

Electromagnetic finite-size effects beyond the point-like approximation

Matteo Di Carlo^{1,*}, Maxwell T. Hansen^{1,***}, Nils Hermansson-Truedsson^{2,***}, and Antonin Portelli^{1,****}

¹Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

²Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract. We present a model-independent and relativistic approach to analytically derive electromagnetic finite-size effects beyond the point-like approximation. The key element is the use of electromagnetic Ward identities to constrain vertex functions, and structure-dependence appears via physical form-factors and their derivatives. We apply our general method to study the leading finite-size structure-dependence in the pseudoscalar mass (at order $1/L^3$) as well as in the leptonic decay amplitudes of pions and kaons (at order $1/L^2$). Knowledge of the latter is essential for Standard Model precision tests in the flavour physics sector from lattice simulations.

*e-mail: matteo.dicarlo@ed.ac.uk

**e-mail: maxwell.hansen@ed.ac.uk

***Speaker, e-mail: nils@itp.unibe.ch

****e-mail: antonin.portelli@ed.ac.uk

1 Introduction

Lattice quantum chromodynamics (QCD) allows for systematically improvable Standard Model (SM) precision tests from numerical simulations performed in a finite-volume (FV), discretised Euclidean spacetime. In order to reach (sub-)percent precision in lattice predictions, also strong and electromagnetic isospin breaking corrections have to be included. The latter are encoded via quantum electrodynamics (QED), but the inclusion of QED in a FV spacetime is complicated because of Gauss' law [1]. This problem is related to zero-momentum modes of photons and the absence of a QED mass-gap. Several prescriptions of how to include QED in a finite volume have been formulated and the one used here is QED_L where the spatial zero-modes are removed on each time-slice. The long-range nature of QED in addition enhances the FV effects (FVEs), which typically leads to power-law FVEs that are larger than the exponentially suppressed ones for single-particle matrix elements in QCD alone.

The FVEs for a QCD+QED process depend on properties of the involved particles, including masses and charges, but also structure-dependent quantities such as electromagnetic form-factors and their derivatives. In order to analytically capture the finite-volume scaling fully, one cannot neglect hadron structure, and in the following we develop a relativistic and model-independent method to go beyond the point-like approximation at order e^2 in QED_L.

We consider a space-time with periodic spatial extents L but with infinite time-extent. To exemplify the method, we first consider the pseudoscalar mass in Sec. 2, and then proceed to leptonic decays in Sec. 3. The discussion is based on the results in Ref. [2], and the reader is referred there for further technical details.

2 Pseudoscalar Mass

To study the finite-size scaling in the mass $m_P(L)$ of a charged hadronic spin-0 particle P , we first define the full QCD+QED infinite-volume two-point Euclidean correlation function

$$C_2^\infty(p) = \int d^4x \langle 0 | T[\phi(x)\phi^\dagger(0)] | 0 \rangle e^{-ipx}. \quad (1)$$

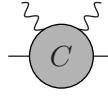
Here ϕ is an interpolating operator coupling to P , and $p = (p_0, \mathbf{p})$ is the momentum. We denote the finite-volume counterpart of this correlator $C_2^L(p)$, but for the moment only consider $C_2^\infty(p)$. This can be diagrammatically represented as

$$C_2^\infty(p) = \text{---} \phi \text{---} \phi \text{---} = Z_P \cdot D(p) \cdot Z_P, \quad D(p) = \frac{Z(p^2)}{p^2 + m_P^2}, \quad Z_P = \langle 0 | \phi(0) | P, \mathbf{p} \rangle, \quad (2)$$

where the double-line represents the QCD+QED propagator $D(p)$, the ϕ -blob is the overlap between ϕ and P and $Z(p^2) = 1 + O(p^2 + m_P^2)$ is the residue of the propagator. Expanding $C_2^\infty(p)$ in (2) around $e = 0$ yields

$$\text{---} \phi \text{---} \phi \text{---} = \text{---} \phi_0 \text{---} \phi_0 \text{---} + \text{---} \phi_0 \text{---} C \text{---} \phi_0 \text{---} + O(e^4), \quad (3)$$

where quantities with subscript 0 are evaluated in QCD alone. The grey blob is the Compton scattering kernel defined via

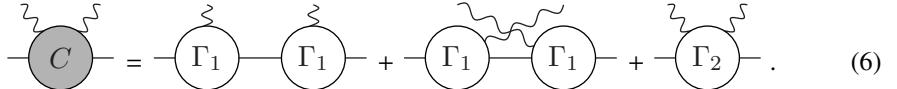


$$C_{\mu\nu}(p, k, q) = \int d^4x d^4y d^4z e^{ipz+ikx+iqy} \frac{\langle 0 | T[\phi(0) J_\mu(x) J_\nu(y) \phi^\dagger(z)] | 0 \rangle}{Z_{p,0}^2 D_0(p) D_0(p+k+q)}. \quad (4)$$

Here k and q are incoming photon momenta and $J_\mu(x)$ is the electromagnetic current. Note that the unphysical dependence on the arbitrary interpolating operator ϕ must cancel for any physical quantity, and when the external legs in $C_{\mu\nu}(p, k, q)$ go on-shell the kernel is nothing but the physical forward Compton scattering amplitude. Using (3) the electromagnetic mass-shift of the meson is readily obtained in terms of an integral over the photon loop-momentum k . One may follow an equivalent procedure for the finite-volume correlation function $C_2^L(p)$, where the integral over the spatial momentum \mathbf{k} is replaced by a sum. The leading electromagnetic FVEs in the mass, $\Delta m_P^2(L)$, are thus given by the sum-integral difference

$$\Delta m_P^2(L) = -\frac{e^2}{2} \lim_{p_0^2 \rightarrow -m_P^2} \left(\frac{1}{L^3} \sum_{\mathbf{k}}' - \int \frac{d^3\mathbf{k}}{(2\pi)^3} \right) \int \frac{dk_0}{2\pi} \left. \frac{C_{\mu\mu}(p, k, -k)}{k^2} \right|_{\mathbf{p}=0}, \quad (5)$$

where the rest-frame $\mathbf{p} = 0$ was chosen for convenience and the primed sum indicates the omission of the photon zero-mode $\mathbf{k} = 0$ in QED_L . The analytical dependence on $1/L$ including structure-dependence can now be obtained from this formula through a soft-photon expansion of the integrand, i.e. an expansion order by order in $|\mathbf{k}|$ which is directly related to the expansion in $1/L$ via $|\mathbf{k}| = 2\pi|\mathbf{n}|/L$ where \mathbf{n} is a vector of integers. The first step is to decompose $C_{\mu\nu}(p, k, q)$ into two irreducible electromagnetic vertex functions Γ_1 and Γ_2 according to



The vertex functions depend in general on the structure of the particle, as can be seen from e.g. the form-factor decomposition

$$\Gamma_1 = \Gamma_\mu(p, k) = (2p+k)_\mu F(k^2, (p+k)^2, p^2) + k_\mu G(k^2, (p+k)^2, p^2), \quad (7)$$

where $F(k^2, (p+k)^2, p^2)$ and $G(k^2, (p+k)^2, p^2)$ are structure-dependent electromagnetic form-factors depending on three virtualities. This means that F and G contain off-shell effects, but we stress that these non-physical quantities always cancel in the FVEs. The cancellation occurs since the vertex functions $\Gamma_{1,2}$ are related to each other and the propagator $D_0(p)$ via Ward identities. An example of an off-shell relation is $F(0, p^2, -m_{P,0}^2) = Z_0(p^2)^{-1}$. The derivatives of $Z_0(p^2)$ are already known in the literature as $\delta D^{(n)}(0)$ [3] and z_n [4], but these could in principle be set to zero as they always cancel in the final results. The Ward identities further yield G as a function of F . The form-factor F also contains physical information, and for our purposes it suffices to know that $F^{(1,0,0)}(0, -m_{P,0}^2, -m_{P,0}^2) = F'(0) = -\langle r_P^2 \rangle / 6$, where $\langle r_P^2 \rangle$ is the physical electromagnetic charge radius of P which is well-known experimentally [5].

Using our definitions of the vertex functions in $C_{\mu\nu}(p, k, q)$ in (5) we obtain the FVEs

$$\Delta m_P^2(L) = e^2 m_P^2 \left\{ \frac{c_2}{4\pi^2 m_P L} + \frac{c_1}{2\pi(m_P L)^2} + \frac{\langle r_P^2 \rangle}{3m_P L^3} + \frac{C}{(m_P L)^3} + \mathcal{O}\left[\frac{1}{(m_P L)^4}\right] \right\}, \quad (8)$$

where the c_j are finite-volume coefficients specific to QED_L arising from the sum-integral difference in (5). These are discussed in detail in Ref. [2]. Here we see the charge radius $\langle r_p^2 \rangle$ appearing at order $1/L^3$ and its coefficient agrees with that derived within non-relativistic scalar QED [6]. However, there is an additional structure-dependent term C related to the branch-cut of the forward, on-shell Compton amplitude. This contribution can be found, in other forms, also in Refs. [3, 7], and only arises because of the QED_L prescription with the subtracted zero-mode. Its value is currently unknown but one can show $C > 0$ [2], meaning that it cannot cancel the charge radius contribution. Note that all unphysical off-shell contributions from the form-factors F and G have vanished.

3 Leptonic Decays

Leptonic decay rates of light mesons are of the form $P^- \rightarrow \ell^- \bar{\nu}_\ell$, where P is a pion or kaon, ℓ a lepton and ν_ℓ the corresponding neutrino. These are important for the extraction of the Cabibbo-Kobayashi-Maskawa matrix elements $|V_{us}|$ and $|V_{ud}|$ [8, 9]. The leading virtual electromagnetic correction to this process yields an infrared (IR) divergent decay rate Γ_0 . One must therefore add the real radiative decay rate $\Gamma_1(\Delta E)$ for $P^- \rightarrow \ell^- \bar{\nu}_\ell \gamma$, where the photon has energy below ΔE , to cancel the IR-divergence in Γ_0 . The IR-finite inclusive decay rate is thus $\Gamma(P^- \rightarrow \ell^- \nu_\ell [\gamma])$, and following the lattice procedure first laid out in Ref. [8] we may write

$$\Gamma_0 + \Gamma_1(\Delta E_\gamma) = \lim_{L \rightarrow \infty} [\Gamma_0(L) - \Gamma_0^{\text{uni}}(L)] + \lim_{L \rightarrow \infty} [\Gamma_0^{\text{uni}}(L) + \Gamma_1(L, \Delta E_\gamma)]. \quad (9)$$

Here, Ref. [8] chose to add and subtract the universal finite-volume decay rate $\Gamma_0^{\text{uni}}(L)$, calculated in point-like scalar QED in Ref. [4], to cancel separately the IR-divergences in Γ_0 and Γ_1 . In the following we are interested in only the first term in brackets. The subtracted term $\Gamma_0^{\text{uni}}(L)$ cancels the FVEs in $\Gamma_0(L)$ through order $1/L$, and hence $\Gamma_0(L) - \Gamma_0^{\text{uni}}(L) \sim \mathcal{O}(1/L^2)$. Structure-dependence enters at order $1/L^2$. With the goal of systematically improving the finite-volume scaling order by order including structure-dependence, we replace the universal contribution by

$$\Gamma_0^{\text{uni}}(L) \longrightarrow \Gamma_0^{(n)}(L) = \Gamma_0^{\text{uni}}(L) + \sum_{j=2}^n \Delta\Gamma_0^{(j)}(L), \quad (10)$$

where $n \geq 2$ and $\Delta\Gamma_0^{(j)}(L)$ contains the FVEs at order $1/L^j$. This means that the finite-volume residual instead scales as $\Gamma_0(L) - \Gamma_0^{(n)}(L) \sim \mathcal{O}(1/L^{n+1})$. We may parametrise $\Gamma_0^{(n)}(L)$ in terms of a finite-volume function $Y^{(n)}(L)$ according to

$$\Gamma_0^{(n)}(L) = \Gamma_0^{\text{tree}} \left[1 + 2 \frac{\alpha}{4\pi} Y^{(n)}(L) \right] + \mathcal{O}\left(\frac{1}{L^{n+1}}\right), \quad (11)$$

where Γ_0^{tree} is the tree-level decay rate.

Since we are interested in the leading structure-dependent contribution we consider $Y^{(2)}(L)$. In order to derive it, we define the QCD+QED correlation function

$$C_W^{rs}(p, p_\ell) = \int d^4 z e^{ipz} \langle \ell^-, \mathbf{p}_\ell, r; \nu_\ell, \mathbf{p}_{\nu_\ell}, s | \text{T}[O_W(0)\phi^\dagger(z)] | 0 \rangle, \quad (12)$$

where $p_\ell = (p_\ell^0, \mathbf{p}_\ell)$ is the momentum of the on-shell lepton of mass m_ℓ , $p_{\nu_\ell} = (p_{\nu_\ell}^0, \mathbf{p}_{\nu_\ell})$ is the momentum of the massless neutrino and $O_W(0)$ is the four-fermion operator of the decay in

question. We may diagrammatically represent this in a similar way as for the mass according to

$$C_W^{rs}(p, p_\ell) = \text{Diagram} = \text{Diagram}_0 + \text{Diagram}_W. \quad (13)$$

The diagram consists of three parts. The first part is a vertex function \tilde{M} with an incoming photon line ϕ and an outgoing meson line \tilde{M} . The second part is a vertex function \tilde{M}_0 with an incoming photon line ϕ_0 and an outgoing meson line \tilde{M}_0 . The third part is a vertex function W with an incoming photon line ϕ_0 and an outgoing W-boson line, which then splits into two lines representing a virtual photon and a virtual fermion.

The grey blob containing W is of order e^2 and can be separated, just like the Compton amplitude, into several irreducible vertex functions. The exact definitions of these vertex functions are quite involved and can be found in Ref. [2], but several comments can be made. First of all, the vertex functions are related to various structure-dependent form-factors containing both on-shell and off-shell information. Again, the off-shellness must cancel. The vertex functions also contain physical structure-dependent information (similar to how Γ_1 depends on the charge radius) and for $Y^{(2)}(L)$ this is the axial-vector form-factor $F_A(-m_P^2) = F_A^P$ from the real radiative decay $P^- \rightarrow \ell^- \bar{\nu}_\ell \gamma$.

By performing the amputation on the external meson leg in (12) to obtain the matrix element needed for the decay rate in (11), one finds the finite-volume function $Y^{(2)}(L)$ to be

$$Y^{(2)}(L) = \frac{3}{4} + 4 \log\left(\frac{m_\ell}{m_W}\right) + 2 \log\left(\frac{m_W L}{4\pi}\right) + \frac{c_3 - 2(c_3(\mathbf{v}_\ell) - B_1(\mathbf{v}_\ell))}{2\pi} - 2 A_1(\mathbf{v}_\ell) \left[\log\left(\frac{m_P L}{2\pi}\right) + \log\left(\frac{m_\ell L}{2\pi}\right) - 1 \right] - \frac{1}{m_P L} \left[\frac{(1 + r_\ell^2)^2 c_2 - 4 r_\ell^2 c_2(\mathbf{v}_\ell)}{1 - r_\ell^4} \right] + \frac{1}{(m_P L)^2} \left[-\frac{F_A^P}{f_P} \frac{4\pi m_P [(1 + r_\ell^2)^2 c_1 - 4 r_\ell^2 c_1(\mathbf{v}_\ell)]}{1 - r_\ell^4} + \frac{8\pi [(1 + r_\ell^2) c_1 - 2 c_1(\mathbf{v}_\ell)]}{(1 - r_\ell^4)} \right]. \quad (14)$$

Here, $r_\ell = m_\ell/m_P$, $\mathbf{v}_\ell = \mathbf{p}_\ell/E_\ell$ the lepton velocity in terms of the energy E_ℓ , and m_W the W -boson mass. Also, c_k , $A_1(\mathbf{v}_\ell)$, $B_1(\mathbf{v}_\ell)$ and $c_j(\mathbf{v}_\ell)$ are finite-volume coefficients defined in Ref. [2]. Note that no unphysical quantities appear. At order $1/L^2$, there is one structure-dependent contribution proportional to F_A^P and the other term is purely point-like. This result is in perfect agreement with Ref. [4] for the universal terms up to $\mathcal{O}(1/L)$, which we derived in a completely different approach. The numerical impact of the $1/L^2$ -corrections is studied in Ref. [2].

4 Conclusions

We have presented a relativistic and model-independent method to derive electromagnetic FVEs beyond the point-like approximation. We are currently working to obtain the leading FVEs for semi-leptonic kaon decays, relevant for future precision tests in the SM flavour physics sector.

Acknowledgements

M.D.C, M.T.H., and A.P. are supported in part by UK STFC grant ST/P000630/1. Additionally M.T.H. is supported by UKRI Future Leader Fellowship MR/T019956/1. A.P. additionally received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreements No 757646 & 813942. N. H.-T. is funded by the Albert Einstein Center for Fundamental Physics at the University of Bern.

References

- [1] M. Hayakawa, S. Uno, *Prog. Theor. Phys.* **120**, 413 (2008), [0804.2044](#)
- [2] M. Di Carlo, M.T. Hansen, N. Hermansson-Truedsson, A. Portelli (2021), [2109.05002](#)
- [3] S. Borsanyi et al., *Science* **347**, 1452 (2015), [1406.4088](#)
- [4] V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo, *Phys. Rev. D* **95**, 034504 (2017), [1611.08497](#)
- [5] P.D. Group, P.A. Zyla et al., *Progress of Theoretical and Experimental Physics* **2020** (2020), 083C01, <https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf>
- [6] Z. Davoudi, M.J. Savage, *Phys. Rev. D* **90**, 054503 (2014), [1402.6741](#)
- [7] N. Tantalo, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, PoS **LAT-TICE2016** (2016), [1612.00199](#)
- [8] N. Carrasco, V. Lubicz, G. Martinelli, C. Sachrajda, N. Tantalo, C. Tarantino, M. Testa, *Phys. Rev. D* **91**, 074506 (2015), [1502.00257](#)
- [9] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo, *Phys. Rev. D* **100**, 034514 (2019), [1904.08731](#)