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Abstract. We present a model-independent and relativistic approach to analyti-
cally derive electromagnetic finite-size e↵ects beyond the point-like approxima-
tion. The key element is the use of electromagnetic Ward identities to constrain
vertex functions, and structure-dependence appears via physical form-factors
and their derivatives. We apply our general method to study the leading finite-
size structure-dependence in the pseudoscalar mass (at order 1/L3) as well as in
the leptonic decay amplitudes of pions and kaons (at order 1/L2). Knowledge
of the latter is essential for Standard Model precision tests in the flavour physics
sector from lattice simulations.
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1 Introduction

Lattice quantum chromodynamics (QCD) allows for systematically improvable Standard
Model (SM) precision tests from numerical simulations performed in a finite-volume (FV),
discretised Euclidean spacetime. In order to reach (sub-)percent precision in lattice pre-
dictions, also strong and electromagnetic isospin breaking corrections have to be included.
The latter are encoded via quantum electrodynamics (QED), but the inclusion of QED in a
FV spacetime is complicated because of Gauss’ law [1]. This problem is related to zero-
momentum modes of photons and the absence of a QED mass-gap. Several prescriptions of
how to include QED in a finite volume have been formulated and the one used here is QEDL
where the spatial zero-modes are removed on each time-slice. The long-range nature of QED
in addition enhances the FV e↵ects (FVEs), which typically leads to power-law FVEs that
are larger than the exponentially suppressed ones for single-particle matrix elements in QCD
alone.

The FVEs for a QCD+QED process depend on properties of the involved particles, in-
cluding masses and charges, but also structure-dependent quantities such as electromagnetic
form-factors and their derivatives. In order to analytically capture the finite-volume scaling
fully, one cannot neglect hadron structure, and in the following we develop a relativistic and
model-independent method to go beyond the point-like approximation at order e

2 in QEDL.
We consider a space-time with periodic spatial extents L but with infinite time-extent. To

exemplify the method, we first consider the pseudoscalar mass in Sec. 2, and then proceed to
leptonic decays in Sec. 3. The discussion is based on the results in Ref. [2], and the reader is
referred there for further technical details.

2 Pseudoscalar Mass

To study the finite-size scaling in the mass m

P

(L) of a charged hadronic spin-0 particle P, we
first define the full QCD+QED infinite-volume two-point Euclidean correlation function

C

1
2 (p) =

Z
d

4
x h0|T[φ(x)φ†(0)] |0i e−ipx . (1)

Here φ is an interpolating operator coupling to P, and p = (p0, p) is the momentum. We de-
note the finite-volume counterpart of this correlator C

L

2 (p), but for the moment only consider
C

1
2 (p). This can be diagrammatically represented as

C

1
2 (p) = � � = Z

P

· D(p) · Z
P

, D(p) =
Z(p

2)
p

2 + m

2
P

, Z

P

= h0| φ(0) |P, pi ,
(2)

where the double-line represents the QCD+QED propagator D(p), the φ-blob is the overlap
between φ and P and Z(p

2) = 1 + O(p

2 + m

2
P

) is the residue of the propagator. Expanding
C

1
2 (p) in (2) around e = 0 yields

� � = �0 �0 + �0 �0C + O(e4) , (3)
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where quantities with subscript 0 are evaluated in QCD alone. The grey blob is the Compton
scattering kernel defined via

C = Cµ⌫(p, k, q) =
Z

d

4
x d

4y d

4
z e

ipz+ikx+iqy h0|T[φ(0)Jµ(x)J⌫(y)φ†(z)] |0i
Z

2
P,0 D0(p)D0(p + k + q)

. (4)

Here k and q are incoming photon momenta and Jµ(x) is the electromagnetic current. Note
that the unphysical dependence on the arbitrary interpolating operator φ must cancel for any
physical quantity, and when the external legs in Cµ⌫(p, k, q) go on-shell the kernel is nothing
but the physical forward Compton scattering amplitude. Using (3) the electromagnetic mass-
shift of the meson is readily obtained in terms of an integral over the photon loop-momentum
k. One may follow an equivalent procedure for the finite-volume correlation function C

L

2 (p),
where the integral over the spatial momentum k is replaced by a sum. The leading electro-
magnetic FVEs in the mass, ∆m

2
P

(L), are thus given by the sum-integral di↵erence

∆m

2
P

(L) = −e

2

2
lim

p

2
0!−m

2
P

0
BBBBB@

1
L

3

X

k

0
−
Z

d

3k
(2⇡)3

1
CCCCCA
Z

dk0

2⇡
Cµµ(p, k,−k)

k

2

������
p=0
, (5)

where the rest-frame p = 0 was chosen for convenience and the primed sum indicates the
omission of the photon zero-mode k = 0 in QEDL. The analytical dependence on 1/L in-
cluding structure-dependence can now be obtained from this formula through a soft-photon
expansion of the integrand, i.e. an expansion order by order in |k| which is directly related
to the expansion in 1/L via |k| = 2⇡|n|/L where n is a vector of integers. The first step is
to decompose Cµ⌫(p, k, q) into two irreducible electromagnetic vertex functions Γ1 and Γ2
according to

C = �1 �1 + �1 �1 + �2 . (6)

The vertex functions depend in general on the structure of the particle, as can be seen from
e.g. the form-factor decomposition

Γ1 = Γµ(p, k) = (2p + k)µ F(k2, (p + k)2, p2) + kµG(k2, (p + k)2, p2) , (7)

where F(k2, (p+k)2, p2) and G(k2, (p+k)2, p2) are structure-dependent electromagnetic form-
factors depending on three virtualities. This means that F and G contain o↵-shell e↵ects, but
we stress that these non-physical quantities always cancel in the FVEs. The cancellation
occurs since the vertex functions Γ1,2 are related to each other and the propagator D0(p) via
Ward identities. An example of an o↵-shell relation is F(0, p2,−m

2
P,0) = Z0(p

2)−1. The deriva-
tives of Z0(p

2) are already known in the literature as δD(n)(0) [3] and z

n

[4], but these could in
principle be set to zero as they always cancel in the final results. The Ward identities further
yield G as a function of F. The form-factor F also contains physical information, and for our
purposes it suffices to know that F

(1,0,0)(0,−m

2
P,0,−m

2
P,0) = F

0(0) = − hr2
P

i /6, where hr2
P

i is
the physical electromagnetic charge radius of P which is well-known experimentally [5].

Using our definitions of the vertex functions in Cµ⌫(p, k, q) in (5) we obtain the FVEs

∆m

2
P

(L) = e

2
m

2
P

8><
>:

c2

4⇡2
m

P

L

+
c1

2⇡(m
P

L)2 +
hr2

P

i
3m

P

L

3 +
C

(m
P

L)3 + O
"

1
(m

P

L)4

#9>=
>; , (8)
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where the c

j

are finite-volume coefficients specific to QEDL arising from the sum-integral
di↵erence in (5). These are discussed in detail in Ref. [2]. Here we see the charge radius hr2

P

i
appearing at order 1/L3 and its coefficient agrees with that derived within non-relativistic
scalar QED [6]. However, there is an additional structure-dependent term C related to the
branch-cut of the forward, on-shell Compton amplitude. This contribution can be found,
in other forms, also in Refs. [3, 7], and only arises because of the QEDL prescription with
the subtracted zero-mode. Its value is currently unknown but one can show C > 0 [2],
meaning that it cannot cancel the charge radius contribution. Note that all unphysical o↵-
shell contributions from the form-factors F and G have vanished.

3 Leptonic Decays

Leptonic decay rates of light mesons are of the form P

− ! `−⌫̄`, where P is a pion or
kaon, ` a lepton and ⌫` the corresponding neutrino. These are important for the extraction of
the Cabibbo-Kobayashi-Maskawa matrix elements |V

us

| and |V
ud

| [8, 9]. The leading virtual
electromagnetic correction to this process yields an infrared (IR) divergent decay rate Γ0. One
must therefore add the real radiative decay rate Γ1(∆E) for P

− ! `−⌫̄`γ, where the photon
has energy below ∆E, to cancel the IR-divergence in Γ0. The IR-finite inclusive decay rate
is thus Γ (

P

− ! `−⌫`[γ]), and following the lattice procedure first laid out in Ref. [8] we may
write

Γ0 + Γ1(∆Eγ) = lim
L!1[Γ0(L) − Γuni

0 (L)] + lim
L!1[Γuni

0 (L) + Γ1(L,∆Eγ)] . (9)

Here, Ref. [8] chose to add and subtract the universal finite-volume decay rate Γuni(L), calcu-
lated in point-like scalar QED in Ref. [4], to cancel separately the IR-divergences in Γ0 and
Γ1. In the following we are interested in only the first term in brackets. The subtracted term
Γuni

0 (L) cancels the FVEs in Γ0(L) through order 1/L, and hence Γ0(L) − Γuni
0 (L) ⇠ O(1/L2).

Structure-dependence enters at order 1/L2. With the goal of systematically improving the
finite-volume scaling order by order including structure-dependence, we replace the univer-
sal contribution by

Γuni
0 (L) −! Γ(n)

0 (L) = Γuni
0 (L) +

nX

j=2

∆Γ
( j)
0 (L) , (10)

where n ≥ 2 and ∆Γ( j)
0 (L) contains the FVEs at order 1/L j. This means that the finite-volume

residual instead scales as Γ0(L) − Γ(n)
0 (L) ⇠ O(1/Ln+1). We may parametrise Γ(n)

0 (L) in terms
of a finite-volume function Y

(n)(L) according to

Γ
(n)
0 (L) = Γtree

0


1 + 2

↵

4⇡
Y

(n)(L)
�
+ O
 

1
L

n+1

!
, (11)

where Γtree
0 is the tree-level decay rate.

Since we are interested in the leading structure-dependent contribution we consider
Y

(2)(L). In order to derive it, we define the QCD+QED correlation function

C

rs

W

(p, p`) =
Z

d

4
z e

ipz h`−, p`, r; ⌫`, p⌫` , s|T[O
W

(0)φ†(z)] |0i , (12)

where p` = (p

0
`
, p`) is the momentum of the on-shell lepton of mass m`, p⌫` = (p

0
⌫`
, p⌫` ) is the

momentum of the massless neutrino and O
W

(0) is the four-fermion operator of the decay in
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
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Y

(2)(L). In order to derive it, we define the QCD+QED correlation function

C

rs

W

(p, p`) =
Z

d

4
z e

ipz h`−, p`, r; ⌫`, p⌫` , s|T[O
W

(0)φ†(z)] |0i , (12)

where p` = (p

0
`
, p`) is the momentum of the on-shell lepton of mass m`, p⌫` = (p

0
⌫`
, p⌫` ) is the

momentum of the massless neutrino and O
W

(0) is the four-fermion operator of the decay in

question. We may diagrammatically represent this in a similar way as for the mass according
to

C

rs

W

(p, p`) = � fM =
2�0 fM0 + �0 W . (13)

The grey blob containing W is of order e

2 and can be separated, just like the Compton ampli-
tude, into several irreducible vertex functions. The exact definitions of these vertex functions
are quite involved and can be found in Ref. [2], but several comments can be made. First
of all, the vertex functions are related to various structure-dependent form-factors containing
both on-shell and o↵-shell information. Again, the o↵-shellness must cancel. The vertex
functions also contain physical structure-dependent information (similar to how Γ1 depends
on the charge radius) and for Y

(2)(L) this is the axial-vector form-factor F

A

(−m

2
P

) = F

P

A

from
the real radiative decay P

− ! `−⌫̄`γ.
By performing the amputation on the external meson leg in (12) to obtain the matrix

element needed for the decay rate in (11), one finds the finite-volume function Y

(2)(L) to be

Y

(2)(L) =
3
4
+ 4 log

 
m`

m

W

!
+ 2 log

✓
m

W

L

4⇡

◆
+

c3 − 2 (c3(v`) − B1(v`))
2⇡

− (14)

− 2 A1(v`)

log
✓
m

P

L

2⇡

◆
+ log

✓
m`L

2⇡

◆
− 1
�
− 1

m

P

L

2
66664
(1 + r

2
` )

2
c2 − 4 r

2
` c2(v`)

1 − r

4
`

3
77775+

+
1

(m
P

L)2

2
66664−

F

P

A

f

P

4⇡m

P

[(1 + r

2
` )

2
c1 − 4 r

2
` c1(v`)]

1 − r

4
`

+
8⇡ [(1 + r

2
` ) c1 − 2 c1(v`)]

(1 − r

4
`
)

3
77775 .

Here, r` = m`/mP

, v` = p`/E` the lepton velocity in terms of the energy E`, and m

W

the
W-boson mass. Also, c

k

, A1(v`), B1(v`) and c

j

(v`) are finite-volume coefficients defined in
Ref. [2]. Note that no unphysical quantities appear. At order 1/L2, there is one structure-
dependent contribution proportional to F

P

A

and the other term is purely point-like. This result
is in perfect agreement with Ref. [4] for the universal terms up to O(1/L), which we derived
in a completely di↵erent approach. The numerical impact of the 1/L2-corrections is studied
in Ref. [2].

4 Conclusions

We have presented a relativistic and model-independent method to derive electromagnetic
FVEs beyond the point-like approximation. We are currently working to obtain the leading
FVEs for semi-leptonic kaon decays, relevant for future precision tests in the SM flavour
physics sector.
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