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ABSTRACT

Carisa A. Miller: Dark Matter and Dark Energy in the Early Universe
(Under the direction of Adrienne Erickcek)

Less than 5% of the current energy content of the Universe is contained in Standard Model (SM) particles;

the remaining 95% is made up of dark matter and dark energy. Both dark matter and dark energy have only

been detected through their gravitational interactions, and their properties require the introduction of new,

beyond-SM physics. A promising regime to search for new physics is in high-energy environments like that

of the Universe’s first second. We investigate how a theory of modified gravity that aims to explain dark

energy behaves in the early Universe and how the production method of dark matter in the early Universe

could effect the formation of structure. The dark energy model we consider is chameleon gravity, in which a

light scalar field that couples to the trace of the stress-energy tensor in such a way that its mass depends on the

ambient density, and makes it difficult to detect in high-density environments. We consider a chameleon field

with a quartic potential and show that the scale-free nature of this potential allows the chameleon to avoid the

problems encountered by other chameleon theories during the Universe’s first second. We then determine

how producing dark matter particles with relativistic velocities via the decay of heavier particles impacts the

dark matter velocity distribution function and the growth of structure. We find that the free streaming of these

dark matter particles can prevent structure formation on subgalactic scales. Therefore, current observations of

small-scale structure put an upper limit on the velocity of the dark matter particles at their creation. Finally,

we investigate whether these limits can be relaxed in the presence of scattering interactions between the dark

matter and SM particles.
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CHAPTER 1

Introduction

Two of the most pursued questions in cosmology are the nature and composition of what we appropriately

call dark energy and dark matter. Dark energy is the term for the force that drives the current accelerated

expansion of the Universe and makes up 68.89±0.56% (68% C.L.) of the total energy density today [1]. Dark

matter accounts for a remaining 26.07±0.53% [1] and thus far has only been detected only by its gravitational

interactions. The first definitive evidence that our Universe was not only expanding, but expanding at an

accelerated rate, was provided by observations of Type Ia supernovae [2, 3]. More recently, observations

of baryon acoustic oscillations and clustering in large scale structure provide another measurement of the

current expansion rate [4]. The original evidence for dark matter came from the discrepancies in observations

of dynamical and luminous mass of galaxies and clusters; the mass inferred from observed motion was much

larger than the mass accounted for by luminous objects. The use of the term “dark matter” is attributed to

Fritz Zwicky who estimated the mass of the Coma cluster using the radial velocity of galaxies within the

cluster, and found it to be much larger than the mass inferred from the number and brightness of the galaxies,

leading him to conclude the presence of additional, nonluminous matter [5]. Further evidence came when

Vera Rubin and collaborators used spectrography to measure, in M31, the radial velocities of stars and gas at

varying distance from the galactic center and found a flat rotation curve implying the presence of additional

mass [6]. The presence of dark matter has also been inferred by using gravitational lensing to obtain the mass

of clusters, rather than dynamical motion [7]. Dark matter is also necessary to explain the observed structure

growth from measurements of anisotropies in the Cosmic Microwave Background (CMB) [8, 9].

In order to explain the Universe’s current phase of accelerated expansion using general relativity, one

must consider an additional energy component having a negative pressure so that its energy density remains

nearly constant as the Universe expands. Conforming with other cosmological observations, however, requires

this constant value of the energy density to be extremely small, ρΛ = 2.5 × 10−47 GeV4 ∼ 10−123M4
Pl

(in natural units, where MPl is the Planck mass)[1]. While QFT predicts the existence of a vacuum energy,

one would expect the value of the energy density to be ∼ M4
Pl; this is the cosmological constant problem.
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Alternatively, one can introduce new physics by introducing a new scalar field or by modifying general

relativity. Popular modifications to gravity often take the form of f(R)-theories in which the Einstein-Hilbert

action becomes a general function of the Ricci scalar R [10, 11, 12], and/or scalar-tensor theories in which

there is an additional scalar field which couples non-minimally to the curvature [13]. The simple inclusion of

an uncoupled scalar field can also give rise to cosmic acceleration if the field is presently confined to a near

constant energy value, e.g . by evolving along a flat region of its potential [14].

Beyond being nonluminous, evidence of dark matter further indicates that it is a type of matter entirely

apart from baryons and leptons. Prior to recombination, baryons1 and photons remain in a tightly coupled

plasma. This plasma will initially infall into overdense regions in the early Universe, but as the density

increases, radiation pressure builds until the plasma is forced outward. After the plasma is ejected from the

overdense region, the radiation pressure decreases, and the infall begins again. This oscillatory motion is

imprinted in the anisotropies of the Cosmic Microwave Background(CMB). In contract, dark matter does not

interact with baryons or photons, and continues to accumulate in overdense regions. From the comparative

amplitude of the first infall and first rebound, the contribution of both baryonic and nonbaryonic matter to

the total energy density can be calculated. It is from this that we know that 4.90 ± 0.09% of the energy

density in our Universe is baryonic matter, while another 26.07 ± 0.53% is nonbaryonic, dark matter [1].

Further confirmation of such a small fraction of ordinary baryonic matter comes from the abundances of light

elements predicted by Big Bang Nucleosynthesis (BBN) [15, 16]. The CMB also eliminates neutrinos as a

significant component of the dark matter, as neutrinos are relativistic at the time of recombination and are

able to freely stream from overdense regions. Thus, we are again required to look to new physics beyond the

SM in order to adequately explain cosmological observations.

The variety of theories and models invoked to explain dark matter and dark energy is extensive, and in

this work we present our explorations of single, well-motivated scenarios within each subject. The nature

of dark matter and dark energy are both highly pursued questions, and thus far investigations into each

have communicated the clear need for new, undiscovered physics, likely at energy scales not yet probed

by experiments. Such energy scales are reached in the high temperatures of the early Universe, and our

explorations use this period as a theoretical laboratory to study dark matter and dark energy.

1Throughout this work we will define baryons to include not only protons and neutrons, but electrons as well, despite the fact that
they are leptons.
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To start these explorations we first lay down the basic cosmological framework that we will be considering.

A Universe that is homogeneous, isotropic, and expanding can be most generally described by the Friedmann-

Lemaı̂tre-Robertson-Walker space-time metric:

ds2 = −dt2 + a2(t)dx2. (1.1)

The expansion is characterized by a(t), a dimensionless scale factor that increases with time, t. If we consider

two stationary objects in an expanding cosmology as two fixed points on an expanding grid, the distance

between the two can be described by the differences in their coordinates, which is fixed, or by the measured

distance between them, which increases as the grid size increases. We refer to these distances as the comoving

and physical distances, respectively, and they can be related at a given time by dphys = a(t)dcomov. Clearly,

the comoving and physical distance are equal when the scale factor equals 1, and, while it is standard to

define today, t0, as the point at which a0 = a(t0) = 1, it is an arbitrary choice and we will often choose to set

a = 1 at another time through out this work. The rate at which the scale factor changes with time is known as

the Hubble rate:

H(t) ≡ da/dt

a
=
ȧ

a
(1.2)

If we assume the energy content of the Universe can be described by a perfect fluid which energy density ρ

and pressure P , then, in a flat space-time, the Einstein field equations give us the first and second Friedmann

equations, which govern cosmological dynamics:

H2 =
8πG

3
ρ, (1.3)

ä

a
= −4πG

3
(ρ+ 3P ). (1.4)

Using the above equations one can derive the equation for energy conservation for a perfect fluid in an

expanding Universe:

dρ

dt
= −3H(ρ+ P ), (1.5)
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which can be rewritten using the equation of state parameter, w ≡ P/ρ, as

ρ = ρ(t0)a−3(1+w). (1.6)

Thus we can see that for matter and other pressureless (w = 0) fluids, their energy density decreases with time

according to ρ ∝ a−3, and we say the energy density “redshifts away” as a−3. For radiation, the equation of

state parameter is w = 1/3 and so ρ ∝ a−4.

If a substance has a negative pressure and an equation of state w < −1/3, then, according to the second

Friedmann equation (Eq. 1.4), ä is positive and the expansion rate is accelerating if this substance is the

dominant energy competent of the Universe. If the equation of state is w = −1 then ρ is constant and the

energy density of such a substance is not diluted by the expansion of the Universe. Current observations

provide bounds on the present value of the dark energy equation of state parameter: w = −1.03±0.03 [1, 17].

One such substance that could exhibit this behavior is a scalar field dominated by its potential energy. The

total energy density of a scalar field, φ, is given by the sum of its kinetic and potential energies ρ = K + V ,

whereas its pressure can be given by P = K − V , and the equation of state for a potential-dominated field

is w ' −1. Allowing the field’s potential energy to dominate often requires these scalar fields to be light,

m < H

While many explanations for the current accelerated expansion of the Universe posit the existence of

a new light scalar field, these fields are usually coupled to matter and so can mediate long-range forces,

often of gravitational strength. Not only are scalar fields, such as these, cosmologically motivated, but they

are also pervasive in high-energy physics and string theory. However, stringent experimental bounds imply

tight constraints on any new fifth forces mediated by scalar fields [18, 19, 20, 21, 22]. These constraints

require the scalar’s coupling to matter to be tuned to unnaturally small values in order to avoid detection.

Another approach is to employ a screening mechanism, which suppresses effects of the field locally, allowing

consistency with successful tests of general relativity.

One of the few known screening mechanisms capable of reconciling the predictions of scalar-tensor

gravitational theories and experimental constraints is the chameleon mechanism [23, 24]. In chameleon

gravity theories, the scalar field’s potential function and its coupling to the stress-energy tensor sum into

an effective potential (See Figure 1.1) whose shape and minimum is dependent on the matter density of its

environment. Consequently, the effective mass of the chameleon field, which depends on the curvature of the

4



Figure 1.1: Depiction of how the chameleon potential (grey, solid) and its coupling to matter (grey, dotted)
combine into an effective potential (black) in two models: the exponential (right) and quartic (left) potentials.
The slope of the matter contribution becomes steeper in areas of higher density. In both potentials the
minimum is pushed toward lower values of φ and the curvature around the minimum increases as density
increases.

potential around its minimum,

m2 =
d2V

dφ2

∣∣∣∣
φ=φmin

, (1.7)

is also dependent on the environment, increasing enough in regions of high density to suppress the field’s

ability to mediate a long-range force. Because of this ability to hide within its environment, the chameleon

can couple to matter with gravitational strength and still evade experimental detection in laboratory and Solar

System tests of gravity.

The vast majority of cosmological investigations of chameleon gravity have considered potentials of

the runaway form, such as the exponential V (φ) = M4 exp[(M/φ)n] and power-law V (φ) = M4+nφ−n

potentials. In order to evade Solar System tests of gravity, M has to be set to a value of ∼10−3 eV, which is

the energy scale of dark energy [24]. This coincident energy scale gave the chameleon a lot of attention early

on as a possible explanation for cosmic acceleration. However, it was shown in Ref. [25] that the chameleon

field cannot account for the accelerated expansion of the Universe without including a constant term in its

potential. Nevertheless, light scalar fields arise in many theories that consider physics beyond the Standard

Model (SM), and the chameleon mechanism remains one of the most-studied approaches to screening the

unwanted forces mediated by these fields.

Many laboratory experiments have been conducted to search for forces mediated by chameleon fields.

Experiments that use atom [26] and neutron [27, 28] interferometry and those that use µm-sized test masses
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[29] have already placed constraints on chameleon theories. Additional experiments have been proposed:

one aims to measure the interactions between parallel plates to search for new forces [30] and another

suggests using atom interferometry between parallel plates of different densities to detect density-dependent

chameleon forces [31]. Laboratory searches for chameleon particles converted from photons in the presence

of a magnetic field via the Primakov effect have placed constraints on the chameleon-photon coupling [32, 33].

The CERN Axion Solar Telescope searched for chameleons created in the Sun by this effect [34] and is

currently conducting more sensitive searches [35] to detect solar chameleons via their radiation pressure [36].

Chameleon theories have also been constrained by their effects on the pulsation rate of Cepheids [37] and

comparisons of x-ray and weak-lensing profiles of galaxy clusters [38, 39]. There have also been efforts

to constrain the parameters of chameleon models by their effects on the cosmic microwave background

[40, 41], though these analyses focus specifically on potentials of the power-law form. Given the tremendous

experimental effort under way to detect or constrain chameleons, it is troubling that the most widely studied

chameleon models have been shown to suffer a breakdown in calculability in the early Universe due to the

discrepancy between the chameleon mass scale and that of the SM particles [42, 43].

In Chapter 2, we aim to identify a chameleon potential that can avoid the computational breakdown

suffered by runaway models. We analyze a class of potential not often considered in chameleon theories:

the quartic potential, V (φ) = κφ4/4!. Prevalent in high-energy theories, the quartic potential is also viable

as a chameleon model because the self-interaction of this potential is sufficient to ensure that the field will

be adequately screened in high-density environments [44]. The scale-free property of the quartic model is

potentially beneficial as it can avoid the hierarchy of energy scales that arises due to the low-energy scale of

the runaway potentials, and we investigate whether it is able to remain well-behaved in the early Universe.2

Following our investigations in Chapter 2 into chameleon gravity, in Chapter 3 we turn our attention to

dark matter. While we do not yet know the nature or composition of dark matter, our wealth of cosmological

investigations allows us to put constraints on its origins. One of the most common origin stories for dark

matter is to assume that it was once in thermal equilibrium with SM particles in the early Universe. As the

SM plasma cooled, thermal production of dark matter ceased while annihilations continued. The dark matter

abundance thus began decreasing with the expansion until its annihilation rate equaled the Hubble rate, at

2Another proposed way to avoid the detrimental effect of the kicks is to include DBI-inspired corrections to the chameleon’s
Lagrangian that weaken the chameleon’s coupling to matter at high energies. This modification effectively introduces a second
screening mechanism analogous to a Vainshtein screening in which derivative interactions weaken the effect of the kicks [45].
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which point annihilations also ceased, and the dark matter abundance became constant. A second common

assumption is that this process, what we call dark matter freeze-out, occurred during a period in which the

energy density of the Universe was dominated by radiation. These assumptions allow one to calculate the

annihilation rate that generates the currently observed dark matter abundance. The required annihilation cross

section is “miraculously” of the electroweak scale [46]. However, as we continually place more stringent

bounds on dark matter properties, while failing to receive signals from any direct [47, 48, 49] or indirect

[50, 51, 52, 53, 54, 55] searches, interest in alternatives to this commonly considered scenario grows.

Alternatives to the common scenario often challenge the assumptions that dark matter was in thermal

equilibrium with SM particles and that it froze out during an era of radiation domination, both of which,

while tenable, are not strictly necessary. A period of radiation domination is required at temperatures below

∼3 MeV in order to be consistent with the successful predictions of light element abundances from BBN

[56, 57, 58]. Inflation, however, is believed to occur at energy scales that greatly exceed this temperature, and

the thermal history of the Universe between the two periods is entirely unconstrained. In the simplest scenario,

the inflaton decays into relativistic particles that come to dominate the energy density of the Universe, and an

era of radiation domination begins [59, 60]. The transition to a radiation-dominated era, known as reheating,

is usually assumed to occur at temperatures many orders of magnitude above 3 MeV. It is not necessary,

however, that this be the case - the reheating of the Universe can occur at any temperature between 3 MeV

and the energy scale of inflation, and it can be caused by a number of different mechanisms.

In many models, inflation ends when the scalar field that drives inflation begins oscillating in its potential

minimum before decaying. If these oscillations occur in a quadratic potential, the field behaves as pressureless

fluid, and the Universe is effectively matter dominated [61]. Similar scenarios occur when one considers the

scalar (moduli) fields that are a common component of string theories [62, 63, 64, 65, 66, 67, 68, 69]. These

oscillating fields naturally come to dominate the energy density of the Universe following the decay of the

inflaton, providing another viable mechanism to produce an effectively matter-dominated era. Hidden-sector

theories, in which the dark matter does not couple directly to the SM, can also alter the thermal history

[70, 71, 72, 73, 74, 75], providing yet another means to achieve a period of matter domination prior to BBN.

Thus, an early matter-dominated era (EMDE) arises in many theories of the early Universe.

The occurrence of an EMDE can profoundly affect dark matter phenomenology, notably its resulting relic

abundance [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. The entropy generated by the

decay of the dominant matter component during the EMDE dilutes the relic abundance of existing particles;
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if dark matter thermally decoupled during the EMDE, a smaller annihilation cross section 〈σanv〉 is required

to compensate for this dilution and provide the observed dark matter abundance. Contrarily, if dark matter

is a decay product of the dominating component, its abundance can be significantly enhanced, requiring a

larger 〈σanv〉 to compensate for the excess, a scenario already under pressure by γ-ray observations [93, 94].

The correct relic abundance can almost always be obtained with the appropriate combinations of 〈σanv〉,

dark matter branching ratio, and temperature at reheating [80, 81, 85, 90]. In many scenarios, the dominant

production mechanism for dark matter is by decay, rather than thermal production.

Another interesting consequence of an EMDE is the growth of small-scale structure. Subhorizon density

perturbations in dark matter grow linearly with the scale factor during an EMDE, as opposed to the much

slower logarithmic growth experienced during a radiation-dominated era [95, 96, 97]. This linear growth can

provide an enhancement to dark matter structure on extremely small scales (λ . 30 pc for temperature at

reheating > 3 MeV), providing observable consequences to this scenario if dark matter is a cold thermal relic

[97, 98, 99].

However, if the dark matter is relativistic at reheating, the perturbation modes that enter the horizon

during the EMDE will be wiped out by the free streaming of dark matter particles [95, 96]. For this reason,

Ref. [95] assumed that the dark matter particles were born from the decay process with nonrelativistic

velocities or had a way of rapidly cooling in order for the enhancement to substructure to be preserved.

Assuming a nonrelativistic initial velocity for the dark matter requires a small, finely tuned mass splitting

between the parent and daughter particles, and it is more natural to assume any daughter particles are produced

relativistically.

Reference [96] claimed that the large free-streaming length of dark matter produced relativistically

from scalar decay would washout any enhancement to structure growth. However, Ref. [96] reached this

conclusion by assuming that all dark matter particles were created at reheating, neglecting those particles

created during the EMDE. The momenta of particles born prior to reheating decreased throughout the EMDE.

Consequently, particles born earlier will be slower at reheating. In Chapter 3, we investigate the extent to

which the redshifting of the particles’ momenta affects their velocity distribution at reheating, focusing on

the average particle velocity and the fraction of particles below a given velocity, to determine under what

conditions the EMDE enhancement to structure growth can be preserved.

We further consider, in 3.3, under what conditions the free streaming of relativistically produced dark

matter could suppress the structures we observe. The Lyman-α forest provides information on the matter

8



power spectrum at the smallest observable scales, 0.5Mpc/h < λ < 20Mpc/h [100, 101, 102] by measuring

the line-of-sight distribution of hydrogen gas clouds through their absorption of Lyman−α photons from

distant quasars. The Milky Way’s (MW) satellite galaxies also constrain the small-scale power spectrum

[103]. Preventing the suppression of power at these scales provides us with constraints on the allowed dark

matter velocity at its production for a given reheat temperature.

In Chapter 4 we consider how including scattering interactions between the dark matter and SM particles

could effect our constraints. If dark matter can efficiently transfer momentum to SM particles it has a way to

rapidly cool after its production. In Chapter 3, however, we show the vast majority of particles are produced

near reheating. Thus if the dark matter decouples from the SM early in the EMDE, very few dark matter

particles are ever able to interact with the SM and results from the noninteracting case are still largely

applicable. If dark matter remains coupled to the SM well after reheating, then the dark matter acquires the

standard thermal velocity distribution and all record of its nonthermal history is lost. Interactions between

dark matter and the SM only leave a distinctive impact on the dark matter velocity distribution function when

the decoupling occurs at or near reheating. In Chapter 4, we explore to what extent our constraints can be

relaxed if these interaction are included.

Throughout this work we will use MPl = (8πG)−1/2, natural units c = ~ = kB = 1, and the metric

convention (−,+,+,+).
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CHAPTER 2

Dark Energy:
Quartic Chameleons

1In the commonly-considered runaway chameleon models, the field rolls to some value far from the

minimum of its effective potential after inflation and remains stuck there during the radiation-dominated era

due to Hubble friction. The chameleon’s coupling to the trace of the stress-energy tensor makes it sensitive to

the energy density, ρ, and pressure, P , of the radiation bath through the quantity Σ ≡ (ρ− 3P )/ρ. While the

Universe is radiation dominated, Σ is nearly zero and the chameleon is light enough that Hubble friction is

able to prevent it from rolling toward its potential minimum. However, as the temperature of the radiation bath

cools, particle species in thermal equilibrium become nonrelativistic and Σ momentarily becomes nonzero.

The chameleon then gains mass, is able the overcome Hubble friction, and is seemingly “kicked” toward the

minimum of its effective potential [104].

Originally, the kicks were seen as an auspicious way to bring runaway chameleons to their potential

minimum prior to Big Bang Nucleosynthesis (BBN).2 However, they impart such a high velocity to the field

that the chameleon rebounds off the other side of its effective potential back to field values further from the

potential minimum than where it was stuck when the kick began [105]. However, Ref. [105] also showed

that the inclusion of a coupling between the chameleon and the electromagnetic field offers a solution. The

chameleon’s coupling to a primordial magnetic field allows the chameleon to overcome Hubble friction and

begin oscillating about its potential minimum prior to the kicks. For a sufficiently rapidly oscillating field, the

kicks then have little effect on the chameleon’s evolution.

These kicks further jeopardized chameleon theories by throwing into question their validity as a classical

field theory [42, 43]. The effective potential in runaway models is minimized when φ ∼M , and at field values

φ .M , the extremely steep slope of the bare potential leads to rapid changes in the chameleon’s effective

1The contents of this chapter have been published as an article in Physical Review D. The original citation is as follows: Carisa
Miller and Adrienne Erickcek. Quartic Chameleons: Safely Scale-Free in the Early Universe. Phys. Rev. D94:104049, 2016.

2A consequence of the chameleon’s coupling to matter is that any variation in the chameleon field can be recast as a variation
in particle masses in the Jordan frame. As we know particle masses differed very little between BBN and the present day, this
constrains the chameleon to be at or near the minimum of its potential prior to the onset of BBN [104].
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mass for small field displacements. Thus, the GeV-scale velocity with which the chameleon approaches its

meV-scale minimum after the kicks causes nonadiabatic changes in the mass that excite extremely energetic

fluctuations and lead to the quantum production of particles [42, 43]. Quantum corrections due to particle

production then invalidate the classical treatment of the chameleon field and the particles’ trans-Planckian

energies cast doubt on the chameleon’s viability as an Effective Field Theory (EFT) at the energy scale of

BBN.

We will show that the quartic potential is able to avoid these problems due to its scale-free nature. In the

early Universe, a chameleon field in a quartic potential oscillates rapidly with a large amplitude far beyond

the minimum of its effective potential. In the classical treatment, the chameleon would continue this behavior

until the end of radiation domination and still be oscillating far outside its minimum at the onset of BBN.

A quantum treatment of the chameleon’s motion shows that these oscillations will create particles, albeit

with much less energy than those created during the rebounds off runaway potentials. The same quantum

effects that were catastrophic to previous chameleon models will cause the field to lose energy and bring

the quartic chameleon to its potential minimum prior to the onset of the kicks. Consequently, for the quartic

chameleon, these kicks do not have as significant an influence on the field’s evolution as in models with

runaway potentials. Depending on the value of κ, the rate at which the field loses energy can vary significantly.

For large values of κ, the field can lose all of its initial energy to particle production within the first oscillation

and fall to its minimum. However when κ is closer to unity only a small percentage of the energy is lost

during each oscillation, but the total effect accumulates over many oscillations to introduce a decay factor to

the amplitude that still allows the field to reach its potential minimum before the kicks.

We begin with a brief review of chameleon gravity and then analyze the evolution of a classical chameleon

field in a quartic potential in Section 2.1. Then, in Section 2.2, we consider the effects of quantum particle

production on the field and investigate how the energy lost to this process is affected by the choice of κ.

Section 2.3 explores how the kicks affect the field, and we follow up with concluding remarks in Section 2.4.

11



2.1 Classical Chameleons

In theories of chameleon gravity, the action can be written as

S =

∫
d4x
√
−g∗

[
M2

Pl

2
R∗ −

1

2
(∇∗φ)2 − V (φ)

]
+ Sm [g̃µν , ψm] , (2.1)

where g∗ is the determinant of the metric g∗µν that solves the Einstein equations, R∗ is its Ricci scalar, and

V (φ) is the potential of the chameleon field, φ. The spacetime metric g̃µν that appears in the action for the

matter fields, Sm, governs geodesic motion and is conformally coupled to the Einstein metric by

g̃µν = e−2βφ/MPl g∗µν , (2.2)

where β is a positive, dimensionless coupling constant assumed to be of order unity.3 This coupling

implies that the Einstein-frame stress-energy tensor of the matter fields is Tµ∗ ν = e−4βφ/MPl T̃µν . With this

relationship between Tµ∗ ν and T̃µν , the Einstein and Jordan frame energy density and pressure can be related

by ρ∗/ρ̃ = P∗/P̃ = e−4βφ/MPl . It follows that any quantity that is a ratio of elements of the stress energy

tensor, such as Σ or w ≡ P/ρ, is the same in both frames and can be evaluated using either Einstein- or

Jordan- frame quantities.

Varying the action with respect to g∗µν implies that Tµ∗ ν is not conserved in the Einstein frame, as

energy is exchanged between matter and the chameleon field. However, as the scalar and matter fields do

not interact in the Jordan frame, the Jordan-frame stress-energy tensor is conserved: ∇̃µT̃µν = 0. In a

Friedmann-Robertson-Walker spacetime, the scale factors in the Jordan and Einstein frames are related by

ã = e−βφ/MPla∗ and the proper times are related by dt̃ = e−βφ/MPldt∗. Since the Einstein-frame matter

density is not conserved, it does not follow the usual a−3
∗ scaling. Radiation, however, still follows the

expected a−4
∗ behavior. To show this, we begin by writing the conservation equation in the Jordan frame,

ρ̃ ∝ ã−3(w+1). (2.3)

3In most other chameleon theories, the bare potential and the matter coupling term must slope in opposite directions in order to
produce the required minimum in the effective potential, and the coupling is generally given with a positive exponential. However,
for the quartic potential, the coupling may slope in either direction and still produce a minimum, so in following with Ref. [44] we
will use this form of the coupling, which essentially gives a coupling constant β that is negative compared to most theories.
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Exchanging the Jordan frame quantities for those of the Einstein frame, we have

ρ∗e
4βφ/MPl ∝

(
a∗e
−βφ/MPl

)−3(w+1)
,

ρ∗e
4βφ/MPl ∝ a−3(w+1)

∗ e3βφ/MPl(w+1),

ρ∗e
βφ/MPl(1−3w) ∝ a−3(w+1)

∗ . (2.4)

For matter we have w = 0 and Eq. (2.4) becomes

ρ∗me
βφ/MPl ∝ a−3

∗ . (2.5)

Clearly, the Einstein-frame energy density in matter, ρ∗m, does not scale as a−3
∗ . This follows from our earlier

statement that the stress-energy tensor that is conserved in the Einstein frame is not Tµ∗ ν , but the sum of Tµ∗ ν

and the stress-energy tensor of the chameleon field. Often it has been the practice to define the left-hand side

Eq. (2.5) as the matter density as it is the quantity that follows the conservation equation in the Einstein frame

[24, 104].

For radiation, however, w = 1/3 and we find from Eq. (2.4) that

ρ∗R ∝ a−4
∗ . (2.6)

In both frames the energy density in radiation is proportional to a−4
∗ , and it follows that H∗ ∝ a−2

∗ .

Throughout the remainder of the work we will drop the ∗ subscript on the scale factor when discussing how

quantities scale in the Einstein frame.

The relationship between Tµ∗ ν and T̃µν also implies that the Jordan-frame temperature, TJ , depends on

φ. As entropy is conserved in the Jordan frame, g∗S (TJ) ã3T 3
J is constant, and the expression for TJ in terms

of φ and a∗ is

TJ [g∗S (TJ)]1/3 = [g∗S (TJ,i)]
1/3 TJ,ie

−β(φi−φ)/MPl
a∗,i
a∗

. (2.7)

where a∗,i is the initial value of a∗, φi = φ(a∗,i), and TJ,i = TJ(a∗,i).
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2.1.1 Chameleon Cosmology

Varying the action with respect to the field φ gives the equation of motion for the chameleon:

φ̈+ 3H∗φ̇ =− dV

dφ
− β

MPl
Tµ∗ µ; (2.8)

=− dV

dφ
+

β

MPl
(ρ∗ − 3P∗), (2.9)

where the dot denotes a derivative with respect to proper time t∗ in the Einstein frame and H∗ ≡ ȧ∗/a∗.

The effective potential that controls the evolution of the chameleon field is

Veff(φ) = V (φ)− βφ

MPl
(ρ∗ − 3P∗); (2.10)

=
κ

4!
φ4 − βφ

MPl
Σρ∗, (2.11)

where κ is a dimensionless constant, and we have used the definition Σ ≡ (ρ∗ − 3P∗)/ρ∗. Quantum loop

corrections to the classical potential and limits on fifth forces constrain β and κ. The chameleon mechanism

depends on an increase in the chameleon’s effective mass in order to hide its effects, however quantum

corrections to its potential also increase with its mass. Maintaining the reliability of fifth-force predictions

requires that these corrections remain small compared to the classical potential and places an upper limit on

the chameleon mass that implies κ . 100 [106]. Laboratory searches for fifth forces, in turn, have already

placed lower bounds on the chameleon mass, which can to used to constrain κ from below for given β [107].

In order for κ to be of order unity, the chameleon coupling must be β . 10−1. Conversely, in order for β to

be of order unity, κ must be & 50.

The minimum of this effective potential,

φmin =

(
6βΣρ∗
κMPl

)1/3

, (2.12)

is dependent on ρ∗ and on P∗ through the definition of Σ, and so, too, is the chameleon’s effective mass

m2 = d2V/dφ2
∣∣
φ=φmin

. The mass increases with ρ∗, making the chameleon heavier in regions of high

density and unable to mediate a long-range force.

When evaluating the chameleon equation of motion, we work with a dimensionless scalar field ϕ ≡

φ/MPl, as well as with p ≡ ln(a∗/a∗,i). Primes will now denote differentiation with respect to this new time
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variable p and the first Friedmann equation is

H2
∗ =

ρ∗ + V

3M2
Pl [1− (ϕ′)2/6]

. (2.13)

Using the above equation and the fact that Σ� 1 during radiation domination and V (φ)� ρ∗, the chameleon

equation of motion, Eq. (2.9), can be written as

ρ∗ + V

[1− (ϕ′)2/6]
ϕ′′ = −ϕ′ (ρ∗ + 3V )− 3

(
dV

dϕ
− βΣρ∗

)
. (2.14)

We will use this equation in order to explore the evolution of a chameleon field in a quartic potential

throughout the radiation-dominated era.

The initial conditions for Eq. (2.14) follow from the field’s dynamics prior to reheating. During inflation,

the equation of state parameter w is approximately−1, and the comparatively large value of the kick function,

Σ = (1− 3w) ' 4, sets the value of φmin drastically greater than it is during radiation domination. The mass

of the field at its minimum is

m2 =
κ

2
φ2

min =

(
9

2
κβ2

)1/3(Σρ∗
MPl

)2/3

. (2.15)

When Σ & 1, the response time of the field m−1 is much shorter than the Hubble time H−1
∗ as long as

ρ∗ �M4
Pl,

m2

H2
∗
' 3

(
9

2
κβ2

)1/3(Σ2M4
Pl

ρ∗

)1/3

. (2.16)

Therefore, the field is massive enough to roll to its minimum prior to the onset of radiation domination. The

fact that m2 � H2 also implies that the chameleon field is massive enough during inflation that quantum

effects do not generate superhorizon perturbations in its value.

During reheating, the energy density ρ∗ (be it of the inflaton or another oscillating scalar field) is converted

into radiation. The value of the kick function then drops to Σ � 1, and φmin is pushed to significantly

smaller field values; see Eq. (2.12). For all reheat temperatures much less than MPl we can assume that the

chameleon begins at rest with φ equal to the value of φmin just prior to the drop in Σ, because m2 � H2, as

shown in Eq. (2.16). At temperatures greater than a TeV, the QCD trace anomaly implies that the value of Σ
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is 0.001 [108]. Σ then maintains this value until TJ ' 600 GeV when contributions from massive particles

become comparable. As the temperature decreases, Σ begins to increase as Σ ∝ m2
t /T

2, where mt is the

mass of the most massive SM particle species: the top quark [108].

At TJ ' 200 GeV the process that gives the kick function its name begins. As the temperature of the

radiation bath decreases, the energy density and pressure of massive particles decay at slightly different rates,

allowing Σ to reach non-negligible values. This happens as each SM particle becomes nonrelativistic, but

contributions from some species merge together, and the entire process results in four distinct kicks. The

contributions from each particle are suppressed by a factor of g∗(TJ)−1, where g∗(TJ) is the effective degrees

of freedom. As the temperature cools, g∗(TJ) decreases, and each kick becomes larger than the last with the

final kick due to the electrons reaching a value of Σ ' 0.1. For a detailed calculation of the kick function Σ,

see Appendix A of Ref. [43].

2.1.2 Quartic Chameleons

For the runaway potentials usually considered in chameleon gravity, the value of V (φ) approaches

infinity as φ → 0 and drops off rapidly as φ increases. The effective potential is then dominated by V (φ)

near φ = 0 and by the linear matter-coupling term at field values greater than φmin. During inflation, the

large value of Σ makes the slope of the matter-coupling term in Eq. (2.10) steeper, and the chameleon sits

in a potential minimum at a small φ value. When inflation ends and Σ decreases, the slope of the matter

contribution to Veff becomes shallow and the minimum of the effective potential moves to larger values of φ.

The chameleon then rolls down its bare potential, past the minimum, and out to where the effective potential

is dominated by the matter-coupling term. The field then becomes stuck due to Hubble friction until it is

kicked back toward the minimum of its effective potential.

The quartic chameleon, however, feels the effects of its bare potential on both sides of the minimum of

its effective potential. As previously discussed, the comparatively large value of Σ prior to reheating fixes

φmin at a large value far from zero. Throughout this analysis, we use the subscript i to indicate the value of a

quantity just prior to the onset of radiation domination, which we take to occur at a Jordan-frame temperature

TJ,i = 1016 GeV. The value of φmin is then

φi ' 0.0062MPl

(
β

κ

)1/3

. (2.17)
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We have also assumed an era of inflation prior to radiation domination and have therefore used Σi = 4.

However, nonstandard histories can easily be accounted for by changing this value in Eq. (2.12). We will show

that the values of Σi and TJ,i, only set the initial oscillation amplitude of the field, to which the subsequent

evolution is largely insensitive.

When the value of Σ drops from 4 to 0.001 at the end of inflation, the value of φmin decreases by a

factor of (0.001/4)1/3 ' 0.06. The chameleon then rolls rapidly down its bare potential toward this new

minimum. In its decent to its potential minimum, the chameleon gains sufficient energy that the slight tilt at

the bottom of the quartic well due to the now small matter coupling does very little to affect its motion as it

passes through φmin and climbs up the other side of its bare potential. It climbs to almost the same potential

value as it started before turning around and falling again with nearly the same energy. It continues in this

fashion, oscillating back and forth, all but oblivious to the matter coupling.

The oscillation amplitude decreases as Hubble friction causes the energy in the chameleon field to

redshift away as a−4. This behavior can be understood easily by the virial theorem. For a general power-law

potential of the form V (φ) = Cφn, the virial theorem relates the rapidly oscillating field’s average kinetic

and potential energies, K and V , by

2K̄ = nV̄ . (2.18)

The equation-of-state parameter w is then

w =
P̄

ρ̄
=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
=
n− 2

n+ 2
. (2.19)

Using this value of w, we can determine how the chameleon energy will scale with expansion by using the

conservation equation:

ρ = ρ0a
−3(1+w);

= ρ0a
−3( 2n

n+2
). (2.20)

For a quartic potential, n = 4 and the last line implies that the energy scales as a−4. As we have already seen,

radiation will also scale as ρ∗R ∝ a−4, and so ρφ/ρ∗R ∼ Vi/T 4
J,i � 1. Technically, the chameleon’s energy

does not exactly obey Eq. (2.20) because there is a small amount of energy exchanged between the field and
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Figure 2.1: Top: The value of ϕ (blue, solid) and the values of its minima and maxima, −ϕia−1 and ϕia−1,
respectively (black, dotted) over the course of four oscillations. Bottom: The kinetic (green, dashed) and
potential (blue, solid) energies of the chameleon and their amplitude, Via−4 (black, dotted). The potential
energy reaches a maximum twice during each complete oscillation when |ϕ| is at a maximum. The kinetic
energy reaches its maxima both times ϕ passes through ϕmin. At all times the chameleon energy density is
much less than that of the radiation ρ∗R ∼ (TJ,ia

−1)4 = 1064a−4GeV (In this and all figures β = 0.1 and
κ = 2.)

matter. However, we will show later in Section 2.2.2 that the corrections to the evolution of the chameleon’s

energy density are negligible.

As the energy in the chameleon field is the sum of its kinetic and potential energies, the maximum

values of both of these quantities during each oscillation will scale as a−4. The potential energy of the

field when it reaches the peak of each oscillation, Vmax, and its kinetic energy each time the field passes

through the minimum of its potential, Kmax = φ̇2
max/2, are both related to the field’s initial potential energy

by Vmax = Kmax = Via
−4. The quartic relation between φ and V implies that the amplitude of the φ

oscillations decays as a−1, so the value of φ at the peak of each oscillation is φmax = φia
−1. Both of

these behaviors can be seen in Figure 1, which shows the value of ϕ in the top panel and the kinetic and

potential energy of the field in the bottom panel plotted over the course of several oscillations. These plots

are generated from the numerical solution to Eq. (2.14) assuming ϕ′i = 0 and ϕi = φi/MPl with β = 0.1

and κ = 2.

The fact that the quartic chameleon begins at φi �MPl and does not exceed this value is an interesting

difference compared to runaway models. The field value at which runaway models become stuck due to
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friction can be nearly equal to MPl [104]. If the field remains stuck at such values until BBN, the large

variation of φ from its potential minimum can be interpreted as a larger variation in particle masses than we

know to be allowed. Quartic chameleons, however, are already at field values much less than MPl before the

end of inflation and oscillate with a decreasing amplitude. While we will show that the field still finds its

minimum prior to the kicks, it is not strictly necessary to avoid endangering the success of BBN.

Equation (2.12) implies that φmin is proportional to the cube root of the energy density in radiation

and so will decay as a−4/3. Thus, φmin will decrease faster than the oscillation amplitude by a factor of

a−1/3, implying that the value of φ at the maximum of its oscillations will always exceed the minimum

of its effective potential. Therefore, our classical treatment of the chameleon’s behavior suggests that it

would spend most of its time in regions dominated by its bare potential far from the minimum of its effective

potential (though not far enough to significantly effect particle masses), allowing the oscillations to continue

indefinitely while the Universe is radiation dominated. The high-energy oscillations of the field prevent

it from becoming stuck due to Hubble friction or falling into and tracking its minimum. However, as the

problems with other chameleon models demonstrate, the quantum effects associated with rapid changes in

the chameleon field can significantly alter this classical behavior.

2.2 Quantum Chameleons

In chameleon models with runaway potentials, the only instances of rapid changes of the chameleon field

after inflation occur when the chameleon is kicked toward its potential minimum with a very high velocity

and rebounds off its steep bare potential. The rapid changes in the mass of the chameleon during this rebound

excite high-energy perturbations that, in a naive, classical evaluation, exceed the energy initially available

to the chameleon field. Considerations of the backreaction of particle production on the field showed that

quantum corrections significantly alter the form of the potential experienced by the chameleon field. These

corrections radically change the chameleon’s evolution throughout the rebound, causing it to turn around

long before it would have exhausted the kinetic energy it possessed going into the rebound, which keeps the

occupation numbers of the excited modes extremely small [43].

In this section we show that every oscillation of the quartic chameleon excites perturbations, but with

small enough energies that the energy lost to particle production does not exceed the initial energy of the

field. For increasing values of κ we find that the limit at which this is no longer the case coincides with the
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results Ref. [106], which also used quantum corrections to place an upper bound on κ. For the relatively

large values of κ near this limit, the field can lose all of its initial energy to particles before it completes an

oscillation, and it simply falls to its potential minimum. For smaller values (κ . O(1)), the energy lost is

only a small fraction of the field’s energy at the start of an oscillation, and the evolution of the field over a

single oscillation is not significantly altered. Instead, this energy loss accumulates over many oscillations

and introduces an additional decay factor to the oscillation amplitude causing it to decay faster and reach its

potential minimum.

2.2.1 Particle Production

We first summarize how rapid changes in the chameleon’s effective mass excite perturbations [109]; for

a more detailed review of this process, see Appendix C of Ref. [43]. We begin by decomposing the field into

its spatial average φ̄(t) and the perturbation δφ:

φ(t,x) = φ̄(t) + δφ(t,x). (2.21)

The linearized perturbation equation that governs the evolution of δφ is

[
∂2
t + 3H∂t −

∇2

a2
+ V ′′eff(φ̄)

]
δφ = 0. (2.22)

Throughout this section we will not be using the variable p, and primes will denote differentiation with

respect to the argument of the function.

To quantize the perturbations, we introduce the creation and annihilation operators â†k and âk, respectively,

which obey the standard commutation relations,

[
âk, â

†
k′

]
= (2π)3δ(3)

(
k− k′

)
. (2.23)

The annihilation operator annihilates the vacuum state: âk|0〉 = 0. Using â†k and âk we can then express

δφ(τ) as

δ̂φ(τ,x) =

∫
d3k

(2π)3

[
âk
φk(τ)

a(τ)
eik·x + â†k

φ∗k(τ)

a(τ)
e−ik·x

]
, (2.24)
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where τ is conformal time. Inserting this decomposition of δφ into Eq. (2.22), we find

φ′′k(τ) + ω2
k(τ)φk = 0; (2.25)

ω2
k(τ) = k2 + a2V ′′eff(φ̄)− a′′(τ)

a
, (2.26)

where ω2
k(τ) is the effective mass of a plane-wave perturbation in the chameleon field with a comoving

wavenumber k.

During radiation domination a′′(τ) = 0, and

ω2
k = k2 + a2

∗V
′′

eff

(
φ̄
)
' k2 +

κ

2
(a∗φ)2, (2.27)

where in the last equality we have dropped the bar over φ as we will be working exclusively with the spatially

averaged field. We also neglect the matter coupling because it is subdominant to the bare potential throughout

most of the oscillation. When ω′k(τ)/ω2
k & 1, perturbations in the field are excited. Taking the derivative of

this effective mass with respect to τ , we find

ω′k(τ) =
a3
∗

2ωk

[
2H∗V

′′(φ) + V ′′′(φ)φ̇
]

;

=
a3
∗

2ωk

[
κH∗φ

2 + κφφ̇
]
. (2.28)

We can simplify the last line of the equation by noting that not only is H∗φ2 initially smaller than φφ̇, it

also redshifts away faster. This can be seen by recalling the relations φmax = φia
−1, φ̇max =

√
2Kmax =

√
2Via−4, and using the fact that, during radiation domination, H∗ decreases as a−2. With these results, the

maximum value of the first term during each oscillation is H∗φ2
max ' H∗,iφ2

i a
−4. The second term, however,

is a product of two oscillating functions that reach their maxima at different times. From the approximately

sinusoidal nature of φ, we can determine that the product of φ and its derivative φ̇ will behave as the product

of their amplitudes and another sinusoidal function, thus, (φφ̇)max is proportional to φmaxφ̇max. The constant

of proportionality can be numerically determined and is ≈0.6 for all β and κ. The amplitude of the second

term is then (φφ̇)max ∼ φmaxφ̇max ' φia
−1
√

2Kmax '
√
κ/12φ3

i a
−3. We can see that H∗φ2 ∝ a−4 will

decay away faster than φφ̇ ∝ a−3. Thus, if H∗φ2 is initially the smaller of the two terms, we can neglect it.
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During radiation domination,H2
∗ ' ρ∗R/(3M2

Pl), and from Eq. (2.12), we know that φi = [24βρ∗R,i/(κMPl)]
1/3.

Assuming that Ti = 1016 GeV, the relative contribution between the two terms is
√

12/κH∗,i/(0.6φi) '

0.05(κβ2)−1/6. Thus, as long as κβ2 > 1.56 × 10−8, which is true provided that neither β nor κ is

unreasonably small, this ratio is less than 1 and we can neglect the H∗φ2 term in Eq. (2.28).

By setting the ratio ω′k(τ)/ω2
k equal to 1, we can find the physical wavenumbers, kphys = k/a∗, of the

perturbations that are excited during the oscillations. Using Eqs. (2.27) and (2.28), we now have

ω′k(τ)

ω2
k(τ)

' a3
∗

2ω3
k

(
κφφ̇

)
,

=
a3
∗

2

κφ̇φ[
k2 + κ

2 (a∗φ)2
]3/2 ,

=
κφ̇φ

2
[
k2

phys + κ
2φ

2
]3/2

. (2.29)

Setting this ratio equal to 1, and solving the last line for kphys, we get

k2
phys =

(κ
2
φφ̇
)2/3

− κ

2
φ2. (2.30)

This expression reaches its maximum value four times during a single oscillation, as shown in Figure 2.2.

To evaluate kphys we again use how the maxima of the contributing quantities are related to the initial

field value and corresponding initial potential energy. Already we have established that, for the first term,

(φφ̇)max = Aφmaxφ̇max, where A ' 0.6. It is also important to note that the terms in Eq. (2.30) do not reach

their maxima at the same time kphys is at its maxima. To account for these proportionalities we introduce

the numerical parameters B and C to relate the maxima of the two terms to their values when kphys is at its
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maxima. The maximum value of kphys during an oscillation is then

(
kmax

phys

)2
= B

(κ
2
Aφmaxφ̇max

)2/3
− Cκ

2
φ2

max

= A2/3B

(
κ

2
φia
−1

√
κ

12
φ4
i a
−4

)2/3

− Cκ
2
φ2
i a
−2

=
κ

2

[(
A2

6

)1/3

B − C

]
φ2
i a
−2

kmax
phys = D

√
κ

2
φia
−1 (2.31)

= D(6κ)1/4V
1/4
i a−1. (2.32)

For β = 0.1 and κ = 2, B ' 0.6, C ' 0.1, and as it is defined in the last equation, D ' 0.4. Changing β or

κ by two orders of magnitude does not significantly effect the value of A, B, C, or D.

As well as being proportional to the oscillation amplitude, the a−1 behavior of kmax
phys implies that it

also scales with the temperature. Starting from Eq. (2.31), the relationship between kmax
phys and the Jordan-

frame temperature becomes apparent when φi is determined by evaluating Eq. (2.12) using Σ = 4 and

ρ∗,i = (π2/30)g∗(TJ,i)T
4
J,i. After combining all numerical factors, we find that

kmax
phys ' 2.67(κβ2)1/6

(
(TJ,i)

4

MPl

)1/3

a−1,

' 2.67(κβ2)1/6

(
TJ,i
MPl

)1/3

TJ , (2.33)

where we have used the fact TJ ∝ a−1 during radiation domination.4 For TJ,i = 1016 GeV, β = 0.1, and

κ = 2, the ratio of kphys to the temperature is kmax
phys/TJ ' 0.23, as shown in Figure 2.

The fact that the energy of the modes excited in quartic models is dependent only on the initial value of

the field is another important contrast to runaway models. The energy of excited modes in such models is

dependent on the velocity with which the chameleon approaches the minimum, φ̇M , which is of order GeV2.

Reference [43] found that for a power-law potential of the form

V (φ) = M4
v

[
1 +

(
Ms

φ

)n]
, (2.34)

4Though the temperature does depend on φ, variations in the field have a negligible effect on the temperature as long as φ�MPl,
as the lack of deviation from the expected a−1 behavior in the temperature plotted in Figure 2.2 shows.

23



 0

 2x1015

 4x1015

 6x1015

 8x1015

 1x1016

TJ

k p
hy

s 
[G

eV
]

 0

 0.005

 0.01

 0.015

 0.02

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

ρ k
 / 

ρ φ

p = ln(a/ai)

Figure 2.2: Top: The value of kphys (blue, solid) over four oscillations. During each oscillation, kphys reaches
a maximum four separate times at approximately the middle of the climb and decent on each side of the
potential. The value of this maximum, kmax

phys (green, dashed), is on the order of the temperature and decays
as a−1. Bottom: The ratio of the energy in the perturbations to the energy in the chameleon field over four
oscillations. Each oscillation sees approximately a total 0.08 fractional loss of energy.

the most energetic mode that is excited has a physical wave number

kphys =
(n+ 2)

2
√

2

|φ̇M |
Ms

(
Ms

φ̄ta

)
. (2.35)

where φ̄ta .Ms is the value of φ at which the field turns around. Since Ms ∼ meV, the ratio of φ̇M ∼ T 2
J

and Ms results in the excitation of extremely energetic modes even at low temperatures: kphys �
√
φ̇M ∼

TJ . For the quartic chameleon, however, highly energetic modes are only excited at high temperatures:

kphys . TJ .

Using our value of kphys, we can evaluate the energy density in the perturbations:

ρk =
k3nkωk
2π2a4

'
k3

phys

2π2

√
k2

phys + V ′′(φ),

=
k3

phys

2π2

√(κ
2
φ̇φ
)2/3

− κ

2
φ2 +

κ

2
φ2,

=
k3

phys

2π2

(κ
2
|φφ̇|

)1/3
, (2.36)

where nk ∼ 1 is the mode occupation number. In the same way that we found kmax
phys by relating the maxima

of the quantities in Eq. (2.30) to the initial potential energy, we can find the maximum of ρk during each
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oscillation,

ρmax
k =

D3

2π2
65/6κVia

−4. (2.37)

From Section 2.1 we know that the chameleon’s energy density equals Via−4. Therefore, the maximum of the

ratio of ρk and the chameleon energy density ρφ is constant, as we can see in the bottom panel of Figure 2.2.

The ratio of these two quantities is dependent on κ: ρmax
k /ρφ ' 0.01κ. To ensure our quantum corrections

are kept under control, this ratio must be < 1, and we must have κ . 100. This is the same bound found by

Ref. [106], which used another approach to limit quantum corrections. Runaway models could only keep

this ratio less than 1 if the occupation number was extremely small, nk ≪ 1, which required altering the

classical evolution of the field.

For κ & O(10) the chameleon field will lose all of its energy before it has a chance to complete its

first oscillation, at which point it will settle into its potential minimum. For smaller values of κ, however,

the depreciation in the field’s energy is not as dramatic, and the small fractional loss of energy does not

significantly affect the field’s evolution during a single oscillation. Instead, the effect accumulates over many

oscillations, as we explore in the next section.

2.2.2 Effects of Particle Production for κ . O(1)

While the fraction of the energy lost in each oscillation is constant, the length of each oscillation period,

∆p, is not, as can be seen in Figure 2. The duration of the oscillations scales as follows:

∆p ' 4ϕmax(p)

ϕ′avg

,

' 4ϕie
−p

ϕ′avg

, (2.38)

where ϕ′avg is the average value of ϕ′ over a single oscillation and once again primes denote differentiation

with respect to p. To more clearly see the behavior of ∆p, we first remark on the quantity ϕ′ = φ̇/(MPlH∗).

Radiation domination implies that H∗ will decrease as a−2, and the fact that the maximum kinetic energy of

the chameleon during an oscillation, φ̇2
max/2, is proportional to a−4 implies that φ̇max also decreases as a−2.

Therefore, the amplitude of the ϕ′ oscillations is a constant value: ϕ′max. Since ϕ′max is constant, so too is its

average, and ∆p decays with the amplitude of ϕ. The two values ϕ′avg and ϕ′max can be related by a constant
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scaling factor found numerically to be q ≡ ϕ′avg/ϕ
′
max ' 0.76, and is highly insensitive to changes in β and

κ of up to 2 orders of magnitude.

When considering the energy lost during each oscillation, it is useful to consider how the quantities ϕmax

and ϕ′avg are related to the energy at the start of each oscillation, ρ(p):

ϕmax(p) =

(
4!

κ

ρ(p)

M4
Pl

)1/4

(2.39)

ϕ′max(p) =
φ̇max

H∗MPl
=

√
2ρ(p)

H∗MPl
=

√
κ

12

MPl

H∗
ϕ2

max(p), (2.40)

where we have used the fact that the maximum kinetic energy that occurs during each oscillation, φ̇2
max/2, is

equal to the potential energy at the start of each oscillation.

In Section 2.1.2 we used the canonical definitions of the energy density and pressure of a scalar field,

namely ρφ = φ̇2/2 + V and Pφ = φ̇2/2− V , to determine its equation of state, w. However, when defining

w in this way, because the field’s coupling to matter allows it to exchange energy with the matter fields, the

chameleon does not follow the conservation equation,

ρ̇φ
ρφ
− 3H2

∗ (1 + w) 6= 0. (2.41)

With Eq. (2.40) we are now equipped to revisit this assumption. If we instead introduce a new pressure,

Pn =
1

2
φ̇2 − V − 1

3H∗
φ̇
β

MPl
Σρ∗ (2.42)

we can see that with this new definition, the field now obeys the conservation equation,

ρ̇φ + 3H∗(ρφ + Pn) =

= φ̇φ̈+
dV

dφ
φ̇+ 3H∗

(
φ̇2

2
+ V +

φ̇2

2
− V − 1

3H∗
φ̇
β

MPl
Σρ∗

)

= φ̇

(
φ̈+ 3H∗φ̇+

dV

dφ
− β

MPl
Σρ∗

)
. (2.43)

The terms in parentheses in the last line make up the chameleon’s equation of motion, Eq. (2.9), and the

entire quantity in parentheses is indeed equal to 0. While we used the canonical form of the pressure in
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Section 2.1.2, we also took its average value over many oscillations, and the term which we have added to the

potential is not positive-definite, and will average to 0.

Not only will it average to 0, but we can also show that the additional contribution to the new pressure is

negligible compared to the usual terms. Using the relation φ̇ = H∗MPlϕ
′, we can rewrite Pn as

Pn =
1

2
(H∗MPlϕ

′)2 − V − 1

3
ϕ′βΣρ∗

=
1

6
ρ∗ϕ

′2 − V − 1

3
ϕ′βΣρ∗. (2.44)

The maximum values of the first two terms, the kinetic and potential energies of the field, are equal and

so to compare the relative contribution of the last term, we will look specifically at how it compares the

kinetic energy. The maximum value reached by ϕ′, given in Eq. (2.40), can be broken down further using the

initial values of the field and H∗,

ϕ′max =

√
κ

12

√
3

ρ∗,i

(
6βΣiρ∗,i
κMPl

)2/3

'
(
β4

κ

)1/6(
81

4
Σ4
i

ρ∗R,i
M4

Pl

)1/6

. (2.45)

Combining numerical factors and using TJ,i = 1016 GeV we have

ϕ′max = 0.19

(
β4

κ

)1/6

. (2.46)

The relative contribution of the two terms is then βΣ/ϕ′max ∼ 0.005(κβ2)1/6, which for even some of the

larger values of κ and β allowed (κ = 100, β = 1) is still much less than 1. Therefore, the additional term is

a negligible contribution to the canonical pressure, and our use of the conservation equation, Eq. (2.20), is

valid.

Using Eqs. (2.39) and (2.40) and the scaling constant q, Eq. (2.38) then becomes

∆p =
4

q

√
12

κ

H∗
MPl

ϕ−1
max,

=
4

q

(
6

κ

)1/4

Hie
−2pρ−1/4, (2.47)

=
1

Q
e−2pρ−1/4, (2.48)
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where Hi is the initial Hubble value at the end of inflation and in the last line we have condensed all the

constants into one constant, Q−1.

Over the course of each oscillation, the energy of the chameleon field decreases by a factor of e−4∆p due

the expansion of the Universe, as well as by an additional factor due to the creation of particles. If we take

f . 1 as the fraction of energy left after the field has lost energy due to the production of particles during one

oscillation, we can write the change in energy over one oscillation period as

∆ρ

∆p
=
fρinite

−4∆p − ρinit

∆p
,

' fρinit(1− 4∆p)− ρinit

∆p
. (2.49)

If f = 1 we recover the original ρ ∝ e−4p evolution. Using Eqs. (2.48) and (2.49) we can write a differential

equation for the energy loss including particle production,

dρ

dp
= −ρ

[
1− f
∆p

+ 4f

]
= −Q(1− f)e2pρ5/4 − 4fρ (2.50)

The second term in Eq. (2.50) gives the classical ρ ∝ a−4 evolution and dominates at small p. But the e2p

factor in the first term allows it to quickly dominate over the second term. If we consider the regime in which

the second term has become negligible, we can integrate Eq. (2.50) and see that the energy will follow an

entirely different behavior at late times:

dρ

dp
= −Q(1− f)e2pρ5/4∫

dρ

ρ5/4
= −Q(1− f)

∫
e2pdp

ρ =

[
Q(1− f)

8
e2p + C

]−4

(2.51)

where C is a constant of integration. At large values of p, when this behavior is relevant, the exponential term

will dominate over the constant and the energy will scale as e−8p. The two regimes and behavior of ρ can be

seen in Figure 2.3. The p value at which the e−8p behavior begins to take over is determined by κ, with larger

values of κ leading to an earlier change in regimes.
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When the e−8p term begins to dominate, the amplitude of the oscillations will then decay as e−2p. This

is faster than its original e−p behavior and, more importantly, faster than the e−4p/3 decay of the minimum of

its effective potential. The oscillation amplitude will then decrease below the value of φmin and the field will

fall into its minimum.

We have seen that the oscillatory motion of the chameleon in a quartic well creates large variations in

the field’s mass. Particle production must be considered, but the inclusion of these quantum effects does not

result in the catastrophic effects experienced by other chameleon potentials. Instead the energy of excited

modes is comparable to the temperature and the fraction of the initial energy lost to particle production is

always less than 1 as long as κ . 100. Next we investigate whether quartic chameleons can also avoid the

problems runaway models encounter when facing the kicks.

2.3 Kicking the Quartic Chameleon

After the depletion of energy to particle production takes the chameleon field to or near the minimum

of its effective potential, we can show that it will track its minimum until the onset of the kicks. The

characteristic time scale for the evolution of the minimum is φmin/φ̇min, whereas the characteristic time scale

of the response of the field is given by m−1. When the field is in the minimum of its effective potential,

m2 =
d2V

dφ2

∣∣∣∣
φ=φmin

=
κ

2
φ2

min =

(
9

2
κ

)1/3( βΣ

MPl
ρ∗

)2/3

. (2.52)

If m� φ̇min/φmin, the field will adiabatically track its minimum. To compare these values, first we must

determine φ̇min:

φ̇min = H
dφmin

dp
,

=
2β

κMPl

H

φ2
min

(
ρ∗R

dΣ

dT
+ Σ

dρ∗R
dT

)
dT

dp
,

' 2β

κMPl

H

φ2
min

ρ∗R

(
dΣ

dT
+ 4

Σ

T

)
(−T ),

= −1

3
Hφmin

(
4 +

T

Σ

dΣ

dT

)
, (2.53)

where we have used the definition of φmin given by Eq. (2.12), the fact that ρ∗ ∝ T 4 ∝ a−4, and that

φ � MPl implies T ' TJ . If Σ is constant, the second term in parentheses drops out, and we recover
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the φmin ∝ a−4/3 behavior we determined in Section II. Thus, when Σ is constant, the evolution of the

minimum is set by the expansion rate, and the characteristic time scale is approximately the Hubble time

H−1. Comparing this to the mass of the field in its minimum, we have

m2(
φ̇min
φmin

)2 =
4

3

m2

H2
=

4

3

(
9

2
κ

)1/3( βΣ

MPl
ρ∗

)2/3(3M2
Pl

ρ∗

)
,

= 4

(
9

2
κβ2

)1/3
(

Σ2M4
Pl

π2

30 g∗T
4

)1/3

. (2.54)

We can see that, for reasonable values of κ and β, the mass of the field at its potential minimum is much

greater than H for all T �MPl while Σ is constant.

Only if the field is positioned in a very small interval (|∆φ| � φmin) around φ = 0 is the effective mass

less than H . However, even in this region, the constant nature of Σ due to the QCD trace anomaly does

not allow the field to become stuck due to Hubble friction. In this small region the effective potential is

dominated by the matter coupling; if we neglect the driving term from the bare potential and use the fact that

V � ρ∗R, we can simplify Eq. (2.14) to

ϕ′′ = −ϕ′ − 3βΣ. (2.55)

Integrating this equation for a chameleon initially at rest gives

ϕ′ ' 3Σβ
(
1− e−p

)
. (2.56)

From this we see that ϕ′ will increase toward a constant value until the field approaches its potential minimum

and the bare potential can no longer be neglected. Thus, even if the chameleon begins at rest in a region

where it has a low effective mass, Hubble friction will not prevent it from reaching its potential minimum.

We have just shown in Eq. (2.54) that once it reaches this minimum it will then track it adiabatically.

Having established that the chameleon oscillates about its minimum at the onset of the kicks, we can

now look at how they will affect the field’s evolution. Comparing m and φ̇min/φmin when Σ is no longer
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Figure 2.3: The energy in the chameleon field at the peak of each oscillation (black, solid), showing the effect
of particle production on the energy decay, found by numerically solving Eq. (2.50). While the energy begins
redshifting as a−4 (blue, dotted), particle production eventually dominates the energy loss and the energy
decays as a−8 (green, dashed).

constant, we have

m2(
φ̇min
φmin

)2 =
m2

H2

9(
4 + T

Σ
dΣ
dT

)2 .
(2.57)

The kick function Σ displays two different types of behavior: at the beginning of the kicks when the

temperature is greater than the mass of the particle species, mi, Σ ∝ m2
i /T

2, and at the end of the kicks,

when T < mi, Boltzmann suppression makes Σ ∝ e−mi/T . We can estimate the ratio in Eq. (2.57)

using these two behaviors and the ratio m2/H2 given by Eq. (2.54). At the beginning of the kicks, when

dΣ/dT = −2Σ/T ,

m2(
φ̇min
φmin

)2 =
m2

H2

9

4

'
(

ΣM2
Pl

T 2

)2/3

. (2.58)
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Even though Σ� 1, the quantity (MPl/T )2 is more than sufficient to make this ratio� 1. At the end of the

kicks, however, when dΣ/dT = −miΣ/T
2,

m2(
φ̇min
φmin

)2 =
m2

H2

9(
4 + mi

T

)2
'
(

ΣTM2
Pl

m3
i

)1/3

, (2.59)

which is only > 1 as long as M2
Pl/m

3
i > (ΣT )−1. This is true up until the end of the electron-positron kick,

when the temperature and the value of Σ continue to decrease past the point that M2
Pl/m

3
e can no longer

compensate for their increasingly small values. For β = 0.1 and κ = 2, this occurs at approximately a

temperature of 39 keV, when φmin ∼ 10−33MPl.

Figure 2.4 shows the value of φmin as a function of the temperature. The solid line shows the minimum

under the influence of the kicks, while the dashed line shows the minimum following the a−4/3 decay when

Σ is constant. The effect of the kicks for the most part is to slow the decrease in the minimum of the effective

potential compared to this decay, until the very end of the kicks when Boltzmann suppression drastically

decreases the value of Σ. In Figure 2.5 we have plotted the exact value of the ratio in Eq. (2.57), and we can

see that the ratio is indeed much greater than 1 until after the last kick. Therefore the chameleon will track

its minimum adiabatically until then. When this occurs, even if we assume the field becomes entirely stuck

while the potential minimum continues to decrease toward zero, the deviation of the field from its minimum

cannot exceed the value at which it was stuck: ∼10−33MPl. This is clearly�MPl and any implied variation

in the particle masses would be completely negligible. When the Universe later becomes matter dominated

and Σ = 1, the field will once again be able to track the minimum of its effective potential.

2.4 Discussion

Since the chameleon model was first proposed as an alternative to dark energy [24, 23], its cosmological

impacts have been studied extensively. While it has been shown that chameleon theories cannot account

for the expansion of the Universe without the addition of a constant term to its potential [25], the field’s

sensitive dependence on its environment gives it remarkable properties that are of great interest. However,

for most chameleon models, the same matter coupling that gives it its unique phenomenology leads these

theories into trouble in the early Universe. The meV mass scale of runaway potentials is at odds with the GeV
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Figure 2.4: The value of φmin during the kicks (blue, solid) and the extrapolation of the e−4p/3 behavior
experienced during the period when Σ is constant (green, dashed). The value of φmin during the kicks actually
decreases at a slower rate than it did when Σ was constant until the end of the last kick.

mass scale of SM particles, which accelerate the chameleon field to very high velocities when they become

nonrelativistic. The hierarchy between these two energy scales leads to the quantum production of particles

that radically alters the field’s evolution. Without very weak couplings or highly tuned initial conditions these

chameleon models cannot be trusted as effective field theories at the time of BBN [42, 43].

In this work, we have considered the quartic chameleon potential, which is not often studied in theories

of chameleon gravity. A significant feature of this model is the fact that there is no mass scale in the potential:

the chameleon’s self-interaction is enough to ensure adequate screening. We have shown that this scale-free

property of the potential allows the quartic chameleon to avoid the catastrophic effects of the small energy

scales within runaway models.

After inflation, the quartic chameleon oscillates in its potential well. The amplitude of its oscillations

are damped due to Hubble friction. In the classical treatment, the minimum of the field’s effective potential

decreases faster than the oscillation amplitude throughout radiation domination. Consequently, the field

cannot reach its potential minimum before BBN, though the oscillation amplitude is always sufficiently small

that the variation of the field from this minimum does not imply an unacceptable variation from known

particle masses.

The rapid oscillations of the chameleon field cause changes in its effective mass that excite perturbations

and lead to particle production. The effects of quantum particle production ensure that the field does reach its

potential minimum while the Universe is radiation dominated. For large values (& 10) of the self-interaction

constant κ, the fractional loss of energy to these particles can be large, in which case the field loses all its
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Figure 2.5: The numerical evaluation of the ratio in Eq. (2.57), which is significantly greater than 1 throughout
the kicks. It becomes less than 1 when T ' 3.9× 10−4GeV.

energy in the course of a single oscillation. For smaller κ, the energy lost to particles constitutes only a

small fraction of the field’s energy. This much slower energy loss accumulates over multiple oscillations and

introduces an additional decay term to the oscillation amplitude which allows the field to catch its minimum

after many oscillations. At this point, the field will adiabatically track its potential minimum. It will track this

minimum until the very tail end of the kicks, when the Boltzmann suppression of Σ decreases the value of

φmin faster than the field can follow. The value of the field at this point is sufficiently small that any deviation

of particle masses implied by the deviation of the field from its potential minimum are entirely negligible.

The energy of the modes that are excited in the quartic model are on order of the temperature: highly

energetic modes are only excited at high temperatures. This is an important contrast to runaway models,

which experience extremely energetic fluctuations at relatively low temperatures and can no longer be treated

as EFTs during BBN. While quantum corrections lead to extremely energetic fluctuations in the field and a

breakdown in calculability for runaway models, quantum corrections to the quartic potential are comparatively

small and are, in fact, necessary to ensure the field can reach its minimum. Once it reaches the minimum of

its effective potential the chameleon can then adiabatically track this minimum even throughout the kicks.

Thus, the quartic chameleon’s scale-free nature means is not susceptible to problems arising from a hierarchy

of scales and can remain a well-behaved effective field theory throughout the evolution of the early Universe.
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CHAPTER 3

Dark Matter:
Impact of Nonthermal Production on the Matter Power Spectrum

1As previously mentioned, it is commonly assumed that dark matter is thermally produced in the early

universe during a period of radiation domination. The continuing lack of detection of particles which can fit

this model has prompted many interesting modifications, notably the inclusion of a matter-dominated era

following inflation and prior to the on set of radiation domination, during which decay of the dominating

particle is the primary source of production of dark matter and standard model (SM) radiation. A typical

assumption in analyses which consider this scenario is that the dark matter is produced nonrelativistically

from the decay process. A more natural assumption, which does not require fine-tuning between the masses

of the parent and daughter particles, is that both the dark matter and the SM particles are born relativistic. We

investigate in this chapter the effects of imparting dark matter particles with relativistic velocities, and their

implications for structure growth.

This chapter is organized as follows. We begin in Section 3.1 by introducing our model for reheating

and nonthermal dark matter production and the resulting evolution of the average dark matter velocity. In

Section 3.2 we derive a distribution function for the dark matter and use it to examine the fraction of dark

matter that is nonrelativistic at reheating and the fraction whose velocity is sufficiently low to preserve the

EMDE-enhanced structure formation. In Section 3.3 we examine conditions under which the dark matter

velocity is high enough to run afoul of constraints from Lyman−α forest observations and observed MW

satellites. We conclude in Section 3.4. Any overlap in variable use between this chapter and the chameleon

analysis, should be disregarded; all variables will be (re)defined and should not be confused with those of the

previous chapter.

1The contents of this chapter have been published as an article in Physical Review D. The original citation is as follows: Carisa
Miller,Adrienne Erickcek, and Riccardo Murgia. Constraining Nonthermal Dark Matter’s Impact on the Matter Power Spectrum.
Phys. Rev. D100:123520, 2019.

35



3.1 Nonthermal Production of Dark Matter

In the scenario we consider, the energy density of the Universe is dominated by an oscillating scalar field

(or a massive particle species). As previously mentioned, for sufficiently rapid oscillations within a quadratic

potential, the field’s energy density scales as ρφ ∝ a−3, and it exhibits the same dynamics and perturbation

evolution as a pressureless fluid [61, 110, 111]. The Universe experiences an early “matter”-dominated era

until the expansion rate equals the decay rate of the field, H ' Γφ, at which point the Universe transitions

from scalar to radiation domination. We use this transition to define the reheat temperature, TRH:

√
4π3G

45
g∗,RHT 4

RH = Γφ, (3.1)

where G is the gravitational constant and g∗,RH is the number of relativistic degrees of freedom at TRH. For a

scalar field that decays into both dark matter and relativistic particles, the equations for the evolution of the

energy densities of the scalar field ρφ, relativistic SM particles ρr, and dark matter ρχ are given by

ρ̇φ =− 3Hρφ − Γφρφ, (3.2)

ρ̇r =− 4Hρr + (1− f)Γφρφ,

ρ̇χ =− 3H(1 + wχ)ρχ + fΓφρφ.

Here dots represent differentiation with respect to proper time, f is the fraction of the scalar’s energy that is

transferred to the dark matter, and wχ is the dark matter equation-of-state parameter.

3.1.1 Dark Matter Abundance

In the above system of equations, we do not allow for scattering interactions between the dark matter and

SM particles. Also, we neglect both the thermal production and self-annihilation of dark matter particles,

effectively assuming that the velocity-averaged annihilation cross section is small enough that any amount

of dark matter lost to annihilations is negligible and any produced thermally is negligible compared to that

produced from scalar decay. However, if dark matter annihilations are s-wave, neglecting annihilations

does not change the results of our conclusions because we are interested in the average dark matter velocity

and the fraction of dark matter that has lost sufficient momentum to participate in structure formation.
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Figure 3.1: The energy densities of the scalar (black, solid), radiation (grey, solid), and dark matter for
particles born relativistic (vD = 0.99; red, dotted) and nonrelativistic (vD = 0.1; blue, dashed). During
the EMDE, both the dark matter and radiation densities scale as a−3/2 while they are being sourced by the
decaying scalar field. Here f = 10−7 and the scalar decay rate is Γ̃φ = Γφ/Hi = 10−10. Reheating is
marked by the thin vertical dashed line at aRH = Γ̃

−2/3
φ .

These quantities are dependent on the velocity distribution of dark matter. For s-wave annihilations, the

velocity-averaged cross section is independent of particle velocity, and the distribution of particle velocities

would be unaffected by the inclusion of annihilations.

Without annihilations, constraining the reheat temperature to be above 3 MeV, as required by BBN, leads

to a direct constraint on the fraction of the scalar’s energy imparted to the dark matter: f . 10−7 [95] for

nonrelativistic dark matter. This branching ratio is quite small and it would be more natural to expect the

energy imparted in the decay of the scalar to be more evenly allocated to both the dark matter and the SM.

The inclusion of annihilations, however, significantly reduces the ratio of dark matter to radiation. This can

allow for a more balanced transfer of energy, f ∼ 0.5, while still achieving a sufficiently small dark matter

abundance through annihilations [96, 80]. For relativistic dark matter, its abundance is also dependent on the

velocity imparted to the particles at decay (vD).

In our model, we consider the scenario in which the dark matter is produced via a two-body decay so that

all dark matter particles are born with the same velocity, vD. The energy density and decay rate of the scalar

then govern the evolution of the equation of state wχ for the dark matter particles during the EMDE. The

rates at which new particles are produced and the momentum of existing particles redshifts away determine
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the average energy per particle of the dark matter:

〈E〉 =

∫ a
1

√
m2
χ + (γmχv(a, aD))2 dn̂χ

daD
daD∫ a

1
dn̂χ
daD

daD
, (3.3)

where n̂χ is the comoving number density of the dark matter particles, v(a, aD) is the velocity at a of a

dark matter particle created at aD, and we integrate over aD with a = 1 setting the onset of dark matter

production.

When evaluating Eq. (3.3) we use the fact that the comoving number density of the dark matter evolves

according to

dn̂χ
dt

= bΓφn̂φ, (3.4)

where n̂φ is the comoving number density of φ particles, and b is the number of dark matter particles produced

per scalar decay. We can then (following a procedure similar to that in Ref. [112]) express the term dn̂χ/daD

as

dn̂χ
daD

=
dn̂χ
dt

dt

daD
=
bΓφn̂φ
ȧD

=
bΓφ

ρφ
mφ
a3
D

aDHD
∝

ρφ
HD

a2
D. (3.5)

The constants b, Γφ, and mφ appear in both integrals in Eq. (3.3) and consequently do not affect 〈E〉. We

numerically evaluate Eq. (3.3) to obtain the average energy as a function of the scale factor; this is made even

simpler by noting that the contribution of the dark matter to the expansion rate at the time of decay, HD, is

entirely negligible compared to both the scalar and radiation energy densities. The calculation of the average

energy then informs how the dark matter equation of state evolves:

wχ = − 1

3H〈E〉
d〈E〉
dt

. (3.6)

The mass of the dark matter particle can be pulled from both the average energy and its derivative, and so wχ

at any given time depends only on the average velocity.

Using Eq. (3.6), we numerically solve the set of equations in Eq. (3.2) with the initial condition

ai ≡ a(ti) = 1, and we assume there is no dark matter in existence prior to this time. Figure 3.1 shows the

evolution of the scalar, radiation, and relativistic (vD = 0.99) and nonrelativistic (vD = 0.1) dark matter
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energy densities in our model. The energy densities in the figure are given as fractions of the initial critical

energy density ρcrit,i.

In Fig. 3.1, we have chosen to fix f = 10−7, which directly sets the relative abundance of dark matter

to radiation during the EMDE to be ∼10−7, and we have chosen a scalar decay rate Γ̃φ ≡ Γφ/Hi = 10−10,

which sets aRH ≡ Γ̃
−2/3
φ ' 5 × 106. It is worth noting that, by this definition, aRH 6= a|T=TRH

. The

numerical solutions to Eq. (3.2) show that by a scale factor of 3aRH enough of the scalar has decayed away

that it is a negligible source of radiation. As a result, the radiation energy density then evolves as in the usual

radiation-dominated era from a temperature T (3aRH) ' 0.34TRH onward. This sets the relation between

aRH and TRH to be aRH/a0 = 1.54(T0/TRH)g
−1/3
∗S (0.34TRH), where g∗S is the number of relativistic

degrees of freedom in the entropy density.

The effects of the dark matter particles’ velocities can already been seen in Fig. 3.1. During the EMDE,

the energy density of any species, relativistic or nonrelativistic, sourced by scalar decay evolves as ρ ∝ a−3/2.

At the end of the EMDE, when the scalar field is no longer sourcing new particles, the energy densities of the

decay products will begin to scale as ρ ∝ a−3(w+1). For a scenario in which dark matter is born relativistic,

the average value of wχ during reheating is close to 1/3, and the dark matter behaves more like radiation. In

Fig. 3.1 we can see that, following reheating, the energy density of relativistic dark matter (dotted) redshifts

away faster than its nonrelativistic counterpart (dashed). Once the scalar field has decayed completely and

there is no creation of new, hot particles, the existing particles’ momenta continue to redshift until the average

particle is no longer relativistic, and after that, the dark matter density scales as a−3.

Increasing the velocity imparted to the dark matter particles upon their creation increases the time

it takes after reheating for the dark matter energy density to begin scaling as a−3, thus increasing the

duration of radiation domination for a given value of f . The temperature at matter-radiation equality is

Teq = 0.795 ± 0.005 eV [1], and so a longer radiation-dominated era implies a higher temperature at

reheating. For a fixed value of f , the reheat temperature that matches the observed dark matter abundance in

a scenario of relativistically produced dark matter is a factor of γD greater than that of nonrelativistic dark

matter, where γD is the Lorentz factor of the relativistic dark matter particle at production. For a given reheat

temperature, the value of f required to produce the observed dark matter abundance is

f ' 2.3× 10−7(3MeV/TRH)γD. (3.7)
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In the absence of annihilations, the dark matter density during the EMDE is also determined by f : if vD � 1

then ρχ/ρr ' (5/3)f [95], whereas if vD ' 1 then ρχ/ρr ' f . In the latter case, ρχ/ρr ' f continues until

the dark matter is no longer relativistic or changes in g∗ disrupt the a−4 scaling of ρr. Therefore, for γD � 1,

obtaining the observed dark matter abundance requires that ρχ/ρr ' 2.3 × 10−7(3MeV/TRH)γD shortly

after reheating. This requirement applies regardless of whether or not annihilations alter the dark matter

abundance during the EMDE. After reheating, but while the dark matter is still relativistic, the relative dark

matter abundance will evolve as

ρχ
ρr

∣∣∣∣
T

' 2.3× 10−7

(
3MeV

TRH

)
γD (3.8)

×
[

g∗S (T )

g∗S (0.34TRH)

]4/3 g∗ (0.34TRH)

g∗ (T )
,

in either case.

If dark matter is still relativistic at neutrino decoupling, it could affect the predictions of BBN. Dark

matter produced relativistically at reheating would still be relativistic (γ & 2) when T = 10 MeV if

γD & 2.4g
1/3
∗S (0.34TRH)

TRH

10MeV
. (3.9)

Relativistic dark matter behaves as an additional radiation component, and can be characterized as a change

in the number of effective neutrinos, ∆Neff . The energy density in relativistic particles can be written as

ρr + ρχ,rel =
π2

30

[
g∗ +

7

8
× 2×∆Neff

(
Tν
T

)4
]
T 4, (3.10)

ρχ,rel =
π2

30

(
7

8
× 2×∆Neff

)
T 4
ν ,

where Tν is the neutrino temperature, which we assume evolves as a−1 after T = Tν = 10 MeV, when

g∗(10MeV) = g∗S(10MeV) = 10.75. Thus, the fractional component of the energy density in dark matter

at 10 MeV is related to ∆Neff by

f10MeV ≡
ρχ
ρr

∣∣∣∣
10MeV

=
7

4
∆Neff g

−1
∗S (10MeV)

' 0.074∆Neff . (3.11)
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Bounds from BBN constrainNeff = 2.88±0.54 at 95% C.L. [113], yielding an upper bound f10MeV < 0.028.

If the dark matter is still relativistic at BBN, then achieving the observed relic abundance requires f10MeV ' 5× 10−7γD(3MeV/TRH)g
−1/3
∗S (0.34TRH),

as given by Eq. (3.8). Therefore, the upper bound on f10MeV translates to a bound γD . 5.4× 104(TRH/3MeV)g
1/3
∗S (0.34TRH).

This upper bound on γD implies an upper bound on the value of f in Eq. (3.7) that can result in the

observed relic abundance We will see in Section 3.3 that restrictions from small-scale structure on the

parameter space of γD and TRH provide much stronger bounds. As such, annihilations are still necessary to

reduce the dark matter abundance to its required value following reheating without fine-tuning f .

3.1.2 The Adiabatic Cooling of Dark Matter

Given that the momentum of a particle scales as p ∝ a−1, a particle born from a decay at a scale factor

aD, with a physical velocity vD, has a velocity at some later time given by

v2(a, aD) =
v2
D

(1− v2
D)
(
a
aD

)2
+ v2

D

. (3.12)

The average velocity over all the dark matter particles at any given time is then

〈v2(a)〉 =

[∫ a

1
v2(a, aD)

dn̂χ
daD

daD

] [∫ a

1

dn̂χ
daD

daD

]−1

, (3.13)

which can be evaluated in the same manner as Eq. (3.3).

Figure 3.2 shows the evolution of the average dark matter particle velocity throughout the EMDE until

just after reheating; the various curves in Fig. 3.2 represent different values of vD. We can see that the

average velocity is initially dominated by the few particles born immediately with the imparted velocity. The

velocity of these particles begins to redshift away, pulling the average down, until a steady state is reached

between the redshifting of the velocity of existing particles and the creation of new, hot particles.

In the regime where the average velocity has reached a constant value - deep into the EMDE and well

before reheating - we can simplify our calculation of the average velocity even further and analytically solve

the integrals of Eq. (3.13). During the EMDE, the energy density of the Universe is dominated by the scalar
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Figure 3.2: The average velocity of the dark matter particles as a function of scale factor a throughout the
EMDE for vD = 0.1, 0.5, 0.9, 0.99 (bottom to top). Reheating is marked by the thin vertical dashed line.

field, and our expression in Eq. (3.5) becomes

ρφ
HD

a2
D '

ρφ,ia
−3
D

Hia
−3/2
D

a2
D =

ρφ,i
Hi

√
aD. (3.14)

Rewriting the expression for v2 to make its dependence on the integration variable, aD, more apparent,

we have

v2(a, aD) =
a2
D(

a
X

)2
+ a2

D

, (3.15)

where X ≡ γDvD. And so, deep in the EMDE, our expression for the average velocity, given by Eq. (3.13),

takes the form

〈v2(a)〉 =

[∫ a

1

a
5/2
D(

a
X

)2
+ a2

D

daD

] [∫ a

1

√
aDdaD

]−1

. (3.16)

The solution to the integral in the numerator is given by

∫ a

1

a
5/2
D daD(
a
X

)2
+ a2

D

=
2

3
(a3/2 − 1) +

( a

2X

)3/2
ln

(
1 +
√

2X +X

1−
√

2X +X

a−
√

2aX +X

a+
√

2aX +X

)
(3.17)

+ 2
( a

2X

)3/2
[
tan-1

(
1−
√

2X
)
− tan-1

(
1 +
√

2X
) fuck

physics

− tan-1

(
1−

√
2X

a

)
+ tan-1

(
1 +

√
2X

a

)]
.
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The solution to the integral in the denominator is simply

∫ a

1

√
aDdaD =

2

3
(a3/2 − 1). (3.18)

Long after the decays have started (a � 1), both integrals scale as a3/2 and 〈v2(a)〉 is constant until just

prior to reheating, at which point our approximation in Eq. (3.14) is no longer valid.

The steady state between the cooling of old particles and the creation of new, hot ones is maintained

until just before reheating, and the average dark matter velocity at reheating is not reduced significantly from

the velocity imparted at the scalar’s decay. Relativistic-born dark matter, vD = 0.99, is still considerably

relativistic at reheating,
√
〈v2〉 ' 0.93. At reheating, the average dark matter particle is nonrelativistic only

if vD is already largely nonrelativistic:
√
〈v2〉 . 0.01 requires vD < 0.017.

If the comoving size of the horizon at reheating, k−1
RH = (aRHHRH)−1, is smaller than the dark matter

free-streaming horizon, k−1
fs , then the random drift of dark matter particles will erase the growth of density

perturbations that occurred during the EMDE. Reference [95] found that kRH/kfs < 1 required the dark

matter velocity at reheating to be vRH . 0.06. Preserving enhanced structure growth requires an even smaller

average velocity. Achieving such a small average velocity at reheating would require the dark matter particles

to be born with a similarly small velocity.

3.2 Dark Matter Distribution Function

Although the average dark matter particle may have too large a velocity to participate in enhanced

structure formation, we would like to investigate what fraction of the dark matter population has a sufficiently

low velocity to do so. Instead of considering the average particle velocity at reheating, we will consider what

fraction of the dark matter has a velocity at reheating that is less than a percent of the speed of light. To this

end, we begin by deriving the dark matter distribution function. At a given time, a, the fraction of dark matter

with velocities below a particular threshold equals the fraction of dark matter born before the correspondingly

required “birth time,” aD.
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From the fact that v/
√

1− v2 ∝ a−1, we know that in order for a particle born with velocity vD to have

a velocity less than vRH at reheating, that particle must have been born from decay at a scale factor,

aD <
vRH

vD

√
1− v2

D

1− v2
RH

aRH. (3.19)

Obtaining the distribution function in birth times of the dark matter particles, f(aD), will then allow us to

compute the fraction of dark matter born before this time.

The fraction, ε, of dark matter particles born within a particular interval of scale factor, aD,1 > aD >

aD,2, is given by

εaD,12 =

∫ aD,2

aD,1

f(aD)daD. (3.20)

This fraction can also be directly computed by

εaD,12 =

∫ aD,2
aD,1

dn̂χ∫∞
1 dn̂χ

=

∫ aD,2
aD,1

dn̂χ
daD

daD∫∞
1

dn̂χ
daD

daD
. (3.21)

Equating the two expressions for εaD,12 and considering small intervals in the scale factor, we can derive an

expression for the distribution function:

∫ aD,2
aD,1

dn̂χ∫∞
1 dn̂χ

=

∫ aD,2

aD,1

f(aD)daD (3.22)

' f(aD)∆aD,

f(aD) '

∫ aD,2
aD,1

dn̂χ

∆aD
∫∞

1 dn̂χ
.

Numerically evaluating Eq. (3.22), we obtain the distribution function of dark matter birth times seen plotted

in Fig. 3.3 as f(aD/aRH) = aRHf(aD). From Fig. 3.3, one can see that approximately half of the dark

matter is born after reheating, a/aRH > 1.

From Eq. (3.19) one can find that, even for dark matter particles imparted with a velocity only half of

the speed of light, only those born before aD . 0.017aRH will have a velocity at reheating vRH < 0.01.

Integrating our distribution function over this interval in aD, we find the fraction of dark matter born before

this time to be approximately 0.15%. Figure 3.4 shows the fraction of dark matter that has a velocity below
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Figure 3.3: The birth time distribution function of dark matter for our model. The peak production of dark
matter occurs just prior to reheating and f(aD/aRH) is maximized at aD ' 0.68aRH.
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Figure 3.4: Fraction of dark matter whose velocity at reheating is vRH < 0.01 as a function of the assumed
velocity imparted to the dark matter at its production.

v = 0.01 at reheating as a function of the given value of vD. Even for dark matter born at only one tenth of

the speed of light, only ∼ 2% of the dark matter has the required vRH < 0.01.

One of the intriguing consequences of an EMDE is that density perturbations in matter grow linearly

with scale factor during an EMDE, which is faster than the logarithmic growth expected during the typically

assumed radiation-dominated epoch. We now examine what fraction of the dark matter is able to retain an

appreciable perturbation enhancement from this linear growth. Since density perturbations grow linearly

during the EMDE, a mode that enters the horizon at a scale factor of 0.1aRH will grow by a factor of ∼10

during the EMDE, which we will consider “appreciable”. The comoving wavelength of such a mode is given
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Figure 3.5: Fraction of dark matter whose free-streaming length is smaller than the scale of the perturbation
mode that experiences a factor of 10 in growth during the EMDE as a function of the assumed dark matter
velocity at production. The different lines represent values of f = 10−7 (solid), 10−5 (dashed), and 10−3

(dotted), or equivalently, TRH ' 3γD MeV, TRH ' 0.03γD MeV, and TRH ' 0.0003γD MeV, respectively,
in order to produce the observed relic abundance of dark matter without annihilations.

by the horizon size at this time:

λ = λhor|aRH/10 =
1

aRH
10 H

(
aRH
10

) . (3.23)

Any modes that enter the horizon prior to 0.1aRH will experience even more growth. The comoving

free-streaming length of a dark matter particle born at aD is given by

λfs =

∫ a0

aD

v(a)
da

a2H(a)
, (3.24)

where a0 is the value of the scale factor today. Similar to our approach in the previous evaluation, there

is a value of aD for which the dark matter free-streaming length is less than the horizon size at 0.1aRH

(λfs < λhor|aRH/10).

The resulting fraction of dark matter that is born before this time, and thus that preserves a factor of 10

or more growth in perturbation amplitude, is shown in Fig. 3.5. The integral in Eq. (3.24) can be broken into

three separate contributing integrals, representing the scalar-, radiation-, and matter-dominated eras (because

the dark matter free-streaming length does not change significantly after matter-radiation equality, we neglect

dark energy). The contribution coming from the radiation-dominated era is dependent on the duration of

the era, which, in our formalism, is set by the relative abundance of dark matter and radiation following
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Figure 3.6: Fraction of dark matter whose free-streaming length is smaller than the scale of the perturbation
mode that experiences a factor of 10 in growth during the EMDE as a function of the reheat temperature. The
different lines represent, from top to bottom, values of vD = 0.1, 0.5, and 0.99.

reheating, and this is directly related to the reheat temperature. The dependence on TRH, however, is only

logarithmic and large variations in TRH do not result in significant changes in the resulting fraction. Due to

the interdependency discussed in Section 3.1 between the parameters f , TRH, and vD required to obtain the

appropriate dark matter abundance, we plot the fraction of dark matter able to preserve enhanced structure

growth both as a function of vD for various f in Fig. 3.5 and as a function of TRH for various vD in Fig. 3.6.

Figure 3.6 shows how insensitive the fractional component of dark matter that experiences enhanced structure

growth is to the reheat temperature.

Unfortunately, for dark matter particles born relativistically throughout an EMDE, the redshifting of their

momentum is not enough to allow an appreciable fraction of the particles to participate in enhanced structure

formation. Studies of mixed dark matter, in which there are both cold and warm dark matter components,

show that the small-scale matter power spectrum is suppressed by 99% even when up to half of the dark

matter is cold [114]. Therefore, the fraction of dark matter that is cold enough to benefit from the growth of

perturbations during the EMDE is far too small for these structures to form.

3.3 Lyman-Alpha and MW Satellite Constraints

We have shown that the redshifting of the momentum of dark matter particles prior to reheating does not

cool the dark matter enough to preserve the enhanced structure growth on scales that enter the horizon during

the EMDE (λ . 30 pc for TRH > 3 MeV). In this section we consider if the dark matter is too hot, i.e. if its
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free-streaming length large enough to prevent the formation of the smallest observed structures. Analysis of

Lyman−α data can be used to probe the matter power spectrum on small scales, 0.5Mpc/h < λ < 20Mpc/h

[100, 101, 102], or 12.6h/Mpc > k > 0.06h/Mpc, and we compare the degree of gravitational clustering at

these scales in our model to that of the traditional model of cold dark matter. The existence of MW satellite

galaxies provides another probe of small-scale structure formation. Suppression of the power spectrum leads

to an underabundance of small structures, and the known abundance of substructures in the vicinity of the

MW provides a bound on the allowed suppression [103].

3.3.1 Free-Streaming Length

We begin by calculating the physical streaming length today of a particle born at reheating:

λphys
fs,0 = a0

∫ a0

aRH

v(a)
da

a2H(a)
. (3.25)

The choice of aD = aRH is beneficial in that the fraction of dark matter born before reheating, found by our

previous analysis of the distribution of birth times, is 0.51, and we can say that approximately half of the

dark matter will have a free-streaming length above or below our calculated value. Another benefit of this

choice is that our calculations of the free-streaming length are made simpler by neglecting the contribution to

the free-streaming length coming from the EMDE.

Calculating the free-streaming length using Eq. (3.25) shows that > 75% of this distance is covered after

the dark matter particle has become nonrelativistic, (γ ≤ 1.01). For the highly relativistic initial velocities

we would like to consider, the dark matter particles remain relativistic well after reheating, and are still

relativistic after changes in the number of relativistic degrees of freedom have ceased. Beginning the integral

in Eq. (3.25) at a∗, the value of the scale factor after which g∗ remains constant, captures most (& 90%) of

the free-streaming length and illuminates the important features of this scenario by allowing us to assume

that H ∝ a−2 during radiation domination.

We begin by breaking the integral into two separate contributing integrals, representing the radiation-

and matter-dominated eras (again we neglect dark energy) and introducing the variable Y ≡ (γDvDaD)2.

The free-streaming length is then
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λfs =

∫ a0

a∗

√
Y

Y + a2

da

a2H(a)
' 1

H∗a2
∗

∫ aeq

a∗

√
Y

Y + a2
da+

1

Heqa
3/2
eq

∫ a0

aeq

√
Y

Y + a2

da√
a

=

√
Y

H∗a2
∗

ln

aeq +
√
Y + a2

eq

a∗ +
√
Y + a2

∗

+
2
√
i
√
Y

Heqa
3/2
eq

F

i sinh−1

√
i
√
Y

a
,−1

∣∣∣∣∣∣
a0

aeq

,

(3.26)

where F (φ,m) is the elliptic integral of the first kind. By choosing aD = aRH (contained in the variable

Y ), the first term in the above expression can be simplified under the assumption that aeq � aRH, which is

reasonable considering that matter-radiation equality occurs at a temperature of Teq ' 0.8 eV and we require

TRH > 3 MeV. The expression for the contribution to the physical free-streaming length today coming from

the radiation-dominated era then simplifies to

λRD
fs,0 '

γDvDaRHa0

H∗a2
∗

ln

aeq

a∗

2

1 +

√(
γDvD

aRH
a∗

)2
+ 1

 ;

=
(
4.66× 1011pc

)
γDvD

aRH

a0

ln

(
2
T∗
Teq

)
− ln

1 +

√(
γDvD

aRH

a0

)2(T∗
T0

)2

+ 1

 , (3.27)

where we have used the fact that g∗ remains constant after T∗ = 2× 10−5 GeV to set a∗T∗ = aeqTeq = a0T0.

An important feature of this calculation is that the parameters of our model, the dark matter velocity at its

production and the reheat temperature, only enter into this expression through the combination

µ ≡ γDvDaRH

a0
= γDvD

T0g
1/3
∗S,0

3
[
Tg

1/3
∗S

]
T=0.34TRH

, (3.28)

where g∗S is the number of relativistic degrees of freedom in the entropy density and again we assume

entropy is conserved after a = 3aRH. Expressed in terms of the variable µ, the physical free-streaming length
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Figure 3.7: The free-streaming length of the dark matter as calculated by Eq. (3.29) as a function of the
Lorentz factor at decay, γD, for (left to right) TRH = (3, 30, 300, 3000) MeV. The horizontal dashed line
marks λphys

fs,0 & 0.08 Mpc/h, approximately the lower limit to scales probed by Lyman−α observations.

calculated from the contribution from both the radiation- and matter-dominated eras is

λphys
fs,0 =

(
4.66× 105Mpc

)
µ

ln

(
2
T∗
Teq

)
− ln

1 +

√
µ2

(
T∗
T0

)2

+ 1


+
(
4.66× 105Mpc

)√ T0

Teq

√
2iµ

[
F
(
i sinh−1

√
iµ
)
− F

(
i sinh−1

√
iµ
Teq

T0

)]
. (3.29)

The above equation gives the scale at which the power spectrum of our model begins to differ from that of

the standard ΛCDM power spectrum. Figure 3.7 shows the free-streaming length calculated by Eq. (3.29)

as a function of the Lorentz factor at decay, γD, for different values of the reheat temperature. We define

kfs = (λphys
fs,0 )−1, and above the horizontal dashed line, the free-streaming length of the dark matter reaches

scales probable by the Lyman−α forest: k . 12.6 h/Mpc, λphys
fs,0 & 0.08 Mpc/h. Since the free-streaming

lengths of our model enter the observable regime, we consider a more precise determination of the effects of

the dark matter free-streaming length in the next section.
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3.3.2 Transfer Function

We use the Cosmic Linear Anisotropy Solving System (CLASS) [115] to obtain the dark matter transfer

function,

T 2(k) ≡ PnCDM(k)

PCDM(k)
, (3.30)

which describes suppression of structure due to non-cold dark matter (nCDM) compared to that of the

standard CDM scenario; PnCDM(k) and PCDM(k) are the matter power spectra in each respective case.

Acquiring the power spectrum for our scenario requires us to determine the momentum distribution

function of our dark matter model. Shortly after reheating (a ∼ 3aRH), the scalar field has decayed almost

entirely, and essentially no new dark matter particles are being produced. After this point, the distribution of

the comoving momenta of the dark matter particles does not change. We scale the comoving momenta of the

dark matter particles by the comoving momentum of a particle born at the scale factor that maximizes f(aD),

amax = 0.68aRH, and express our distribution function in terms of

q ≡ ap

amaxpD
=

aD
amax

, (3.31)

where pD is the physical momentum of a particle with velocity vD. Since we assume that all dark matter

particles are produced with the same velocity, the distribution in momentum for particles in our scenario

can be entirely determined from the distribution in the particles’ scale factor at production, which we have

already determined. The two distribution functions can be related through

4πq2f(q) = f(aD)
daD
dq

= 0.68 f

(
aD
aRH

)
. (3.32)

This distribution function is shown in Fig. 3.8, and we also show for comparison the Fermi-Dirac distribution

that is maximized at q = 1. We can see that, compared to the thermal case, we have a broader distribution

function.

With our distribution function f(q), we are able to use CLASS to obtain transfer functions for any

combination of the velocity imparted to the dark matter and the reheat temperature by also providing the
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Figure 3.8: The distribution function of dark matter for our model (solid) and a Fermi-Dirac distribution
(dashed) for comparison, for relativistic particles, as would be expected in scenarios of WDM.

present-day physical momentum of a dark matter particle with q = 1:

p0 =
amaxpD
a0

∝ aRHγDvD
a0

. (3.33)

Again we find that, just as in our calculations of the free-streaming length, the relevant combination of

parameters is µ = γDvDaRH/a0. In Figs. 3.9 and 3.10 we show the transfer functions for dark matter

produced at different velocities, but in scenarios with the same reheat temperature, 3 MeV. As expected, dark

matter particles born at greater velocities result in the suppression of larger scales (smaller k). The vertical

dashed lines in Fig. 3.9 mark the free-streaming horizon kfs = (λphys
fs,0 )−1 given by Eq. (3.29) for each of the

different velocities at production, confirming that it is the scale at which our model begins to show deviation,

T (k) ' 0.95, from the CDM scenario.

Transfer functions in nCDM models, such as this, can be well described by a fitting formula [116]:

T (k) = [1 + (αk)β]γ . (3.34)

Using Lyman−α data, the fitting parameters α, β, and γ can be constrained [116, 117], and the parameters of

our model, vD and TRH, can be constrained as well. The typical scale of the suppression is set by α, whereas

the general shape is determined by β and γ. When fitting our transfer function at values T (k) > 0.01, the

overall shape of our transfer function varies little across wide ranges of our parameter space, and β and γ can
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Figure 3.9: The transfer function for several values of the dark matter velocity at production, vD. Right
to left (cool to warm colors), the solid lines represent dark matter produced with increasing Lorentz factor
γD = 100, 300, 900, 2700, 8100, respectively. In all cases TRH = 3 MeV. Vertical dashed lines represent the
scale of the free-streaming horizon calculated using Eq. (3.29). The red dotted line represents the typical
transfer function for dark matter with a thermal distribution (βWDM = 2.24 and γWDM = −4.46) with a
cutoff parameter αWDM ' 0.16 Mpc/h in order to match the same half-mode scale khm as our far left curve
with α = 0.31 Mpc/h.

be expressed as functions of α, as seen in Fig. 3.11. The cutoff parameter α is then our only free parameter,

and it can be robustly constrained using Lyman−α data.

We find typical values of β and γ for our model to be approximately 2.4 and −1.1 respectively, for α

near the constrainable regime. These values are noticeably different from those that describe the thermal

warm dark matter (WDM) transfer function, βWDM = 2.24 and γWDM = −4.46. If we compare our transfer

functions to those of WDM with the same value of the half-mode scale2 khm, we can see in Figs. 3.9

and 3.10 that the transfer functions in the two models are quite similar. However, due to the difference in

the shape parameters of the transfer function fit between the two models, matching their half-mode scales

requires the cutoff parameter in the WDM transfer function to be roughly a factor of 2 smaller than that in the

corresponding nonthermal transfer function, α ' 2αWDM. The cutoff in the transfer function of our model is

not as sharp as that of WDM, but they only begin to differ significantly at scales at which the power in the

nCDM model is already greatly suppressed, T (k) . 0.1.

Reference [117] provided marginalized bounds on all three fitting parameters in Eq. (3.34). The

predictable shape of our transfer function determines the values of β and γ as a function of α, as shown

2We follow the convention of Ref. [118] and define the half-mode scale via T (khm) = 0.5, noting that this convention is different
from the half-mode scale, k1/2, defined in Refs. [116] and [117], for which T 2(k1/2) = 0.5.
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the thermal WDM transfer functions with matched half-mode scales. Due to the difference in the shape
parameters β and γ in the fitting form of Eq. (3.34) between the two models, matching the half-mode scales
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in Fig. 3.11, and allows us to obtain a bound on the remaining free parameter, the scale of the cutoff:

α < 0.011Mpc/h (68% C.L.) and α < 0.026Mpc/h (95% C.L.). Following Ref. [117], these limits have

been obtained by performing a comprehensive Markov Chain Monte Carlo (MCMC) analysis of the full

parameter space affecting the one-dimensional flux power spectrum, which is the Lyman-α forest physical

observable, with a data set consisting of the high-resolution and high-redshift (4.2 < z < 5.4) quasar

samples from MIKE and HIRES spectrographs [119]. The flux power spectra to be compared against

observations are estimated by interpolating in the multidimensional space defined by the sparse grid of

precomputed hydrodynamic simulations described in Ref. [117]. Whenever some of the parameters assume

values not enclosed by the template of simulations, the corresponding values of the power spectra are linearly

extrapolated.

As in the reference analysis from Ref. [117] (but see also, e.g., Refs. [120] and [121]), the other

cosmological and astrophysical parameters impacting our likelihood are treated as nuisance parameters to

marginalize over. We adopt conservative flat priors on both σ8, i.e. the normalization of the linear matter

power spectrum, and neff , i.e. the slope of the matter power spectrum at the scale of the Lyman-α forest

(k ∼ 1h/Mpc), in the intervals [0.5, 1.5] and [−2.6,−2.0], respectively; and on the instantaneous reionization

redshift zreio (in the range [7, 15]). Concerning the astrophysical parameters, we model the redshift evolution

of the temperature of the intergalactic medium as a power law, imposing flat priors on both its amplitude and

tilt (once again, see Ref. [117] for further details). Finally, we adopt conservative Gaussian priors on the

mean Lyman-α forest fluxes 〈F (z)〉, with standard deviation σ = 0.04 [102], and a flat prior on fUV, which

is an effective parameter accounting for spatial ultraviolet fluctuations in the ionizing background.

Last but not least, we adopt a flat prior on α in the interval [0, 0.1] Mpc/h, while the parameters β and

γ are derived analytically, per each MCMC step, according to the expressions reported in Fig. 3.11. For

further details on the data set, simulations, and methods that we have used, we address the reader to any of

the aforementioned references [117, 120, 121].

For comparison, just as matching the half-mode scale of the thermal WDM transfer function with that

of our nonthermal model requires α ' 2αWDM, the αWDM value of a 3 keV WDM particle, αWDM '

0.015Mpc/h [117], is approximately a factor of 2 smaller than that of our 95% C.L. bound on α. Our limits

on γD and TRH corresponding to our 68% and 95% C.L. bounds on α are shown in Fig. 3.12. Scenarios in

which the dark matter is born at too high of a velocity (large γD) or in which the radiation-dominated era

is too short (low TRH) are part of the excluded parameter space for our relativistic nonthermal dark matter

55



102

103

104

105

106

107

101 102 103

γ D

TRH (MeV)

BBNf = 10-1

f = 10-3

f = 10-5

Figure 3.12: Limits on the Lorentz factor γD and the reheat temperature. The shaded regions correspond to
the 1σ and 2σ bounds, α = 0.011Mpc/h and 0.026Mpc/h, respectively. The thick dashed line represents
kfs = (λfs)

−1 = 12.6h/Mpc as calculated by Eq. (3.29). The discontinuity at TRH ' 170MeV occurs due
to the sudden change in g∗ during the QCD phase transition. Thin solid lines show the contours of f required
to obtain the observed dark matter abundance in the absence of annihilations. The thick solid line shows the
bound on γD as a function of TRH imposed by BBN, derived in Section 3.1.1.

model. The thin grey lines represent contours of constant f , the fraction of the scalar’s energy imparted to

the dark matter particle that is required to obtain the correct relic abundance for a given reheat temperature

without dark matter annihilations. We can see that, in the absence of annihilations, the allowed values of γD

are not large enough for the required value of f to be of order unity.

We also show the outline (dashed) of the parameter space in which the free-streaming length, calculated

by Eq. (3.29), is naively probable by Lyman-α data, i.e. kfs < 12.6h/Mpc. As can be seen in Fig. 3.12,

limiting the free-streaming length provides a bound that is comparable to those obtained from the full

consideration of effects to the matter power spectrum; the free-streaming scales of a particle on the boundary

of our 68% and 95% C.L. regions are kfs = 11.4h/Mpc and 28h/Mpc, respectively. While examining

effects on the matter power spectrum leads to more robust bounds within our parameter space, calculations of

the free-streaming length are more readily performed. Fortunately, as both the free-streaming length and the

dark matter distribution function depend on the same combination of our parameters, γDvDaRH/a0, there is

a simple relationship between the scale of suppression, α, and the free-streaming length calculated by Eq.

(3.29):

α ' 0.177

(
λphys

fs,0

Mpc

)0.908
Mpc

h
(3.35)
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Figure 3.13: A plot of the relationship between the fitting parameter α and the free-streaming length as
calculated by Eq. (3.29). Black dots represent points for which we have used our model parameters to
calculate the free-streaming length and obtain the transfer function using CLASS. The grey line shows the fit
to the data given by Eq. (3.35).

We show this relationship in Fig. 3.13. In our model, the bounds on α can be easily used to limit the

free-streaming length, and thereby the parameters γD and TRH on which it depends.

3.3.3 Milky-Way Satellites

In addition to structures inferred by Lyman-α data, we can also constrain our model using observed

structures in the Milky Way. Simulations of thermal warm dark matter provide an indication of how the

suppression expected in the matter power spectrum decreases the abundance of collapsed objects. The subhalo

mass function in simulations with WDM characterizes this underabundance [122],

dN

dM

∣∣∣∣
WDM

=
dN

dM

∣∣∣∣
CDM

(
1 + δ

Mhm

M

)−ε
, (3.36)

where M is the subhalo mass, δ = 2.7 and ε = 0.99, and Mhm is the mass scale associated with the

half-mode scale3:

Mhm =
4π

3
ΩDM ρcrit,0

(
π

khm

)3

, (3.37)

where ΩDM is the fraction of the critical density in dark matter.

3We have verified with the authors of Ref. [122] that they used the same definition of khm that we have presented here.
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Knowing the abundance of satellites of our own galaxy, constraints can be placed on the amount of

allowed suppression in the subhalo mass function. Using a probabilistic analysis of the MW satellite

population and marginalizing over astrophysical uncertainties, Ref. [103] found an upper limit on Mhm

in Eq. (3.36), Mhm < 3.1× 108M� (95% C.L.), which implies that the half-mode scale must satisfy

khm > 36h/Mpc. This bound on khm can be used to constrain any dark matter model that has a transfer

function comparable to WDM, as we have shown ours to be in Fig. 3.10. Though the transfer function of our

model does differ slightly from that of WDM, the differences occur only when the nCDM power spectrum is

already greatly suppressed compared to that of CDM, T (k) . 0.1. The fitting form to our transfer function,

Eq. (3.34), implies that the half-mode scale is given by:

khm =
1

α

[(
1

2

)1/γ

− 1

]1/β

, (3.38)

and the constraint khm > 36 h/Mpc directly translates to α < 0.026 Mpc/h, matching our 95% C.L. bound

from Lyman-α constraints.

3.4 Discussion

The inclusion of a period of effective matter domination between inflation and BBN is an amply motivated

alternative to the standard thermal history of the Universe. If dark matter is produced nonthermally during

this era, the viable parameter space for the dark matter annihilation cross section widens greatly, as large

ranges of production and annihilation efficiencies can combine to result in the correct relic abundance.

Nonstandard thermal histories could potentially have observable consequences. Unlike the typically

assumed period of radiation domination following inflation, in which subhorizon density perturbations grow

logarithmically, EMDEs provide an era of linear growth. Linear growth would enhance structure formation on

scales that enter the horizon during this era, possibly leading to observable effects. However, in the absence

of fine-tuning, it is likely that dark matter produced nonthermally will be imparted with relativistic velocities,

and its subsequently large free-streaming length will wipe out this enhancement to structure formation.

By investigating the velocity evolution and distribution of dark matter produced nonthermally from the

decay of a massive scalar field, we have confirmed that retaining the linear enhancement to structure growth

requires the dark matter to be produced largely nonrelativistic. Despite the early creation of many particles,

and their loss of momentum due to adiabatic cooling, the continuous creation of new, hot particles prevents
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the average dark matter velocity from decreasing appreciably during the EMDE. The average particle at

reheating is nearly as relativistic as those newly produced from decay. And because a majority of the dark

matter is created around reheating, essentially negligible fractions of dark matter particles have velocities low

enough to preserve enhanced structure formation.

We next investigated the upper limit on the dark matter velocity required to preserve the structures

we observe. Dark matter particles born with relativistic velocities have free-streaming lengths that may

also washout observed small-scale structures. Lyman−α forest data provides the best-known probes of

inhomogeneity at small scales, and ensuring that structure formation at these scales is not observably

suppressed constrains the parameter space of nonthermal dark matter.

Using the software CLASS, we obtained the matter power spectrum resulting from our model of

nonthermal dark matter. A transfer function was used to compare our spectrum to that of the standard CDM

scenario and showed a cutoff in the power at small scales in our nonthermal scenario similar to that due to

WDM. We fit the form of our transfer functions using three free parameters, one of which, α describes the

scale of the cutoff in the transfer function and the other two describe its overall shape. The shape of our

transfer function varies slightly with the cutoff scale and the two parameters describing its shape are well

determined by analytic functions of α.

We obtained limits on the allowed scale of the cutoff in the transfer function by performing a comprehen-

sive MCMC analysis using Lyman−α observations: α < 0.011Mpc/h (68% C.L.) and α < 0.026Mpc/h

(95% C.L.). From this constraint, we were able to place limits on the allowed velocity imparted at scalar

decay for a given temperature at reheating, summarized in Fig. 3.12. We also found a simple relation between

α and the dark matter free-streaming length that allows one to use the limits on α to limit the free-streaming

length which can be calculated analytically from γD and TRH.

Observations of the abundance of MW satellite galaxies provide another probe of the small-scale power

spectrum. Using the halo-mass function obtained from WDM simulations, limits on the cutoff scale can

also be placed on the WDM transfer function by requiring consistency between the decreased abundance of

collapsed objects expected in WDM scenarios, compared to CDM, and the abundance of satellites observed

orbiting the MW. These constraints are applicable to any model of dark matter with a transfer function

comparable to that of WDM. Comparison of the parameter values that fit the transfer function of our model

to those that fit WDM naively imply marked differences between the two models; however, matching the

transfer functions at the same half-mode scale shows the two models to be remarkably similar, differing
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significantly only on scales at which the power was already greatly suppressed. In our model, MW satellite

considerations provide a practically identical bound on α to those of Lyman-α data.

Using the impact on the matter power spectrum expected in the model of nonthermal dark matter we have

presented here, we have constrained the physical parameters of our model: the velocity imparted at the dark

matter production, characterized by the Lorentz factor γD, and the temperature at reheating, TRH. Constraints

in this parameter space also inform the allowed value of f , the fraction of the decaying component’s energy

allocated to the dark matter, that is required to obtain the correct relic abundance in the absence of dark matter

annihilations. While naturalness would suggest a value of f ∼ 0.5, our constraints show that f must be less

than ∼ 10−4, implying that annihilations must be considered to avoid finely tuning f . Our limits within the

parameter space of TRH and γD can also be equivalently viewed as limits on the scalar decay rate Γφ [see Eq.

(3.1)] and the mass hierarchy between the scalar parent and daughter dark matter particles for a two-body

decay (mφ = 2γDmχ).

There are many opportunities for extensions to our model. We have assumed here that all dark matter

particles are born from the decay process with the same velocity, though this need not necessarily be the

case. Including a range of possible velocities could tighten or relax our bounds, depending on the exact

distribution of the imparted velocity. We have also assumed that any annihilations take place via s-wave

processes. If annihilations occur preferentially for faster particles, this could shift the peak of our velocity

distribution to lower velocities. Finally, we have only considered the cooling of dark matter due to the

redshifting of its momentum. If dark matter is allowed to exchange momentum with Standard Model particles,

this could provide an additional mechanism to reduce its momentum and lower the peak velocity of the

velocity distribution, perhaps allowing for the formation of microhalos from perturbations that grow linearly

during the EMDE. It is this final consideration that we investigate in the next chapter.
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CHAPTER 4

Interacting Dark Matter:
Impact of Nonthermal Production on the Matter Power Spectrum

As we just saw in Chapter 3, the redshifting of its momentum is insufficient to cool the dark matter

enough to allow the preservation of structures formed during the EMDE. We now investigate how effective

scattering interactions with the SM could be at further reducing the dark matter velocity. The relatively

heavy dark matter particle is born from the decay of the scalar with a large momentum, and through many

interactions with SM particles that each change the particle’s momentum by a small amount, the dark matter

can be brought into kinetic equilibrium with the SM. Once a dark matter particle is coupled to the SM

radiation, its momentum will actually decrease slower than a−1, because the SM radiation is continually

heated by the decay of the scalar field. This means that, even though scattering can rapidly reduce a dark

matter particle’s momentum initially after production, for the few earliest born particles which would have

redshifted as a−1 during the entire EMDE, the end effect of scattering can be to increase their momenta

at reheating compared to the noninteracting case. However, if the dark matter is still coupled to the SM

particles near the time of reheating, for the large majority of particles born near reheating, their momenta will

experience the initial rapid decrease after their production, and their momenta following reheating will be

greatly reduced. If the dark matter remains coupled to the SM until after reheating and after production has

ceased, its velocity distribution would be indistinguishable from the thermal dark matter scenario. For an

appreciable effect to the dark matter velocity distribution, kinetic decoupling must occur near reheating, and

we investigate how appreciable this effect can be.

4.1 Interacting Nonthermal Dark Matter

When considering scattering interactions between the dark matter and SM particles, we are interested in

the momentum transfer rate between the two sectors. This momentum transfer rate will depend on both the

collision rate between dark matter and SM particles and the momentum exchanged in each collision. The

collision rate can be given by Γcoll = 〈σscv〉nr, where nr is the number density of relativistic SM particles,
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which scales with the radiation temperature as nr ∝ T 3, and 〈σscv〉 is the velocity-averaged scattering cross

section between the dark matter and SM particles. The scattering cross section scales with the radiation

temperature differently depending on the dominant scattering channel. For example, for p-wave scattering,

the cross section exhibits a 〈σscv〉 ∝ T 2 behavior; we can remain agnostic about the dark matter scattering

channel, however, and use the general expression 〈σscv〉 ∝ Tn. Because our dark matter particle is much

heavier than the SM particles, each collision will only alter the dark matter particle’s momentum by a small

amount. In a nonrelativistic treatment, it requires approximately mχ/T collisions in order to appreciably

change a particle’s momentum, and the momentum transfer rate will be suppressed relative to the collision

rate by a factor of T/mχ [123]. We will use this approximation to define the momentum transfer rate between

the dark matter and SM to be

Σ ≡ σ
(
T

Ti

)4+n

, (4.1)

where Ti = T (ai), and σ = Σ(Ti). As in previous sections we introduce the dimensionless variable

σ̃ ≡ σ/Hi.

The kinetic decoupling of dark matter from the SM radiation occurs when the momentum transfer rate

falls below the expansion rate, thus we define the kinetic decoupling temperature, Tkd, by Σ(Tkd) = H(Tkd).

Using our momentum transfer rate, we can write an equation for the evolution of the momentum, p, of a

single dark matter particle interacting with the SM plasma;

dp

dt
= −Hp− Σ(p− pf) (4.2)

where pf , the momentum “floor”, is the average momentum to which the dark matter equilibrates and

depends on the temperature of the SM radiation. We define the temperature of our dark matter to be

Tχ = (2/3)(〈p2〉/2mχ) [123]. Thus, when dark matter and the SM are in equilibrium, the dark matter is

kept at an average momentum pf =
√

3mχT . The quantity of interest for much of our analysis, however,

will be the dark matter velocity given by γv = p/mχ. The velocity a dark matter particle maintains while

in equilibrium with the SM radiation, γv = pf/mχ =
√

3T/mχ, will determine its velocity, and thus

free-streaming length, following reheating. For a given relation between the time of decoupling and reheating

(for a given value of akd/aRH), the momentum following reheating of a dark matter particle that coupled to
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the SM radiation will be related to the the value of the momentum floor at which it decoupled, which itself

can be related the to momentum floor at reheating for a fixed akd/aRH. The velocity of a dark matter particle

following reheating will then depend on the quantity pf,RH/mχ ∝
√
TRH/mχ. Increasing the temperature at

reheating will increase the temperature of the radiation bath throughout the EMDE, and it will increase the

velocity of particles that experience coupling. Meanwhile, increasing the dark matter mass, while keeping the

momentum to which it couples fixed, implies a decreased dark matter velocity.

Figure 4.1 shows the evolution of the momentum of a 10 GeV dark matter particle produced at ai for

various values of σ̃ and a reheat temperature of 3 MeV. For simplicity, we neglect changes in the relativistic

degrees of freedom, g∗, prior to 3aRH. The solid black line shows the momentum of the particle in the

absence of interactions. For large enough σ̃ dark matter particle’s momentum is quickly brought down

to the floor, lower than it would other wise be without interactions, but the redshifting behavior of the

momentum floor to which it couples (pf ∝ a−3/16) is much slower than the momentum of a particle with

no interactions (p ∝ a−1). A coupled dark matter particle maintains a much higher momentum during the

EMDE than a non-interacting particle. Particles that also decouple during the EMDE not only begin at this

higher momentum but can also experience a redshift behavior in their momentum slower than p ∝ a−1 as

well. In Figure 4.1, we already see the hints of this strange behavior; even after the particle has decoupled

from the radiation, its momentum does not quite scale as a−1.

To understand this strange behavior, we first rewrite Eq. (4.2) as

a
dp

da
+ p

[
1 +

Σ

H

]
=

Σ

H
pf , (4.3)

and examine it in the regime long after kinetic decoupling (a� akd), when Σ
H � 1:

a
dpakd

da
+ pakd ' Σ

H
pf . (4.4)

During the EMDE, T (a) = Tkd(akd/a)3/8 and (Σ/H) = (akd/a)3n/8, in the absence of changes in the

number of relativistic degrees of freedom, where akd is the scale factor at which Σ = H . Performing the

change of variables

h(a) =

(
a

akd

)
pakd and y =

a

akd
, (4.5)

63



Figure 4.1: The evolution of γv as a function of scale factor for a dark matter particle born at ai with
γD = 100 for σ̃ = 100,1,2,...8 (red - purple). Also shown shown is the momentum “floor” pf (black, dotted),
the momentum of a particle under no interactions p(a) = γDvD(ai/a) (black, solid), and pRH(aRH/a)15/16

(black, dashed) to show that, even after the dark matter has decoupled from the radiation, it does not redshift
as p ∝ a−1. Here Γ̃φ = 10−18, n = 2, mχ = 10 GeV, and TRH = 3 MeV. The scale factor at decoupling,
akd, is marked for each case of σ̃ by solid vertical lines, with decoupling in the σ̃ = 100 case occurring at
akd = 1 and coinciding with the y-axis. The dashed vertical line denotes reheating. Inset: Behavior at very
early times showing that, with a large enough value of σ̃ (& 102), dark matter couples very quickly to the SM
radiation.

and noting that pf = pf,kd(akd/a)3/16 during the EMDE, Eq. (4.4) becomes

dh

dy
= pf,kd y

(3/8)(n+1/2). (4.6)

Eq. (4.6) can be solved analytically, and the evolution of the momentum of a dark matter particle long after

kinetic decoupling, but sufficiently before reheating, is given by:

pakd = C
akd

a
+

pf,kd

1− (3/8)(n+ 1/2)

(akd

a

)(3/8)(n+1/2)
, (4.7)

where C is a constant of integration. For n ≤ 2 we have that (3/8)(n+ 1/2) < 1, thus the second term in

Eq. (4.7) falls off slower than a−1 and can come to dominate when a� akd. For n = 2, as we had in Figure

4.1, the second term scales as a−15/16 and dominates the late-time behavior of the particle’s momentum,

which we highlight by the dashed line.
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For a particle which couples very quickly to the SM radiation, the general solution to Eq. (4.2) is

p(s) = pfs
λesΓ(1− λ, s), (4.8)

where s(a) = (8/3n)(akd/a)3n/8, λ = 13/(6n) during the EMDE, and Γ(x, s) is the upper incomplete

gamma function. We can use this general solution to determine our integration constant in Eq. (4.7). Long

after decoupling, when a� akd, the incomplete gamma function behaves as

lims→0Γ(1− λ, s) = Γ(1− λ)− s1−λ

1− λ
+ . . . , (4.9)

and at late times the solution to Eq. (4.8) becomes

pakd =

[
pf,kd

(
8

3n

)13/12

Γ(1− λ)

]
akd

a
+

pf,kd

1− (3/8)(n+ 1/2)

(akd

a

)(3/8)(n+1/2)
. (4.10)

All particles produced sufficiently before akd will follow Eq. (4.10) up until reheating, when we can no longer

assume T ∝ a3/8; after reheating their momentum will begin scaling as p ∝ a−1, as can be seen in Figure

4.2. Particles born sufficiently after akd will have never coupled to the radiation and so their momentum will

follow the usual a−1 scaling. Thus, at reheating there will be a large number of particles that, though born at

different times, were able to couple to the radiation and all decoupled at the same time. Thereafter, all the

particles born before kinetic decoupling maintain approximately the same momentum. Particles born later

will have momenta at reheating that depend on the scale factor at which they were produced, similar to our

earlier analysis.

Our analysis in the previous chapter also tells us that most of the dark matter particles are born around

reheating. The above calculation was made simple by assuming that decoupling happens well before reheating,

and that there is an extended period during which the dark matter is able to experience this “quasi-decoupled”

state between decoupling and reheating. This is not true for many of our dark matter particles, and calculating

their momenta following reheating is not as straight forward. Additionally, if kinetic decoupling does occur

long before reheating, only a small fraction of particles are born early enough to couple to the radiation.

In this case, the majority of the particles do not couple to the radiation and so maintain their high velocity

and long free-streaming length following reheating. The interesting cases will therefore be when the kinetic

decoupling of dark matter occurs around reheating when most of the dark matter is being produced, and
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Figure 4.2: The evolution of γv as a function of scale factor for a dark matter particle born at ai with
γD = 100 for σ̃ = 100,1,2,...8 (red - purple). Also shown shown is the momentum “floor” pf (black, dotted).
Colored dashed lines show the solution to Eq. (4.10) for each of the corresponding σ̃’s. Again, Γ̃φ = 10−18,
n = 2, mχ = 10 GeV, and TRH = 3 MeV, and vertical line are the same as in Figure 4.1.

determining the momentum of a given particle following reheating will not be as simple as our analytical

calculations above when arriving at Eq. (4.10).

However, we can numerically solve Eq. (4.2) under the initial condition p(aD) = pD in order to find

p(a, aD). We will again be interested in obtaining a distribution function for the dark matter. If we consider

3aRH the point at which further dark matter production is negligible, we can use our previous distribution

in the “birth times” of the dark matter, f(aD), and a numerical solution for p(a, aD), to find a distribution

function for the dark matter momentum following reheating. Once dark matter production is negligible, and

once the dark matter is completely decoupled from the radiation, the distribution in the comoving momenta

will not change; for the scenarios we wish to consider, the distribution in the comoving momenta will be

constant after 10aRH.

Figure 4.3 shows p(10aRH, aD) for various values of σ̃. The horizontal plateau of each line at lower

values of aD represents the particles born early enough to couple to the radiation and so all have the same

momentum at 10aRH despite being born at different times. As σ̃ increases (red to purple), akd increases, and

so does the maximum value of aD a particle can have and still fully couple to the radiation. Increasing σ̃ also

keeps the dark matter coupled to the radiation longer, evolving with p ∝ a−3/16, delaying the time until it

evolves as a−15/16 (when n = 2), and thus increasing the final value of the momentum the particles will have

at 10aRH.
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Figure 4.3: The momentum at 10aRH of a dark matter particle as a function of it’s “birth time” aD plotted (red
to purple) for σ̃ = 100, 100.5, 101, 101.5, ...1011. Again, Γ̃φ = 10−18, n = 2, mχ = 10 GeV, and TRH = 3
MeV. The vertical line marks aD = aRH.

Figure 4.4: Solid lines show p(10aRH, aD) for σ̃ = 102.5, 105.5, 107.5 (red, green, blue). Horizontal,
dotted lines show the solution to Eq. (4.10) evolved to 10aRH for each case. Vertical solid lines mark
akd and vertical dot-dashed lines mark 10akd and akd/10 for each case. The diagonal dashed line shows
p(10aRH, aD) = (pDaD)/(10aRH), i .e. the noninteracting case. The left panel shows scenarios for which
γD ' 7 (vD = 0.99), the right shows γD = 100. Again, Γ̃φ = 10−18, n = 2, mχ = 10 GeV, and TRH = 3
MeV.
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Figure 4.4 highlights in its left panel how the relationship between aD and p(10aRH) is complicated as

akd approaches aRH. For akd � aRH (e.g . the red curve in Figure 4.4), our asymptotic behaviors fit well to

the full solution of the momentum evolution; particles born early enough to couple to the radiation, have

a momentum at 10aRH given by Eq. (4.10), the momentum of those born after decoupling is given by the

usual a−1 scaling, and there is a smooth transition between these regimes. However, as akd approaches aRH,

those particles born around akd deviate from the simple, analytic behaviors. We can begin to understand

this deviation by viewing the left panel of Figure 4.5, which shows the momentum evolution for several

particles born around akd for the same three values of σ̃ used in Figure 4.4. In the cases where σ̃ = 102.5, for

particles born before akd, the immediate effect of the dark matter’s coupling to the radiation is to decrease

the particles’ momenta. Following that, however, their momenta redshift increasingly faster than a−3/16,

but still slower than a−1, before finally settling into the a−15/16 scaling. This period of slower-than-a−1

redshifting allows them to achieve an higher momentum at 10aRH than they otherwise would in the absence

of interactions. This is reflected in Figure 4.4 by all particles in the σ̃ = 102.5 with aD < akd lying on the

horizontal plateau and above the black, dashed line representing the noninteracting case. Particles born at

10akd in the σ̃ = 102.5 case, do not quite fully couple to the radiation but still experience the a−15/16 scaling

in their momentum and reach a higher final momentum at 10aRH than they would have without interactions.

This is shown in in the left panel of Figure 4.4 by particle born at 10akd having a momentum above the dotted

red line, and still above the black, dashed line. Particles born sufficiently after akd never experience enough

collisions with the radiation for their momentum to deviate from p ∝ a−1 and so all lie on the black, dashed

line of Figure 4.4. In the cases where σ̃ = 102.5, the few particles born early enough to feel the effect of their

coupling to the radiation are all slightly warmed due to the interactions.

Contrarily, for the cases in which σ̃ = 107.5, some particles end up colder than they other wise would

have without interactions. For particles born around akd, the initial decrease in the particles’ momenta is

the dominant effect. There is not enough time before reheating for the slower-than-a−1 redshifting in their

momenta to overcome this initial decrease and they are colder at 10aRH than in the noninteracting case. This

is reflected in Figure 4.4 by the region in which the blue curve falls below the black, dashed line. Because

we will be interested in cases where akd ∼ aRH, we will be dealing with p(10aRH, aD) relations of the type

illustrated by the blue curve of Figure 4.4: early-born particles which couple to the radiation will be warmer

compared to the noninteracting case, while later-born particles that are able to couple to the radiation can end

up colder (below the black, dashed line).
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Figure 4.5: Left: The three sets of red to purple lines show, for the three cases σ̃ = 102.5, 105.5, and 107.5, the
evolution of γv as a function of scale factor for dark matter particles born between akd/10 < aD < 10akd

with vD = 0.99. In dotted black is the evolution of γv for a dark matter particles born ai. In solid black
is the momentum of the “floor” pf . Vertical solid lines mark akd and vertical dot-dashed lines mark 10akd

and akd/10 for each case σ̃ = 102.5, 105.5, and 107.5 (red, green, blue), as in Figure 4.4. Colored dashed
lines show the evolution of γv in the noninteracting case for aD = akd/10, akd, and 10akd. Right: For the
three cases σ̃ = 102.5, 105.5, and 107.5 (red, green, blue) the evolution of γv as a function of scale factor for
dark matter particles born at akd with γD = 7 (solid) and γD = 100 (dashed). Again, Γ̃φ = 10−18, n = 2,
mχ = 10 GeV, and TRH = 3 MeV.

The right panels of Figures 4.4 and 4.5 illustrate how the relativistic nature of dark matter can further

complicate the relationship between aD and p(10aRH). Highly relativistic dark matter particles require an

even longer period between decoupling and reheating for the “quasi-decoupling” behavior to become the

dominant effect in determining the particles’ momenta following reheating. While illuminating, our above

analytical calculations break down in the regimes of most interest to our investigations: dark matter produced

highly relativistic from decay that kinetically decouples from SM radiation near reheating. With a numerical

solution of p(a, aD), however, we can obtain the distribution function in dark matter momentum following

reheating from the distribution of birth times of the dark matter particles for those interesting scenarios when

akd ∼ aRH.

All of our examples in the figures above present our calculations for a single set of values for the dark

matter mass, mχ = 10 GeV, and the temperature at reheating, TRH = 3 MeV. Changing either of these

quantities changes the momentum to which the dark matter equilibrates and the velocity it possesses at

reheating. As mentioned earlier, increasing the temperature at reheating will increase the velocity of particles

which experienced coupling with the radiation, while increasing the dark matter mass will decrease the

velocity. We will continue with our fiducial example throughout our analysis and remark on how changing

the ratio between the dark matter mass and reheat temperature will affect our results.
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4.2 Dark Matter Distribution Function

As we previously mentioned, once dark matter production is negligible, and once the dark matter is

completely decoupled from the radiation, the distribution in the comoving momenta will not change. We

know from the previous chapter that dark matter production becomes negligible after 3aRH; the point at

which dark matter is completely decoupled from the radiation depends on the value of σ̃. For any of the

following scenarios we will consider, the dark matter will fully decouple from SM radiation before 10aRH

and we will consider the distribution in the comoving dark matter momentum fixed beyond that point. While

we could easily establish the distribution in dark matter momentum following reheating as:

f(p(10aRH)) = f(aD)
daD

dp(10aRH)
, (4.11)

the numerical relation we would find between p(10aRH) and aD by solving Eq. (4.2) is not exactly valid

for those particles that coupled to the radiation. The horizontal plateau in Figure 4.3 suggests all particles

born early enough to couple to the radiation will have the exact same momentum following reheating,

pmin ≡ p(ai, 10aRH). More realistically however, the dark matter is reaching kinetic equilibrium with a

radiation bath whose particles, though characterized by a single temperature, have a distribution of momenta,

and so the momenta of coupled particles will also have a distribution (whose average value is pmin). We

assume for these particles that have thermalized a Maxwell-Boltzmann distribution:

f(p(10aRH)) ∝ exp

[
−p

2(10aRH)

2mχT

]
= exp

[
−3 p2(10aRH)

2 p2
min

]
. (4.12)

This distribution function will be normalized to the fraction of dark matter particles born early enough for

their momentum to be appreciably affected by interactions. We will consider this to be those particles whose

momenta are brought down within p < 2pmin. For those particles with momentum after reheating p� pmin,

their momenta are given by the numerical relation between p(10aRH) and aD found by solving Eq. (4.2).

There is still, however, a relatively large number of particles with momenta p & 2pmin, which creates a

sharp upturn in the distribution function near this value of the momentum when using the numerical relation

between p(10aRH) and aD at these lower momenta values. In order to smooth our distribution function, we

artificially redistribute these particles into a thermal tail matched onto the distribution function for particles

for which p(10aRH)� pmin. Adding this smoothed distribution function for unthermalized particles to our
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Figure 4.6: f(q̃) for the noninteracting case (black, dotted) and the interacting cases with σ̃ = 1010 (solid) and
σ̃ = 109 (dashed) with γD = 100, 300, 900, 2700, 8100 (blue to red). Here, n = 2 and mχ/TRH ' 3300.

Maxwell Boltzmann distribution for thermalized particle, we obtain the full momentum distribution function

for a scenario of interacting nonthermal dark matter.

As in the previous chapter, we will scale the comoving momenta of the dark matter particles by the

comoving momentum of a particular particle. In this case, we will consider a particle that has momentum pD

at 10aRH, so that when we examine the distribution function at 10aRH, we have

q̃ =
ap

10aRHpD
=

10aRHp(10aRH)

10aRHpD
=
p(10aRH)

pD
. (4.13)

Using this we have the distribution function:

f(q̃) = f(p(10aRH))
dp(10aRH)

dq
. (4.14)

In Figure 4.6 we show how the distribution functions f(q̃) compare for the interacting (with σ̃ = 109 and

1010) and noninteracting cases. The value of pmin decreases with decreasing σ̃, and so our distribution

functions for the σ̃ = 109 cases peak at lower values of q̃ than in the σ̃ = 1010 cases with the same velocity

at production. Increasing the velocity at production increases pD and also lowers the value of q̃ at which the

distribution function peaks. In both presented cases, interactions between the dark matter and SM radiation

lead to a significantly colder momentum distribution. Once again we point out that these distribution functions

represent a single value for the ratio of TRH/mχ = 0.0003. Increasing this ratio will increase the dark matter

velocity following reheating, increasing the value of q̃ at which the distribution function peaks.
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4.3 Free-Streaming Lengths

Once more we calculate the physical free-streaming length today of a particle born at reheating:

λphys
fs,0 = a0

∫ a0

aRH

v(a)
da

a2H(a)
. (4.15)

The free-streaming length in our interacting cases can be computed analytically just as we did in Chapter

3 by focusing on the distance covered by a streaming particle after changes in the relativistic degrees of

freedom have ceased. This allows us to assume H ∝ a−2 during radiation domination, and we break up the

free-streaming integral in to two parts, representing the radiation- and matter-dominated eras, that can be

solved analytically.

Previously, in Chapter 3, the variable Y was defined to be Y ≡ (γDvDaD)2, which is the comoving

momentum of a particle, scaled by its mass, and is constant following the dark matter’s production in the

noninteracting case; the velocity evolution of the particle is then given by the relationship γv =
√
Y /a. In our

interacting cases, the comoving momentum of a dark matter particle is not constant until after the dark matter

has kinetically decoupled and so we replace the variable Y with a new variable Z ≡ [p(10aRH)10aRH/m]2

such that the velocity evolution of a particle after 10aRH in the interacting case is given by the relationship

γv =
√
Z/a. The value of p(10aRH) will change according to the particle under consideration; in our

previous analysis we chose to consider the median particle (aD = aRH), but we will remain ambiguous about

the value of p(10aRH) for now. The free-streaming length in the noninteracting scenario is then:

λfs =

∫ a0

a∗

√
Z

Z + a2

da

a2H(a)
' 1

H∗a2
∗

∫ aeq

a∗

√
Z

Z + a2
da+

1

Heqa
3/2
eq

∫ a0

aeq

√
Z

Z + a2

da√
a

=

√
Z

H∗a2
∗

ln

aeq +
√
Z + a2

eq

a∗ +
√
Z + a2

∗

+
2
√
i
√
Z

Heqa
3/2
eq

F

i sinh−1

√
i
√
Z

a
,−1

∣∣∣∣∣∣
a0

aeq

,

(4.16)

where we remind the reader that, just as in Eq. (3.26), a∗ is the value of the scale factor after which g∗ remains

constant, and F (φ,m) is the elliptic integral of the first kind. The first term in the above expression can be

simplified under the assumption that aeq � 10aRH, which is reasonable considering that matter-radiation

equality occurs at a temperature of Teq ' 0.8 eV and we still require TRH > 3 MeV. The dark matter velocity
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and the reheat temperature enter into this expression through the combination

ν ≡ p(10aRH)

m

10aRH

a0
=
p(10aRH)

m

10 T0g
1/3
∗S,0

3
[
Tg

1/3
∗S

]
T=0.34TRH

, (4.17)

where, again, we assume entropy is conserved after a = 3aRH. Particles that fully coupled to the radiation

will have a velocity following reheating that is entirely determined by the momentum floor to which they

coupled and related to the quantity pf,RH/mχ ∝
√
TRH/mχ as discussed earlier. The velocity of particles

that never coupled to the radiation is related to their velocity at production just as in the previous chapter.

For particles that experience scattering interactions but do not fully couple to the radiation, the value of the

particles’ velocities following reheating will depend on the dark matter velocity at production and the ratio

mχ/TRH, which determines how affected the particles are by interactions. When decoupling occurs near

reheating, many particles fall into this last intermediate regime.

Expressed in terms of the new variable ν, the physical free-streaming length calculated from the

contribution from both the radiation- and matter-dominated eras is

λphys
fs,0 =

(
4.66× 105Mpc

)
ν

ln

(
2
T∗
Teq

)
− ln

1 +

√
ν2

(
T∗
T0

)2

+ 1


+
(
4.66× 105Mpc

)√ T0

Teq

√
2iν

[
F
(
i sinh−1

√
iν
)
− F

(
i sinh−1

√
iν
Teq

T0

)]
, (4.18)

which is exactly the form of Eq. (3.29) but with µ → ν. In the previous chapter, we calculated the free-

streaming length of the median dark matter particle (aD = aRH) to represent the scales at which we expected

to see suppressed structure growth. We will see that, in our interacting case, the median value of the dark

matter momentum following reheating may not be as good a representation for determining the scale at which

we expect to begin seeing deviations from ΛCDM in the matter power spectrum. In the next section we

compute the transfer function for a more precise determination of the effects of the dark matter free-streaming

length.
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Figure 4.7: The transfer function for TRH = 3 MeV and several values of the dark matter velocity at
production, vD. Left: Colored lines represent (cool to warm) dark matter produced with increasing Lorentz
factor γD = 100, 300, 900, 2700, 8100, respectively. Solid lines show the transfer functions in the interacting
case with σ̃ = 1010 while dotted lines show the transfer functions in the noninteracting case (same as in Figure
3.9). Right: Transfer function for dark matter produced with γD =100 and 2700 (green and red) for σ̃ = 1010

(solid), σ̃ = 109 (dashed), and the noninteracting case (dotted). Again, n = 2 and mχ/TRH ' 3300.

4.4 Transfer Functions

We use the Cosmic Linear Anisotropy Solving System (CLASS) [115] to obtain the dark matter transfer

function,

T 2(k) ≡ PnCDM(k)

PCDM(k)
, (4.19)

which describes suppression of structure due to non-cold dark matter (nCDM) compared to that of the

standard CDM scenario. With our distribution function f(q̃), we are able to use CLASS to obtain transfer

functions for any combination of the velocity imparted to the dark matter and the reheat temperature by also

providing the present-day physical momentum of a dark matter particle with q̃ = 1:

p0 = p(10aRH)
10aRH

a0
. (4.20)

The value of p(10aRH) encodes the effect of both the velocity imparted to the dark matter and the reduction

of that velocity due to scattering interactions. In Figure 4.7 we show the transfer functions for dark matter

produced at different velocities, but in scenarios with the same mass, 10 GeV, and reheat temperature, 3 MeV.

As we expected, scattering interactions cool the dark matter and lead to less suppression of structure

growth compared to the noninteracting scenario. As well, we can confirm from Figure 4.7 that a larger
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Figure 4.8: The transfer function for TRH = 3 MeV and several values of the dark matter velocity at
production, vD. The color of the lines represent (cool to warm) dark matter produced with increasing Lorentz
factor γD = 100, 300, 900, 2700, 8100, respectively. Left: Vertical dashed lines represent the scale of the
free-streaming horizon calculated using Eq. (4.18) and the median momentum following reheating. Right:
Vertical dashed lines represent the scale of the free-streaming horizon calculated using Eq. (4.18) and the
mean momentum following reheating. Again, n = 2 and mχ/TRH ' 3300.

value of the momentum transfer rate leads to less suppression between interacting cases. Also notable in

the transfer functions of the interacting cases is a small feature - a slight dip at approximately T (k) = 0.1.

(The small, sharp deviations seen in the blue and green curves throughout Figures 4.7 through 4.9 are an

unphysical consequence of numerical interpolation.) Though an interesting consequence of the new shape

of our momentum distribution function, T (k) . 0.1 already represents a great suppression of power in the

nCDM model, making distinguishing such an effect extremely unlikely. We also point out that, compared to

the noninteracting case, the scale at which the transfer functions in the interacting case begin to deviate from

CDM is pushed higher values of k and the rate at which it falls off after that point, is much slower.

In Figure 4.8 we show effect of considering the mean or median particle as the representative particle of

the dark matter free-streaming length. The left panel shows, as vertical dashed lines, the free-streaming scale

kfs = (λphys
fs,0 )−1 given by Eq. (4.18) of a particle with the median momentum following reheating. The right

panel shows the free-streaming scale as determined by the mean dark matter momentum. Clearly, in this

case the mean particle momentum is a better predictor of scale at which the nCDM power spectrum begin to

deviate from ΛCDM. Unlike in our previous analysis, the mean and median of the interacting dark matter’s

momentum distribution function can be significantly different. The median momentum in the interacting

cases falls below that of the mean dark matter particle, and so the median appears to underestimate how much

suppression is caused by the particles that reside in the hot tail of the momentum distribution function.
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Figure 4.9: The transfer functions (solid) for TRH = 3 MeV and several values of the dark matter velocity at
production, vD. The color of the lines represent (cool to warm) dark matter produced with increasing Lorentz
factor γD = 100, 300, 900, 2700, 8100, respectively. In the left panel σ̃ = 1010 and in the right σ̃ = 109.
Dashed lines show the thermal WDM transfer functions with matched half-mode scales. Again, n = 2 and
mχ/TRH ' 3300.

In Figure 4.9 we can see more even clearly the effect that the interactions have on the shape of the dark

matter transfer functions. Previously, the transfer functions of our noninteracting nonthermal dark matter

scenario and those of thermal WDM transfer functions with the same half-mode scale only began to differ

significantly in shape at scales at which the power in the nCDM model was already greatly suppressed

(T (k) . 0.1). Figure 4.9 shows that the transfer functions of thermal WDM can be vastly different in shape

from the interacting nonthermal transfer functions. Comparing the left and right panels, which show the

transfer functions in the σ̃ = 1010 and σ̃ = 109, respectively, we can see that the difference in transfer

function shape is exacerbated for increasing values of σ̃. Given this noticeable discrepancy it would be unwise

to apply constraints on the half-mode scale obtained by simulations of WDM. Using thermal WDM transfer

functions with the same half-mode scale to represent our scenario would underestimate suppression on scales

above the half-mode; in the σ̃ = 1010 case this underestimation could be severe. In addition, the transfer

function of the interacting case differs significantly from the noninteracting case. Therefore, obtaining robust

bounds on these interacting cases would require another full analysis in which we fit the form of the transfer

function by Eq. (3.34) and constrain the parameter space of α, β, and γ.

4.5 Discussion

We can still estimate how interactions will change the bounds on nonthermal dark matter production by

considering when the dark matter free streaming scale, kfs = (λphys
fs,0 )−1, is naively probable by Lyman−α
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Figure 4.10: Limits on the Lorentz factor γD and the reheat temperature. The shaded regions correspond to
the 1σ and 2σ bounds, α = 0.011Mpc/h and 0.026Mpc/h, respectively for the noninteracting scenario. The
black dashed line represents kfs = (λfs)

−1 = 12.6h/Mpc as calculated by Eq. (3.29). The red dashed lines
represents kfs = (λfs)

−1 = 12.6h/Mpc in the interacting as calculated by Eq. (4.18) using the mean dark
matter momentum following reheating, for σ̃ = 1010 (top) and σ̃ = 109 (bottom), and mχ/TRH ' 3300.
The discontinuity at TRH ' 170MeV occurs due to the sudden change in g∗ during the QCD phase transition.
The thick solid line shows the bound on γD as a function of TRH imposed by BBN, derived in Section 3.1.1.

data. As we saw in Chapter 3, constraining the free-streaming scale to lie above k & 12.6 h/Mpc gave

a good estimate of the bounds one could expect to be able to put on the parameter space of γD and TRH.

In Chapter 3, the scale at which the nonthermal dark matter power spectrum began to deviate from that of

CDM was represented by the free-streaming scale of the dark matter particle with the median momentum

following reheating. The scale at which this occurs in the case of interacting nonthermal dark matter is

better represented by the free-streaming scale of the particle with the mean momentum following reheating.

Using Eq. (4.18) and the mean dark matter momentum once the particles have fully kinetically decoupled to

calculate kfs in the interacting case, we can present tentative bounds on γD and TRH for a given value of the

momentum transfer rate. Since our interacting transfer functions lie below those of the noninteracting case at

scales below the half-mode scale, it is likely that these bounds are more lenient.

Our final figure, Figure 4.10, shows these bounds for the interacting case along side those derived in the

noninteracting case in Section 3.3.2. For the scenario in which σ̃ = 109, the transfer functions only differed

slightly from those of the noninteracting case (especially for T (k) > 0.5), and our bounds on the parameter

space of γD and TRH are, expectedly, not that different between the two cases. For the scenario in which

σ̃ = 1010, however, the scattering interactions appreciably cooled the dark matter and could tentatively relax

the restrictions on γD and TRH.
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Once more we remark on the fact that these results represent a fiducial example with a fixed ratio

TRH/mχ ' 0.0003. Since we show our constraints as a function of the reheat temperature, along our

boundary lines in Figure 4.10 for the interacting cases, the dark matter mass is increasing with reheat

temperature in order to keep this ratio fixed. As we know, increasing the ratio TRH/mχ will increase the dark

matter velocity at decoupling and therefore its velocity following reheating. Thus we expect increasing this

ratio will tighten our bounds, drawing them closer to those of the noninteracting case; similarly, decreasing

this ratio could further relax our constraints. Just as interactions have little effect on our bounds for dark

matter that decouples too early (akd . 0.73aRH), we expect changing this ratio to have little effect on the

bounds in these cases. However, the effect could be significant for dark matter that decouples a bit later

(akd ∼ 2.5aRH).

Thus, we can see that scattering interactions between dark matter and SM radiation particles could,

indeed, substantially cool dark matter particles produced nonthermally with large momenta. However, in

order to cool enough of the particles to have a discernable effect on the matter power spectrum, the kinetic

decoupling of the dark matter particles must occur near reheating, when most of the particles are being

produced. For reference, akd ' 0.73aRH (' 2.5aRH) for the case in which σ̃ = 109 (= 109). Though

certainly as specialized scenario, it does show that allowing a method by which the dark matter can rapidly

lose momenta opens the parameter space for the allowed velocity at its production. Unfortunately, it does not

appear that this effect is significant enough to allow for the preservation of micro halos that formed from

perturbation that grow during the EMDE.
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CHAPTER 5

Conclusion

Less than 5% of the current energy content of the Universe is contained in “ordinary” matter, i .e. in

Standard Model (SM) particles; the remaining 95% exists in the forms of what we call dark matter and

dark energy. Observable only through its gravitational interactions, what we know most conclusively about

dark matter is that it is not composed of SM particles. All we know about dark energy is that its energy

density is not detectably diluted by the expansion of the Universe. Adequate explanations of the nature and

origin of both dark matter and dark energy require the introduction of new, beyond-SM physics. A promising

regime to search for new physics is in high-energy, extreme environments like that of the early Universe. We

investigated how a particular theory of dark energy behaves in the early Universe and how the production

method of dark matter in the early Universe could effect the formation of structure we see today.

In chameleon gravity, a theory of modified gravity aimed to explain dark energy, there exists a light

scalar field that couples to the trace of the stress-energy tensor in such a way that its mass depends on the

ambient matter density, and the field is screened in local, high-density environments. Recently it was shown

that, for the runaway potentials commonly considered in chameleon theories, the field’s coupling to matter

and the hierarchy of scales between Standard Model particles and the energy scale of such potentials result in

catastrophic effects in the early Universe when these particles become nonrelativistic. Perturbations with

trans-Planckian energies are excited, and the theory suffers a breakdown in calculability at the relatively

low temperatures of BBN. We considered a chameleon field in a quartic potential and showed that the scale-

free nature of this potential allows the chameleon to avoid many of the problems encountered by runaway

potentials. We began with a classical treatment of the chameleon field following inflation, showing that the

quartic chameleon oscillates around the minimum of its effective potential, contrary to runaway potential

models in which the field became stuck far from its minimum due to Hubble friction. A quantum treatment of

the quartic chameleon’s dynamics showed that its oscillations caused rapid changes in its effective mass and

perturbations were excited via quantum particle production. While quantum correction to the field’s evolution
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must be taken into account, high-energy perturbations are only generated at comparably high temperatures

and the quartic chameleon is able remain a well-behaved effective field theory at nucleosynthesis.

The inclusion of a period of (effective) matter domination following inflation and prior to the onset of

radiation domination has interesting and observable consequences for structure growth. During this early

matter-dominated era (EMDE), the Universe was dominated by massive particles, or an oscillating scalar

field, that decayed into Standard Model particles, thus reheating the Universe. This decay process could

also have been the primary source of dark matter. In the absence of fine-tuning between the masses of the

parent and daughter particles, both dark matter particles and Standard Model particles would be produced

with relativistic velocities. We investigated the effects of the nonthermal production of dark matter particles

with relativistic velocities on the matter power spectrum by determining the resulting velocity distribution

function for the dark matter. We found that the vast majority of dark matter particles produced during the

EMDE are still relativistic at reheating, so their free streaming erases the perturbations that grow during the

EMDE. The free streaming of the dark matter particles can also prevent the formation of satellite galaxies

around the Milky Way and the structures observed in the Lyman-α forest. For a given reheat temperature,

these observations put an upper limit on the velocity of the dark matter particles at their creation.

We then considered whether these constraints could be relaxed by including scattering interactions

between the dark matter and SM particles. Following our analyses in the case of noninteracting dark matter,

we obtained the dark matter momentum distribution function resulting from the inclusion of scattering

interactions with SM radiation. We compare this scenario to both our previous nonthermal dark matter

production results, as well as to the CDM scenario by contrasting the effects the scattering interactions have

on the resulting matter power spectrum. We found that our constraints on nonthermal dark matter production

could, in fact, be relaxed by as much as an order of magnitude in the Lorentz factor of the dark matter particles

at their production, but only when the kinetic decoupling of dark matter occurs at or around reheating.
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