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Resumen
La expansión del universo durante la etapa inflacionaria puede ser descripta en una primera aproximación con la

métrica de De Sitter. El cálculo de las funciones de correlación cuánticas de los campos en esta geometŕıa es importante

para contrastar los modelos con las observaciones de precisión del fondo cósmico de microondas. En el caso de campos

muy livianos comparados con la curvatura del espacio tiempo, estos cálculos estan plagados con efectos infrarrojos, los

cuales podŕıan estar indicando una falla en la teoŕıa de perturbaciones. En este sentido, algunos cálculos no perturbativos

han mostrado que las interacciones generan una masa dinámica, que tiene el efecto de regular las posibles divergencias

infrarrojas. En esta tesis se estudian algunos aspectos de la teoŕıa cuántica de campos en De Sitter mediante diversos

métodos no perturbativos, con el objetivo de comprender los efectos infrarrojos asociados a campos livianos o no masivos

en el universo temprano. Por un lado se considera la Acción Efectiva de dos part́ıculas Irreducible (2PIEA) en la

aproximación de Hartree, que si bien es exacta en el ĺımite de N grande para un modelo con simetŕıa O(N), para un

número finito de campos deja de ser completamente consistente. Para recuperar en parte algunas propiedades de la

2PIEA exacta, se deben imponen ciertas relaciones de consistencia en el proceso de renormalización, lo cual afecta las

partes finitas de los contratérminos. Se ha prestado particular atención a este proceso, generalizándolo a espacios curvos

para obtener las ecuaciones de evolución del valor medio del campo renormalizadas. Se estudió el potencial efectivo en la

aproximación de Hartree, buscando las condiciones para la existencia de soluciones con ruptura espontánea de simetŕıa.

Resultados previos en la literatura muestran que estas soluciones no existen en el ĺımite de N grande, aśı como tampoco

para N finito con el esquema de renormalización usual. Por otro lado, adoptando la renormalización consistente, se

encuentran soluciones con ruptura de simetŕıa, cuya existencia sin embargo depende del punto de renormalización.

Luego, se consideraron las ecuaciones de Einstein Semiclásicas en la aproximación de Hartree, renormalizándolas con

el método consistente. Se buscaron soluciones autoconsistentes de éstas ecuaciones en combinación con las ecuaciones

del campo, estudiando si el efecto de los campos sobre la curvatura puede generar o no una restauración de la simetŕıa.

En particular se encontraron soluciones donde los efectos cuánticos son los responsables de la expansión acelerada del

universo, en ausencia de constante cosmológica. Estos resultados también dependen del punto de renormalización.

Otro método no perturbativo muy poderoso proviene de formular la Teoŕıa de Campos en el espacio De Sitter

Eucĺıdeo, el cual tiene la propiedad de ser compacto. Debido a esto, el campo admite una descomposición en modos

discreta que pone en evidencia que las divergencias infrarrojas provienen de las contribuciones del modo constante, o

modo cero. Es posible formular una teoŕıa sin problemas infrarrojos tratando no perturbativamente al modo cero, y de

manera perturbativa a los modos inhomogéneos. Las correcciones provenientes de éstos últimos son de orden superior en

una expansión infrarroja. Consideramos la generalización de esta formulación a la teoŕıa con simetŕıa O(N), calculando la

masa dinámica y el potencial efectivo. Esto permite realizar una comparación adecuada con los resultados provenientes

de la 2PIEA donde el ĺımite de N grande permite obtener resultados más confiables.

Palabras clave: Teoŕıa cuántica de campos, De Sitter, Efectos infrarrojos, Métodos no perturbativos, Cosmoloǵıa.
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Quantum effects in inflationary cosmological models

Abstract
The expansion of the Universe during the inflationary stage can be described, as a first approximation, with the

De Sitter metric. It is important to calculate quantum correlation functions of fields living in this geometry in order to

compare the different models with the high-precision observations of the Cosmic Microwave Background. For light fields

compared to the space-time curvature, these calculations are plagued by infrared effects, which might be an indication

of the breakdown of perturbation theory. In this regard, some non-perturbative calculations have shown that a mass is

dynamically generated by the interactions, effectively regulating the possible infrared divergences. In this thesis, we study

some aspects of the Quantum Field Theory in De Sitter space by means of non-perturbative methods, with the goal of

better understanding the infrared effects associated with light and massless fields in the early Universe. On the one hand,

we considered the Two-Particle Irreductible Effective Action (2PIEA) in the Hartree approximation, which, although

being exact in the large-N limit of a model with O(N) symmetry, in the case of a finite number of fields it is no longer

fully consistent. In order to partially recover some properties of the exact 2PIEA, some consistency conditions must be

imposed on the renormalization procedure, which in turn affects the finite parts of the counterterms. We focused on this

process, generalizing it to curved backgrounds in order to find the renormalized evolution equation for the mean value

of the field. We studied the Effective Potential, looking for the conditions for the existence of spontaneous-symmetry-

breaking solutions. Previous results in the literature show that there are no such solutions in the large-N limit, as well as

for finite N under the usual renormalization scheme. Nevertheless, we found that these solutions can exist when adopting

the consistent renormalization scheme, although their existence is dependent on the renormalization point.

Then we studied the Einstein Semiclassical Equations in the Hartree approximation with the consistent renormali-

zation procedure. We looked for self-consistent solutions of these equations together with the field equations, studying

whether the quantum effects over the space-time curvature can induce a symmetry restoration or not. In particular, we

found some solutions where the quantum effects are solely responsible for the accelerated expansion of the Universe,

without the presence of a Cosmological Constant. This results are also dependent on the renormalization point chosen.

Another very powerful non-perturbative method comes from the formulation of the Quantum Field Theory in

euclidean De Sitter space, which has the characteristic property of being compact. Due to this, the field has a discrete

mode decomposition which allows to identify the contributions of the constant -or zero- mode, as the origin of the

infrared divergences. It is then possible to formulate a theory with no infrared problems by treating the zero mode

non-perturbatively, while dealing with the inhomogeneous modes perturbatively. The corrections coming from the latter

are of higher order in an infrared expansion. We considered the generalization of this formulation to a model with O(N)

symmetry, calculating the dynamical mass and the Effective Potential. This allows for a comparison with the results

obtained with the 2PIEA, for which the large-N limit is needed for the results to be trusted.

Keywords: Quantum Field Theory, De Sitter, Infrared effects, Non-perturbative methods, Cosmology.
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López Nacir por ser un ejemplo a seguir y empujarme a que me esfuerce siempre un poco más.

A Fernando Lombardo por estar presente con sus consejos y apoyo. A Paolo Creminelli por

darme la posibilidad de visitar el ICTP en varias ocasiones y abrirme nuevas oportunidades.

A mis padres por el apoyo incondicional en todas las etapas de mi vida que fueron y serán.

A mis familiares y amigos por siempre interesarse por mi trabajo con sus preguntas y dudas, y

por proveer un, a veces muy necesario, cable a tierra.

A mi compañera en esta aventura, Flor, por todo su amor y su esfuerzo infinito. Por darme

aliento en los momentos buenos y en los malos, y por estar dispuesta a acompañarme ida y
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4.4. Ĺımite de N grande en el modelo O(N) . . . . . . . . . . . . . . . . . . . . . . . 57

4.5. Discusión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Caṕıtulo 1

Introducción General

En las últimas dos décadas la cosmoloǵıa se ha vuelto una ciencia de precisión gracias a la

mejora en la sensibilidad de las observaciones. Esto ha permitido descubrimientos fundamenta-

les como el de las anisotroṕıas en el fondo cósmico de microondas (CMB) [1] o el de la actual

expansión acelerada del universo [2, 3]. Estos descubrimientos han cambiado nuestro entendi-

miento sobre la historia evolutiva del universo a gran escala, forzando cambios paradigmáticos

en el modelo cosmológico precedente, el modelo del Big Bang.

El CMB es la radiación más antigua y lejana que podemos observar en el universo, y es por

ello una importante ventana hacia sus primeros momentos. Su descubrimiento en los años 60

dio impulso a la teoŕıa del Big Bang como una teoŕıa f́ısica seria que explicase la evolución del

universo a gran escala. Esta radiación tiene su origen en el momento en la historia térmica del

universo en el cual el plasma primordial se enfŕıa lo suficiente para dar lugar a la recombinación

de los protones con los electrones que lo forman. Al ocurrir este proceso aproximadamente

instantáneo, el universo se vuelve transparente a la radiación electromagnética, la cual luego

viaja casi sin alteración hasta la actualidad salvo por el corrimiento al rojo de su espectro debido

a la expansión del universo. Gracias a su origen térmico, el espectro de esta radiación es el de

un cuerpo negro con una temperatura caracteŕıstica aproximadamente isótropa respecto de la

dirección de observación. A partir de las mediciones de los satélites COBE y posteriormente

WMAP y Planck de las pequeñas anisotroṕıas presentes en la radiación cósmica de fondo, con

una amplitud relativa menor a 10−5 [4], se abrieron nuevos interrogan ues sobre el universo

primordial.

1
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1.1. Problemas del modelo estándar del Big Bang

El marco teórico que describe un espacio-tiempo dinámico es la Teoŕıa de la Relatividad

General (RG), cuyas predicciones seguimos confirmando observacionalmente aún cien años des-

pués de su formulación [5]. El universo es aproximadamente isótropo y homogéneo a escalas

cosmológicas, y por lo tanto puede describirse por la métrica de Friedmann-Robertson-Walker

[6, 7]

ds2 = −dt2 + a(t)2
[

dr2

1−Kr2
+ r2dΩ2

]

, (1.1)

donde a(t) es el factor de escala que describe la expansión, y K puede tomar los valores −1, 0 o

1 correspondientes a hipersuperficies de tiempo constante que sean espacialmente hiperbólicas,

planas o esféricas respectivamente. Insertando esta métrica en las ecuaciones de Einstein y con-

siderando como fuente a un fluido ideal de densidad ρ y presión p, se obtienen las denominadas

ecuaciones de Friedmann,

ȧ2

a2
=

8πGNρ

3
− K

a2
, (1.2a)

ä

a
= −4πGN

3
(ρ+ 3p) , (1.2b)

con GN la constante de Newton y ˙ = d/dt. Estas son las ecuaciones dinámicas para el factor

de escala a(t). El parámetro de Hubble se define como

H(t) =
ȧ

a
, (1.3)

y es la escala caracteŕıstica de curvatura del espacio-tiempo.

Un concepto importante para entender la f́ısica en un universo en expansión es es el del

horizonte de part́ıculas. Esta es la mayor distancia que puede haber viajado un rayo de luz

(ds2 = 0) desde un tiempo inicial t = 0 hasta un tiempo determinado t, y establece el tamaño

de las regiones causalmente conectadas en el universo. En coordenadas comóviles el mismo se

calcula

dh =

∫ rmax(t)

0

dr√
1−Kr2

=

∫ t

0

dt′

a(t′)
∼ 1

a(t)H(t)
(1.4)

El modelo original del Big Bang contiene sólo componentes de materia y radiación como fuentes,

y en consecuencia exhibe una expansión desacelerada durante toda su evolución. Por lo tanto,

el horizonte dh crece con el tiempo y aśı va incluyendo más y más regiones que no han estado

previamente en contacto causal. Por esta razón, es de esperarse que en determinado momento

de la historia del universo se observen grandes anisotroṕıas a escalas mayores al tamaño del
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horizonte en aquel entonces. En particular, en la época del CMB el horizonte era muy pequeño.

Sin embargo, en el CMB estas grandes anisotroṕıas no estan presentes [1, 4, 8]. Esto se conoce

como el problema del horizonte, e implica un alto grado de ajuste en las condiciones iniciales

del plasma primordial para lograr el alto grado de isotroṕıa observado.

Otro problema esta relacionado con la componente de curvaturaK en la densidad de enerǵıa.

Definiendo Ω = ρ/ρc, donde ρ incluye las componentes de materia y radiación, y ρc = 3H2/8πG

es la densidad cŕıtica, la primera de las ecuaciones de Friedmann (1.2a) se escribe

Ω + ΩK = 1 (1.5)

donde ΩK = −K/a2H2 es la componente relativa de la densidad de enerǵıa debido a la cur-

vatura. Las observaciones actuales del CMB indican que actualmente |ΩK | < 0,01 a 95% CL

[4]. Teniendo en cuenta nuevamente una expansión desacelerada, es decir, solamente con etapas

dominadas por la materia o la radiación, |ΩK | decrece con el tiempo. Esto correspondeŕıa a una

curvatura inicialmente aún menor. Por lo tanto, nos encontramos nuevamente ante un problema

de ajuste fino en las condiciones iniciales conocido como el problema de la planitud.

1.2. Modelos cosmológicos inflacionarios

Ambos problemas pueden ser solucionados si se asume que el universo ha tenido una etapa

temprana de expansión acelerada [9]. Durante la misma, conocida como etapa inflacionaria, el

universo se expande de manera cuasi-exponencial, a(t) ∼ eHt con H aproximadamente cons-

tante. Esto implica que, por un lado, el horizonte de part́ıculas dh decrece durante el peŕıodo

inflacionario, indicando que el mismo era mucho mayor en el pasado. De esta forma, si inflación

dura lo suficiente, aproximadamente unos 60 “e-folds”, todo el universo actualmente observable

tuvo un origen común dentro de la misma región causal. Esto es suficiente para resolver el

problema del horizonte. Por otro lado, este peŕıodo inflacionario tiene el efecto de achicar |ΩK |.
Nuevamente, si la inflación dura al menos unos 60 “e-folds”, resulta suficiente para resolver el

problema de la planitud, desde un punto de vista de la naturalidad de las condiciones iniciales.

Las ecuaciones de Friedmann (1.2) nos dicen que para lograr un peŕıodo de expansión

acelerada, hace falta un tipo de fluido con presión negativa p < −1/3. En particular, para que

H ∼ cte, es necesario que p ≃ −ρ. Estas propiedades escapan las de los fluidos clásicos, sin

embargo son posibles para un campo escalar, el inflatón, que ruede suficientemente lento por

su potencial [10]. Una predicción interesante de estos modelos es que, durante este peŕıodo, las

fluctuaciones cuánticas de campos muy livianos, ya sea el inflatón u otros campos espectadores,
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son amplificadas en amplitud mientras también aumentan en longitud de onda debido a la

expansión. Cuando finalmente cruzan el horizonte de curvatura las mismas se vuelven clásicas y

quedan congeladas. El espectro de dichas fluctuaciones es aproximadamente invariante de escala,

siendo esta una predicción bastante genérica de los modelos inflacionarios. Posteriormente al

peŕıodo inflacionario, las mismas actúan como semilla de las perturbaciones en la densidad de

enerǵıa en el universo y aśı a la eventual formación de estructura a gran escala que observamos

hoy. En particular, estas perturbaciones dejan su huella en la superficie de última dispersión,

donde nace el CMB. Por esta razón, el estudio en detalle sus anisotroṕıas puede dar información

sobre la etapa inflacionaria precedente.

Es importante entonces tener un buen entendimiento teórico de la f́ısica del inflatón y del

mecanismo de generación y amplificación de sus fluctuaciones cuánticas para poder comparar

con las observaciones cada vez más precisas del CMB. Como hemos mencionado, el marco teóri-

co fundamental para la descripción de un espacio-tiempo dinámico como lo es el universo en

expansión es la Relatividad General. Por otro lado, el inflatón es un campo cuántico interac-

tuante que naturalmente se describe con la Teoŕıa Cuántica de Campos. La formulación de esta

última en un fondo curvo requiere de ciertos cuidados, por ejemplo en relación a la ambigüedad

en la definición del estado de vaćıo, o a la renormalización de la teoŕıa.

A los fines del estudio de la evolución de las fluctuaciones cuánticas del inflatón, la etapa

inflacionaria puede describirse en una primera aproximación por el espacio-tiempo de De Sitter,

el cual exhibe una expansión exactamente exponencial y eterna. Esto es particularmente cierto

en modelos donde las fluctuaciones provienen de campos espectadores distintos a aquel que

produce la expansión, y por lo tanto está justificado ignorar el efecto de las mismas sobre la

evolución del espacio-tiempo de fondo. Los objetos de interés son las funciones de correlación

de un campo escalar con una masa pequeña con respecto a H en el ĺımite de tiempos largos,

las cuales luego pueden ser relacionadas con observables vinculados a la estad́ıstica de las

anisotroṕıas en la radiación cósmica de fondo.

1.3. Campos cuánticos en De Sitter

La teoŕıa de campos en el espacio-tiempo de De Sitter tiene una larga historia desde los

primeros desarrollos de la teoŕıa cuántica de campos en espacios curvos [11, 12], pero reciente-

mente ha recobrado interés gracias a su rol en los modelos inflacionarios del universo temprano,

aśı como también como posible descripción de la actual etapa de expansión acelerada del uni-
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verso. Para estudiar las fluctuaciones cuánticas de un campo escalar φ en De Sitter, se busca

calcular las funciones de correlación cuánticas. La dependencia temporal de la métrica fuerza

el uso de la formulación de camino temporal cerrado de la teoŕıa de campos, también conocida

como IN-IN, para poder calcular valores de expectación en lugar de amplitudes de transición.

Esta es una herramienta necesaria para estudiar situaciones fuera del equilibrio tanto en el caso

cosmológico como también en espacio plano.

El espacio-tiempo de De Sitter tiene la cualidad de poseer tantas simetŕıas como el espacio-

tiempo de Minkowski, ya que se trata de uno de los espacio-tiempos máximamente simétricos

con curvatura constante, en este caso positiva. El parche de coordenadas relevante para la

cosmoloǵıa es el que describe un espacio en expansión,

ds2 = −dt2 + e2Htd~x2 (1.6)

donde las secciones de tiempo constante son espacialmente planas, y H es constante. Su gran

número de isometŕıas permite definir un vacio invariante para un campo escalar masivo. Si,

por otro lado, se tiene un campo libre no masivo y mı́nimamente acoplado a la curvatura, no

existe ningún vacio invariante de De Sitter [13, 14]. Este hecho se manifiesta en las funciones de

correlación del campo, las cuales muestran una dependencia expĺıcita con el tiempo. Por ejemplo

la función de dos puntos de un campo libre con m = 0, que a tiempos largos comparados con

H−1 es [15]

〈φ(t)2〉 = H3t

4π2
, (1.7)

donde se observa un crecimiento divergente con el tiempo cósmico t. Esto parece indicar que

las fluctuaciones del campo φ crecen indefinidamente a tiempos largos, como consecuencia de

la acumulación de modos del campo que continuamente salen del horizonte de curvatura H−1

debido a la expansión del universo. De ser aśı, las fluctuaciones del campo producirán un efecto

sobre la evolución del espacio-tiempo de fondo que ya no puede despreciarse. En teoŕıa de

campos se conocen varios ejemplos de divergencias infrarrojas, como ser la amplificación de

fluctuaciones a temperatura finita cerca del punto cŕıtico [15], o en la emisión de fotones de

muy baja enerǵıa en procesos de Electrodinámica Cuántica. En algunos casos, estas divergencias

están asociadas a efectos f́ısicos, pero en otros casos simplemente indican una falla del método

utilizado.

Volviendo al caso de un campo en De Sitter, si este deja de ser estrictamento no masivo y en

cambio tiene una pequeña masa m, el resultado recupera la invariancia de De Sitter esperada

〈φ2〉 = 3H4

8π2m2
. (1.8)
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La masa en este caso actúa como regulador de la divergencia, y el problema queda aparentemente

bajo control. Sin embargo, un campo libre es de poco interés práctico, por lo que se deben

incluir términos de interacción. Una función de correlación t́ıpica entonces recibe correcciones

provenientes de las interacciones, las cuales se calculan mediante la expansión perturbativa

usando el formalismo IN-IN. Considerando por ejemplo auto-interacciones del tipo λφ4, un

simple contaje de potencias [15] indica que un diagrama de Feynman genérico con una cantidad

L de loops que contribuye a las funciones de correlación, posee un factor de la forma

∼
(

λH4

4π2m4

)L

. (1.9)

Por lo tanto, tanto si la masa del campo es menor a m2 ∼
√
λH

2

2π
, las correcciones se hacen

más y más importantes a mayor número de loops, lo cual invalida el cálculo perturbativo. En

el caso no masivo, se tiene nuevamente un crecimiento con el tiempo cósmico que empeora loop

a loop, por lo tanto esta ruptura se da a tiempos largos. Para una revisión exhaustiva de estos

y otros posibles efectos infrarrojos ver [16].

Resulta fundamental en este contexto estudiar los efectos infrarrojos en De Sitter, es decir,

efectos que se vuelven importantes a tiempos largos o equivalentemente para masas pequeñas

comparadas con la escala de Hubble H. La posible falla de la teoŕıa de perturbaciones, o más

dramático aún, de la teoŕıa semiclásica, indica la necesidad de realizar un análisis con otro tipo

de métodos que permitan capturar al menos parte de la f́ısica no perturbativa. Por ejemplo, se

espera que la presencia de la auto-interacción del campo genere una masa dinámica mdyn, aún

cuando el campo es clásicamente no masivo, regulando aśı las divergencias infrarrojas [17, 18].

Si esto es aśı, la teoŕıa semiclásica seguiŕıa siendo válida, pero los métodos pertubativos son

insuficientes.

Vale destacar que, por un lado, no todos los modelos inflacionarios se basan en campos

livianos en comparación a la curvatura. Un ejemplo son los modelos que utilizan al Higgs en

el rol del inflatón, los cuales requieren un acoplamiento con la curvatura muy grande ξ ≫ 1

[19, 20], por lo que adquieren una masa mayor a H y entonces son insensibles a estos problemas.

Por otro lado, la importancia de estos efectos sobre los observables inflacionarios es disputada

en algunos trabajos [21, 22].

1.3.1. Métodos no perturbativos en De Sitter

Uno de los enfoques posibles para estudiar los efectos infrarrojos en De Sitter está basado

en la acción efectiva irreducible de 2 part́ıculas (2PIEA) [23], el cual permite realizar una
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resumación de subconjuntos infinitos de diagramas de Feynman de la teoŕıa ususal mediante

un reordenamiento de la expansión perturbativa. Esta técnica ha sido utilizada en el espacio

plano para estudiar, por ejemplo, la teoŕıa de campos a temperatura finita y sus transiciones

de fase [24, 25, 26]. Considerando nuevamente a la teoŕıa λφ4, la acción efectiva 2PI tiene dos

contribuciones al orden más bajo no trivial, una local y la otra no local. La segunda contribución

es técnicamente muy d́ıficil de tratar, más aún en el caso de un fondo dependiente del tiempo

como es el caso de la teoŕıa en De Sitter. Esto lleva a considerar la llamada aproximación de

Hartree, es decir, conservar sólo la parte local, la cual de todas formas contiene información no

perturbativa sobre la masa generada dinámicamente [27, 28],

m2
dyn =

√
3λH2

4π
+O(λ), (1.10)

donde se considera que m = 0 clásicamente. La naturaleza no perturbativa de este resultado se

manifiesta en la dependencia no anaĺıtica en la constante de acoplamiento λ.

La aproximación de Hartree es ampliamente usada, a pesar que debido a la ausencia de un

parámetro de expansión pequeño sufre de ciertas dificultades. Éstas involucran la necesidad de

incorporar nuevos contratérminos que luego deben ser fijados mediante ciertas relaciones de

consistencia [29], y la posterior ambigüedad en la determinación de sus partes finitas. Algu-

nos resultados f́ısicos calculados en esta aproximación exhiben una sensibilidad al esquema de

renormalización [30, 31]. Por otra parte, si en lugar de un campo se consideran N campos en

un modelo con simetŕıa O(N), la aproximación de Hartree se vuelve exacta en el ĺımite de N

grande, y este tipo de problemas desaparecen.

Otro método no perturbativo en De Sitter se es el modelo de inflación estocástica [32, 17, 33].

En éste, el efecto de las fluctuaciones cuánticas que continuamente salen del horizonte sobre los

modos de longitud de onda mucho mayor, es modelado mediante un término de ruido estocástico

en una ecuación tipo Langevin. De esta manera, pueden calcularse valores de expectación

mediante una función de densidad de probabilidad para valores del campo a tiempos largos.

Luego, a partir de la función de correlación de dos puntos para el modo constante se calcula la

masa dinámica, que en el caso m = 0 en la teoŕıa λφ4 es

m2
dyn =

√
λH2

8π

Γ
(

1
4

)

Γ
(

3
4

) . (1.11)

Este resultado es exacto al orden infrarrojo más bajo, y es considerado un punto de referencia

para los cálculos no perturbativos. Sin embargo, no ha sido posible reproducirlo aún puramente

desde la teoŕıa de campos en el formalismo IN-IN. Igualmente, es notable que la aproximación
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de Hartree, a pesar de sus problemas, dé un resultado con la misma dependencia en la constante

de acoplamiento y con otro coeficiente numérico que solo difiere en un ∼ 15%.

Si el resultado estocástico es de confiar, es de vital importancia determinar la equivalencia

entre dicho método y la teoŕıa de campos IN-IN. En este sentido hay varios intentos de llegar a

la formulación estocástica partiendo de la integral de camino IN-IN y realizando una separación

entre modos de longitud de onda corta y larga mediante una función ventana dependiente del

tiempo [34, 35]. Por otro lado, se ha demostrado la equivalencia a nivel diagramático entre ambas

formulaciones para un campo masivo al orden más bajo en la expansión infrarroja [36, 37, 38].

De todas formas, no queda claro aún si sus resultados estocásticos no perturbativos para el caso

exactamente no masivo pueden ser obtenidos puramente desde la teoŕıa de campos IN-IN, o si

es posible incorporar correcciones más allá del ĺımite infrarrojo en la teoŕıa estocástica.

Más recientemente, el resultado de inflación estocástica fue reproducido formulando la teoŕıa

de campos en el espacio De Sitter eucĺıdeo [39], es decir, realizando una continuación anaĺıtica al

tiempo imaginario. A diferencia del espacio plano, la versión eucĺıdea de De Sitter es compacta y

esto permite expandir el campo en una suma discreta de modos. Aśı, es posible ver que el modo

constante, también llamado modo cero, es el único responsable por la divergencia infrarroja.

Más aún, por ser constante se lo puede tratar exactamente de manera no perturbativa incluso en

el caso m = 0. La masa dinámica calculada de esta forma coincide con el resultado estocástico

(1.11).

La ventaja del formalismo eucĺıdeo por sobre el de inflación estocástica es la posibilidad de

incluir correcciones al resultado infrarrojo, tratando de forma perturbativa la contribución de

los modos no constantes [40]. A pesar de ello, la equivalencia entre el formalismo eucĺıdeo y

la teoŕıa de campos IN-IN en De Sitter tampoco ha sido aún establecida con rigurosidad. Un

acercamiento fue realizado a nivel diagramático para el caso masivo [41].

1.4. En esta tesis

La tesis esta organizada de la siguiente manera. En el caṕıtulo 2 se presentan los fundamentos

de la teoŕıa cuántica de campos en espacios curvos, describiendo las dificultades presentes en

comparación con la formulación usual en espacio plano. Luego en el caṕıtulo 3 se muestra en

detalle el origen de los efectos infrarrojos en De Sitter a partir de los calculos perturbativos en

la teoŕıa de campos IN-IN.

El caṕıtulo 4 comienza con un resumen del formalismo de la acción efectiva 2PI y su relación
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con la acción efectiva usual (o 1PI). En éste, tanto el valor medio del campo φ̄ como el propaga-

dor exacto G son considerados como grados de libertad independientes. Describiremos ciertas

relaciones que aseguran la consistencia de los resultados en presencia de este grado de libertad

adicional. Luego, nos concentraremos en la aproximación de Hartree, para la cual es necesaria

la introducción de nuevos contratérminos para que dichas relaciones puedan satisfacerse [29].

Presentamos un estudio de la renormalización al nivel de la ecuaciones de movimiento para

φ̄ y G generalizándola a espacios curvos arbitrarios, publicado originalmente en [30]. Según

el esquema sustracción utilizado durante este proceso, los contratérminos admiten una parte

finita, la cual debe ser cuidadosamente determinada por las condiciones de renormalización.

Nuestros resultados indican que la elección del punto de renormalización es relevante a la hora

de estudiar las soluciones semiclásicas de la teoŕıa. En el ĺımite de N grande, donde se tiene un

parámetro de expansión que permite justificar la truncación de la acción efectiva 2PI a nivel

local, se recuperan resultados independientes del esquema de renormalización.

Posteriormente, siguiendo con el análisis descripto en la Ref. [30], en el caṕıtulo 5 se es-

pecializan las ecuaciones del valor medio del campo y de la masa dinámica obtenidas en la

aproximación de Hartree para el caso particular del espacio-tiempo de De Sitter. A partir de

éstas se estudia el potencial efectivo. Las ambigüedades provenientes del proceso de renorma-

lización tienen consecuencias f́ısicas, como por ejemplo la existencia de soluciones con ruptura

espontánea de la simetŕıa Z2 de la teoŕıa clásica. Por otro lado, en el ĺımite de N se observa la

esperada restauración de la simetŕıa [42, 43].

En el caṕıtulo 6 volvemos a considerar espacios curvos generales en la aproximación de

Hartree de la acción efectiva 2PI, haciendo foco en la renormalización de las Ecuaciones de

Einstein Semiclásicas (EES), que tienen como fuente al valor de expectación del tensor de

enerǵıa-momento del campo cuántico. Se demuestra la renormalizabilidad de estas ecuaciones

con el mismo conjunto de contratérminos que renormalizan las ecuaciones de movimiento. Es-

to incluye el hecho de que, en espacios curvos, existen divergencias que son proporcionales a

términos cuardráticos en la curvatura. Con las EES renormalizadas, se buscan soluciones auto-

consistentes en De Sitter, resolviendo simultáneamente para φ̄, m2
dyn y H, tanto para los casos

con y sin ruptura espontánea de simetŕıa. Este caṕıtulo se basa en resultados publicados en

[31].

El caṕıtulo 7 presenta el formalismo de inflación estocástica y la formulación de la teoŕıa

de campos en el espacio de De Sitter eucĺıdeo. Estos métodos no perturbativos alternativos

son aplicables sólamente en el espacio-tiempo de De Sitter, y son particularmente aptos para



–10–

el estudio de los efectos infrarrojos.

En el caṕıtulo 8 consideramos las correcciones ultravioletas a los resultados de orden infra-

rrojo más bajo de la teoŕıa eucĺıdea, analizando la renormalización y además generalizando el

análisis al modelo con simetŕıa O(N). En este contexto, calculamos la masa dinámica a segundo

orden en la expansión infrarroja, aśı como la función de 2-puntos para puntos separados. Veri-

ficamos que el resultado para la masa dinámica en el ĺımite de N grande es compatible con los

resultados obtenidos a partir de la acción efectiva 2PI en ese ĺımite, incluyendo la restauración

de la simetŕıa. Sin embargo, observamos que para campos no masivos, el comportamiento para

puntos separados sigue teniendo problemas a tiempos largos. Los resultados presentados en este

caṕıtulo están siendo preparados para su publicación [44].

Finalmente, en el caṕıtulo 9 se discuten las conclusiones generales de los distintos temas

tratados en la tesis.



Caṕıtulo 2

Teoŕıa cuántica de campos en espacios

curvos

La teoŕıa de campos en espacios curvos generaliza la teoŕıa de campos usual al conside-

rar campos cuánticos en una métrica de fondo curva gµν , la cual es tratada clásicamente. La

dinámica de estos campos es afectada por la curvatura del espacio-tiempo, mientras que ésta a

su vez es afectada por la presencia de los campos cúanticos mediante las EES

Rµν −
1

2
Rgµν + Λgµν = 8πGN〈Tµν〉ψ, (2.1)

donde Λ la constante cosmológica. En el miembro derecho se ha reemplazado el tensor de

enerǵıa-momento clásico Tµν por el valor de expectación cuántico 〈ψ|Tµν |ψ〉. Aqúı y en el resto

de esta tesis utilizaremos la signatura (−,+, . . . ,+,+) para la métrica, aśı como unidades para

las cuales ~ = c = 1.

En este caṕıtulo delinearemos resumidamente algunos de los conceptos básicos detrás de

esta generalización aplicada sobre la teoŕıa de campos relativista, basándonos principalmente

en [11]. Nuestro caso de interés es el de un campo escalar, por lo cual nos limitaremos al mismo.

2.1. Cuantización del campo escalar libre en espacios curvos

El primer paso es escribir una acción covariante para el campo escalar libre φ(x) de masa m

en un espacio-tiempo general dado por la métrica gµν . La forma más general en d dimensiones

se escribe

Slibre = −
∫

ddx
√−g

[

1

2
gµν∂µφ∂νφ+

1

2

(

m2 + ξR
)

φ2

]

, (2.2)

11
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donde g ≡ |detgµν |, ξ es una constante de acoplamiento, y R es el escalar de curvatura de Ricci.

El término ξRφ2 es incluido como el único acoplamiento escalar local entre el campo escalar y

el campo gravitacional, con las dimensiones adecuadas. La ecuación de movimiento obtenida al

extremizar la acción (2.2) respecto de φ es

(

−�+m2 + ξR(x)
)

φ(x) = 0 (2.3)

donde �φ = 1√−g∂µ (
√−ggµν∂νφ) es el operador de D’Alembert asociado a la métrica gµν .

Consideremos la cuantización del campo escalar libre en un espacio curvo general. Aqúı

seguiremos un procedimiento de cuantización canónica, con el fin de establecer las dificultades

asociadas a la definición del estado de vaćıo en este contexto. Sin embargo, en el resto de la tesis

recurriremos a la formulación de integral de camino de Feynman, la cual resulta más apropiada

para la implementación de métodos no perturbativos a partir de técnicas de análisis funcional.

Comenzamos expandiendo el campo φ en el conjunto de modos ortonormales uk(x) que son

solución de la ecuación (2.3),

φ(x) =
∑

k

[

akuk(x) + a†ku
∗
k(x)

]

(2.4)

donde a†k y ak son operadores de creación y destrucción respectivamente. La cuantización de la

teoŕıa puede ser implementada directamente imponiendo las relaciones de conmutación estándar

entre estos operadores. Luego, podemos definir un estado de vaćıo |0〉 como aquel que tiene la

propiedad de ser aniquilado por todos los operadores ak

ak|0〉 = 0, ∀k (2.5)

La construcción del espacio de Fock y los estados con un determinado contenido de part́ıculas,

etc., procede exactamente como en el caso del espacio de Minkowski. Sin embargo, en un espacio

curvo existe una ambigüedad ineludible. Si bien en el espacio de Minkowski existe un conjunto

natural de modos asociados a la simetŕıa de dicho espacio, el grupo de Poincaré, el cual deja

invariante al vaćıo definido por dichos modos, en un espacio-tiempo curvo arbitrario éste ya no

es el caso. En general, puede no haber ninguna simetŕıa. Por lo tanto no habrá un conjunto de

coordenadas privilegiadas en las que separar la ecuación del campo y que lleve a un conjunto

de modos naturales.

Para ilustrar este problema, consideremos un segundo conjunto completo y ortonormal de

modos ūj(x), distintos a los uk(x), según los cuales el campo φ admite una descomposición

φ(x) =
∑

j

[

ājūj(x) + ā†jū
∗
j(x)

]

, (2.6)
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la cual define un nuevo estado de vaćıo |0̄〉

āj|0̄〉 = 0, ∀j (2.7)

y un nuevo espacio de Fock. En general, el nuevo vaćıo no será aniquilado por los ak originales

ak|0̄〉 6= 0 (2.8)

lo que lleva a decir que el vaćıo de los modos ūj(x) tiene part́ıculas en el modo uk(x). En otras

palabras, puede no existir una definición natural de part́ıcula. Por esta razón, es necesario un

método para seleccionar aquellos modos que de alguna forma estén lo más cerca posible de los

modos del espacio-tiempo de Minkowski en algún ĺımite apropiado.

2.2. Acción Efectiva y 〈Tµν〉

El valor de expectación del tensor de enerǵıa-momento 〈Tµν(x)〉 juega un papel importante

en cualquier intento de modelar una dinámica autoconsistente del campo gravitatorio acoplado

a campos cuánticos, ya que actúa como fuente de gravedad en las EES. Además, este es un

objeto definido localmente que describe parte de la estructura del campo en un dado punto

x. Al igual que en el espacio-tiempo de Minkowski, 〈Tµν〉 mostrará divergencias ultravioletas

asociadas a los modos del campo con k grande, aśı como las tiene también cualquier otra

magnitud cuadrática en el campo. Estas divergencias deberán ser regularizadas y tratadas de

acuerdo al proceso de renormalización para extraer resultados finitos, el cual debe llevarse a

cabo en el marco una teoŕıa basada en las EES (2.1).

Clásicamente se tiene la acción

S = Sg + Sm, (2.9)

donde

Sg =
1

16πGN

∫

ddx
√−g(R− 2Λ), (2.10)

es la acción gravitacional y Sm es la acción de la materia. Las ecuaciones de Einstein clásicas

pueden derivarse mediante la condición

2√−g
δS

δgµν
= 0, (2.11)

la cual conduce a que

Tµν = − 2√−g
δSm
δgµν

. (2.12)
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En el caso semiclásico, consideramos por analoǵıa que 〈Tµν〉 se obtiene diferenciando funcional-

mente la acción efectiva Γ[φ̄, gµν ], es decir

〈Tµν〉 = − 2√−g
δΓ[φ̄, gµν ]

δgµν
. (2.13)

Hasta aqúı ésta parece una definición razonable. Sin embargo, en el tratamiento usual de

la teoŕıa cuática de campos la funcional generatriz de las funciones de n-puntos conectadas,

W [J ] (a partir de la cual se obtiene Γ[φ̄, gµν ] como su transformada de Legendre), se define de

la siguiente manera,

eiWin−out[J ] ≡ 〈out, 0|0, in〉J = Zin−out[J ], (2.14)

donde |0, in〉 y |0, out〉 son los estados de vaćıo asintóticos a tiempos t = −∞ y t = +∞
respectivamente. Como hemos discutido previamente, cuando el espacio-tiempo es curvo en

general no existe un estado de vaćıo privilegiado en ausencia de un conjunto de simetŕıas

de la métrica. En particular, para espacio-tiempos no estáticos, como el caso cosmológico,

|0, in〉 6= |0, out〉. Por lo tanto con esta definición lo que se obtiene no es un auténtico valor de

expectación, sino un elemento de matriz IN-OUT

2√−g
δΓin−out[φ̄, g

µν ]

δgµν
= −〈out, 0|Tµν |0, in〉

〈out, 0|0, in〉 . (2.15)

Si bien éste no es un valor de expectación, resulta suficiente para llevar adelante el proceso de

renormalización. Por lo tanto primero discutiremos dicho proceso, y dejaremos para la sección

(2.5) al final del caṕıtulo la descripción de un formalismo alternativo que permite obtener

verdaderos valores de expectación.

2.3. Funciones de Green y vaćıo adiabático

Las divergencias de los valores de expectación en el estado de vaćıo de las magnitudes

cuadráticas en el campo φ(x) pueden estudiarse en el ĺımite de coincidencia x′ → x de la

función de dos puntos del campo 〈φ(x)φ(x′)〉, la cual puede calcularse a partir de la función de

Green. La ecuación para la función de Green G(x, x′) en d dimensiones del campo φ se obtiene

a partir de la ecuación (2.3) y se escribe

[

−�+m2 + ξR
]

G(x, x′) = −iδ
d(x− x′)√−g , (2.16)
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Las distintas funciones de Green se obtienen imponiendo diversas condiciones de contorno a las

soluciones de (2.16), y cada una da una combinación distinta de valores de expectación de dos

campos en el estado de vaćıo. Algunas son

G>(x, x
′) = 〈φ(x)φ(x′)〉, (2.17)

G<(x, x
′) = 〈φ(x′)φ(x)〉, (2.18)

conocidas como las funciones de Wightman, mientras el producto ordenado temporalmente

GF (x, x
′) = 〈T (φ(x)φ(x′))〉, (2.19)

es el propagador de Feynman, y el ordenado anti-temporalmente

GD(x, x
′) = 〈T̃ (φ(x)φ(x′))〉, (2.20)

el de Dyson. Otra función útil es el valor de expectación del anticonmutador

G1(x, x
′) = 〈{φ(x), φ(x′)}〉, (2.21)

llamada función elemental de Hadamard, la cual no es estrictamente una función de Green, ya

que satisface la ecuación de movimiento (2.3) en vez de la ecuación (2.16).

Los valores de expectación en el estado de vaćıo del producto de dos operadores de campo

libre, necesarios para construcción de 〈Tµν〉 y otras magnitudes de interés, pueden calcularse

a partir de los diversos propagadores. En particular nos será útil 〈φ2(x)〉, el cual se obtiene

tomando el siguiente ĺımite de coincidencia x′ → x

〈φ2(x)〉 = 1

2
G1(x, x) ≡

1

2
[G1] = Re[GF ]. (2.22)

Para que las divergencias en 〈Tµν〉 puedan eliminarse, es necesario que las mismas sean

proporcionales a magnitudes geométricas independientemente del estado cuántico, y por lo

tanto puedan absorberse en la renormalización de los parámetros del miembro derecho de las

EES (2.1), Λ y GN , y otros términos adicionales que resultan ser necesarios. Con este criterio

en mente, el vaćıo f́ısico debe pertenecer al conjunto de estados que den lugar a ese tipo de

divergencias. Caso contrario, la teoŕıa corre riesgo de ser no renormalizable.

Una forma de elegir dicho estado de vaćıo consiste en buscar el estado que más se parezca

al vaćıo del espacio-tiempo de Minkowski. Para ello es natural pensar en una expansión en

derivadas de la métrica, ya que a medida que el espacio-tiempo se parece más y más al de
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Minkowski, la métrica se suaviza y sus derivadas se hacen más y más pequeñas. Una expansión

de este tipo se expresa naturalmente en términos de magnitudes geométricas, como el tensor

de curvatura, las cuales sirven de parámetro para medir la distancia al espacio-tiempo plano.

Ésta es conocida como la expansión adiabática.

Al expandir adiabáticamente la ecuación del campo (2.3) a orden j, es decir con hasta j

derivadas de la métrica, se obtienen soluciones u
AD(j)
k (x) aproximadas a ese orden. En general

podemos escribir una solución exacta uk(x) como

uk(x) = α
AD(j)
k (x) u

AD(j)
k (x) + β

AD(j)
k (x) u

AD(j)∗
k (x), (2.23)

donde α
AD(j)
k (x) y β

AD(j)
k (x) deben ser uniformes al menos hasta orden adiabático j, pues

u
AD(j)
k (x) y u

AD(j)∗
k (x) son soluciones a ese orden. Suponiendo que en particular elegimos

α
AD(j)
k (x′) = 1 +O(AD(j + 1)),

β
AD(j)
k (x′) = 0 +O(AD(j + 1)),

(2.24)

para algún punto fijo x′, entonces valdrá para todo punto x. Las prescripciones (2.23) y (2.24) no

definen uńıvocamente a los modos exactos uk(x), pues la elección del punto x′ donde igualarlos

a las soluciones adiabáticas es arbitrario.

El vaćıo adiabático |0AD(j)〉 se construye a partir de las soluciones aproximadas u
AD(j)
k (x), y

coincidirá a orden adiabático j con el vaćıo exacto |0〉 correspondiente a las soluciones exactas

uk(x). Los modos exactos son los que se cuantizan, mientras que el vaćıo adiabático de orden j,

siendo tan buen candidato como cualquier otro a estado de vaćıo, sólo es utilizado como modelo

matemático para seleccionar un vaćıo exacto. Los vaćıos f́ısicos aceptables serán aquellos que

coinciden con el vaćıo adiabático al menos a orden cuatro.

De esta manera se resuelve en parte la ambigüedad en la determinación del vaćıo [11],

aunque por supuesto, no hay un único vaćıo de orden adiabático j, pues el procedimiento de

igualar las soluciones aproximadas con las exactas (2.24) podŕıa realizarse en cualquier punto

del espacio-tiempo x′. Diferentes elecciones de x′ conducen a distintos modos exactos, pero éstos

diferirán sólo a orden adiabático superior a j. Por lo tanto todos los vaćıos correspondientes

serán iguales hasta orden adiabático j, mostrando un comportamiento similar para k grandes,

pero diferiendo en los modos de baja enerǵıa. En particular, los estados de vaćıo asintóticos

introducidos en (2.14) corresponden a elecciones particulares de x′.

La expansión adiabática es buena para algunas aplicaciones, como ser la renormalización de

las divergencias ultravioletas, donde sólo importa el comportamiento a distancias pequeñas (k
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grandes). En contraste, los modos de baja frecuencia exploran todo el espacio y son sensibles a

la geometŕıa, y por lo tanto a la construcción adiabática en particular.

2.3.1. Expansión Adiabática

Para estudiar las divergencias en los valores de expectación de magnitudes cuadráticas en

el campo, el objeto básico de interés es la función de Green GF (x, x
′) en su ĺımite x′ → x.

Dado que sólo el comportamiento a distancias pequeñas es importante en ese caso, alcanza con

calcularlo como un valor de expectación en el vaćıo adiabático de orden j

G
AD(j)
F (x, x′) = 〈0AD(j)|T (φ(x)φ(x′))|0AD(j)〉, (2.25)

lo que da la expansión adiabática de orden j del propagador exacto (2.19). Naturalmente las

propiedades globales de ambos serán diferentes, pero su comportamiento local coincide y no

depende del estado cuántico. Esta caracteŕıstica es importante para obtener las divergencias

geométricas.

Existen varios métodos para calcular la expansión adiabática del propagador de Feynman,

entre los que se destacan la técnica de tiempo propio [45] y la representación del espacio local de

momentos [46]. Aqúı nos limitaremos a considerar la representación más usada para la expansión

adiabática del propagador de Feynman, conocida como la expansión de Schwinger-DeWitt,

GF (x, x
′) =

∆
1
2 (x, x′)

(4π)
d
2

∫ ∞

0

ids

(is)
d
2

e[−im
2s+σ(x,x′)/2is]

∑

j≥0

aj(x, x
′)(is)j, (2.26)

donde 2σ(x, x′) es el cuadrado de la distancia geodésica entre x y x′, mientras que

∆
1
2 (x, x′) = −det[∂µ∂ν′σ(x, x

′)]
√

g(x)g(x′)
(2.27)

es el determinante de Van Vleck. Los coeficientes del desarrollo aj(x, x
′) son puramente geométri-

cos de orden adiabático 2j y satisfacen ciertas relaciones de recurrencia [11, 47]. Los primeros

tres términos, escritos en la coordenadas normales de Riemann yµ con origen en el punto x′

hasta orden adiabático cuatro son

a0(x, x
′) = 1, (2.28a)

a1(x, x
′) =

(

1

6
− ξ

)

R− 1

2

(

1

6
− ξ

)

∇αRy
α − 1

3
aαβ y

αyβ, (2.28b)

a2(x, x
′) =

1

2

(

1

6
− ξ

)2

R2 +
1

3
aλλ, (2.28c)



–18–

donde

aαβ =
1

2

(

1

6
− ξ

)

∇α∇βR +
1

120
∇α∇βR− 1

40
∇λ∇λRαβ −

1

30
R λ
α Rλα

+
1

60
Rκ λ

α β Rκλ +
1

60
Rλµκ

αRλµκβ. (2.29)

Las magnitudes geométricas están evaluadas en x′. En esta representación, las divergencias del

ĺımite x′ → x se encuentran en el ĺımite inferior de la integral en s, para los primeros dos

términos. En regularizacón dimensional, es posible realizar la integral en s y obtener el ĺımite

de coincidencia [. . . ] del propagador. En términos de la función elemental de Hadamard G1, se

lee [47]

[G1] =
1

8π2

(

m2

µ2

)ǫ/2
∑

j≥0

[aj](m
2
dyn)

1−j Γ
(

j − 1− ǫ

2

)

≡ 1

4π2ǫ

[

m2 +

(

ξ − 1

6

)

R

]

+ 2TF (m
2, ξ, R, µ̃), (2.30)

donde ǫ = d − 4, µ es una escala de masa arbitraria introducida para mantener las unida-

des habituales y Γ(x) es la función Gamma de Euler. Las divergencias asociadas al ĺımite de

coincidencia ahora corresponden a los polos en ǫ para los dos primeros ordenes adiabáticos.

En la segunda ĺınea aislamos dichos polos y definimos la parte finita TF , la cual contiene los

remanentes finitos de los ordenes uno y dos, aśı como las contribuciones del resto de la serie,

TF (m
2, ξR, R, µ̃) =

1

16π2

{

[

m2 +

(

ξ − 1

6

)

R

]

ln

(

m2

µ̃2

)

+

(

ξ − 1

6

)

R

−2F (m, {R})
}

(2.31)

donde redefinimos µ → µ̃ para absorber unos términos constantes, γE − 1 + log(R/4πµ2) =

log(R/µ̃2). En esta expresión, los ordenes adiabáticos mayores a dos están contenidos en la

función F (m2, {R}), la cual es independiente de ǫ y µ̃. La dependencia en m2 incluye también a

sus derivadas, mientras que aquella en {R} debe tomarse como una dependencia en invariantes

de curvatura construidos a partir de contracciones del tensor de Riemann y sus derivadas. Esta
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función satisface las siguientes propiedades

F (m2, {R})
∣

∣

∣

∣

Rµνρσ=0

= 0, (2.32a)

dF (m2, {R})
dm2

∣

∣

∣

∣

∣

Rµνρσ=0

= 0, (2.32b)

dF (m2, {R})
dR

∣

∣

∣

∣

∣

Rµνρσ=0

= 0. (2.32c)

La expansión adiabática nos permite aislar el comportamiento del propagador proveniente

de los modos ultravioletas, donde el principio de equivalencia nos asegura que éste será indis-

tinguible al del espacio de Minkowski, para poder llevar a cabo el proceso de renormalización

de manera general. Por otro lado, la función F (m2, {R}) contiene la información que proviene

de los modos de longitud de onda más grandes, que son sensibles a los efectos globales de la

curvatura.

2.4. Renormalización del 〈Tµν〉

Alternativamente a trabajar con la acción efectiva Γ[φ̄, gµν ], puede trabajarse directamente

con el valor de expectación del tensor de enerǵıa-momento. Esto es particularmente útil al con-

siderar ejemplos concretos, donde es más sencillo calcular 〈Tµν〉, que primero obtener Γ[φ̄, gµν ]

y luego diferenciarla funcionalmente. Si consideramos un campo escalar libre con acción (2.2),

la expresión clásica de Tµν(x) es

Tµν(φ)
∣

∣

∣

libre
= (1− 2ξ)φ,µφ,ν − 2ξφ;µνφ+ 2ξgµνφ�φ+ ξφ2Gµν

+

(

2ξ − 1

2

)

gµνφ
,λφ,λ −

m2

2
gµνφ

2, (2.33)

donde Gµν = Rµν − 1
2
Rgµν es el tensor de Einstein. Notar que esta expresión es cuadrática en

el campo φ(x) y sus derivadas. Para calcular 〈Tµν〉 puede escribirse φ = φ̄+ ϕ y tomarse valor

de expectación. El resultado toma la siguiente forma [48]

〈Tµν〉 = Tµν(φ̄)
∣

∣

∣

libre
+ 〈T fµν〉, (2.34)

donde [47, 49]

〈T fµν〉 = −1

2
[G1;µν ] +

(1− 2ξ)

4
[G1];µν +

(

ξ − 1

4

)

gµν
2

�[G1] + ξRµν
[G1]

2
. (2.35)
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En esta última expresión, las derivadas respecto de x y x′ de la función de Hadamard de

las fluctuaciones ϕ, es decir G1(x, x
′) = 〈{ϕ(x), ϕ(x′)}〉, se toman previamente al ĺımite de

coincidencia x′ → x. Este ĺımite trae asociadas divergencias que deben ser regularizadas, para

lo cual se utiliza el desarrollo de Schwinger-DeWitt (2.26) y se obtiene una expansión adiabática

de 〈Tµν〉. Esto evidencia que los términos de orden adiabático menor o igual que cuatro son

divergentes, y que estas divergencias son proporcionales a cantidades de origen geométrico.

Entonces, separando

〈Tµν〉 = 〈Tµν〉ren + 〈Tµν〉ad4 , (2.36)

las divergencias pueden ser absorbidas en la renormalización de las constantes del miembro

derecho de la ecuación para la métrica, lo cual es posible gracias al carácter geométrico de las

mismas.

De este análisis resulta que para absorber todas las divergencias, es necesario incluir términos

nuevos cuadráticos en el tensor de curvatura en la acción gravitacional (2.10),

Sg =
1

2

∫

d4x
√−g

{

κ−1
B (R− 2ΛB)− α1BR

2 − α2BRµνR
µν − α3BRµνρσR

µνρσ
}

, (2.37)

donde Rµνρσ es el tensor de curvatura de Riemann, Rµν = Rρ
µρν , y κB = 8πGB

N , ΛB, αiB

(i = 1, 2, 3) son los parámetros desnudos que deberán ser elegidos apropiadamente para cancelar

las divergencias de 〈Tµν〉. Con la inclusión de estos términos, las EES (originalmente (2.1))

resultan

κ−1
B Gµν + ΛBκ

−1
B gµν + α1B

(1)Hµν + α2B
(2)Hµν + α3BHµν = 〈Tµν〉, (2.38)

donde los nuevos tensores tienen las siguientes expresiones

(1)Hµν = 2R;µν − 2gµν�R +
1

2
gµνR

2 − 2RRµν , (2.39)

(2)Hµν = R;µν −
1

2
gµν�R−�Rµν +

1

2
gµνR

αβRαβ − 2RαβRαβµν , (2.40)

Hµν =
1

2
gµνR

αβγδRαβγδ − 2RµαβγR
αβγ

ν − 4�Rµν + 2R;µν

+4RµαR
α
ν + 4RαβRαµβν . (2.41)

Vale mencionar que en d = 4 dimensiones, el teorema generalizado de Gauss-Bonnet asegura

que estos tensores no son todos independientes, y en consecuencia se tiene que Hµν = −(1)Hµν+

4 (2)Hµν .
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2.5. Formalismo de Camino Temporal Cerrado o IN-IN

Como hemos discutido en la sección (2.2), en la teoŕıa de campos usual se define una acción

efectiva Γin−out[φ̄] que depende de una cantidad φ̄ que, en el espacio plano, es el valor medio del

campo. En cambio, cuando el espacio-tiempo es curvo la cantidad φ̄ pasa a ser un elemento de

matriz entre los vaćıos |0, in〉 y |0, out〉, y entonces esta acción efectiva no es real ni causal y no

sirve para estudiar problemas de valores iniciales. Este también es problema en espacio plano

en situaciones fuera del equilibrio. De todas formas, a los fines de estudiar la renormalizabilidad

de la teoŕıa, incluso en espacios curvos, el formalismo usual IN-OUT, resulta suficiente.

Sin embargo, si uno esta interesado en estudiar problemas de valores iniciales (cómo evolu-

cionan el valor medio del campo o la métrica) hay que generalizar la noción de acción efectiva,

y definir lo que se llama la accion efectiva de camino temporal cerrado (o CTP por sus siglas en

inglés), también conocido como formalismo IN-IN. Este es un objeto bastante más complicado,

que permite calcular valores de expectación en el estado |0, in〉. Para una presentación detallada

ver [50, 51].

En la formulación habitual IN-OUT, se define la funcional generatriz

Zin−out[J ] = 〈in, 0|0, out〉J ≡ eiWin−out[J ], (2.42)

como la amplitud de persistencia del vaćıo en la evolución desde t → −∞ hasta t → +∞ en

presencia de una fuente J . Luego la acción efectiva estándar Γ[φ̄] se obtiene como la trasformada

de Legendre de Win−out[J ]. En cambio, en CTP se considera la persistencia del vaćıo en una

evolución en dos tramos, primero desde t → −∞ hasta t → +∞ en presencia de una fuente

J+, y luego de regreso desde t→ +∞ hasta t→ −∞ en presencia de J−,

ZCTP [J+, J−] = 〈in, 0|UJ+(−∞,+∞)UJ−(+∞,−∞)|0, in〉 ≡ eiWCTP [J+,J−], (2.43)

donde UJ(t, t
′) es el operador evolución en presencia de la fuente J . Esta funcional generatriz

puede representarse como una doble integral de camino mediante la introducción del conjunto

de campos {φ+, φ−},

ZCTP [J+, J−] =

∫

Dφ+Dφ− exp

[

i

(

S[φ+]− S[φ−] +

∫

d4x
√−g [J+φ+ − J−φ−]

)]

, (2.44)

con la condición de contorno φ+(t, ~x)|t→+∞ = φ−(t, ~x)|t→+∞. Luego, tomando derivadas funcio-

nales se pueden obtener valores de expectación, por ejemplo

〈in, 0|φ(t, ~x)|0, in〉 = δWCTP [J+, J−]

δJ+(x)

∣

∣

∣

J+=J−=0
= −δWCTP [J+, J−]

δJ−(x)

∣

∣

∣

J+=J−=0
, (2.45)
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en lugar de obtener elementos de matriz entre estados distintos como en la formulación IN-

OUT. Una forma alternativa de implementar este formalismo es utilizando un solo campo

pero extendiendo el dominio temporal sobre el cual se lo define, a la curva temporal cerrada

C = C+∪C− [52]. Aqúı, la rama C+ recorre el tiempo hacia adelante, mientras que C− lo recorre

en sentido inverso. Luego, las integraciones temporales se extienden sobre todo el contorno

∫

C
dt =

∫ +∞

−∞ C+
dt−

∫ +∞

−∞ C−
dt, (2.46)

donde el signo menos delante del segundo término se encarga de implementar los signos ne-

gativos delante de la acción S[φ−] y el término de la fuente J− en (2.44). Esta representación

resulta más cómoda en manipulaciones formales de las integrales de camino, como las que se

describirán en el caṕıtulo 4.

De ahora en más, el śımbolo 〈. . . 〉 indica un valor de expectación IN-IN. A partir de los

campos φ+ y φ− podemos construir los propagadores ordenados temporalmente en C,

〈TCφ+(x)φ+(x
′)〉 ≡ G++(x, x

′) = GF (x, x
′), (2.47a)

〈TCφ+(x)φ−(x
′)〉 ≡ G+−(x, x

′) = G<(x, x
′), (2.47b)

〈TCφ−(x)φ+(x
′)〉 ≡ G−+(x, x

′) = G>(x, x
′), (2.47c)

〈TCφ−(x)φ−(x
′)〉 ≡ G−−(x, x

′) = GD(x, x
′), (2.47d)

donde identificamos los distintos propagadores (2.19), (2.18), (2.17) y (2.20) tiendo en cuenta

que según el ordenamiento en C, cualquier tiempo sobre la rama − es posterior a cualquier

tiempo en la rama +, y el recorrido en la rama − va de tiempos mayores a tiempos menores.

En ciertos casos puede ser de utilidad pasar de la base de Wightman, donde tenemos los

campos φ+ y φ−, a la llamada base de Keldysh con los campos φc y φ∆ dados por el siguiente

cambio de base
(

φc

φ∆

)

≡ 1√
2

(

1 1

1 −1

)(

φ+

φ−

)

=

(

1√
2
(φ+ + φ−)

1√
2
(φ+ − φ−)

)

. (2.48)

Las funciones de correlación entre estos nuevos campos son

(

〈φc(x)φc(x′)〉 〈φc(x)φ∆(x
′)〉

〈φ∆(x)φc(x
′)〉 〈φ∆(x)φ∆(x

′)〉

)

=
1√
2

(

1 1

1 −1

)(

GF (x, x
′) G<(x, x

′)

G>(x, x
′) GD(x, x

′)

)

1√
2

(

1 1

1 −1

)

=

(

G1(x,x′)
2

−iGR(x, x
′)

−iGA(x, x
′) 0

)

, (2.49)
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donde para llegar a la segunda igualdad hemos utilizado la relación GF + GD = G< + G>, e

indentificado los propagadores causales retardado y avanzado, respectivamente,

GF (x, x
′)−G<(x, x

′) = −iGR(x, x
′), (2.50a)

GF (x, x
′)−G>(x, x

′) = −iGA(x, x
′) = −iGR(x

′, x). (2.50b)

Una ventaja de utilizar esta base, es que la autocorrelación del campo φ∆ es se anula por

construcción, 〈φ∆φ∆〉 = 0.

La presencia de los propagadores causales anuncia lo que será una propiedad general del

formalismo CTP: las ecuaciones de movimiento que se obtienen a partir de la acción efectiva

CTP son reales y causales.
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Caṕıtulo 3

Efectos infrarrojos en De Sitter

Como ya hemos puntualizado, el espacio-tiempo de De Sitter es de interés tanto en la

cosmoloǵıa, por ser una buena aproximación a la etapa inflacionaria del universo temprano,

como para el estudio de la teoŕıa de campos en espacios curvos en general, por su gran número

de simetŕıas que permite avanzar en los cálculos anaĺıticos más allá que en la mayoŕıa de los

casos. En efecto, su alto grado de simetŕıa permite definir de forma uńıvoca un vaćıo invariante,

lo cual no es posible en general. Sin embargo, el tratamiento de campos cuánticos en esta

geometŕıa se encuentra con problemas cuando éstos son livianos o no masivos. Las funciones de

correlación de un campo sin masa crecen indefinidamente con el tiempo cósmico, lo cual por

un lado pone en duda el tratamiento semiclásico dado que los efectos de backreaction pueden

volverse importantes, mientras que por otro lado cuando el campo tiene una auto-interacción,

se observa que dichos efectos empeoran orden a orden en la expansión en loops de la teoŕıa de

perturbaciones.

Existe consenso en que los efectos infrarrojos para campos no masivos tienen su origen en

el hecho de que no existe un vaćıo invariante de De Sitter cuando la masa es estrictamente

cero. Para campos masivos, por otra parte, existe un vaćıo invariante conocido como el vaćıo de

Bunch-Davies. La presencia de una masa en este caso regula los efectos infrarrojos, pero sigue

siendo un problema cuando la misma es suficientemente pequeña en relación a la curvatura,

medida mediante la constante de Hubble H, y a la auto-interacción.

El objetivo de este caṕıtulo es presentar este problema, el cual no es sino el problema

central que nos interesa en esta tesis, para luego discutir en los caṕıtulos posteriores las posi-

bles soluciones y los métodos requeridos. Comenzaremos discutiendo sobre las propiedades del

espacio-tiempo De Sitter y el propagador libre. Es en éste donde el origen del problema se hace

25
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evidente. Luego calcularemos algunas funciones de correlación para establecer cómo la teoŕıa

de perturbaciones empeora la situación.

3.1. Simetŕıas del espacio-tiempo de De Sitter

El espacio-tiempo de De Sitter se caracteriza por tener tantas simetŕıas como el de Min-

kowski, es decir, 10 vectores de Killing. El otro caso es el del espacio-tiempo de anti-De Sitter.

Juntos son los tres casos de curvatura escalar R constante, positiva, cero y negativa respectiva-

mente, y se los conoce como geometŕıas maximamente simétricas. La métrica de De Sitter en

el parche cosmológico o de Poincaré toma la siguiente forma

ds2 = −dt2 + e2Htd~x2, (3.1)

donde t es el tiempo cósmico y ~x las coordenadas comóviles. El factor de escala a(t) = eHt

es exactamente exponencial, y H es constante, mientras que las hipersuperficies espaciales son

planas. Estas coordenadas sólo cubren la mitad que se expande del espacio-tiempo de De Sitter.

Esta métrica es conforme a la métrica plana, lo cual se hace expĺıcito cambiando la coordenada

temporal por el llamado tiempo conforme η =
∫

dt/a(t). Aśı, la métrica se escribe

ds2 =
1

H2η2
[

−dη2 + d~x2
]

, (3.2)

con η = −1/Ha(t). Si −∞ < t < ∞, entonces −∞ < η < 0. Una representación esquemática

se da en la Figura 3.1a.

Otro conjunto de coordenadas interesantes son las denominadas coordenadas globales. Éstas,

como su nombre lo indica, cubren todo el espacio-tiempo de De Sitter,

ds2 = −dt2 +H−2 cosh(Ht)2dΩ2
3, (3.3)

donde dΩ2
3 representa la métrica de una 3-esfera unitaria e indica el hecho que, en estas coor-

denadas, las hipersuperficies espaciales son cerradas (K = 1 en la ec. (1.1)) y por lo tanto,

compactas. Estas coordenadas son representadas en la Figura 3.1b.

Las transformaciones de simetŕıa de este espacio-tiempo están descriptas por el grupo de

De Sitter, el cual tiene la misma cantidad de generadores que el grupo de Poincaré, quien

describe las simetŕıas del espacio-plano. La invariancia ante este grupo de simetŕıa, de ahora

en más invariancia de De Sitter, juega un rol muy importante en el estudio de los campos

cuánticos en esta geometŕıa. En efecto, a diferencia de lo que ocurre en un espacio-tiempo
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(a) Coordenadas del parche cosmológico (b) Coordenadas globales

Figura 3.1: Representación de los distintos sistemas de coordenadas utilizados en el espacio-

tiempo de De Sitter [7], el cual está representado como un hiperboloide embebido en un espacio-

tiempo plano de 5 dimensiones.

curvo arbitrario donde no existe una definición uńıvoca de vaćıo, en De Sitter es posible definir

un vaćıo invariante [13], conocido como el vaćıo de Bunch-Davies. Algunas técnicas buscan

espećıficamente explotar estas simetŕıas, como ser la representación de momentos f́ısicos [53].

Esperamos entonces que las ecuaciones del campo, los propagadores y las EES escritas en esta

geometŕıa sean invariantes, y por lo tanto existan soluciones que respeten esta simetŕıa.

3.2. Divergencias infrarrojas

Los efectos infrarrojos se manifiestan en una primera instancia al estudiar los propagadores

libres en De Sitter no masivos a tiempos largos, o cuando la masa del campo es mucho menor

que la curvaturam2 ≪ H2. Sin embargo, se puede argumentar que los campos libres son de poco

interés práctico ya que los campos que utilizamos para la descripción de fenómenos naturales

son interactuantes. Para incluir interacciones, el modelo protot́ıpico de estudio es el de uno o

varios (N) campos escalares con auto-interacción cuártica. En el caso de que sean más de uno,

se considera en particular un modelo con simetŕıa interna O(N). La acción en general en d



–28–

dimensiones puede escribirse

S = −
∫

ddx
√−g

[

1

2
φa
(

−�+m2 + ξR
)

φa +
λ

8N
(φaφa)

2

]

, (3.4)

donde λ es la constante de acoplamiento y φa es un elemento de la representación adjunta del

grupo O(N), con a = 1, .., N , y está impĺıcita la suma sobre ı́ndices repetidos. En el caso de

estar considerando N = 1, t́ıpicamente se redefine por convención el término de interacción de

la siguiente manera,

Sint(N = 1) ≡ −
∫

ddx
√−g λ

4!
φ4. (3.5)

El tratamiento perturbativo de las interacciones sólo parece agravar el problema, ya que las

divergencias infrarrojas se vuelven peores orden a orden. En esta sección primero discutiremos

el propagador libre, para luego realizar un contaje de potencias para cierto tipo de diagramas

de Feynman para mostrar la invalidez del tratamiento perturbativo.

3.2.1. Campo libre masivo

En general los propagadores son funciones de dos puntos, x y x′. Sin embargo, dadas las

simetŕıas del espacio-tiempo de De Sitter, los propagadores G(x, x′) sólo pueden depender de

una distancia invariante y(x, x′). Si consideramos la distancia entre dos puntos x y x′ en coor-

denandas conformes,

∆x2 = −(η − η′)2 + (~x− ~x′)2, (3.6)

la distancia invariante se define como

y(x, x′) =
∆x2

ηη′
. (3.7)

Luego, en términos de y(x, x′) la ecuación de Klein-Gordon (2.16) toma la siguiente forma

a(x)4H2

[

4y
(

1− y

4

) d2

dy2
− 2d

(

1− y

2

) d

dy
+
m2 + d(d− 1)H2

H2

]

G(y(x, x′)) = −iδd(∆x).
(3.8)

Las soluciones de esta ecuación son bien conocidas y pueden escribirse en términos de la función

hipergeométrica 2F1 [11]

G(y(x, x′)) =
Hd−2

(4πµ2)d/2
Γ
(

d−1
2

+ νd
)

Γ
(

d−1
2

− νd
)

Γ
(

d
2

) 2F1

(

d− 1

2
+ νd,

d− 1

2
− νd;

d

2
; 1− y

4

)

,

(3.9)
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donde ν2d =
(d−1)2

4
− m2

H2 −ξd(d−1) y R = d(d−1)H2. Las las diferentes condiciones de contorno

asociadas a las distintos propagadores CTP (2.47) se obtienen respectivamente a partir de las

siguientes prescripciones [37]

∆x2F (x, x
′) = − (|η − η′| − iǫ)

2
+ |~x− ~x′|2, (3.10a)

∆x2<(x, x
′) = − (η − η′ + iǫ)

2
+ |~x− ~x′|2, (3.10b)

∆x2>(x, x
′) = − (η − η′ − iǫ)

2
+ |~x− ~x′|2, (3.10c)

∆x2D(x, x
′) = − (|η − η′|+ iǫ)

2
+ |~x− ~x′|2. (3.10d)

Consideremos ahora la varianza del campo,

〈φ2〉 = [G1]

2
. (3.11)

Este ĺımite de coincidencia puede evaluarse fácilmente a partir de (3.9) en y = 0 (x = x′). Por

un lado, la invariancia de De Sitter asegura que el resultado no dependa del punto x, mientras

que mantener d 6= 4 permite regular la divergencia ultravioleta usual asociada a este ĺımite,

[G1] =
2Hd−2

(4πµ2)d/2
Γ

(

1− d

2

)

Γ
(

d−1
2

+ νd
)

Γ
(

d−1
2

− νd
)

Γ
(

1
2
+ νd

)

Γ
(

1
2
− νd

) , (3.12)

donde hemos utilizado propiedades de la función 2F1 para evaluar la expresión en términos

de funciones Gamma. A partir de comparar esta expresión, expandiéndola en ǫ = d − 4 al

tiempo que se mantiene R fijo, con la expansión adiabática de la ecuación (2.30) y (2.31), se

despeja la función FdS(m
2, R) para el espacio-tiempo de De Sitter. Dejamos el detalle de dicha

comparación para el Apéndice A, cuyo resultado es

FdS(m
2, R) = Rf(m2/R) = −R

2

{

(

m2

R
+ ξ − 1

6

)[

ln

(

R

12m2

)

+ g
(

m2/R + ξ
)

]

−
(

ξ − 1

6

)

− 1

18

}

, (3.13)

con

g

(M2

R

)

≡ ψ+ + ψ− = ψ

(

3

2
+ ν4

)

+ ψ

(

3

2
− ν4

)

, (3.14)

donde ψ(x) = Γ
′

(x)/Γ(x) es la función DiGamma y ν4 =
√

9/4−M2/H2. A partir de ahora

podemos y usar intercambiablemente R o H mediante su relación para d = 4, R = 12H2.

También hemos definido

M2 ≡ m2 + ξR, (3.15)
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dado que en De Sitter se tiene R = cte y entonces el acomplamiento entre el campo y la

curvatura actúa efectivamente como una masa. La función FdS tiene todas las propiedades

esperadas, es decir, es independiente de ǫ y µ̃, y satisface los ĺımites apropiados (2.32).

En el ĺımite infrarrojo M2 ≪ H2 la función g tiene la siguiente dependencia en la masa,

g

(M2

R

)

≃ −3H2

M2
+

11

6
− 2γE +

49

108

M2

H2
. (3.16)

Esto muestra la presencia de una divergencia asociada al ĺımite M2 → 0, es decir una diver-

gencia infrarroja en 〈ϕ2〉. A diferencia de la divergencia ultravioleta, la divergencia infrarroja

no puede ser absorbida en el proceso de renormalización, y por lo tanto tiene implicancias f́ısi-

cas. En efecto, ésta indica una amplificación de las fluctuaciones cuánticas cuando el campo es

liviano. Al orden más bajo infrarrojo, la varianza del campo renormalizada resulta

〈φ2〉IR ≃ 3H2

8π2M2
. (3.17)

Es claro que a partir de este resultado no es posible definir el ĺımite no masivo.

3.2.2. Campo libre no masivo

Para llegar al resultado (3.17) se hizo una suposición fuerte que deja de ser válida en el

ĺımite M → 0, la existencia de un vaćıo invariante de De Sitter [13, 14]. En efecto, es posible

definir un propagador no masivo para un campo libre, pero éste no será constante en el ĺımite de

coincidencia, sino que por el contrario dependerá del tiempo. En este caso resulta imprescindible

recurrir al formalismo IN-IN.

Consideremos los propagadores CTP en la base de Keldysh (2.49), G1(x, x
′) y GR(x, x

′),

usando una representación en el espacio de momento comóvil ~k y el tiempo conforme

〈φc(η1, ~x1)φc(η2, ~x2)〉 =
1

2

∫

d3k

(2π)2
ei
~k·(~x1−~x2)G

(0)
1 (k, η1, η2), (3.18)

〈φc(η1, ~x1)φ∆(η2, ~x2)〉 =

∫

d3k

(2π)2
ei
~k·(~x1−~x2)G

(0)
R (k, η1, η2), (3.19)

donde la invariancia ante traslaciones espaciales asegura una dependencia sólo en k = |~k|, y el

supráındice (0) en los propagadores es indicativo de que son no masivos.

Resolviendo la ecuación de Klein-Gordon sin masa (sin asumir que la solución sólo depende
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de y), se encuentra la siguiente forma para los propagadores [15]

G
(0)
1 (k, η1, η2) =

H2

k3
[(

1 + k2η1η2
)

cos [k(η1 − η2)] + k(η1 − η2) sin [k(η1 − η2)]
]

≃ H2

k3
(

1 +O[(kηi)
2]
)

, (3.20)

donde en la segunda ĺınea aproximamos la expresión para modos de longitud de onda muy

grande comparada con el horizonte de Hubble, k/aH = −kη ≪ 1, o también denominados

modos superhorizonte. Notar que esta condición es equivalente a estudiar tiempos largos η →
0−. De manera similar para el propagador retardado tenemos

G
(0)
R (k, η1, η2) = θ(η1 − η2)

H2

k3
[(

1 + k2η1η2
)

sin [k(η1 − η2)]− k(η1 − η2) cos [k(η1 − η2)]
]

≃ θ(η1 − η2)
H2

3
(η31 − η32)

(

1 +O[(kηi)
2]
)

. (3.21)

Es importante notar la diferencia de comportamiento entre ambos propagadores para modos

infrarrojos. El primero escalea como k−3 mientras que el retardado como k0, por lo cual los

efectos infrarrojos estarán dominados por el primero. En efecto, si ahora volvemos al espacio

de posiciones y consideramos la varianza del campo evaluando (3.18) en puntos espaciales y

tiempos coincidentes, ~x1 = ~x2 y η1 = η2 = η,

〈φ2(η)〉 ≃
∫

d3p

(2π)3
H2

2p3
=
H2

4π2
log

(

ΛUV
ΛIR

)

, (3.22)

donde ΛUV es un cutoff ultravioleta y ΛIR uno infrarrojo. Ambos son en momento f́ısico p =

−kη. De aqúı podemos ver que la varianza crece con el tiempo, en efecto, si consideramos la

dependencia a tiempos largos η → 0−, la misma tiene una contribución divergente

〈φ2(η)〉 ≃ H2

4π2
log

(

− 1

Hη

)

=
H2

4π2
log(a(t)) =

H3t

4π2
, (3.23)

donde en las últimas dos igualdades volvimos al tiempo cósmico.

Por completitud, podemos recuperar el resultado para el campo masivo en este formalismo.

En este caso los propagadores ahora toman una forma diferente. Directamente en el ĺımite de

modos superhorizonte,

G
(M)
1 (k, η1, η2) =

H2

k3
(

k2η1η2
)ǫ0 , (3.24)

G
(M)
R (k, η1, η2) = θ(η1 − η2)

H2

3

(

η3−ǫ01 ηǫ02 − ηǫ01 η
3−ǫ0
2

)

, (3.25)



–32–

donde ǫ0 = M2/3H2. Volviendo a calcular la varianza se obtiene que,

〈φ2〉 ∼
∫

dp

p

(

H

p

)−2ǫ0

∼ 3H2

2M2

(

ΛUV
H

)2ǫ0

, (3.26)

donde evaluamos ΛIR → 0. Obviamente la divergencia ultravioleta asociada con ΛUV → ∞
debe ser compensada con un contratérmino de manera usual. Este resultado muestra como la

presencia de una masa regula la divergencia infrarroja.

3.2.3. Campo interactuante y correcciones perturbativas

Empecemos por considerar la acción (3.4) para N = 1 (es decir, con la normalización de λ

dada por (3.5)) en el formalismo IN-IN. La acción de interacción en términos de los campos φ+

y φ− es

Sint(φ+)− Sint(φ−) = −
∫

ddx
√−g λ

4!

(

φ4
+ − φ4

−
)

= −
∫

ddx
√−g λ

12

(

φ3
cφ∆ + φcφ

3
∆

)

, (3.27)

donde en la segunda igualdad pasamos a la base de Keldysh (2.48). A estos vértices hay que

complementarlos con la siguiente regla de Feynman,
∫ 0

−∞

dη

H4η4
(2π)3δ3(p), (3.28)

con p la suma de los momentos entrantes al vértice. Consideremos como ejemplo las correcciones

de loop a la varianza del campo provenientes del conjunto particular de diagramas de Feynman

formados por una cadena de tadpoles, como se muestra en la Figura 3.2. Existen por supuesto

Figura 3.2: Clase de diagramas con la contribución más infrarroja a (L)G1(k, η, η). Las ĺıneas

sólidas corresponden al campo φc, mientras que aquellas intermitentes al campo φ∆

otras contribuciones a un determinado número de loops L > 1, pero esta contribución es la que

exhibe el comportamiento infrarrojo más divergente. La contribución a 1-loop toma la siguiente

forma,

(1)G1(k, η, η) = −λ
∫ 0

−∞

dη′

H4η′4
G1(k, η, η

′)GR(k, η
′, η)Λ(η′), (3.29)
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donde Λ(η′) es un factor de loop dado por la siguiente expresión,

Λ(η′) =
1

2

∫

d3p

(2π)3
G1(k, η

′, η′) ≃ 3H2

2M2

(

H

2π

)2
( µ

H

)2ǫ0
, (3.30)

con µ alguna escala no infrarroja. Se puede ver entonces que la corrección a 1-loop, en el ĺımite

infrarrojo, toma la forma

(1)G1(k, η, η) =
λH2

2(2π)2M2
G1(k, η, η)

( µ

H

)2ǫ0
log (−kη) , (3.31)

donde lo importante es notar que es proporcional a G1(k, η, η), con un factor que va como

λH2/M2. Si ahora considerasemos la contribución equivalente a L-loops, veŕıamos que esa

misma factorización se da a cada loop. Por lo tanto, tendŕıamos un resultado del tipo

(L)G1(k, η, η) = G1(k, η, η)

[

λH2

2(2π)2M2

( µ

H

)2ǫ0
log (−kη)

]L

. (3.32)

Es decir, el factor de esta corrección a L-loops va como
(

λH2

4π2M2

)L

, (3.33)

y por lo tanto las divergencias infrarrojas empeoran loop a loop. Es más, para valores de masa

M2 . λH2 la teoŕıa de perturbaciones directamente no es válida, siendo cada corrección de

loop más grande que la anterior.

Este análisis muestra que el tratamiento perturbativo resulta insuficiente para el estudio

de los efectos cuánticos en De Sitter en el ĺımite infrarrojo. Por lo tanto, es necesario recurrir

a métodos que permitan capturar, aunque sea en parte, los efectos no perturbativos. Más

espećıficamente, al realizar una resumación (ver por ejemplo [15], donde se logra apelando a

técnicas del grupo de renormalización dinámico) se obtiene una contribución a la auto-enerǵıa

que cambia la masa efectiva que aparece en la ecuación del propagador. Este efecto se conoce

como ”generación dinámica de masa“, y tiene como consecuencia que el propagador no exhiba

divergencias infrarrojas, tal como sucede con campos masivos.

En el próximo caṕıtulo y los dos subsiguientes, consideraremos el formalismo de la acción

efectiva 2PI [23], una reformulación muy difundida de la teoŕıa de campos con varias aplica-

ciones en general. Posteriormente, en los caṕıtulos 7 y 8 discutiremos otro tipo de métodos

no perturbativos que surgen de las propiedades particulares del espacio-tiempo de De Sitter,

y que son especialmente aptos para investigar los efectos infrarrojos. Éstos son, el formalismo

de inflación estocástica [17] y la teoŕıa de campos en el espacio de De Sitter eucĺıdeo [39, 40].

Por supuesto, existen otros métodos no perturbativos como ser el grupo de renormalización

dinámico [54], que no discutiremos en esta tesis.
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Caṕıtulo 4

Métodos no perturbativos en teoŕıa

cuántica de campos en espacios curvos:

la aproximación de Hartree y la

expansión 1/N

En este caṕıtulo nos ocuparemos del formalismo de la acción efectiva 2PI, y en particular

consideraremos la aproximación de Hartree. Esta es una truncación local de la acción efectiva

2PI en la cual la masa del propagador se obtiene como una solución autoconsistente de la ecua-

ción resumada de la masa dinámica, y es positiva. Se trata, sin embargo, de una truncación no

sistemática y por lo tanto debe implemetarse un procedimiento de renormalización consistente

para recuperar ciertas propiedades de la teoŕıa exacta [29].

Primero generalizaremos la renormalización consistente a espacios curvos generales, pres-

tando particular atención a la elección del punto de renormalización. Luego, definiremos los

parámetros renormalizados a partir del potencial efectivo, para finalmente obtener la ecuación

para la masa dinámica en términos de los mismos.

Los resultados presentados en este caṕıtulo a partir de la subsección 4.2.1 en adelante, están

basados en la Ref. [30].

35
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4.1. Formalismo de la Acción Efectiva Irreducible de 2 Part́ıculas

Este es un formalismo dentro de la teoŕıa cuántica de campos originalmente desarrollado

en [23], usualmente abreviado 2PI por sus siglas en inglés, que representa una generalización

del concepto de acción efectiva usual o 1PI. En éste último, la acción efectiva Γ[φ̄] se calcula

como una funcional del valor medio del campo φ̄ = 〈φ〉. En contraste, en el formalismo 2PI

las funciones de 1 y 2 puntos, φ̄ y G(x, x′) = 〈ϕ(x)ϕ(x′)〉 (ϕ = φ − φ̄) respectivamente,

son consideradas como grados de libertad independientes. Se obtiene aśı una acción efectiva

Γ2PI [φ̄, G] como funcional de ambas.

El resultado de este proceso es la resumación de un subconjunto infinito de diagramas de

Feynman (todos los reducibles de 2 part́ıculas) a costa de tener una ecuación de movimiento

adicional asociada al nuevo grado de libertad. Es esta resumación la que le da potencialidad a

este formalismo para estudiar efectos no perturbativos.

A continuación repasaremos primero la construcción de la Acción Efectiva 1PI, para luego

generalizar el proceso y aśı obtener la Acción Efectiva 2PI. En todo lo que sigue, la utilización

del formalismo IN-IN se deja impĺıcita mediante la inclusión del sub́ındice C en las integrales

temporales, indicando que las mismas están definidas sobre el camino temporal cerrado C, ec.
(2.46), aśı como también se entiende que todas las funciones del tiempo están también definidas

sobre C. Por último, los propagadores se entienden como el valor de expectación del producto

TC-ordenado de dos campos.

4.1.1. Acción Efectiva 1PI

El concepto de la acción efectiva se basa en la idea de promediar el efecto que las fluctua-

ciones cuánticas tienen sobre la evolución del valor medio del campo. Para ello se plantea una

separación del campo en valor medio y fluctuación, φ = φ̄ + ϕ, y luego se resuelve la integral

de camino sobre la fluctuación ϕ. El resultado es una funcional Γ[φ̄] que cumple el rol de una

funcional de acción, es decir, su condición de extremo lleva a las ecuaciones de movimiento

semiclásicas para el valor medio del campo φ̄.

Comenzando con una acción clásica S[φ], la funcional generatriz de las funciones de corre-

lación cuánticas es,

Z[J ] =

∫

Dφ exp

[

i

(

S[φ] +

∫

C
d4x

√−gJa(x)φa(x)
)]

= eiW [J ], (4.1)
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donde el ı́ndice a representa cualquier tipo de ı́ndice asociado a la representación de algún grupo

de simetŕıa interna y la suma sobre indices repetidos esta impĺıcita. Tener en cuenta que todas

las funcionales tienen una dependencia en gµν que no se denota expĺıcitamente. La segunda

igualdad define a la funcional generatriz de los diagramas conectados W [J ] = −i log (Z[J ]), de
manera que el valor medio del campo en presencia de una fuente extrena J es,

φ̄[J ] =
δW [J ]

δJ
=

1

Z[J ]

δW [J ]

δJ
=

∫

Dφφ exp
[

i
(

S[φ] +
∫

x
Jaφa

)]

∫

Dφ exp
[

i
(

S[φ] +
∫

x
Jaφa

)] = 〈φ〉J , (4.2)

donde abreviamos
∫

C d
4x

√−g =
∫

x
. Se define la acción efectiva como la transformada de

Legendre de W [J ],

Γ[φ̄] = W [J ]−
∫

C
d4x

√−gJa(x)φ̄a(x), (4.3)

de donde también resulta que,

Ja[φ̄] = −δΓ[φ̄]
δφ̄a

. (4.4)

Eventualmente, evaluando en J = 0 se obtienen las ecuaciones de movimiento para los φ̄a,

δΓ[φ̄]

δφ̄a
= 0. (4.5)

Hasta aqúı sólo se ha reformulado el problema original en términos de otra variable. La acción

efectiva contiene la información completa de la teoŕıa cuántica a través de las funciones vértice

irreducibles de una part́ıcula,

δnΓ[φ̄]

δφ̄a1(x1) . . . δφ̄an(xn)

∣

∣

∣

∣

∣

φ̄=φ̄∗

, (4.6)

donde φ̄∗ es la solución de (4.5).

Para sacar provecho de estas manipulaciones, es necesario encontrar una representación para

la acción efectiva que nos permita calcularla de forma perturbativa. El procedimento estándar

consiste en expandir (4.3) en la fluctuación ϕ y luego realizar las integraciones funcionales sobre

la misma. El resultado es

Γ[φ̄] = S[φ̄]− i

2
Tr
[

ln(A−1)
]

+ Γ1[φ̄], (4.7)

donde Γ1[φ̄] es −i veces la suma de los diagramas de vaćıo 1PI con propagador A−1
ab , definido

por

iAab(x, x
′) =

1√−g
δ2S[φ]

δφa(x)δφb(x′)

1√−g′

∣

∣

∣

∣

∣

φ=φ̄

, (4.8)
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y vértices dados por la acción de interacción desplazada SFint[φ̄, ϕ], obtenida de colectar los

términos de orden cúbico o mayores en ϕ que surgen de expandir S[φ̄ + ϕ]. Estos diagramas

son aquellos que permanecen conectados al cortarles una ĺınea interna, de ah́ı su nombre de

irreducibles de una part́ıcula, o 1PI.

Esta representación de la acción efectiva nos da la interpretación de que la misma consiste

en una parte clásica corregida por efectos cuánticos. El segundo término de (4.7) involucra la

corrección a 1-loop, mientras que las correcciones de dos o más loops están contenidas en Γ1[φ̄].

A modo de ejemplo, en el caso de la teoŕıa λφ4 dada por la acción (3.4) con N = 1 (recordar

el cambio de definición de λ respecto al caso O(N)) los elementos que debemos utilizar para

construir Γ1[φ̄] son el propagador A−1 (para N = 1 no tenemos indices ab) que satisface

(

−�+m2 + ξR +
λ

2
φ̄2

)

A−1(x, x′) = −iδ
d(x− x′)√−g , (4.9)

y los vértices provenientes de la acción de interacción desplazada,

SFint[φ̄, ϕ] = −λ
6

∫

C
ddx

√−g
[

1

4
ϕ4 + φ̄ϕ3

]

. (4.10)

Entonces, las primeras contribuciones a Γ1[φ̄] son como las que se muestran en la Figura 4.1.

Figura 4.1: Primeros diagramas de vaćıo irreducibles de una part́ıcula que contribuyen a la

acción efectiva 1PI en la teoŕıa λφ4. Éstos se construyen con los vértices dados por (4.10) y

utilizando en las ĺıneas internas el propagador A−1 que satisface (4.9).

4.1.2. Acción Efectiva 2PI

Con el fin de generalizar los conceptos anteriores para incluir a la función de 2-puntos exacta

Gab(x, x
′) como un grado de libertad independiente a φ̄a, además de una fuente local Ja(x) se
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introduce una fuente no local Kab(x, x
′),

Z[J,K] =

∫

Dφ exp

[

i

(

S[φ] +

∫

x

Ja(x)φa(x) +
1

2

∫∫

x,x′
φa(x)Kab(x, x

′)φb(x
′)

)]

= eiW [J,K], (4.11)

donde ahora el valor medio del campo y la función de 2-puntos se determinan a partir de

W [J,K] mediante las siguientes relaciones,

φ̄a =
δW [J,K]

δJa
, (4.12)

Gab(x, x
′) = 2

δW [J,K]

δKab(x, x′)
− φ̄a(x)φ̄b(x

′). (4.13)

En este caso, la acción efectiva 2PI es la doble transformada de Legendre de W [J,K],

Γ2PI [φ̄, G] = W [J,K]−
∫

x

Ja(x)φ̄a(x)−
1

2

∫∫

x,x′
Kab(x, x

′)
[

Gab(x, x
′) + φ̄a(x)φ̄b(x

′)
]

. (4.14)

Luego, variando la expresión anterior respecto de φ̄a y Gab(x, x
′) respectivamente obtenemos

δΓ2PI [φ̄, G]

δφ̄a(x)
= −Ja(x)−

1

2

∫

x′
[Kab(x, x

′) +Kba(x
′, x)] φ̄b(x

′), (4.15)

δΓ2PI [φ̄, G]

δGab(x, x′)
= −1

2
Kab(x, x

′), (4.16)

de donde las ecuaciones de movimiento se obtienen nuevamente anulando las fuentes externas

J = 0 y K = 0. Volviendo a la acción efectiva, combinando las expresiones anteriores puede

expresarse como,

Γ2PI [φ̄, G] = −i ln
{

∫

Dφ exp
[

iS̃
]

}

, (4.17)

donde el exponente se lee,

S̃ ≡ S[φ]+

∫

x

Ja(x)ϕa(x)−
1

2

∫∫

x,x′
Kab(x, x

′)
[

φa(x)φb(x
′)− φ̄a(x)φ̄b(x

′)−Gab(x, x
′)
]

. (4.18)

Por un lado podemos reescribir este exponente realizando algunas manipulaciones y luego usan-

do las relaciones anteriores para Ja[φ̄, G] y Kab[φ̄, G],

S̃ = S[φ̄+ ϕ]−
∫

x

δΓ2PI

δφ̄a(x)
ϕa(x) +

∫∫

x,x′

δΓ2PI

δGab(x, x′)

[

Gab(x, x
′)− 1

ϕa(x)ϕb(x
′)

]

, (4.19)
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mientras que por otro lado expandimos la acción clásica en ϕ,

S[φ̄+ ϕ] = S[φ̄] +

∫

x

δS[φ]

δφa(x)

∣

∣

∣

∣

∣

φ=φ̄

ϕa(x) +
1

2

∫∫

x,x′

δ2S[φ]

δφa(x)δφb(x′)

∣

∣

∣

∣

∣

φ=φ̄

ϕa(x)ϕb(x
′) + SFint[φ̄, ϕ].

(4.20)

Posteriormente reemplazando en (4.17) podemos sacar algunos términos fuera del logaritmo,

Γ2PI [φ̄, G] = S[φ̄] +

∫∫

x,x′

δΓ2PI

δGab(x, x′)
Gab(x, x

′)− i ln

{

∫

Dϕ exp
[

i∆S̃
]

}

, (4.21)

donde ahora el exponente del último término es,

∆S̃ =

∫

x

(

δS

δφa(x)
− δΓ2PI

δφ̄a(x)

)

ϕa(x) +

∫∫

x,x′
ϕa(x)

(

i

2
Aab(x, x

′)− δΓ2PI

δGab(x, x′)

)

ϕb(x
′)

+SFint[φ̄, ϕ]. (4.22)

Finalmente podemos expresar el argumento del logaritmo en (4.17), llegando a

Γ2PI [φ̄, G] = S[φ̄] +
i

2
Tr (AG)

−i ln
{

(
∫

Dϕ ei 12ϕaiG−1
ab
ϕb

)

×
(

∫

Dϕ ei[ 12ϕaiG−1
ab
ϕb+SF

int[φ̄,ϕ]]
∫

Dϕ ei 12ϕaiG−1
ab
ϕb

)}

, (4.23)

es decir

Γ2PI [φ̄, G] = S[φ̄] +
i

2
Tr (AG) +

i

2
Tr
[

ln(G−1)
]

+ Γ2[φ̄, G], (4.24)

donde el tercer y cuarto término corresponden al logaritmo de cada uno de los factores dentro

del logaritmo de la segunda ĺınea de la expresión anterior respectivamente. El último término

Γ2[φ̄, G] es −i veces la suma de los diagramas de vaćıo irreducibles de dos part́ıculas, con pro-

pagador G y vértices dados por SFint. Estos diagramas, conocidos como 2PI, son todos aquellos

que permanecen conectados luego de cortarles dos ĺıneas internas.

Nuevamente tomamos como ejemplo a la teoŕıa λφ4 con N = 1, para la cual los primeras

contribuciones a Γ2[φ̄, G] se muestran en la Figura 4.2.

De aqúı en adelante utilizaremos una parametrización para la acción efectiva 2PI alternativa

a (4.24) pero consistente con [29], ya que luego a partir de la sección 4.1.4 utilizaremos algunos

resultados de dicha referencia. Ésta es

Γ2PI [φ̄, G] = S0[φ̄] +
i

2
Tr ln(G−1) +

i

2
Tr(G−1

0 G) + Γint[φ̄, G], (4.25)
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Figura 4.2: Primeros diagramas de vaćıo irreducibles de dos part́ıculas que contribuyen a la

acción efectiva 2PI en la teoŕıa λφ4. Éstos se construyen con los vértices dados por (4.10) y

utilizando en las ĺıneas internas el propagador exacto G. Notar que estos diagramas son un

subconjunto de aquellos de la Fig. 4.1 (los de la segunda ĺınea de dicha figura son 1PI).

donde S0 es la parte cuadrática de la acción clásica S sin ningún contratérmino y

i(G−1
0 )ab(x, x

′) =
1√−g

δ2S0[φ̄]

δφa(x)δφb(x′)

1√−g′ . (4.26)

La parte definida como de interacción esta dada por

Γint[φ̄, G] = Sint[φ̄] +
1

2
Tr

[

δ2Sint
δφ̄δφ̄

G

]

+ Γ2[φ̄, G], (4.27)

donde Sint = S − S0, distinta a SFint, y la funcional Γ2[φ̄, G] es aquella definida anteriormente.

4.1.3. Relación entre las acciones efectivas 1PI y 2PI

Consideremos las ecuaciones de movimiento que se obtienen a partir de la acción efectiva

2PI, pidiendo la condición de extremo respecto a variaciones de φ̄ o G,

δΓ2PI [φ̄, G]

δφ̄a
= 0, (4.28)

δΓ2PI [φ̄, G]

δGab

= 0. (4.29)

Podemos comprobar que a partir de la acción efectiva 2PI y de estas ecuaciones podemos

recuperar la acción efectiva 1PI. En efecto, resolviendo la ecuación (4.29), obtendremos al

propagador exacto G como funcional de φ̄, G[φ̄]. Si ahora reemplazamos esta solución en la

acción efectiva 2PI, obtenemos una funcional solo de φ̄ que podemos identificar con la acción

efectiva 1PI,

Γ[φ̄] = Γ2PI [φ̄, G[φ̄]]. (4.30)

Para convencernos de esta relación, podemos comprobar que la solución del sistema de ecua-

ciones (4.28) y (4.29) extremiza (4.30), en efecto,

δΓ[φ̄]

δφ̄a(x)
=
δΓ2PI [φ̄, G[φ̄]]

δφ̄a(x)
+

∫∫

x′,x′′

δΓ2PI [φ̄, G[φ̄]]

δGbc(x′, x′′)

δGbc(x
′, x′′)

δφ̄a(x)
= 0. (4.31)
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Esto muestra la equivalencia entre ambas formulaciones del problema exacto. La diferencia

surge, sin embargo, al considerar truncaciones de las expansiones diagramáticas de las acciones

efectivas, dado que en un caso los diagramas involucran al propagador libre G0, mientras que

en otro al propagador exacto G. De esta forma, cada diagrama 2PI de la expansión de Γ2[φ̄, G]

contiene una resumación de un subconjunto infinito de los diagramas 1PI de la expansión de

Γ1[φ̄]. Estos son precisamente aquellos diagramas que visten al propagador.

4.1.4. Relaciones de Consistencia

Como se ha discutido en la subsección anterior, ambas formulaciones 1PI y 2PI son equi-

valentes. Sin embargo en el segundo caso se tiene un grado de libertad adicional respecto al

primero. Esto conduce a ciertas relaciones de consistencia que reflejan la redundancia de es-

ta descripción, que pueden ser expresadas en términos de las funciones de 2 y 4 puntos. En

el formalismo 2PI hay varias formas de construir estas funciones según se tomen variaciones

funcionales de la acción efectiva 2PI con respecto de φ̄ o G, pero que en última instancia no

pueden ser independientes. En el caso particular de teoŕıas con simetŕıa Z2, es decir φ → −φ,
se ha mostrado en [29] que estas relaciones toman la siguiente forma,

δ2Γint[φ̄, G]

δφ̄a(x)δφ̄b(x′)

∣

∣

∣

∣

∣

Ḡ,φ̄=0

= 2
δΓint[φ̄, G]

δGab(x, x′)

∣

∣

∣

∣

∣

Ḡ,φ̄=0

, (4.32)

δ4Γ[φ̄]

δφ̄a(x1)δφ̄b(x2)δφ̄c(x3)δφ̄d(x4)

∣

∣

∣

∣

∣

φ̄=0

= 2







δ2Γint[φ̄, G]

δGab(x1, x2)δGcd(x3, x4)

∣

∣

∣

∣

∣

Ḡ,φ̄=0

+ perms(a, b, c, d)







−1

2

δ4Γint[φ̄, G]

δφ̄a(x1)δφ̄b(x2)δφ̄c(x3)δφ̄d(x4)

∣

∣

∣

∣

∣

Ḡ,φ̄=0

, (4.33)

donde Ḡ = G[φ̄] es la solución de (4.29). Estas relaciones se derivan de las relaciones exactas

entre las acciones efectivas 1PI y 2PI descriptas anteriormente (ver Apéndice B).

En una dada truncación sistemática de Γ2[φ̄, G], las relaciones de consistencia se satisfacen

hasta el orden relevante de expansión, con posibles violaciones de orden superior. Por otra parte,

como veremos en la próxima sección, por diversas razones podŕıa ser de interés algún tipo de

truncación que no cuente con un parámetro pequeño que controle la expansión. En este caso,

las relaciones de consistencia podŕıan no satisfacerse y nos encontraŕıamos ante un problema
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para definir los observables de la teoŕıa. ¿Cuál seŕıa la definición correcta de la función de 2-

puntos si hay dos formas no equivalentes de calcularla? Esto conduce a la conclusión de que es

imperativo forzar de alguna manera la validez de estas relaciones de consistencia en la ausencia

de una expansión sistemática. Veremos que un paso crucial del procedimiento consistente de

renormalización de [29] es imponer estas relaciones en un determinado punto de renormalización

(que elegimos φ̄ = 0), para lo cual es necesaria la introducción de más de un contratérmino

diferente por cada parámetro de la acción clásica de partida.

4.2. Aproximación de Hartree

Aunque estemos considerando un esquema en el cual hay una resumación infinita de diagra-

mas, no podemos calcular la acción efectiva completa porque todav́ıa tendŕıamos que hacer una

suma infinita de los diagramas 2PI de vaćıo en el término Γ2. Por lo tanto, debemos recurrir a

algún tipo de aproximación. Al orden más bajo podemos descartar completamente el término

Γ2, lo que corresponde a la aproximación de 1-loop y en este caso no hay diferencia con la

acción efectiva 1PI. Esto es porque los diagramas de vaćıo 2PI comienzan a 2-loops, y es a

partir de este orden en adelante que la acción efectiva 2PI da resultados no triviales comparada

con la acción efectiva 1PI. Con la acción desplazada dada por la ecuación (4.10), existen dos

diagramas que contribuyen a 2-loops. Estos son la doble burbuja y el atardecer y se muestran

en la Figura 4.3.

Figura 4.3: Diagramas de vaćıo 2PI a 2-loops: el “atardecer” (a la izquierda) y la “doble burbuja”

(a la derecha).

La aproximación de Hartree consiste en conservar sólamente la contribución local (diagrama

de la doble burbuja). Este diagrama, al estar construido con el propagador exacto, contiene una

suma infinita de los diagramas denominados “daisy” y super-“daisy” (margarita en inglés) de

la teoŕıa perturbativa estándar. En el caso de un solo campo, es decir N = 1, ambos diagramas

de la Figura 4.3 son del mismo orden. Dado el carácter no sistemático de esta truncación,

las relaciones de consistencia dejan de satisfacerse en general. Por otro lado, en el caso de un

modelo con simetŕıa O(N) esta aproximación resulta exacta en el ĺımite de N → ∞, ya que el
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diagrama no local resulta de orden superior en 1/N con respecto al diagrama local. En ese caso

las relaciones de consistencia se cumplen automáticamente orden a orden. Por el momento nos

concentraremos en el caso N = 1, volviendo sobre el modelo O(N) sobre el final del caṕıtulo.

La acción efectiva 2PI en la aproximación de Hartree toma la siguiente forma

Γ2PI [φ̄, G] = −
∫

C
ddx

√−g
[

1

2
φ̄
(

−�+m2
B2 + ξB2R

)

φ̄+
1

4!
λB4φ̄

4

]

+
i

2
Tr ln(G−1)

−1

2

∫

C
ddx

√−g
[

−�+m2
B0 + ξB0R +

1

2
λB2φ̄

2

]

G(x, x) (4.34)

−λB0

8

∫

C
ddx

√−g G2(x, x),

mientras que las ecuaciones de movimiento del valor medio del campo y del propagador exacto,

obtenidas extremizando esta acción respecto de variaciones de φ̄ y G respectivamente, toman

la siguiente forma en la misma aproximación
(

−�+m2
B2 + ξB2R +

λB4

6
φ̄2 +

λB2

2
[G]

)

φ̄(x) = 0, (4.35)

(

−�+m2
B0 + ξB0R +

λB2

2
φ̄2 +

λB0

2
[G]

)

G(x, x′) = −iδ
d(x− x′)√−g′ , (4.36)

donde [G] = [G1]/2 = 〈ϕ2〉. Aqúı es importante remarcar que dado el carácter local de es-

tas ecuaciones (la ausencia de integrales espacio-temporales), se pierde la distinción entre el

formalismo de camino temporal cerrado (o IN-IN) y el formalismo usual IN-OUT [48]. En con-

secuencia, la ecuación del propagador es válida de forma independiente para cualquiera de los

propagadores del formalismo IN-IN (2.47).

Estas ecuaciones contienen divergencias provenientes del ĺımite de coincidencia [G] = G(x, x)

del propagador, las cuales deberán tratadas mediante el proceso de renormalización. En la

acción efectiva 2PI (4.34) hemos incorporado varios contratérminos diferentes asociados a un

mismo parámetro de la acción clásica, lo cual es denotado mediante distintos sub́ındices en los

parámetros desnudos que indican la cantidad de potencias de φ̄ en el término correspondiente

en (4.34). En la referencia [29], los autores desarrollaron un procedimiento de renormalización

consistente en espacio plano, el cual toma esta ambigüedad y la explota para ajustar cómo

cada diagrama contribuye a la cancelación de las divergencias. Esto a su vez resulta un punto

crucial para lograr que el procedimiento de renormalización respete la validez de las relaciones

de consistencia de la teoŕıa, al menos cerca del punto de renormalización. Nuevamente, en el

caso del ĺımite de N grande del modelo O(N), dichos contratérminos resultan naturalmente

iguales.
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En la próxima subsección, generalizaremos dicho procedimiento a espacios curvos generales.

Para ello, se fijará la relación entre los diferentes contratérminos imponiendo la validez de las

relaciones de consistencia para las funciones de 2 y 4-puntos.

Previo a discutir la renormalización, vale destacar que estas ecuaciones son similares a

aquellas obtenidas al considerar una aproximación Gaussiana al nivel de las ecuaciones del

valor medio del campo [55], que también pueden obtenerse a partir de un principio variacional

[56, 57]. En ese caso, el punto de partida es la ecuación de movimiento clásica para φ, que

luego es separado entre un campo medio φ̄ = 〈φ〉 y una fluctuación ϕ = φ− φ̄. Luego, tomando

el valor de expectación de la ecuación clásica del campo uno obtiene un par de ecuaciones

acopladas para φ̄ y ϕ, o equivalentemente para φ̄ y el propagador de las fluctuaciones G(x, x′).

Finalmente, bajo la suposición de que los estados son Gaussianos, es decir, que las funciones

de n-puntos pueden expresarse en términos de la función de 2-puntos

〈ϕ3〉 = 0, (4.37a)

〈ϕ4〉 = 3〈ϕ2〉2, (4.37b)

las ecuaciones resultantes son similares a (4.35) y (4.36). Sin embargo, la diferencia es que

en este caso no hay una interpretación diagramática para cada una de las contribuciones que

admita distintos contratérminos, aśı como tampoco se tienen relaciones de consistencia para

fijarlos. Por lo tanto, en este enfoque resultaŕıa poco natural el uso de diferentes contratérminos.

4.2.1. Renormalización en espacios curvos generales

A continuación analizaremos la renormalización de las ecuaciones (4.35) y (4.36) en la apro-

ximación de Hartree en presencia de una métrica de fondo general. Utilizaremos la siguiente

parametrización de las constantes desnudas:

m2
Bi = m2 + δm2

i , (4.38a)

ξBi = ξ + δξi, (4.38b)

λBi = λ+ δλi, (4.38c)

que corresponde a un esquema de sustracción mı́nima (es decir, los contratérminos δm2
i , δξi y

δλj (i = 0, 2,j = 0, 2, 4) sólo contienen divergencias y ninguna parte finita). Como se mencionó

en la sección anterior, con el fin de fijar los diferentes contratérminos dentro de este nivel de

aproximación, imponemos las relaciones de consistencia (4.32) y (4.33) en los diferentes núcleos
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2PI de 2 y 4 puntos. Estos núcleos son calculados a partir de las derivadas funcionales de

Γint
[

φ̄, G
]

evaluadas en φ̄ = 0, quien, comparando entre (4.25) y (4.34), se lee

Γint[φ̄, G] = −
∫

C
ddx

√−g
[

1

2

(

δm2
2 + δξ2R

)

φ̄2 +
1

4!
(λ+ δλ4) φ̄

4

]

−1

2

∫

C
ddx

√−g
[

δm2
0 + δξ0R +

1

2
(λ+ δλ2) φ̄

2

]

G(x, x) (4.39)

−1

8

∫

C
ddx

√−g (λ+ δλ0)G
2(x, x),

donde usamos que la inversa del propagador libre G−1
0 en (4.25) se define como

G−1
0 = i

(

−�+m2 + ξR
)

. (4.40)

Luego de tomar algunas derivadas funcionales vemos que los núcleos de 2-puntos en φ̄ = 0 estan

dados por

δ2Γint
δφ̄(x)δφ̄(x′)

∣

∣

∣

∣

∣

φ̄=0

= −√−g
[

δm2
2 + δξ2R +

1

2
(λ+ δλ2)[G]

]

δd(x− x′), (4.41)

2
δΓint

δG(x, x′)

∣

∣

∣

∣

∣

φ̄=0

= −√−g
[

δm2
0 + δξ0R +

1

2
(λ+ δλ0)[G]

]

δd(x− x′). (4.42)

Por lo tanto, la condición (4.32) implica que

δm2
0 = δm2

2 ≡ δm2, (4.43a)

δξ0 = δξ2 ≡ δξ, (4.43b)

δλ0 = δλ2. (4.43c)

Dado que ambos contratérminos de masa son iguales, aśı como también lo son ambos con-

tratérminos de acomplamiento con la curvatura, podemos obviar los sub́ıdices en esos casos de

aqúı en adelante.

Pasamos ahora a la segunda relación de consistencia (4.33). Esta ecuación relaciona a los

núcleos de 4 puntos en φ̄ = 0, dos de los cuales pueden ser calculados tomando derivadas de

Γint
[

φ̄, G
]

:

δ4Γint
δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

φ̄=0

= −(λ+ δλ4)

∫

x

δ1xδ2xδ3xδ4x, (4.44)

δ2Γint
δG12δG34

∣

∣

∣

∣

∣

φ̄=0

= −1

4
(λ+ δλ0)

∫

x

δ1xδ2xδ3xδ4x, (4.45)
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donde utilizamos φi ≡ φ̄(xi) a modo de abreviación notacional, aśı como también

∫

x

δ1xδ2xδ3xδ4x =

∫

C
ddx

√−g δd(x1 − x)δd(x2 − x)δd(x3 − x)δd(x4 − x). (4.46)

La otra cantidad que debe ser especificada es la cuarta derivada funcional de la acción efectiva

1PI. Su valor en φ̄ = 0 es fácilmente interpretado como la constante de acoplamiento renorma-

lizada λR, ya que el potencial efectivo es proporcional a la acción efectiva en un valor constante

de φ̄. Por lo tanto

δ4Γ[φ̄]

δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

φ̄=0

= −λR
∫

x

δ1xδ2xδ3xδ4x, (4.47)

Es importante tener en cuenta que, dado que la acción efectiva 1PI depende de la geometŕıa de

fondo, en general, no es posible imponer estas relaciones de consistencia exactamente para cual-

quier métrica arbitraria. Esperamos una situación análoga en el espacio-tiempo de Minkowski

si, por ejemplo, el valor medio del campo dependiese del tiempo. Sin embargo, en ese caso, con

el fin de definir los parámetros renormalizados, uno todav́ıa puede imponer las relaciones de

consistencia para algún valor particular y constante del campo. Esto es suficiente para fijar los

contratérminos. Luego, una vez hechas finitas las ecuaciones, se espera una desviación de las

relaciones de consistencia dependiente del tiempo, pero pequeña. Más precisamente, se espera

que cualquier desviación sea del mismo orden que las contribuciones despreciadas en la apro-

ximación considerada para Γ2. La elección correspondiente en nuestro caso seŕıa considerar un

espacio-tiempo con curvatura constante como punto de renormalización en el cual imponer las

relaciones de consistencia. Volveremos sobre este punto importante en la próxima sección.

Reemplazando los ingredientes anteriores en la segunda relación de consistencia (4.33) po-

demos fijar el contratérmino que falta. Aqúı es importante tener en cuenta las propiedades de

simetŕıa de los núcleos al evualuar las permutaciones. La relación resultante es

δλ4 − 3δλ2 = 2(λ− λR). (4.48)

En este punto se puede ver más claramente las consecuencias de este truncamiento “arbitrario”

de la acción efectiva 2PI, es decir la aproximación de Hartree, al insistir en el cumplimiento de

las propiedades válidas para la teoŕıa exacta.

Con estas relaciones podemos ahora volver a las ecuaciones del valor medio del campo y del

propagador. En lugar de usar la ecuación del propagador de Feynman GF (x, x
′), o cualquiera

de los propagadores de camino temporal cerrado, consideraremos la ecuación para la función

elemental de Hadamard G1(x, x
′) (2.21). Esta contiene la misma información pero resulta más
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cómoda en lo que sigue, aśı como también en la renormalización de las EES que estudiaremos

en el caṕıtulo 6. Entonces, en lugar de (4.42) tenemos
(

−�+m2
B0 + ξB0R +

λB2

2
φ̄2 +

λB0

4
[G1]

)

G1(x, x
′) = 0. (4.49)

La renormalizabilidad de las ecuaciones del valor medio del campo y del propagador significa

que se puedan hacer finitas mediante una elección adecuada de contratérminos. Si este es el

caso, las ecuaciones resultantes pueden expresarse en términos de una masa dinámica finita más

un término de acoplamiento con la curvatura renormalizado, es decir,
(

−�+m2
dyn + ξRR− 1

3
λRφ̄

2

)

φ̄(x) = 0, (4.50)

(

−�+m2
dyn + ξRR

)

G1(x, x
′) = 0. (4.51)

La masa dinámicam2
dyn es una función escalar dependiente de las coordenadas espacio-temporales,

determinada por una ecuación autoconsistente

m2
dyn + ξRR = m2 + δm2 + (ξ + δξ)R +

1

2
(λ+ δλ2)φ̄

2 +
1

4
(λ+ δλ2)[G1], (4.52)

dado quem2
dyn también entra en el miembro derecho a través de [G1]. En esta expresión ya hemos

utilizado las relaciones entre los contratérminos requeridas por las relaciones de consistencia.

Las divergencias provienen de [G1], y deben ser canceladas mediante una elección adecuada de

los contratérminos δm2, δξ and δλ2.

Con el fin de exponer y aislar las divergencias, utilizamos la expansión de Schwinger-DeWitt

para [G1], ec. (2.30), evaluándola para una masa variable mdyn y acoplamiento con la curvatura

ξR. Insertando dicha expansión en (4.52) se obtiene,

m2
dyn + ξRR = m2 + δm2 + (ξ + δξ)R +

1

2
(λ+ δλ2)φ̄

2 +
1

16π2ǫ
(λ+ δλ2)

[

m2
dyn +

(

ξR − 1

6

)

R

]

+
1

2
(λ+ δλ2)TF . (4.53)

Aqúı, demandando que la parte divergente se cancele con las contribuciones de los contratérmi-

nos sin dejar remanente finito (sustracción mı́nima), obtenemos las siguientes ecuaciones inde-

pendientes

m2
dyn + ξRR = m2 + ξR +

1

2
λφ̄2 +

1

2
λTF , (4.54)

0 =

{

δm2 + δξR +
1

2
δλ2φ̄

2 +
1

16π2ǫ
(λ+ δλ2)

[

m2
dyn +

(

ξR − 1

6

)

R

]

+
1

2
δλ2TF

}

.(4.55)
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Estas determinan los contratérminos δm2, δξ y δλ2, a los que de ahora en más nos referiremos

como contratérminos de sustracción mı́nima. Usando la primera ecuación para m2
dyn + ξRR y

remplazarlo en la segunda, llegamos a una expresión que depende de los contratérminos y de

las constantes finitas

0 =

[

δm2 +
m2

16π2ǫ
(λ+ δλ2)

]

+

[

δξ +
1

16π2ǫ

(

ξ − 1

6

)

(λ+ δλ2)

]

R

+
1

2

[

δλ2 +
λ

16π2ǫ
(λ+ δλ2)

]

(

φ̄2 + TF
)

, (4.56)

donde cada corchete debe anularse independientemente dadas las dependencias en las distintas

variables φ̄, m2
dyn y R. Los contratérminos resultantes son

δm2 = − λ

16π2ǫ

(

m2

1 + λ
16π2ǫ

)

, (4.57a)

δξ = − λ

16π2ǫ

(

(

ξ − 1
6

)

1 + λ
16π2ǫ

)

, (4.57b)

δλ2 = − λ

16π2ǫ

(

λ

1 + λ
16π2ǫ

)

, (4.57c)

y los parámetros desnudos (4.38) quedan

m2
B =

m2

1 + λ
16π2ǫ

= m2

+∞
∑

n=0

(

− λ

16π2ǫ

)n

, (4.58a)

ξB − 1

6
=

(

ξ − 1
6

)

1 + λ
16π2ǫ

=

(

ξ − 1

6

) +∞
∑

n=0

(

− λ

16π2ǫ

)n

, (4.58b)

λB2 =
λ

1 + λ
16π2ǫ

= λ

+∞
∑

n=0

(

− λ

16π2ǫ

)n

. (4.58c)

Notar que tanto los contratérminos como los parámetros desnudos tienen una estructura de

polos no trivial. Esto es evidencia del carácter no perturbativo de la acción efectiva 2PI. Expan-

diendo estas expresiones en λ permiŕıa en principio comparar con los resultados perturbativos

usuales.

Una vez hecha finita, la ecuación para la masa dinámica es

m2
dyn + ξRR = m2 + ξR +

1

2
λφ̄2 +

λ

32π2

{[

m2
dyn +

(

ξR − 1

6

)

R

]

ln

(

m2
dyn

µ̃2

)

+

(

ξR − 1

6

)

R− 2F (m2
dyn, {R})

}

, (4.59)
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donde hemos utilizado la expresión expĺıcita para TF dada por la ecuación (2.31). Esto concluye

la prueba de que el proceso de renormalización consistente puede implementarse en espacios

curvos generales, al menos en la medida en la que sea válido descartar los efectos del campo

cuántico sobre la métrica de fondo. Un análisis completo debe incluir también la renormalización

de las EES. Postergaremos este punto hasta el caṕıtulo 6.

Volviendo a la ecuación (4.59), esta es una ecuación autoconsistente para m2
dyn(φ̄, R) cuyo

resultado luego debe ser reemplazado en la ecuación del campo (4.50), para finalmente resolver

para φ̄. Sin embargo, en la aproximación de Hartree (4.50) tiene una dependencia expĺıcita con la

constante de acoplamiento renormalizada λR como consecuencia de las relaciones de consistencia

(4.48), mientras que (4.59) depende sólo de la constante de acoplamiento de sustracción mı́nima

λ. En la siguiente sección discutiremos como reescribir los resultados utilizando únicamente los

parámetros renormalizados.

4.3. Potencial efectivo y parámetros renormalizados

El potencial efectivo es una cantidad útil para investigar el efecto de las fluctuaciones cuánti-

cas sobre la evolución del valor medio del campo φ̄. Éste se relaciona con la acción efectiva 1PI

(4.3) de la siguiente manera

Veff (φ̄) = −Γ[φ̄]

Ω

∣

∣

∣

∣

∣

φ̄=const.

, (4.60)

donde Ω es el volumen del espacio-tiempo, y es en general una cantidad divergente. Normal-

mente, el potencial efectivo es más simple de calcular que la acción efectiva. En efecto, por su

definición el potencial efectivo interviene a través de su derivada en la ecuación de movimiento

(4.5) que se obtiene al extremizar la acción efectiva 1PI. Por lo tanto, puede ser identificado en

la ecuación (4.50),
dVeff
dφ̄

=

(

m2
dyn + ξRR− 1

3
λRφ̄

2

)

φ̄. (4.61)

Como hemos mencionado, la ecuación renormalizada para el valor medio del campo (4.50), al

ser combinada con la solución de la ecuación de la masa dinámica (4.59), dependerá de una

mezcla de parámetros finitos asociados a la sustracción mı́nima m2, ξ y λ, y de parámetros

renormalizados ξR y λR (este último viniendo de la relación de consistencia a través de la

ecuación del campo), aśı como tambien depende de la escala de regularización µ̃. Los parámetros

renormalizados son justamente aquellos que caracterizan al potencial efectivo Veff y en general

no serán iguales a los parámetros de sustración mı́nima. Ambos conjuntos de parámetros estarán
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relacionados entre śı mediante µ̃. Es conveniente entonces expresar la ecuación para m2
dyn,

(4.59), en términos de uno solo de estos conjuntos de parámetros. Dado que las relaciones de

consistencia toman una forma particularmente simple solamente cuando φ̄ = 0, vamos a utilizar

esa elección como punto de renormalización. También es necesario fijar la geometŕıa de fondo

a una de curvatura constante R0.

4.3.1. Punto de renormalización en espacio-tiempo plano

En esta subsección vamos a elegir el espacio-tiempo de Minkowski como el punto de re-

normalización, para el cual R0 = 0. Con estas condiciones, los parámetros renormalizados se

definen como

m2
R ≡ d2Veff

dφ̄2

∣

∣

∣

∣

∣

φ̄=0,R=0

= m2
dyn(φ̄ = 0, R = 0), (4.62a)

ξR ≡ d3Veff
dR dφ̄2

∣

∣

∣

∣

∣

φ̄=0,R=0

=
dm2

dyn

dR

∣

∣

∣

∣

∣

φ̄=0,R=0

+ ξR, (4.62b)

λR ≡ d4Veff
dφ̄4

∣

∣

∣

∣

∣

φ̄=0,R=0

= 3
d2m2

dyn

dφ̄2

∣

∣

∣

∣

∣

φ̄=0,R=0

− 2λR. (4.62c)

La definición (4.62c) es la misma que (4.47). A partir de estas definiciones y de las ecuaciones

(4.61) y (4.59), es sencillo llegar a expresiones que relacionan los parámetros renormalizados

m2
R, ξR y λR con aquellos de sustracción mı́nima m2, ξ y λ y µ̃ (ver Apéndice C). Éstas son

m2
R =

m2

[

1− λ
32π2 ln

(

m2
R

µ̃2

)] , (4.63a)

(

ξR − 1

6

)

=

(

ξ − 1
6

)

[

1− λ
32π2 − λ

32π2 ln
(

m2
R

µ̃2

)] , (4.63b)

λR =
λ

[

1− λ
32π2 − λ

32π2 ln
(

m2
R

µ̃2

)] . (4.63c)

Utilizando estas relaciones es posible encontrar combinaciones útiles de parámetros de sustrac-

ción mı́nima que sean independientes de µ̃:

(

ξB − 1
6

)

λB
=

(

ξ − 1
6

)

λ
=

(

ξR − 1
6

)

λR
, (4.64)
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y

m2
B

λB2

=
m2

λ
= m2

R

(

1

32π2
+

1

λR

)

≡ m2
R

λ∗R
, (4.65)

donde hemos introducido λ∗R como un atajo notacional, con la propiedad de λ∗R → λR para

λR ≪ 1.

Se debe tener en cuenta que, aunque en principio m2 podŕıa tomar valores negativos, el

parámetrom2
R es positivo por construcción. Esto es aśı porquem2

R es una solución de la ecuación

de la masa dinámica en el espacio de Minkowski para φ̄ = 0, la cual se basa en la existencia de

un propagador estable para las fluctuaciones (ver la ec. (2.30)). Por lo tanto, estas ecuaciones

nos dicen que en este caso m2 también debe ser positiva, siempre que λ∗R y λ sean positivos.

Esto es una consecuencia de haber definido los parámetros renormalizados en el espacio-tiempo

de Minkowski, y como veremos más adelante, esta restricción se puede relajar tomando el punto

de renormalización en el espacio-tiempo de De Sitter.

En cualquier caso, vale la pena señalar que las relaciones de consistencia imponen restric-

ciones no triviales a los parámetros finitos de la teoŕıa. Estas restricciones no se consideran en

el enfoque de otros autores [58], quienes trabajando con sustración mı́nima, asumen desde el

principio que δλ4 = 3δλ2. Por un lado, dado que estamos trabajando con una aproximación

a la acción efectiva, se podŕıa argumentar que no es necesario imponer que las relaciones de

consistencia se cumplan exactamente en el punto de renormalización, sino sólo utilizarlas para

fijar la proporcionalidad entre los contratérminos, porque de todas formas no se espera que se

sigan cumpliendo más allá de ese punto. Esto es, en principio, correcto. Sin embargo, a me-

nos que se especifique un conjunto de condiciones de renormalización, la interpretación de los

parámetros finitos no está clara y las ecuaciones son dependientes de µ̃, como sucede en la Ref.

[58]. Más aún, si asumimos que δλ4 = 3δλ2 y luego definimos las condiciones de renormalización

a partir del potencial efectivo (como lo estamos haciendo), resulta que la ecuación de la ma-

sa dinámica no puede ser enteramente escrita en términos de sólo parámetros renormalizados,

y por lo tanto es dependiente de µ̃. Esto se puede ver fácilmente teniendo en cuenta que es

debido a la combinación en el miembro derecho de la ecuación (4.48) que sea λR y no λ que

aparezca en la ecuación (4.50). Viéndolo al revés, si se imponen las relaciones de consistencia,

la relación δλ4 = 3δλ2 implica que λ = λR, lo que da una elección particular del parámetro

µ̃. Nuestro análisis muestra que, tomando el espacio-tiempo de Minkowski como el punto de

renormalización, la elección m2 < 0 no es compatible con las relaciones de consistencia. Apare-

cerán restricciones similares cuando se considere una definición más general de los parámetros

renormalizados.
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Las relaciones anteriores entre los parámetros pueden ser utilizadas para reescribir la ecua-

ción para m2
dyn solamente en términos de los parámetros renormalizados. Luego de un poco de

álgebra se llega a

m2
dyn = m2

R +
λ∗R
2
φ̄2 +

λ∗R
32π2

{[

m2
dyn +

(

ξR − 1

6

)

R

]

ln

(

m2
dyn

m2
R

)

− 2F (m2
dyn, {R})

}

.(4.66)

Este resultado muestra quem2
dyn puede ser completamente expresada en términos de los paráme-

tros renormalizados, mostrando de forma manifesta la invarianza ante cambios de la escala de

regularización µ̃. En consecuencia, ambas ecuaciones de φ̄ y del propagador mostrarán también

estas propiedades. También puede verse que en el caso de un campo libre, λR → 0, y por lo

tanto λ∗R → 0, la masa dinámica se reduce a la masa renormalizada, m2
dyn → m2

R.

Por último, a partir de los parámetros renormalizados es posible definir los contratérminos

de manera alternativa, consitentes con un esquema de sustracción no mı́nima,

δm̃2 = m2
B −m2

R =
m2
R

[

1− λ
32π2 ln

(

m2
R

µ̃2

)]

1 + λ
16π2ǫ

−m2
R = − λ∗R

32π2

m2

(

1 + λ
16π2ǫ

)

[

2

ǫ
+ ln

(

m2
R

µ̃2

)]

= −m2
B

λ∗R
32π2

[

2

ǫ
+ ln

(

m2
R

µ̃2

)]

, (4.67)

donde aqúı hemos usado las ecuaciones (4.58a) y (4.63a) para m2
B y m2, respectivamente, y

luego la ecuación (4.65). De manera similar obtenemos

δξ̃ ≡ ξB − ξR = −
(

ξB − 1

6

)

λR
32π2

[

2

ǫ
+ 1 + ln

(

m2
R

µ̃2

)]

, (4.68)

δλ̃ ≡ λB2 − λR = −λB
λR
32π2

[

2

ǫ
+ 1 + ln

(

m2
R

µ̃2

)]

. (4.69)

Además de los polos en ǫ, estos contratérminos contienen un término finito dependiente de µ̃.

En estas expresiones, se recuperan los resultados conocidos a 1-loop reemplazando m2
B → m2

R,

ξB → ξR y λB2 → λR en los miembros derechos.

4.3.2. Punto de renormalización en De Sitter

Hasta aqúı hemos fijado las relaciones de consistencia en el espacio de Minkowski mediante

la definición de los parámetros renormalizados en R0 = 0, y esto fue suficiente para mostrar, por

ejemplo, que las ecuaciones renormalizadas pueden ser expresadas de una forma manifestamente

independiente de µ̃. Sin embargo, estamos fijando las relaciones de consistencia en una métrica
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de fondo inadecuada para estudiar un problema cosmológico. En este caso, la métrica de interés

es del tipo Friedmann-Robertson-Walker, por lo que resultaŕıa más natural tomar como punto

de renormalización el espacio-tiempo de De Sitter con una curvatura escalar R0, que también

satisface la condición de tener una curvatura constante. Entonces, se podŕıan fijar las relaciones

de consistencia en un tiempo dado, haciendo coincidir R0 al valor correspondiente de R (que

depende del factor de escala a(t)) en ese tiempo. A medida que pasa el tiempo, las relaciones

de consistencia se violaŕıan de forma incremental. Por supuesto, incluso si estamos estudiando

las ecuaciones en De Sitter, para el cual R es independiente del tiempo, el empalme puede

hacerse de forma exacta sólo si R y φ̄ están fijados de antemano. Sin embargo, este no es el caso

que estamos considerando aqúı, ya que nuestro objetivo es analizar la dependencia de la masa

dinámica y potencial efectivo con estas dos variables. Por lo tanto, lo más natural es imponer

las relaciones de consistencia en un punto de renormalización determinado. Otro punto a favor

de la generalización a De Sitter es que, como se ha visto en la subsección anterior, el punto

de renormalización en Minkowski no permite ciertos valores de los parámetros de sustracción

mı́nima que pueden ser de interés, como por ejemplo m2 < 0. El objetivo de esta subsección es

generalizar los resultados anteriores al caso en que se toma el punto de renormalización para

una métrica de De Sitter fija.

Comenzamos considerando la relación de consistencia para las funciones de 4-puntos (4.33),

lo cual da una nueva definición de λR

δ4Γ[φ̄]

δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

φ̄=0,R=R0

= −λR
∫

x

δ1xδ2xδ3xδ4x, (4.70)

donde la notación R = R0 implica que impĺıcitamente estamos evaluando en el espacio-tiempo

de De Sitter. También evitamos utilizar una notación nueva para λR. La relación de consistencia

para las funciones de 2-puntos (4.32) se mantiene sin cambios. Las definiciones de los parámetros

renormalizados deben ser adaptadas a esta situación evaluando el potencial efectivo en R = R0,

m2
R + ξRR0 ≡

d2Veff
dφ̄2

∣

∣

∣

∣

∣

φ̄=0,R=R0

= m2
dyn(φ̄ = 0, R = R0) + ξRR0, (4.71a)

ξR ≡ d3Veff
dR dφ̄2

∣

∣

∣

∣

∣

φ̄=0,R=R0

=
dm2

dyn

dR

∣

∣

∣

∣

∣

φ̄=0,R=R0

+ ξR, (4.71b)

λR ≡ d4Veff
dφ̄4

∣

∣

∣

∣

∣

φ̄=0,R=R0

= 3
d2m2

dyn

dφ̄2

∣

∣

∣

∣

∣

φ̄=0,R=R0

− 2λR. (4.71c)
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Estas redefiniciones conducen a la generalización de las ecuaciones (4.63) que relacionan los

parámetros de sustración mı́nima con los renormalizados, con una dependencia expĺıcita en R0,

m2
R =

m2 + λ
16π2

[

R0
dFdS

dR

∣

∣

∣

m2
R,R0

− FdS(m
2
R, R0)

]

[

1− λ
32π2 ln

(

m2
R

µ̃2

)] , (4.72a)

(

ξR − 1

6

)

=

(

ξ − 1
6

)

− λ
16π2

dFdS

dR

∣

∣

∣

m2
R,R0

[

1− λ
32π2 − λ

32π2 ln
(

m2
R

µ̃2

)] , (4.72b)

λR =
λ

[

1− λ
32π2 − λ

32π2 ln
(

m2
R

µ̃2

)

− λ
32π2

(

(ξR− 1
6
)R0

m2
R

− 2dFdS

dm2

∣

∣

∣

m2
R,R0

)] . (4.72c)

Aqúı aparece la función FdS asociada a la parte finita del propagador en De Sitter, que por

el momento no precisamos especificar. Las ecuaciones originales en el espacio de Minkowski

se recuperan facilmente para R0 → 0, lo cual anula todos los términos que involucran a la

función FdS o sus derivadas, de acuerdo con las propiedades (2.32). Siguiendo el procedimiento

delineado en el espacio de Minkowski, podemos combinar estas ecuaciones para encontrar re-

laciones independientes de µ̃ entre los parámetros de sustracción mı́nima y los renormalizados,

por ejemplo

m2
B

λB2

=
m2

λ
=
m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2
(4.73)

y

(

ξB − 1
6

)

λB
=

(

ξ − 1
6

)

λ
(4.74)

=

(

ξR − 1
6

)

λR
+

(

ξR − 1
6

)

32π2

[(

ξR − 1

6

)

R0

m2
R

− 2
dFdS
dm2

∣

∣

∣

m2
R,R0

]

+
1

16π2

dFdS
dR

∣

∣

∣

m2
R,R0

≡
(

ξR − 1
6

)

λR
+ J(R0,m

2
R, ξR),

donde en la última ĺınea estamos definiendo la función J(R0,m
2
R, ξR), la cual se anula para

R0 → 0.

Utilizamos las ecuaciones (4.72) para reescribir la ecuación de la masa dinámica (4.59) en
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términos de los nuevos parámetros renormalizados y de FdS,

m2
dyn = m2

R +
λ∗R
2
φ̄2 +

λ∗R
32π2

{

[

m2
dyn +

(

ξR − 1

6

)

R

]

ln

(

m2
dyn

m2
R

)

+
(

m2
dyn −m2

R

)

[

2
dFdS
dm2

∣

∣

∣

m2
R,R0

− (ξR − 1
6
)R0

m2
R

]

(4.75)

+2

[

FdS(m
2
R, R0) +

dFdS
dR

∣

∣

∣

m2
R,R0

(R−R0)− F (m2
dyn, {R})

]

}

.

Nuevamente, el resultado correspondiente al punto de renormalización en el espacio de Minkows-

ki (4.66) se recupera fácilmente en el ĺımite R0 → 0. Finalmente, definimos los contratérminos

asociados a los parámetros renormalizados en De Sitter,

δm̃2 ≡ m2
B −m2

R = − m2
B

32π2

m2
R

(

m2
R

λ∗R
+

(ξR− 1
6)R0

32π2

)

[

2

ǫ
+ ln

(

m2
R

µ̃2

)

− 2
dFdS
dm2

∣

∣

∣

m2
R,R0

]

,(4.76a)

δξ̃ ≡ ξB − ξR = −
(

ξB − 1
6

)

32π2

{

(

ξR − 1
6

)

[

2
ǫ
+ 1 + ln

(

m2
R

µ̃2

)]

+ 2dFdS

dR

∣

∣

∣

m2
R,R0

}

[

(ξR− 1
6)

λR
+ J

] , (4.76b)

δλ̃ ≡ λB2 − λR = −λB2λR
32π2

[

2

ǫ
+ 1 + ln

(

m2
R

µ̃2

)

+
(ξR − 1

6
)R0

m2
R

− 2
dFdS
dm2

∣

∣

∣

m2
R,R0

]

.(4.76c)

Nuevamente se recuperan fácilmente los resultados conocidos a 1-loop, reemplazando m2
B →

m2
R, ξB → ξR, λB2 → λR, y R0 → 0 en los miembros derechos.

Podemos sacar algunas conclusiones de estos resultados usando la expresión expĺıcita para

FdS dada en la ecuación (3.13), aún manteniendo la métrica de fondo sin especificar. Combi-

nando las ecuaciones (4.72a) y (4.72b), llegamos a las siguientes expresiones

M2
R − R0

6
=

m2 + (ξ − 1
6
)R0 − λR0

576π2

1− λ
32π2

[

ln
(

R0

12µ̃2

)

+ g(y0)
] , (4.77a)

(

ξR − 1

6

)

=

(

ξ − 1
6

)

+ λ
32π2

[

y0 − 1
6
−
(

y0 − 1
6

)2
g′(y0)− 1

18

]

1− λ
32π2

[

ln
(

R0

12µ̃2

)

+ g(y0) +
(

y0 − 1
6

)

g′(y0)
] , (4.77b)

λR =
λ

1− λ
32π2

[

ln
(

R0

12µ̃2

)

+ g(y0) +
(

y0 − 1
6

)

g′(y0)
] , (4.77c)
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donde la función g está dada por (3.14). Aqúı estamos utilizando la notación y0 = M2
R/R0 =

m2
R/R0 + ξR. También podemos reexpresar las ecuaciones (4.73) y (4.75), llegando a

m2
B

λB2

=
m2

λ
=

1

λR

(

M2
R − ξRR0

)

+

(

M2
R − R0

6

)

32π2
. (4.78)

y

(

ξB − 1
6

)

λB
=

(

ξ − 1
6

)

λ
=

(

ξR − 1
6

)

λR
+

1

32π2

[

(

y0 −
1

6

)2

g′(y0)−
(

y0 −
1

6

)

+
1

18

]

. (4.79)

En Minkowski la primera relación implicaba que el parámetro m2 no pod́ıa ser negativo, mien-

tras que en De Sitter la misma se modifica de manera tal que esto se vuelve posible, aunque no

bajo condiciones generales. Más espećıficamente, juntando las dos relaciones (4.78) y (4.79) de

arriba encontramos que

1

λ

(

m2

R0

+ ξ

)

=
y0
λR

+
1

32π2

[

(

y0 −
1

6

)2

g′(y0) +
1

18

]

+
1

6

(

1

λ
− 1

λR

)

. (4.80)

Luego, considerando que la aproximación de Hartree demanda que y0 > 0, en cuyo caso puede

verse que g′(y0) > 0, se puede concluir que el término entre corchetes en el miembro derecho

debe ser definido positivo, y por lo tanto la combinación de parámetros de sustracción mı́nima

dada por m2+ξR0 debe ser positiva cuando λR ≥ λ. Queremos enfatizar la importancia de este

resultado. La validez de las relaciones de consistencia (que involucran tanto partes divergentes

como partes finitas) proh́ıbe que simultáneamente λ = λR y m2+ ξR0 < 0, como se ha asumido

en la literatura al analizar la ruptura espontánea de simetŕıa en De Sitter bajo la aproximación

de Hartree [58]. Como consecuencia de este resultado, uno debe permitir que λR < λ, haciendo

inevitable recurrir al potencial efectivo para fijar la parte finita de la relación de consistencia

(4.48).

4.4. Ĺımite de N grande en el modelo O(N)

En el ĺımite de N → ∞, la única contribución a Γ2[φ̄, G] es aquella del diagrama de la doble-

burbuja, mientras que las contribuciones no locales son de orden superior en una expansión en

1/N . Entonces, la acción efectiva 2PI toma una forma local tal como sucede en la aproximación

de Hartree (N = 1), pero difiere de ésta en un factor 3 en la contribución de dicho diagrama

(último término de (4.34)). Por lo tanto, las ecuaciones (exactas en este ĺımite) para el valor
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medio del campo y el propagador son
(

−�+m2
B + ξBR +

λB
2
φ̄2 +

λB
2
[G]

)

φ̄(x) = 0, (4.81)

(

−�+m2
B + ξBR +

λB
2
φ̄2 +

λB
2
[G]

)

G(x, x′) = −iδ
d(x− x′)√−g . (4.82)

El factor del término con φ̄2 en la primera ecuación difiere con el caso de Hartree, y esto resulta

en que ahora ambas ecuaciones (4.81) y (4.82) tengan los mismos coeficientes entre śı (comparar

con (4.35) y (4.36)). Siendo que en este caso se tiene un parámetro pequeño que controla de

manera sistemática la truncación de la acción efectiva 2PI, las relaciones de consistencia se

satisfacen exactamente orden a orden en 1/N . Por lo tanto, no es necesaria la introducción

de contratérminos adicionales. También vale destacar que las condiciones de estado Gaussiano

(4.37) ya nos son válidas en ĺımite N → ∞, sino que ahora se tiene

〈ϕ3〉 = 0, (4.83a)

〈ϕ4〉 = 〈ϕ2〉2. (4.83b)

Siguiendo con las ecuaciones, en términos de φ̄ y G1 ahora se tiene [55]

(

−�+m2
dyn + ξRR

)

φ̄(x) = 0, (4.84)

(

−�+m2
dyn + ξRR

)

G1(x, x
′) = 0, (4.85)

donde m2
dyn + ξRR satisface la misma ecuación autoconsistente que en la aproximación de

Hartree con N = 1, ec. (4.59). La diferencia en cambio está en la primera ecuación (4.51). En

efecto, en el caso de Hartree se teńıa un término extra en la ecuación (4.50), cuyo origen está

vinculado con la diferencia mencionada entre (4.35) y (4.36), pero más importantemente con

la imposición de las relaciones de consistencia. Esta diferencia se traslada al potencial efectivo,

cuya derivada en este caso es
dVeff
dφ̄

=
(

m2
dyn + ξRR

)

φ̄, (4.86)

donde la ausencia del término proporcional a λR en comparación a (4.61) tiene consecuencias

importantes en De Sitter, como discutiremos en los próximos caṕıtulos.

Una observación final es que aqúı ya no se tiene la necesidad de definir los parámetros

renormalizados para luego poder escribir las ecuaciones del valor medio del campo (4.84) y de
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la masa dinámica (4.59) en términos de un sólo conjunto de parámetros (sean los de sustracción

mı́nima o los renormalizados). Esto nuevamente se debe a la ausencia en (4.84) del término

expĺıcito con λR.

4.5. Discusión

Hemos considerado un solo campo escalar auto-interactuante con simetŕıa Z2 en espacios

curvos, utilizando un método no perturbativo basado en la acción efectiva 2PI. En la aproxi-

mación local o de Hartree de la acción efectiva 2PI, el formalismo reproduce la aproximación

Gaussiana, la cual también derivada utilizando un principio variacional [56, 57] o una resu-

mación de una clase particular de diagramas de Feynman. Sin embargo, al considerarla en el

contexto de la acción efectiva 2PI, existen ciertas relaciones de consistencia que, si bien son sa-

tisfechas automáticamente en la teoŕıa exacta, pueden no cumplirse para ciertas aproximaciones

(como cuando la aproximación no es una expansión sistemática en potencias de un paráme-

tro pequeño). Este hecho es bien conocido en espacio plano, y la validez de las relaciones de

consistencia debe ser forzada mediante la inclusión de más de un contratérmino para cada

constante de masa o acoplamiento en la teoŕıa [29]. Nuestro primer objetivo ha sido mostrar

que este “procedimiento de renormalización consistente” puede ser aplicado a las ecuaciones del

valor medio del campo y del propagador en espacios curvos generales. Varios cálculos expĺıcitos

fueron realizados previamente en el espacio-tiempo plano usado como regulador un cutoff en

momentos (ver, por ejemplo, [25]). Este método también fue utilizado en espacios curvos, para

realizar cálculos númericos en el marco de la teoŕıa de campos fuera del equilibrio [59] o para

calcular correcciones cuánticas a los modelos inflacionarios [60]. Dado que el uso de un cutoff

en momentos viola la covarianza de la teoŕıa regularizada [61], hemos utilizado regularización

dimensional.

El procedimiento de renormalización consistente ha sido parcialmente extendido a espacio-

tiempos curvos en algunos trabajos recientes [58], donde la renormalización de las ecuaciones

del valor medio del campo y del propagador han sido analizadas. Nuestros resultados son

más completos que aquellos de la Ref. [58]. Hemos incluido la expansión adiabática completa

del propagador, hemos escrito las ecuaciones renormalizadas en términos de los parámetros

renormalizados definidos a partir del potencial efectivo, y hemos mostrado expĺıcitamente que,

cuando se expresan en términos de estos parámetros f́ısicos, las ecuaciones son independientes

de la escala regularización µ̃ introducida por la regularización dimensional.
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En este procedimiento, hemos considerado dos posibilidades a la hora de elegir el punto

de renormalización en la cual se definen los parámetros renormalizados, y por ende donde se

imponen las relaciones de consistencia. Primero en el espacio-tiempo de Minkowski y luego en

un espacio-tiempo de De Sitter con curvatura escalar R0.

Una conclusión relevante es que la aproximación de Hartree y la aplicación de las relaciones

de consistencia imponen restricciones sobre los parámetros de sustracción mı́nima de la teoŕıa.

Por un lado, la combinación renormalizada m2
R + ξRR0 debe ser positiva. Por otro lado, la

definición de la constante de acoplamiento renormalizada λR en términos de la derivada cuarta

del potencial efectivo junto con la relación de consistencia para la función de 4-puntos implican

relaciones entre los parámetros de sustracción mı́nima y los renormalizados independientes de

µ̃. De ellas, está claro que algunas de las opciones de parámetros de sustracción mı́nima pueden

no ser compatibles con las relaciones de consistencia. En particular, no se puede tomar λ = λR,

ξ = 0 y m2 < 0 simultáneamente.



Caṕıtulo 5

Ruptura espontánea de simetŕıa en De

Sitter

En este caṕıtulo nos interesa discutir las condiciones bajo las cuales es posible encontrar

soluciones al conjunto de ecuaciones del valor medio del campo y de la masa dinámica en De

Sitter, en las cuales la simetŕıa clásica Z2 se rompe espontáneamente, φ̄ 6= 0. Esto es interesante

por ejemplo para los modelos inflacionarios, donde el campo rueda por el potencial hasta llegar

a un mı́nimo. Por lo tanto, la existencia de mı́nimos no triviales del potencial efectivo es de gran

relevancia. Por otra parte, en la teoŕıa de campos en espacio plano es sabido que los efectos

de temperatura finita sobre el potencial pueden conducir a una restauración de la simetŕıa

[15, 24, 25, 26]. Se cree que en los espacio-tiempos curvos, los efectos de la curvatura pueden

cumplir un rol similar. Otro punto relevante es si la transición de fase es de primer o segundo

orden.

La aproximación de Hartree tiene sus limitaciones para el estudio de estas situaciones. En

espacio plano, se sabe que ésta predice erróneamente una transición de fase de segundo orden,

debido a que siempre hay un mı́nimo en φ̄ = 0. En el caso del espacio-tiempo de De Sitter,

veremos que el hecho de haber considerado distintos puntos de renormalización abre nuevas

posibilidades.

Por otro lado, se ha mostrado que en De Sitter, la teoŕıa no admite ruptura espontánea de

la simetŕıa en el ĺımite de N grande [42]. No queda claro si esto es una propiedad general, o un

artificio de dicho ĺımite. Algunos argumentos basados en el formalismo de inflación estocástica

parecen extender esta conclusión a todo N , pero en el ĺımite infrarrojo [62, 63]. Estas cuestiones

están vinculadas a la generación dinámica de masa.

61
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Los resultados presentados en este caṕıtulo fueron publicados en la Ref. [30].

5.1. Potencial efectivo en la aproximación de Hartree en De Sitter

Para analizar la posibilidad de ruptura espontánea de simetŕıa, aplicamos los resultados

anteriores al espacio-tiempo de De Sitter, cuyas simetŕıas permiten considerar soluciones para

φ̄ y 〈ϕ2〉 = [G] constantes. Además, como se verá de inmediato, en De Sitter la ecuaciones

dependen sólo de la combinación

M2
dyn ≡ m2

dyn + ξRR . (5.1)

El potencial efectivo puede obtenerse por integración de (4.61),

Veff (φ̄, R) =
1

2

∫

M2
dyn(φ̄

2, R) dφ̄2 − 1

12
λRφ̄

4. (5.2)

Para poder calcularlo debemos resolver para la masa dinámica como función de φ̄ y R. Sin

pérdida de generalidad, en lo que sigue nos basamos en la ecuación de la masa dinámica con

el punto de renormalización en De Sitter, (4.75), a partir de la cual es posible recuperar su

contraparte con el punto de renormalización en Minkowski, (4.66), tomando R0 → 0.

Comenzamos fijando en la ecuación (4.75) la métrica de fondo gµν a De Sitter, es decir,

F (m2
dyn, {R}) = FdS(m

2
dyn, R) usando la expresión (3.13). Además, considerando el ĺımite in-

frarrojo, usamos la expansión (3.16) para masas pequeñas M2
dyn ≪ H2. Con todas estas consi-

deraciones, la ecuación para M2
dyn entonces toma la siguiente forma

M2
dyn = m2

R + ξRR +
λ∗R
2
φ̄2 (5.3)

+
λ∗R
32π2

{

R2

24M2
dyn

− R

6

[

κ+ log
(

R/12m2
R

)]

− ξRR− 5R

36

−
(

m2
R + ξRR

)

[

2
dFdS
dm2

∣

∣

∣

m2
R,R0

− (ξR − 1
6
)R0

m2
R

]

+2

[

FdS(m
2
R, R0) +

dFdS
dR

∣

∣

∣

m2
R,R0

(R−R0)

]

+

[

κ+ log
(

R/12m2
R

)

− 49

54
+ 2

dFdS
dm2

∣

∣

∣

m2
R,R0

− (ξR − 1
6
)R0

m2
R

]

M2
dyn

}

.

donde hemos agrupado potencias de M2
dyn en el miembro derecho, y definimos κ = 11/6− 2γE.

La función FdS y sus derivadas que no fueron especificadas en la expresión anterior están
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evaluadas en m2
R y R0, y son las que corresponden la elección del punto de renormalización.

Esta ecuación puede inmediatamente llevarse a la siguiente forma

AdS
M4

dyn

R2
+

[

BdS −
λRφ̄

2

2R

] M2
dyn

R
+ CdS = 0, (5.4)

es decir, una ecuación cuadrática para M2
dyn/R, donde los coeficientes dependen de los distintos

parámetros renormalizados, de φ̄ y de R,

AdS = 1− λ∗R
32π2

[

κ+ log
(

R/12m2
R

)

− 49

54
+ 2

dFdS
dm2

∣

∣

∣

m2
R,R0

− (ξR − 1
6
)R0

m2
R

]

, (5.5a)

BdS = −
(

m2
R

R
+ ξR

)

+
λ∗R
32π2

{

κ

6
+

1

6
log
(

R/12m2
R

)

+ ξR +
5

36

+
(

m2
R + ξRR

)

[

2
dFdS
dm2

∣

∣

∣

m2
R,R0

− (ξR − 1
6
)R0

m2
R

]

−2

[

FdS(m
2
R, R0) +

dFdS
dR

∣

∣

∣

m2
R,R0

(R−R0)

]

}

, (5.5b)

CdS = − λ∗R
768π2

, (5.5c)

Aqúı CdS es siempre negativo, mientras que en principio AdS y BdS pueden tener cualquier

signo. Se puede ver que, para tener una solución M2
dyn(φ̄, R) real y positiva para todo φ̄, es

necesario que AdS > 0, mientras que no hay restricciones sobre BdS. Las soluciones son

M2
dyn(φ̄, R) =

−(RBdS − λ∗Rφ̄
2

2
)±

√

[

RBdS − λ∗Rφ̄
2

2

]2

− 4R2AdSCdS

2AdS
, (5.6)

donde sólo una de las ramas da una solución positiva, mientras que la otra rama da una solución

negativa. Cual rama es la apropiada depende del signo de BdS. Por el momento mantenemos

ambas.

Con esta solución podemos volver a (5.2) e integrar para obtener el potencial efectivo. El

resultado es

Veff (φ̄, R) = ∓
2R2

(

BdS − λ∗Rφ̄
2

2R

)

√

(

BdS − λ∗Rφ̄
2

2R

)2

− 4AdSCdS

8AdSλ∗R
+

λ∗R
2
φ̄4 − 2BdSRφ̄

2

8AdS

±
CdSR

2 ln

[

√

(

BdS − λ∗Rφ̄
2

2R

)2

− 4AdSCdS +BdS − λ∗Rφ̄
2

2R

]

λ∗R
− λRφ̄

4

12
, (5.7)
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Esta es una función tanto de φ̄ como de R, que está bien definida para todo φ̄ siempre y cuando

AdS > 0.

5.2. Ruptura espontánea de simetŕıa

El potencial efectivo tiene un extremo en φ̄∗ = 0, que es la solución trivial de (4.50) para φ̄

constante. Es inmediato comprobar que éste debe ser un mı́nimo, dado que

d2Veff
dφ̄2

∣

∣

∣

∣

∣

φ̄∗=0

= M2
dyn(φ̄∗ = 0, R) > 0. (5.8)

donde la condición de positividad se desprende de la aproximación de Hartree. Nos interesa

investigar si existen otros mı́nimos que rompan la simetŕıa Z2, es decir, para φ̄∗ 6= 0. Según la

ecuación (4.50), esto sucede cuando

φ̄2
∗ =

3

λR
M2

dyn(φ̄, R). (5.9)

Usando (5.6) esta condición puede reexpresarse como una ecuación cuadrática para φ̄2
∗, cuyas

soluciones son

φ̄2
∗ =

3R

λR









−BdS ±
√

B2
dS − 4

(

AdS − 3λ∗R
2λR

)

CdS

2
(

AdS − 3λ∗R
2λR

)









. (5.10)

Como se mencionó más arriba, en la aproximación de Hartree el potencial efectivo tiene siempre

un mı́nimo en φ̄∗ = 0. Por lo tanto para que exista otro mı́nimo en φ̄∗ 6= 0, debe haber un máximo

en algún punto intermedio. Por esta razón, debemos considerar ambas ramas de (5.10), y buscar

bajo qué condiciones ambas soluciones son reales y positivas. Antes que nada, puede verse que

AdS − 3λ∗R/2λR < 0 si λR es suficientemente pequeño (0 < λR < 1 es suficiente en general). En

ese caso, las condiciones son que buscamos son B2
dS − 4 (AdS − 3λ∗R/2λR)CdS > 0 y BdS > 0.

Éstas pueden juntarse en una sola

BdS − 2

√

(

3λ∗R
2λR

− AdS

)

|CdS| > 0. (5.11)

Observar que la imposición de que BdS > 0 selecciona la rama superior en (5.6) y (5.7).

Entonces ahora podemos buscar valores de los parámetros para los cuales se satisfagan

simultáneamente las condiciones para que el potencial esté bien definido, AdS > 0, y para que

haya ruptura de simetŕıa (5.11). Los coeficientes AdS, BdS y CdS dependen de m2
R, ξR, λR, R y

R0.
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5.2.1. Caso R0 = 0

Comencemos por el caso R0 = 0, es decir, con el punto de renormalización en el espacio de

Minkowski. Graficamos en la Figura 5.1 las regiones en el plano λR-m
2
R/R para las cuales cada

una de estas condiciones se cumple, considerando tanto el caso mı́nimamente acoplado ξR = 0,

aśı como también ξR < 0. El caso ξR > 0 es cualitativamente similar al caso mı́nimamente

acoplado, salvo una leve reducción de la región donde es posible la ruptura de simetŕıa. En

todos los casos consideramos |ξR| ≪ 1 de manera que M2 ≪ H2.
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(a) Acoplamiento mı́nimo (ξR = 0)
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(b) Acoplamiento no mı́nimo (ξR < 0)

Figura 5.1: Estos gráficos muestran aquellas regiones para las cuales el potencial efectivo esta

bien definido para todo φ̄ (rayas de baja densidad) y donde las condiciones para la existencia

de soluciones con ruptura de simetŕıa se cumplen (rayas de alta densidad), como funciones de

λR (eje horizontal) y log(m2
R/R) (eje vertical), para ξR = 0 y ξR = −5 × 10−3. La primera

condición se cumple siempre en ambos casos, mientras que la ruptura espontánea de simetŕıa

existe para m2
R/R pequeña. La región de ruptura de simetŕıa del primer gráfico se mueve aún

más hacia abajo y hacia la derecha al incrementar ξR a valores positivos.

En la Figura 5.2 se muestran varias curvas del potencial efectivo para valores fijos de los

parámetros pero variando los valores de R. Se puede ver que el potencial efectivo siempre

tiene un mı́nimo en φ̄ = 0, mientras que a veces también puede tener otro mı́nimo para φ̄ 6=
0. Remarcamos que fue necesario tomar valores de m2

R más de 20 órdenes de magnitud por

debajo de R para poder ver el mı́nimo con ruptura de simetŕıa. Por lo tanto, este mı́nimo

puede entenderse como una peculiaridad del acercamiento al ĺımite no masivo. También vale
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Figura 5.2: Potencial efectivo para diferentes valores de m2
R/R. En todos los casos ξR = 0 y

λR = 0,6. Siempre hay un mı́nimo para φ̄ = 0, mientras que también puede o no haber un

mı́nimo para φ̄ 6= 0 con un máximo en el medio, dependiendo del valor de m2
R/R.

mencionar que este no es el t́ıpico escenario de ruptura de simetŕıa que exhibe una restauración

al incrementar el valor de R, como se discute en general en la literatura, dado que aqúı la

dependencia con R es justamente la opuesta.

Es importante tener en cuenta que la razón por la cual están permitidas las soluciones con

φ̄∗ 6= 0 es la presencia del término con λR en (4.50), el cual viene como una consecuencia de

imponer las relaciones de consistencia 2PI. Por el contrario, tanto en la expansión 1/N como

en la aproximación Gaussiana usual, la ausencia de dicho término requiere que M2
dyn = 0 para

que φ̄∗ 6= 0, y en tal caso no existe un vaćıo invariante de De Sitter y la ruptura de simetŕıa no

es posible [55].

5.2.2. Caso R0 > 0

El análisis procede igual que en el caso anterior, pero ahora con un parámetro nuevo a tener

en cuenta, R0. Empecemos por considerar R = R0, que resulta la manera más natural de fijar

su valor. El primer hecho interesante es que la ecuación de la masa dinámica (5.3) no depende

expĺıcitamente de ξR cuando R = R0, sino solo a través de la combinación y0 = m2
R/R0 + ξR.

Para ver esto es necesario reemplazar expĺıcitamente la función FdS y sus derivadas evaluadas
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en m2
R y R0,

y − 1

6
=

R0

R

(

y0 −
1

6

)

+

(

ξR − 1

6

)(

1− R0

R

)

+
λRφ̄

2

2R

+
λR
32π2

{

(

y − 1

6

)[

ln

(

R

R0

)

+ g(y)− g(y0)−
(

y0 −
1

6

)

g′(y0)

]

−
(

1− R0

R

)(

y0 −
1

6

)

+

(

y0 −
1

6

)2

g′(y0)

}

, (5.12)

donde también se utiliza la variable y = M2
dyn/R. Esto simplifica el análisis ya que deja sólo dos

parámetros libres, y0 y λR. En la Figura 5.3 se muestra el plano λR-log(y0), en donde se puede

observar que, si bien existe una región en la cual el potencial efectivo está bien definido (rayas

de baja densidad), las condiciones de ruptura de simetŕıa no se cumplen. Enfatizamos que en

este caso con R = R0, no hay ningún otro parámetro libre, ya que todas las combinaciones de

m2
R/R0 y ξR para las cuales y0 > 0 fueron tenidas en cuenta. Este es un resultado importante,

que muestra la ausencia de ruptura de simetŕıa en la aproximación de Hartree en De Sitter,

si uno fija las relaciones de consistencia en la misma geometŕıa. Esto resulta natural al menos

para ejemplos en los cuales la backreaction puede ser despreciada.
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Figura 5.3: Este gráfico muestra en el caso R = R0, la región en la cual el potencial efectivo

está bien definido para todo φ̄ (rayas de baja densidad) en el plano λR-log(y0). No hay región

en la que se cumplan las condiciones de ruptura de simetŕıa. No hay ningún otro parámetro

libre.

Finalmente, consideramos el caso con R 6= R0. Mostramos en la Figura 5.4 gráficos en el
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plano log(R/R0)-log(m
2
R/R0) de las regiones de interés para ξR y λR fijos. Observar que estos

gráficos están en un plano diferente en el espacio de parámetros en contraste a los gráficos que

analizamos anteriormente. En el caso con acoplamiento mı́nimo, las dos regiones se superponen

sólo para R ≫ R0 y con valores de m2
R/R0 en una pequeña ventana. En particular, esto implica

que en ĺımite de masas pequeñas m2
R ≪ R0, R, no es posible la ruptura de simetŕıa. Más aún, el

potencial efectivo no está bien definido para todo φ̄. Esto es diferente a lo que hemos visto en

la Figura 5.1a para el caso R0 = 0, donde la situación era R0 < m2
R ≪ R, es decir, el ĺımite de

espacio plano era tomado primero. Es bien sabido que los ĺımites no masivo y de espacio plano

en De Sitter no conmutan. Si ahora permitimos que ξR 6= 0, nos encontramos con una situación
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(a) Acoplamiento mı́nimo (ξR = 0)
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(b) Acoplamiento no mı́nimo (ξR > 0)

Figura 5.4: Estos gráficos muestran aquellas regiones para las cuales el potencial efectivo esta

bien definido para todo φ̄ (rayas de baja densidad) y donde las condiciones para la existencia

de soluciones con ruptura de simetŕıa se cumplen (rayas de alta densidad), como funciones de

log(R/R0) (eje horizontal) y log(m2
R/R0) (eje vertical), para λR = 0,1. Para ξR = 0 ambas

regiones se superponen sólo para R ≫ R0 y con m2
R/R0 en un rango limitado, mientras que

para ξR = 4× 10−3 el potencial efectivo esta bien definido en todas partes y existe ruptura de

simetŕıa para R/R0 y m
2
R/R0 pequeños. Los gráficos no cambian cualitativamente al variar λR.

diferente. Ambas regiones se superponen para ciertos valores de los parámetros, permitiendo

un potencial bien definido con ruptura de simetŕıa. Algunos ejemplos de dicho potencial se

muestran en la Figura 5.5 para diferentes valores de R/R0. La ruptura espontánea de simetŕıa

ocurre para valores pequeños de R/R0 y luego la simetŕıa se restaura para valores mayores de

dicho cociente.
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Figura 5.5: Potencial efectivo para m2
R/R0 = 10−5, ξR = 4 × 10−3 y λR = 0,1; para diferentes

valores de R/R0. La ruptura espontánea de simetŕıa se observa para valores pequeños de R/R0,

mientras que para valores mayores la simetŕıa se restaura. El valor cŕıtico en este caso es

R/R0 ∼ 6,5× 10−3.

5.2.3. Restauración de simetŕıa en el ĺımite de N grande

Como se ha discutido en el caṕıtulo anterior, las ecuaciones del valor medio del campo en el

ĺımite de N grande difieren de aquellas en la aproximación de Hartree con N = 1. En particular,

la condición para tener un extremo del potencial en φ̄∗ 6= 0, según la ecuación (4.86), resulta

M2
dyn(φ̄∗, R) = 0. (5.13)

Luego, al insertar esta condición en la ecuación para el propagador (4.85), se tiene

�G1(x, x
′) = 0. (5.14)

Sin embargo, como mencionamos en el caṕıtulo 3, es bien sabido que no existe un propagador

invariante de De Sitter para un campo escalar mı́nimamente acoplado y sin masa [13, 14]. Por

lo tanto, un φ̄ 6= 0 constante no puede ser una solución de las ecuaciones (4.84) y (4.85).

Con este argumento, se descarta la existencia de soluciones con ruptura de simetŕıa en De

Sitter en el ĺımite de N grande [42, 55]. Permanece como pregunta abierta si la restauración de

simetŕıa se da para todo N .

5.3. Discusión

En este caṕıtulo nos hemos concentrado en el espacio-tiempo de De Sitter. Para esta métrica

determinada, hemos escrito la forma expĺıcita la ecuación de la masa dinámica en la aproxima-
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ción de Hartree. Luego, hemos hallado la solución autoconsistente de dicha ecuación en el ĺımite

infrarrojo y calculado el potencial efectivo a partir de la misma. Posteriormente hemos realiza-

do un análisis del potencial efectivo para diferentes valores de la curvatura del espacio-tiempo

de De Sitter R, de los parámetros renormalizados y de la curvatura R0 asociada al punto de

renormalización. Este análisis es de alguna manera análogo al realizado en [24] para un campo

escalar auto-interactuante a temperatura finita, donde el punto de renormalización es elegido

para un valor finito de la temperatura fijo.

Nuestros resultados muestran que la simetŕıa Z2 puede romperse espontáneamente cuando

se utiliza la renormalización consistente, aunque no en condiciones generales. Esto debe con-

trastarse con los resultados previos obtenidos usando una renormalización estándar de la teoŕıa,

como puede verse fácilmente a partir de las ecuaciones del valor medio del campo y del propa-

gador. En efecto, cuando las relaciones de consistencia no son tenidas en cuenta y no se permite

la presencia de diferentes contratérminos, las ecuaciones (4.50) y (4.51) son aquellas del ĺımite

de N grande. Por lo tanto no es posible hallar ruptura espontánea de simetŕıa utilizando la

renormalización estándar.

De todas formas, estos resultados no son concluyentes sobre la existencia o no de la ruptura

espontánea de la simetŕıa Z2. No está claro si la existencia de soluciones con φ̄ 6= 0 es un

artefacto de la aproximación de Hartree o no. Es plausible que la inclusión del diagrama del

”atardecer“ en el cálculo de la acción efectiva 2PI restaure la simetŕıa Z2. Para abordar esta

cuestión hay varias complicaciones técnicas a ser resueltas. Por un lado, el uso del formalismo

de camino temporal cerrado, o IN-IN, será inevitable al considerar los términos no locales en

la acción efectiva 2PI. Por otra parte, la inclusión de diagramas de mayor número de loops

en la acción efectiva 2PI involucra algunos puntos sutiles en la renormalización, incluso en

espacio-tiempo plano [25], que tendrán su contrapartida en espacios curvos.

Por último, es importante demostrar que este procedimiento de renormalización consistente

puede ser extendido en espacio-tiempos curvos generales para hacer finito también al sector de

gravedad de la teoŕıa. Este es el principal objetivo del próximo caṕıtulo.



Caṕıtulo 6

Ecuaciones de Einstein Semiclásicas y

soluciones autoconsistentes en la

aproximación de Hartree

Hasta ahora nos hemos ocupado de las ecuaciones del valor medio del campo y de la masa

dinámica, obtenidas a partir de la acción efectiva 2PI en la aproximación de Hartree. Éstas dan

la dinámica de φ̄ y G para una elección dada de la métrica gµν . Sin embargo, estas ecuaciones no

tienen en cuenta el efecto del campo cuántico sobre la geometŕıa de fondo. Con el fin de evaluar

si esta backreaction es importante o no, tenemos que hacer frente a las EES en el contexto

de la acción efectiva 2PI. Primero, se debe verificar que el procedimiento de renormalización

consistente es aplicable también a dichas ecuaciones. Luego, se puede estudiar como la dinámica

conjunta de la métrica clásica y el campo cuántico puede modificar las conclusiones sobre la

posibilidad de ruptura espontánea de simetŕıa.

En este caṕıtulo se presentan los resultados publicados en [31].

6.1. Renormalización de las ecuaciones de Einstein semiclásicas en

espacios curvos generales

En el caṕıtulo 2 hemos discutido como definir el valor de expectación del tensor de enerǵıa-

momento que entra en el miembro derecho de las EES (2.38), a partir de la variación de la acción

efectiva 1PI respecto de la métrica (2.13). Aqúı, generalizamos esa definición considerando en

71
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su lugar la acción efectiva 2PI,

〈Tµν〉 = − 2√−g
δΓ2PI [φ̄, G, g

µν ]

δgµν
. (6.1)

Siguiendo la discusión del caṕıtulo 2, una definición correcta del valor de expectación requiere

la utilización del formalismo IN-IN. Sin embargo, a los fines de la renormalización, esto no

es indispensable. Asimismo, como se ha mencionado en el caṕıtulo 4, en la aproximación de

Hartree los resultados son equivalentes en los formalismos IN-OUT e IN-IN.

El procedimiento de renormalización involucra el cálculo de 〈Tµν〉 y la regularización de

sus divergencias. Éstas pueden ser de dos tipos, independientes del campo φ̄ y por lo tanto

sólo geométricas, como en el caso del campo libre discutido en el caṕıtulo 2, o por el contrario

dependientes de φ̄ y relacionado con las autointeracciones. Para que las EES sean renormaliza-

bles en el contexto de la renormalización consistente, las divergencias no geométricas deben ser

canceladas completamente con la misma elección de contratérminos que para las ecuaciones de

campo y el propagador.

Vamos a seguir el procedimiento habitual y definir el tensor de enerǵıa-momento renorma-

lizado como en (2.36), donde el cuarto orden adiabático se entiende como la expansión que

contiene hasta cuatro derivadas de la métrica y hasta dos derivadas del valor medio del campo

[47]. Nuestro objetivo es mostrar que con la misma elección de contratérminos que para las ecua-

ciones de campo y del propagador, la cantidad 〈Tµν〉ad4 solo contiene divergencias geométricas

que pueden absorberse en las constantes gravitacionales desnudas.

El valor de expectación 〈Tµν〉 puede calcularse de manera similar al caso libre (2.34) [48]

〈Tµν〉 = Tµν(φ̄)
∣

∣

∣

B,libre
+ 〈T fµν〉

∣

∣

∣

B
+

[

λB2

32
[G1]

2 − λB4

4!
φ̄4

]

gµν , (6.2)

donde los términos nuevos entre corchetes provienen de la autointeracción (3.5), y donde el

sub́ındice B indica que los parámetros en esas expresiones son los desnudos. Notar en particular

que la contribución cuadrática en [G1] se interpreta como proveniente del valor de expectación

〈ϕ4〉, recordando que en la aproximación de Hartree (con N = 1) los valores de expectación de

productos de campos se pueden escribir en términos 〈ϕ2〉 = [G1]/2, usando que los estados son

Gaussianos (4.37).

Para la renormalización es útil separar en las expresiones para Tµν(φ̄)|B,libre y 〈T fµν〉 los
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acoplamientos entre partes renormalizadas y contratérminos de sustracción no mı́nima (4.76),

Tµν(φ̄)
∣

∣

∣

B,libre
= Tµν(φ̄)

∣

∣

∣

R,libre
+ δξ̃

(

−φ̄2
;µν + gµν�φ̄

2 + φ̄2Gµν

)

− δm̃2

2
φ̄2gµν (6.3)

〈T fµν〉
∣

∣

∣

B
= 〈T fµν〉

∣

∣

∣

R
+
δξ̃

2

(

−[G1];µν + gµν�[G1] +Rµν [G1]
)

, (6.4)

donde el sub́ındice R indica que ahora los parámetros son los renormalizados. Notar que, si bien

no hay divergencias en Tµν(φ̄)|R,libre, la cantidad 〈T fµν〉|R todav́ıa tiene divergencias provenientes

del ĺımite de coincidencia de G1 y el de sus derivadas (ver ec. (2.35)).

Aqúı es importante recordar que la función de 2-puntos G1(x, x
′) que aparece en estas expre-

siones está dada por una ecuación autoconsistente, en virtud del tratamiento no perturbativo

de la acción efectiva 2PI. En la aproximación de Hartree, ésta satisface la ecuación (4.51), que

implica que en este caso la función de 2-puntos es aquella de un campo libre con masa m2
dyn y

acoplamiento con la curvatura ξR.

Ahora estamos listos para demostrar que los contratérminos elegidos anteriormente para

renormalizar las ecuaciones del campo y de la masa dinámica también cancelan las divergencias

no geométricas de 〈Tµν〉. Las expresiones que involucran a [G1] y sus derivadas pueden expresarse

en términos de m2
dyn y de las constantes desnudas usando que la masa dinámica se define

mediante la igualdad entre las ecuaciones (4.49) y (4.51), que en una forma más conveniente se

lee
λB2

4
[G1] = m2

dyn − δ̃ξR−m2
B − λB2

2
φ̄2. (6.5)

Con este reemplazo, junto con (6.3), (6.4) y (6.2) tenemos

〈Tµν〉 = Tµν(φ̄)
∣

∣

∣

R,libre
+ 〈T fµν〉

∣

∣

∣

R
+

(3λB2 − λB4)

4!
φ̄4gµν

+
2δξ̃

λB2

[

−m2
dyn;µν

+ gµν�m
2
dyn +Gµνm

2
dyn

]

+
m4
dyn

2λB2

gµν −m2
dyn

m2
B

λB
gµν

+
δξ̃2

λB2

(1)Hµν − 2δξ̃
m2
B

λB2

Gµν +
m2
B

2

m2
B

λB
gµν

+(m2
R −m2

dyn)
φ̄2

2
gµν . (6.6)

Aqúı el término proporcional a φ̄4 ya es finito dada la relación (4.48) entre los contratérminos, y

es por lo tanto igual a λRφ̄
4gµν/12. Los términos de la segunda ĺınea contienen las divergencias

no geométricas que deberán cancelarse con aquellas de 〈T fµν〉|R, mientras que aquellos de la



–74–

tercera ĺınea contienen divergencias puramente geométricas. Por último, el término de la cuarta

ĺınea es finito.

Vale enfatizar que las divergencias en la ecuación (6.6) son proporcionales a polos simples

en ǫ. De hecho, a partir de la definición de δξ̃ = ξB − ξR y de las relaciones (4.79) es sencillo

ver que

δξ̃

λB2

=

(

1

λR
− 1

λB2

)(

ξR − 1

6

)

+ J, (6.7a)

δξ̃2

λB2

= λB2

[

(

ξR − 1
6

)

λR
+ J

]2

− 2

(

ξR − 1

6

)

[

(

ξR − 1
6

)

λR
+ J

]

+

(

ξR − 1
6

)2

λB2

, (6.7b)

con J definido en (4.79), las cuales son expresiones exactas. Observar que λ−1
B2 contiene sólo un

polo simple,

1

λB2

=
1

λ
+

1

16π2ǫ
. (6.8)

Ahora expandimos 〈Tµν〉 hasta el cuarto orden adiabático. Usaremos las expresiones expĺıci-

tas del ĺımite de coincidencia de G1 y sus derivadas dados en la referencia [47]. La expansión

adiabática hasta orden cuatro de 〈T̃µν〉 ≡ 〈T fµν〉|R es

〈T̃µν〉ad4 =
1

16π2

(

m2
dyn

µ2

)ǫ/2
[

1

2
m4
dyn gµν Γ

(

−2− ǫ

2

)

+m2
dyn

{

1

2
[Ω1]gµν +

(

ξR − 1

6

)

Rµν

}

× Γ
(

−1− ǫ

2

)

+

{

1

2
[Ω2]gµν +

(

ξR − 1

6

)

Rµν [Ω1]− [Ω1;µν ]

+

(

1

2
− ξR

)

[Ω1];µν +

(

ξR − 1

4

)

gµν �[Ω1]

}

Γ
(

− ǫ

2

)

]

, (6.9)

donde las expresiones para [Ω1], [Ω2] y [Ω1;µν ] pueden encontrarse en el Apéndice A de [47].

Notar que aqúı, sin embargo, estas contribuciones están expresadas en términos de ξR en lugar

de ξB. Expandiendo para ǫ→ 0, reagrupando los términos geométricos para formar los tensores
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apropiados y separando la parte divergente llegamos a la siguiente expresión,

〈T̃µν〉ad4 =
1

16π2ǫ

{

−1

2
m4
dyngµν + 2m2

dyn

(

ξR − 1

6

)

Gµν +
1

90

[

(2)Hµν −Hµν

]

−
(

ξR − 1

6

)2
(1)Hµν + 2

(

ξR − 1

6

)

(

gµν�m
2
dyn −m2

dyn;µν

)

}

+
m4
dyn

64π2
gµν

[

1

2
− ln

(

m2
dyn

µ̃2

)]

+
m2
dyn

16π2

(

ξR − 1

6

)

Gµν ln

(

m2
dyn

µ̃2

)

+
1

32π2

[

1

90

(

(2)Hµν −Hµν

)

−
(

ξR − 1

6

)2
(1)Hµν

+ 2

(

ξR − 1

6

)

(

gµν�m
2
dyn −m2

dyn;µν

)

] [

1 + ln

(

m2
dyn

µ̃2

)]

. (6.10)

Remplazando la ecuación (6.10) en la ecuación (6.6) se puede verificar que se cancelan las

divergencias no geométricas en (6.6) (aquellas que involucran a m2
dyn). Este resultado muestra

la renormalizabilidad de las EES dentro del procedimiento de renormalización consistente.

Para completar el análisis, escribimos la expresión completa para el orden adiabático cuatro,

la cual separamos en su parte divergente y convergente:

〈Tµν〉ad4 = 〈Tµν〉divad4 + 〈Tµν〉conad4 , (6.11)

con

〈Tµν〉divad4 =
1

90

1

32π2

[

2

ǫ
+ 1 + ln

(

m2
R

µ̃2

)]

(

(2)Hµν −Hµν

)

− 2δξ̃

[

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

]

Gµν

+ δξ̃

[

(

ξR − 1
6

)

λR
+ J

]

(1)Hµν +
δm̃

2

[

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

]

gµν −
m4
R

64π2
gµν , (6.12)



–76–

y

〈Tµν〉conad4 = Tµν(φ̄)
∣

∣

∣

R,libre
+
λR
12
φ̄4 gµν +

(

m2
R

2
−m2

dyn

)

[

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

]

gµν

+
m4
ph

64π2

[

32π2

λ∗R
+

1

2
+

(

ξR − 1

6

)

R0

m2
R

− 2
dFdS
dm2

dyn

∣

∣

∣

m2
R,R0

]

gµν

+
1

16π2

[

2m2
dynGµν −

(

ξR − 1

6

)

(1)Hµν + 2gµν�m
2
dyn − 2m2

dyn;µν

]

dFdS
dR

∣

∣

∣

m2
R,R0

+
1

32π2

{

−
m4
ph

2
gµν + 2m2

dyn

(

ξR − 1

6

)

Gµν +
1

90

(

(2)Hµν −Hµν

)

−
(

ξR − 1

6

)2
(1)Hµν + 2

(

ξR − 1

6

)

(

gµν�m
2
dyn −m2

dyn;µν

)

}

ln

(

m2
dyn

m2
R

)

−
m2
dyn

16π2

(

ξR − 1

6

)

Gµν +
(

m2
R −m2

dyn

) φ̄2

2
gµν +

m4
R

64π2
gµν . (6.13)

Como se esperaba, la parte divergente contiene divergencias puramente geométricas. La par-

te convergente es finita, depende del campo, y puede ser escrita en términos de los paráme-

tros renormalizados (y por lo tanto independiente de µ̃). Hemos inclúıdo la contribución finita

− m4
R

64π2 gµν en 〈Tµν〉divad4 para asegurar el ĺımite correcto a 1-loop del contratérmino de la constante

cosmológica.

Ahora podemos sumar y restar 〈Tµν〉ad4 en el miembro derecho de las EES (2.38),

κ−1
B (Gµν + ΛBgµν) + α1B

(1)Hµν + α2B
(2)Hµν + α3BHµν =

[〈Tµν〉 − 〈Tµν〉ad4] + 〈Tµν〉divad4 + 〈Tµν〉conad4 , (6.14)

donde la cantidad entre corchetes en el miembro derecho se identifica según (2.36) como 〈Tµν〉ren,
es decir, el valor de expectación renormalizado del tensor de eneǵıa-momento. Para completar

la renormalización absorbemos 〈Tµν〉divad4 en una redefinición de las constantes gravitacionales
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desnudas del miembro izquierdo,

κ−1
B = κ−1

R +
m2
B

8π2

{(

ξR − 1

6

)[

1

ǫ
+

1

2
+

1

2
ln

(

m2
R

µ̃2

)]

− dFdS
dR

∣

∣

∣

m2
R,R0

}

, (6.15a)

ΛBκ
−1
B = ΛRκ

−1
R − m2

Bm
2
R

32π2

[

1

ǫ
+

1

2
ln

(

m2
R

µ̃2

)

− dFdS
dm2

dyn

∣

∣

∣

m2
R,R0

]

− m4
R

64π2
, (6.15b)

α1B = α1R −
(

ξB − 1
6

)

16π2

{(

ξR − 1

6

)[

1

ǫ
+

1

2
+

1

2
ln

(

m2
R

µ̃2

)]

− dFdS
dR

∣

∣

∣

m2
R,R0

}

, (6.15c)

α2B = α2R +
1

1440π2

[

1

ǫ
+

1

2
+

1

2
ln

(

m2
R

µ̃2

)]

, (6.15d)

α3B = α3R − 1

1440π2

[

1

ǫ
+

1

2
+

1

2
ln

(

m2
R

µ̃2

)]

. (6.15e)

Estos son consistentes con los resultados conocidos de 1-loop [47] al sustituir los parámetros

desnudos en el lado derecho (en los contratérminos) por los renormalizados y fijar R0 → 0, lo

que justifica la elección de 〈Tµν〉divad4 en (6.12). La relación entre los parámetros desnudos de la

parte gravitacional y aquellos renormalizados es dependiente de µ̃. En el caṕıtulo 4 hemos visto

que lo mismo ocurre al calcular los contratérminos asociados a los parámetros renormalizados

del campo (4.76).

Finalmente, las EES renormalizadas son

κ−1
R Gµν + ΛRκ

−1
R gµν + α1R

(1)Hµν + α2R
(2)Hµν + α3RHµν = 〈Tµν〉ren + 〈Tµν〉conad4, (6.16)

las cuales, como era de esperar, pueden ser expresadas en términos de sólo los parámetros

renormalizados. Esto concluye la prueba de la renormalización consistente de las EES en el

contexto de la aproximación de Hartree a la acción efectiva 2PI, en espacios curvos generales.

Este resultado se complementa con aquellos del caṕıtulo 4, donde se probó la renormalizabilidad

de las ecuaciones del valor medio del campo y de la masa dinámica en este mismo contexto.

6.2. Las ecuaciones semiclásicas de Einstein en De Sitter

En esta sección aplicamos los resultados anteriores al espacio-tiempo de De Sitter y calcu-

lamos expĺıcitamente el tensor de enerǵıa-momento renormalizado y las EES. Posteriormente,

consideramos las ecuaciones del campo y la masa dinámica en conjunto con las EES para

analizar la existencia de soluciones autoconsistentes con y sin ruptura espontánea de simetŕıa.
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En De Sitter todas las cantidades geométricas son proporcionales a gµν , con un factor de

proporcionalidad que sólo depende de R y el número de dimensiones d:

Rµν =
R

d
gµν , (6.17a)

Gµν =

(

1

d
− 1

2

)

Rgµν , (6.17b)

(1)Hµν =
1

2

(

1− 4

d

)

R2 gµν , (6.17c)

(2)Hµν =
1

2d

(

1− 4

d

)

R2 gµν , (6.17d)

Hµν =
1

d(d− 1)

(

1− 4

d

)

R2 gµν . (6.17e)

Lo mismo sucede con cualquier otro tensor de segundo rango, por ejemplo

[G1;µν ] =
1

d
[�G1] gµν . (6.18)

La invarianza de De Sitter también implica que cualquier escalar invariante es constante, y en

particular que [G1] es independiente del punto espacio-temporal. El tensor de enerǵıa-momento

también será proporcional a gµν . En efecto, de la expresión general (6.2) junto con las ecuaciones

(2.33) y (2.35), y usando (6.17), se obtiene

〈Tµν〉 =

[

−m
2
B

2
φ̄2 − λB4

4!
φ̄4 + ξBφ̄

2

(

1

d
− 1

2

)

R− 1

2d
[�G1]−

m2
B

4
[G1]

+
1

4
[�G1] + ξB

[G1]

2

(

1

d
− 1

2

)

R− λB2

8
φ̄2[G1]−

λB2

32
[G1]

2

]

gµν . (6.19)

Nuevamente utilizando la ecuación (6.5) para simplificar la expresión y escribiendo d = 4 + ǫ,

llegamos a

〈Tµν〉 =

{

−m
2
B

2
φ̄2 − ξB

4
φ̄2R− λB4

4!
φ̄4 − 1

8

[

m2
B +

λB2

2
φ̄2

]

[G1]

+
1

4

(

4

4 + ǫ
− 1

)[

ξBφ̄
2R− 1

2

(

m2
dyn − δξ̃R

)

[G1]

]

}

gµν . (6.20)

Aqúı todav́ıa no podemos poner ǫ → 0 en el denominador, ya que esta multipicado tanto por

parámetros desnudos como por [G1], que contienen polos en ǫ que pueden conducir a términos
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finitos en dicho ĺımite. Luego de algunas manipulaciones y de descartar los términos de O(ǫ),

resulta

〈Tµν〉 =

{

1

2

[

δm̃2 +

(

1 +
ǫ

4 + ǫ

)

δξ̃R

]

(

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

)

(6.21)

+

(

4

4 + ǫ

)

ǫ δξ̃

8

(

(

ξR − 1
6

)

λR
+ J

)

R2 +
1

2

(

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

)

(

m2
R −m2

dyn

)

− 1

4
(m2

dyn + ξRR)φ̄
2 +

λR
12
φ̄4 +

1

128π2

[

m2
dyn +

(

ξR − 1

6

)

R

]2
}

gµν .

Para calcular el valor de expectación renormalizado, 〈Tµν〉ren = 〈Tµν〉−〈Tµν〉ad4 necesitamos

evaluar 〈Tµν〉ad4 (dado en la ecuación (6.11)) en De Sitter. Para ello, utilizamos las expresio-

nes geométricas en d dimensiones (6.17). Separando nuevamente el resultado en 〈Tµν〉ad4 =

〈Tµν〉divad4 + 〈Tµν〉conad4 se tiene,

〈Tµν〉divad4 =

{

1

64π2

R2

2160
+

1

2

[

δm̃2 +

(

1 +
ǫ

4 + ǫ

)

δξ̃R

]

(

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

)

+

(

4

4 + ǫ

)

ǫ δξ̃

8

(

(

ξR − 1
6

)

λR
+ J

)

R2 − m4
R

64π2

}

gµν , (6.22)

〈Tµν〉conad4 =

{

m2
R

2

[

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2
+

m2
R

32π2

]

+
m2
dyn

64π2

(

ξR − 1

6

)

R

+
m4
dyn

64π2

[

32π2

λ∗R
+

1

2
+

(ξR − 1
6
)R0

m2
R

− 2
dFdS
dm2

dyn

∣

∣

∣

m2
R,R0

]

−
m2
dyn

64π2

[

m2
dyn +

(

ξR − 1

6

)

R

]

ln

(

m2
dyn

m2
R

)

−
m2
dynR

32π2

dFdS
dR

∣

∣

∣

m2
R,R0

− m2
dyn

[

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

]

−
(

m2
dyn +

ξR
2
R

)

φ̄2

2
+
λR
12
φ̄4

}

gµν . (6.23)

Notar que el primer término de la ecuación (6.22) es finito y es el origen de la anomaĺıa de

traza [11]. Este término será relevante a la hora de buscar soluciones autoconsistentes en De

Sitter, como ya sucede en el caso de campos libres [64]. Juntando todo, el valor de expectación
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renormalizado resulta

〈Tµν〉ren = − 1

64π2

{

m2
dyn

[(

32π2

λ∗R
+

(ξR − 1
6
)R0

m2
R

− 2
dFdS
dm2

dyn

∣

∣

∣

m2
R,R0

)

(m2
dyn −m2

R)− 16π2φ̄2

−
[

m2
dyn +

(

ξR − 1

6

)

R

]

ln

(

m2
dyn

m2
R

)

− 2R
dFdS
dR

∣

∣

∣

m2
R,R0

− 2m2
R

dFdS
dm2

dyn

∣

∣

∣

m2
R,R0

]

− 1

2

(

ξR − 1

6

)2

R2 +
R2

2160

}

gµν . (6.24)

Para hacer contacto con el resultado conocido a 1-loop, podemos usar la ecuación (4.75) para

llegar a una expresión más familiar [47]

〈Tµν〉ren = − 1

64π2

{

2m2
dyn

[

FdS(m
2
R, R0)−R0

dFdS
dR

∣

∣

∣

m2
R,R0

−m2
R

dFdS
dm2

dyn

∣

∣

∣

m2
R,R0

− FdS(m
2
dyn, R)

]

− 1

2

(

ξR − 1

6

)2

R2 +
R2

2160

}

gµν . (6.25)

Fijando R0 → 0 y usando (3.13) para FdS(m
2
dyn, R), se obtiene una expresión que es exactamente

la misma que en el cálculo a 1-loop [47], en la medida que aqúı se reemplacem2
dyn = m2

R+λRφ̄
2/2,

en lugar de quem2
dyn sea una solución de la ecuación autoconsistente (4.75). Más aún, es sencillo

ver que se satisface el ĺımite de campo libre usual [11], ya que m2
dyn → m2

R cuando λR → 0.

Finalmente, escribimos las EES en De Sitter. En el miembro derecho tenemos

〈Tµν〉ren + 〈Tµν〉con =

[

−1

4
(m2

dyn + ξRR)φ̄
2 +

λR
12
φ̄4

]

gµν (6.26)

− 1

64π2

{

32π2

(

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

)

(

m2
dyn −m2

R

)

− m4
R +

R2

2160
− 1

2

[

m2
dyn +

(

ξR − 1

6

)

R

]2
}

gµν ,

mientras que en el izquierdo tenemos Gµν+ΛRgµν = (−R/4+ΛR)gµν . Los tensores cuadráticos
(1)Hµν ,

(2)Hµν y Hµν se anulan para d = 4, por lo que no aparecen aqúı. Sin embargo, debido

a las divergencias que los parámetros desnudos αiB, con i = 1, 2, 3, tienen en d → 4, queda un

remanente finito proporcional a R2 en el miembro derecho de las EES en dicho ĺımite, que como

mencionamos es la anomaĺıa de traza. Entonces, factorizando el gµν presente en ambos lados,
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nos queda una ecuación escalar (y algebraica) para el único grado de libertad de la métrica, R,

M2
pl

(

−R
4
+ ΛR

)

= − 1

8π

{

R2

2160
+ 32π2

(

m2
R

λ∗R
+

(

ξR − 1
6

)

R0

32π2

)

(

m2
dyn −m2

R

)

−m4
R(6.27)

+ 16π2(m2
dyn + ξRR)φ̄

2 − 64π2λR
12
φ̄4 − 1

2

[

m2
dyn +

(

ξR − 1

6

)

R

]2
}

,

donde Mpl es la masa de Planck, con κR = 8π/M2
pl = 8πGN .

6.2.1. Soluciones de De Sitter autoconsistentes

Para estudiar la relevancia del efecto de backreaction, es decir, si los campos cuánticos

afectan la dinámica de la métrica de fondo, se deben resolver simultáneamente las ecuaciones

del valor medio del campo (4.50), la ecuación de la masa dinámica (4.75) y las EES (6.27) de

forma autoconsistente para φ̄, m2
dyn y la curvatura escalar de De Sitter R. Este es un sistema

cerrado de ecuaciones algebraicas dado un conjunto predefinido de parámetros m2
R, ξR, λR y

ΛR, cuyas soluciones f́ısicamente interesantes en un escenario cosmológico son aquellas con R y

M2
dyn = m2

dyn+ ξRR ambos positivos. La inclusión de las EES (6.27) pone un nuevo parámetro

en juego , a saber, la constante cosmológica ΛR, aśı como una nueva escala de masa M2
pl. En el

análisis presentado en el caṕıtulo anterior, R era considerado fijo (es decir, como un parámetro)

y el potencial efectivo y sus mı́nimos fueron estudiados con el fin de encontrar los valores de los

parámetros restantes m2
R, ξ, λR y R0 para los cuales existen soluciones con ruptura espontánea

de simetŕıa. Haber considerado a R como fijo tiene sentido bajo el supuesto de que el efecto

del campo cuántico sobre la métrica de fondo es pequeño, y por lo tanto es posible desacoplar

las EES de las ecuaciones del campo y de la masa dinámica. Si este es el caso, el valor de R se

vuelve efectivamente independiente de φ̄ y M2
dyn, y viene dado simplemente por el parámetro

ΛR.

El objetivo de esta sección es encontrar algunos ejemplos de soluciones autoconsistentes de

las tres ecuaciones para los tres grados de libertad. Con este fin, tomamos como punto de partida

algunos conjuntos de valores de los parámetros m2
R, ξ, λR y R0 que permitan tanto soluciones

simétricas como aquellas con ruptura de simetŕıa, según el análisis del caṕıtulo anterior. Luego,

buscamos soluciones de φ̄, m2
dyn y R para diversos valores de ΛR y analizamos cómo éstos

difieren de la solución clásica (definida como aquella en ausencia de backreaction, o M2
pl → ∞).

Si esta diferencia es pequeña, entonces la backreaction puede ser ignorada, de lo contrario, debe

tenerse en cuenta.
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Un punto adicional de discusión es si los parámetros R0 y ΛR deben estar relacionados o

no. Si esto llegara a ser el caso, una manera sensata de fijar uno dado el otro seŕıa utilizar la

solución clásica R0 = 4ΛR.

Fase simétrica

Como se discutió anteriormente, el potencial efectivo siempre tiene un mı́nimo en φ̄ = 0

como consecuencia de la restricción impuesta por la aproximación de Hartree M2
dyn > 0.

Resolvemos el sistema de ecuaciones fijando φ̄ = 0 en (5.6) para obtener M2
dyn como una

función sólo de R y luego reemplazamos en la EES (6.27) para obtener una ecuación de la forma

ΛR = Is(R). (6.28)

donde Is depende también de los parámetros m2
R, ξR, λR y R0. El sub́ındice s se refiere al caso

simétrico. Los resultados numéricos se muestran más adelante.

Fase con ruptura espontánea de la simetŕıa

El mı́nimo no simétrico del potencial está dado por la ecuación (5.9), cuyas soluciones

φ̄2
∗(R) son (5.10). Ambas ramas dan una solución con M2

dyn > 0, la menor correspondiente a

un máximo y la mayor a un mı́nimo del potencial. Según el análisis descripto en el caṕıtulo

anterior, la condición sobre los coeficientes AdS, BdS y CdS para la existencia de soluciones con

ruptura de simetŕıa esta expresada en la desigualdad (5.11).

Nuevamente, reemplazar φ̄(R) y M2
dyn(R) en la EES da una ecuación de la forma

ΛR = Irs(R). (6.29)

El sub́ındice rs se refiere a la ruptura de simetŕıa. Notar que en general Irs(R) es diferente a

Is(R).

Resultados numéricos

En lo que sigue se presentan los resultados numéricos en términos de la desviación relativa

(R−Rcl)/Rcl de las soluciones de la backreaction R con respecto a la solución clásica Rcl = 4ΛR

como función de ΛR, tanto para la fase simétrica como para aquella con ruptura de simetŕıa,

cuando existe.
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Figura 6.1: Desviación relativa de la solución a la backreaction para la curvatura del espacio-tiempo

de De Sitter con respecto a la solución clásica, (R − Rcl)/Rcl, como función de ΛR para diferentes

valores de la constante de acoplamiento λR. Los parámetros fijos son R0 = 4ΛR, m
2
R = 10−5M2

pl. El

panel de la izquierda corresponde a ξR = 0 y el de la derecha a ξR = 4 × 10−3. Todas las curvas

corresponden a la fase simétrica (la única posible cuando R0 = 4ΛR). De abajo hacia arriba: λR = 0,1

(ĺınea de guiones azul), λR = 0,2 (ĺınea de puntos y guiones roja), λR = 0,5 (ĺınea punteada marrón).

Notar que para valores suficientemente pequeños de ΛR las curvas son continuadas por ĺıneas sólidas

negras, indicando las regiones donde M2
dyn ≥ R/10.

Analicemos en primer lugar el caso en que R0 = 4ΛR. Esto significa que los parámetros

renormalizados se definen en el valor de la curvatura escalar del espacio-tiempo de De Sitter

que la teoŕıa habŕıa tenido en ausencia de backreaction. Es notable que en este caso no existen

soluciones con ruptura espontánea de simetŕıa. A modo de ejemplo, en la Figura 6.1 hemos

representado la desviación relativa para diferentes valores de la constante de acoplamiento λR,

de abajo hacia arriba: λR = 0,1, 0,2 y 0,5, con todas las curvas correspondiendo a la fase

simétrica, y m2
R = 10−5M2

pl. En el panel de la izquierda se tiene acoplamiento mı́nimo con

la curvatura ξR = 0, mientras que en el panel de la derecha su valor es ξR = 4 × 10−3. Es

interesante ver que, debido a las correcciones cuánticas, la curvatura escalar R puede ser tanto

mayor como menor al valor clásico dependiendo del valor de ΛR. Notar que hay ciertos valores

de ΛR no existen soluciones. Por un lado, se puede ver que la aproximación M2
dyn ≪ R se

rompe para valores suficientemente pequeños de ΛR. Para hacer esto expĺıcito, en la Figura 6.1

y en lo que sigue, se usan ĺıneas sólidas negras cuando M2
dyn ≥ R/10. Por otro lado, dado que

sólo estamos considerando casos donde el potencial efectivo para φ̄ está bien definido, existe

una cota mı́nima (dependiente de λR) para la suma m2
R/R + ξR según se ha discutido en los

caṕıtulos anteriores, la cual se viola para valores suficientemente grandes de ΛR.
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Figura 6.2: Lo mismo que en la Figura 6.1, pero para valores diferentes de la curvatura escalar R0

asociada con el punto de renormalización. Panel izquierdo: soluciones simétricas para R0 = 0 (ĺınea de

guiones azul) y R0 = 10−3M2
pl (ĺınea de puntos y guiones roja) con parámetros fijos m2

R = 10−4M2
pl,

ξR = 0, y λR = 0,1. Las curvas son prácticamente indistinguibles, mostrando que las soluciones

no dependen fuertemente de R0. Panel derecho: soluciones con ruptura de la simetŕıa para R0 =

7 × 10−28M2
pl (ĺınea de guiones azul), R0 = 10−27M2

pl (ĺınea de puntos y guiones roja), y R0 =

1,25× 10−27M2
pl (ĺınea punteada marrón) donde los parámetros fijos son m2

R = 5× 10−30M2
pl, ξR = 0,

y λR = 0,1. En este caso, los valores de R0 fueron elegidos para estar en el rango en el cual existen las

soluciones con ruptura de simetŕıa.

Analizemos ahora los casos donde R0 es considerado fijo e independiente de ΛR. En la Figura

6.2, el panel de la izquierda corresponde a la fase simétrica, mientras que el panel de la derecha

a la fase con ruptura de simetŕıa. Se puede ver que la backreaction es más significativa en la

fase con ruptura(por ejemplo, la desviación es del 1% para ΛR ≃ 0,04M2
pl, R0 ≃ 10−27M2

pl y

m2
R = 5× 10−30M2

pl), mientras que en la fase simétrica la solución se mantiene más cerca de la

clásica. La diferencia entre la backreaction y las soluciones clásicas puede volverse importante

para valores grandes de la constante cosmológica (no mostrado en la Figura). En efecto, se

puede mostrar que la solución de la backreaction para R se anula en el ĺımite de ΛR grande

(superplanckiano). Sin embargo, adoptando una perspectiva de teoŕıas de campos efectivas, nos

restringimos aqúı a valores subplanckianos.

Dado que en general la solución con ruptura de simetŕıa sólo es posible para una elección

adecuada de los parámetros, los valores de R0 en el panel de la derecha fueron elegidos cuidado-

samente para que se encuentren dentro de la ventana estrecha donde existen estas soluciones,

y que desaparezcan por debajo de un valor pequeño de ΛR dependiente de los parámetros (de-
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bajo de 10−3M2
pl en los ejemplos que se muestran). Es posible verificar que la aproximación

M2
dyn ≪ R se puede romper dependiendo de los valores de los parámetros. Para los valores

considerados en el panel de la izquierda de la Figura 6.2, esto sucede para valores suficientemen-

te pequeños de ΛR, mientras que para aquellos en el panel derecho, la aproximación mantiene

su validez.
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Figura 6.3: La desviación (R−Rcl)/Rcl vs. ΛR para las soluciones a la backreaction correspondientes

a las fases simétrica (a la izquierda) y con ruptura de simetŕıa (a la derecha). Paneles superiores: tres

curvas correspondientes a distintos valores del acoplamiento con la curvatura: ξR = 4× 10−3 (ĺınea de

guiones azul), ξR = 10−2 (ĺınea de puntos y guiones roja), y ξR = 2× 10−2 (ĺınea punteada marrón),

donde los parámetros fijos son m2
R = 10−7M2

pl, λR = 0,1 y R0 = 10−2M2
pl. Paneles inferiores: cuatro

curvas diferentes mostrando la dependencia con el valor de R0 para m2
R = 10−7M2

pl, ξR = 4 × 10−3,

y λR = 0,1: R0 = 10−2M2
pl (ĺınea de guiones azul), R0 = 5 × 10−3M2

pl (ĺınea de puntos y guiones

roja), R0 = 10−3M2
pl (ĺınea punteada marrón), y R0 = 10−28M2

pl (ĺınea de guiones verde). Notar que

no existen soluciones con ruptura de simetŕıa para los últimos dos valores de R0.

La backreaction para el caso de un acoplamiento no mı́nimo con la curvatura se ilustra

en la Figura 6.3, donde la izquierda (derecha) los paneles se corresponden con las soluciones

simétricas (con ruptura de simetŕıa). Los paneles superiores muestran la dependencia de las
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soluciones con el acoplamiento a la curvatura ξR, mientras que en los paneles inferiores dicho

acoplamiento ξR es fijo y se consideran diferentes valores de R0. En particular, a partir de

la Figura de la parte inferior izquierda, se puede ver que en el caso simétrico, el efecto de

las correcciones cuánticas puede aumentar o disminuir el valor de la curvatura escalar R del

espacio-tiempo de De Sitter con respecto a la clásica, dependiendo del valor de ΛR. En la fase

simétrica hay soluciones autoconsistentes para valores grandes de ΛR, mientras que en la fase

con ruptura de simetŕıa sólo existen soluciones para ΛR por debajo de una cota superior (que

depende de los parámetros). Se debe tener en cuenta que también hay un ĺımite superior para

R0 por debajo del cual, bajo nuestras aproximaciones, no existe ninguna solución con ruptura

de simetŕıa sin importar el valor de ΛR. Por otro lado, se puede comprobar que la aproximación

M2
dyn ≪ R deja de ser válida para valores suficientemente pequeños de ΛR en la fase con

ruptura de simetŕıa, aśı como también en el caso simétrico, pero sólo cuando R0 es menor a

cierto valor cŕıtico que depende de los parámetros. Sin embargo, como se puede ver a partir de

los ejemplos considerados en las dos Figuras de los paneles de la izquierda, para valores más

grandes de R0, hay soluciones simétricas donde en cambio la aproximación deja de valer para

valores grandes de ΛR, mientras sigue siendo válida todo el camino hasta ΛR → 0. En estos

últimos casos, se puede concluir que existe una divergencia de la desviación relativa en este

ĺımite, lo que indica que a medida que Rcl → 0, la curvatura escalar R va a un valor positivo

finito. Por lo tanto, para este conjunto de parámetros el efecto de la backreaction es crucial

para determinar la curvatura del espacio-tiempo.

6.3. Discusión

En el caṕıtulo 4 mostramos que en la aproximación de Hartree a la acción efectiva 2PI, el

procedimiento de renormalización consistente introducido en [29] en el espacio-tiempo plano

puede generalizarse a espacio-tiempos curvos para hacer finitas las ecuaciones del valor medio

del campo y de la masa dinámica. En este caṕıtulo nuestro primer objetivo ha sido mostrar que

esto puede extenderse también a las EES, renormalizando el sector gravitacional de la teoŕıa.

Es decir, hemos demostrado que el mismo conjunto de contratérminos se puede utilizar para

renormalizar las EES (junto con los contratérminos gravitacionales habituales que son necesarios

incluso para los campos libres). A fin de mantener la covarianza de la teoŕıa regularizada, hemos

utilizado el método de regularización dimensional.

En la sección 6.2, hemos aplicado nuestros resultados al espacio-tiempo de De Sitter. He-

mos considerado la forma expĺıcita de las ecuaciones de valor medio y de la masa dinámica,
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calculadas en los caṕıtulos previos, junto con la EES para esta métrica en particular, encontran-

do algunas soluciones de De Sitter autoconsistentes. La resolución numérica simultánea de las

ecuaciones algebraicas resultantes nos permitió analizar la aparición de ruptura espontánea de

simetŕıa y, al mismo tiempo, evaluar el efecto de las fluctuaciones cuánticas en la métrica clásica.

Las conclusiones importantes de nuestro análisis son, por un lado, que cuando ΛR = 4R0 no se

encuentran soluciones con ruptura de simetŕıa, y por otro lado, que el efecto de la backreation

depende en gran medida del valor de la curvatura escalar en el punto de renormalización R0. En-

contramos soluciones autoconsistentes en las cuales la backreaction es importante y soluciones

en las que no lo es, en función de los valores de los parámetros. En particular, hemos encontrado

soluciones de De Sitter autoconsistentes en ausencia de constante cosmológica ΛR = 0, donde

los efectos cuánticos desempeñan un papel crucial.

En cuanto a los efectos infrarrojos, como se puede observar en la ecuación (6.25), no apa-

recen contribuciones peligrosas en el valor de expectación renormalizado del tensor de enerǵıa-

momento en De Sitter. Esto es en parte debido a la generación de masa dinámica proveniente

de la resumación no perturbativa del formalismo 2PI, que tiene como consecuencia la regula-

rización de las divergencias infrarrojas del propagador. Al nivel del valor de expectación del

tensor de eneǵıa-momento, que depende del propagador y sus derivadas, es de notar también

que los términos potencialmente peligrosos aparecen suprimidos por un factor m2
dyn.



Caṕıtulo 7

Otros métodos no perturbativos en De

Sitter

Hasta aqúı nos hemos focalizado en un método no perturbativo en particular de la teoŕıa

de campos, a saber, la acción efectiva 2PI. Dicho método resulta muy poderoso ya que permite

realizar ciertas resumaciones infinitas de diagramas de Feynman. Otro método no perturbativo,

también en el contexto de la teoŕıa de campos usual, es el del grupo de renormalización dinámico

[54]. En este último, se define una acción efectiva parcial integrando los modos de longitud

de onda hasta cierto cutoff en momentos, y luego se estudia la evolución de las constantes

renormalizadas al variar dicho valor de cutoff.

En ambos casos, estos métodos permiten capturar algunos efectos no perturbativos como

ser la generación dinámica de masa en De Sitter, pero su rango de aplicaciones no se restringe a

este espacio-tiempo en particular. Sin embargo, estos métodos también tienen sus limitaciones,

como ser que, en general, resulta técnicamente muy complicado ir más allá del ĺımite de N -

grande. Por esta razón, la relevancia de los resultados obtenidos para el caso de interés, N = 1,

queda todav́ıa sin ser esclarecida. Como hemos visto, los intentos de aplicar el método de la

acción efectiva 2PI a N = 1, nos han forzado a realizar truncaciones no sistemáticas y luego

tratar de remendarlas mediante la imposición de las relaciones de consistencia. Las conclusiones

obtenidas en dicho caso muestran una fuerte dependencia de los resultados con el punto de

renormalización.

En éste caṕıtulo presentaremos otro tipo de métodos no perturbativos que nacen del caso

de estudio en particular, el espacio-tiempo de De Sitter, y que están particularmente adaptados

para estudiar el problema infrarrojo. Estos métodos son el formalismo de inflación estocástica

89
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[32, 17], y la teoŕıa de campos en el espacio de De Sitter eucĺıdeo [39, 40]. En ambos casos, la

equivalencia de estos métodos con aquellos basados en la teoŕıa de campos IN-IN convencional

todav́ıa se debate abiertamente en la literatura, si bien se ha logrado cierto progreso en el caso

de un campo masivo.

Posteriormente en el caṕıtulo 8, discutiremos nuestro análisis de la equivalencia entre el

formalismo eucĺıdeo y los resultados obtenidos con la acción efectiva 2PI en el ĺımite de N

grande. En particular, estudiaremos el caso no masivo, el cual escapa a los intentos conocidos

en la literatura de establecer una equivalencia.

7.1. Inflación estocástica

En esta sección discutiremos el formalismo de inflación estocástica [32, 17], mediante la cual

se plantea el problema de la evolución de los modos de longitud de onda muy larga a tiempos

largos en la situación inflacionaria a través de una formulación estocástica.

Debido a la expansión cuasi-exponencial del Universo durante la etapa inflacionaria, los

modos del campo salen cont́ınuamente del horizonte y se vuelve clásicos (para un análisis en

detalle ver [65]). Mirando uno de esos modos φ con longitud de onda mucho mayor que el

horizonte, se tiene una variable clásica independiente de ~x, y la interacción de este grado de

libertad con los modos cuánticos de longitud de onda menor es descripto de manera efectiva

mediante una fuente de ruido estocástico ξ en una ecuación de tipo Langevin,

φ̇+
∂φV

3H
= ξ(t), (7.1)

con las condiciones 〈ξ(t)〉 = 0 y 〈ξ(t)ξ(t′)〉 = H3

4π2 δ(t − t′). La segunda implica una estad́ıstica

Gaussiana para el ruido.

En esta interpretación, la pregunta a hacerse no es cuál es la evolución temporal de φ(t),

ya que en cada realización del ruido estocástico, la historia será diferente. En cambio, hay

cantidades que representan propiedades estad́ısticas del ensamble de realizaciones del sistema,

como ser la varianza 〈φ(t)2〉. En esta situación, la cantidad útil que debemos conocer es la

función de distribución de probabilidad del campo ρ(φ, t), la cual satisface una ecuación de

Fokker-Planck en virtud de (7.1),

∂ρ(φ, t)

∂t
=

1

3H

∂

∂φ

[

ρ(φ, t)
∂V (φ)

∂φ

]

+
H3

8π2

∂2ρ(φ, t)

∂φ2
. (7.2)
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La solución general puede ser dificil de hallar, sin embargo estamos interesados en el com-

portamiento a tiempos largos. Para ello podemos suponer que el sistema alcanzará un estado

estacionario y por lo tanto ∂t = 0. Es sencillo entonces resolver (7.2) y llegar a

ρ(φ) = N e−
8π2

3H4 V (φ), (7.3)

donde N es un factor de normalización que se encarga de que ρ(φ) se comporte como una

densidad de probabilidad, es decir,
∫ +∞
−∞ dφ ρ(φ) = 1. Con este resultado es posible calcular

valores de expectación a tiempos largos de distintos observables que sean una función del campo

O(φ),

〈O(φ)〉 =
∫ +∞

−∞
dφO(φ)ρ(φ). (7.4)

7.1.1. El resultado de Starobinsky y Yokoyama

El resultado interesante de Starobinsky y Yokoyama surge al analizar la varianza de un

campo no masivo, que, como hemos visto, en su tratamiento habitual en la teoŕıa de campos

perturbativa en De Sitter exhibe divergencias infrarrojas. En este caso el potencial del campo

contiene únicamente el término de auto-interacción (3.5), y por lo tanto la varianza de φ puede

calcularse a partir de (7.4) como la siguiente integral,

〈φ2〉 =
∫ +∞

−∞
dφφ2ρ(φ) =

∫ +∞
−∞ dφφ2e−

8π2

3H4
λ
4!
φ4

∫ +∞
−∞ dφ e−

8π2

3H4
λ
4!
φ4

, (7.5)

donde en la segunda igualdad el denominador viene del factor de normalización N . Estas

integrales pueden calcularse exactamente, conduciendo al famoso resultado,

〈φ2〉 = 3

π

Γ
(

3
4

)

Γ
(

1
4

)

H2

√
λ
≡ 3H4

8π2M2
dyn

, (7.6)

el cual, por comparación con el resultado proveniente de la teoŕıa de campos en el formalismo

IN-IN para un campo masivo (3.17), nos permite definir una masa dinámica [17],

M2
dyn =

√
λH2

8π

Γ
(

1
4

)

Γ
(

3
4

) . (7.7)

Este resultado, de carácter no perturbativo, muestra que a pesar de la ausencia de una masa

en el potencial clásico, la auto-interacción del campo genera una masa de forma dinámica. La

dependencia de ésta con la constante de acoplamiento es no anaĺıtica, en particular va como√
λ, lo cual explica la imposibilidad de hallarlo en una expansión perturbativa ordinaria en

potencias λ.
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7.1.2. Equivalencia con la teoŕıa de campos IN-IN

Este tratamiento parece suficientemente sencillo, pero deja plateados varios interrogantes.

La primera pregunta que surge es sobre su validez, dado que escencialmente se está reemplazan-

do un problema cuántico con infinitos grados de libertad por un problema estocástico clásico

con un solo grado de libertad. ¿Es posible demostrar la equivalencia entre ambos tratamientos?

¿En qué ĺımite o régimen de validez? Por otro lado, se espera que los resultados provenientes

del formalismo de inflación estocástica capturen solamente la parte más infrarroja del com-

portamiento. La siguiente pregunta es entonces si es posible calcular correcciones de forma

sistemática al resultado estocástico más allá del ĺımite infrarrojo. Este tipo de preguntas han

sido planteadas en la literatura e investigadas por diversos autores. A continuación repasaremos

brevemente algunos argumentos presentados en [36, 38] en relación a la equivalencia.

Primero, se puede mostrar que los observables de la teoŕıa estocástica pueden obtenerse a

partir de la funcional generatriz

Z =

∫

Dξ e−
1
2

∫

dtξ2 4π2

H3

∫

Dφδ(φ̇+ ∂φV/3H − ξ), (7.8)

a partir de la cual pueden definirse unas reglas de Feynman estocásticas. Luego, se busca llegar

a reglas equivalentes partiendo de la integral funcional de la teoŕıa de campos IN-IN, tomando

el ĺımite infrarrojo de forma apropiada. Para ello, primero se reescribe (7.8) introduciendo un

campo auxiliar ψ e integrando sobre el ruido ξ,

Z =

∫

DφDψ e

−i
∫

dt











1
2
(φ,ψ)G−1

0







φ

ψ






+

∂φVint

3H3 ψ











, (7.9)

donde aqúı se ha definido,

G0 =

(

G1(t,t′)
2

−iGR(t, t
′)

−iGA(t, t
′) 0

)

(7.10)

y además se tiene que
∂φVint
3H3

ψ =
λ

3!

ψφ3

3H3
. (7.11)

A partir de esta representación para Z es posible leer las siguientes reglas de Feynman para

definir la teoŕıa de pertubaciones en λ, representadas en la Figura 7.1.

Por otro lado, en el formalismo IN-IN de la teoŕıa de campos en la base de Keldysh (2.48),

la matriz de propagadores tiene la forma (2.49), y los vértices de interacción están dados por
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Figura 7.1: Reglas de Feynman de la teoŕıa estocástica derivadas a partir de (7.9).

Figura 7.2: Reglas de Feynman de la teoŕıa de campos IN-IN en la base de Keldysh.

(3.27). Las reglas de Feynman asociadas son aquellas representadas en la Figura 7.2. Aqúı ya

comienzan a verse algunas similitudes, como la estructura de la matriz de propagadores, pero

también aparecen algunas diferencias, como la dependencia espacial en los propagadores y en

las integrales del caso IN-IN, aśı como la presencia de un vértice de interacción adicional que

no vemos en el caso estocástico.

Aqúı es donde el análisis se centra en el ĺımite infrarrojo M2 ≪ H2. Por un lado, puede

mostrarse que en dicho ĺımite la dependencia de los propagadores con las coordenadas espaciales

~x desaparece, quedando solamente una dependencia temporal,

1

2
G

(M)
1 (x, x′) ≃ 3H4

4π2M2
e−

M
2

3H
|t−t′|, (7.12)

G
(M)
R (x, x′) = G

(M)
A (x′, x) =

H2

4π
Θ(t− t′)Θ

(

(η − η′)2 − |~x− ~x′|2
)

e−
M

2

3H
|t−t′|. (7.13)

Además puede observarse que el propagador retardado está suprimido con respecto al propa-

gador estad́ıstico por un factor H2/M2, como ya hemos visto anteriormente. Por esta razón,

los diagramas que contienen vértices del tipo λφcφ
3
∆ estarán suprimidos respecto a aquellos con

vértices λφ3
cφ∆.

Los pasos finales involucran un análisis de las integrales que aparecen en los diagramas de
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Feynman. En [38] se prueba que, en el ĺımite infrarrojo, estas integrales se reducen
∫

d4x→
∫

dt.

Este es un punto para nada trivial, el cual no reproduciremos aqúı. La equivalencia diagramática

(perturbativa) queda entonces establecida para campos masivos M2 > 0 en el ĺımite infrarrojo.

Sin embargo, el caso de mayor interés, M = 0, queda fuera del análisis por las mismas razones

que en la teoŕıa de campos en el formalismo IN-IN, los problemas infrarrojos.

Otros intentos en la literatura [33, 34, 35] buscan reducir la teoŕıa de campos en el formalismo

IN-IN al formalismo estocástico, separando el campo en modos de longitud de onda menor y

mayor que el horizonte φ< y φ>. Luego, el ruido estocástico ξ aparece a causa de una función

ventana dependiente del tiempo. Estas técnicas se asemejan a aquellas de la mecánica cuántica

de sistemas abiertos, también aplicable a la teoŕıa cuántica de campos.

Actualmente quedan varias preguntas sin responder en relación al formalismo de inflación

estocástica y su validez para estudiar los efectos infrarrojos en De Sitter. Por ejemplo, queda

todav́ıa por ser establecida la equivalencia con la teoŕıa de campos en el formalismo IN-IN en el

caso de un campo no masivo M = 0. Éste es, sin duda, el caso de mayor interés en el contexto

de los problemas infrarrojos. Otras preguntas abiertas incluyen: ¿Qué tipo de resumación, en

términos de la teoŕıa de perturbaciones usual, está implicita en el resultado estocástico no

perturbativo? ¿Se podrá llevar a cabo la misma resumación con el método de la acción efectiva

2PI o algún otro método no perturbativo de la teoŕıa de campos en el formalismo IN-IN? ¿Cómo

pueden calcularse correcciones más allá del ĺımite infrarrojo de forma sistemática en la teoŕıa

estocástica?

7.2. Espacio De Sitter eucĺıdeo

Otra técnica no perturbativa en De Sitter proviene de definir la teoŕıa de campos en el espacio

de De Sitter eucĺıdeo. En esta sección seguiremos el desarrollo no perturbativo inicialmente

propuesto en [39], y posteriormente extendido en [40] para incluir correcciones perturbativas

más allá del ĺımite infrarrojo. En particular, haremos una generalización al caso de un campo con

simetŕıa O(N) [44]. En lo que queda de este caṕıtulo consideraremos la primera contribución a

la masa dinámica en el ĺımite infrarrojo. Dejamos para el caṕıtulo 8 el cálculo de las correcciones

más allá de este ĺımite, tanto a la masa dinámica como a la función de 2-puntos general, y la

comparación con los resultados obtenidos en la teoŕıa de campos lorentziana en el formalismo

2PI.
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7.2.1. Prolongación anaĺıtica y compactificación

El espacio de De Sitter eucĺıdeo se obtiene a partir del espacio-tiempo de De Sitter loren-

tziano en coordenadas globales (3.3) mediante una continuación anaĺıtica t → −i(τ − π/2H),

seguido de una compactificación en el tiempo imaginario τ = τ +2π/H. La métrica que resulta

tiene signatura eucĺıdea y corresponde a una d-esfera de radio H−1

ds2 = H−2
[

dθ2 + sin(θ)2dΩ2
]

, (7.14)

donde θ = Hτ . La acción eucĺıdea correspondiente a (3.4) para un campo escalar en el modelo

O(N) se escribe

SE =

∫

ddx
√
g

[

1

2
φa
(

−�+M2
)

φa +
λ

8N
(φaφa)

2

]

, (7.15)

donde ya utilizamos que, al estar en De Sitter, el parámetro de masa relevante es M2 =

m2+ξd(d−1)H2. En d dimensiones, la constante de acoplamiento del campo tiene unidades de

H4−d, y por lo tanto puede ser expresada como λ = µ4−dλ4, con λ4 una constante adimensional

y µ una escala con unidades de masa.

Dado que este espacio es compacto, podemos expandir al campo en una suma discreta de

modos

φa(x) =
∑

~L

φ~L,aY~L(x), (7.16)

donde Y~L(x) son los armónicos esféricos en d dimensiones, etiquetados por el vector de ı́ndices
~L = (L,Ld−1, .., L1), con L ≥ Ld−1 ≥ · · · ≥ |L1|. Éstos satisfacen la ecuación,

�Y~L(x) = −H2L(L+ d− 1)Y~L(x), (7.17)

y las relaciones de ortogonalidad

∫

x

Y~L(x)Y
∗
~L′
(x) = H−dδ~L ~L′ , (7.18)

donde hemos introducido el atajo notacional
∫

x
=
∫

ddx
√
g. Insertando esta expansión en la

parte libre de la acción (7.15) y usando las propiedades (7.17) y (7.18) se puede obtener una

expansión para el propagador libre eucĺıdeo (en la fase simétrica),

G
(M)
ab (x, x′) = δabG

(M)(x, x′)

= δabH
d
∑

~L

Y~L(x)Y
∗
~L
(x′)

H2L(L+ d− 1) +M2
, (7.19)



–96–

donde el supeŕındice indica la masa. Se puede mostrar [40] que en efecto éste es el propagador

en el vaćıo de Bunch-Davies (3.9) en tiempo imaginario, es decir, donde ahora la distancia in-

variante y(x, x′) está definida sobre la esfera (7.14). Los propagadores lorentzianos se recuperan

realizando la continuación anaĺıtica inversa con la prescripción apropiada (3.10). Esto lleva a

dos observaciones importantes, por un lado en el espacio eucĺıdeo no hay distinción entre los

distintos propagadores, sino que se tiene uno solo G(M)(x, x′), por otro lado, el ĺımite de coinci-

dencia del propagador es igual tomado en el espacio eucĺıdeo que en el lorentziano. Aśımismo,

no tiene sentido contemplar el formalismo IN-IN, ya que no hay una definición asintótica de los

estados de vaćıo en el pasado y futuro.

7.2.2. Tratamiento no perturbativo del modo cero

La contribución a (7.19) para ~L = ~0, G
(M)
0 = |Y~0|2Hd/M2, es claramente responsable por

las divergencias infrarrojas en las funciones de correlación del campo escalar cuando M2 → 0

descriptas en el caṕıtulo 3 (ver ec. (3.17)). Esto motiva separar φa(x) = φ0a + φ̂a(x) con el

objetivo de tratar de forma especial al modo cero φ0a, el cual es constante, distinguiéndolo de

la parte inhomogénea φ̂a(x). De la misma manera, separamos el propagador en dos partes,

G(M)(x, x′) = G
(M)
0 + Ĝ(M)(x, x′), (7.20)

donde ahora Ĝ(M), al que llamamos propagador libre ultravioleta, tiene la propiedad de ser finito

en el ĺımiteM2 → 0. Vale destacar que esto, sin embargo, no es suficiente para resolver todos los

problemas infrarrojos del propagador no masivo, ya que éste aún mantiene su comportamiento

para puntos separados (decaimiento no exponencial a tiempos muy separados comparados con

H−1 [66]). Si bien esto no importa en el espacio eucĺıdeo donde la separación máxima está

acotada gracias a la compactificación, puede ser relevante en vistas a la eventual continuación

anaĺıtica para volver al espacio-tiempo lorentziano.

Consideremos ahora cómo se separa la parte de interacción de la acción eucĺıdea (7.15),

SE

∣

∣

∣

int
=
λVd
8N

|φ0|4 + S̃int[φ0a, φ̂a], (7.21)

donde S̃int es la acción de interacción entre los modos cero y ultravioletas, y Vd es el volumen

total del espacio De Sitter eucĺıdeo en d dimensiones, que gracias a su compactificación resulta

finito e igual a la hipersuperficie de una d-esfera

Vd =

∫

ddx
√
g =

2π
d+1
2

Γ
(

d+1
2

)

Hd
=

1

|Y~0|2Hd
. (7.22)
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Con el fin de calcular las funciones de correlación cuánticas de la teoŕıa, definimos la funcional

generatriz en presencia de las fuentes J0a y Ĵa(x),

Z[J0, Ĵ ] = N
∫ ∞

−∞
dφ0

∫

Dφ̂ e−SE−
∫

x
(J0aφ0a+Ĵaφ̂a)

= exp

(

−S̃int
[

δ

δJ0
,
δ

δĴ

])

Z0[J0]Ẑf [Ĵ ]. (7.23)

En la segunda ĺınea se definen las funcionales generatrices Ẑf [Ĵ ], asociada a una teoŕıa libre

con propagador ultravioleta Ĝ(M)(x, x′); y Z0[J0], correspondiente a una teoŕıa que involucra

solamente al modo cero, incluyendo el término de auto-interacción ∼ λ|φ0|4. Esta última resulta

equivalente a un problema unidimensional de mecánica cuántica ordinaria. Esta parte da la

contribución más importante en el ĺımite infrarrojo, y puede ser calculada de manera exacta

en varios casos de interés [39]. Es precisamente aqúı donde se está realizando una resumación

no perturbativa. Por otra parte, la interacción entre ambos sectores puede tratarse de manera

perturbativa, lo que proveé correcciones más allá del ĺımite infrarrojo [40].

7.2.3. Potential efectivo eucĺıdeo

Como ya mencionamos, el potencial efectivo da información valiosa sobre el efecto que las

fluctuaciones cuánticas tienen sobre el campo medio de fondo φ̄. Estamos interesados particu-

larmente en la generación dinámica de masa a partir de los efectos cuánticos. Para estudiar

este problema desde el punto de vista del formalismo eucĺıdeo, analizamos primero el potencial

efectivo para relacionar su parte cuadrática, es decir la masa dinámica, con la varianza del

modo cero.

Comenzamos definiendo la acción efectiva en este caso,

Γ[φ̄0,
ˆ̄φ] = W [J0, Ĵ ]−

∫

x

(

φ̄0aJ0a +
ˆ̄φa(x)Ĵa(x)

)

, (7.24)

con W [J0, Ĵ ] = − log(Z[J0, Ĵ ]) la funcional generatriz de los diagramas conectados, y donde

φ̄0a =
δW [J0, Ĵ ]

δJ0a
, (7.25)

ˆ̄φa =
δW [J0, Ĵ ]

δĴa
, (7.26)

define a los campos “clásicos”. El potencial efectivo se obtiene al evaluar la acción efectiva en

un campo constante, es decir ˆ̄φ = 0, lo cual a su vez requiere que Ĵ = 0, y luego dividiendo por
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el volumen del espacio Vd. Entonces

Vd Veff (φ̄0) = Γ[φ̄0, 0] = W [J0, 0]− φ̄0aJ0a. (7.27)

Con el fin de calcular el término cuadrático de Veff (φ̄0) como función de φ̄0, realizamos la

siguiente expansión,

Γ[φ̄0, 0] = Γ[0, 0] +
1

2

δ2Γ[φ̄0, 0]

δφ̄0aδφ̄0b

∣

∣

∣

∣

∣

φ̄0=0

φ̄0aφ̄0b + . . . , (7.28)

donde el término lineal se anula en φ̄0 = 0, como puede apreciarse al diferenciar (7.27) con

respecto a φ̄0,
δΓ[φ̄0, 0]

δφ̄0a

= −J0a, (7.29)

y teniendo en cuenta que, en la fase simétrica, el campo medio φ̄0 se anula śı y sólo śı J0 = 0.

Tomando otra derivada a la expresión anterior pero ahora respecto de J0, obtenemos

δab = −δ
2Γ[φ̄0, 0]

δJ0bδφ̄0a

= −δφ̄0c

δJ0b

δ2Γ[φ̄0, 0]

δφ̄0cδφ̄0a

, (7.30)

donde hemos usado la regla de la cadena para la segunda igualdad. Por otra parte, differien-

ciando (7.25) con respecto a J0, se tiene

δφ̄0c

δJ0b
=
δ2W [J0, 0]

δJ0bδJ0c
, (7.31)

lo cual, reemplazado en la expresión previa conduce a la conclusión de que

δ2Γ[φ̄0, 0]

δφ̄0aδφ̄0b

= −
(

δ2W [J0, 0]

δJ0aδJ0b

)−1

. (7.32)

Ahora debemos evaluar para φ̄0 = 0 (J0 = 0),

δ2W [J0, 0]

δJ0aδJ0b

∣

∣

∣

∣

∣

J0=0

= − 1

Z[0, 0]

δ2Z[J0, 0]

δJ0aδJ0b

∣

∣

∣

∣

∣

J0

= −〈φ0aφ0b〉, (7.33)

permitiéndonos identificar a la función de 2-puntos exacta correspondiente al modo cero 〈φ0aφ0b〉.
En la fase simétrica, cualquier tensor de segundo rango con respecto a los ı́ndices internos del

grupo O(N) es proporcional a la identidad δab. Por lo tanto, la expresión anterior puede ser

invertida fácilmente,
δ2Γ[φ̄0, 0]

δφ̄0aδφ̄0b

= δab
N

〈φ2
0〉
, (7.34)
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donde hemos expresado el resultado en términos de la varianza de módulo |φ0|, es decir 〈φ2
0〉 =

δab〈φ0aφ0b〉. Finalmente, reemplazamos esta última expresión en la ecuación (7.28) y dividimos

por Vd, obteniendo el potencial efectivo a orden cuadrático,

Veff (φ̄0) = V0 +
1

2

N

Vd〈φ2
0〉
|φ̄0|2 +O(|φ̄0|4). (7.35)

Este es un resultado exacto de la teoŕıa eucĺıdea válido para todo N y λ, que muestra que la

masa dinámica está dada por la inversa de la varianza de modo cero.

Al primer orden infrarrojo, la interacción entre el modo cero y los modos ultravioletas puede

ser despreciada en (7.23), y por lo tanto se tiene que

〈φ2
0〉0 = δab

δ2Z0[J0]

δJ0aδJ0b

∣

∣

∣

∣

∣

J0=0

=

∫

dNφ0 φ
2
0e

−Vd
[

λ
8N

φ40+
M

2

2
φ20

]

∫

dNφ0 e
−Vd

[

λ
8N

φ40+
M2

2
φ20

] . (7.36)

Para el caso M = 0 esto puede calcularse de forma exacta, dando como resultado una masa

dinámica a primer orden infrarrojo igual a,

M2
dyn,0 =

√

Nλ

2Vd

1

2

Γ
[

N
4

]

Γ
[

N+2
4

] , (7.37)

donde aqúı Γ es la función Gamma de Euler. Para N = 1, se recupera el resultado de [39], que

se corresponde con el que se obtiene a partir del formalismo estocástico (7.7),

M2
dyn,0

∣

∣

∣

∣

∣

N=1

=

√
3λH2

8π

Γ
[

1
4

]

Γ
[

3
4

] , (7.38)

donde aqúı evaluamos d = 4, y por lo tanto V4 = 8π2/3. Al comparar con (7.7), tener en cuenta

que alĺı la definición del acoplamiento λ es aquella de N = 1, dada por (3.5), mientras que aqúı

estamos usando la definición de O(N) dada por (3.4) (cambia un factor 3).

En el próximo caṕıtulo calcularemos correcciones perturbativas más allá del ĺımite infrarrojo

en vistas a una comparación con resultados no perturbativos provenientes del formalismo de la

acción efectiva 2PI de la teoŕıa lorentziana.
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Caṕıtulo 8

Más allá del ĺımite infrarrojo en el

espacio De Sitter eucĺıdeo

Como hemos visto, el formalismo eucĺıdeo permite recuperar el resultado estocástico, pero a

diferencia de éste, además permite calcular correcciones más allá del ĺımite infrarrojo de manera

sistemática. La situación en relación a la equivalencia entre el formalismo eucĺıdeo y la teoŕıa de

campos lorentziana en el formalismo IN-IN es similar al caso estocástico, es decir, se ha hecho

progreso únicamente en el caso masivo [41]. Por otra parte, el caso no masivo sigue sin estar

contemplado en dichos análisis. Resulta de importancia avanzar en esa dirección.

Con esta meta en mente, en este caṕıtulo consideramos el cálculo de correcciones más allá

del ĺımite infrarrojo a la función de 2-puntos del campo en el formalismo eucĺıdeo hasta segundo

orden. Esto incluye la varianza del modo cero, necesaria para calcular la masa dinámica, como

también la función de 2-puntos de los modos inhomogéneos con puntos separados. En particular,

mantendremos la generalidad en N .

Desde el punto de vista de los métodos no perturbativos de la teoŕıa cuántica de campos

lorentziana en el formalismo IN-IN, no esperamos que la aproximación de Hartree para un único

campo (N = 1), discutida en los caṕıtulos precedentes, coincida con el resultado eucĺıdeo en el

caso no masivo. En efecto, se sabe que la masa dinámica calculada en esta aproximación difiere

del resultado estocástico (y por lo tanto del eucĺıdeo en el ĺımite infrarrojo), aunque es notable

que la diferencia sea sólo de un 15% [17]. Por otra parte, la acción efectiva 2PI da resultados no

perturbativos confiables el ĺımite de N → ∞. Este será entonces nuestro punto de comparación

entre los formalismos eucĺıdeo y lorentziano.

Los resultados aqúı presentados están siendo preparados para su publicación [44].
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8.1. Correcciones más allá del ĺımite infrarrojo

Las correcciones al resultado infrarrojo provienen de expandir perturbativamente la expo-

nencial de la acción de interacción S̃int en la expresión (7.23). La auto-interacción del modo

cero ya fue tenida en cuenta de manera no perturbativa en Z0[J0]. La expresión expĺıcita para

la parte de interacción es

S̃int =
λ

8N

∫

ddx
√
g

[

2Aabcdφ0aφ0bφ̂cφ̂d + 4δabδcdφ0aφ̂bφ̂cφ̂d + δabδcdφ̂aφ̂bφ̂cφ̂d

]

, (8.1)

donde Aabcd es el tensor totalmente simétrico de cuarto rango

Aabcd = δabδcd + δacδbd + δadδbc. (8.2)

Aqúı no incluimos a los términos lineales en φ̂ que aparecen al separar los términos de masa y

de interacción de la acción completa, ya que estos se anulan dado que
∫

ddx
√
gY~L(x) = 0 para

L > 0, gracias a la ortogonalidad de los armónicos esféricos (7.18).

La primera corrección a la funcional generatriz viene de expandir la exponencial a orden

lineal, manteniendo de S̃int el término con exactamente dos potencias de φ0 y dos de φ̂, es decir,

el primer término de (8.1). El orden siguiente tiene dos contribuciones, la primera proveniente

del cuadrado de este mismo término, y la segunda proveniente del último término de (8.1) a

orden lineal. Considerando estas correcciones hasta segundo orden a la funcional generatriz,

llegamos a la siguiente expresión

Z[J0, Ĵ ] = Z0[J0]Ẑf [Ĵ ]−
λ

4N
Aabcd

δ2Z0[J0]

δJ0aδJ0b

∫

x

δ2Ẑf [Ĵ ]

δĴc(x)δĴd(x)

+
1

2

λ2

16N2
AabcdAefgh

δ4Z0[J0]

δJ0aδJ0bδJ0eδJ0f

∫∫

x,x′

δ4Ẑf [Ĵ ]

δĴc(x)δĴd(x)δĴg(x′)δĴh(x′)

− λ

8N
Z0[J0]δabδcd

∫

x

δ4Ẑf [Ĵ ]

δĴa(x)δĴb(x)δĴc(x)δĴd(x)
. (8.3)

Aqúı hemos seguido el procedimiento usual en teoŕıa cuántica de campos haciendo los reem-

plazos φ0a → δ/δJ0a y φ̂a(x) → δ/δĴa(x). Como discutimos previamente, para estudiar la

generación de masa dinámica, necesitamos la varianza del modo cero. Sin embargo, puede re-

sultar valioso también analizar el comportamiento de la función de 2-puntos completa para

puntos separados, ya que contiene información adicional sobre la parte no-local, inaccesible si
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uno se queda sólo con la masa dinámica. La función de 2-puntos del campo completo φ se separa

en las siguientes contribuciones,

〈φa(x)φb(x′)〉 = 〈φ0aφ0b〉+ 〈φ̂a(x)φ̂b(x′)〉, (8.4)

donde el término cruzado se anula por ortogonalidad. Llamaremos a cada uno de los términos

parte infrarroja y parte ultravioleta respectivamente. A continuación calcularemos ambas hasta

segundo orden a partir de (8.3), comenzando por la segunda.

8.1.1. Parte ultravioleta

Para calcular la parte ultravioleta de la función de dos puntos de φ̂, tomamos dos derivadas

funcionales de Z[J0, Ĵ ] con respecto a Ĵa(x) y evaluamos para Ĵ = 0,

〈φ̂a(x)φ̂b(x′)〉 =
1

Z[0, 0]

δ2Z[J0, Ĵ ]

δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

J0,Ĵ=0

(8.5)

donde aqúı el factor Z[0, 0]−1 se ocupa de la normalización de la teoŕıa interactuante,

Z[0, 0]−1 = 1 +
λ

4N
(N + 2)〈φ2

0〉0Vd[Ĝ(M)]

+
λ

8
(N + 2)Vd[Ĝ

(M)]2 +
λ2

16N2
(N + 2)2〈φ2

0〉20V 2
d [Ĝ

(M)]2

−λ
2〈φ2

0〉40
32N2

[

(N + 2)2V 2
d [Ĝ

(M)]2 + 2(N + 8)

∫∫

x,x′
Ĝ(M)(x, x′)2

]

(8.6)

donde [Ĝ(M)], el ĺımite de coincidencia del propagador ultravioleta libre de masa M, es in-

dependiente de x por invarianza de De Sitter. Para llegar a esta expresión hemos usado que

Aabcdδcd = (N+2)δab, aśı como también las expresiones (D.1) y (D.2) para escribir las derivadas

de Ẑf [Ĵ ] en términos de propagadores libres, apoyándonos en el hecho de que se trata de una

funcional generatriz libre (Apéndice D). Por otra parte, para las derivadas de Z0[J0] tenemos

δ2Z0[J0]

δJ0aδJ0b

∣

∣

∣

∣

∣

J0=0

= 〈φ0aφ0b〉0 = δab
〈φ2

0〉0
N

, (8.7)

δ4Z0[J0]

δJ0aδJ0bδJ0cδJ0d

∣

∣

∣

∣

∣

J0=0

= Aabcd
〈φ4

0〉0
N(N + 2)

, (8.8)

donde 〈φ0aφ0b〉0 es la función de 2-puntos exacta del modo cero al orden más bajo infrarrojo.

Decimos exacta porque incluye la auto-interacción del modo cero de forma no perturbativa.
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Por conveniencia, en la última igualdad hemos expresado el resultado en términos de la traza

de éstas funciones con respecto a los ı́ndices internos del grupo O(N), asumiendo estar en la

fase simétrica. En general, cualquiera de las funciones de n-puntos “trazadas” del modo cero al

orden más bajo infrarrojo pueden ser expresadas mediante integrales ordinarias,

〈φ2p
0 〉0 =

∫

dNφ0 φ
2p
0 e

−Vd
[

λ
8N

φ40+
M

2

2
φ20

]

∫

dNφ0 e
−Vd

[

λ
8N

φ40+
M2

2
φ20

] , (8.9)

si n = 2p es par, mientras que se anulan si n es impar.

Volviendo al cálculo de la función de 2-puntos de los modos ultravioletas, aprovechamos

que no es necesario aqúı diferenciar respecto de J0, para entonces evaluar desde un principio en

J0 = 0 y aśı simplificar un poco los cálculos. Luego, la derivada segunda de Z[J0, Ĵ ] necesaria

para la ecuación (8.5) es

δ2Z[0, Ĵ ]

δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

Ĵ=0

=
δ2Ẑf [Ĵ ]

δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

Ĵ=0

− λ

4N
(N + 2)〈φ2

0〉0
∫

z

δ4Ẑf [Ĵ ]

δĴ4
abcd(x, x

′, z, z)

∣

∣

∣

∣

∣

Ĵ=0

+
λ2

32N3

[

(N + 4)δcdδef + 4
Acdef

(N + 2)

]
∫∫

y,z

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x, x

′, y, y, z, z)

∣

∣

∣

∣

∣

Ĵ=0

− λ

8N
δcdδef

∫

z

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x, x

′, z, z, z, z)

∣

∣

∣

∣

∣

Ĵ=0

(8.10)

Nuevamente hemos utilizado (D.1), (D.2) y las expresiones análogas (D.3) y (D.4) para re-

emplazar las derivadas de Ẑf [Ĵ ] en la expresión (8.10), y luego hemos multiplicado por (8.6),

manteniendo los términos al orden apropiado. El resultado es

〈φ̂a(x)φ̂b(x′)〉 = δab

{

Ĝ(M)(x, x′)− λ(N + 2)

2N2
〈φ2

0〉0
∫

z

Ĝ(M)(x, z)Ĝ(M)(z, x′)

−
[

λ

2N
(N + 2)[Ĝ(M)]− λ2

8N3
(N + 2)2Vd[Ĝ

(M)]
(

〈φ4
0〉0 − 〈φ2

0〉20
)

]

×
∫

z

Ĝ(M)(x, z)Ĝ(M)(z, x′)

+
λ2

4N3
(N + 8)〈φ4

0〉0
∫

y,z

Ĝ(M)(x, y)Ĝ(M)(y, z)Ĝ(M)(z, x′)

}

. (8.11)

Por un lado, esta expresión aún debe ser renormalizada mediante la inclusión de contratérminos,

debido a las divergencias presentes en [Ĝ(M)]. Los detalles del proceso son relegados al Apéndice
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F. Separando

[Ĝ(M)] = [Ĝ(M)]div + [Ĝ(M)]ren, (8.12)

se puede ver que es posible hacer finita a la ecuación (8.11) con un contratérmino de masa de

la siguiente forma

δM2 = − λ

2N
(N + 2)[Ĝ(M)]div. (8.13)

Por otro lado, las integrales de los propagadores ultravioletas libres en el espacio eucĺıdeo

que aparecen en (8.11) pueden ser expresados en términos de las derivadas con respecto de la

masa de un único propagador. Esto se muestra en el Apéndice E, y el resultado es

∫

z

Ĝ(M)(x, z)Ĝ(M)(z, x′) = −∂Ĝ
(M)(x, x′)

∂M2
, (8.14)

∫∫

y,z

Ĝ(M)(x, y)Ĝ(M)(y, z)Ĝ(M)(z, x′) =
1

2

∂2Ĝ(M)(x, x′)

∂(M2)2
, (8.15)

y por lo tanto luego de la renormalización, la ecuación (8.11) se puede escribir como

〈φ̂a(x)φ̂b(x′)〉 = δab

{

Ĝ(M)(x, x′) +
λ(N + 2)

2N2
〈φ2

0〉0
∂Ĝ(M)(x, x′)

∂M2

+

[

λ

2N
(N + 2)[Ĝ(M)]ren −

λ2

8N3
(N + 2)2Vd[Ĝ

(M)]ren
(

〈φ4
0〉0 − 〈φ2

0〉20
)

]

×∂Ĝ
(M)(x, x′)

∂M2

+
λ2

8N3
(N + 8)〈φ4

0〉0
∂2Ĝ(M)(x, x′)

∂(M2)2

}

. (8.16)

Este resultado podŕıa corresponder a la expansión de un propagador ultravioleta libre con

respecto a una masa dependiente de λ en el caso que los coeficientes de los diferentes términos

guarden la relación apropiada entre śı. Esto se puede verificar en el ĺımite de N grande, como

veremos hacia el final de la sección.

Un punto a considerar es que, sin embargo, a menos que podamos resumar todas las contri-

buciones, un resultado como (8.16) depende de los propagadores ultravioletas libres evaluados

en la masa clásica M. Al considerar el caso no masivo M = 0, la presencia de los propagadores

Ĝ(0)(x, x′) (y sus derivadas) en puntos separados no asegura un buen comportamiento a tiem-

pos muy separados en comparación a H−1 [66]. De todas formas, esto no afecta el cálculo de la

varianza del campo, para el cual debe tomarse el ĺımite de coincidencia.
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8.1.2. Parte infrarroja

Ahora nos concentramos en calcular la parte infrarroja de la función de 2-puntos, es decir,

la varianza del modo cero. Para ello, tomamos dos derivadas de la functional generatriz Z[J0, Ĵ ]

con respecto a J0 y evaluamos para J0 = 0,

〈φ0aφ0b〉 =
1

Z[0, 0]

δ2Z[J0, Ĵ ]

δJ0aδJ0b

∣

∣

∣

∣

∣

J0,Ĵ=0

. (8.17)

Al igual que antes, es útil primero poner Ĵ = 0 y luego derivar,

δ2Z[J0, Ĵ ]

δJ0aδJ0b

∣

∣

∣

∣

∣

J0,Ĵ=0

=
δab
N

{

〈φ2
0〉0
[

1− λ

8
(N + 2)Vd[Ĝ

(M)]2
]

− λ

4N
(N + 2)〈φ4

0〉0Vd[Ĝ(M)] (8.18)

+
λ2

32N2
〈φ6

0〉0
[

(N + 2)2V 2
d [Ĝ

(M)]2 + 2(N + 8)

∫∫

x,x′
Ĝ(M)(x, x′)2

]}

,

donde nuevamente hemos utilizado (8.7) y (8.8) y el caso análogo,

δcdδef
δ6Z0[J0]

δJ0aδJ0bδJ0cδJ0dδJ0eδJ0f

∣

∣

∣

∣

∣

J0=0

= δab
〈φ6

0〉0
N

. (8.19)

En el último término de (8.18) podemos reemplazar
∫

x′
Ĝ(M)(x, x′)2 = −∂[Ĝ(M)]/∂M2 en

virtud de (8.14). Esto muestra que, además de [Ĝ(M)], ahora tenemos otra cantidad deivergente

∂[Ĝ(M)]/∂M2, la cual separamos de manera similar

∂[Ĝ(M)]

∂M2
=

(

∂[Ĝ(M)]

∂M2

)

div

+

(

∂[Ĝ(M)]

∂M2

)

fin

, (8.20)

y luego procedemos a renormalizar siguiendo los detalles del Apéndice F. Conclúımos que el

resultado puede hacerse finito si se introduce un contratérmino para compensar esta divergencia,

a saber

δλ = − λ2

2N
(N + 8)

(

∂[Ĝ(M)]

∂M2

)

div

. (8.21)
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Finalmente, podemos escribir la varianza del modo cero a segundo orden en correcciones ultra-

violetas,

〈φ0aφ0b〉 = δab

{

〈φ2
0〉0
N

+
λ

4N2
(N + 2)

[

〈φ2
0〉20 − 〈φ4

0〉0
]

Vd[Ĝ
(M)]ren

+
λ2

32N3
(N + 2)2

[

〈φ6
0〉0 − 3〈φ2

0〉0〈φ4
0〉0 + 2〈φ2

0〉30
]

V 2
d [Ĝ

(M)]2ren

− λ2

16N3
(N + 8)

[

〈φ6
0〉0 − 〈φ2

0〉0〈φ4
0〉0
]

Vd

(

∂[Ĝ(M)]

∂M2

)

fin

}

=
δab

VdM2
dyn(IR)

(8.22)

Estas correcciones pueden interpretarse como una corrección a la masa dinámica M2
dyn. Como

hemos mencionado anteriormente, en el ĺımite de N grande las correcciones a la parte ultra-

violeta podrán también ser interpretadas como una corrección a una cierta masa dinámica

ultravioleta M2
dyn(UV ). Lo que es más, ésta será igual a la masa dinámica que se lee de la

varianza del modo cero, y por lo tanto el propagador completo se corresponde a un propagador

libre en De Sitter con masa M2
dyn. Esta es justamente la situación en el espacio lorentziano

en el ĺımite de N grande, donde la resumación provista por el formalismo 2PI conduce a una

ecuación autoconsistente para la masa dinámica.

8.1.3. Resultado no masivo eucĺıdeo en el ĺımite de N grande

Aqúı consideramos en particular el caso en el cual el parámetro de masa es nulo M = 0.

Sabemos que este es el caso en el cual la teoŕıa perturbativa usual tiene problemas, según lo

discutido en el caṕıtulo 3. Las funciones de n-puntos del modo cero al orden más bajo infrarrojo

pueden calcularse exactamente

〈φ2p
0 〉0 =

∫∞
0
dφ0 φ

N−1+2p
0 e−

Vdλ

8N
φ40

∫∞
0
dφ0 φ

N−1
0 e−

Vdλ

8N
φ40

= 2
3p
2

(

N

Vdλ

)
p
2 Γ
[

N+2p
4

]

Γ
[

N
4

] . (8.23)

Como se observa en esta expresión, estas funciones exhiben un escaleo del tipo φ0 ∼ λ−1/4. Dado

que siempre tenemos valores de expectación de potencias pares de φ0 en los distintos resultados

calculados más arriba, esto conduce a un incremento en un factor 1/
√
λ por cada φ2

0 en los

diferentes términos de la expansión perturbativa. Esto tiene el efecto de generar una expansión

perturbativa en potencias de
√
λ, en lugar de λ. Esta dependencia no anaĺıtica es una clara
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indicación de la naturaleza no perturbativa de los resultados obtenidos con este tratamiento.

Vale remarcar que, si M 6= 0, las funciones anteriores recuperan la analiticidad en λ, y por lo

tanto se tiene en ese caso una expansión perturbativa usual en potencias de λ.

Ahora tomamos el ĺımite de N → ∞ en los resultados eucĺıdeos (8.16) y (8.22), evaluándolos

en el caso no masivo según (8.23),

〈φ̂a(x)φ̂b(x′)〉 = δab

{

Ĝ(0)(x, x′) +

(

∂Ĝ(M)(x, x′)

∂M2

)

0

[

√

λ

2Vd
+
λ

4
[Ĝ(0)]ren

]

+
1

2

(

∂2Ĝ(M)(x, x′)

∂(M2)2

)

0

[

√

λ

2Vd

]2}

, (8.24)

〈φ0aφ0b〉 = δab

[

√

2

Vdλ
− 1

2
[Ĝ(0)]ren +

1

8

√

Vdλ

2
[Ĝ(0)]2ren −

1

2

√

λ

2Vd

(

∂[Ĝ(M)]

∂M2

)

0,fin

]

. (8.25)

Lo primero a comprobar en estos resultados es que, al orden de precisión con el que hemos

hecho el cálculo, la parte ultravioleta (8.24) es compatible con un propagador ultravioleta libre.

Esto se desprende del hecho que dos veces el coeficiente que acompaña a la derivada segunda

de Ĝ(M)(x, x′) respecto de M2, coincide con el cuadrado del coeficiente de la derivada primera.

Esto permite definir una masa dinámica ultravioleta, la cual conocemos a orden λ,

M2
dyn(UV ) =

√

λ

2Vd
+
λ

4
[Ĝ(0)]ren. (8.26)

En segundo lugar, ésta masa coincide a su vez con la masa dinámica que se calcula a partir de

la varianza del modo cero. Ambas observaciones permiten concluir que, al orden calculado, el

resultado en el ĺımite N → ∞ del propagador completo 〈φ0aφ0b〉+ 〈φ̂a(x)φ̂b(x′)〉 es compatible

con un propagador en De Sitter libre con masa M2
dyn. Esperamos que esta propiedad se man-

tenga a todo orden en λ, como precisamente sucede en la teoŕıa de campos lorentziana en el

ĺımite de N grande, según se lee de la ec. (4.85) (alĺı está escrita para un espacio-tiempo curvo

general, por lo que la conclusión también es válida en De Sitter en particular). Sólo faltaŕıa

comprobar si las masas dinámicas eucĺıdea y lorentziana coinciden, al menos hasta el orden de

precisión en λ con el que conocemos el resultado eucĺıdeo.

8.2. Comparación con la teoŕıa cuántica de campos lorentziana

En esta sección calcularemos la masa dinámica en a partir del formalismo 2PI lorentziano

en el ĺımite de N → ∞. Para llevarla a una expresión comparable con los resultados eucĺıdeos,
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debemos expresar el resultado en términos de los parámetros de sustracción mı́nima. Como

hemos discutido en el caṕıtulo 4, esto es posible sin problemas en el ĺımite de N grande del

modelo O(N), a diferencia de lo que ocurre en la aproximación de Hartree para N = 1.

Consideremos la ecuación de la masa dinámica, aún sin renormalizar, que se obtiene de

combinar (4.85) con (4.82),

M2
dyn = M2 + δM2 +

(λ+ δλ)

2
φ̄2 +

(λ+ δλ)

2
[G(Mdyn)], (8.27)

donde separamos m2
B + ξBR ≡ M2

B = M2 + δM2 y λB = λ+ δλ.

Según la discusión llevada a cabo en el caṕıtulo 7 posteriormente a la definición del pro-

pagador eucĺıdeo en De Sitter (7.19), el ĺımite de coincidencia de éste es igual al ĺımite de

coincidencia de los propagadores lorentzianos. Esta observación crucial nos permite, sin pérdi-

da de generalidad, expresar [G(Mdyn)] en la ecuación anterior haciendo uso de (7.20) con x→ x′,

es decir

[G(Mdyn)] =
1

VdM2
dyn

+ [Ĝ(Mdyn)], (8.28)

donde hemos expresado G
(M)
0 = 1/VdM2

dyn. Luego, expandiendo para M2
dyn ≪ H2, tenemos

[G(Mdyn)] =
1

VdM2
dyn

+ [Ĝ(0)] +M2
dyn

∂[Ĝ(M)]

∂M2

∣

∣

∣

∣

∣

M=0

+O
(M4

dyn

H4

)

. (8.29)

Reemplazando esta expresión en (8.27) obtenemos la ecuación autoconsistente para M2
dyn.

Separando [Ĝ(0)] y ∂[Ĝ(M)]
∂M2

∣

∣

∣

M=0
en sus partes divergentes y finitas según (8.12) y (8.20), la

renormalización procede como se ha descripto en el caṕıtulo 4. Los contratérminos necesarios

son

δM2 = −λ
2







[Ĝ(0)]div +M2
(

∂[Ĝ(M)]
∂M2

)

0,div

1 + λ
2

(

∂[Ĝ(M)]
∂M2

)

0,div






, (8.30a)

δλ = −
λ2

2

(

∂[Ĝ(M)]
∂M2

)

0,div
[

1 + λ
2

(

∂[Ĝ(M)]
∂M2

)

0,div

] . (8.30b)

Vale destacar que estos contratérminos coinciden, al ser evaluados en d = 4, con los utilizados

en la aproximación de Hartree (4.57). Por otro lado, al ser expandidos en λ al orden más

bajo, también coinciden con aquellos del cálculo eucĺıdeo (8.13) y (8.21), en la medida que
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estos últimos sean expandidos para masas pequeñas y N → ∞. Algunos detalles de estas

comparaciones se dan en el Apéndice G.

La ecuación para la masa dinámica renormalizada entonces queda

M2
dyn = M2 +

λ

2
φ̄2 +

λ

2

[

1

VdM2
dyn

+ [Ĝ(0)]ren +M2
dyn

(

∂[Ĝ(M)]

∂M2

)

0,fin

]

.

Esta es una ecuación algebraica cuadrática para M2
dyn, tal como las que hemos analizado en el

caṕıtulo 5. La solución positiva en la fase simétrica (φ̄ = 0) es

M2
dyn =

−M2 − λ
2
[Ĝ(0)]ren +

√

(

M2 + λ
2
[Ĝ(0)]ren

)2

+ 2λ
Vd

[

1− λ
2

(

∂[Ĝ(M)]
∂M2

)

0,fin

]

2

[

1− λ
2

(

∂[Ĝ(M)]
∂M2

)

0,fin

] . (8.31)

Finalmente para comparar con el resultado eucĺıdeo, consideremos el caso no masivo M = 0

y calculemos 1/VdM2
dyn a partir de la masa dinámica (8.31). Dado que el cálculo eucĺıdeo en

ese caso resulta perturbativo en
√
λ, hacemos una expansión del resultado lorentziano al orden

apropiado en λ. Obtenemos

1

VdM2
dyn

=

√

2

Vdλ
− 1

2
[Ĝ(0)]ren +

1

8

√

Vdλ

2
[Ĝ(0)]2ren −

1

2

√

λ

2Vd

(

∂[Ĝ(M)]

∂M2

)

0,fin

+O(λ). (8.32)

Este resultado coincide con la varianza del modo cero obtenida en el formalismo eucĺıdeo para

N → ∞ y M = 0, ec. (8.25).

8.3. Discusión

La teoŕıa de campos en el espacio de De Sitter eucĺıdeo permite recuperar el resultado de

inflación estocástica para campos no masivos al tratar el modo cero de manera no perturba-

tiva [39]. A diferencia del tratamiento estocástico, el formalismo eucĺıdeo admite correcciones

sistemáticas provenientes de los modos ultravioletas, tratados de forma perturbativa [40]. Esto

resulta prometedor, sin embargo por el momento los intentos de probar la equivalencia entre la

teoŕıa de campos eucĺıdea y la teoŕıa de campos IN-IN se basan en el caso masivo [41]. Es de

gran interés establecer si esta equivalencia es válida en el caso no masivo, lo que permitiŕıa a su
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vez darle confianza a los resultados estocásticos, cuya equivalencia con la teoŕıa IN-IN tampoco

ha sido demostrada en ese caso.

Una manera de comprobar en parte la equivalencia es comparar con resultados conocidos

provenientes de la teoŕıa de campos IN-IN. Alĺı, los resultados no perturbativos más confiables

son aquellos en el ĺımite de N grande. Por esta razón, en este caṕıtulo hemos generalizado la

teoŕıa de campos en el espacio de De Sitter eucĺıdeo al modelo con simetŕıa O(N). A partir

de esto hemos considerado las correcciones ultravioletas a los resultados de orden infrarrojo

más bajo, analizando la renormalización. En este contexto, calculamos la masa dinámica a

segundo orden en la expansión infrarroja, aśı como la función de 2-puntos para puntos separados.

Verificamos que el resultado para la masa dinámica en el ĺımite de N grande es compatible

con los resultados obtenidos a partir de la acción efectiva 2PI en ese ĺımite, incluyendo la

restauración de la simetŕıa. Nuestros resultados son válidos para todo N , hasta la segunda

corrección en
√
λ (caso no masivo).

Sin embargo, observamos que para campos no masivos, el comportamiento para puntos

separados sigue teniendo problemas a tiempos largos. Esto último se debe a que estamos ex-

pandiendo los propagadores ultravioletas alrededor del caso no masivo. Si pudieramos realizar

una resumación a todo orden, recuperaŕıamos un propagador masivo (como sucede en el caso

de N → ∞). Queda como pregunta abierta si es posible redefinir la parte perturbativa de este

formalismo, para resumar cierta clase de contribuciones para esquivar este problema. Una vez

resuelto, debeŕıa ser factible realizar la continuación anaĺıtica de los resultados para volver al

espacio-tiempo de De Sitter lorentziano, y comprobar si éstos satisfacen o no las ecuaciones

de Schwinger-Dyson correspondientes. Si este fuera el caso, se podŕıan obtener resultados no

perturbativos más allá del ĺımite N → ∞ con un método técnicamente más accesible que los

que se están desarrollando actualmente [54].
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Caṕıtulo 9

Conclusiones y Perspectivas

En este caṕıtulo final resumiremos los resultados de esta tesis, exhibidos principalmente en

los caṕıtulos 4, 5, 6 y 8, y discutiremos también su relación con trabajos previos en estos temas.

El estudio de la teoŕıa de campos en el espacio-tiempo de De Sitter es gran de interés por

varias razones, entre las cuales se destacan sus aplicaciones cosmológicas tanto en la evolución

del Universo temprano como para describir la aceleración cósmica actual. En el primer caso, es

importante entender los efectos infrarrojos y su rol en las predicciones de los modelos inflaciona-

rios. En general, estas se basan en resultados provenientes de la teoŕıa de campos perturbativa.

Sin embargo, para campos con masa M2 ≪ H2 los efectos infrarrojos podŕıan invalidar dicho

tratamiento. En relación al problema de la enerǵıa oscura, los efectos cuánticos también podŕıan

ser relevantes para dilucidar el origen de la costante cosmológica.

Para estudiar el problema infrarrojo es necesario un tratamiento no perturbativo. Se espera

que las interacciones generen una masa dinámica que regule las divergencias infrarrojas [17, 18].

Dentro de la teoŕıa de campos en el formalismo IN-IN , uno de los métodos no perturbativos

más ampliamente desarrollados es el de la acción efectiva 2PI [23], donde cada orden en la

expansión en loops contiene una resumación de subconjunto infinito de diagramas de Feynman

de la teoŕıa perturbativa usual. Para el modelo con simetŕıa O(N) en el ĺımite de N → ∞, la

acción efectiva 2PI toma una forma local que resuma todos los diagramas tipo daisy y super-

daisy de la teoŕıa perturbativa estándar. Aqúı, los efectos no perturbativos se condensan en

una ecuación autoconsistente para la masa dinámica. Avanzar más allá en la expansión en 1/N

involucra el cálculo de contribuciones no locales, las cuales son técnicamente muy complejas.

Es importante investigar si las predicciones del caso N → ∞, como ser la ausencia de

soluciones con ruptura de simetŕıa en De Sitter [42], se extienden a valores finitos de N y en

113
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particular al caso N = 1. Para ello, una posibilidad es considerar la aproximación de Hartree

que consiste en truncar la acción efectiva 2PI a nivel local, en esṕıritu similar al ĺımite de N

grande. Esta es, sin embargo, una truncación no controlada por ningún parámetro pequeño.

Para corregir en parte esta situación se impone la validez de las relaciones de consistencia de la

acción efectiva 2PI exacta durante el proceso de renormalización. Esto demanda la introducción

de más de un contratérmino por cada parámetro de la acción clásica. Este procedimiento ha

sido extensivamente estudiado en el espacio-plano [29], donde estos métodos son aplicados, por

ejemplo, en el estudio de las transiciones de fase a temperatura finita [24, 25, 26].

La generalización de este procedimiento al espacio-tiempo de De Sitter fue realizada sólo de

manera parcial en la literatura [58]. En general se ha ignorado la diferencia entre los parámetros

de sustracción mı́nima y los renormalizados. Nuestro primer objetivo ha sido mostrar que el

procedimiento de “renormalización consistente” puede ser aplicado a las ecuaciones del valor

medio del campo y del propagador en espacios curvos generales [30]. Si bien varios cálculos

expĺıcitos que fueron realizados previamente en el espacio-tiempo plano utilizan como regula-

dor un cutoff en momentos (ver, por ejemplo, [25]), esto es problemático en espacios curvos.

Por esta razón, utilizamos regularización dimensional con el fin de mantener la covarianza de la

teoŕıa regularizada, mediante la utilización de la expansión adiabática completa del propaga-

dor. Luego, hemos escrito las ecuaciones renormalizadas en términos de los parámetros f́ısicos

definidos a partir del potencial efectivo, y hemos mostrado expĺıcitamente que, cuando se ex-

presan en términos de estos parámetros f́ısicos, las ecuaciones son independientes de la escala µ̃

introducida por la regularización dimensional. A la hora de fijar las relaciones de consistencia,

éstas deben ser establecidas en un espacio-tiempo de curvatura constante R0, y por lo tanto

nos encontramos ante la elección del valor de R0. Analizando los casos R0 = 0 y R0 > 0, hemos

visto que los parámetros de sustracción mı́nima enfrentan diferentes restricciones. Este análisis

es de alguna manera análogo al realizado en [24] para un campo escalar auto-interactuante

a temperatura finita, donde el punto de renormalización es elegido para un valor finito de la

temperatura fijo, pero consideramos que en el caso de De Sitter, esta discusión fue pasada por

alto en los trabajos previos del tema.

Una conclusión relevante de nuestro trabajo es que la aproximación de Hartree y la aplicación

de las relaciones de consistencia imponen restricciones sobre los parámetros de sustracción

mı́nima de la teoŕıa. Por un lado, la masa renormalizada m2
R debe ser positiva. Por otro lado, la

definición del la constante de acoplamiento renormalizada λR en términos de la derivada cuarta

del potencial efectivo junto con la relación de consistencia para la función de 4-puntos implican

relaciones entre los parámetros de sustracción mı́nima y los renormalizados independientes de
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µ̃. De estas relaciones, está claro que algunas elecciones de parámetros de sustracción mı́nima

pueden no ser compatibles con las relaciones de consistencia. En particular, no es posible tomar

λ = λR, ξ = 0 y m2 < 0 simultáneamente, como han hecho otros autores en la literatura [58].

Nuestro siguiente objetivo ha sido extender el procedimiento de renormalización consistente

de la aproximación de Hartree a las ecuaciones de Einstein semiclásicas (EES) [31]. Para ello,

hemos mostrado que en espacios curvos generales, el mismo conjunto de contratérminos que

permtieron renormalizar de forma consistente las ecuaciones del valor medio del campo y del

propagador, sirven para renormalizar las EES (junto con los contratérminos gravitacionales

habituales que son necesarios incluso para los campos libres). En cuanto a los efectos infrarrojos,

los términos potencialmente peligrosos en el valor de expectación renormalizado del tensor de

enerǵıa-momento en De Sitter (6.25) aparecen suprimidos por un factor m2
dyn. Por lo tanto, la

generación de masa dinámica proveniente de la resumación no perturbativa del formalismo 2PI,

que tiene como consecuencia la regularización de las divergencias infrarrojas del propagador,

también regula la fuente de las EES.

En el espacio-tiempo de De Sitter, hemos calculado el potencial efectivo en el ĺımite infrarrojo

con la finalidad de investigar la existencia de ruptura espontánea de simetŕıa. Primero nos

hemos focalizado en el caso en el cual la backreaction puede ser despreciada [30]. Nuestros

resultados muestran que la simetŕıa Z2 puede romperse espontáneamente cuando se utiliza la

renormalización consistente, aunque no en condiciones generales. Esto debe contrastarse con los

resultados previos obtenidos usando una renormalización estándar de la teoŕıa, como puede verse

fácilmente a partir de las ecuaciones del valor medio del campo y del propagador. En efecto,

cuando las relaciones de consistencia no son tenidas en cuenta y no se permite la presencia

de diferentes contratérminos, las ecuaciones (4.50) y (4.51) se vuelven (4.84) y (4.85) [55]. En

este caso, la ausencia de un vaćıo invariante de De Sitter para campos no masivos proh́ıbe la

existencia de soluciones con ruptura de simetŕıa. Lo mismo ocurre en el ĺımite de N grande

del modelo O(N), donde las relaciones de consistencia se satisfacen automáticamente orden a

orden en una expansión en 1/N y por lo tanto no hay necesidad de contratérminos adicionales.

Las ecuaciones son nuevamente (4.84) y (4.85) [55] y el mismo argumento se aplica [42, 55].

Para investigar si estas conclusiones cambian al permitir la backreaction, hemos considerado

la forma expĺıcita de las ecuaciones de valor medio, la masa dinámica y las EES, con el fin de

buscar soluciones autoconsistentes en De Sitter [31]. La resolución numérica simultánea de

estas ecuaciones nos permitió analizar la aparición de ruptura espontánea de simetŕıa y, al

mismo tiempo, evaluar el efecto que las fluctuaciones cuánticas tiene sobre la métrica clásica.

Hemos encontrado que no hay ruptura de simetŕıa cuando se fija el punto de renormalización
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a partir de la constante cosmológica según la relación clásica ΛR = 4R0, pero pueden existir

bajo otras condiciones. Otra conclusión importante de nuestro análisis es que la importancia

de la backreation depende en gran medida del valor de la curvatura escalar en el punto de

renormalización R0. En particular, hemos encontrado soluciones de De Sitter autoconsistentes

en ausencia de constante cosmológica ΛR = 0, donde los efectos cuánticos desempeñan un

papel crucial. Estas soluciones son relevantes para el problema de la enerǵıa oscura. Por esta

razón, seŕıa importante analizar la factibilidad fenomenológica de las mismas, comparando los

parámetros con las cotas extráıdas de las observaciones cosmológicas y astronómicas. Esto queda

pendiente para posibles trabajos futuros.

Para comprobar si los resultados obtenidos son válidos más allá de la aproximación de

Hartree seŕıa necesario incluir el diagrama del ”atardecer“ en el cálculo de la acción efectiva 2PI.

Para abordar esta cuestión hay varias complicaciones técnicas a ser resueltas. Por un lado, el uso

del formalismo de camino temporal cerrado, o IN-IN, será inevitable al considerar los términos

no locales en la acción efectiva 2PI. Por otra parte, la inclusión de diagramas de mayor número

de loops en la acción efectiva 2PI involucra algunos puntos sutiles en la renormalización, incluso

en espacio-tiempo plano [25], que tendrán su contrapartida en espacios curvos. Otro método

no perturbativo dentro del contexto de la teoŕıa de campos IN-IN que fue aplicado a De Sitter

de forma exitosa en la literatura es el del grupo de renormalización dinámico [54]. Ignorando

la interacción del campo por encima de cierto cutoff en momentos (f́ısicos, no comóviles), los

autores han podido calcular la primera corrección en 1/N a la masa dinámica. Estos resultados

son prometedores, pero es importante ir más allá del ĺımite infrarrojo y considerar la influencia

de los modos de longitud de onda menor.

Una alternativa completamente distinta involucra otros métodos no perturbativos que nacen

del caso de estudio en particular, el espacio-tiempo de De Sitter, y que están particularmente

adaptados para estudiar el problema infrarrojo. Estos métodos son el formalismo de inflación

estocástica [17], y la teoŕıa de campos en el espacio de De Sitter eucĺıdeo [39, 40]. En ambos

casos, la equivalencia de estos métodos con aquellos basados en la teoŕıa de campos IN-IN con-

vencional todav́ıa se debate abiertamente en la literatura, si bien se ha logrado cierto progreso

en el caso de campos masivos.

En inflación estocástica, los modos del campo salen cont́ınuamente del horizonte y se vuelven

clásicos. La interacción entre los modos de longitud de onda mucho mayor que el horizonte y los

modos cuánticos es descripta de manera efectiva mediante una fuente de ruido estocástico ξ en

una ecuación de tipo Langevin. A partir de una función de densidad de probabilidad, obtenida

al resolver la ecuación de Fokker-Planck correspondiente, pueden calcularse las funciones de
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correlación del campo en el ĺımite infrarrojo. El resultado más relevante en la literatura en

relación al problema infrarrojo en De Sitter proviene del cálculo de la masa dinámica para

un solo campo no masivo (N = 1), ec. (7.7), a partir de este formalismo. Interesantemente,

éste difiere del resultado para N → ∞ meramente en un 15%. Por otro lado, la desventaja

principal de este enfoque es la dificultad de calcular correcciones más allá del ĺımite infrarrojo

de manera sistemática. Además, los intentos de probar su equivalencia con la teoŕıa de campos

en el formalismo IN-IN se limitan por el momento al caso masivo [34, 35, 36, 38].

La teoŕıa de campos en el espacio de De Sitter eucĺıdeo es otra opción interesante. Dadas las

simetŕıas del espacio-tiempo de De Sitter en coordenadas globales en d dimensiones, al realizar

una prolongación anaĺıtica al tiempo imaginario, es necesario compactificarlo, teniendo como re-

sultado una d-esfera eucĺıdea. Definiendo la teoŕıa de campos en esta esfera es posible recuperar

el resultado de inflación estocástica para campos no masivos al tratar el modo constante (que

ahora es discreto gracias a la compactificación) de manera no perturbativa [39]. A diferencia

del tratamiento estocástico, el formalismo eucĺıdeo si admite correcciones sistemáticas prove-

nientes de los modos ultravioletas, tratados de forma perturbativa. Esto resulta prometedor,

sin embargo por el momento los intentos de probar la equivalencia entre la teoŕıa de campos

eucĺıdea y la teoŕıa de campos lorentziana en el formalismo IN-IN se basan en el caso masivo

[41]. Es de gran interés establecer si esta equivalencia es válida en el caso no masivo, lo que

permitiŕıa a su vez darle confianza a los resultados estocásticos, cuya equivalencia con la teoŕıa

de campos lorentziana tampoco ha sido demostrada en ese caso.

Una manera de comprobar en parte la equivalencia seŕıa comparar con resultados conocidos

provenientes de la teoŕıa de campos en el formalismo IN-IN. Alĺı, los resultados no perturbativos

más confiables son aquellos en el ĺımite de N grande. Por esta razón, en nuestro trabajo más

reciente [44] hemos generalizado la teoŕıa de campos en el espacio de De Sitter eucĺıdeo al

modelo con simetŕıa O(N). A partir de esto hemos considerado las correcciones ultravioletas a

los resultados de orden infrarrojo más bajo, analizando la renormalización. En este contexto,

calculamos la masa dinámica a segundo orden en la expansión infrarroja, aśı como la función

de 2-puntos para puntos separados. Nuestros resultados eućıdeos son válidos para todo N .

Verificamos que el resultado para la masa dinámica en el ĺımite de N grande es compatible

con los resultados obtenidos a partir de la acción efectiva 2PI en ese ĺımite, incluyendo la

restauración de la simetŕıa.

Sin embargo, observamos que para campos no masivos, el comportamiento para puntos

separados sigue teniendo problemas a tiempos largos. Esto último se debe a que estamos ex-

pandiendo los propagadores ultravioletas alrededor del caso no masivo. Si pudiéramos realizar
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una resumación a todo orden, recuperaŕıamos un propagador masivo (como sucede en el caso

de N → ∞). Queda como pregunta abierta si es posible redefinir la parte perturbativa de este

formalismo, para resumar cierta clase de contribuciones para esquivar este problema. Una vez

resuelto, debeŕıa ser factible realizar la continuación anaĺıtica de los resultados para volver al

espacio-tiempo de De Sitter lorentziano, y comprobar si éstos satisfacen o no las ecuaciones de

Schwinger-Dyson correspondientes.

En general, la equivalencia de estos métodos alternativos con la teoŕıa de campos IN-IN en

el caso no masivo sigue siendo una pregunta abierta. Nuestros resultados en el espacio de De

Sitter eucĺıdeo son prometedores en vistas a progresar en esa dirección [44]. Sin embargo, aún

se deben sortear las otras dificultades mencionadas. Otro punto interesante es la posibilidad

de implementar una estrategia similar directamente en la teoŕıa de campos lorentziana en el

formalismo IN-IN. En este caso, la principal dificultad yace en la definición del ”modo cero“

en el espacio-tiempo de De Sitter lorentziano donde se tiene un continuo de modos. Luego, la

implementación de una resumación no perturbativa de las contribuciones provenientes de dicho

modo debe ser implementada. Finalmente, las correcciones provenientes del resto de los modos

ultravioletas se deben tratar perturbativamente.

Otras preguntas interesantes incluyen la posibilidad de aplicar algunas de estas técnicas más

allá del espacio-tiempo de De Sitter, pasando al caso de mayor interés cosmológico, donde la

expansión es cuasi-exponencial. Por un lado, esto introduce la dificultad de que las magnitudes

de interés, como ser la masa dinámica, pasaŕıan a depender del tiempo. Por otro lado, esto

simultáneamente daŕıa una solución al problema infrarrojo. En efecto, si el peŕıodo inflacionario

tiene un fin, esto le pone un ĺımite al crecimiento de las fluctuaciones cuánticas de los campos no

masivos. De hecho, este mecanismo es el responsable de generar las perturbaciones primordiales

en el Universo temprano. Hasta dónde los problemas infrarrojos deben o no ser tratados con

los métodos no perturbativos en el contexto inflacionario dependerá fuertemente del modelo

particular considerado.



Apéndice A

Ĺımite de coincidencia del propagador

libre en De Sitter

Aqúı proveemos algunos detalles del cálculo de la función F (m2
dyn, {R}) para el espacio-

tiempo de De Sitter, ec. (3.13). Debemos expandir el propagador coincidente para d→ 4, es decir

ǫ→ 0, mientras se mantiene fijo R, y por esta razón reescribimos ν2d =
(d−1)2

4
− m2

dyn

H2 −ξRd(d−1)

como ν̃2d =
(d−1)2

4
−
(

m2
dyn

R
+ ξR

)

d(d− 1). Entonces, expandiendo (3.12) para ǫ→ 0:

[G1] =
R

96π2

Γ
(

3
2
+ ν4

)

Γ
(

3
2
− ν4

)

Γ
(

1
2
+ ν4

)

Γ
(

1
2
− ν4

)

{

2

ǫ
− 13

6
+ γE + ln

(

R

48πµ2

)

+ ψ

(

3

2
+ ν4

)

+ ψ

(

3

2
− ν4

)

+ 2

[

ψ

(

1

2
− ν4

)

− ψ

(

1

2
+ ν4

)

+ ψ

(

3

2
+ ν4

)

− ψ

(

3

2
− ν4

)]

dν̃n
dn

∣

∣

∣

∣

∣

n=4

}

+O(ǫ), (A.1)

donde ψ(x) = Γ
′

(x)/Γ(x) es la función DiGamma, µ es una escala de masa arbitraria introducida

para mantener las unidades usuales cuando d 6= 4. Notar que a pesar de que ν4 = ν̃4, sus

derivadas no coinciden dνd/d(d)|d=4 6= dν̃d/d(d)|d=4. De ahora en adelante ǫ puede ser evaluado

en 0 en aquellos términos no divergentes. Utilizando las propiedades de las funciones Gamma

y DiGamma podemos simplificar el pre-factor y la expresión entre corchetes, obteniendo

[G1] =
R

96π2

{

(

1

4
− ν24

)[

2

ǫ
− 13

6
+ γE + ln

(

R

48πµ2

)

+ ψ+ + ψ−

]

− 4ν4
dν̃n
dn

∣

∣

∣

∣

∣

n=4

}

, (A.2)
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donde usamos la notación abreviada ψ± ≡ ψ
(

3
2
± ν4

)

. Ahora, reemplazando las expresiones de

ν4 y dν̃d/d(d)|d=4 obtenemos

[G1] =
1

8π2

{

[

m2
dyn +

(

ξR − 1

6

)

R

] [

2

ǫ
− 13

6
+ γE + ln

(

R

48πµ2

)

+ ψ+ + ψ−

]

− R

4
+

7

6

(

m2
dyn + ξRR

)

,

}

(A.3)

o, reordenando un poco la expresión y sustituyendo γE − 1 + ln(R/48πµ2) → ln(R/12µ̃2),

[G1] =
1

4π2ǫ

[

m2
dyn +

(

ξR − 1

6

)

R

]

+
1

8π2

{

[

m2
dyn +

(

ξR − 1

6

)

R

]

×
[

ln

(

R

12µ̃2

)

+ ψ+ + ψ−

]

− R

18

}

. (A.4)

En esta forma, esta expresión puede compararse directamente con la primera ĺınea de (2.30).

La función F (m2
dyn, {R}) en el espacio-tiempo de De Sitter resulta,

FdS(m
2
dyn, R) = −1

2

[

m2
dyn +

(

ξR − 1

6

)

R

]

[

ln

(

R

12m2
dyn

)

+ ψ+ + ψ−

]

+
1

2

(

ξR − 1

6

)

R +
R

36
, (A.5)

donde R = 12H2. Esta función tiene todas las propiedades esperadas, es decir, se escribe sólo

en términos de los parámetros renormalizados, es independiente de ǫ y µ̃, y satisface los ĺımites

apropiados (2.32a), (2.32b) y (2.32c). A la hora de verificar dichos ĺımites es útil tener en cuenta

que

ĺım
R→0

[

ψ+ + ψ− + ln

(

R

12m2
dyn

)]

= 0, (A.6a)

ĺım
R→0

[

m2
dyn +

(

ξR − 1

6

)

R

] [

1

R
+
(

ψ
′

+ − ψ
′

−

) dν̃4
dR

]

=

(

ξR − 1

6

)

+
1

18
. (A.6b)



Apéndice B

Relaciones de consistencia 2PI

En este apéndice repasaremos brevemente la derivación de las relaciones de consistencia de

la acción efectiva 2PI que permiten establecer la relación entre los diferentes contratérminos.

Estas son las ecuaciones (4.32) y (4.33). Empecemos por recordar que la acción efectiva 1PI

completa se obtiene evaluando la acción efectiva 2PI, también completa, en la solución Ḡ(φ̄) a

la ecuación del propagador,

Γ1PI [φ̄] = Γ2PI [φ̄, Ḡ(φ̄)]. (B.1)

De la ecuación (4.25) tenemos que la ecuación del propagador es, formalmente,

δΓ2PI

δG12

∣

∣

∣

∣

∣

Ḡ

= − i

2
Ḡ−1

12 +
i

2
G−1

0,12 +
δΓint
δG12

∣

∣

∣

∣

∣

Ḡ

= 0, (B.2)

o, equivalentemente

Ḡ−1
12 (φ̄) = G−1

0,12 − Σ̄12(φ̄), (B.3)

donde definimos la auto-enerǵıa

Σ̄12(φ̄) ≡ 2i
δΓint
δG12

∣

∣

∣

∣

∣

Ḡ

. (B.4)

La primera derivada funcional de Γ1PI [φ̄] con respecto a φ̄, la cual igualada a cero da la ecuación

del campo, puede escribirse como

Γ
(1)
1 =

δΓ[φ̄]

δφ1

∣

∣

∣

∣

∣

¯̄φ

=
δΓ2PI

δφ1

+
δΓ2PI

δGab

∣

∣

∣

∣

Ḡ

δḠab

δφ1

=
δΓ2PI

δφ1

= iG−1
0,1aφa +

δΓint
δφ1

∣

∣

∣

∣

∣

Ḡ

, (B.5)
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donde en la tercera igualdad hemos usado que (B.2).

Como fue mencionado en el caṕıtulo 4, existen varias definiciones posibles de las funciones de

n-puntos en este contexto. Para la teoŕıa λφ4 es suficiente si nos concentramos en las funciones

de dos y cuatro puntos.

Por un lado, tenemos las funciones de dos y cuatro puntos que se obtienen tomando derivadas

funcionales de Γ1PI [φ̄] con respecto a φ̄:

Γ
(2)
12 =

δ2Γ[φ̄]

δφ1δφ2

∣

∣

∣

∣

∣

¯̄φ

, (B.6)

Γ
(4)
1234 =

δ4Γ[φ̄]

δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

¯̄φ

. (B.7)

Derivando funcionalmente la ecuación (B.5), obtenemos las siguientes expresiones para la fun-

ción de 2-puntos

δ2Γ[φ̄]

δφ1δφ2

∣

∣

∣

∣

∣

¯̄φ

= iG−1
0,12 +

δ2Γint
δφ1δφ2

∣

∣

∣

∣

∣

Ḡ

+
δ2Γint
δφ1δGab

∣

∣

∣

∣

∣

Ḡ

δḠab

δφ2

. (B.8)

Usando que
δḠ12

δφ3

=
δ

δφ3

(

Ḡ1aḠ
−1
ab Ḡb2

)

=
δḠ12

δφ3

+
δḠ12

δφ3

+ Ḡ1aḠb2
δḠ−1

ab

δφ3

, (B.9)

y que, a partir de la ecuación (B.3) se tiene

δḠ12

δφ3

= Ḡ1aḠb2
δΣ̄ab

δφ3

, (B.10)

podemos escribir

δ2Γ[φ̄]

δφ1δφ2

∣

∣

∣

∣

∣

¯̄φ

= iG−1
0,12 +

δ2Γint
δφ1δφ2

∣

∣

∣

∣

∣

Ḡ

+
δ2Γint
δφ1δGab

∣

∣

∣

∣

∣

Ḡ

ḠacḠbd
δΣ̄cd

δφ2

. (B.11)

Luego, se puede mostrar que

δΣ̄12

δφ3

= 2i
δ2Γint
δφ3δG12

∣

∣

∣

∣

∣

Ḡ

+ 2i
δ2Γint

δG12δGab

∣

∣

∣

∣

∣

Ḡ

Ḡab

δφ3

(B.12)

= 2i
δ2Γint
δφ3δG12

∣

∣

∣

∣

∣

Ḡ

+
i

2
Λ̄12,abḠacḠbd

δΣ̄cd

δφ3

, (B.13)

donde Λ̄12,34 se define como

Λ̄12,34 ≡ 4
δ2Γint

δG12δG34

∣

∣

∣

∣

∣

Ḡ

. (B.14)
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Por lo tanto, δΣ̄12/δφ3 satisface una ecuación autoconsistente. De manera similar, se puede

definir una función vértice de 4-puntos como la solución autoconsistente de la siguiente ecuación

V̄12,34 = Λ̄12,34 +
i

2
Λ̄12,abḠacḠbdV̄cd,34, (B.15)

o, expresada en forma matricial

V̄ = Λ̄ +
i

2
Λ̄Ḡ2V̄ = Λ̄ +

i

2
V̄ Ḡ2Λ̄, (B.16)

donde la última igualdad se desprende de las propiedades de simetŕıa de V̄ (que son las misma

de Γ
(4)
12,34) y Λ̄.

Para obtener la función de 4-puntos se deben tomar dos derivadas adicionales, sin embargo,

esto se vuelve rápidamente inmanejable. Por lo tanto, consideremos el caso en el cual la teoŕıa

exhibe una simetŕıa interna Z2, es decir, es invariante ante φ→ −φ. En este caso, las funciones

de n-puntos con n impar se anulan al ser evaluadas en φ̄ = 0, por ejemplo

δΣ̄12

δφ3

∣

∣

∣

∣

∣

φ̄=0

= 2i
δ2Γint
δφ3δG12

∣

∣

∣

∣

∣

φ̄=0

= 0. (B.17)

Teniendo esto en cuenta, la función de 4-puntos resulta

Γ
(4)
1234 =

δ4Γint
δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

Ḡ

+
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∣

∣

∣

∣
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∣

∣

∣

∣
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δφ1δφ4δGab

∣

∣

∣

∣

∣

Ḡ

ḠacḠdb
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δφ2δφ3

. (B.18)

A partir de la ecuación (B.13) y explotando la simetŕıa Z2, obtenemos una ecuación autocon-

sistente

δ2Σ̄12

δφ3δφ4

= 2i
δ3Γint

δφ3δφ4δG12

∣

∣

∣

∣

∣

Ḡ

+
i

2
Λ̄12,abḠacḠbd

δ2Σ̄cd

δφ3δφ4

(B.19)

cuya solución puede ser expresada en términos de la función V̄12,34, solución de (B.15),

δ2Σ̄12
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∣
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∣

∣
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∣

∣

∣
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)

(B.20)
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donde hemos definido

Λ12,34 ≡ 2
δ3Γint

δφ1δφ2δG34

∣

∣

∣

∣

∣

Ḡ

. (B.21)

Luego, la función de 4-puntos puede ser escrita como

Γ
(4)
1234 =

δ4Γint
δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

Ḡ

+
i

2

[

Λ12,abḠacḠdbΛcd,34 +
i

2
Λ12,abḠacḠdbV̄cd,efḠehḠifΛhi,34 + perm

]

,

o, de forma matricial

Γ(4) =
δ4Γint
δφ4

∣

∣

∣

∣

∣

Ḡ

+
i

2

[

ΛḠ2Λ† +
i

2
ΛḠ2V̄ Ḡ2Λ† + perm

]

. (B.22)

En la teoŕıa exacta se satisface la siguiente relación:

δ2Γint
δφ1δφ2

∣

∣

∣

∣

∣

φ̄=0

= 2
δΓint
δG12

∣

∣

∣

∣

∣

φ̄=0

(B.23)

La cual es la primera relación de consistencia (4.32) que hemos usado. Diferenciando con res-

pecto a G obtenemos

δ3Γint
δφ1δφ2δG34

∣

∣

∣

∣

∣

φ̄=0

= 2
δ2Γint

δG12δG34

∣

∣

∣

∣

∣

φ̄=0

, (B.24)

es decir

Λ12,34 = Λ̄12,34. (B.25)

Dado esto, la función de 2-puntos (B.11) resulta

Γ
(2)
12 = iG−1

0,12 + 2
δΓint
δG12

∣

∣

∣

∣

∣

φ̄=0

= iḠ−1
12 , (B.26)

donde hemos utilizado la ecuación del propagador (B.2) para llegar a la última igualdad.

De manera similar, pero ahora para la función de 4-puntos (B.22), usando (B.25) y (B.15)

se obtiene

Γ(4) =
δ4Γint
δφ4

∣

∣

∣

∣

∣

Ḡ

+
i

2

[

Λ̄Ḡ2Λ̄† +
i

2
Λ̄Ḡ2V̄ Ḡ2Λ̄† + perm

]

=
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δφ4

∣

∣

∣

∣

∣

Ḡ

+
i

2
V̄ Ḡ2Λ̄† + perm (B.27)

=
δ4Γint
δφ4

∣

∣

∣

∣

∣

Ḡ

+
[

V̄ − Λ̄ + perm
]

(B.28)
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o, más expĺıcitamente

Γ
(4)
1234 =

δ4Γint
δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

Ḡ

+
[

V̄12,34 − Λ̄12,34 + V̄13,24 − Λ̄13,24 + V̄14,23 − Λ̄14,23

]

. (B.29)

Esta última ecuación es la segunda relación de consistencia que estabamos buscando. Para

poder implementarla, es necesario considerar otra relación válida en la teoŕıa exacta:

Γ
(4)
12,34(φ̄ = 0) = V̄12,34(φ̄ = 0), (B.30)

entonces se puede reescribir la expresión anterior como

Γ
(4)
1234 = 2





δ2Γint
δG12δG34

∣

∣

∣

∣

∣

Ḡ,φ̄=0

+ perms(2, 3, 4)



− 1

2

δ4Γint
δφ1δφ2δφ3δφ4

∣

∣

∣

∣

∣

Ḡ,φ̄=0

, (B.31)

donde hemos aprovechado las propiedades de simetŕıa de Γ
(4)
1234. Esta es la segunda relación de

consistencia que hemos utilizado (4.33).
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Apéndice C

Relación entre los parámetros

renormalizados y los de sustracción

mı́nima

En esta sección resumimos el cálculo de los parámetros renormalizados a partir del potencial

efectivo con el punto de renormalización en el espacio-tiempo de Minkowski. Obtenemos su

relación con los parámetros de sustracción mı́nima.

Para m2
R usamos (4.62a) junto con (4.59) y (2.32a), dando

m2
R = m2 +

λ

32π2
m2
R ln

(

m2
R

µ̃2

)

(C.1)

o, equivalentemente

m2
R =

m2

[

1− λ
32π2 ln

(

m2
R

µ̃2

)] . (C.2)

Luego, para ξR, vemos de la ecuación (4.62b) que debemos imponer la condición dm2
dyn/dR|0 =

0. Para ello, tomamos la derivada de (4.62a) respecto de R,

dm2
dyn

dR
+ ξR = ξ +

λ

32π2

(

ξR − 1

6

)

+
λ

32π2

{[

dm2
dyn

dR
+ ξR − 1

6

]

ln

(

m2
dyn

µ̃2

)

+

[

m2
dyn +

(

ξR − 1

6

)

R

]

1

m2
dyn

dm2
dyn

dR
− 2

dF

dR

}

. (C.3)

Ahora podemos evaluar para φ̄ = 0 y R = 0, usando (4.62a) y (2.32c), e imponer la condición
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mencionada anteriormente. Esto lleva a

ξR = ξ +
λ

32π2

(

ξR − 1

6

)

+
λ

32π2

(

ξR − 1

6

)

ln

(

m2
R

µ̃2

)

(C.4)

o, con un poco de álgebra

(

ξR − 1

6

)

=

(

ξ − 1
6

)

[

1− λ
32π2 − λ

32π2 ln
(

m2
R

µ̃2

)] . (C.5)

Finalmente para λR debemos tomar dos derivadas de (4.59) respecto de φ̄,

dm2
dyn

dφ̄
= λφ̄+

λ

32π2

{

ln

(

m2
dyn

µ̃2

)

+

[

m2
dyn +

(

ξR − 1

6

)

R

]

1

m2
dyn

− 2
dF (m2

dyn, {R})
dm2

dyn

}

dm2
dyn

dφ̄
. (C.6)

Antes de tomar la segunda derivada, evaluamos esta expresión para φ̄ = 0 y R = 0, ya que será

necesaria luego,
dm2

dyn

dφ̄

∣

∣

∣

∣

∣

0

[

1− λ

32π2
− λ

32π2
ln

(

m2
R

µ̃2

)]

= 0 (C.7)

lo cual implica
dm2

dyn

dφ̄
|0 = 0. Ahora, volviendo a derivar

d2m2
dyn

dφ̄2
= λ+

λ

32π2

{

ln

(

m2
dyn

µ̃2

)

+

[

m2
dyn +

(

ξR − 1

6

)

R

]

1

m2
dyn

− 2
dF (m2

dyn, {R})
dm2

dyn

}

d2m2
dyn

dφ̄2
+ [. . . ]

dm2
dyn

dφ̄
, (C.8)

y luego evaluando para φ̄ = 0 y R = 0, y usando el resultado previo junto con (4.62c), finalmente

llegamos a

λR =
λ

[

1− λ
32π2 − λ

32π2 ln
(

m2
R

µ̃2

)] . (C.9)



Apéndice D

Derivadas funcionales de Ẑf [Ĵ ]

Usando que Ẑf [Ĵ ] es la funcional generatriz de una teoŕıa libre, es fácil evaluar sus derivadas

funcionales en Ĵ = 0 en términos del propagador ultravioleta libre Ĝ(x, x′). En este apéndice

obviamos el supeŕındice (m) en el propagador para mantener una notación manejable. Lo que

nos interesa aqúı es seguir el detalle de los ı́ndices del grupo O(N). Las expresiones útiles son

δ2Ẑf [Ĵ ]

δĴa(x1)δĴb(x2)

∣

∣

∣

∣

∣

Ĵ=0

= Ĝ(m)(x1, x2)δab, (D.1)

δ4Ẑf [Ĵ ]

δĴa(x1)δĴb(x2)δĴc(x3)δĴd(x4)

∣

∣

∣

∣

∣

Ĵ=0

= Ĝ(m)(x1, x2)Ĝ
(m)(x3, x4)δabδcd

+Ĝ(m)(x1, x3)Ĝ
(m)(x2, x4)δacδbd

+Ĝ(m)(x1, x4)Ĝ
(m)(x2, x3)δadδbc (D.2)

En el caso de la derivada sexta, no es necesario escribir la expresión más general posible para

seis puntos diferentes, ya que solo necesitamos algunos casos particulares en los cuales algunos
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de los puntos están evaluados en coincidencia. Los dos casos necesarios son

[

(N + 4)δcdδef + 4
Acdef

(N + 2)

]

∫∫

x,x′

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x1, x2, x, x, x

′, x′)

∣

∣

∣

∣

∣

Ĵ=0

= N

[

(N + 2)2V 2
d [Ĝ]

2 + 2(N + 8)

∫∫

x,x′
Ĝ(x, x′)2

]

δabĜ(x1, x2)

+4(N + 2)2δabVd[Ĝ]

∫

x

Ĝ(x1, x)Ĝ(x, x2)

+8(N + 8)δab

∫∫

x,x′
Ĝ(x1, x)Ĝ(x

′, x2)Ĝ(x, x
′) (D.3)

y

δcdδef

∫

x

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x1, x2, x, x, x, x)

∣

∣

∣

∣

∣

Ĵ=0

= N(N + 2)δabVd[Ĝ]
2Ĝ(x1, x2)

+4(N + 2)δab[Ĝ]

∫

x

Ĝ(x1, x)Ĝ(x, x2) (D.4)



Apéndice E

Integrales del propagador ultravioleta

libre en el espacio de De Sitter eucĺıdeo

El propagador ultravioleta libre en el espacio de De Sitter eucĺıdeo admite la siguiente

expansión en armónicos esféricos

Ĝ(M)(x, x′) = Hd
∑

~L 6=0

Y~L(x)Y
∗
~L
(x′)

H2L(L+ d− 1) +M2
. (E.1)

Entonces se tiene, por ejemplo

∫

x

Ĝ(M)(x, x) = Hd
∑

~L 6=0

(

∫

x
Y~L(x)Y

∗
~L
(x)
)

H2L(L+ d− 1) +M2
=
∑

~L 6=0

1

H2L(L+ d− 1) +M2
, (E.2)

donde hemos usado las relaciones de ortogonalidad de los armónicos esféricos en d dimensiones

(7.18).

En el cálculo de las correcciones a la parte ultravioleta de la función de 2-puntos a segundo

orden aparece, por un lado, la siguiente integral

∫

z

Ĝ(M)(x, z)Ĝ(M)(z, x′) = H−2d
∑

~L 6=0, ~L′ 6=0

[

Y~L(x)
(

∫

z
Y ∗
~L
(z)Y ~L′(z)

)

Y ∗
~L′
(x′)

[H2L(L+ d− 1) +M2][H2L′(L′ + d− 1) +M2]

]

= H−d
∑

~L 6=0

Y~L(x)Y
∗
~L′
(x′)

[H2L(L+ d− 1) +M2]2
, (E.3)
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donde nuevamente hemos expandido y luego integrado usando la ortogonalidad. Aqúı se puede

hacer la observación que

1

[H2L(L+ d− 1) +M2]2
= − ∂

∂M2

[

1

H2L(L+ d− 1) +M2

]

, (E.4)

y por lo tanto, bajo el supuesto que se pueden intercambiar la derivada y la serie, se concluye

que
∫

z

Ĝ(M)(x, z)Ĝ(M)(z, x′) = −∂Ĝ
(M)(x, x′)

∂M2
. (E.5)

De manera similar, se puede mostrar que

∫∫

y,z

Ĝ(M)(x, y)Ĝ(M)(y, z)Ĝ(M)(z, x′) =
1

2

∂2Ĝ(M)(x, x′)

∂(M2)2
. (E.6)



Apéndice F

Renormalización en espacio de De

Sitter eucĺıdeo

El proceso de renormalización se lleva a cabo incluyendo dos contratérminos en la acción,
∫

x
δM2φaφa/2 y

∫

x
δλ(φaφa)

2/8N . Es válido asumir que su dependencia en λ será como en el

caso perturbativo usual, es decir δM2 ∼ λ y δλ ∼ λ2, y por lo tanto al segundo orden en las

correcciones ultravioletas necesitamos considerar términos con δM2, (δM2)2 y δλ. Esto lleva a

las siguientes nuevas contribuciones a la funcional generatriz (8.3),

∆Z[J0, Ĵ ] = Z0[J0]Ẑf [Ĵ ]
VdδM2

2

(

〈φ2
0〉0 −

δ2Z0[J0]

δJ0aδJ0b
δab

)

+Z0[J0]Ẑf [Ĵ ]

[

Vdδλ

8N
〈φ4

0〉0 +
V 2
d (δM2)2

4

(

〈φ2
0〉20 −

〈φ4
0〉0
2

)]

−Ẑf [Ĵ ]
V 2
d (δM2)2

4
〈φ2

0〉0
δ2Z0[J0]

δJ0aδJ0b
δab

+Ẑf [Ĵ ]

(

V 2
d (δM2)2

8
− Vdδλ

8N

)

δ4Z0[J0]

δJ0aδJ0bδJ0cδJ0d
δabδcd

+Z0[J0]
δM2

2

[

Ẑf [Ĵ ]NVd[Ĝ
(M)]−

∫

x

δ2Ẑf [Ĵ ]

δĴa(x)δĴb(x)
δab

]

+
λ

4N

VdδM2

2
Aabcd

∫

x

δ2Ẑf [Ĵ ]

δĴc(x)δĴd(x)

[

δ4Z0[J0]

δJ0aδJ0bδJ0eδJ0f
− 〈φ2

0〉0
δ2Z0[J0]

δJ0aδJ0b
δab

]

.
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Rastreando estos términos en el cálculo de ambas partes untravioleta e infrarroja de la función

de 2-puntos conduce a las siguientes nuevas contribuciones,

∆
(

〈φ̂a(x)φ̂b(x′)〉
)

= δab

[

−1 +
λ

4N2
(N + 2)Vd

(

〈φ4
0〉0 − 〈φ2

0〉20
)

]

δM2

×
∫

z

Ĝ(M)(x, z)Ĝ(M)(z, x′), (F.1)

a ser agregada a (8.11), y

∆ (〈φ0aφ0b〉) =
δab
N

{

VdδM2

2

(

〈φ2
0〉20 − 〈φ4

0〉0
)

(F.2)

+
(

〈φ6
0〉0 − 〈φ2

0〉0〈φ4
0〉0
)

[

V 2
d (δM2)2

8
− Vdδλ

8N
+

λ

8N
(N + 2)δM2V 2

d [Ĝ
(M)]

]

+
(

〈φ2
0〉30 − 〈φ2

0〉0〈φ4
0〉0
)

[

V 2
d (δM2)2

4
+

λ

4N
(N + 2)δM2V 2

d [Ĝ
(M)]

]}

,

a ser agregadas al paso anterior a (8.22) (no mostrado), el cual es igual a (8.22) pero removiendo

las etiquetas ren y fin.

Con estas contribuciones provenientes de los contratérminos, es sencillo ver que las eleccio-

nes (8.13) y (8.21) para éstos conducen a resultados finitos. El resultado son las expresiones

renormalizadas (8.16) y (8.22).



Apéndice G

Comparación entre contratérminos

lorentzianos y eucĺıdeos

Primero veamos que los contratérminos obtenidos en 2PI cuando N → ∞ en d dimensiones,

(8.30), coinciden con los utilizados en la aproximación de Hartree (4.57). Pare esto es necesario

explicitar las partes divergentes en sustracción mı́nima cuando d = 4. De la expansión de

Schwinger-DeWitt (2.30) se obtiene que en ese caso

[Ĝ(0)]div +M2

(

∂[Ĝ(M)]

∂M2

)

0,div

= [Ĝ(M)]div =
(M2 − 2H2)

8π2ǫ
, (G.1)

y

(

∂[Ĝ(M)]

∂M2

)

0,div

=
1

8π2ǫ
. (G.2)

Utilizando la segunda, es inmediato ver que (8.30b) coincide con (4.57c). Por otro lado, el

contratérmino δM2, (8.30a), debe compararse con la combinación δm2 + 12δξH2, con δm2 y

δξ dados por (4.57a) y (4.57b) respectivamente. Mediante (G.1), éstas coinciden.

En segundo lugar, comparemos nuevamente los contratérminos (8.30), pero esta vez con

aquellos que provienen del cálculo eucĺıdeo, (8.13) y (8.21). Para ello, notemos que al expandir

los primeros en λ al orden más bajo equivale simplemente a aproximar los denominadores por
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la unidad,

δM2 = −λ
2



[Ĝ(0)]div +M2

(

∂[Ĝ(M)]

∂M2

)

0,div



 , (G.3)

δλ = −λ
2

2

(

∂[Ĝ(M)]

∂M2

)

0,div

. (G.4)

Para llevar los contratérminos eucĺıdeos a la misma forma, consideramos el ĺımite de M2 ≪ H2,

lo que lleva a reemplazar

[Ĝ(M)]div ≃ [Ĝ(0)]div +M2

(

∂[Ĝ(M)]

∂M2

)

0,div

, (G.5)

y
(

∂[Ĝ(M)]

∂M2

)

div

≃
(

∂[Ĝ(M)]

∂M2

)

0,div

, (G.6)

en (8.13) y (8.21) (estas expansiones son exactas si d = 4, en virtud de (G.1) y (G.2)). Final-

mente, sólo resta tomar N → ∞.
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