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Abstract: Two of the major open questions in particle physics are: (1) Why do the elementary
fermionic particles that are so far observed have such low mass-energy compared to the Planck
energy scale? (2) What mechanical energy may be counterbalancing the divergent electrostatic
and strong force energies of point-like charged fermions in the vicinity of the Planck scale? In this
paper, using a hitherto unrecognised mechanism derived from the non-linear amelioration of the
Dirac equation known as the Hehl–Datta equation within the Einstein–Cartan–Sciama–Kibble (ECSK)
extension of general relativity, we present detailed numerical estimates suggesting that the mechanical
energy arising from the gravitationally coupled self-interaction in the ECSK theory can address both
of these questions in tandem.

Keywords: Einstein–Cartan gravity; Hehl–Datta equation; ultraviolet divergence; renormalisation;
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1. Introduction

For over a century, Einstein’s theory of gravity has provided remarkably accurate and precise
predictions for the behaviour of macroscopic bodies within our cosmos. For the elementary particles in
the quantum realm, however, Einstein–Cartan theory of gravity may be more appropriate, because it
incorporates spinors and associated torsion within a covariant description [1,2]. For this reason
there has been considerable interest in Einstein–Cartan theory, in the light of the field equations
proposed by Sciama [3] and Kibble [4]. For example, in a series of papers Poplawski has argued that
Einstein–Cartan–Sciama–Kibble (ECSK) theory of gravity [5] solves many longstanding problems in
physics [6–9]. His concern has been to avoid singularities endemic in general relativity by proposing
that our observed universe is perhaps a black hole within a larger universe [7]. Our concern, on the
other hand, is to point out using numerical estimates that ECSK theory also offers solutions to two
longstanding problems in particle physics.

The first problem we address here concerns the well known fact that in the limit of vanishing
radii (or point limit) the electrostatic and strong force self-energies of point-like fermions become
divergent. We will show, however, that torsion contributions within the ECSK theory resolves this
difficulty as well, at least numerically, by counterbalancing the divergent electrostatic and strong force
energy densities near the Planck scale. In fact, the negative torsion energy associated with the spin
angular momentum of elementary fermions may well be the long sought after mechanical energy
that counteracts the divergent positive energies stemming from their electrostatic and strong nuclear
charges. As a result of this counterbalancing, however, our suggestion does not have anything to do
with high energy physics.

The second of these problems can be traced back to the fact that gravity is a considerably weaker
“force” compared to the other forces. When Newton’s gravitational constant is combined with the
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speed of light and Planck’s constant, one arrives at the energy scale of ∼1019 GeV, which is some
17 orders of magnitude larger than the heaviest known elementary fermion (the top quark) observed
at the mass-energy of ∼172 GeV. Thus, there is a difference of some 17 orders of magnitude between
the electroweak scale and the Planck scale. There have been many attempts to explain this difference,
but none is as simple as our explanation based on the torsion contributions within the ECSK theory.

Now one of the reasons why ECSK theory is not widely accepted as a viable theory of gravity
is the lack of any experimental evidence for the gravitational torsion. However, as reviewed in [10],
gravitational torsion appears to be entirely confined to elementary fermions, and therefore it is not
directly detectable. Elementary fermions are at the heart of all matter and can be viewed as defects in
spacetime associated with torsion. Thus, as we have argued elsewhere [11], existence of matter itself
may be taken as a proof that gravitational torsion exists, albeit only inside of matter, and therefore it
does not propagate. In other words, detection of matter itself may be taken as an indirect detection of
gravitational torsion. As we will see, our results below lend considerable support to this possibility.

2. Evaluation of the Charged Fermionic Self-Energy within ECSK Theory

The ECSK theory of gravity is an extension of general relativity allowing spacetime to have torsion
in addition to curvature, where torsion is determined by the density of intrinsic angular momentum,
reminiscent of the quantum-mechanical spin [1–9,12–18]. As in general relativity, the gravitational
Lagrangian density in the ECSK theory is proportional to the curvature scalar. Unlike in general
relativity, the affine connection

Γ k
i j = ω

µ
i νek

µeν
j + ek

µ∂ie
µ
j (1)

is not restricted to be symmetric, although metric compatibility conditions are retained, defined by the
requirements that the covariant derivatives of the tetrad fields eµ

k and the Minkowski metric vanish,
implying the antisymmetry ω

µν
i = −ω

νµ
i of the spin connection [19]. The antisymmetric part of the

connection, namely
Sk

ij = Γ k
[i j] = ∂iek

j − ∂jek
i + ω k

i λeλ
j −ω k

j λeλ
i (2)

(i.e., the torsion tensor), is then regarded as a dynamical variable analogous to the metric tensor
gij in general relativity. Consequently, variation of the total action for the gravitational field and
matter with respect to the metric tensor gives Einstein-type field equations that relate the curvature to
the dynamical energy-momentum tensor Tij = (2/

√−g)δL/δgij, where L is the matter Lagrangian
density. On the other hand, variation of the total action with respect to the torsion tensor gives the
Cartan equations for the spin tensor of matter [5]:

sijk =
1
κ

S[ijk] , where κ =
8πG

c4 . (3)

Thus, ECSK theory of gravity extends general relativity to include intrinsic spin of matter,
with fermionic fields such as those of quarks and leptons providing natural sources of torsion. Torsion,
in turn, modifies the Dirac equation for elementary fermions by adding to it a cubic term in the spinor
fields, as observed by Kibble, Hehl and Datta [1,4,5].

It is this nonlinear Hehl–Datta equation that provides the theoretical background for our
proposal. The cubic term in this equation corresponds to an axial-axial self-interaction in the matter
Lagrangian, which, among other things, generates a spinor-dependent vacuum-energy term in the
energy-momentum tensor (see, for example, Reference [15]). The torsion tensor Sk

ij appears in the
matter Lagrangian via covariant derivative of a Dirac spinor with respect to the affine connection.
The spin tensor for the Dirac spinor ψ can then be derived [5], and turns out to be totally antisymmetric:

sijk = − ih̄c
4

ψ̄γ[iγjγk]ψ, (4)
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where ψ̄ ≡ ψ†γ0 := (ψ∗1 , ψ∗2 , −ψ∗3 , −ψ∗4 ) is the Dirac adjoint of ψ and γi are the Dirac matrices:
γ(iγj) = 2gij. The Cartan Equations (3) render the torsion tensor to be quadratic in spinor fields.
Substituting it into the Dirac equation in the Riemann–Cartan spacetime with metric signature
(+, −, −, −) gives the cubic Hehl–Datta equation [1,4,5]:

ih̄ γkψ:k = mc ψ +
3κh̄2c

8

(
ψ̄γ5γkψ

)
γ5γkψ, (5)

where the colon denotes a general-relativistic covariant derivative with respect to the Christoffel
symbols, and m is the mass of the spinor. The Hehl–Datta Equation (5) and its adjoint can be obtained
by varying the following action with respect to ψ̄ and ψ, respectively, without varying it with respect
to the metric tensor or the torsion tensor [15]:

I =

∫
d4x

√
−g

{
− 1

κ
R + ih̄c(ψ̄γkψ:k − ψ̄:kγkψ)−mc2ψ̄ψ− 3κh̄2c2

8
(ψ̄γ5γkψ)(ψ̄γ5γkψ)

}
. (6)

The last term in this action corresponds to the effective axial-axial, self-interaction mentioned above:

LAA = −
√
−g

3κh̄2c2

8
(ψ̄γ5γkψ)(ψ̄γ5γkψ). (7)

This self-interaction term is not renormalisable. It is an effective Lagrangian density in which
only the metric and spinor fields are dynamical variables. The original Lagrangian density for a
Dirac field in which the torsion tensor is also a dynamical variable (giving the Hehl–Datta equation),
is renormalisable, since it is quadratic in spinor fields. As we will see, renormalisation may not
be required if ECSK gravity turns out to be what is realised in Nature, because it gives physical
justification for the counter terms.

Before proceeding further we note that the above action is not the most general possible action
within the present context. In addition to the axial-axial term, an axial-vector and a vector-vector term
can be added to the action, albeit as non-minimal couplings (see, for example, Reference [17]). However,
it has been argued in Reference [15] that minimal coupling is the most natural coupling of fermions to
gravity because non-minimal couplings are sourced by components of the torsion that do not appear
naturally in the models of spinning matter. For this reason we will confine our treatment to the minimal
coupling of fermions to gravity and the corresponding Hehl–Datta equation, while recognizing that
strictly speaking our neglect of non-minimal couplings amounts to an approximation, albeit a rather
good approximation, at least as far as electrodynamics is concerned.

2.1. S-Matrix Evaluation of the Charged Fermionic Self-Energy within QED

It is instructive for our purposes to first review in this subsection the standard treatment of
the charged fermionic self-energy within QED, ignoring the ECSK gravity. To this end, recall that
the canonical evaluation of the electron self-energy was performed by Weisskopf in 1939 [20],
which revealed that in general the self-energy of an electron is logarithmically divergent. An S-matrix
evaluation for the electromagnetic mass, δm, confirms Weisskopf’s result [21–23]. In the units of
h̄ = c = 1 and α = e2/4π, together with a high-energy cutoff Λ, this electromagnetic mass can be
expressed as

δm =
3α m
2π

ln
(

Λ
m

)
(for Λ >> m), (8)

where “ln” stands for the natural logarithm. Let us investigate this result using simple numerical
analysis. What happens, for example, if we use Planck mass for the cutoff? This should be a reasonable
assumption since the Planck scale can be considered a limiting scale in the same fashion as h̄ and c are
considered. Then, for an electron we have
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δme =
3α me

2π
ln
(

mP
me

)
≈ 0.1795 me. (9)

This suggests that the electromagnetic mass-energy of an electron in this case would be about
18 percent of the total rest mass-energy. That does not seem unreasonable, but there is no way to
confirm that it is correct. Moreover, according to some views, if the electromagnetic mass is truly
infinite then there should be a compensating negative infinite mechanical mass that produces the
observed positive rest mass. On the other hand, Weinberg in Reference [22] gives a renormalised
expression for the “complete self-energy function” as

Σ∗order e2(p) = Σ∗1 loop(p)− (Z2 − 1)(i/p + mx) + Z2 δmx

=
−2π2e2

(2π)4

∫ 1

0

dx

{
[i(1− x)/p + 2mx] ln

(
m2

x(1− x)
p2x(1− x) + m2

xx

)

−mx[1 + x] ln
(

1− x
x2

)
− (i/p + mx)

[
(1− x) ln

(
1− x

x2

)
− 2(1− x2)

x

]}
. (10)

The middle term in this integrand represents the renormalised electromagnetic mass so that for
an electron it gives

δme renorm =
−2π2e2

(2π)4

∫ 1

0
dx
{
−mx[1 + x] ln

(
1− x

x2

)}
=

3α me

8π
≈ 0.0008711 me. (11)

In this case the electromagnetic mass is considerably less than 1 percent of the total rest mass.
That indicates that the cutoff should be very close to the rest mass of the electron. Thus we seem to
have two conflicting results. The conflict can be resolved by realizing that the mass in the equations
leading to these results was plugged in by hand in an ad hoc manner. Moreover, from a quantum
field theory and Feynman diagram perspective, it is easy to see that the mass comes in via the fermion
propagator. Therefore by definition it is off-mass-shell, since the propagator represents an internal
virtual line. It can thus have any value. In other words, it is really a variable. For the time being we
will treat it as a variable and use the relation m = 1/r. Now that the apparent conflict is resolved,
in what follows we focus on the renormalisation process.

It is easy to see that, in the rest frame of the particle in question with i/p = −m, the renormalised
complete self-energy function in Equation (10) is identically zero. That may seem odd, since one would
expect that in the rest frame the self-energy would be equal to the rest mass-energy. It really just means
that the propagator is zero, as it should be for the rest frame. Thanks to the Hehl–Datta equation,
we have an additional term in the Lagrangian to consider in the renormalisation process. In our view,
this additional term represents the mechanical (bare) mass, since it is negative with respects to the
observed mass. Thus, in the renormalised self-energy function in Equation (10), the counter terms
are superfluous since the torsion term from the Hehl–Data equation is the counter term! Moreover,
we will see later that the rest mass is produced in a natural way from energy considerations generated
only from the physical constants and geometry.

Using m = 1/r, we can now put the renormalised electromagnetic mass equation in a more
familiar form for electromagnetic energy,

δmrenorm =
3αm
8π

=
3α

8πr
=

3 e2

32π2 r
. (12)
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However, δm in this expression still goes to infinity as r → 0. Perhaps a Planck length cutoff
may be used to tame this infinity. We will soon see that r does take on a finite value very close to
Planck length. Now we know from experiments that the radius of an electron is likely to be less than
10−22 m [24]. Substituting that bound for r gives

δm =
3 e2

32π2 (10−22m)
' 1.719× 103 GeV, (13)

which, although finite, is still a very large electromagnetic energy contribution, with the actual value
likely to be even greater. Thus, according to this estimate, the electromagnetic mass is going to be very
large near the Planck length and will have to be compensated for in order to recover the observed rest
mass of a charged fermion. The compensation will have to be negative mass-energy relative to the
positive electromagnetic energy:

mobs = −X + δmR = −X +
3 α

8πrB
−→ −X

r
+

3 α

8πrB
. (14)

We suspect that the unknown variable X might be related to the Hehl–Datta self-interaction
term (7) because that term varies as 1/rx. Our goal then is to investigate this possibility.

To that end, note that the full second order S-matrix calculation within QED worked out by
Milonni [21] gives

S(2)
f i (E) = −i(2π)4δ4(p f − pi)

√
m2

EiE f

1
r3 ū(p f , s f )Σ(pi)u(pi, si), (15)

where Σ(pi) = −ie2
∫

d4k
(2π)4

gµν

k2 + iε
γµ 1

/pi − /k −m + iε
γν. (16)

Milonni’s evaluation of Σ(pi) produces the result for δm given in Equation (8). However, we doubt
this evaluation is appropriate since, as we noted previously, the mass comes in via the propagator and
therefore it is off mass shell. We will not use it in our evaluation.

2.2. S-Matrix Evaluation for the Charged Fermionic Self-Energy within Einstein–Cartan Gravity

Building on the results of the previous subsection, we now evaluate the self-energy S-matrix
process including the contribution from ECSK gravity. Our calculation will be different from the
old way of calculating self-energy in the manner of Weisskopf because in our approach we have the
gravitational torsion term as a built-in counter-term. The following calculations will be somewhat
unconventional as there is no Feynman diagram for evaluation in the rest frame. We begin with our
complete QED Lagrangian for free particles:

LQED√−g
= ih̄c ψ̄γµ∂µψ + e ψ̄γµ Aµψ− 1

4
FµνFµν −mc2ψ̄ψ− 3κh̄2c2

8
(ψ̄γ5γµψ)(ψ̄γ5γµψ). (17)

Here the last term is from the Hehl–Datta equation for gravitational torsion via spin density
squared. We take it to be a self-interaction involving intrinsic spin. In other words, the spin interacts
with itself much like the charge interacts with the field it creates. For our analysis of a charged lepton in
the rest frame, only three terms are applicable because the derivative term is zero and normal gravity
is negligible. The self-interaction Hamiltonian density for the first term with h̄ = c = 1 and (x) = (x, t)
is then

hI(x)1 = e ψ̄(x)γµ Aµψ(x). (18)

The next self-interaction term is
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hI(x)2 = − 3κ

8
(ψ̄(x)γ5γkψ(x))(ψ̄(x)γ5γkψ(x)). (19)

For our purposes it is sufficient to evaluate the S-matrix in the rest frame, where the quantities
ψ̄(x)γ5γkψ(x) and ψ̄(x)γ5γkψ(x) appearing on the RHS are nonzero even in the rest frame because
the coupling between fermions and anti-fermions is an intermediate step in the self-interaction, as we
have shown in Equations (A14) and (A15) of Appendix B. Furthermore, as shown in Appendix B,
the first order S-matrix terms in the rest frame are now simplified to

S(1)
f i (E1) = −it

α

r


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (20)

S(1)
f i (E2) = it

3κ

8 r3


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (21)

On the other hand, for mψ̄ψ in the rest frame, applying Equation (A8) from Appendix B we have

S(1)
f i (E3) = im

∫
d4x 〈 f | ψ̄(x)ψ(x) | i〉 = i

m r3 t
r3 ū f (m)ui(m) = i mt


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (22)

Equation (5) suggests that the sum of these three terms is equal to zero:

−it
α

r


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+ it
3κ

8 r3


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+ i mt


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 = 0. (23)

Consequently, we have
α

r
− 3κ

8 r3 = m. (24)

Reinstating h̄ and c we thus arrive at

αh̄c
r
− 3κ(h̄c)2

8 r3 = mc2. (25)

An identical result can be obtained also for the anti-fermion spinor, v(m), so that this equation
remains the same for both fermion and anti-fermion. In what follows we will use this S-matrix result
for our numerical approximations. From these results, after solving for r, it is evident that the complete
process is finite, without divergences. This suggests that the above is the correct S-matrix solution for
the fermion self-energy problem, with all other orders of the S-matrix expansion vanishing because
the genuine fermionic self-energy must naturally be evaluated only in the rest frame, with all other
contributions summing to zero. Any higher loop corrections in squared charge will be automatically
compensated by higher loop corrections from the squared spin.

It is also worth noting that without ameliorating the Dirac equation with a cubic term, the Dirac
equation would reduce for an electron to αh̄/re = mec, giving re = αh̄/(mec) ∼ 10−15 m,
where α = e2/(4πh̄c) is the fine structure constant. This is the classical electron radius. Experimental
evidence, however, suggests that electron radius is much smaller [24]. As we shall see, our calculations
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with the cubic term included predicts the electron radius to be of the order of 10−34 m, which is closer
to the Planck length. This may turn out to be the correct value of the electron radius.

Needless to say, what we have presented above is a derivation of Equation (25) within a theory that
may be viewed as a quantum field theory of Dirac fields in a Riemann–Cartan spacetime [4,5]. It can be
interpreted also as a theory of gravity-coupled self-interaction within standard general relativity [1,5].
However, any such generalization must necessarily reproduce the Hehl–Datta Equation (5) for single
fermions even at reasonably high energies, just as Dirac equation remains valid for single fermions at
high energies [18].

Finally, it is important to note here that, despite the appearance of four spinors in the interaction
term of Equation (6), it describes the self-interaction of a single fermion, of range∼10−34 m, not mutual
interactions among the spins of four distinct fermions. That is to say, it does not describe a “spin
field” of some sort as a carrier of a new interaction [5]. If, however, one insists on interpreting the
interaction term in Equation (6) as describing interactions among four distinct fermions, then the
mass of the corresponding exchange boson would have to exceed 1015 GeV, which is evidently
quite unreasonable. Moreover, as we shall see in Section 3, this energy is a fictitious quantity and
therefore there is no justification for assuming some kind of a new torsion interaction between
different fermions. What is more, as we shall soon see, within our scheme any corrections due to
vacuum polarization are automatically compensated for in the production of electroweak mass-energy,
dictated by Equation (25) above.

2.3. Evaluation of Charged Fermionic Self-Energy by Dimensional Analysis

It is instructive to compare the results of the previous two subsections with the evaluation of
the charged fermionic self-energy using only dimensional analysis. To this end, we begin with the
following physically reasonable assumptions:

1. ECSK theory of gravity is the correct theory of spacetime for addressing the fermionic self-energy
problem since it allows the dimension-full gravitational constant, G, to enter elementary particle
physics in a natural manner.

2. Since experiments to date indicate that an electron is a point-like particle without any substructure
and put an upper bound of 10−22 meters on its radius, we assume that the radius of electron is
much less than that value.

3. We assume that the radial distance, r, on which the electromagnetic self-interaction depends is
the same radial distance on which the self-interaction arising from the ECSK gravity-induced
torsion spin density also depends.

Given these assumptions, we ask: What physical mechanism is responsible for the observed rest
mass mx of the elementary charged fermions? To answer this question we express the rest mass energy
in CGS units, and assume that it is at least partially1 electromagnetic in nature, so that it satisfies a
relation like

mxc2 ∼ e2

r
+ X, (26)

where the dimensionality of X is necessarily that of energy. However we already know that the value
of r < 10−15 m produces an energy greater than mxc2. Therefore X must be negative energy, giving

mxc2 ∼ e2

r
+ (−X). (27)

1 As is well known, assuming that the rest mass energy is entirely electromagnetic in nature leads to the classical radius of the
electron, which has been ruled out by experiments. Our assumption of it being at least partially electromagnetic in nature is
quite reasonable.
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Now, since fermions have spin h̄/2, it is reasonable to assume that it is involved in a
mechanical-like energy resulting from the spin interacting with itself analogous to charge, so that we
may have a relation like

− X ∼ −
(

h̄
2

)2 1
r

. (28)

It is evident from this expression that what we have on its RHS is energy×mass× length = EML,
so we will have to divide out by mass and length to get the dimensions of energy, giving

− X ∼ −
(

h̄
2r

)2 1
M

, (29)

which in terms of the gravitational constant G ∼ L3/MT2 can be written as

− X ∼ −G
(

h̄
2r

)2
. (30)

The dimensions on the RHS of this expression now give us E× L3/T2, so we will have to cancel
out L3/T2. A natural candidate to accomplish that is the speed of light, c, giving

− X ∼ − G
c2r

(
h̄
2r

)2
= −G

r3

(
h̄
2c

)2
, (31)

provided we cancel out the extra L with 1/r. Thus, we now have the dimensions of energy on the RHS,
so that we finally have

mxc2 ∼ e2

rx
− G

r3
x

(
h̄
2c

)2
. (32)

This is the basic form of our central equation (apart from some numerical constants) which we
have derived also using two other methods in the previous subsections. Solving this equation for rx

with electron mass for mx gives a value of the order of 10−34 m. However, rather surprisingly, we also
found a solution for rx for the classical electron radius.

3. Particle Masses via Torsion Energy Contribution

We start with our S-matrix result for a charged fermion:

αh̄c
r
− 3πGh̄2

c2 r3 = mc2. (33)

The first term in Equation (33) diverges as r → 0. If we set r to Planck length we obtain

αh̄c
lP
≈ 8.909× 1016 GeV, (34)

which is close to Planck energy. Although finite, this is still an extremely large energy. Such a large
energy for charged leptons is never realised in Nature. A natural question then is: Is there a negative
mechanical energy that cancels out most of this energy to produce the observed rest mass-energy
of leptons? We believe the answer lies in the second term of Equation (33), which—as we saw
above—arises from the non-linear amelioration of the Dirac equation within ECSK theory. Indeed,
if we again set the Planck length for r in the second term of Equation (33), then we obtain

− 3π Gh̄2

2 c2 (lP)3 ≈ − 5.773× 1019 GeV. (35)
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Comparing this value with the electrostatic energy at the Planck length estimated in Equation (34)
we see at once that the torsion-induced mechanical energy in Equation (35) can indeed counterbalance
the huge electrostatic energy. This is a surprising observation, considering the widespread belief
that “the numerical differences which arise [between GR and ECSK theories] are normally very small,
so that the advantages of including torsion are entirely theoretical” [18].

Moving forward to our goal of numerical estimates, let us note that whenever terms quadratic
in spin happen to be negligible, then the ECSK theory is observationally indistinguishable from
general relativity. Therefore, for post-general-relativistic effects, the density of spin-squared has to be
comparable to the density of mass. The corresponding characteristic length scale, say for a nucleon,
is referred to as the Cartan or Einstein–Cartan radius [2,18], defined as

rCart ≈ (l2
P λC)

1
3 , (36)

where λC is the Compton wavelength of the nucleon. Now it has been noted by Poplawski [6–9,25,26]
that quantum field theory based on the Hehl–Datta equation may avert divergent integrals normally
encountered in calculating radiative corrections, by self-regulating propagators. Moreover, the multipole
expansion applied to Dirac fields within the ECSK theory shows that such fields cannot form singular,
point-like configurations because these configurations would violate the conservation law for the spin
density, and thus the Bianchi identities. These fields in fact describe non-singular particles whose spatial
dimensions are at least of the order of their Cartan radii, defined by the condition

ε ∼ κs2, (37)

where
√

s2 ∼ h̄c |ψ|2 is the spin density, ε ∼ mc2|ψ|2 is the rest energy density and |ψ|2 ∼ 1/r3 is
the probability density, giving the radius in Equation (36). Consequently, at the least the de Broglie
energy associated with the Cartan radius of a fermion (which is approximately 10−27 m for an electron)
may introduce an effective ultraviolet cutoff for it in quantum field theory in the ECKS spacetime.
The avoidance of divergences in radiative corrections in quantum fields may thus come from spacetime
torsion originating from intrinsic spin. Poplawski and others, however, took ε to be the mass-energy
density of the fermion to arrive at the Cartan radius Equation (36). It is easy to work out from the first
term of our Equation (33) that at the Cartan radius the electrostatic energy density for an electron is
still extremely large:

αh̄c
(10−27m)4 ≈ 1.440× 1090 GeV m−3. (38)

For this reason it is not correct to identify ε with the rest mass-energy density, which is
≈ 5.1099× 1077 GeV m−3 for an electron at the Cartan radius. The electrostatic energy density of
an electron is thus about thirteen orders of magnitude higher. Therefore ε is better identified with the
electrostatic energy density provided most of it is cancelled out.

If in Equation (33) we set the electrostatic energy appearing in its first term to be equal to the
spin squared energy induced by the self-interaction appearing in its second term and solve for r,
then we obtain

rt =

√
3π

α
lP , (39)

the value of which works out to be
rt ≈ 5.808× 10−34 m . (40)

Thus, our rt is about 36 times larger than the Planck length, and, as we can see, it is a remarkably
simple constant in terms of the Planck length, lP, and the fine structure constant, α. According to
Equation (33), rt is the effective radius at which energy density due to spin density should completely
compensate the huge electrostatic energy seen in Equation (34). In our view, this is the correct Cartan
radius, at least for the charged leptons, and that may still provide a plausible mechanism for averting
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singularities, since it is still larger than the Planck length. It is important to note, however, that these
huge energy densities never actually occur in Nature, because according to our Equation (33) they are
automatically compensated. The physical mechanism described above is simply to enable extraction
of the radius rx for different charged fermions.

We can now use Equation (33) to solve for rx for the different charged leptons and anti-leptons
which leads us to the following formula for our numerical estimates:

αh̄c
rx
− 3 πGh̄2

c2 r3
x

= +mxc2 . (41)

As shown in the Appendix A below, we were able to find solutions for rx for the charged leptons
using arbitrary precision in Mathematica. The first in our results listed below is the solution for rt up
to 24 significant figures. Then, using the same precision for comparison, we list the results for re for an
electron, rµ for a muon and rτ for a tauon, along with the anti-fermions:

rt = 5.80838808109165274355010× 10−34 m −→ 0.0 MeV ,

re− = re+ = 5.80838808109165274414872× 10−34 m −→ 0.511 MeV ,

rµ− = rµ+ = 5.80838808109165286732523× 10−34 m −→ 106 MeV ,

rτ− = rτ+ = 5.80838808109165482503366× 10−34 m −→ 1777 MeV .

We should note that there is also a positive solution obtained for the reduced Compton wavelength
for these fermions in the form of

rx = α
h̄

mxc
. (42)

This is so because the spin density squared term for an electron becomes very small of order
10−38 MeV when rx is equal to that result so it can be considered effectively as zero. This solution for
fermion radius appears to have been ruled out by scattering experiments. However, while it is true that
no structure has been found via scattering experiments, there does seem to be some structure involving
the magnetic moment and zitterbewegung. The apparent conflict with the scattering experiments
can be resolved if there is a very small object for electric charge near Planck length, as our solution
indicates, that is “circulating” about the Compton wavelength. Then the scattering at high energies
can be understood as from that point-like object and the scattering at low energies can be understood
as from the Compton wavelength “size” due to the Coulomb field, with the Coulomb field “barrier”
near the Compton wavelength penetrated in the high energy scatterings.

Evidently, very minute changes in the radii are seen to cause large changes in the observed rest
mass-energies of the fermions. As the differences in the radii go larger, the resultant mass-energies
go higher, as one would expect. It seems extraordinary that Nature would subscribe to such tiny
differences resulting from a large number of significant figures, but that might explain why the
underlying relationship between the observed values of the masses of the elementary particles has
remained elusive so far. In addition to the possible reasons for this mentioned above, it is not
inconceivable that the difference between the spin energy density and the electrostatic energy density
radii with respect to rt arises due to purely geometrical factors. We also suspect that there may possibly
be some kind of symmetry breaking mechanism at work similar to the Higgs mechanism, and this
symmetry breaking results in the observed mass-energy generation.

As a consistency check, let us verify that the tiny length differences seen above vanish, ∆r → 0,
as the corresponding rest mass-energy differences tend to zero: ∆E→ 0. To this end, we recast
Equation (41) for arbitrary rx in a form involving only rest mass-energy on the RHS as:

αh̄c
rx
−

3π l2
P h̄c

r3
x

= mxc2. (43)
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If we now set
A ≡ αh̄c and B ≡ 3π l2

P h̄c , (44)

then, with ∆E = mxc2 and setting rx = rt as the cancellation radius for which ∆E = 0, we obtain

rt =
√

B/A . (45)

This allows us to derive a general expression for rx when ∆E 6= 0:

A
rx
− B

r3
x
= ∆E. (46)

From this expression it is now easy to see that

lim
∆E→ 0

{(
A
rx
− B

r3
x

)
= ∆E

}
=

(√
A

3

√
B
−
√

A
3

√
B

)
ln
√

B/A
lP

= 0 =⇒ rx =
√

B/A = rt , (47)

and conversely, using Equation (45),

lim
rx→ rt

{(
A
rx
− B

r3
x

)
= ∆E

}
=⇒ ∆E = 0 . (48)

Consequently, with ∆r ≡ | rt − rx|, we see from the above limits that ∆r → 0 as ∆E → 0,
and vice versa.

As a rough estimate, the calculation for the radius rq of elementary quarks can be performed in a
similar manner as that for charged leptons, since at such short distances the strong force reduces to
a Coulomb-like force. One must also factor-in the electrostatic energy, so that a relationship like the
following must be calculated, say, for the top quark:

9 αh̄c
4 rqx

+
αs h̄c
3 rqx

− 3πGh̄2

c2 r3
qx

= mtc2 . (49)

Here αs is the appropriate strong force coupling (we use 0.1). Needless to say, a cancellation
radius different from that of the charged leptons should be calculated for comparison, by setting

9 αh̄c
4 rqt

+
αs h̄c
3 rqt

− 3πGh̄2

c2 r3
qt

= 0. (50)

A calculation of the radius for the top quark based on Equation (49) can be found in the
Appendix A and is ≈2.594× 10−34m. We expect it to be only a very rough estimate of the actual
value of the radius. Since only one spin density is involved, the above calculation might be able to
approximate the behaviour of the quarks. The calculation of the radii rqx for the up and down quark
will probably be problematic, since their masses are not well known.

With regard to neutrinos, the self-energy function is very similar to that for charged leptons
with the Z boson replacing the photon and weak coupling replacing α. A rough calculation gives the
same order for the radius at ≈10−34 m. However, if this does not hold for the neutrino self-energy,
then the story is quite different because they would not have self-energy due to electric or colour
charge. That means that their rest mass-energy comes entirely from torsion energy due to intrinsic
spin. Solving that gives us a radius for electron neutrinos of the order of 10−26 m. However, the torsion
(spin-squared) self-energy is negative relative to the positive rest mass. We suspect that this means
that neutrinos could have anti-gravity properties [27]. The anti-gravity effect with normal matter for
single neutrinos is practically negligible but the cosmological implications could be large.
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4. Possible Solution of the Hierarchy Problem

As alluded to in the introduction, the Hierarchy Problem refers to the fact that gravitational
interaction is extremely weak compared to the other known interactions in Nature. One way to
appreciate this difference is by combining the Newton’s gravitational constant G with the reduced
Planck’s constant h̄ and the speed of light c. The resulting mass scale is the Planck mass, mP, which some
have speculated to be associated with the existence of smallest possible black holes [7]. If we compare
the Plank mass with the mass of the top quark (the heaviest known elementary particle),

mP =

√
h̄c
G
≈ 2.1765× 10−8 kg ,

mt =
173.21 GeV

c2 ≈ 3.1197× 10−25 kg ,

then we see that there is some 17 orders of magnitude difference between them. This illustrates the
enormous difference between the Planck scale and the electroweak scale. Many solutions have been
proposed to explain this difference, such as supersymmetry and large extra dimensions, but none has
been universally accepted, for one reason or another. Furthermore, recent experiments performed with
the Large Hadron Collider are gradually ruling out some of these proposals. Regardless of the nature
of any specific proposal, it is clear from the above values that predictions of numbers with at least
17 significant figures are necessary to successfully explain the difference between mP and mt.

We saw from our numerical demonstration in the previous section that within the ECSK theory
minute changes in length can induce sizable changes in the observed masses of elementary particles,
and that we do have numbers at our disposal with more than 17 significant figures for producing those
masses. Moreover, all length changes occurring in our demonstration are taking place close to the
Planck length. Thus, since we are “cancelling out” near the Planck length to obtain masses down to the
electroweak scale, ours is clearly a possible mechanism for resolving the Hierarchy Problem. We can
appreciate this fact by simplifying our central equation by setting h̄ = c = 1, which then reduces to

α

rx
− 3πG

r3
x

= mx . (51)

It is now easy to see from this equation that the observed mass-energy only depends on the
coupling constants and the radii (geometry). Moreover, it is confined entirely within a volume close to
the Planck volume, as we saw in our calculations in the previous section. Thus, we are led to

Planck Scale =⇒ Electroweak Scale.

In other words, there is no hierarchy problem in the ECSK theory, because Planck scale physics is
producing the electroweak scale physics in the form of the mass-energy of fermions as a byproduct of
the very geometry of spacetime.

Within the ECSK theory, which extends general relativity to include spin-induced torsion,
gravitational effects near micro scales are not necessarily weak. On the other hand, since torsion
is produced in the ECSK theory by the spin density of matter, it is confined to that matter, and thus is a
very short range effect, unlike the infinite range effect of Einstein’s gravity produced by mass-energy.
In fact, the torsion field falls off as 1/r6, as shown in the calculations of Section 3, since it is produced
by spin density squared, confined to the matter distribution [9].

To compare the strengths of gravitational and torsion effects at various scales, we may define
a mass-dependent dimensionless gravitational coupling constant, Gm2/(h̄c), and evaluate it for the
electron, top quark and Planck masses:
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αGe =
Gm2

e
h̄c
≈ 1.7517× 10−45,

αGt =
Gm2

t
h̄c
≈ 1.1620× 10−36,

αGP =
Gm2

P
h̄c

= 1 ,

αe =
e2

4πh̄c
' 7.2973× 10−3.

Here αe is the electromagnetic coupling constant, or the fine structure constant. From these
values we see that near the Planck scale the gravitational coupling is very strong compared to the
electromagnetic coupling. However, as we noted above and in Section 3, near the Planck scale torsion
effects due to spin density are also very strong, albeit with opposite polarity compared to that of
Einstein’s gravity, akin to a kind of “anti-gravity” effect of a very short range.

For our demonstration above we have used electrostatic energy density and spin density for
matter in a static approximation, for which the field equation within the ECSK theory reduces to
G00 = T00. A numerical estimate for G00 from the contributions of the electrostatic energy and spin
density parts of T00 at our cancellation-radius gives

G00
stat =

8πG
c4

αh̄c
r4

t
≈ +4.209× 1062 m−2 (52)

and

G00
spin = −8πG

c4
3 πGh̄2

c2r6
t
≈ −4.209× 1062 m−2. (53)

Evidently, these field strengths at the cancellation radius are quite large even for a single electron.
Fortunately they are never realised in Nature, because, as we can see, they cancel each other out
to produce G00

net = 0. On the other hand, if we use only the mass-energy density for electron at
the cancellation radius, then we obtain G00

mass ≈ 3.0674× 1043 m−2, which is again some 19 orders of
magnitude off the mark. What is more, the latter field strength does not fall off as fast as that due
to the spin-induced torsion field. Thus, it is reasonable to conclude that without the cancellation of
divergent energies due to the spin self-interaction we have explored here, our universe would be
highly improbable.

While there have been other approaches to the hierarchy problem from the viewpoint of the ECSK
theory [28–32], our partial solution to the problem is simpler. We have fermions with near Planck scale
radii (size) producing rest mass energy in the electro-weak scale. While we have not explained why
higher generation fermions do not exist, given that as an assumption, our solution is more complete.

5. Concluding Remarks

In this paper we have addressed two longstanding questions in particle physics: (1) Why do
the elementary fermionic particles that are so far observed have such low mass-energy compared to
the Planck scale? (2) What mechanical energy may be counterbalancing the divergent electrostatic
and strong force energies of point-like charged fermions in the vicinity of the Planck scale?
Using a hitherto unrecognised mechanism extracted from the well known Hehl–Datta equation,
we have presented numerical estimates suggesting that the torsion contributions within the
Einstein–Cartan–Sciama–Kibble extension of general relativity can address both of these questions
in conjunction.

The first of these problems, the Hierarchy Problem, can be traced back to the extreme weakness of
gravity compared to the other forces, inducing a difference of some 17 orders of magnitude between
the electroweak scale and the Planck scale. There have been many attempts to explain this huge
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difference, but none is simpler than our explanation based on the spin induced torsion contributions
within the ECSK theory of gravity. The second problem we addressed here concerns the well known
divergences of the electrostatic and strong force self-energies of point-like fermions at short distances.
We have demonstrated above, numerically, that torsion contributions within the ECSK theory resolves
this difficulty as well, by counterbalancing the divergent electrostatic and strong force energies close to
the Planck scale.

It is widely accepted that in the standard model of particle physics charged elementary fermions
acquire masses via the Higgs mechanism. Within this mechanism, however, there is no satisfactory
explanation for how the different couplings required for the fermions are produced to give the correct
values of their masses. While the Higgs mechanism does bestow masses correctly to the heavy gauge
bosons and a massless photon, and while our demonstration above does not furnish a fundamental
explanation for the fermion masses either, we believe that what we have proposed in this paper is
worthy of further research, since our proposal also offers a possible resolution of the Hierarchy Problem.

In Reference [33], Singh points out that there appears to be a symmetry between small and large
masses for spin-torsion coupling and energy-curvature coupling. We have noted that there also appears
to be a symmetry in that the energy-curvature coupling is effectively infinite while the spin-torsion
coupling is very short-ranged near the Planck length.

One may wonder why a gravitational coupling would be involved in the torsion term involving
spin-squared, but we suspect it has more to do with Planck length than gravity. The torsion term with
our rt cancellation length can be simplified to

− 3 πGh̄2

c2 r3
t

= −3π(lP)
2h̄c

(
√

3π
α lP)3

= − αh̄c√
3π
α lP

≈ −2.479× 1015 GeV. (54)

Instead of gravitational coupling, now the term has become simple and involves only constants
and the Planck length.

Needless to say, the geometrical cancellation mechanism for divergent energies we have proposed
here also dispels the need for mass-renormalisation, since we have obtained finite solutions for rx

taming the infinities. Thus, both classical and quantum electrodynamics appear to be more complete
with torsion contributions included.
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Appendix A. Calculations of Fermion Radii using Wolfram Mathematica

In this appendix we explain how we used the arbitrary-precision in Mathematica to solve the
numerical equations out to 24 significant figures. Each equation displayed below—derived from
our central Equation (33)—is simplified so that only the numerical factors have to be used, since
the dimensional units cancel out, leaving lengths in meters. For decimal factors, the numbers must
be padded out to 26 digits with zeros. Then the numerical part of electrostatic energy density is
defined as A and the numerical part of spin energy density is defined as B, just as in Equation (44)
above. These are then used throughout to perform the calculations. For the values of various physical
constants involved in the calculations we have used the 2014 CODATA values, Reference [34] and
values from the Particle Data Group, Reference [35].
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Calculation of the Cancellation Radius for Charged Leptons using Formula Equation (41):

αh̄c r2
t −

3 πGh̄2

c2 = 0 (A1)

A:=N[(7.2973525664000000000000000× 10−3)(1.0545718000000000000000000× 10−34)

× (2.9979245800000000000000000× 108), 26];
B:=N[(3π(6.6740800000000000000000000× 10−11)(1.0545718001391130000000000× 10−34)2)/
(2.9979245800000000000000000× 108)2, 26];

N[Solve[A ∗ r2
t − B == 0, rt], 26]//Last

{rt → 5.80838808109165274355010115 × 10−34}
Calculation of Radius re of Electron and Positron

αh̄c− 3πGh̄2

c2r2
e
−mec2re = 0 (A2)

C1:=N[(9.1093835600000000000000000× 10−31)((2.9979245800000000000000000× 108)2), 26];
N
[
Solve

[(
A− B

/(
r2

e
) )
−C1 ∗ re == 0, re

]
, 26
]

//Last
{re → 5.80838808109165274414871873 ×10−34}
Calculation of Radius rµ of Muon and Anti-Muon

αh̄c− 3πGh̄2

c2r2
µ
−mµc2rµ = 0 (A3)

C2:=N[(1.8835315940000000000000000 ∗ 10−28)((2.9979245800000000000000000 ∗ 108)2), 26];
N
[
Solve

[(
A− B

/
(r2

µ)
)
−C2 ∗ rµ == 0, rµ

]
, 26
]

//Last

{rµ → 5.80838808109165286732522928× 10−34}
Calculation of Radius rτ of Tau and Anti-Tau

αh̄c− 3 πGh̄2

c2r2
τ
−mτc2rτ = 0 (A4)

C3:=N[(3.1674700000000000000000000× 10−27)((2.9979245800000000000000000 ∗ 108)2), 26];
N
[
Solve

[(
A− B

/(
r2

τ

) )
−C3 ∗ rτ == 0, rτ

]
, 26
]

//Last
{rτ → 5.80838808109165482503366295 ×10−34}
Calculation of the Cancellation Radius for (2e/3) Quarks using Formula (50):

9αh̄c
4

+
αs h̄c

3
− 3πGh̄2

c2r2
qt

= 0. (A5)

D:=N[(1/3)(1/10)(1.0545718000000000000000000× 10−34)(2.9979245800000000000000000× 108), 26];
N
[
Solve[((4/9)A + D) ∗ r2

qt − B == 0, rqt], 26
]

//Last

{rqt → 2.59439809658779489414601733 ×10−34}
Calculation of Radius rtq of Top Quark:

αh̄c
6π

+
αs h̄c

3
− 3πGh̄2

2c2r2
tq
−mtc2rtq = 0 (A6)

E:=N[(3.0877000000000000000000000× 10−25)((2.9979245800000000000000000× 108)2), 26];
N[Solve[

(
(4/9)A + D− B

/(
r2

tq

))
− E ∗ rtq == 0, rtq], 26]//Last

{rtq → 2.59439809658780297057798049 ×10−34}
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Appendix B. Miscellaneous Derivations for S-matrix Evaluation

For use in deriving the following, we begin with the fermion anticommutator,

{bi(p), b†
j (p′)} = {di(p), d†

j (p′)} = (2π)3 E
m

δijδ
3(p− p′), (A7)

and since there is only one electron and no positron in both the initial and final states for the rest frame
and Ei = E f = pi = p f = m = ω = 2π/t with the spins being summed over, we have

ψ(x) | i〉 =
√

m
Eir3 ψ(x)b†

i (pi) | 0〉

=

√
1
r3

∫ d3 p
(2π)3

2

∑
j=1

bj(m)uj(m)e−iEtb†
i (m) | 0〉

=

√
1
r3

∫ d3 p
(2π)3

2

∑
j=1

uj(m)e−iEt{bj(m), b†
i (m)} | 0〉

=

√
1
r3 ui(m)e−iEt,

and similarly

〈 f | ψ̄(x) =

√
1
r3 ū f (m)e+iEt,

ψ(x) | i〉 =
√

1
r3 vi(m)e+iEt,

〈 f | ψ̄(x) =

√
1
r3 v̄ f (m)e−iEt, (A8)

in which the fermion anticommutator Equation (A7) is used for simplification [21]. Note that the
spatial components,

√
1/r3, of the spin vector are factored out in these plane-wave equations.

For the derivation of Equation (20), we begin with Equation (18) for the electrostatic
self-interaction contribution,

hI = e ψ̄(x)γµ Aµψ(x), (A9)

and substitute it into the first order S-Matrix,

S(1)
f i (E1) = −i

∫
d4x 〈 f | e ψ̄(x)γµ Aµψ(x) | i 〉. (A10)

Making substitutions using Equation (A8) from above, and then going to the rest frame, along with
using A0 = e/4πr, α = e2/4π and taking r to be constant, the S-matrix expression works out to give
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S(1)
f i (E1) = −i

e2

4π r

∫
d4 x

(√
1
r3 ū f (m)e+im tγ0

√
1
r3 ui(m)e−im t

)
= −i

α

r4

(
ū f (m)γ0 ui(m)

) ∫
d4 x

= −i
α r3t

r4


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



= −i t
α

r


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (A11)

where we have taken
∫

d4x = r3 t.
The S-matrix evaluation for Equation (21) in the rest frame is as follows. We begin with Equation (19),

hI(x) = − 3κ

8
(ψ̄(x)γ5γkψ(x))(ψ̄(x)γ5γkψ(x)), (A12)

and substitute it into the first order S-Matrix:

S(1)
f i (E2) = i

3κ

8

∫
d4x 〈 f | (ψ̄(x)γ5γkψ(x))(ψ̄(x)γ5γkψ(x)) | i 〉. (A13)

Then, because the spatial components,
√

1/r3, of the spin vectors are factored out in the
plane-wave equations that we derived in Equation (A8), by substituting Equation (A8) into
Equation (A13) and then going to the rest frame, the S-matrix expression works out to give

S(1)
f i (E2) = i

3κ

8

∫
d4 x

1
r3

(
ū f (m)e+imt γ5γ0 vi(m)e+imt

) 1
r3

(
v̄ f (m)e−imt γ5γ0 ui(m)e−imt

)
= i

3κ

8 r6

∫
d4 x

(
ū f (m) γ5γ0 vi(m) v̄ f (m) γ5γ0 ui(m)

)

= i
3κ

8 r6

ū f (m) γ5γ0 (−1)


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 γ5γ0 ui(m)


∫

d4 x

= i
3κ r3t
8 r6


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



= i t
3κ

8 r3


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (A14)

where we have again taken
∫

d4x = r3 t. Similarly, the S-matrix expression for the anti-fermion works
out to give
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S(1)
f i (E4) = i

3κ

8

∫
d4 x

1
r3

(
v̄ f (m)e−imt γ5γ0 ui(m)e−imt

) 1
r3

(
ū f (m)e+imt γ5γ0 vi(m)e+imt

)

= i
3κ

8 r6

v̄ f (m) γ5γ0


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 γ5γ0 vi(m)


∫

d4 x

= i
3κ r3 t
8 r6 (−1)


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



= −i t
3κ

8 r3


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (A15)

From the last two equations it is easy to see that the fermion and anti-fermion S-matrix equations
are coupled. In other words, one might initially think that in the rest frame ψ̄(t)γ5γ0ψ(t) = 0,
which would result in the entire term being zero, but that is not the case because of the coupling of
mixed states between fermions and anti-fermions is an intermediate step in the self-interaction.
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