNN architecture is an extension of the one discussed in Figure 5.2.

Additional spatial information is added to the vector that contains topological information.

The additional information is the energy E and the coordinates (u, v, z, E) of every charge

cluster as found by EXO-200 reconstruction. This extended vector is passed through three

fully connected layers with decreasing numbers of units (256, 64 and 16). The final network

output of two units represents the probability of the event belonging to either signal or

background class.
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5.5 Summary

This chapter presented a deep neural network based approach to discriminate signal ββ from

background γ events in EXO-200. Two baseline concepts are evaluated; one using raw U-wire

waveforms (DNN-Raw) and one using U-wire waveforms re-generated from signals found by

EXO-200 reconstruction (DNN-Recon). Several checks in MC simulations validate a robust

discrimination based on physically relevant features. By design, these concepts fully focus on

topological features while they do not capture spatial differences between both event classes

that are present in low-background physics data. This design choice is motivated by avoiding

the need to assume a prior spatial background distribution. Then, the DNN can be applied to

any physics analysis without introducing a potential bias from differences in spatial distribution

in training and in physics data. Alternative DNN concepts were discussed which are able to

also incorporate spatial features in the discriminator.

The presented DNN concepts outperform the discrimination power of the BDT that was used

in the EXO-200 0νββ search in 2018 [91]. Also, in contrast to the BDT, the DNNs are not

limited to SS events but are trained independent from this definition. They can be applied to all

events likewise. The spectral agreement of the discriminator variables between measured data

and MC simulations was evaluated on γ source calibration data and on background-subtracted

2νββ data. In general, DNN-Recon shows better spectral agreement than DNN-Raw. Profiling

the DNN variables between 0, 0.3, 0.6 and 1 improves the agreement at the cost of discrimination

power.

The promising performance of the DNN discriminators presented here pave the way for a

potential increase of the sensitivity to the half-life of 0νββ decay. This study will be presented

in Chapter 6.





Chapter 6

Improving the 0νββ half-life sensitivity with

Deep Learning

Contents

6.1 Analysis concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 Likelihood fit model . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.2 Analysis configurations . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.3 Background model . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.4 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Published 0νββ half-life sensitivity . . . . . . . . . . . . . . . . . . . 99

6.2.2 Published 0νββ half-life data limit . . . . . . . . . . . . . . . . . . . 101

6.2.3 0νββ half-life sensitivity with the DNN energy . . . . . . . . . . . . 104

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

This chapter presents the detailed analysis concept of searches for neutrinoless double beta

decay (0νββ) in EXO-200. This concept was used for the searches in Refs. [14, 49, 91, 100]. The

results of the 0νββ search which utilizes a deep neural network (DNN) based discriminator are

presented which is introduced in Chapter 5. These results contribute to the publication “Search

for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset” [14] published in

Physical Review Letters (PRL). In addition, this chapter discusses analysis concepts that utilize

the DNN based energy measurement introduced in Chapter 4 instead of the traditional EXO-200

energy measurement. Potential improvements to 0νββ half-life sensitivity gained by concepts

that utilize DNN based variables are presented and compared to traditional approaches.
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6.1 Analysis concept

6.1.1 Likelihood fit model

In EXO-200, the search for 0νββ decay is performed with a binned maximum likelihood (ML)

fit. For computational reasons, the negative log-likelihood (NLL) model L = − lnL is fitted to

low-background (LB) physics data. It is based on the model built in Ref. [51] which was used

for EXO-200 0νββ searches in Refs. [14, 49, 91, 100]. The single-site (SS) and multi-site (MS)

data is fitted simultaneously. The full model is

L = LSS + LMS +Gconstr , (6.1)

where Gconstr are Gaussian constraints. In the fit, L is minimized. For each multiplic-

ity m ∈ {SS,MS}, the likelihood function is

Lm = − lnLm =
∑
i

[
µmi −

(
kmobs,i ln (µmi )

)]
, (6.2)

where kmobs,i is the number of events in bin i observed in LB physics data with multiplicity m.

µmi is the expected number of events from the fit model. The sum proceeds over all bins in all

fit observables. The expected number of events µmi in a bin i is calculated by:

µmi (s,n, N) =

∫
ith bin

Fm (s,n, N,y) dy , (6.3)

where s = {s0, . . . , sNPDF
} denotes the SS fraction, (SS/(SS+MS)). n = {n0, . . . , nNPDF

} denotes

the total number of events for each PDF that contributes to the model. The complete model is

discussed in Section 6.1.3 and consists of NPDF PDFs. N is an overall normalization parameter

that carries the uncertainty on the signal detection efficiency. This uncertainty is discussed

in Section 6.1.4. The integral in the ith bin is performed for the fit observables y that always

include the energy E but can also include further observables [100]. Different fit configurations

are discussed in Section 6.1.2. The integrand function Fm is defined as:

F SS (s,n, N,y) = N

NPDF∑
j

njsjf
SS
j (y) (6.4)

FMS (s,n, N,y) = N

NPDF∑
j

nj (1− sj) fMS
j (y) . (6.5)

These functions sum over all PDFs fmj (y) that are included in the fit model with the SS frac-

tion sj and the number of events nj that are associated to to PDF j. The PDF fmj (y) itself is

a function of the set of observables y used in the fit.

Systematic uncertainties are included in the negative log-likelihood function L by additional

Gaussian constraints which are summarized by Gconstr in Equation 6.1. Each constraint

contributes the following term to L:

Gconstr (ρ,ρ0,Σ) = 0.5 (ρ− ρ0)T Σ−1 (ρ− ρ0) , (6.6)
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where ρ denotes the constrained parameters and ρ0 their expectation values. Σ is the covariance

matrix:

Σ (ρ) =


Var(ρ1) Cov(ρ1, ρ2) · · ·

Cov(ρ2, ρ1) Var(ρ2) · · ·
...

...
. . .

 . (6.7)

For uncorrelated parameters ρi in ρ, Equation 6.6 simplifies to contributions of:

Gconstr (ρ,ρ0,Σ)i = 0.5

(
ρi − ρ0,i

σi

)2

, (6.8)

where ρ0,i is the expected value and σi =
√

Σ (ρ)ii is the error of ρi. In the most recent

EXO-200 0νββ search in 2019 [14], Gconstr comprises five different constraints:

• The SS fractions s are constrained to the values observed in Monte Carlo (MC) simulations

for each PDF s0,i using the error σSS determined from source calibration data via

0.5 ((si−s0,i)/(σSSs0,i))
2. A 85 % correlation between the SS fraction errors of γ-like PDFs

is included in the constraint motivated by the level of correlation observed in source

calibration data [91].

• The overall normalization N is constrained to one with the error on the signal detection

efficiency σN via 0.5 ((N−1)/σN)2.

• An additive normalization is constrained to zero for PDFs that contribute to the ROI.

This constraint is used to explicitly take discrepancies into account that affect the ROI.

The error on this normalization is determined from background model inadequacies and

differences in spectral agreement between measured data and MC simulations.

• The measured activity of 222Rn and its daughter nuclei is used to constrain the activity

of three background fit components measured to 10 % precision. A correlation of 90 %

between the components is used [51].

• The relative fractions of PDFs related to neutron capture are constrained within 20 % to

the values observed in MC simulations [101].

More details on systematic uncertainties and their evaluations are discussed in Section 6.1.4.

Since the energy scale is calibrated from γ calibration sources (Eγ), potential differences to

the energy scale for β-like and ββ-like components (Eβ) are accounted for in the ML fit by a

scaling factor B:

Eβ = BEγ . (6.9)

The factor B is optimized in the ML fit. However, it is found to be consistent with unity within

uncertainty [14].
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6.1.2 Analysis configurations

In contrast to simple counting experiments, EXO-200 uses an analysis concept based on a

maximum likelihood fit of MC simulated spectra to LB physics data. By this concept, the

MC simulated spectra of the different fit model components are used to model the background

in the ROI of the 0νββ decay. This implies that the data outside the ROI helps to model

the background in the ROI. This approach is superior to analysis concepts which focus only

on the ROI of 0νββ. In addition, EXO-200 data analysis distinguishes single-site (SS) from

multi-site (MS) events in order to discriminate γ from ββ events, as discussed in Section 2.2.4.

For example, the SS fraction of 0νββ decays is predicted in MC simulations to be ∼75 % whereas

that of γ particles with Eγ = Q is ∼15 %. This implies that the purity of ββ-like components

is increased in the SS data which improves the ability to identify candidate 0νββ decays in

LB physics data. Moreover, the MS data helps to constrain the γ-like background components

in the SS data since both spectra are connected by the SS fraction in Equations 6.4 and 6.5.

In previous analyses, different sets of observables y were used to search for the 0νββ decay.

The observables were chosen to reach the best sensitivity to the 0νββ half-life. The first search

for 0νββ decay of EXO-200 in 2012 [100] was performed with a fit to the energy spectra only

which were split into SS and MS events. An improved set of fit observables was used in the

EXO-200 0νββ search in 2014 [49] by using the energy E and the standoff distance rSD as fit

observables (y = (E, rSD)). This configuration exploits additional knowledge about the spatial

distributions of the individual model components. For example, the dominant γ background

in the ROI of 0νββ decay originates from sources external to the xenon and thus occurs more

frequently close to the material surfaces. In contrast, 2νββ and hypothetical 0νββ decays

are distributed uniformly in the xenon volume. More details about the standoff distance are

discussed in Section 5.2.2. Further improvement to the half-life sensitivity is achieved by not

only exploiting spatial information in the fit but also detailed topological information beyond

simple SS/MS classification. In the EXO-200 0νββ search in 2018 [91], fit observables included

the energy E and a BDT discriminator in SS events (ySS = (E,BDT) , yMS = E). This BDT

incorporates two topological variables and the standoff distance. More details on the BDT are

discussed in Section 5.2.1. The topological variables discriminate signal ββ from background

γ events based on the detailed signal shape. The BDT is not applied in MS data as toy studies

indicated that using it there does not enhance the sensitivity [91]. The most recent EXO-200

0νββ search in 2019 [14] includes three fit observables; energy E, standoff distance rSD, and

a DNN discriminator (y = (E, rSD,DNN)). This fit concept is shown in Figure 6.1. The

observables are used in both SS and MS data. Spatial and topological information is separated.

Topological discrimination is achieved with the DNN discussed in Chapter 5. This analysis

configuration proved to achieve the best 0νββ half-life sensitivity in toy studies among all

configurations considered. The results of this analysis are discussed in Sections 6.2.1 and 6.2.2.

The 0νββ half-life sensitivities of analysis configurations where the traditional EXO-200

energy measurement ETrad is replaced by the DNN energy EDNN are discussed in Section 6.2.3.

This DNN is introduced in Chapter 4.
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Figure 6.1: Fit configuration used in the EXO-200 0νββ search in 2019 [14]. The observables

energy, standoff distance, and a DNN discriminator are used in both SS and MS events while

both event classes are connected by the SS fraction.

6.1.3 Background model

In MC simulations, an accurate model is necessary to understand the recorded LB physics data

and to produce meaningful results. This is especially true for the analysis concept pursued by

EXO-200 which relies on a maximum likelihood fit of the individual background components.

It relies on precise modeling the spectral shape of individual background components. The

model used to fit the LB physics data represents all significant components recorded in data. It

comprises:

• 0νββ: signal

• LXe decays

– 2νββ

– 137Xe

– 135Xe

• 232Th decay chain

– Near component: TPC vessel copper components

– Remote component: inner cryostat

• 238U-like (those presenting the 214Bi line at 2.44 MeV)

– Near component: TPC vessel copper components

– Remote component: radon in the air gap

– LXe component

· 222Rn decay chain in the inactive LXe

· 214Bi on the cathode surface

· 214Pb in the active LXe

• 60Co decay

– Near component: TPC vessel copper components

– Remote component: source guide tube
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• Other decays in the vessel copper components

– 40K

– 65Zn

• Neutron capture components

– 1H in coolant

– 63Cu and 65Cu in the outer cryostat, inner cryostat, and TPC vessel

– 136Xe de-excitation γ

The energy threshold is 1 MeV for the most recent 0νββ search in 2019 [14]. In contrast to

previous studies [51], 54Mn is removed from the model since its γ line at 834 keV is more than 5σ

below the energy threshold. The individual components are simulated using GEANT4 [63, 64].

The decay chains of 232Th and 238U are simulated assuming secular equilibrium.

Near components in the background model represent components arising from natural

radioactive impurities in the TPC vessel. The vessel comprises the Cu vessel itself, but also

materials in the TPC from the APD support materials, the wire plane support materials, the

field rings, and the cathode plane materials, among others (see Figure 2.9). Remote components

arise from either the inner cryostat, the outer cryostat, or the air gap between cryostat and

lead wall which are shown in Figure 2.7. Additional potential remote components are highly

correlated to the default ones used and are thus not included in the fit separately. This implies

that the best-fit values for remote components also include contributions from those remote

components. To account for this inaccuracy, the errors that arise from the exact choice of

remote components are considered in the ML fit as systematic errors.

6.1.4 Systematic uncertainties

The 0νββ half-life sensitivity is affected by systematic uncertainties due to the low statistics

nature of 0νββ searches. Systematic uncertainties which arise from imperfections in the

MC simulation or detector understanding negatively affect the 0νββ sensitivity. They are

incorporated as constraints in the maximum likelihood (ML) fit discussed in Section 6.1.1.

The 0νββ signal detection efficiency ε is raised in the EXO-200 0νββ search in 2019 [14]

to (97.8± 3.0) % in Phase-I and to (96.4± 3.0) % in Phase-II. The uncertainty on the signal

detection efficiency σN is used to constrain the overall normalization N in the ML fit discussed

in Section 6.1.1. The improvement in signal detection efficiency compared to previous searches

is mostly caused by relaxing two event selection cuts. On the one hand, the minimum time

required for subsequent events is relaxed from 1 s to 0.1 s. This event selection cut is introduced

in order to reject time-correlated background events. On the other hand, events with a

missing 3D position are not cut from the analysis if at least 60 % of the total event energy is

reconstructed with a full 3D position. These events were cut in previous 0νββ searches. The

relaxed 3D position selection cut only recovers MS events. Additional event selection cuts that

did not change compared to previous 0νββ searches are discussed in Section 2.2.4.
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Figure 6.2: SS fraction, SS/(SS+MS), as a function of DNN energy for source calibration

data (circles) and MC simulations (lines) in Phase-II using a 228Th source located near the

cathode. The 3D cut criterion (“Full 3D”, blue) used in previous 0νββ searches [49, 91, 100]

is compared to the relaxed criterion (“Partial 3D”, red) used in the 0νββ search in 2019 [14].

The ROI of 0νββ is highlighted in yellow.

The next paragraphs discuss different uncertainties that are considered in the ML fit. The

resulting uncertainties are discussed for the fit configuration (y = (ETrad, rSD,DNN)) that is

used in the 0νββ search in 2019 [14] and for fit configurations that are based on the DNN energy

measurement EDNN. The systematic uncertainties are evaluated with the events in the ROI

around the Q value being blinded. This means that candidate 0νββ decays are not considered

while improving the data analysis and evaluating systematic uncertainties. The statistical

uncertainties on the systematic errors are not incorporated in the maximum likelihood (ML) fit

and thus are omitted in this discussion.

SS fraction error

In previous analyses, all individual reconstructed charge clusters were required to have a

reconstructed 3D position (“Full 3D”). Since the V-wires have an increased reconstruction

threshold (∼200 keV) compared to the U-wires (∼90 keV) [14], some charge clusters are recon-

structed well on the U-wires but lack corresponding V-wire signals. Thus, the z coordinate

is reconstructed but the xy coordinates are missing. As of the 0νββ search in 2019 [14], the

event selection criteria are relaxed. Now, only those events are removed from the analysis

whose energy deposits with incomplete 3D position make up >40 % of the total event energy

while all other events are kept (“Partial 3D”). The SS fractions, SS/(SS+MS), as a function of

energy reconstructed by the DNN, EDNN, with the full and partial 3D cut criteria are shown

in Figure 6.2 for source calibration data of a 228Th source located near the cathode. As the

relaxed cut criterion only recovers MS events, the SS fraction is reduced. This relaxed cut

criterion contributes to the increase in signal detection efficiency ε to nearly one. By applying a

discriminator to MS events, as opposed to only SS events as in the 0νββ search in 2018 [91],

the 0νββ half-life sensitivity improves from the additional information in MS events.
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Figure 6.3: SS fraction, SS/(SS+MS), as a function of DNN energy for calibration sources

located near the cathode. Measured data (circles) and MC simulations (lines) are shown

for 60Co (green), 226Ra (blue), and 228Th (red) calibration sources in Phase-II. The ROI of

0νββ is highlighted in yellow. The bottom panel shows the ratios between measured data

and MC simulations. Adapted from [14].

The error related to the SS fraction, SS/(SS+MS), is estimated by comparing the predicted

fraction in MC simulations to that observed in source calibration data. Figure 6.3 shows the

agreement in source calibration data between measurement and MC simulations with the partial

3D cut criterion for the DNN energy measurement discussed in Chapter 4. The corresponding

figure for the traditional EXO-200 reconstruction is shown in Ref. [14]. The error is determined

over the full energy range of 1 – 3 MeV. It reflects the error weighted average of the absolute

residuals between measured data and MC simulations as introduced in Equation 5.5. To

account for spatial variations in the detector volume, the average error observed in 228Th source

calibration data at four different source locations is used. These contain locations near the anode

planes (S2, S8) and two locations near the cathode (S5, S11) which are shown in Figure 2.13b.

The SS fraction error is 5.8 % (4.6 %) in Phase-I (Phase-II) for the partial 3D cut criterion

with the traditional EXO-200 energy measurement. This observable is used in the 0νββ

search in 2019 [14]. The corresponding errors for the DNN energy are shown in Table 6.1

for both 3D cut criteria. With the full 3D cut criterion, the SS fraction error for the DNN

is 5.4 % (5.2 %) in Phase-I (Phase-II). With the partial 3D cut criterion, the error increases

slightly to 6.2 % (5.5 %). The SS fraction error is incorporated in the ML fit as constraint

(see Section 6.1). Comparing the SS fraction error of the DNN and the traditional EXO-200

energy, the DNN shows a slightly increased error. The reason for this could be the approach

used for correcting for the finite electron lifetime which is only an approximation in MS events.

More details are discussed in Section 4.3. To bypass this approximation, EDNN could be only

used in SS events, where the correction is applied properly, and ETrad in MS events, where the

correction can be applied for each charge cluster individually.
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Table 6.1: SS fraction, SS/(SS+MS), error for the DNN energy EDNN from a 228Th calibration

source at different locations near the cathode (S5, S11) and near the anodes (S2, S8). Errors

are shown for Phase-I and Phase-II and for the full and partial 3D cut criteria. The total

error is the average error from different locations and is incorporated as constraint in the

ML fit discussed in Section 6.1.1.

Location ID
Full 3D [%] Partial 3D [%]

Phase-I Phase-II Phase-I Phase-II

Cathode
S5 3.5± 0.1 3.0± 0.1 3.2± 0.1 2.6± 0.1

S11 5.6± 0.8 6.8± 0.3 5.1± 0.8 7.5± 0.2

Anode
S2 4.9± 0.7 5.8± 0.3 6.6± 0.7 5.7± 0.3

S8 7.2± 1.2 5.2± 0.3 9.6± 1.1 6.1± 0.3

Total 5.4 5.2 6.2 5.5

Table 6.2: Locations of remote background components that are alternated in order to evaluate

the impact from the exact choice of components to the ROI background.

Source Default location Alternative location

232Th inner cryostat ←→ HFE
238U air gap ←→ inner cryostat
60Co guide tube ←→ inner cryostat

Background model error

The error arising from the choice of background components presented in Section 6.1.3 and their

detailed locations is evaluated for remote components that contribute to the ROI. The error

is estimated by alternating the components from the default locations to their most-plausible

alternatives as shown in Table 6.2. The energy distributions of these background components are

shown in Figure 6.4. The expected number of events in the ROI from the fit to the LB physics

data blinded around the ROI of the alternative model is compared to the corresponding fit

with the default fit model. The relative changes in the numbers of ROI events from alternating

individual components are added in quadrature. This systematic error from the choice of the

background model is considered as contribution to the ROI normalization error discussed in

Section 6.1.1.

The background model error for the fit configuration (y = (ETrad, rSD,DNN)) used in

the 0νββ search in 2019 [14] with the traditional EXO-200 energy ETrad is 4.0 % (4.6 %) in

Phase-I (Phase-II). The corresponding background model errors using the DNN energy EDNN are

shown in Table 6.2 for both phases of EXO-200 operation. For the fit configurations y = EDNN,

the background model error is 6.2 % (4.6 %) in Phase-I (Phase-II). For the fit configuration

y = (EDNN, rSD,DNN), the corresponding error is 4.1 % (4.1 %) in Phase-I (Phase-II). As
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Figure 6.4: Energy spectra of remote background components contributing to the ROI

(232Th: red, 238U: blue, 60Co: green) from the default (dark) and their most plausible

alternative (light) locations. The ROI of 0νββ is highlighted in yellow. The locations used

for the individual components are shown in Table 6.2.

Table 6.3: Background model errors for different fit configurations using the DNN energy

measurement EDNN in Phase-I and Phase-II. The errors arise from the choices of location

for far background components that are not known precisely. The total error is the quadratic

sum of the individual components and contributes to the ROI normalization error in the ML

fit discussed in Section 6.1.1.

Source
1D Fit [%] 3D Fit [%]

Phase-I Phase-II Phase-I Phase-II

238U 1.2 1.0 1.1 0.7
232Th 6.1 4.5 3.8 4.0
60Co 0.1 0.0 1.3 0.2

Total 6.2 4.6 4.1 4.1

expected from Figure 6.4, the error arising from the location of the remote 232Th component

dominates the background model error in all configurations. On the other hand, the choice

of the 60Co far location only has a negligible impact on the number of ROI events since very

few events contribute to the ROI. Comparing the energy measurements EDNN and ETrad, the

background model errors are on the same level. This confirms the robustness of the DNN

energy measurement.
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Spectral shape error

The discrepancies in spectral agreement between measured data and MC simulations contribute

to the ROI normalization error. In MC simulations, a large number (∼1000) of toy datasets is

drawn from the best-fit background model. The toy data is generated after correcting the PDFs

by the residual differences between measured data and MC simulations. ββ-like SS toy data

is corrected by the spectral disagreement observed in background-subtracted 2νββ data while

γ-like toy data is corrected by the discrepancy observed in source calibration data. Details on

the background-subtracted 2νββ data are discussed in Section 5.3. Each toy data realization

is then fitted with the nominal PDFs. The relative bias between the drawn and the best-fit

numbers of events in the ROI determines the spectral shape error. For fit configurations that

use multiple observables, the error is evaluated for each observable individually. To determine

the spectral shape error, the biases in ROI counts observed in each observable are added in

quadrature. To further consider spatial differences, the error is evaluated on calibration data

from sources located near the cathode (S5) and near the anode (S2). The final spectral shape

error is estimated as the average error over both source locations.

The spectral agreement using the DNN energy measurement EDNN is shown in Figure 6.5 for

different calibration sources located near the cathode outside the TPC. The spectral agreements

between measured data and MC simulations of the DNN-Recon discriminator variable (see

Chapter 5) and the standoff distance are shown in Figure 6.6. It shows γ-like events from a
226Ra source located near the cathode outside the TPC and background-subtracted 2νββ data.

In addition, the distributions of 0νββ decay in MC simulations are shown. The spectral shape

error for the fit configuration (y = (ETrad, rSD,DNN)) used in the 0νββ search in 2019 [14]

with the traditional EXO-200 energy measurement ETrad is 5.8 % (4.4 %) in Phase-I (Phase-II).

The errors with the DNN energy measurement, EDNN, are shown in Table 6.4 for both phases

of EXO-200 operation. The errors given for “Placebo” are calculated from toy data drawn

from nominal PDFs, i.e. without correcting by spectral differences of measured data and MC

simulations. This error arises from fluctuations in MC simulations and from the low statistics

nature of the 0νββ search. The errors are dominated by the error observed in the energy

observable and increase as the source position approaches the anode. For the 1D fit configuration

(y = EDNN), the spectral shape error is 2.3 % (3.4 %) in Phase-I (Phase-II). For the 3D fit

configuration (y = (EDNN, rSD,DNN)), it is 4.9 % (5.9 %) in Phase-I (Phase-II). Comparing

the measurements EDNN and ETrad, the spectral shape error is slightly improved (degraded) in

Phase-I (Phase-II). Since two thirds of the observables are identical in the 3D fit configuration,

this small change in spectral shape error further confirms the robustness of the DNN energy

measurement.
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Figure 6.5: Spectral agreement in EDNN for measured calibration data (circles) and MC

simulations (lines) in Phase-II using 60Co (green), 226Ra (blue), and 228Th (red) sources

located near the cathode for SS (top half) and MS (bottom half) events. The bottom panels

show the ratios between measured data and MC simulations. Adapted from [14].
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Figure 6.6: Distributions of measured data (circles) and MC simulations (lines) in Phase-II for

the DNN-Recon variable (left) and the standoff distance (right) for SS (top) and MS (bottom)

events. Data from a 226Ra (blue) calibration source located near the cathode represents

γ-like events and background-subtracted 2νββ data (black) represents ββ-like events. The

distributions of 0νββ decay predicted in MC simulations are shown in red. Taken from [14].
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Table 6.4: Spectral shape errors for different fit configurations using the DNN energy mea-

surement EDNN in Phase-I and Phase-II. The errors arise from differences in measured data

and MC simulations that are evaluated for each fit observable individually and added in

quadrature. The total error represents the average of the errors observed from calibration

sources located near the cathode and anode. It contributes to the ROI normalization error

in the ML fit discussed in Section 6.1. “Placebo” is discussed in the text and does not

contribute to the total error.

Source
1D Fit [%] 3D Fit [%]

Phase-I Phase-II Phase-I Phase-II

Placebo 0.3 1.4 0.2 2.9

Cathode 0.1 3.6 2.8 4.6

Anode 4.4 3.2 7.0 7.1

Total 2.3 3.4 4.9 5.9

For the 0νββ search in 2019 [14], DNN-Recon is used as topological discriminator. Even

though DNN-Raw suggests an improved discrimination power as discussed in Section 5.2.1,

the spectral agreement between measured data and MC simulations is degraded for this DNN

concept (see Section 5.3). In an analysis configuration of 10 bins uniform in the discriminator

variable, the resulting spectral shape error is found to be ∼30 % for DNN-Raw and ∼10 % for

DNN-Recon in Phase-II. Since this error is considered in the ML fit, the resulting 0νββ half-life

sensitivity is lower for DNN-Raw even though DNN-Raw outperforms DNN-Recon in terms of

discrimination power. Moreover, the extent of spectral disagreement for DNN-Raw leads to

unstable ML fit results. The spectral shape error can be mitigated by profiling the DNN-Recon

variable between 0, 0.3, 0.6 and 1 at the cost of discrimination power. While toy studies

indicated no significant loss in discrimination power for this fit configuration, the spectral shape

error decreases from ∼10 % to 4.4 % in Phase-II. Finally, the spectral error proved to be the

critical argument to use DNN-Recon over DNN-Raw for the 0νββ search in 2019 [14] in a fit

configuration with three bins.
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Table 6.5: Summary of systematic error contributions. The 1D fit configuration represents

y = EDNN and the 3D fit configuration represents y = (EX, rSD,DNN) with EX denoting

either EDNN or ETrad. The errors for ETrad in the 3D fit configuration are taken from

Ref. [14]. The indented errors are the individual components of the ROI normalization error

which are added in quadrature.

Phase-I [%] Phase-II [%]

Energy → EDNN ETrad EDNN ETrad

Error ↓ Fit configuration → 1D 3D 3D 1D 3D 3D

SS fraction 6.2 5.8 5.5 4.6

Overall normalization 3.1 3.1 3.1 3.1

ROI normalization 6.8 6.6 7.1 5.8 7.2 6.5

Spectral shape agreement 2.3 4.9 5.8 3.4 5.9 4.4

Background model 6.2 4.1 4.0 4.6 4.1 4.6

Other [91] 1.5 1.5 1.2 1.2

Summary

The individual contributions to the error on the ROI normalization and on the overall normal-

ization are summarized in Table 6.5 together with the uncertainty on the SS fraction. The

uncertainties for the fit configuration (y = (ETrad, rSD,DNN)) used in the 0νββ search in 2019

are taken from Ref. [14]. The uncertainties evaluated for the DNN energy, EDNN, are given

for the 1D and 3D fit configurations. The contribution “Other” to the ROI normalization

error is not re-evaluated for the EXO-200 0νββ search in 2019 [14] but is taken from that

in 2018 [91] since it is unchanged. It accounts for spatial and temporal variations in energy

resolution. Similar to the spectral shape error, these variations are used to generate toy data to

estimate the error related to energy resolution. The corresponding error is 1.5 % (1.2 %) for

Phase-I (Phase-II). The improvement in Phase-II arises from a lower variation in the energy

resolution in time as is shown in Figure 4.21. This contribution is not re-evaluated for EDNN

since its variations are observed to be on a similar level as those of ETrad as is discussed in

Section 4.3.

Overall, for the 3D fit configuration, there is no overly increase in the error on the ROI

normalization. This is achieved by reducing the impact of discrepancies between measured data

and MC simulations in the DNN discriminator variable by profiling it to three bins. At the

same time, the error from the choice of background model is reduced when exploiting additional

spatial and topological information in the ML fit. Comparing both energy measurements,

EDNN and ETrad, the resulting uncertainties for the 3D fit configuration are on a similar

level. The evaluation of the systematic uncertainties has shown that using the DNN energy

measurement does not impair the systematic uncertainties significantly. This implies that the

improvements in energy resolution with the DNN energy can translate to improvements in 0νββ

half-life sensitivity.
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6.2 Results

6.2.1 Published 0νββ half-life sensitivity

The search for 0νββ decay represents a low statistics search that is prone to statistical fluctuations

of the background. Thus, a 0νββ half-life limit strongly depends on the particular realization

in nature of background in the ROI and is therefore not the optimum metric to compare the

performance of different analysis configurations and experiments. The 0νββ half-life sensitivity

is a more robust metric. It represents the median 0νββ half-life limit when performing the

experiment in many statistical realizations in MC simulations. The 0νββ half-life (limit) at the

90 % confidence level (CL) is given by:

T 0ν
1/2 = ln (2)

NA/M · f ·m · L
n/ε

, (6.10)

where NA = 6.022 · 1023 mol−1 is the Avogadro number, M = 0.135 514 kg mol−1 is the 136Xe

molar mass [49], f = 80.6 % is the enrichment fraction [49] of the LXe in EXO-200 with a mass in

the fiducial volume of m = 92.40 kg [49]. L is the detector livetime, n is the best-fit (upper limit)

number of 0νββ decays, and ε is the signal detection efficiency in the fiducial volume. After

quality cuts, the detector livetime L in the fiducial volume is 117.4 kg yr (116.7 kg yr) in

Phase-I (Phase-II). The signal detection efficiency ε is (97.8± 3.0) % ((96.4± 3.0) %).

To estimate the 0νββ half-life sensitivity, the experiment is performed ∼1000 times in MC

simulations. Toy data is generated using the best-fit background model from a fit that uses

energy as the only observable (y = ETrad) while the ROI is blinded. To allow a fair comparison

between different analysis configurations (see Section 6.1.2), the identical background model

from the energy only fit configuration is used for all potential analysis configurations. For each

experiment in MC simulations, the true number of 0νββ decays is profiled from 0 – 50 which is

sufficient to cover the 90 % CL. The profiles of representative pseudo-experiments are shown

for the 1D and 3D fit configurations with ETrad in Figure 6.7a in Phase-II. The limits at the

1σ CL and 90 % CL represent the intersections of the profile-likelihood curve with ∆L = 0.5

and ∆L ' 1.35, respectively. ∆L is defined as:

∆L = L − Lbest , (6.11)

where Lbest denotes the best-fit negative log-likelihood. The improvement of the 3D fit

configuration is reflected by a decreased upper limit n on the number of 0νββ decays. To

account for different livetimes L and signal detection efficiencies ε in both phases of EXO-200

operation, the phases are combined by adding the profiles n/εL, instead of only the profiles n.

Each pseudo-experiment in Phase-I is randomly assigned to one of Phase-II. A representative

example is shown in Figure 6.7b.

The 0νββ half-life sensitivity is evaluated using the upper limit n/εL at the 90 % CL in

Equation 6.10. The resulting sensitivities from pseudo-experiments are shown in Figure 6.8

for the baseline 1D (y = ETrad, green) and the 3D fit configurations (y = (ETrad, rSD,DNN),

blue) for both phases of EXO-200 operation and for their combination. Using more information

in the ML fit in addition to the energy observable improves the sensitivity. Analogously, the
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Figure 6.7: The profile-likelihood for 0νββ counts of representative pseudo-experiments in MC

simulations from the baseline 1D (y = ETrad, blue) and the 3D (y = (ETrad, rSD,DNN), red)

fit configuration is shown in (a). The points represent fits to the MC toy data and the

lines represent interpolations between the points. The corresponding curves scaled by

livetime L and signal detection efficiency ε for the 3D fit configuration in Phase-I (blue) and

Phase-II (red) are shown in (b). The combined curve of Phase-I+II (black) is obtained by

adding the scaled profiles of both phases. The horizontal dashed lines (green) represent the

1σ CL and 90 % CL.

Table 6.6: Summary of median 0νββ half-life sensitivities at the 90 % CL for individual

phases and their combination on profile level and for the baseline 1D (y = ETrad) and the

3D (y = (ETrad, rSD,DNN)) fit configurations. All numbers in 1025 yr.

Fit Phase-I Phase-II Phase-I+II

1D 2.5 2.7 3.9

3D 3.3 3.4 5.0

median 0νββ half-life sensitivity is evaluated using the median upper limit n/εL at the 90 % CL.

The resulting median sensitivities are shown in Table 6.6 for the baseline 1D (y = ETrad) and

the 3D (y = (ETrad, rSD,DNN)) fit configurations. The combined median half-life sensitivity

on the 0νββ decay using the DNN discriminator is 5.0 · 1025 yr with the complete dataset of

EXO-200 operation. Using additional event information besides energy and SS/MS discrimination

with the standoff distance rSD and the DNN discriminator leads to a ∼25 % improvement in

sensitivity over the baseline analysis configuration [14]. This increase proves the strong potential

of a multi-parameter analysis as pursued by EXO-200. This fit configuration outperforms

the one used in the previous EXO-200 0νββ search in 2108 [91] with ySS = (ETrad,BDT) and

yMS = ETrad and achieves a 10 % improvement in 0νββ half-life sensitivity.
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Figure 6.8: 0νββ half-life sensitivities at the 90 % CL from pseudo-experiments in MC simu-

lations for Phase-I (top), Phase-II (center) and their combination (bottom). The median

sensitivities are shown in red. The 68 % confidence intervals (CI) are shown for the base-

line 1D (y = ETrad, green) and the 3D (y = (ETrad, rSD,DNN), blue) [14] fit configurations.

6.2.2 Published 0νββ half-life data limit

The events in the ROI are un-blinded after evaluating the systematic uncertainties (see Sec-

tion 6.1.4) and the median 0νββ half-life sensitivities of different potential analysis configurations

considered for this 0νββ search (see Section 6.2.1). ML fits (see Equation 6.1) are performed to

the complete datasets of Phase-I and Phase-II separately including all systematic uncertainties.

The primary analysis in the EXO-200 0νββ search in 2019 [14] is the 3D fit configuration with

y = (ETrad, rSD,DNN) selected based on the best median 0νββ half-life sensitivity. The best-fit

results are shown in Figure 6.9.

The figure shows the low-background (LB) physics data (points) and best-fit (blue) for Phase-I

and Phase-II separately. Dashed lines represent different background contributions, the filled

area the 2νββ decay, and the purple line the 0νββ decay. The projections to the energy observable

in SS events are shown in the left panels for Phase-I (top) and Phase-II (right). Studentized

residuals between LB physics data and best-fit model are shown beneath the SS energy

spectra. The projections of residuals are shown which typically follow normal distributions.

Deviations that affect the ROI are taken into account by the systematic uncertainties discussed

in Section 6.1.4. The width of the energy bins is 15 keV below 2800 keV and 30 keV above. The

insets in the left panels show the region near the ROI in SS events where the Q± 2σ region is

highlighted in red. The bottom right panels show the energy spectra in MS events in Phase-I

and Phase-II. The top right panels show projections to the DNN-Recon discriminator for

events near the ROI (2395 – 2530 keV) in SS (left) and MS (right) events for Phase-I (top) and

Phase-II (bottom). The best-fit numbers of background events in the ROI, Q±2σ, are 32.3± 2.3

in Phase-I and 30.9± 2.4 in Phase-II. This corresponds to background rates in the fiducial

LXe of (1.7± 0.2) · 10−3 kg−1 yr−1 keV−1 in Phase-I and (1.9± 0.2) · 10−3 kg−1 yr−1 keV−1 in

Phase-II. In LB physics data, 39 (26) events were recorded in Phase-I (Phase-II) in this energy

range. This implies an over-fluctuation of events in the ROI in Phase-I, while in Phase-II, there

is a slight under-fluctuation of events [14].
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Figure 6.10: Profile-likelihood curves for the number of 0νββ decays from the fit to LB physics

data (see Figure 6.9). The number of events is scaled by livetime L and signal detection

efficiency ε for Phase-I (blue) and Phase-II (red). The combined curve of Phase-I+II (black)

is obtained by adding the scaled profiles of both phases. The horizontal dashed lines (green)

represent the 1σ CL and 90 % CL.

With the completed dataset of EXO-200, no statistically significant evidence for 0νββ decay

is observed. Due to the over-fluctuation of ROI events in Phase-I, the best-fit number of 0νββ

decays exceeds zero (7.1), which however is not significant. The best fit in Phase-II is consistent

with zero 0νββ decays. The lower limit on the 0νββ half-life at the 90 % CL is evaluated by

a profile likelihood scan that is shown in Figure 6.10. The lower limit on the 0νββ half-life

at the 90 % CL is T 0ν
1/2 > 1.7 · 1025 yr for Phase-I and T 0ν

1/2 > 4.3 · 1025 yr for Phase-II. When

combining both phases, a lower limit of T 0ν
1/2 > 3.5 · 1025 yr at the 90 % CL can be placed on the

half-life of 0νββ decay in 136Xe.

Using the nuclear matrix elements of Refs. [102–106], the phase space factor of Ref. [107],

and Equation 2.8, the combined lower limit T 0ν
1/2 corresponds to an upper limit on the Majorana

neutrino mass of mββ < 93 – 286 meV. The range of upper limits arises from different nuclear

matrix element calculations.

The evolution of all EXO-200 0νββ search results so far is shown in Figure 6.11. The

lower limit on the 0νββ half-life falls below the median sensitivity after the first 0νββ search

in 2012 [100]. This is due to an over-fluctuation of events in the ROI while accumulating

additional exposure in subsequent searches. The projected evolution of the half-life sensitivity

is shown based on the first 0νββ search. The sensitivity is expected to improve from an

increased exposure via ∝
√
Mt as is introduced in Equation 2.11. The subsequent 0νββ searches

exceed this projection due to improvements to data analysis. This illustrates the potential of

multi-parameter searches over simple counting experiments.
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Figure 6.11: The evolution of EXO-200 0νββ search results. The median 0νββ half-life

sensitivities (red) and the 68 % confidence intervals (blue) are shown. The corresponding data

limits are shown in black. The EXO-200 0νββ searches include those in 2012 [100], 2014 [49],

2018 [91] and the one discussed here in 2019 [14]. The projection of half-life sensitivity from

increased exposure only via ∝
√
Mt is shown by dashed line (see Equation 2.11). Taken

from [54].

6.2.3 0νββ half-life sensitivity with the DNN energy

Since the ROI events are blinded for analysis, the half-life limit on 0νββ decay cannot be

evaluated for the DNN energy measurement EDNN which is discussed in Chapter 4. These

events are only un-blinded for official 0νββ searches of the entire collaboration. ML fits (see

Equation 6.1) are performed to the complete blinded datasets of Phase-I and Phase-II separately

for the 1D (y = EDNN) and the 3D (y = (EDNN, rSD,DNN)) fit configurations. The ML fits

include all systematic uncertainties discussed in Section 6.1.4. The best-fit results for the 3D fit

configuration are shown in Figure 6.12. The figure shows the LB physics data (points) and

best-fit model (blue) in SS events for Phase-I (top half) and Phase-II (bottom half). Dashed

lines represent different background contributions and the filled area represents the 2νββ decay.

The 0νββ decay is excluded from the fit model (see Section 6.1.3), since the SS events near

the Q value of the 0νββ decay are blinded in the region of 2347 – 2569 keV. The left panels

show the projections to the DNN energy observable. Studentized residuals between LB physics

data and best-fit model are shown beneath the corresponding energy spectra. The projections

of residuals are shown which typically follow normal distributions. The width of the energy

bins is 15 keV below 2800 keV and 30 keV above. The right panels show projections to the

DNN-Recon discriminator in SS events.
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Figure 6.12: Best-fit model (blue) from the 3D fit configuration (y = (EDNN, rSD,DNN)) to

LB physics data (points) for Phase-I (top half) and Phase-II (bottom half). Individual

background components are shown by dashed lines and 2νββ decays by filled area. The left

panels show projections to the energy observable in SS events while the residuals of best-fit

model and LB physics data are shown below. The right panels show projections to the DNN

discriminator observable in SS events. Since the region around the Q value of 0νββ decay is

blinded for analysis, no data from that region is included in the ML fit.

The 0νββ half-life sensitivity is estimated for fit configurations that use the DNN energy

measurement EDNN . The procedure to determine the half-life sensitivity for these configurations

follows exactly the one discussed in Section 6.2.1. The half-life sensitivity is evaluated using

pseudo-experiments in MC simulations where the systematic uncertainties are considered that

are discussed in Section 6.1.4. Analogously to the comparison of the 1D and 3D fit configurations

based on ETrad, here, the identical best-fit background model is used. It is determined in a

1D fit configuration with y = ETrad while the ROI is blinded.

The 0νββ half-life sensitivities at the 90 % CL are shown in Figure 6.13 for both phases of

EXO-200 operation separately and for their combination. The results based on the traditional

EXO-200 energy measurement ETrad are those also shown in Figure 6.8. The resulting median

0νββ half-life sensitivities for analyses using the DNN energy measurement EDNN are shown in

Table 6.7. The corresponding results with the traditional EXO-200 energy measurement ETrad

are given in Table 6.6. The 1D fit configuration with EDNN achieves a ∼10 % improvement in

median 0νββ half-life sensitivity over the corresponding fit configuration with ETrad. For the

3D fit configuration, the corresponding improvement is ∼8 %. The best analysis configuration

with y = (EDNN, rSD,DNN) achieves a ∼35 % improvement in median 0νββ half-life sensitivity

over the baseline analysis with y = ETrad.



106 6. Improving the 0νββ half-life sensitivity with Deep Learning

2 3 4 5 6 7 8 9 10
T1/2 [1025 yr]

Phase I

Phase II

Combined

1D
3D

1D
3D

1D

3D

Data limit
Trad (68% C.I.)
DNN (68% C.I.)
Median sensitivity

Figure 6.13: 0νββ half-life sensitivities at the 90 % CL are shown from pseudo-experiments

in MC simulations for Phase-I (top), Phase-II (center) and their combination (bottom).

The median half-life sensitivities are given in red and the data limits, where available from

Ref. [14], in black. Half-life sensitivities for 1D (y = EX) and 3D (y = (EX, rSD,DNN)) fit

configurations are shown where EX denotes either EDNN or ETrad. The bands reflect the

68 % CI for analyses with ETrad (green) and with EDNN (blue), respectively.

Table 6.7: Summary of median 0νββ half-life sensitivities at the 90 % CL for individ-

ual phases and their combination on profile level and for the 1D (y = EDNN) and

3D (y = (EDNN, rSD,DNN)) fit configurations. All numbers in 1025 yr. The corresponding

results for analysis configurations with ETrad are shown in Table 6.6.

Fit Phase-I Phase-II Phase-I+II

1D 2.7 3.0 4.3

3D 3.5 3.7 5.4
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6.3 Summary

This chapter discussed the analysis concept pursued by EXO-200 for 0νββ searches in 136Xe

which is based on a maximum likelihood (ML) approach. The energy spectra in SS and MS

events are fitted simultaneously while being linked to each other by the SS fraction. Additional

fit observables besides energy can be used to exploit more information in the ML fit. These

may include spatial or detailed topological information. Several systematic uncertainties are

considered in the ML fit where the dominant contributors are re-evaluated for the analysis

configurations discussed. This multi-parameter analysis approach is superior to simple counting

experiments.

The deep neural network (DNN) discriminator discussed in Chapter 5, in particular DNN-Recon,

is used in the EXO-200 0νββ search in 2019 [14] as a topological discriminator of ββ decays

and background γ interactions. In addition, the standoff distance is used to incorporate spatial

information in the ML fit. Together with energy, this 3D fit approach provides the best

sensitivity among all configurations considered, leading to a median 0νββ half-life sensitivity

of 5.0 · 1025 yr at the 90 % CL. The corresponding lower limit on the half-life of 0νββ in 136Xe

is T 0ν
1/2 > 3.5 · 1025 yr at the 90 % CL. Compared to the baseline analysis using only the energy,

this represents an improvement by ∼25 % in 0νββ half-life sensitivity. This illustrates the high

potential of the multi-parameter analysis concept pursued by EXO-200 for 0νββ searches.

The DNN energy measurement, which is discussed in Chapter 4, shows an improved energy

resolution compared to the traditional EXO-200 reconstruction. These improvements translate

to an improved median 0νββ half-life sensitivity after re-evaluating all significant contributions

to systematic uncertainties. The increase in median 0νββ half-life sensitivity is ∼10 % when

replacing the traditional EXO-200 energy observable in the baseline analysis by the DNN based

observable. Using the DNN energy in the 3D fit configuration together with the standoff distance

and the DNN discriminator provides a ∼35 % increase in median 0νββ half-life sensitivity relative

to using the traditional EXO-200 energy only. This analysis configuration where two of three fit

observables are based on DNNs provides the most stringent sensitivity. The large improvement

in 0νββ half-life sensitivity from a mostly DNN driven analysis increases the probability to

observe the 0νββ decay.





Chapter 7

Conclusion and Outlook

The neutrinoless double beta decay [12, 13] offers the most promising opportunity to answer

fundamental questions about the nature of neutrinos. An observation of this decay would

establish physics beyond the Standard Model of particle physics by proving that neutrinos

are their own antiparticles [9]. This would have further implications on our understanding

of neutrinos. The observation of the neutrinoless double beta decay would potentially help

to identify the neutrino mass hierarchy and to understand the asymmetry between matter

and antimatter in the Universe [10, 11]. A variety of different nuclei can undergo standard

double beta decay [16]. These isotopes can be utilized to search for neutrinoless double beta

decay. Nevertheless, the key performance requirements are shared among different experimental

approaches. Current experiments provide a sensitivity to the half-life of this extremely rare

decay of up to ∼1026 yr [15]. This illustrates why the main challenge for any experiment is to

reduce the background. To achieve this in data analysis, a precise measurement of the kinetic

energy of the decay products and good particle identification capabilities are required.

The EXO-200 experiment operated an ultra-low background time projection chamber filled

with liquid xenon [14]. It completed data acquisition in 2018 and is among the most sensitive

experiments that search for the neutrinoless double beta decay. A key advantage of this

detector concept is its monolithic design that shields inner xenon from external background.

In addition, a multi-parameter analysis allows to discriminate single from multiple localized

particle interactions and enables strong background rejection capabilities. The analysis is based

on measuring the ionization charge and scintillation light that are emitted from energy deposits

in the xenon. These complementary measurements provide an optimized energy measurement

as well as a full 3D position reconstruction.

The subject of this thesis was to improve the half-life sensitivity to the neutrinoless double

beta decay of the EXO-200 experiment by applying deep learning methods in data analysis.

Two main studies contributed to this objective. First, an energy reconstruction method based

on a deep neural network was developed that directly exploits raw ionization charge signals.

In particular, this algorithm outperforms the traditional EXO-200 energy reconstruction and

achieves an improvement in energy resolution. Parts of this study are published in Ref. [70]

by the EXO-200 collaboration. Second, deep neural networks were developed to discriminate

double beta decays from background interactions. Exploiting the ionization charge signals, the

deep neural network approach outperforms other discriminators that utilize classical machine

learning techniques. This study contributed to the most recent search for neutrinoless double

beta decay published by the EXO-200 collaboration in Ref. [14].
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The deep neural network that is used to reconstruct the ionization energy from raw data

was designed to optimally exploit the EXO-200 detector design and especially its two-sided

symmetry. It was shown that a biased training dataset results in a biased performance of

the deep neural network. This highlights the importance of a well-balanced training dataset

which was used for the baseline deep neural network. The deep neural network is validated

on source calibration data in both Monte Carlo simulations and measured data. Analogously

to the traditional EXO-200 reconstruction, the ionization charge energy reconstructed by the

deep neural network was combined with the complementary scintillation energy to optimize the

energy measurement. The improvements of the deep neural network translated to improvements

in the combined energy measurement. The deep learning based reconstruction achieved an

energy resolution of 1.22 % (1.01 %) for single-site events at the decay energy of 136Xe in

Phase-I (Phase-II) of EXO-200 operation. This energy resolution represents an improvement

of 10 % (12 %) compared to the traditional EXO-200 reconstruction. The robustness of the

deep neural network reconstruction was validated. It was found that the variations in time and

over the detector volume are on the same level as those observed with the traditional EXO-200

reconstruction. Furthermore, the similar spectral agreement between measured data and Monte

Carlo simulations confirmed a robust performance of the deep neural network approach.

In an additional study, deep neural networks were developed to discriminate double beta

decays from the dominant background in the EXO-200 experiment which represents γ par-

ticle interactions. In this study, a similar network architecture was used like in the energy

reconstruction study that exploits detector symmetries. Also, to not introduce a bias to the

network, particular focus was laid on the design of the training dataset. Besides using the raw

ionization signals (DNN-Raw), another concept was discussed that exploits the re-generated

signals from those found by the traditional EXO-200 reconstruction (DNN-Recon). Both deep

neural network concepts were validated on measured data and Monte Carlo simulations. Both

concepts outperformed the boosted decision tree (BDT) based discriminator that was used in

the EXO-200 search for neutrinoless double beta decay in 2018 [91]. It was shown that both

deep neural network concepts correlate the identification of double beta decays and background

interactions to physically relevant parameters. This validates their robust performance. While

the DNN-Raw concept slightly outperformed the DNN-Recon concept in terms of discrimi-

nation power, it showed a degraded spectral agreement between measured data and Monte

Carlo simulations. Alternative concepts of deep neural networks that are able to capture

additional spatial information were discussed. These deep neural networks exploited the full 3D

spatial information while not impairing the spectral agreement between measured data and

Monte Carlo simulations. However, this alternative approach requires to assume a prior spatial

distribution of background. To search for neutrinoless double beta decay, trade studies favored

the DNN-Recon discriminator concept among the other approaches.

A potential improvement of the half-life sensitivity to the neutrinoless double beta decay

of the EXO-200 experiment was evaluated for the developed deep learning based analysis

methods. EXO-200 pursues a multi-parameter analysis based on a maximum likelihood fit

of the Monte Carlo simulated spectra to measured data. In this analysis concept, additional

information besides the event energy can be exploited to further constrain background. The

DNN-Recon concept was used in the most recent EXO-200 search for neutrinoless double beta
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decay in 136Xe to discriminate double beta decays from background interactions [14]. This

search exploited a 3D maximum likelihood fit of energy, DNN-Recon discriminator and spatial

information. This analysis configuration results in a median half-life sensitivity of 5.0 · 1025 yr

at the 90 % confidence level which provides the most stringent sensitivity to the neutrinoless

double beta decay among all other analysis configurations within EXO-200. This represents an

improvement in sensitivity by ∼25 % compared to only utilizing the event energy. After un-

blinding, no statistically significant evidence for the neutrinoless double beta decay is observed

in the complete dataset of Phase-I and Phase-II of EXO-200. This corresponds to a lower

half-life limit of 3.5 · 1025 yr at the 90 % confidence level or to an upper limit on the effective

Majorana neutrino mass of mββ < 93 – 286 meV. In order to replace the energy measurement

of the traditional EXO-200 reconstruction with the one provided by the deep neural network,

all significant systematic uncertainties that contribute to the maximum likelihood fit were

re-evaluated. The resulting median half-life sensitivity to the neutrinoless double beta decay

in an energy-only analysis configuration was improved by ∼10 % compared to the traditional

EXO-200 reconstruction. Likewise, the median half-life sensitivity is improved by ∼35 % when

using the deep neural network based energy measurement in a 3D analysis configuration in

combination with the deep neural network based discriminator and a spatial variable. In this

analysis configuration, two of three fit observables are provided by deep neural networks. It

was shown that the remaining spatial information can also be captured successfully by the deep

neural network based discriminator. This highlights the big potential of deep learning based

analyses.

A fully deep learning based search for neutrinoless double beta decay is within reach. The

remaining spatial information in the fit could also be provided by a separate deep neural network

which reconstructs the full 3D position. This has already been successfully demonstrated where

a deep neural network outperformed the traditional position reconstruction in EXO-200 [108].

In addition to the pure proof of concept, this analysis configuration is expected to increase

the sensitivity to the half-life of this hypothetical decay. As was discussed for the DNN-Raw

discriminator concept, a precise understanding and modeling of the detector is crucial for

low background experiments like EXO-200. This argument is reinforced for deep learning

based analyses that directly exploit low-level information from raw signals instead of high-level

variables. Any discrepancies between measured data and Monte Carlo simulations negatively

impact the success of such analyses. This type of discrepancies can probably be mitigated

in the near future by generative neural networks, like generative adversarial networks that

are able to refine the Monte Carlo simulations [72]. The increasing number of deep learning

based applications over the last years provides a bright prospect to an increasing impact to

future experiments. The nEXO experiment is a next-generation experiment that builds on the

success of the EXO-200 experiment [37]. It will achieve a half-life sensitivity to the neutrinoless

double beta decay of ∼1028 yr [48]. In addition, studies in Monte Carlo simulations indicate an

improvement in half-life sensitivity of ∼30 % by utilizing deep neural networks [109]. Enhancing

the current sensitivities by two orders of magnitude, nEXO will fully cover the phase space

of the inverted neutrino mass hierarchy. The nEXO experiment will be a big step toward a

potential observation of the neutrinoless double beta decay and so to uncover the fundamental

nature of neutrinos.
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