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Resumen

La expansion del universo durante la etapa inflacionaria puede ser descripta en una primera aproximacién con la
métrica de De Sitter. El cdlculo de las funciones de correlacién cuanticas de los campos en esta geometria es importante
para contrastar los modelos con las observaciones de precisién del fondo césmico de microondas. En el caso de campos
muy livianos comparados con la curvatura del espacio tiempo, estos cdlculos estan plagados con efectos infrarrojos, los
cuales podrian estar indicando una falla en la teoria de perturbaciones. En este sentido, algunos cédlculos no perturbativos
han mostrado que las interacciones generan una masa dinamica, que tiene el efecto de regular las posibles divergencias
infrarrojas. En esta tesis se estudian algunos aspectos de la teoria cudntica de campos en De Sitter mediante diversos
métodos no perturbativos, con el objetivo de comprender los efectos infrarrojos asociados a campos livianos o no masivos
en el universo temprano. Por un lado se considera la Accién Efectiva de dos particulas Irreducible (2PIEA) en la
aproximacién de Hartree, que si bien es exacta en el limite de N grande para un modelo con simetria O(N), para un
numero finito de campos deja de ser completamente consistente. Para recuperar en parte algunas propiedades de la
2PIEA exacta, se deben imponen ciertas relaciones de consistencia en el proceso de renormalizacién, lo cual afecta las
partes finitas de los contratérminos. Se ha prestado particular atencién a este proceso, generalizandolo a espacios curvos
para obtener las ecuaciones de evolucién del valor medio del campo renormalizadas. Se estudié el potencial efectivo en la
aproximacién de Hartree, buscando las condiciones para la existencia de soluciones con ruptura espontdnea de simetria.
Resultados previos en la literatura muestran que estas soluciones no existen en el limite de N grande, asi como tampoco
para N finito con el esquema de renormalizacion usual. Por otro lado, adoptando la renormalizacidon consistente, se

encuentran soluciones con ruptura de simetria, cuya existencia sin embargo depende del punto de renormalizacién.

Luego, se consideraron las ecuaciones de Einstein Semicldsicas en la aproximaciéon de Hartree, renormalizdndolas con
el método consistente. Se buscaron soluciones autoconsistentes de éstas ecuaciones en combinacién con las ecuaciones
del campo, estudiando si el efecto de los campos sobre la curvatura puede generar o no una restauracién de la simetria.
En particular se encontraron soluciones donde los efectos cudnticos son los responsables de la expansién acelerada del

universo, en ausencia de constante cosmoldgica. Estos resultados también dependen del punto de renormalizacion.

Otro método no perturbativo muy poderoso proviene de formular la Teoria de Campos en el espacio De Sitter
Euclideo, el cual tiene la propiedad de ser compacto. Debido a esto, el campo admite una descomposicién en modos
discreta que pone en evidencia que las divergencias infrarrojas provienen de las contribuciones del modo constante, o
modo cero. Es posible formular una teoria sin problemas infrarrojos tratando no perturbativamente al modo cero, y de
manera perturbativa a los modos inhomogéneos. Las correcciones provenientes de éstos ultimos son de orden superior en
una expansién infrarroja. Consideramos la generalizacién de esta formulacién a la teorfa con simetria O(N), calculando la
masa dindmica y el potencial efectivo. Esto permite realizar una comparacién adecuada con los resultados provenientes

de la 2PIEA donde el limite de N grande permite obtener resultados més confiables.

Palabras clave: Teoria cudntica de campos, De Sitter, Efectos infrarrojos, Métodos no perturbativos, Cosmologia.
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Quantum effects in inflationary cosmological models

Abstract

The expansion of the Universe during the inflationary stage can be described, as a first approximation, with the
De Sitter metric. It is important to calculate quantum correlation functions of fields living in this geometry in order to
compare the different models with the high-precision observations of the Cosmic Microwave Background. For light fields
compared to the space-time curvature, these calculations are plagued by infrared effects, which might be an indication
of the breakdown of perturbation theory. In this regard, some non-perturbative calculations have shown that a mass is
dynamically generated by the interactions, effectively regulating the possible infrared divergences. In this thesis, we study
some aspects of the Quantum Field Theory in De Sitter space by means of non-perturbative methods, with the goal of
better understanding the infrared effects associated with light and massless fields in the early Universe. On the one hand,
we considered the Two-Particle Irreductible Effective Action (2PIEA) in the Hartree approximation, which, although
being exact in the large-N limit of a model with O(N) symmetry, in the case of a finite number of fields it is no longer
fully consistent. In order to partially recover some properties of the exact 2PIEA, some consistency conditions must be
imposed on the renormalization procedure, which in turn affects the finite parts of the counterterms. We focused on this
process, generalizing it to curved backgrounds in order to find the renormalized evolution equation for the mean value
of the field. We studied the Effective Potential, looking for the conditions for the existence of spontaneous-symmetry-
breaking solutions. Previous results in the literature show that there are no such solutions in the large-N limit, as well as
for finite N under the usual renormalization scheme. Nevertheless, we found that these solutions can exist when adopting

the consistent renormalization scheme, although their existence is dependent on the renormalization point.

Then we studied the Einstein Semiclassical Equations in the Hartree approximation with the consistent renormali-
zation procedure. We looked for self-consistent solutions of these equations together with the field equations, studying
whether the quantum effects over the space-time curvature can induce a symmetry restoration or not. In particular, we
found some solutions where the quantum effects are solely responsible for the accelerated expansion of the Universe,

without the presence of a Cosmological Constant. This results are also dependent on the renormalization point chosen.

Another very powerful non-perturbative method comes from the formulation of the Quantum Field Theory in
euclidean De Sitter space, which has the characteristic property of being compact. Due to this, the field has a discrete
mode decomposition which allows to identify the contributions of the constant -or zero- mode, as the origin of the
infrared divergences. It is then possible to formulate a theory with no infrared problems by treating the zero mode
non-perturbatively, while dealing with the inhomogeneous modes perturbatively. The corrections coming from the latter
are of higher order in an infrared expansion. We considered the generalization of this formulation to a model with O(N)
symmetry, calculating the dynamical mass and the Effective Potential. This allows for a comparison with the results

obtained with the 2PIEA, for which the large-N limit is needed for the results to be trusted.

Keywords: Quantum Field Theory, De Sitter, Infrared effects, Non-perturbative methods, Cosmology.
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Capitulo 1

Introduccion General

En las ultimas dos décadas la cosmologia se ha vuelto una ciencia de precision gracias a la
mejora en la sensibilidad de las observaciones. Esto ha permitido descubrimientos fundamenta-
les como el de las anisotropias en el fondo césmico de microondas (CMB) [1] o el de la actual
expansion acelerada del universo [2, 3]. Estos descubrimientos han cambiado nuestro entendi-
miento sobre la historia evolutiva del universo a gran escala, forzando cambios paradigmaticos

en el modelo cosmolégico precedente, el modelo del Big Bang.

El CMB es la radiacién més antigua y lejana que podemos observar en el universo, y es por
ello una importante ventana hacia sus primeros momentos. Su descubrimiento en los anos 60
dio impulso a la teoria del Big Bang como una teoria fisica seria que explicase la evolucion del
universo a gran escala. Esta radiacion tiene su origen en el momento en la historia térmica del
universo en el cual el plasma primordial se enfria lo suficiente para dar lugar a la recombinacién
de los protones con los electrones que lo forman. Al ocurrir este proceso aproximadamente
instantaneo, el universo se vuelve transparente a la radiacion electromagnética, la cual luego
viaja casi sin alteracion hasta la actualidad salvo por el corrimiento al rojo de su espectro debido
a la expansion del universo. Gracias a su origen térmico, el espectro de esta radiacion es el de
un cuerpo negro con una temperatura caracteristica aproximadamente isétropa respecto de la
direccién de observacién. A partir de las mediciones de los satélites COBE y posteriormente
WMAP y Planck de las pequenas anisotropias presentes en la radiacién césmica de fondo, con
una amplitud relativa menor a 107> [4], se abrieron nuevos interrogan ues sobre el universo

primordial.
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1.1. Problemas del modelo estandar del Big Bang

El marco tedrico que describe un espacio-tiempo dinamico es la Teoria de la Relatividad
General (RG), cuyas predicciones seguimos confirmando observacionalmente atn cien anos des-
pués de su formulacién [5]. El universo es aproximadamente isétropo y homogéneo a escalas
cosmoldgicas, y por lo tanto puede describirse por la métrica de Friedmann-Robertson-Walker

(6, 7]

2
1 — Kr?

donde a(t) es el factor de escala que describe la expansion, y K puede tomar los valores —1,0 o

ds® = —dt* + a(t)? + r2d0?| (1.1)

1 correspondientes a hipersuperficies de tiempo constante que sean espacialmente hiperbdlicas,
planas o esféricas respectivamente. Insertando esta métrica en las ecuaciones de Einstein y con-
siderando como fuente a un fluido ideal de densidad p y presién p, se obtienen las denominadas

ecuaciones de Friedmann,

a* 8tGnp K
a ArG N
Z = 3 1.2b
: N (4 3p). (1.2)
con Gy la constante de Newton y * = d/dt. Estas son las ecuaciones dindmicas para el factor
de escala a(t). El parametro de Hubble se define como
a
H(t) = - 1.3
(=", (13)

y es la escala caracteristica de curvatura del espacio-tiempo.

Un concepto importante para entender la fisica en un universo en expansiéon es es el del
horizonte de particulas. Esta es la mayor distancia que puede haber viajado un rayo de luz
(ds?* = 0) desde un tiempo inicial ¢ = 0 hasta un tiempo determinado ¢, y establece el tamafo
de las regiones causalmente conectadas en el universo. En coordenadas coméviles el mismo se

calcula
dt’ 1

dy, = /OTW(t) \/% - /Ot a(t) " a(t)H(1)

El modelo original del Big Bang contiene sélo componentes de materia y radiacion como fuentes,

(1.4)

y en consecuencia exhibe una expansién desacelerada durante toda su evolucion. Por lo tanto,
el horizonte dj crece con el tiempo y asi va incluyendo mas y mas regiones que no han estado
previamente en contacto causal. Por esta razon, es de esperarse que en determinado momento

de la historia del universo se observen grandes anisotropias a escalas mayores al tamano del
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horizonte en aquel entonces. En particular, en la época del CMB el horizonte era muy pequeno.
Sin embargo, en el CMB estas grandes anisotropias no estan presentes [1, 4, 8]. Esto se conoce
como el problema del horizonte, e implica un alto grado de ajuste en las condiciones iniciales

del plasma primordial para lograr el alto grado de isotropia observado.

Otro problema esta relacionado con la componente de curvatura K en la densidad de energia.
Definiendo 2 = p/p,, donde p incluye las componentes de materia y radiacién, y p. = 3H?/87G

es la densidad critica, la primera de las ecuaciones de Friedmann (1.2a) se escribe
Q4+ Q=1 (1.5)

donde Q = —K/a?H? es la componente relativa de la densidad de energia debido a la cur-
vatura. Las observaciones actuales del CMB indican que actualmente |Qx| < 0,01 a 95% CL
[4]. Teniendo en cuenta nuevamente una expansién desacelerada, es decir, solamente con etapas
dominadas por la materia o la radiacién, |Qx| decrece con el tiempo. Esto corresponderia a una
curvatura inicialmente atin menor. Por lo tanto, nos encontramos nuevamente ante un problema

de ajuste fino en las condiciones iniciales conocido como el problema de la planitud.

1.2. Modelos cosmolégicos inflacionarios

Ambos problemas pueden ser solucionados si se asume que el universo ha tenido una etapa
temprana de expansién acelerada [9]. Durante la misma, conocida como etapa inflacionaria, el

Ht con H aproximadamente cons-

universo se expande de manera cuasi-exponencial, a(t) ~ e
tante. Esto implica que, por un lado, el horizonte de particulas d; decrece durante el periodo
inflacionario, indicando que el mismo era mucho mayor en el pasado. De esta forma, si inflacién
dura lo suficiente, aproximadamente unos 60 “e-folds”, todo el universo actualmente observable
tuvo un origen comun dentro de la misma regién causal. Esto es suficiente para resolver el
problema del horizonte. Por otro lado, este periodo inflacionario tiene el efecto de achicar |Q|.
Nuevamente, si la inflacién dura al menos unos 60 “e-folds”, resulta suficiente para resolver el

problema de la planitud, desde un punto de vista de la naturalidad de las condiciones iniciales.

Las ecuaciones de Friedmann (1.2) nos dicen que para lograr un periodo de expansién
acelerada, hace falta un tipo de fluido con presién negativa p < —1/3. En particular, para que
H ~ cte, es necesario que p ~ —p. Estas propiedades escapan las de los fluidos clasicos, sin
embargo son posibles para un campo escalar, el inflatén, que ruede suficientemente lento por
su potencial [10]. Una prediccién interesante de estos modelos es que, durante este periodo, las

fluctuaciones cuanticas de campos muy livianos, ya sea el inflaton u otros campos espectadores,
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son amplificadas en amplitud mientras también aumentan en longitud de onda debido a la
expansion. Cuando finalmente cruzan el horizonte de curvatura las mismas se vuelven clésicas y
quedan congeladas. El espectro de dichas fluctuaciones es aproximadamente invariante de escala,
siendo esta una prediccion bastante genérica de los modelos inflacionarios. Posteriormente al
periodo inflacionario, las mismas actiian como semilla de las perturbaciones en la densidad de
energia en el universo y asi a la eventual formacion de estructura a gran escala que observamos
hoy. En particular, estas perturbaciones dejan su huella en la superficie de tltima dispersion,
donde nace el CMB. Por esta razon, el estudio en detalle sus anisotropias puede dar informacién

sobre la etapa inflacionaria precedente.

Es importante entonces tener un buen entendimiento tedrico de la fisica del inflatén y del
mecanismo de generacion y amplificacién de sus fluctuaciones cuanticas para poder comparar
con las observaciones cada vez mas precisas del CMB. Como hemos mencionado, el marco teori-
co fundamental para la descripcion de un espacio-tiempo dinamico como lo es el universo en
expansion es la Relatividad General. Por otro lado, el inflatén es un campo cuéntico interac-
tuante que naturalmente se describe con la Teoria Cudntica de Campos. La formulacion de esta
ultima en un fondo curvo requiere de ciertos cuidados, por ejemplo en relacién a la ambigiiedad

en la definicién del estado de vacio, o a la renormalizacion de la teoria.

A los fines del estudio de la evolucién de las fluctuaciones cudnticas del inflatén, la etapa
inflacionaria puede describirse en una primera aproximaciéon por el espacio-tiempo de De Sitter,
el cual exhibe una expansion exactamente exponencial y eterna. Esto es particularmente cierto
en modelos donde las fluctuaciones provienen de campos espectadores distintos a aquel que
produce la expansiéon, y por lo tanto esta justificado ignorar el efecto de las mismas sobre la
evolucién del espacio-tiempo de fondo. Los objetos de interés son las funciones de correlacion
de un campo escalar con una masa pequena con respecto a H en el limite de tiempos largos,
las cuales luego pueden ser relacionadas con observables vinculados a la estadistica de las

anisotropias en la radiacién césmica de fondo.

1.3. Campos cuanticos en De Sitter

La teoria de campos en el espacio-tiempo de De Sitter tiene una larga historia desde los
primeros desarrollos de la teorfa cudntica de campos en espacios curvos [11, 12], pero reciente-
mente ha recobrado interés gracias a su rol en los modelos inflacionarios del universo temprano,

asi como también como posible descripcién de la actual etapa de expansién acelerada del uni-
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verso. Para estudiar las fluctuaciones cuanticas de un campo escalar ¢ en De Sitter, se busca
calcular las funciones de correlacion cuanticas. La dependencia temporal de la métrica fuerza
el uso de la formulacién de camino temporal cerrado de la teoria de campos, también conocida
como IN-IN, para poder calcular valores de expectacion en lugar de amplitudes de transicion.
Esta es una herramienta necesaria para estudiar situaciones fuera del equilibrio tanto en el caso

cosmoldgico como también en espacio plano.

El espacio-tiempo de De Sitter tiene la cualidad de poseer tantas simetrias como el espacio-
tiempo de Minkowski, ya que se trata de uno de los espacio-tiempos méaximamente simétricos
con curvatura constante, en este caso positiva. El parche de coordenadas relevante para la

cosmologia es el que describe un espacio en expansion,
ds* = —dt* + e*'dx? (1.6)

donde las secciones de tiempo constante son espacialmente planas, y H es constante. Su gran
nimero de isometrias permite definir un vacio invariante para un campo escalar masivo. Si,
por otro lado, se tiene un campo libre no masivo y minimamente acoplado a la curvatura, no
existe ningun vacio invariante de De Sitter [13, 14]. Este hecho se manifiesta en las funciones de
correlacion del campo, las cuales muestran una dependencia explicita con el tiempo. Por ejemplo
la funcion de dos puntos de un campo libre con m = 0, que a tiempos largos comparados con
H1 es [15]
H3t

(6()°) = 7= (1.7)
donde se observa un crecimiento divergente con el tiempo césmico t. Esto parece indicar que
las fluctuaciones del campo ¢ crecen indefinidamente a tiempos largos, como consecuencia de
la acumulacién de modos del campo que continuamente salen del horizonte de curvatura H !
debido a la expansién del universo. De ser asi, las fluctuaciones del campo produciran un efecto
sobre la evolucion del espacio-tiempo de fondo que ya no puede despreciarse. En teoria de
campos se conocen varios ejemplos de divergencias infrarrojas, como ser la amplificacién de
fluctuaciones a temperatura finita cerca del punto critico [15], o en la emisién de fotones de
muy baja energia en procesos de Electrodindmica Cuéantica. En algunos casos, estas divergencias
estan asociadas a efectos fisicos, pero en otros casos simplemente indican una falla del método

utilizado.

Volviendo al caso de un campo en De Sitter, si este deja de ser estrictamento no masivo y en
cambio tiene una pequena masa m, el resultado recupera la invariancia de De Sitter esperada

3H!
- 8m2m?2’

(0% (1.8)
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La masa en este caso actiia como regulador de la divergencia, y el problema queda aparentemente
bajo control. Sin embargo, un campo libre es de poco interés préactico, por lo que se deben
incluir términos de interaccion. Una funcion de correlacion tipica entonces recibe correcciones
provenientes de las interacciones, las cuales se calculan mediante la expansion perturbativa
usando el formalismo IN-IN. Considerando por ejemplo auto-interacciones del tipo A¢?*, un
simple contaje de potencias [15] indica que un diagrama de Feynman genérico con una cantidad

L de loops que contribuye a las funciones de correlacién, posee un factor de la forma

AHA N\ *
~ (W) - (1.9)
H2

27

mas y mas importantes a mayor numero de loops, lo cual invalida el calculo perturbativo. En

Por lo tanto, tanto si la masa del campo es menor a m? ~ VA las correcciones se hacen
el caso no masivo, se tiene nuevamente un crecimiento con el tiempo cdésmico que empeora loop
a loop, por lo tanto esta ruptura se da a tiempos largos. Para una revision exhaustiva de estos

y otros posibles efectos infrarrojos ver [16].

Resulta fundamental en este contexto estudiar los efectos infrarrojos en De Sitter, es decir,
efectos que se vuelven importantes a tiempos largos o equivalentemente para masas pequenas
comparadas con la escala de Hubble H. La posible falla de la teoria de perturbaciones, o méas
dramatico ain, de la teoria semiclasica, indica la necesidad de realizar un anélisis con otro tipo
de métodos que permitan capturar al menos parte de la fisica no perturbativa. Por ejemplo, se
espera que la presencia de la auto-interaccion del campo genere una masa dindamica mgy,, atun
cuando el campo es cldsicamente no masivo, regulando asi las divergencias infrarrojas [17, 18].
Si esto es asi, la teoria semiclasica seguiria siendo vélida, pero los métodos pertubativos son

insuficientes.

Vale destacar que, por un lado, no todos los modelos inflacionarios se basan en campos
livianos en comparacion a la curvatura. Un ejemplo son los modelos que utilizan al Higgs en
el rol del inflatén, los cuales requieren un acoplamiento con la curvatura muy grande £ > 1
[19, 20], por lo que adquieren una masa mayor a H y entonces son insensibles a estos problemas.
Por otro lado, la importancia de estos efectos sobre los observables inflacionarios es disputada

en algunos trabajos [21, 22].

1.3.1. Meétodos no perturbativos en De Sitter

Uno de los enfoques posibles para estudiar los efectos infrarrojos en De Sitter estda basado

en la accién efectiva irreducible de 2 particulas (2PIEA) [23], el cual permite realizar una
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resumacion de subconjuntos infinitos de diagramas de Feynman de la teoria ususal mediante
un reordenamiento de la expansién perturbativa. Esta técnica ha sido utilizada en el espacio
plano para estudiar, por ejemplo, la teoria de campos a temperatura finita y sus transiciones
de fase [24, 25, 26]. Considerando nuevamente a la teorfa A¢?, la accién efectiva 2PI tiene dos
contribuciones al orden méas bajo no trivial, una local y la otra no local. La segunda contribucién
es técnicamente muy dificil de tratar, mas atn en el caso de un fondo dependiente del tiempo
como es el caso de la teoria en De Sitter. Esto lleva a considerar la llamada aproximacion de
Hartree, es decir, conservar solo la parte local, la cual de todas formas contiene informacion no

perturbativa sobre la masa generada dindmicamente [27, 28],

V3\H?

o toW, (1.10)

2 __
mdyn -

donde se considera que m = 0 clasicamente. La naturaleza no perturbativa de este resultado se

manifiesta en la dependencia no analitica en la constante de acoplamiento A.

La aproximacién de Hartree es ampliamente usada, a pesar que debido a la ausencia de un
parametro de expansién pequeno sufre de ciertas dificultades. Estas involucran la necesidad de
incorporar nuevos contratérminos que luego deben ser fijados mediante ciertas relaciones de
consistencia [29], y la posterior ambigiiedad en la determinacién de sus partes finitas. Algu-
nos resultados fisicos calculados en esta aproximacién exhiben una sensibilidad al esquema de
renormalizacién [30, 31]. Por otra parte, si en lugar de un campo se consideran N campos en
un modelo con simetria O(N), la aproximacién de Hartree se vuelve exacta en el limite de N

grande, y este tipo de problemas desaparecen.

Otro método no perturbativo en De Sitter se es el modelo de inflacién estocéstica [32, 17, 33].
En éste, el efecto de las fluctuaciones cuanticas que continuamente salen del horizonte sobre los
modos de longitud de onda mucho mayor, es modelado mediante un término de ruido estocastico
en una ecuacion tipo Langevin. De esta manera, pueden calcularse valores de expectacion
mediante una funcion de densidad de probabilidad para valores del campo a tiempos largos.
Luego, a partir de la funcién de correlacion de dos puntos para el modo constante se calcula la

masa dindmica, que en el caso m = 0 en la teorfa \¢* es

o VAT ()
= S T ()

(1.11)

Este resultado es exacto al orden infrarrojo més bajo, y es considerado un punto de referencia
para los calculos no perturbativos. Sin embargo, no ha sido posible reproducirlo atin puramente

desde la teoria de campos en el formalismo IN-IN. Igualmente, es notable que la aproximacion
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de Hartree, a pesar de sus problemas, dé un resultado con la misma dependencia en la constante

de acoplamiento y con otro coeficiente numérico que solo difiere en un ~ 15 %.

Si el resultado estocastico es de confiar, es de vital importancia determinar la equivalencia
entre dicho método y la teoria de campos IN-IN. En este sentido hay varios intentos de llegar a
la formulacion estocéstica partiendo de la integral de camino IN-IN y realizando una separaciéon
entre modos de longitud de onda corta y larga mediante una funcién ventana dependiente del
tiempo [34, 35]. Por otro lado, se ha demostrado la equivalencia a nivel diagramatico entre ambas
formulaciones para un campo masivo al orden més bajo en la expansién infrarroja [36, 37, 38|.
De todas formas, no queda claro atn si sus resultados estocasticos no perturbativos para el caso
exactamente no masivo pueden ser obtenidos puramente desde la teoria de campos IN-IN, o si

es posible incorporar correcciones més alla del limite infrarrojo en la teoria estocastica.

Mas recientemente, el resultado de inflacién estocéstica fue reproducido formulando la teoria
de campos en el espacio De Sitter euclideo [39], es decir, realizando una continuacién analitica al
tiempo imaginario. A diferencia del espacio plano, la version euclidea de De Sitter es compacta y
esto permite expandir el campo en una suma discreta de modos. Asi, es posible ver que el modo
constante, también llamado modo cero, es el inico responsable por la divergencia infrarroja.
Maés atn, por ser constante se lo puede tratar exactamente de manera no perturbativa incluso en

el caso m = 0. La masa dindmica calculada de esta forma coincide con el resultado estocastico

(1.11).

La ventaja del formalismo euclideo por sobre el de inflacién estocastica es la posibilidad de
incluir correcciones al resultado infrarrojo, tratando de forma perturbativa la contribucion de
los modos no constantes [40]. A pesar de ello, la equivalencia entre el formalismo euclideo y
la teoria de campos IN-IN en De Sitter tampoco ha sido atn establecida con rigurosidad. Un

acercamiento fue realizado a nivel diagramético para el caso masivo [41].

1.4. En esta tesis

La tesis esta organizada de la siguiente manera. En el capitulo 2 se presentan los fundamentos
de la teoria cuantica de campos en espacios curvos, describiendo las dificultades presentes en
comparacion con la formulacién usual en espacio plano. Luego en el capitulo 3 se muestra en
detalle el origen de los efectos infrarrojos en De Sitter a partir de los calculos perturbativos en

la teoria de campos IN-IN.

El capitulo 4 comienza con un resumen del formalismo de la accién efectiva 2P1 y su relacion
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con la accién efectiva usual (o 1PI). En éste, tanto el valor medio del campo ¢ como el propaga-
dor exacto GG son considerados como grados de libertad independientes. Describiremos ciertas
relaciones que aseguran la consistencia de los resultados en presencia de este grado de libertad
adicional. Luego, nos concentraremos en la aproximacién de Hartree, para la cual es necesaria

la introduccién de nuevos contratérminos para que dichas relaciones puedan satisfacerse [29].

Presentamos un estudio de la renormalizacion al nivel de la ecuaciones de movimiento para
¢ y G generalizéndola a espacios curvos arbitrarios, publicado originalmente en [30]. Segin
el esquema sustraccién utilizado durante este proceso, los contratérminos admiten una parte
finita, la cual debe ser cuidadosamente determinada por las condiciones de renormalizacion.
Nuestros resultados indican que la eleccion del punto de renormalizacién es relevante a la hora
de estudiar las soluciones semiclasicas de la teoria. En el limite de N grande, donde se tiene un
parametro de expansion que permite justificar la truncacion de la accion efectiva 2PI a nivel

local, se recuperan resultados independientes del esquema de renormalizacion.

Posteriormente, siguiendo con el andlisis descripto en la Ref. [30], en el capitulo 5 se es-
pecializan las ecuaciones del valor medio del campo y de la masa dinamica obtenidas en la
aproximacién de Hartree para el caso particular del espacio-tiempo de De Sitter. A partir de
éstas se estudia el potencial efectivo. Las ambigiiedades provenientes del proceso de renorma-
lizacién tienen consecuencias fisicas, como por ejemplo la existencia de soluciones con ruptura
espontanea de la simetria Z, de la teoria clasica. Por otro lado, en el limite de N se observa la

esperada restauracion de la simetria [42, 43].

En el capitulo 6 volvemos a considerar espacios curvos generales en la aproximacién de
Hartree de la accién efectiva 2PI, haciendo foco en la renormalizacion de las Ecuaciones de
Einstein Semiclésicas (EES), que tienen como fuente al valor de expectacién del tensor de
energia-momento del campo cuantico. Se demuestra la renormalizabilidad de estas ecuaciones
con el mismo conjunto de contratérminos que renormalizan las ecuaciones de movimiento. Es-
to incluye el hecho de que, en espacios curvos, existen divergencias que son proporcionales a
términos cuardraticos en la curvatura. Con las EES renormalizadas, se buscan soluciones auto-
consistentes en De Sitter, resolviendo simultdneamente para ¢, mzyn y H, tanto para los casos

con y sin ruptura espontanea de simetria. Este capitulo se basa en resultados publicados en
[31].

El capitulo 7 presenta el formalismo de inflacion estocastica y la formulacién de la teoria
de campos en el espacio de De Sitter euclideo. Estos métodos no perturbativos alternativos

son aplicables sdlamente en el espacio-tiempo de De Sitter, y son particularmente aptos para
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el estudio de los efectos infrarrojos.

En el capitulo 8 consideramos las correcciones ultravioletas a los resultados de orden infra-
rrojo mas bajo de la teoria euclidea, analizando la renormalizacién y ademas generalizando el
andlisis al modelo con simetria O(NN). En este contexto, calculamos la masa dinamica a segundo
orden en la expansién infrarroja, asi como la funcién de 2-puntos para puntos separados. Veri-
ficamos que el resultado para la masa dinamica en el limite de N grande es compatible con los
resultados obtenidos a partir de la accién efectiva 2PI en ese limite, incluyendo la restauracion
de la simetria. Sin embargo, observamos que para campos no masivos, el comportamiento para
puntos separados sigue teniendo problemas a tiempos largos. Los resultados presentados en este

capitulo estan siendo preparados para su publicacion [44].

Finalmente, en el capitulo 9 se discuten las conclusiones generales de los distintos temas

tratados en la tesis.



Capitulo 2

Teoria cuantica de campos en espacios

Curvos

La teoria de campos en espacios curvos generaliza la teoria de campos usual al conside-
rar campos cuanticos en una métrica de fondo curva g,,, la cual es tratada clasicamente. La
dindmica de estos campos es afectada por la curvatura del espacio-tiempo, mientras que ésta a

su vez es afectada por la presencia de los campos ciianticos mediante las EES
1

donde A la constante cosmolégica. En el miembro derecho se ha reemplazado el tensor de
energfa-momento clasico T),, por el valor de expectacién cuantico (¢|T),,|¢). Aqui y en el resto
de esta tesis utilizaremos la signatura (—,+,...,+, +) para la métrica, asi como unidades para

las cuales h = ¢ = 1.

En este capitulo delinearemos resumidamente algunos de los conceptos basicos detras de
esta generalizacion aplicada sobre la teoria de campos relativista, basdndonos principalmente

en [11]. Nuestro caso de interés es el de un campo escalar, por lo cual nos limitaremos al mismo.

2.1. Cuantizacion del campo escalar libre en espacios curvos

El primer paso es escribir una accién covariante para el campo escalar libre ¢(z) de masa m
en un espacio-tiempo general dado por la métrica g,,. La forma mds general en d dimensiones

se escribe

Slibre = _/ddx\/__g |:%glw H¢8V¢ + % (m2 + SR) ¢2 ’ (22)

11
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donde g = |detg,,|, £ es una constante de acoplamiento, y R es el escalar de curvatura de Ricci.
El término £ R¢? es incluido como el tinico acoplamiento escalar local entre el campo escalar y
el campo gravitacional, con las dimensiones adecuadas. La ecuacién de movimiento obtenida al

extremizar la accién (2.2) respecto de ¢ es
(-O+m*+ ER(z)) ¢p(z) =0 (2.3)
donde (¢ = ﬁ@u (vV/—99"0,¢) es el operador de D’Alembert asociado a la métrica g, .

Consideremos la cuantizacién del campo escalar libre en un espacio curvo general. Aqui
seguiremos un procedimiento de cuantizacion canodnica, con el fin de establecer las dificultades
asociadas a la definicién del estado de vacio en este contexto. Sin embargo, en el resto de la tesis
recurriremos a la formulacién de integral de camino de Feynman, la cual resulta mas apropiada

para la implementacién de métodos no perturbativos a partir de técnicas de anélisis funcional.
Comenzamos expandiendo el campo ¢ en el conjunto de modos ortonormales ug(z) que son
solucién de la ecuacién (2.3),

oa) = |arun(e) + alui () (24

k

donde a,i y ax son operadores de creacion y destruccion respectivamente. La cuantizaciéon de la
teoria puede ser implementada directamente imponiendo las relaciones de conmutacién estandar
entre estos operadores. Luego, podemos definir un estado de vacio |0) como aquel que tiene la

propiedad de ser aniquilado por todos los operadores ay

La construccién del espacio de Fock y los estados con un determinado contenido de particulas,
etc., procede exactamente como en el caso del espacio de Minkowski. Sin embargo, en un espacio
curvo existe una ambigiiedad ineludible. Si bien en el espacio de Minkowski existe un conjunto
natural de modos asociados a la simetria de dicho espacio, el grupo de Poincaré, el cual deja
invariante al vacio definido por dichos modos, en un espacio-tiempo curvo arbitrario éste ya no
es el caso. En general, puede no haber ninguna simetria. Por lo tanto no habra un conjunto de
coordenadas privilegiadas en las que separar la ecuacién del campo y que lleve a un conjunto

de modos naturales.

Para ilustrar este problema, consideremos un segundo conjunto completo y ortonormal de

modos u;(x), distintos a los u(z), segin los cuales el campo ¢ admite una descomposiciéon

o(x) = > |asiy(x) + alis ()] (2.6)

J
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la cual define un nuevo estado de vacio |0)

a;|0) =0, Vj (2.7)

y un nuevo espacio de Fock. En general, el nuevo vacio no sera aniquilado por los a; originales

a|0) # 0 (2.8)

lo que lleva a decir que el vacio de los modos () tiene particulas en el modo ui(x). En otras
palabras, puede no existir una definicion natural de particula. Por esta razon, es necesario un
método para seleccionar aquellos modos que de alguna forma estén lo mas cerca posible de los

modos del espacio-tiempo de Minkowski en algin limite apropiado.

2.2. Accién Efectiva y (T),)

El valor de expectacién del tensor de energfa-momento (7),,(z)) juega un papel importante
en cualquier intento de modelar una dindmica autoconsistente del campo gravitatorio acoplado
a campos cuanticos, ya que actia como fuente de gravedad en las EES. Ademds, este es un
objeto definido localmente que describe parte de la estructura del campo en un dado punto
x. Al igual que en el espacio-tiempo de Minkowski, (7),,) mostrard divergencias ultravioletas
asociadas a los modos del campo con k grande, asi como las tiene también cualquier otra
magnitud cuadratica en el campo. Estas divergencias deberan ser regularizadas y tratadas de
acuerdo al proceso de renormalizacion para extraer resultados finitos, el cual debe llevarse a

cabo en el marco una teoria basada en las EES (2.1).

Clésicamente se tiene la accion

S =S, + Sy, (2.9)

donde )
_ d — _
S0 = Tonce /d 2v/—g(R — 2A), (2.10)

es la accién gravitacional y S, es la accién de la materia. Las ecuaciones de Einstein clasicas

pueden derivarse mediante la condicién

2 05
— =0, 2.11
V=g og (211
la cual conduce a que
2
T, = O5m (2.12)

V=g g
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En el caso semiclésico, consideramos por analogia que (7},,) se obtiene diferenciando funcional-

mente la accién efectiva I'[¢, g*], es decir

2 oI[g, 9"

) =275 bg

(2.13)

Hasta aqui ésta parece una definicién razonable. Sin embargo, en el tratamiento usual de
la teorfa cudtica de campos la funcional generatriz de las funciones de n-puntos conectadas,
W1J] (a partir de la cual se obtiene I'[¢, g"*] como su transformada de Legendre), se define de

la siguiente manera,

6iVVin—out[J] = <Out, 0|07 1n>J = Zinfout[t]]a (214)

donde |0,in) y |0,out) son los estados de vacio asintdticos a tiempos ¢ = —oo0 y t = +00
respectivamente. Como hemos discutido previamente, cuando el espacio-tiempo es curvo en
general no existe un estado de vacio privilegiado en ausencia de un conjunto de simetrias
de la métrica. En particular, para espacio-tiempos no estaticos, como el caso cosmoldgico,
|0,in) # |0, out). Por lo tanto con esta definicién lo que se obtiene no es un auténtico valor de
expectacion, sino un elemento de matriz IN-OUT

2 0l out[0, 9" (out, 0|7},,|0, in)

= — . 2.1
V'] ogH (out, 00, in) (2.15)

Si bien éste no es un valor de expectacion, resulta suficiente para llevar adelante el proceso de

renormalizacién. Por lo tanto primero discutiremos dicho proceso, y dejaremos para la secciéon
(2.5) al final del capitulo la descripciéon de un formalismo alternativo que permite obtener

verdaderos valores de expectacion.

2.3. Funciones de Green y vacio adiabatico

Las divergencias de los valores de expectacién en el estado de vacio de las magnitudes
cuadréticas en el campo ¢(z) pueden estudiarse en el limite de coincidencia 2/ — z de la
funcién de dos puntos del campo (p(x)@(z')), la cual puede calcularse a partir de la funcién de
Green. La ecuacién para la funcién de Green G(x,z’) en d dimensiones del campo ¢ se obtiene

a partir de la ecuacién (2.3) y se escribe

5z — )

[0+ m*+ER] G(z,2') = —i =

(2.16)



—15—

Las distintas funciones de Green se obtienen imponiendo diversas condiciones de contorno a las
soluciones de (2.16), y cada una da una combinacién distinta de valores de expectacién de dos

campos en el estado de vacio. Algunas son

G (z,2") = (o(x)o(a)), (2.17)
G(z,2') = (p(z')d(2)), (2.18)

conocidas como las funciones de Wightman, mientras el producto ordenado temporalmente

Gr(z,2') = (T(¢(z)d(z"))), (2.19)

es el propagador de Feynman, y el ordenado anti-temporalmente

Gp(z,2') = (T(¢(x)o(x))), (2.20)

el de Dyson. Otra funcion 1til es el valor de expectacién del anticonmutador

Gi(z,7') = {o(z), o()}), (2.21)

llamada funcién elemental de Hadamard, la cual no es estrictamente una funcion de Green, ya

que satisface la ecuacién de movimiento (2.3) en vez de la ecuacién (2.16).

Los valores de expectacion en el estado de vacio del producto de dos operadores de campo
libre, necesarios para construccién de (7)) y otras magnitudes de interés, pueden calcularse
a partir de los diversos propagadores. En particular nos sera ttil (¢*(z)), el cual se obtiene

tomando el siguiente limite de coincidencia x’ — x

1

($*(z)) = 2G1(:c,:z:) = —[G4] = Re[GF]. (2.22)

N | —

Para que las divergencias en (7),,) puedan eliminarse, es necesario que las mismas sean
proporcionales a magnitudes geométricas independientemente del estado cuantico, y por lo
tanto puedan absorberse en la renormalizacion de los parametros del miembro derecho de las
EES (2.1), A y Gy, y otros términos adicionales que resultan ser necesarios. Con este criterio
en mente, el vacio fisico debe pertenecer al conjunto de estados que den lugar a ese tipo de

divergencias. Caso contrario, la teoria corre riesgo de ser no renormalizable.

Una forma de elegir dicho estado de vacio consiste en buscar el estado que maés se parezca
al vacio del espacio-tiempo de Minkowski. Para ello es natural pensar en una expansién en

derivadas de la métrica, ya que a medida que el espacio-tiempo se parece mas y mas al de
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Minkowski, la métrica se suaviza y sus derivadas se hacen mas y més pequenas. Una expansion
de este tipo se expresa naturalmente en términos de magnitudes geométricas, como el tensor
de curvatura, las cuales sirven de pardmetro para medir la distancia al espacio-tiempo plano.

Esta es conocida como la expansion adiabatica.

Al expandir adiabaticamente la ecuacién del campo (2.3) a orden j, es decir con hasta j
derivadas de la métrica, se obtienen soluciones u?D(j )(:c) aproximadas a ese orden. En general

podemos escribir una solucién exacta ug(z) como
AD(j AD(j AD(j AD(j)*
un(w) = ") "V (@) + 5O @) P (), (2.23)

donde oz?D(j )(x) y B,fD(j )(x) deben ser uniformes al menos hasta orden adiabético j, pues

uﬁD(j ) (x)y U?D(j )*(x) son soluciones a ese orden. Suponiendo que en particular elegimos

o)

1+ O(AD(j + 1)), (2.24)

PO = 04+ O(AD(j + 1)),

para algin punto fijo 2/, entonces valdra para todo punto z. Las prescripciones (2.23) y (2.24) no
definen univocamente a los modos exactos uy(x), pues la eleccién del punto x’ donde igualarlos

a las soluciones adiabaticas es arbitrario.

El vacio adiabético |04P)) se construye a partir de las soluciones aproximadas u?D(j )(a:), y
coincidira a orden adiabético j con el vacio exacto |0) correspondiente a las soluciones exactas
ug(x). Los modos exactos son los que se cuantizan, mientras que el vacio adiabético de orden j,
siendo tan buen candidato como cualquier otro a estado de vacio, sélo es utilizado como modelo
matematico para seleccionar un vacio exacto. Los vacios fisicos aceptables seran aquellos que

coinciden con el vacio adiabatico al menos a orden cuatro.

De esta manera se resuelve en parte la ambigiiedad en la determinacién del vacio [11],
aunque por supuesto, no hay un tnico vacio de orden adiabatico j, pues el procedimiento de
igualar las soluciones aproximadas con las exactas (2.24) podria realizarse en cualquier punto
del espacio-tiempo 2’. Diferentes elecciones de x’ conducen a distintos modos exactos, pero éstos
diferiran sélo a orden adiabatico superior a j. Por lo tanto todos los vacios correspondientes
seran iguales hasta orden adiabatico j, mostrando un comportamiento similar para k£ grandes,
pero diferiendo en los modos de baja energia. En particular, los estados de vacio asintéticos

introducidos en (2.14) corresponden a elecciones particulares de z’.

La expansién adiabatica es buena para algunas aplicaciones, como ser la renormalizacién de

las divergencias ultravioletas, donde s6lo importa el comportamiento a distancias pequenas (k
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grandes). En contraste, los modos de baja frecuencia exploran todo el espacio y son sensibles a

la geometria, y por lo tanto a la construccion adiabatica en particular.

2.3.1. Expansion Adiabatica

Para estudiar las divergencias en los valores de expectaciéon de magnitudes cuadraticas en
el campo, el objeto basico de interés es la funcién de Green Gg(x,z’) en su limite z’ — =.
Dado que sélo el comportamiento a distancias pequenas es importante en ese caso, alcanza con

calcularlo como un valor de expectacion en el vacio adiabético de orden j
G (@, ') = (O*POT(g(a) (o)) |0*PD), (2.25)

lo que da la expansién adiabética de orden j del propagador exacto (2.19). Naturalmente las
propiedades globales de ambos seran diferentes, pero su comportamiento local coincide y no
depende del estado cuantico. Esta caracteristica es importante para obtener las divergencias

geométricas.

Existen varios métodos para calcular la expansion adiabatica del propagador de Feynman,
entre los que se destacan la técnica de tiempo propio [45] y la representacion del espacio local de
momentos [46]. Aqui nos limitaremos a considerar la representacién mas usada para la expansién

adiabatica del propagador de Feynman, conocida como la expansién de Schwinger-DeWitt,
Az(z,2') [ dds " joi :
GF(.CE, .T/) _ 2 (xvdx ) / 1 Sd e[—zm%—i—a(m,x )/2is] Z aj(x, .CE/) (iS)], (226)
(4m)z  Jo (is)2 =0
donde 20(z,z") es el cuadrado de la distancia geodésica entre x y z’, mientras que
Ab(z,a") = — 3OO0, )]
g(x)g(z')

es el determinante de Van Vleck. Los coeficientes del desarrollo a;(z, 2") son puramente geométri-

(2.27)

cos de orden adiabdtico 2j y satisfacen ciertas relaciones de recurrencia [11, 47]. Los primeros
tres términos, escritos en la coordenadas normales de Riemann y* con origen en el punto z’

hasta orden adiabatico cuatro son

ap(z,2") =1, (2.28a)
1 1 /1 1
al(xu Il) = (6 - f) R— 5 (6 - é) vaRy - gaaﬁ Y yﬂ7 (228b)
1/1 ? 1
as(z,2') = 5 (6 - {) R? + ga)‘/\, (2.28c¢)
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donde
11 1 1 \ 1,
aa@ = 9 (6 f) VaV[anL 120VQV5R 40V,\v Rag 30Ra R>\a
1 KA 1 AUK
+——R", "5 Rox + R, Rup- (2.29)

60 ¢ 60

Las magnitudes geométricas estan evaluadas en /. En esta representacion, las divergencias del
limite 2’ — x se encuentran en el limite inferior de la integral en s, para los primeros dos
términos. En regularizacén dimensional, es posible realizar la integral en s y obtener el limite
de coincidencia [.. .| del propagador. En términos de la funcién elemental de Hadamard G, se
lee [47]

[G1] - # <7;L_22>6/2 Z [aj](mﬁyn)l_j r (j —1- g)

Jj=0

ﬁ [mQ + (g - %) R} +2Tr(m* &, R, 1), (2.30)

donde ¢ = d — 4, u es una escala de masa arbitraria introducida para mantener las unida-
des habituales y I'(x) es la funcion Gamma de Euler. Las divergencias asociadas al limite de
coincidencia ahora corresponden a los polos en € para los dos primeros ordenes adiabaticos.
En la segunda linea aislamos dichos polos y definimos la parte finita Tw, la cual contiene los

remanentes finitos de los ordenes uno y dos, asi como las contribuciones del resto de la serie,

2
Te(m®, &r, B i) = 1617r2 { [m2 i (5 - é) R] " (%) " <§ B é) i

—2F(m, {R})} (2.31)

donde redefinimos j1 — fi para absorber unos términos constantes, g — 1 + log(R/4mu?) =
log(R/i%). En esta expresion, los ordenes adiabdticos mayores a dos estan contenidos en la
funcién F'(m? {R}), la cual es independiente de € y fi. La dependencia en m? incluye también a
sus derivadas, mientras que aquella en { R} debe tomarse como una dependencia en invariantes

de curvatura construidos a partir de contracciones del tensor de Riemann y sus derivadas. Esta
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funcién satisface las siguientes propiedades

F(m? {R}) =0, (2.32a)
Rpuvpe=0
dF(m?, {R})
— 2.32b
dF(m?, {R}) _
— - = 0. (2.32c)

La expansion adiabética nos permite aislar el comportamiento del propagador proveniente
de los modos ultravioletas, donde el principio de equivalencia nos asegura que éste sera indis-
tinguible al del espacio de Minkowski, para poder llevar a cabo el proceso de renormalizacién
de manera general. Por otro lado, la funcién F(m? {R}) contiene la informacién que proviene
de los modos de longitud de onda mas grandes, que son sensibles a los efectos globales de la

curvatura.

2.4. Renormalizacién del (7},)

Alternativamente a trabajar con la accién efectiva I'[¢, g*¥], puede trabajarse directamente
con el valor de expectacion del tensor de energia-momento. Esto es particularmente 1til al con-
siderar ejemplos concretos, donde es més sencillo calcular (7},,), que primero obtener I'[¢, g*]
y luego diferenciarla funcionalmente. Si consideramos un campo escalar libre con accién (2.2),

la expresién clasica de T),,(z) es

Tm,(gb) = (1- 2§)¢,u¢,u — 280, P + 289,910 + §¢2GW

libre

2
+ (2§ - %) guugb)\qs,)\ - %guu¢27 (233)

donde G, = R, — %Rguy es el tensor de Einstein. Notar que esta expresion es cuadratica en
el campo ¢(r) y sus derivadas. Para calcular (T},,) puede escribirse ¢ = ¢ + ¢ y tomarse valor

de expectacion. El resultado toma la siguiente forma [48]

(Tw) = Tw(9)|  +(T},), (2.34)

libre

donde [47, 49]

(Tf,) = _%[Gl;/w] + @[GILW + (5 — i) %D[Gﬂ + gRHV@. (2.35)
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En esta ultima expresion, las derivadas respecto de z y 2’ de la funcién de Hadamard de
las fluctuaciones ¢, es decir Gy(z,2") = ({p(x),p(2')}), se toman previamente al limite de
coincidencia ' — x. Este limite trae asociadas divergencias que deben ser regularizadas, para
lo cual se utiliza el desarrollo de Schwinger-DeWitt (2.26) y se obtiene una expansién adiabética
de (1),,). Esto evidencia que los términos de orden adiabdtico menor o igual que cuatro son
divergentes, y que estas divergencias son proporcionales a cantidades de origen geométrico.

Entonces, separando

<T,u1/> = <T;U/>ren + <Tm/>ad4> (236)

las divergencias pueden ser absorbidas en la renormalizacién de las constantes del miembro
derecho de la ecuacion para la métrica, lo cual es posible gracias al caracter geométrico de las

mismas.

De este analisis resulta que para absorber todas las divergencias, es necesario incluir términos

nuevos cuadréticos en el tensor de curvatura en la accién gravitacional (2.10),

1
Sg = 5 / d4x\/ —g {H];l(R — 2AB) — OélBRQ — QQBRMVRMU — OégBRw,pUR'quo} s (237)
donde R,,,, es el tensor de curvatura de Riemann, R, = RZW, y kg = 87rGﬁ, Ap, a;p
(1 = 1,2, 3) son los parametros desnudos que deberan ser elegidos apropiadamente para cancelar

las divergencias de (7},,). Con la inclusién de estos términos, las EES (originalmente (2.1))

resultan

/ﬁglGW + AB/@lgw/ + 1B (1)H,“, + a9p (Z)HW +aosp Hy = (Thw), (2.38)

donde los nuevos tensores tienen las siguientes expresiones
1
Y, = 2R, —2¢,0R+ §gWR2 —2R R, (2.39)
1 1 o N
@H, = R, — w0 = DR + S g R PRap — 2R Ropyu, (2.40)

1
H,, = §9uuRa676Raﬁv6 — 2R, R, pr — 40R,, + 2R,

+4R, o R*, + AR Ry 1, (2.41)

Vale mencionar que en d = 4 dimensiones, el teorema generalizado de Gauss-Bonnet asegura
que estos tensores no son todos independientes, y en consecuencia se tiene que H,, = ~-H uv
40H

pv-
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2.5. Formalismo de Camino Temporal Cerrado o IN-IN

Como hemos discutido en la seccién (2.2), en la teorfa de campos usual se define una accién
efectiva I'iy_oui[@] que depende de una cantidad ¢ que, en el espacio plano, es el valor medio del
campo. En cambio, cuando el espacio-tiempo es curvo la cantidad ¢ pasa a ser un elemento de
matriz entre los vacios |0,in) y |0, out), y entonces esta accion efectiva no es real ni causal y no
sirve para estudiar problemas de valores iniciales. Este también es problema en espacio plano
en situaciones fuera del equilibrio. De todas formas, a los fines de estudiar la renormalizabilidad

de la teoria, incluso en espacios curvos, el formalismo usual IN-OUT, resulta suficiente.

Sin embargo, si uno esta interesado en estudiar problemas de valores iniciales (c6mo evolu-
cionan el valor medio del campo o la métrica) hay que generalizar la nocién de accién efectiva,
y definir lo que se llama la accion efectiva de camino temporal cerrado (o CTP por sus siglas en
inglés), también conocido como formalismo IN-IN. Este es un objeto bastante mas complicado,
que permite calcular valores de expectacién en el estado |0, in). Para una presentacién detallada
ver [50, 51].

En la formulacién habitual IN-OUT, se define la funcional generatriz
Zin—ou]J] = (in, 0]0, out) ; = eWin—oulJ], (2.42)

como la amplitud de persistencia del vacio en la evolucién desde t — —oo hasta t — 400 en
presencia de una fuente .J. Luego la accién efectiva estandar I'[¢] se obtiene como la trasformada
de Legendre de Wi, _ou[J]. En cambio, en CTP se considera la persistencia del vacio en una
evolucién en dos tramos, primero desde t — —oo hasta t — +o00 en presencia de una fuente

Jy, v luego de regreso desde ¢t — +o00 hasta t — —oo en presencia de J_,
ZorplJy, J-] = (in,0|U;, (—o0, +00)U;_(+00, —00)|0, in) = eWerrl/+J-] (2.43)

donde U, (t,t") es el operador evolucién en presencia de la fuente J. Esta funcional generatriz

puede representarse como una doble integral de camino mediante la introducciéon del conjunto
de campos {64, 6},

Zonslds 1= [ DouDoexp i (6.1 = o1+ [a'ey=glro, - 1o)]. 2

con la condicién de contorno ¢ (¢, Z)|; 100 = ¢ (¢, T) |1 100- Luego, tomando derivadas funcio-
nales se pueden obtener valores de expectacién, por ejemplo

. o SWerplJy, J ] SWerp[Jy, J_]
t = ———

2.45
Jp=J_=0 (245)
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en lugar de obtener elementos de matriz entre estados distintos como en la formulaciéon IN-
OUT. Una forma alternativa de implementar este formalismo es utilizando un solo campo
pero extendiendo el dominio temporal sobre el cual se lo define, a la curva temporal cerrada
C =CLUC_ [52]. Aqui, la rama C recorre el tiempo hacia adelante, mientras que C_ lo recorre

en sentido inverso. Luego, las integraciones temporales se extienden sobre todo el contorno

+o0 +oo
Ja= [ a- [ a (2.16)
C —0o0 C+ —oo0 C—

donde el signo menos delante del segundo término se encarga de implementar los signos ne-
gativos delante de la accién S[¢_] y el término de la fuente J_ en (2.44). Esta representacién
resulta mas comoda en manipulaciones formales de las integrales de camino, como las que se

describiran en el capitulo 4.

De ahora en mas, el simbolo (...) indica un valor de expectacién IN-IN. A partir de los

campos ¢, v ¢_ podemos construir los propagadores ordenados temporalmente en C,

(Teds (0)64(2)) = Gralr,a’) = Gl o), (2.47a)
(Teds (0)6-(2)) = Gi(v.') = G2, (2.47b)
(Teb(2)p4(2)) = Gos(a,') = Ga(a,a), (2.47¢)
(Ted_(2)p—(2')) = G__(2,2') = Gpla,2), (2.47d)

donde identificamos los distintos propagadores (2.19), (2.18), (2.17) y (2.20) tiendo en cuenta
que segun el ordenamiento en C, cualquier tiempo sobre la rama — es posterior a cualquier

tiempo en la rama +, y el recorrido en la rama — va de tiempos mayores a tiempos menores.

En ciertos casos puede ser de utilidad pasar de la base de Wightman, donde tenemos los

campos ¢4 v ¢_, a la llamada base de Keldysh con los campos ¢. y ¢a dados por el siguiente

. 1 (1 1 L (py + o
o) V2\1 —1) \¢- 75 (0 — o)
Las funciones de correlacién entre estos nuevos campos son

(Dc(2)Pe(2))  (e(x)Pa(2')) L (1 1) (Grz,2) G(z,2)
1 —1) \Gs(x,2") Gp(z,a)

) ( Gtz _Z-GR@,x')) (2.49)

cambio de base

Sl
)
/N
e
[
—_
~__—

—iGa(x, 2) 0
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donde para llegar a la segunda igualdad hemos utilizado la relacion Gr + Gp = G- + G+, e
indentificado los propagadores causales retardado y avanzado, respectivamente,
Gr(x,2') — Go(x,2') = —iGg(x,2), (2.50a)
Gr(z,2') — Ga(x,2") = —iGa(x,2') = —iGr(2, z). (2.50b)
Una ventaja de utilizar esta base, es que la autocorrelacion del campo ¢ es se anula por
construccion, {(pada) = 0.

La presencia de los propagadores causales anuncia lo que serda una propiedad general del
formalismo CTP: las ecuaciones de movimiento que se obtienen a partir de la accion efectiva

CTP son reales y causales.
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Capitulo 3

Efectos infrarrojos en De Sitter

Como ya hemos puntualizado, el espacio-tiempo de De Sitter es de interés tanto en la
cosmologia, por ser una buena aproximacién a la etapa inflacionaria del universo temprano,
como para el estudio de la teoria de campos en espacios curvos en general, por su gran nimero
de simetrias que permite avanzar en los calculos analiticos mas alld que en la mayoria de los
casos. En efecto, su alto grado de simetria permite definir de forma univoca un vacio invariante,
lo cual no es posible en general. Sin embargo, el tratamiento de campos cuanticos en esta
geometria se encuentra con problemas cuando éstos son livianos o no masivos. Las funciones de
correlacion de un campo sin masa crecen indefinidamente con el tiempo césmico, lo cual por
un lado pone en duda el tratamiento semiclasico dado que los efectos de backreaction pueden
volverse importantes, mientras que por otro lado cuando el campo tiene una auto-interaccion,
se observa que dichos efectos empeoran orden a orden en la expansion en loops de la teoria de

perturbaciones.

Existe consenso en que los efectos infrarrojos para campos no masivos tienen su origen en
el hecho de que no existe un vacio invariante de De Sitter cuando la masa es estrictamente
cero. Para campos masivos, por otra parte, existe un vacio invariante conocido como el vacio de
Bunch-Davies. La presencia de una masa en este caso regula los efectos infrarrojos, pero sigue
siendo un problema cuando la misma es suficientemente pequena en relacion a la curvatura,

medida mediante la constante de Hubble H, y a la auto-interaccién.

El objetivo de este capitulo es presentar este problema, el cual no es sino el problema
central que nos interesa en esta tesis, para luego discutir en los capitulos posteriores las posi-
bles soluciones y los métodos requeridos. Comenzaremos discutiendo sobre las propiedades del

espacio-tiempo De Sitter y el propagador libre. Es en éste donde el origen del problema se hace

25
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evidente. Luego calcularemos algunas funciones de correlacién para establecer como la teoria

de perturbaciones empeora la situacién.

3.1. Simetrias del espacio-tiempo de De Sitter

El espacio-tiempo de De Sitter se caracteriza por tener tantas simetrias como el de Min-
kowski, es decir, 10 vectores de Killing. El otro caso es el del espacio-tiempo de anti-De Sitter.
Juntos son los tres casos de curvatura escalar R constante, positiva, cero y negativa respectiva-
mente, y se los conoce como geometrias maximamente simétricas. La métrica de De Sitter en

el parche cosmolégico o de Poincaré toma la siguiente forma
ds® = —dt* + *'di?, (3.1)

donde t es el tiempo césmico y 7' las coordenadas coméviles. El factor de escala a(t) = e
es exactamente exponencial, y H es constante, mientras que las hipersuperficies espaciales son
planas. Estas coordenadas sélo cubren la mitad que se expande del espacio-tiempo de De Sitter.
Esta métrica es conforme a la métrica plana, lo cual se hace explicito cambiando la coordenada

temporal por el llamado tiempo conforme n = [ dt/a(t). Asi, la métrica se escribe

ds®

= —dn® + d7*] (3.2)
e
conn = —1/Ha(t). Si —oo < t < 0o, entonces —oo < 1 < 0. Una representacién esquemética

se da en la Figura 3.1a.

Otro conjunto de coordenadas interesantes son las denominadas coordenadas globales. Estas,

como su nombre lo indica, cubren todo el espacio-tiempo de De Sitter,
ds® = —dt* + H ? cosh(Ht)?d$)3, (3.3)

donde d©? representa la métrica de una 3-esfera unitaria e indica el hecho que, en estas coor-
denadas, las hipersuperficies espaciales son cerradas (K = 1 en la ec. (1.1)) y por lo tanto,

compactas. Estas coordenadas son representadas en la Figura 3.1b.

Las transformaciones de simetria de este espacio-tiempo estan descriptas por el grupo de
De Sitter, el cual tiene la misma cantidad de generadores que el grupo de Poincaré, quien
describe las simetrias del espacio-plano. La invariancia ante este grupo de simetria, de ahora
en mas invariancia de De Sitter, juega un rol muy importante en el estudio de los campos

cuanticos en esta geometria. En efecto, a diferencia de lo que ocurre en un espacio-tiempo
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AN

=y = const

> t= const

y = const

(a) Coordenadas del parche cosmolégico (b) Coordenadas globales

Figura 3.1: Representacion de los distintos sistemas de coordenadas utilizados en el espacio-
tiempo de De Sitter [7], el cual estd representado como un hiperboloide embebido en un espacio-

tiempo plano de 5 dimensiones.

curvo arbitrario donde no existe una definicién univoca de vacio, en De Sitter es posible definir
un vacio invariante [13], conocido como el vacio de Bunch-Davies. Algunas técnicas buscan
especificamente explotar estas simetrias, como ser la representaciéon de momentos fisicos [53].
Esperamos entonces que las ecuaciones del campo, los propagadores y las EES escritas en esta

geometria sean invariantes, y por lo tanto existan soluciones que respeten esta simetria.

3.2. Divergencias infrarrojas

Los efectos infrarrojos se manifiestan en una primera instancia al estudiar los propagadores
libres en De Sitter no masivos a tiempos largos, o cuando la masa del campo es mucho menor
que la curvatura m? < H2. Sin embargo, se puede argumentar que los campos libres son de poco
interés practico ya que los campos que utilizamos para la descripcién de fendémenos naturales
son interactuantes. Para incluir interacciones, el modelo prototipico de estudio es el de uno o
varios (V) campos escalares con auto-interaccién cudrtica. En el caso de que sean méas de uno,

se considera en particular un modelo con simetria interna O(N). La accién en general en d
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dimensiones puede escribirse

S =— / dx/—g nga (-O+m*+£ER) ¢o + 8%(¢a¢a)2 , (3.4)

donde A es la constante de acoplamiento y ¢, es un elemento de la representacion adjunta del
grupo O(N), con a = 1,.., N, y estd implicita la suma sobre indices repetidos. En el caso de
estar considerando N = 1, tipicamente se redefine por convencion el término de interaccion de

la siguiente manera,

Sim(N =1) = —/ddx\/—_g%qﬁ‘*. (3.5)

El tratamiento perturbativo de las interacciones sélo parece agravar el problema, ya que las
divergencias infrarrojas se vuelven peores orden a orden. En esta secciéon primero discutiremos
el propagador libre, para luego realizar un contaje de potencias para cierto tipo de diagramas

de Feynman para mostrar la invalidez del tratamiento perturbativo.

3.2.1. Campo libre masivo

En general los propagadores son funciones de dos puntos, x y 2. Sin embargo, dadas las
simetrias del espacio-tiempo de De Sitter, los propagadores G(z, x’) sélo pueden depender de
una distancia invariante y(x, z’). Si consideramos la distancia entre dos puntos z y 2’ en coor-
denandas conformes,

—

Az® = —(n—n') + (T —2')", (3.6)

la distancia invariante se define como

y(z,2') = (3.7)

n'

Luego, en términos de y(x,z’) la ecuacién de Klein-Gordon (2.16) toma la siguiente forma

a(z) H? [4@/ (1 - %) dd—; —2d (1 - %) dily i dg; DH 2} Gly(z,2")) = —id%(Ax).
(3.8)

Las soluciones de esta ecuacion son bien conocidas y pueden escribirse en términos de la funcién

hipergeométrica o F; [11]

H? T (G +v) T (G —va) d—1 d—1 d. vy
o Fy P )

+ v,
(4mji2) 77 T (%) 2 T

G(y(z,a")) =
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donde v3 = @ - E—z —&d(d—1) y R =d(d—1)H?. Las las diferentes condiciones de contorno

asociadas a las distintos propagadores CTP (2.47) se obtienen respectivamente a partir de las

siguientes prescripciones [37]

Az (z,2) = —(n—1|—ie) +|&— 2% (3.10a)
Azt (z,2') = —(n—1 +ie) +|7 — 2| (3.10b)
Azt (z,2') = —(n—n —ie)’ + |2 — 2, (3.10¢)
Azt (z,a') = —(In—1|+ie)’ + |7 — 2|2 (3.10d)
Consideremos ahora la varianza del campo,
($*) = [C;—l] (3.11)

Este limite de coincidencia puede evaluarse facilmente a partir de (3.9) en y = 0 (z = 2’). Por

un lado, la invariancia de De Sitter asegura que el resultado no dependa del punto x, mientras

que mantener d # 4 permite regular la divergencia ultravioleta usual asociada a este limite,
2 (VT ) T -

(4p2)dl 2) T(34+va) T (3—va)

donde hemos utilizado propiedades de la funcion F; para evaluar la expresién en términos

Gy] = (3.12)

de funciones Gamma. A partir de comparar esta expresion, expandiéndola en € = d — 4 al
tiempo que se mantiene R fijo, con la expansién adiabdtica de la ecuacién (2.30) y (2.31), se
despeja la funcién Fyg(m?, R) para el espacio-tiempo de De Sitter. Dejamos el detalle de dicha

comparacion para el Apéndice A, cuyo resultado es

Fas(m?, ) = R (/) = ~2 { (S +e=3) [ () +o i+ 9)

_ (5_%> _%} (3.13)

2
g(’%)z¢++w_=¢(g+u4)+w(§—u4>, (3.14)

donde ¢ (x) = I'(2)/T'(z) es la funcién DiGamma y vy = 1/9/4 — M2/H2. A partir de ahora

podemos y usar intercambiablemente R o H mediante su relacién para d = 4, R = 12H>.

con

También hemos definido
M? =m? +€R, (3.15)
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dado que en De Sitter se tiene R = cte y entonces el acomplamiento entre el campo y la
curvatura actia efectivamente como una masa. La funcion Fjg tiene todas las propiedades

esperadas, es decir, es independiente de € y fi, y satisface los limites apropiados (2.32).

En el limite infrarrojo M? < H? la funcién g tiene la siguiente dependencia en la masa,

2 2 2
g(ﬁ) 3H? 11 49 M 3.16)

R)S M T T s

Esto muestra la presencia de una divergencia asociada al limite M? — 0, es decir una diver-
gencia infrarroja en (p?). A diferencia de la divergencia ultravioleta, la divergencia infrarroja
no puede ser absorbida en el proceso de renormalizacion, y por lo tanto tiene implicancias fisi-
cas. En efecto, ésta indica una amplificacion de las fluctuaciones cuanticas cuando el campo es

liviano. Al orden més bajo infrarrojo, la varianza del campo renormalizada resulta

3H?

(9% 1R ~ SN (3.17)

Es claro que a partir de este resultado no es posible definir el limite no masivo.

3.2.2. Campo libre no masivo

Para llegar al resultado (3.17) se hizo una suposicién fuerte que deja de ser valida en el
limite M — 0, la existencia de un vacio invariante de De Sitter [13, 14]. En efecto, es posible
definir un propagador no masivo para un campo libre, pero éste no sera constante en el limite de
coincidencia, sino que por el contrario dependerd del tiempo. En este caso resulta imprescindible

recurrir al formalismo IN-IN.

Consideremos los propagadores CTP en la base de Keldysh (2.49), Gy(z,2') y Ggr(z,2'),

usando una representacion en el espacio de momento comévil k y el tiempo conforme

= = 1 d’k ik-(Z) -

(Pe(n1, T1)Pe(n2, T2)) = §/W€k( =GO (k1) (3.18)
- - d’k ik-(F1—72) ((0)

<¢c(771,1‘1)¢A(7727$2)> = We GR (k?77717772)7 (3-19)

donde la invariancia ante traslaciones espaciales asegura una dependencia sélo en k = |k, y el

supraindice (0) en los propagadores es indicativo de que son no masivos.

Resolviendo la ecuacién de Klein-Gordon sin masa (sin asumir que la solucién sélo depende
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de y), se encuentra la siguiente forma para los propagadores [15]

2

GO (k,m,me) = % [(1 4 K*mimz) cos [k(m — n2)] + k(ny — m2) sin [k(ny — m2)]]

2

% (1+ O[(km)?]) (3.20)

12

donde en la segunda linea aproximamos la expresién para modos de longitud de onda muy
grande comparada con el horizonte de Hubble, k/aH = —kn < 1, o también denominados
modos superhorizonte. Notar que esta condicién es equivalente a estudiar tiempos largos n —
0~. De manera similar para el propagador retardado tenemos

2

G (kymi,m) = O(m — 772)% [(1+ KPnuma) sin [k(m — n2)] = k(. — 1) cos [k(m — n2)]]
~ O —m) 2 o~ ) (14 Ol(kn) (3.21)

Es importante notar la diferencia de comportamiento entre ambos propagadores para modos
infrarrojos. El primero escalea como k=3 mientras que el retardado como k°, por lo cual los
efectos infrarrojos estaran dominados por el primero. En efecto, si ahora volvemos al espacio
de posiciones y consideramos la varianza del campo evaluando (3.18) en puntos espaciales y

tiempos coincidentes, &'y = T y 3 =19 = 1,

- d3p H2 . H2 AUV
o = [ e = o () (3.22)

donde Ayy es un cutoff ultravioleta y A uno infrarrojo. Ambos son en momento fisico p =

—kn. De aqui podemos ver que la varianza crece con el tiempo, en efecto, si consideramos la

dependencia a tiempos largos n — 07, la misma tiene una contribucién divergente

H? 1 H? H3t
2
~ —log| —— ) = —log(a(t)) = — 3.23
(0 = 4510w () = g owlalt) = - (3.23)
donde en las ultimas dos igualdades volvimos al tiempo cosmico.

Por completitud, podemos recuperar el resultado para el campo masivo en este formalismo.
En este caso los propagadores ahora toman una forma diferente. Directamente en el limite de

modos superhorizonte,

H2 .
GEM)(kam»?h) = B (K*mma)™ (3.24)
(M) H?> 4 5
Gy (kymme) = 00m —n2)— (=0 —n°ny~°) , (3.25)

3
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donde ¢y = M?/3H?. Volviendo a calcular la varianza se obtiene que,

) dp H —2¢g 3H2 M 2¢eg
(¢7) ~ /p(p) ~2M2(H> : (3.26)

donde evaluamos A;p — 0. Obviamente la divergencia ultravioleta asociada con Ayy — oo

debe ser compensada con un contratérmino de manera usual. Este resultado muestra como la

presencia de una masa regula la divergencia infrarroja.

3.2.3. Campo interactuante y correcciones perturbativas

Empecemos por considerar la accién (3.4) para N = 1 (es decir, con la normalizacién de A

dada por (3.5)) en el formalismo IN-IN. La accién de interaccién en términos de los campos ¢,

y o
Sint(¢+) — Sint(¢-) = /ddx\/_ (¢f — o) = /dda:\/_ (20a + 0cdd), (3.27)

donde en la segunda igualdad pasamos a la base de Keldysh (2.48). A estos vértices hay que

complementarlos con la siguiente regla de Feynman

2m)36° (p), (3.28)

H4
con p la suma de los momentos entrantes al vértice. Consideremos como ejemplo las correcciones

de loop a la varianza del campo provenientes del conjunto particular de diagramas de Feynman

formados por una cadena de tadpoles, como se muestra en la Figura 3.2. Existen por supuesto

OOQ

M

Figura 3.2: Clase de diagramas con la contribucién mas infrarroja a (L)Gl(k, n,m). Las lineas

solidas corresponden al campo ¢., mientras que aquellas intermitentes al campo ¢a

otras contribuciones a un determinado niimero de loops L > 1, pero esta contribucién es la que
exhibe el comportamiento infrarrojo mas divergente. La contribucién a 1-loop toma la siguiente

forma,

0
d / / /
(k) = <N [ GGk Gl mAGH), (3.29)
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donde A(7’) es un factor de loop dado por la siguiente expresién,
1 [ d 3H? (H\® [ 2o
Al = = ar ! ) ~ 4 I ‘

con p alguna escala no infrarroja. Se puede ver entonces que la correccion a 1-loop, en el limite

infrarrojo, toma la forma
NH? 2¢0
DGk, 1,m) = 5o Galkonn) (4) log (< 3.31
1( 777777> 2(271_)2/\/[2 1( 77]777) H Og( 77)7 ( )
donde lo importante es notar que es proporcional a G4(k,n,n), con un factor que va como
AH?/M?2. Si ahora considerasemos la contribucién equivalente a L-loops, veriamos que esa

misma factorizacion se da a cada loop. Por lo tanto, tendriamos un resultado del tipo

() AH? 20 -
konn) = Gy(k,n, —(—) log (—kn)| . 32
Gi(k,n,n) = G1(k,n,m) [Q(QW)QMQ ) losl n)] (3.32)
Es decir, el factor de esta correccion a L-loops va como
AH? \*
(m) ’ (3:33)

y por lo tanto las divergencias infrarrojas empeoran loop a loop. Es mas, para valores de masa
M? < XH? la teorfa de perturbaciones directamente no es valida, siendo cada correccién de

loop mas grande que la anterior.

Este analisis muestra que el tratamiento perturbativo resulta insuficiente para el estudio
de los efectos cuanticos en De Sitter en el limite infrarrojo. Por lo tanto, es necesario recurrir
a métodos que permitan capturar, aunque sea en parte, los efectos no perturbativos. Mas
especificamente, al realizar una resumacién (ver por ejemplo [15], donde se logra apelando a
técnicas del grupo de renormalizaciéon dindmico) se obtiene una contribucién a la auto-energia
que cambia la masa efectiva que aparece en la ecuacién del propagador. Este efecto se conoce
como ”generacion dinamica de masa®, y tiene como consecuencia que el propagador no exhiba

divergencias infrarrojas, tal como sucede con campos masivos.

En el proximo capitulo y los dos subsiguientes, consideraremos el formalismo de la accién
efectiva 2PI [23], una reformulacién muy difundida de la teorfa de campos con varias aplica-
ciones en general. Posteriormente, en los capitulos 7 y 8 discutiremos otro tipo de métodos
no perturbativos que surgen de las propiedades particulares del espacio-tiempo de De Sitter,
y que son especialmente aptos para investigar los efectos infrarrojos. Estos son, el formalismo
de inflacién estocéstica [17] y la teorfa de campos en el espacio de De Sitter euclideo [39, 40].
Por supuesto, existen otros métodos no perturbativos como ser el grupo de renormalizacién

dindmico [54], que no discutiremos en esta tesis.
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Capitulo 4

Métodos no perturbativos en teoria
cuantica de campos en espacios curvos:
la aproximacion de Hartree y la

expansién 1/N

En este capitulo nos ocuparemos del formalismo de la accién efectiva 2PI, y en particular
consideraremos la aproximacion de Hartree. Esta es una truncacién local de la accién efectiva
2PI en la cual la masa del propagador se obtiene como una soluciéon autoconsistente de la ecua-
cién resumada de la masa dinamica, y es positiva. Se trata, sin embargo, de una truncacion no
sistematica y por lo tanto debe implemetarse un procedimiento de renormalizacién consistente

para recuperar ciertas propiedades de la teoria exacta [29].

Primero generalizaremos la renormalizacién consistente a espacios curvos generales, pres-
tando particular atencion a la eleccion del punto de renormalizacién. Luego, definiremos los
parametros renormalizados a partir del potencial efectivo, para finalmente obtener la ecuacién

para la masa dinamica en términos de los mismos.

Los resultados presentados en este capitulo a partir de la subseccion 4.2.1 en adelante, estan
basados en la Ref. [30].

35
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4.1. Formalismo de la Accion Efectiva Irreducible de 2 Particulas

Este es un formalismo dentro de la teoria cuantica de campos originalmente desarrollado
en [23], usualmente abreviado 2PI por sus siglas en inglés, que representa una generalizacién
del concepto de accién efectiva usual o 1PL. En éste tiltimo, la accién efectiva I'[¢] se calcula
como una funcional del valor medio del campo ¢ = (¢). En contraste, en el formalismo 2PI
las funciones de 1 y 2 puntos, ¢ y G(z,2") = {(p(x)p(z')) (¢ = ¢ — @) respectivamente,
son consideradas como grados de libertad independientes. Se obtiene asi una accion efectiva

[ypr[¢, G] como funcional de ambas.

El resultado de este proceso es la resumacién de un subconjunto infinito de diagramas de
Feynman (todos los reducibles de 2 particulas) a costa de tener una ecuacién de movimiento
adicional asociada al nuevo grado de libertad. Es esta resumacién la que le da potencialidad a

este formalismo para estudiar efectos no perturbativos.

A continuacién repasaremos primero la construccién de la Accién Efectiva 1P, para luego
generalizar el proceso y asi obtener la Accion Efectiva 2PI. En todo lo que sigue, la utilizacion
del formalismo IN-IN se deja implicita mediante la inclusién del subindice C en las integrales
temporales, indicando que las mismas estdn definidas sobre el camino temporal cerrado C, ec.
(2.46), asi como también se entiende que todas las funciones del tiempo estédn también definidas
sobre C. Por 1ultimo, los propagadores se entienden como el valor de expectacion del producto

Te-ordenado de dos campos.

4.1.1. Accion Efectiva 1PI

El concepto de la accién efectiva se basa en la idea de promediar el efecto que las fluctua-
ciones cuanticas tienen sobre la evolucion del valor medio del campo. Para ello se plantea una
separacién del campo en valor medio y fluctuacion, ¢ = ¢ + ¢, y luego se resuelve la integral
de camino sobre la fluctuacién . El resultado es una funcional T'[¢] que cumple el rol de una
funcional de accién, es decir, su condicion de extremo lleva a las ecuaciones de movimiento

semiclasicas para el valor medio del campo ¢.

Comenzando con una accién clésica S|[¢], la funcional generatriz de las funciones de corre-

lacién cuanticas es,

20)= [Doexp i (sl + [ dev=anaons) )| = (1)
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donde el indice a representa cualquier tipo de indice asociado a la representaciéon de algin grupo
de simetria interna y la suma sobre indices repetidos esta implicita. Tener en cuenta que todas
las funcionales tienen una dependencia en g"” que no se denota explicitamente. La segunda
igualdad define a la funcional generatriz de los diagramas conectados W[J] = —ilog (Z]J]), de
manera que el valor medio del campo en presencia de una fuente extrena J es,

5 = OW[J] _ 1 dW[J] _ [Dd¢ exp [i (S[¢] + [, Jada)] ), (42)

5.J Z[J] &J [ Do exp [i (S[0] + [, Judba)] ’

donde abreviamos fc d*r\/—g = fx Se define la accién efectiva como la transformada de
Legendre de W[J],

Hmzwm—[ﬁ%fikm@m, (4.3)

de donde también resulta que,

Ja[&] = _%'

Eventualmente, evaluando en J = 0 se obtienen las ecuaciones de movimiento para los ¢,,

(4.4)

ollg]
=0 (4.5)

Hasta aqui sé6lo se ha reformulado el problema original en términos de otra variable. La accién

efectiva contiene la informacién completa de la teoria cuantica a través de las funciones vértice

irreducibles de una particula,

"T[¢]

6(2_5a1 ('rl) ce 5§5an ($n> ¢_>=<Z_5*7

(4.6)

donde ¢* es la solucién de (4.5).

Para sacar provecho de estas manipulaciones, es necesario encontrar una representacién para
la accién efectiva que nos permita calcularla de forma perturbativa. El procedimento estandar
consiste en expandir (4.3) en la fluctuacion ¢ y luego realizar las integraciones funcionales sobre

la misma. EIl resultado es
(6] = $18] — ST [In(A™)] + 11[3), (4.7)

donde T'1[¢] es —i veces la suma de los diagramas de vacio 1PI con propagador A;bl, definido

por
_ N1 6%5[¢] 1
Al ) = S S e Vg |, -

¢=9
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y vértices dados por la accién de interaccién desplazada SE [¢, ¢], obtenida de colectar los
términos de orden ciibico o mayores en ¢ que surgen de expandir S[¢ + ¢]. Estos diagramas
son aquellos que permanecen conectados al cortarles una linea interna, de ahi su nombre de

irreducibles de una particula, o 1PI.

Esta representaciéon de la accién efectiva nos da la interpretacion de que la misma consiste
en una parte clasica corregida por efectos cudnticos. El segundo término de (4.7) involucra la

correccién a 1-loop, mientras que las correcciones de dos o més loops estan contenidas en I'y [¢)].

A modo de ejemplo, en el caso de la teoria A\¢* dada por la accién (3.4) con N = 1 (recordar
el cambio de definicién de A respecto al caso O(N)) los elementos que debemos utilizar para

construir I';[¢] son el propagador A~! (para N = 1 no tenemos indices ab) que satisface

5z — ')
Vi

y los vértices provenientes de la accion de interaccion desplazada,

<D+m +ER+ ¢2> o 2) = —i (4.9)

St = - [ o v=g |10+ 60 (4.10)

Entonces, las primeras contribuciones a I'1[¢] son como las que se muestran en la Figura 4.1.

(OO0 Q@+ -
D@+ 000+~

Figura 4.1: Primeros diagramas de vacio irreducibles de una particula que contribuyen a la
accién efectiva 1PI en la teoria \¢®. Estos se construyen con los vértices dados por (4.10) y

utilizando en las lineas internas el propagador A~! que satisface (4.9).

4.1.2. Accion Efectiva 2PI

Con el fin de generalizar los conceptos anteriores para incluir a la funciéon de 2-puntos exacta

Ga(z,7") como un grado de libertad independiente a ¢,, ademas de una fuente local J,(z) se
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introduce una fuente no local K (x,z'),
Z[J, K] = /ng exp [z (S[¢]+/Ja(x)¢a(x)+%/ lgba(x)Kab(x,x’)ng(x/))}
= WKl (4.11)

donde ahora el valor medio del campo y la funcién de 2-puntos se determinan a partir de

W1J, K] mediante las siguientes relaciones,

WK
ba = A (4.12)
Gap(z,2') = 2% — ¢o(x) Py (). (4.13)

En este caso, la accién efectiva 2PI es la doble transformada de Legendre de W|[J, K|,
I 7 1 / / Iy T
Lope[6.G) = WK = [ Ju@nla) =5 [ Kaew) [Gule,!) + dula)ina)] . (1.10)

Luego, variando la expresion anterior respecto de ¢, y Ga(x,2") respectivamente obtenemos

0Toptd, G _ 0 1 o P
5pa(z) Ja(@) 2/96, [Kap(,2") + Kpa(2', )] @p(2'), (4.15)
olaprl0,G] 1 )

6Gap(z,2') —3 Kalz, ), (4.16)

de donde las ecuaciones de movimiento se obtienen nuevamente anulando las fuentes externas
J =0y K = 0. Volviendo a la accién efectiva, combinando las expresiones anteriores puede

expresarse como,
Topr[d, G] = —z’ln{ / Dé exp [zs} } (4.17)

donde el exponente se lee,

S= 5[]+ [ Ju(x)pa() 2 Kap(7,2") [$a()d0(2) — Ga()d0(2) — Gap(w,2)] . (4.18)
2 :

Por un lado podemos reescribir este exponente realizando algunas manipulaciones y luego usan-

do las relaciones anteriores para J,[¢, G| v Ku[o, G],

- - or or 1
§—so+el - [ 2o+ [ s | Gutes) ~ tata)] . (@19)
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mientras que por otro lado expandimos la accién clasica en ¢,

1 75[¢)
2 // Sou@00n(e)|_
(4.20)

Posteriormente reemplazando en (4.17) podemos sacar algunos términos fuera del logaritmo,

Dopr[o, G // , 5Gi£2xplx Gap(z,2") — iln{/'Dgp exp |:ZA§} }, (4.21)

donde ahora el exponente del ltimo término es,

2 = (Gl 2) o i vt i)

T _ aig 05(¢]
=  5da() ¢_¢_)90a<

QDUL('T)()Ob( ) znt[(b? ]

Finalmente podemos expresar el argumento del logaritmo en (4.17), llegando a

Topr6,G] = S[gl+ 5 LT (AG)
’Gab +Smt[¢> ]
—zln{ (/ Dye' waiG;}@b) (stofepge - j’G - w]) }7 (4.23)

Topr[d, G] = S[¢] + %Tr (AG) + %Tr [In(G™1)] + '[9, G, (4.24)

donde el tercer y cuarto término corresponden al logaritmo de cada uno de los factores dentro

es decir

del logaritmo de la segunda linea de la expresion anterior respectivamente. El dltimo término
[5[6, G] es —i veces la suma de los diagramas de vacio irreducibles de dos particulas, con pro-

pagador G y vértices dados por S%

int- Dstos diagramas, conocidos como 2PI, son todos aquellos

que permanecen conectados luego de cortarles dos lineas internas.

Nuevamente tomamos como ejemplo a la teoria A¢* con N = 1, para la cual los primeras

contribuciones a I'y[¢, G] se muestran en la Figura 4.2.

De aqui en adelante utilizaremos una parametrizacién para la accion efectiva 2PI alternativa
a (4.24) pero consistente con [29], ya que luego a partir de la seccién 4.1.4 utilizaremos algunos

resultados de dicha referencia. Esta es

Typi]6,G] = Solé] + %Tr In(G-1) + %Tr(GglG) Dol G, (4.25)
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4«53+<:X:>4§D+62y<}>hj

Figura 4.2: Primeros diagramas de vacio irreducibles de dos particulas que contribuyen a la
accién efectiva 2PI en la teoria \¢®. Estos se construyen con los vértices dados por (4.10) y
utilizando en las lineas internas el propagador exacto GG. Notar que estos diagramas son un

subconjunto de aquellos de la Fig. 4.1 (los de la segunda linea de dicha figura son 1PT).

donde S es la parte cuadratica de la accion clasica S sin ningiin contratérmino y

1 §250[¢] 1

’i(Gal)ab(x T ) =5 50u(x)00n (@) \/—_g’ (4.26)
La parte definida como de interaccién esta dada por
Foff Gl = Sunld] + 3 T | 52246 | 4 1406, (4.27
090
donde S;,; = S — S, distinta a SE,, y la funcional I'y[¢, G] es aquella definida anteriormente.

4.1.3. Relacién entre las acciones efectivas 1PI y 2PI

Consideremos las ecuaciones de movimiento que se obtienen a partir de la accion efectiva

2PI, pidiendo la condicién de extremo respecto a variaciones de ¢ o G,

6F2P1[Q;7 G] _

T = 0, (428)
5F2P1[Q§7 G]

Tab 0. (4.29)

Podemos comprobar que a partir de la accién efectiva 2PI y de estas ecuaciones podemos
recuperar la accién efectiva 1PI. En efecto, resolviendo la ecuacién (4.29), obtendremos al
propagador exacto G como funcional de ¢, G[¢]. Si ahora reemplazamos esta solucién en la
accién efectiva 2PI, obtenemos una funcional solo de ¢ que podemos identificar con la accién
efectiva 1PI,

L[¢] = Taprlo, Gl9]]. (4.30)
Para convencernos de esta relacion, podemos comprobar que la soluciéon del sistema de ecua-
ciones (4.28) y (4.29) extremiza (4. 30) en efecto,

H‘[QE] 5F2P1 ¢, // 5F2P1 Cb G[Cb]] 5Gbc($', f’)

0da(z)  Oda(x 6Gre(2', ") Og(x)

= 0. (4.31)
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Esto muestra la equivalencia entre ambas formulaciones del problema exacto. La diferencia
surge, sin embargo, al considerar truncaciones de las expansiones diagramaticas de las acciones
efectivas, dado que en un caso los diagramas involucran al propagador libre G, mientras que
en otro al propagador exacto G. De esta forma, cada diagrama 2P1 de la expansién de I'y[¢, G|
contiene una resumacion de un subconjunto infinito de los diagramas 1PI de la expansion de

I'1[#]. Estos son precisamente aquellos diagramas que visten al propagador.

4.1.4. Relaciones de Consistencia

Como se ha discutido en la subseccién anterior, ambas formulaciones 1PI y 2PI son equi-
valentes. Sin embargo en el segundo caso se tiene un grado de libertad adicional respecto al
primero. Esto conduce a ciertas relaciones de consistencia que reflejan la redundancia de es-
ta descripcién, que pueden ser expresadas en términos de las funciones de 2 y 4 puntos. En
el formalismo 2PI hay varias formas de construir estas funciones segin se tomen variaciones
funcionales de la accién efectiva 2PI con respecto de ¢ o G, pero que en tltima instancia no
pueden ser independientes. En el caso particular de teorias con simetria Z5, es decir ¢ — —¢,

se ha mostrado en [29] que estas relaciones toman la siguiente forma,

6Fint [gba G]
0Gap(x, )

62 znt [&7 ]

Soa@en@)| .

G,¢=0

) (4.32)
G,¢=0

5'T[¢]
5%(I1)5¢b($2)5¢c($3)5¢d($4

+ perms(a, b, ¢, d)

G,$=0

54Fmt [¢7 ]
60a(1)00n(22)0¢c(23)0ha(4)

52 'mt[(ba ]
Gap 1’17352 5ch($3>$4)
1
2

, (4.33)
G,p=0

donde G' = G[¢] es la solucién de (4.29). Estas relaciones se derivan de las relaciones exactas

entre las acciones efectivas 1PI y 2PI descriptas anteriormente (ver Apéndice B).

En una dada truncacién sistemética de T's[¢, G], las relaciones de consistencia se satisfacen
hasta el orden relevante de expansion, con posibles violaciones de orden superior. Por otra parte,
como veremos en la proxima seccion, por diversas razones podria ser de interés algin tipo de
truncacion que no cuente con un parametro pequeno que controle la expansion. En este caso,

las relaciones de consistencia podrian no satisfacerse y nos encontrariamos ante un problema
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para definir los observables de la teoria. ;Cudl seria la definicién correcta de la funcion de 2-
puntos si hay dos formas no equivalentes de calcularla? Esto conduce a la conclusion de que es
imperativo forzar de alguna manera la validez de estas relaciones de consistencia en la ausencia
de una expansién sistematica. Veremos que un paso crucial del procedimiento consistente de
renormalizacién de [29] es imponer estas relaciones en un determinado punto de renormalizacién
(que elegimos ¢ = 0), para lo cual es necesaria la introduccién de més de un contratérmino

diferente por cada parametro de la accién clasica de partida.

4.2. Aproximacion de Hartree

Aunque estemos considerando un esquema en el cual hay una resumacién infinita de diagra-
mas, no podemos calcular la accion efectiva completa porque todavia tendriamos que hacer una
suma infinita de los diagramas 2PI de vacio en el término I's. Por lo tanto, debemos recurrir a
algun tipo de aproximacion. Al orden mas bajo podemos descartar completamente el término
['s, lo que corresponde a la aproximacién de 1-loop y en este caso no hay diferencia con la
accion efectiva 1PI. Esto es porque los diagramas de vacio 2PI comienzan a 2-loops, y es a
partir de este orden en adelante que la accién efectiva 2PI da resultados no triviales comparada
con la accion efectiva 1PI. Con la accién desplazada dada por la ecuacién (4.10), existen dos
diagramas que contribuyen a 2-loops. Estos son la doble burbuja y el atardecer y se muestran

en la Figura 4.3.

Figura 4.3: Diagramas de vacio 2PI a 2-loops: el “atardecer” (a la izquierda) y la “doble burbuja”

(a la derecha).

La aproximacion de Hartree consiste en conservar s6lamente la contribucién local (diagrama
de la doble burbuja). Este diagrama, al estar construido con el propagador exacto, contiene una
suma infinita de los diagramas denominados “daisy” y super-“daisy” (margarita en inglés) de
la teoria perturbativa estandar. En el caso de un solo campo, es decir N = 1, ambos diagramas
de la Figura 4.3 son del mismo orden. Dado el cardcter no sistematico de esta truncacion,
las relaciones de consistencia dejan de satisfacerse en general. Por otro lado, en el caso de un

modelo con simetria O(N) esta aproximacion resulta exacta en el limite de N — oo, ya que el
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diagrama no local resulta de orden superior en 1/N con respecto al diagrama local. En ese caso
las relaciones de consistencia se cumplen automaticamente orden a orden. Por el momento nos

concentraremos en el caso N = 1, volviendo sobre el modelo O(N) sobre el final del capitulo.

La accién efectiva 2PI en la aproximacion de Hartree toma la siguiente forma

Lopr[d, G] = —/Cddx\/—_g[% (—O+mpy + Ep2R) ¢+ AB4¢}+%Trln(G_l)
2/ddx\/_[ O+ mp, + EpoR + 2/\32q§} G(x, ) (4.34)
)\830 d?r /=g G*(z, 1),

mientras que las ecuaciones de movimiento del valor medio del campo y del propagador exacto,
obtenidas extremizando esta accidén respecto de variaciones de ¢ y G respectivamente, toman

la siguiente forma en la misma aproximacion

AB4 z9 A -
(-0 v+t 22064 22001 ) 6a) = o, (1.8
A Oz — 2
(-0 o+ el + 325+ 2206 Glow) = ~iTU= (430)
donde [G] = [G1]/2 = (¢?*). Aqui es importante remarcar que dado el cardcter local de es-

tas ecuaciones (la ausencia de integrales espacio-temporales), se pierde la distincién entre el
formalismo de camino temporal cerrado (o IN-IN) y el formalismo usual IN-OUT [48]. En con-
secuencia, la ecuacién del propagador es vélida de forma independiente para cualquiera de los

propagadores del formalismo IN-IN (2.47).

Estas ecuaciones contienen divergencias provenientes del limite de coincidencia [G] = G(z, x)
del propagador, las cuales deberan tratadas mediante el proceso de renormalizacién. En la
accion efectiva 2PI (4.34) hemos incorporado varios contratérminos diferentes asociados a un
mismo parametro de la accion clasica, lo cual es denotado mediante distintos subindices en los
pardmetros desnudos que indican la cantidad de potencias de ¢ en el término correspondiente

n (4.34). En la referencia [29], los autores desarrollaron un procedimiento de renormalizacién
consistente en espacio plano, el cual toma esta ambigiiedad y la explota para ajustar cémo
cada diagrama contribuye a la cancelacién de las divergencias. Esto a su vez resulta un punto
crucial para lograr que el procedimiento de renormalizacion respete la validez de las relaciones
de consistencia de la teoria, al menos cerca del punto de renormalizaciéon. Nuevamente, en el
caso del limite de N grande del modelo O(N), dichos contratérminos resultan naturalmente

iguales.
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En la proxima subseccion, generalizaremos dicho procedimiento a espacios curvos generales.
Para ello, se fijara la relacién entre los diferentes contratérminos imponiendo la validez de las

relaciones de consistencia para las funciones de 2 y 4-puntos.

Previo a discutir la renormalizacién, vale destacar que estas ecuaciones son similares a
aquellas obtenidas al considerar una aproximacion Gaussiana al nivel de las ecuaciones del
valor medio del campo [55], que también pueden obtenerse a partir de un principio variacional
[56, 57]. En ese caso, el punto de partida es la ecuacién de movimiento clésica para ¢, que
luego es separado entre un campo medio ¢ = (¢) y una fluctuacién ¢ = ¢ — ¢. Luego, tomando
el valor de expectacién de la ecuacion clasica del campo uno obtiene un par de ecuaciones
acopladas para ¢ y ¢, o equivalentemente para ¢ y el propagador de las fluctuaciones G (z, z').
Finalmente, bajo la suposiciéon de que los estados son Gaussianos, es decir, que las funciones

de n-puntos pueden expresarse en términos de la funciéon de 2-puntos
(¥*) =0, (4.37a)
(") = 3(¢*)?, (4.37D)

las ecuaciones resultantes son similares a (4.35) y (4.36). Sin embargo, la diferencia es que
en este caso no hay una interpretacién diagramatica para cada una de las contribuciones que
admita distintos contratérminos, asi como tampoco se tienen relaciones de consistencia para

fijarlos. Por lo tanto, en este enfoque resultaria poco natural el uso de diferentes contratérminos.

4.2.1. Renormalizacion en espacios curvos generales

A continuacién analizaremos la renormalizacién de las ecuaciones (4.35) y (4.36) en la apro-
ximacién de Hartree en presencia de una métrica de fondo general. Utilizaremos la siguiente

parametrizacién de las constantes desnudas:

mp, =m® +om;, (4.38a)
Epi = £+ 0&;, (4.38D)

que corresponde a un esquema de sustraccién minima (es decir, los contratérminos dm?, 6&; y
dN; (1=0,2,7 =0,2,4) sélo contienen divergencias y ninguna parte finita). Como se mencioné
en la seccién anterior, con el fin de fijar los diferentes contratérminos dentro de este nivel de

aproximacién, imponemos las relaciones de consistencia (4.32) y (4.33) en los diferentes nicleos
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2PI de 2 y 4 puntos. Estos ntcleos son calculados a partir de las derivadas funcionales de

Lint [¢, G] evaluadas en ¢ = 0, quien, comparando entre (4.25) y (4.34), se lee

Lint[0, G] = / dx /=g { (6m3 + 0&R) ¢° + (/\+<5/\4)q5]

;/dda:\/_{ém0+6§0]%+2

(A4 dX9) ¢2} G(z, ) (4.39)

_% / d'z /=g (A + 5Xo) G*(z, 2),
c

donde usamos que la inversa del propagador libre Gy en (4.25) se define como

Gyl =i(-0+4+m*+£R). (4.40)
Luego de tomar algunas derivadas funcionales vemos que los nticleos de 2-puntos en ¢ = 0 estan
dados por
(SQFint | d /
—— = —/—g 5m2 + 0 R+ = ()\+5)\2)[G] 6z — '), (4.41)
S0, |
QM = —/- 5m + 0 R+ - ()\ +0A )[G] 6%z — ') (4.42)
5G (x, ) - = 9 0 0 5 0 | . .
Por lo tanto, la condicién (4.32) implica que
dma = dm3 = 6m?, (4.43a)
5)\0 = 6)\2 (4430)

Dado que ambos contratérminos de masa son iguales, asi como también lo son ambos con-
tratérminos de acomplamiento con la curvatura, podemos obviar los subidices en esos casos de

aqui en adelante.

Pasamos ahora a la segunda relacién de consistencia (4.33). Esta ecuacién relaciona a los

nicleos de 4 puntos en ¢ = 0, dos de los cuales pueden ser calculados tomando derivadas de

Fint [&7 G} :

I C = —(A+0A /5x5z5x6$, 4 44
01002003004 Fa ( 4) ) 1202203504 ( )
52Fin 1
(5G126Gtg4 - _Z<)\+5)\0)/513362$53154367 (445)
¢=0 x
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donde utilizamos ¢; = ¢(x;) a modo de abreviacién notacional, asi como también

/51x52x§3$54m = /ddx V=g 64z, — 2)6% 2y — 2)6% (23 — 2)0% (14 — T). (4.46)
x C

La otra cantidad que debe ser especificada es la cuarta derivada funcional de la accién efectiva
1PI. Su valor en ¢ = 0 es facilmente interpretado como la constante de acoplamiento renorma-
lizada Ag, ya que el potencial efectivo es proporcional a la accion efectiva en un valor constante
de ¢. Por lo tanto

0'T[¢]
0P10020030¢4 5

Es importante tener en cuenta que, dado que la accién efectiva 1PI depende de la geometria de

- _/\R/51z52x53x54m7 (447)
0 x

fondo, en general, no es posible imponer estas relaciones de consistencia exactamente para cual-
quier métrica arbitraria. Esperamos una situacion andloga en el espacio-tiempo de Minkowski
si, por ejemplo, el valor medio del campo dependiese del tiempo. Sin embargo, en ese caso, con
el fin de definir los pardametros renormalizados, uno todavia puede imponer las relaciones de
consistencia para algin valor particular y constante del campo. Esto es suficiente para fijar los
contratérminos. Luego, una vez hechas finitas las ecuaciones, se espera una desviacion de las
relaciones de consistencia dependiente del tiempo, pero pequena. Mas precisamente, se espera
que cualquier desviacién sea del mismo orden que las contribuciones despreciadas en la apro-
ximacién considerada para I's. La eleccion correspondiente en nuestro caso seria considerar un
espacio-tiempo con curvatura constante como punto de renormalizacién en el cual imponer las

relaciones de consistencia. Volveremos sobre este punto importante en la préxima seccién.

Reemplazando los ingredientes anteriores en la segunda relacién de consistencia (4.33) po-
demos fijar el contratérmino que falta. Aqui es importante tener en cuenta las propiedades de

simetria de los nticleos al evualuar las permutaciones. La relacion resultante es

En este punto se puede ver mas claramente las consecuencias de este truncamiento “arbitrario”
de la accion efectiva 2PI, es decir la aproximacion de Hartree, al insistir en el cumplimiento de

las propiedades validas para la teoria exacta.

Con estas relaciones podemos ahora volver a las ecuaciones del valor medio del campo y del
propagador. En lugar de usar la ecuacién del propagador de Feynman Gg(x,z’), o cualquiera
de los propagadores de camino temporal cerrado, consideraremos la ecuacion para la funcién

elemental de Hadamard G;(z, ") (2.21). Esta contiene la misma informacién pero resulta mas
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cémoda en lo que sigue, asi como también en la renormalizacién de las EES que estudiaremos

en el capitulo 6. Entonces, en lugar de (4.42) tenemos
2 )\BZ 72 )\BO no__
- + mpgo + gB()R + 7¢ + T[Gl] Gl(l‘, T ) = 0. (449)

La renormalizabilidad de las ecuaciones del valor medio del campo y del propagador significa
que se puedan hacer finitas mediante una eleccién adecuada de contratérminos. Si este es el
caso, las ecuaciones resultantes pueden expresarse en términos de una masa dindmica finita méas

un término de acoplamiento con la curvatura renormalizado, es decir,
1 .\ -
<—D + miyn +&rR — gARqSQ) o(z) = 0, (4.50)
(=0 +m2,, +&rR) Gi(z,2') = 0. (4.51)

La masa dindmica m? esuna funcién escalar dependiente de las coordenadas espacio-temporales
dyn )

determinada por una ecuacién autoconsistente
1 - 1
My, +ErR =m? 4+ 6m? + (€ + 6§ R + S+ dA2)9” + 1A+ 00)[G], (4.52)

dado que mj,,, también entra en el miembro derecho a través de [G4]. En esta expresién ya hemos
utilizado las relaciones entre los contratérminos requeridas por las relaciones de consistencia.
Las divergencias provienen de [G1], y deben ser canceladas mediante una eleccién adecuada de

los contratérminos dm?, 66 and J)\,.

Con el fin de exponer y aislar las divergencias, utilizamos la expansion de Schwinger-DeWitt
para [G1], ec. (2.30), evaludandola para una masa variable mg,, y acoplamiento con la curvatura

¢r. Insertando dicha expansién en (4.52) se obtiene,

my,, +&rR = m®+0om® + (4 06R+ %(A + 6Xo)p* + (A +0A2) {mflyn + (53 — %) R}

1672€
1
+ 5+ A T (4.53)

Aqui, demandando que la parte divergente se cancele con las contribuciones de los contratérmi-
nos sin dejar remanente finito (sustracciéon minima), obtenemos las siguientes ecuaciones inde-

pendientes

1, - 1
My + ER = m® + ER + 5)@2 + 5ATr, (4.54)

1 - 1 1
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Estas determinan los contratérminos dm?, 6¢ y 6\, a los que de ahora en mds nos referiremos
como contratérminos de sustraccién minima. Usando la primera ecuaciéon para mflyn +EérR y
remplazarlo en la segunda, llegamos a una expresion que depende de los contratérminos y de

las constantes finitas

0 = {5m+

1672e

A
1672€

donde cada corchete debe anularse independientemente dadas las dependencias en las distintas

(>\+6>\g)] + {5§+ o (g——) ()\+5)\2)}R

+ {Mg +—(A\+ 5&)} (¢* +TF), (4.56)

variables ¢, mj3,,, v R. Los contratérminos resultantes son

A m?
om* = — 4.57
T T e \ 14 2 ) (4.57a)
o l)
0 = — 6 4.57b
f ].67'('26 1 + m ’ ( )
A A
Oy = — 4.57
2 1672 \ 1+ ﬁ ’ (4.57¢)
y los pardmetros desnudos (4.38) quedan
2 o0 n
2 m 2 A
_ _ _ 458
" + G " nz; ( 16726) , o8
DI AR
- — S - 4.58b
gy = — 2 —AZ( )n (4.58¢)
P 2 1672 ) '

Notar que tanto los contratérminos como los pardmetros desnudos tienen una estructura de
polos no trivial. Esto es evidencia del caracter no perturbativo de la accion efectiva 2P1. Expan-
diendo estas expresiones en A permiria en principio comparar con los resultados perturbativos

usuales.

Una vez hecha finita, la ecuacion para la masa dinamica es

1. - A 1 m?
2 2 2 2 dyn
Mayn +Crft = 2 3272 { [mdy” i (gR - 6) R} " ( i )

+ (53 — %) R —2F(mj,,, {R})} , (4.59)
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donde hemos utilizado la expresién explicita para Tr dada por la ecuacién (2.31). Esto concluye
la prueba de que el proceso de renormalizacién consistente puede implementarse en espacios
curvos generales, al menos en la medida en la que sea valido descartar los efectos del campo
cuantico sobre la métrica de fondo. Un analisis completo debe incluir también la renormalizacién

de las EES. Postergaremos este punto hasta el capitulo 6.

Volviendo a la ecuacién (4.59), esta es una ecuacién autoconsistente para mgyn(qg, R) cuyo
resultado luego debe ser reemplazado en la ecuacién del campo (4.50), para finalmente resolver
para ¢. Sin embargo, en la aproximacién de Hartree (4.50) tiene una dependencia explicita con la
constante de acoplamiento renormalizada Ar como consecuencia de las relaciones de consistencia
(4.48), mientras que (4.59) depende sélo de la constante de acoplamiento de sustracciéon minima
A. En la siguiente seccion discutiremos como reescribir los resultados utilizando tnicamente los

parametros renormalizados.

4.3. Potencial efectivo y parametros renormalizados

El potencial efectivo es una cantidad util para investigar el efecto de las fluctuaciones cudnti-
cas sobre la evolucién del valor medio del campo ¢. Este se relaciona con la accién efectiva 1PI

(4.3) de la siguiente manera

- ¢l

Vers(0) = ==~ , (4.60)

b=const.

donde € es el volumen del espacio-tiempo, y es en general una cantidad divergente. Normal-
mente, el potencial efectivo es mas simple de calcular que la accién efectiva. En efecto, por su
definicién el potencial efectivo interviene a través de su derivada en la ecuacion de movimiento
(4.5) que se obtiene al extremizar la accién efectiva 1PI. Por lo tanto, puede ser identificado en

la ecuacién (4.50),
dVery _

e <m§yn R - %AR&) 5 (4.61)
Como hemos mencionado, la ecuacién renormalizada para el valor medio del campo (4.50), al
ser combinada con la solucién de la ecuacién de la masa dindmica (4.59), dependerd de una
mezcla de pardmetros finitos asociados a la sustracciéon minima m?, £ y A, y de pardmetros
renormalizados £g vy Ag (este ultimo viniendo de la relacién de consistencia a través de la
ecuacién del campo), asi como tambien depende de la escala de regularizacion fi. Los pardmetros
renormalizados son justamente aquellos que caracterizan al potencial efectivo V¢ y en general

no seran iguales a los parametros de sustracién minima. Ambos conjuntos de parametros estaran
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relacionados entre sf mediante ji. Es conveniente entonces expresar la ecuacién para mg,,,
(4.59), en términos de uno solo de estos conjuntos de pardmetros. Dado que las relaciones de
consistencia toman una forma particularmente simple solamente cuando ¢ = 0, vamos a utilizar
esa eleccién como punto de renormalizacion. También es necesario fijar la geometria de fondo

a una de curvatura constante R.

4.3.1. Punto de renormalizacién en espacio-tiempo plano

En esta subseccion vamos a elegir el espacio-tiempo de Minkowski como el punto de re-
normalizacion, para el cual Ry = 0. Con estas condiciones, los parametros renormalizados se

definen como

s _ Vs 2 7
my = 102 = my,, (¢ =0,R =0), (4.62a)
¢=0,R=0
d*Vers dmiy,
/) = 4.62
€r IR0 TR +&r; (4.62b)
=0,R= $=0,R=0
d4V fr de?l
Ap = —— = _un — 2\g. 4.62
0,R=0 $=0,R=0

La definicién (4.62c¢) es la misma que (4.47). A partir de estas definiciones y de las ecuaciones
(4.61) y (4.59), es sencillo llegar a expresiones que relacionan los pardmetros renormalizados

m%, Er y Ag con aquellos de sustraccién minima m?, € y Ay it (ver Apéndice C). Estas son

m2 = — (4.63a)

(63 - 1) = - _(f __%) s (4.63b)

Ap = (4.63¢)
1w (5

Utilizando estas relaciones es posible encontrar combinaciones tutiles de parametros de sustrac-

cién minima que sean independientes de fi:

€s—5) _(€—5) _ (Er—3)
\p A Ar

(4.64)
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2 2 2
myz m 9 1 1Y _ my
S — | = 4.65

Yo AR <32w2 * )\R> N (4.65)
donde hemos introducido A}, como un atajo notacional, con la propiedad de A}, — Ap para
Ar < 1.

Se debe tener en cuenta que, aunque en principio m? podria tomar valores negativos, el
pardmetro m% es positivo por construccién. Esto es asi porque m?% es una solucién de la ecuacién
de la masa dindmica en el espacio de Minkowski para ¢ = 0, la cual se basa en la existencia de
un propagador estable para las fluctuaciones (ver la ec. (2.30)). Por lo tanto, estas ecuaciones
nos dicen que en este caso m? también debe ser positiva, siempre que A% y A sean positivos.
Esto es una consecuencia de haber definido los parametros renormalizados en el espacio-tiempo
de Minkowski, y como veremos mas adelante, esta restriccion se puede relajar tomando el punto

de renormalizacién en el espacio-tiempo de De Sitter.

En cualquier caso, vale la pena senalar que las relaciones de consistencia imponen restric-
ciones no triviales a los parametros finitos de la teoria. Estas restricciones no se consideran en
el enfoque de otros autores [58], quienes trabajando con sustracién minima, asumen desde el
principio que d\; = 3d\;. Por un lado, dado que estamos trabajando con una aproximacion
a la accion efectiva, se podria argumentar que no es necesario imponer que las relaciones de
consistencia se cumplan exactamente en el punto de renormalizacion, sino sélo utilizarlas para
fijar la proporcionalidad entre los contratérminos, porque de todas formas no se espera que se
sigan cumpliendo méas alla de ese punto. Esto es, en principio, correcto. Sin embargo, a me-
nos que se especifique un conjunto de condiciones de renormalizacién, la interpretacién de los
parametros finitos no esta clara y las ecuaciones son dependientes de fi, como sucede en la Ref.
[58]. Més atn, si asumimos que d\y = 3dAq y luego definimos las condiciones de renormalizacién
a partir del potencial efectivo (como lo estamos haciendo), resulta que la ecuacién de la ma-
sa dinamica no puede ser enteramente escrita en términos de sélo parametros renormalizados,
y por lo tanto es dependiente de fi. Esto se puede ver facilmente teniendo en cuenta que es
debido a la combinacién en el miembro derecho de la ecuacién (4.48) que sea Ag y no A que
aparezca en la ecuacion (4.50). Viéndolo al revés, si se imponen las relaciones de consistencia,
la relacién 0\, = 36Xy implica que A = A, lo que da una eleccién particular del parametro
it. Nuestro analisis muestra que, tomando el espacio-tiempo de Minkowski como el punto de
renormalizacién, la eleccién m? < 0 no es compatible con las relaciones de consistencia. Apare-
ceran restricciones similares cuando se considere una definicién mas general de los pardametros

renormalizados.
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Las relaciones anteriores entre los parametros pueden ser utilizadas para reescribir la ecua-
cion para mﬁyn solamente en términos de los parametros renormalizados. Luego de un poco de

algebra se llega a

PP 1 m;

2 _ 2 R 72 R 2 dyn 2

mdyn = Mp + 7¢ + W { [mdyn + (53 — 6) R:| In < m% ) — 2F(mdyn’ {R})}(466)
Este resultado muestra que mzyn puede ser completamente expresada en términos de los parame-
tros renormalizados, mostrando de forma manifesta la invarianza ante cambios de la escala de
regularizacién fi. En consecuencia, ambas ecuaciones de ¢ y del propagador mostraran también
estas propiedades. También puede verse que en el caso de un campo libre, A\ — 0, y por lo

tanto A — 0, la masa dindmica se reduce a la masa renormalizada, mj,,, — m%.

Por 1ltimo, a partir de los parametros renormalizados es posible definir los contratérminos

de manera alternativa, consitentes con un esquema de sustracciéon no minima,

2 A m%
mp [1 — Wln <~—2):| * m? 92 m?
S = m2 —mk — )l e AR {—+ln(~—R)}
v 1+ B (14 ) Le 2
oo [2 m2
2 R R
= — —+In =t 4.67
" 332 L“(ﬂzﬂ’ (4.67)

donde aqui hemos usado las ecuaciones (4.58a) y (4.63a) para m% y m?, respectivamente, y

luego la ecuacién (4.65). De manera similar obtenemos

s . 1 )\R 2 m%{

06 = Ep—&r=— (53 - 6) 39,2 {E +1+In (—/22 )] : (4.68)
N . )\R 2 m%

o = )\BQ )\R— )\83271'2 |:6 +1+ln (ﬁQ ):| . (469)

Ademas de los polos en €, estos contratérminos contienen un término finito dependiente de fi.
En estas expresiones, se recuperan los resultados conocidos a 1-loop reemplazando m% — m?%,

ég — Er vV A2 — Ag en los miembros derechos.

4.3.2. Punto de renormalizacion en De Sitter

Hasta aqui hemos fijado las relaciones de consistencia en el espacio de Minkowski mediante
la definicién de los parametros renormalizados en Ry = 0, y esto fue suficiente para mostrar, por
ejemplo, que las ecuaciones renormalizadas pueden ser expresadas de una forma manifestamente

independiente de ji. Sin embargo, estamos fijando las relaciones de consistencia en una métrica
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de fondo inadecuada para estudiar un problema cosmoldgico. En este caso, la métrica de interés
es del tipo Friedmann-Robertson-Walker, por lo que resultaria mas natural tomar como punto
de renormalizacion el espacio-tiempo de De Sitter con una curvatura escalar Ry, que también
satisface la condicion de tener una curvatura constante. Entonces, se podrian fijar las relaciones
de consistencia en un tiempo dado, haciendo coincidir Ry al valor correspondiente de R (que
depende del factor de escala a(t)) en ese tiempo. A medida que pasa el tiempo, las relaciones
de consistencia se violarfan de forma incremental. Por supuesto, incluso si estamos estudiando
las ecuaciones en De Sitter, para el cual R es independiente del tiempo, el empalme puede
hacerse de forma exacta sélo si R y ¢ estan fijados de antemano. Sin embargo, este no es el caso
que estamos considerando aqui, ya que nuestro objetivo es analizar la dependencia de la masa
dinamica y potencial efectivo con estas dos variables. Por lo tanto, lo mas natural es imponer
las relaciones de consistencia en un punto de renormalizaciéon determinado. Otro punto a favor
de la generalizacion a De Sitter es que, como se ha visto en la subsecciéon anterior, el punto
de renormalizacién en Minkowski no permite ciertos valores de los parametros de sustracciéon
minima que pueden ser de interés, como por ejemplo m? < 0. El objetivo de esta subseccién es
generalizar los resultados anteriores al caso en que se toma el punto de renormalizacién para

una métrica de De Sitter fija.

Comenzamos considerando la relacién de consistencia para las funciones de 4-puntos (4.33),

lo cual da una nueva definicién de Ap

0'T'[g]

56106203004 R/z tetaetaet (4.70)

¢=0,R=Ry

donde la notacion R = Ry implica que implicitamente estamos evaluando en el espacio-tiempo
de De Sitter. También evitamos utilizar una notacién nueva para Ag. La relacién de consistencia
para las funciones de 2-puntos (4.32) se mantiene sin cambios. Las definiciones de los pardmetros

renormalizados deben ser adaptadas a esta situacion evaluando el potencial efectivo en R = Ry,

A2V, _
m2R + fRRO = W;f - m?iyn(gb == O, R = Ro) + gRR(), (4.71&)
QEZO,R:RO
dg‘/eff dmiyn
= L = 4.71b
SR = URae?| +¢&r, (4.71b)
¢=0,R=Ry ¢=0,R=Ryp
AV, ?m?2,
= W Vers =3 — 2)g. (4.71c)
do* | d¢? |
$»=0,R=Ry ¢=0,R=Ryp
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Estas redefiniciones conducen a la generalizacién de las ecuaciones (4.63) que relacionan los

parametros de sustracién minima con los renormalizados, con una dependencia explicita en R,

m? + 1 [RO% 2 R _FdS(m%zyRo)]
m% — — : (4.72a)
- ()]
1 \ dF,
1 (5 o 6) ~ T6n? dit m2,, Ry
(53 - 6) = - - - ANE (4.72D)
=5~ me=n (7)}
A
)\R = F . (4720)
1— 2 — 2 (m_%) A (PR garys
I 327 327 m 327 m% dm m%,Ro

Aqui aparece la funcién Fyg asociada a la parte finita del propagador en De Sitter, que por
el momento no precisamos especificar. Las ecuaciones originales en el espacio de Minkowski
se recuperan facilmente para Ry — 0, lo cual anula todos los términos que involucran a la
funcién Fys o sus derivadas, de acuerdo con las propiedades (2.32). Siguiendo el procedimiento
delineado en el espacio de Minkowski, podemos combinar estas ecuaciones para encontrar re-
laciones independientes de fi entre los parametros de sustracciéon minima y los renormalizados,

por ejemplo

)\BQ A )\*R 327T2 '
y
Es—5) _ (=3
= 4.74
_ rmg)  Grmg) [( L) Bo_ydFus) ] 1 dFus
Ar 3272 B76) m% “dm?lmzry| | 1672 dR Im2R
3 _1
= ()\—6)+J(R07m%{7§R)7
R

donde en la tltima linea estamos definiendo la funcién J(Ry, m%,&r), la cual se anula para
RQ — 0.

Utilizamos las ecuaciones (4.72) para reescribir la ecuacién de la masa dindmica (4.59) en
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términos de los nuevos parametros renormalizados y de Fyg,

Py P} 1 m2
mzyn:m%+73¢2+32—;2 { {mzyn—l—(é‘R—é)R}ln(m%)

+Q@W—n%)F%%§

2
m%,Ro mpz

(4.75)

dFys
dR

m%,Ro

Nuevamente, el resultado correspondiente al punto de renormalizacién en el espacio de Minkows-
ki (4.66) se recupera facilmente en el limite Ry — 0. Finalmente, definimos los contratérminos

asociados a los parametros renormalizados en De Sitter,

2 2 2 dF,
SRt = my—my = —anl Tk { +1n (mf) S R } (4.76a)
321 (%+ (¢r— G)Ro) € Q dm? Im2,Ro
A% 3272
(53_1){(51%—%)[ +1+ln<—%">} QdFdS 2R}
g » 40
0§ = E—E&r=— 327T26 {@R_ T ,  (4.76D)
6
]
N _ AB2AR (Er— R0 dFys
N = Apa—Ag = 14+ 1In -2 4.
B2 AR 3272 [ T (MQ) m% dm? lm2,Ro (4.76c)

Nuevamente se recuperan facilmente los resultados conocidos a 1-loop, reemplazando m% —

m%, &g — Er, Ag2 — Ar, ¥ Ro — 0 en los miembros derechos.

Podemos sacar algunas conclusiones de estos resultados usando la expresion explicita para
F,;s dada en la ecuacién (3.13), ain manteniendo la métrica de fondo sin especificar. Combi-

nando las ecuaciones (4.72a) y (4.72b), llegamos a las siguientes expresiones

AR
e = To (€2 R0~ gk (4.77a)
61— T2 [ln (12;12 + 9(3/0)]

1 _@—5+m4 5= (w0 —4)"9'w) — ]
(fR 6) - T [ln( B > +g(yo) + (yo— 3) g’(yo)} | )
Ap = A , (4.77¢)

L= 32 322 [ln (mu ) +9(yo) + (?JO - %) gl(yo)]
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donde la funcién g estd dada por (3.14). Aqui estamos utilizando la notacién yo = M%/Ry =

m%/Ro + £g. También podemos reexpresar las ecuaciones (4.73) y (4.75), llegando a

2 2 1 M2 _ Ro
T_BBZ - mT - bye (M% - fRRo) + —< §2W2 6 ) (4.78)
y
_1 _1 _ 1 1 1 2 1 1
(gBAB ) _ (€ : 5) _ (fR)\R ) + 39 [(yo — 6) 9'(yo) — <yo — 6) +ogl (@479

En Minkowski la primera relacién implicaba que el pardmetro m? no podia ser negativo, mien-
tras que en De Sitter la misma se modifica de manera tal que esto se vuelve posible, aunque no

bajo condiciones generales. Mds especificamente, juntando las dos relaciones (4.78) y (4.79) de
arriba encontramos que

1 [ m? Yo 1 1\, 1 1/1 1
L _ Y% _ - Sl T (. 4.80
A(Ro+€> e | 3202 [(yo 6) 9) + 33 +6()\ )\R> (4.80)

Luego, considerando que la aproximacién de Hartree demanda que 39 > 0, en cuyo caso puede

verse que ¢'(yo) > 0, se puede concluir que el término entre corchetes en el miembro derecho
debe ser definido positivo, y por lo tanto la combinacién de parametros de sustraccién minima
dada por m? + &Ry debe ser positiva cuando Az > \. Queremos enfatizar la importancia de este
resultado. La validez de las relaciones de consistencia (que involucran tanto partes divergentes
como partes finitas) prohibe que simultdneamente A = Ar y m?+ &Ry < 0, como se ha asumido
en la literatura al analizar la ruptura espontanea de simetria en De Sitter bajo la aproximacion
de Hartree [58]. Como consecuencia de este resultado, uno debe permitir que Az < A, haciendo
inevitable recurrir al potencial efectivo para fijar la parte finita de la relacién de consistencia
(4.48).

4.4. Limite de N grande en el modelo O(N)

En el limite de N — oo, la tinica contribucién a I';[¢, G] es aquella del diagrama de la doble-
burbuja, mientras que las contribuciones no locales son de orden superior en una expansioén en
1/N. Entonces, la accién efectiva 2PI toma una forma local tal como sucede en la aproximacién
de Hartree (N = 1), pero difiere de ésta en un factor 3 en la contribucién de dicho diagrama

(ultimo término de (4.34)). Por lo tanto, las ecuaciones (exactas en este limite) para el valor
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medio del campo y el propagador son

(—D +m% +EpR + %%2 + A%ﬂG]) p(z) = 0, (4.81)
(—D +m} + R+ %Bd)z - %B[G]) Gz, 2) = _Z,(SCl(I—\/_;gx,). (4.82)

El factor del término con ¢? en la primera ecuacién difiere con el caso de Hartree, y esto resulta
en que ahora ambas ecuaciones (4.81) y (4.82) tengan los mismos coeficientes entre si (comparar
con (4.35) y (4.36)). Siendo que en este caso se tiene un pardmetro pequeno que controla de
manera sistematica la truncacién de la accion efectiva 2PI, las relaciones de consistencia se
satisfacen exactamente orden a orden en 1/N. Por lo tanto, no es necesaria la introduccién
de contratérminos adicionales. También vale destacar que las condiciones de estado Gaussiano

(4.37) ya nos son validas en limite N — oo, sino que ahora se tiene
(¢°) =0, (4.83a)

(") = ()% (4.83b)

Siguiendo con las ecuaciones, en términos de ¢ y G ahora se tiene [55]

(—O+m3,, + &kR) d(z) = 0, (4.84)
(=04 md,, +&rR) Gi(z,2') = 0, (4.85)

donde mflyn + &g R satisface la misma ecuacion autoconsistente que en la aproximacién de
Hartree con N = 1, ec. (4.59). La diferencia en cambio estd en la primera ecuacién (4.51). En
efecto, en el caso de Hartree se tenfa un término extra en la ecuacién (4.50), cuyo origen esta
vinculado con la diferencia mencionada entre (4.35) y (4.36), pero mas importantemente con
la imposicién de las relaciones de consistencia. Esta diferencia se traslada al potencial efectivo,

cuya derivada en este caso es

dV, -
dgff = (m3,. +€rR) 0, (4.86)

donde la ausencia del término proporcional a Az en comparacién a (4.61) tiene consecuencias

importantes en De Sitter, como discutiremos en los proximos capitulos.

Una observacién final es que aqui ya no se tiene la necesidad de definir los parametros

renormalizados para luego poder escribir las ecuaciones del valor medio del campo (4.84) y de
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la masa dindmica (4.59) en términos de un sélo conjunto de parametros (sean los de sustraccién
minima o los renormalizados). Esto nuevamente se debe a la ausencia en (4.84) del término

explicito con Ag.

4.5. Discusion

Hemos considerado un solo campo escalar auto-interactuante con simetria Z, en espacios
curvos, utilizando un método no perturbativo basado en la accién efectiva 2PI. En la aproxi-
macion local o de Hartree de la accion efectiva 2PI, el formalismo reproduce la aproximacion
Gaussiana, la cual también derivada utilizando un principio variacional [56, 57] o una resu-
macién de una clase particular de diagramas de Feynman. Sin embargo, al considerarla en el
contexto de la accion efectiva 2PI, existen ciertas relaciones de consistencia que, si bien son sa-
tisfechas automaticamente en la teoria exacta, pueden no cumplirse para ciertas aproximaciones
(como cuando la aproximacién no es una expansion sistemética en potencias de un parame-
tro pequeno). Este hecho es bien conocido en espacio plano, y la validez de las relaciones de
consistencia debe ser forzada mediante la inclusion de méas de un contratérmino para cada
constante de masa o acoplamiento en la teoria [29]. Nuestro primer objetivo ha sido mostrar
que este “procedimiento de renormalizacién consistente” puede ser aplicado a las ecuaciones del
valor medio del campo y del propagador en espacios curvos generales. Varios célculos explicitos
fueron realizados previamente en el espacio-tiempo plano usado como regulador un cutoff en
momentos (ver, por ejemplo, [25]). Este método también fue utilizado en espacios curvos, para
realizar calculos nimericos en el marco de la teorfa de campos fuera del equilibrio [59] o para
calcular correcciones cudnticas a los modelos inflacionarios [60]. Dado que el uso de un cutoff
en momentos viola la covarianza de la teorfa regularizada [61], hemos utilizado regularizacién

dimensional.

El procedimiento de renormalizacion consistente ha sido parcialmente extendido a espacio-
tiempos curvos en algunos trabajos recientes [58], donde la renormalizacién de las ecuaciones
del valor medio del campo y del propagador han sido analizadas. Nuestros resultados son
méas completos que aquellos de la Ref. [58]. Hemos incluido la expansién adiabatica completa
del propagador, hemos escrito las ecuaciones renormalizadas en términos de los pardmetros
renormalizados definidos a partir del potencial efectivo, y hemos mostrado explicitamente que,
cuando se expresan en términos de estos parametros fisicos, las ecuaciones son independientes

de la escala regularizaciéon ji introducida por la regularizacién dimensional.
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En este procedimiento, hemos considerado dos posibilidades a la hora de elegir el punto
de renormalizacién en la cual se definen los parametros renormalizados, y por ende donde se
imponen las relaciones de consistencia. Primero en el espacio-tiempo de Minkowski y luego en

un espacio-tiempo de De Sitter con curvatura escalar R.

Una conclusion relevante es que la aproximacion de Hartree y la aplicacion de las relaciones
de consistencia imponen restricciones sobre los parametros de sustraccion minima de la teoria.
Por un lado, la combinacién renormalizada m% + £pRy debe ser positiva. Por otro lado, la
definicion de la constante de acoplamiento renormalizada Ag en términos de la derivada cuarta
del potencial efectivo junto con la relaciéon de consistencia para la funcién de 4-puntos implican
relaciones entre los parametros de sustraccion minima y los renormalizados independientes de
it. De ellas, esta claro que algunas de las opciones de pardmetros de sustraccién minima pueden
no ser compatibles con las relaciones de consistencia. En particular, no se puede tomar A = Ay,

£ =0y m? < 0 simultdneamente.



Capitulo 5

Ruptura espontanea de simetria en De
Sitter

En este capitulo nos interesa discutir las condiciones bajo las cuales es posible encontrar
soluciones al conjunto de ecuaciones del valor medio del campo y de la masa dinamica en De
Sitter, en las cuales la simetria clasica Z, se rompe espontaneamente, ¢ # 0. Esto es interesante
por ejemplo para los modelos inflacionarios, donde el campo rueda por el potencial hasta llegar
a un minimo. Por lo tanto, la existencia de minimos no triviales del potencial efectivo es de gran
relevancia. Por otra parte, en la teoria de campos en espacio plano es sabido que los efectos
de temperatura finita sobre el potencial pueden conducir a una restauracién de la simetria
[15, 24, 25, 26]. Se cree que en los espacio-tiempos curvos, los efectos de la curvatura pueden
cumplir un rol similar. Otro punto relevante es si la transicion de fase es de primer o segundo

orden.

La aproximaciéon de Hartree tiene sus limitaciones para el estudio de estas situaciones. En
espacio plano, se sabe que ésta predice erroneamente una transicion de fase de segundo orden,
debido a que siempre hay un minimo en ¢ = 0. En el caso del espacio-tiempo de De Sitter,
veremos que el hecho de haber considerado distintos puntos de renormalizacién abre nuevas

posibilidades.

Por otro lado, se ha mostrado que en De Sitter, la teoria no admite ruptura espontanea de
la simetria en el limite de IV grande [42]. No queda claro si esto es una propiedad general, o un
artificio de dicho limite. Algunos argumentos basados en el formalismo de inflacién estocastica
parecen extender esta conclusién a todo N, pero en el limite infrarrojo [62, 63]. Estas cuestiones

estan vinculadas a la generacion dinamica de masa.

61
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Los resultados presentados en este capitulo fueron publicados en la Ref. [30].

5.1. Potencial efectivo en la aproximaciéon de Hartree en De Sitter

Para analizar la posibilidad de ruptura espontanea de simetria, aplicamos los resultados
anteriores al espacio-tiempo de De Sitter, cuyas simetrias permiten considerar soluciones para
¢y (¢?*) = |G] constantes. Ademds, como se verd de inmediato, en De Sitter la ecuaciones

dependen sélo de la combinacion
Mdyn = mdyn + fRR . (51)

El potencial efectivo puede obtenerse por integracién de (4.61),

Vers ¢, /Mdyn d¢2 — —)\ gb (5.2)

Para poder calcularlo debemos resolver para la masa dindmica como funcién de ¢ y R. Sin
pérdida de generalidad, en lo que sigue nos basamos en la ecuacion de la masa dindmica con
el punto de renormalizacién en De Sitter, (4.75), a partir de la cual es posible recuperar su

contraparte con el punto de renormalizacién en Minkowski, (4.66), tomando Ry — 0.

Comenzamos fijando en la ecuacién (4.75) la métrica de fondo g, a De Sitter, es decir,
F(m3,,,{R}) = Fas(mj,,, R) usando la expresién (3.13). Ademds, considerando el limite in-
frarrojo, usamos la expansién (3.16) para masas pequenas szn < H?. Con todas estas consi-

deraciones, la ecuacién para M3, entonces toma la siguiente forma

Ny -
Mdyn = m%% + gRR + 7R¢2 (53)
AR R? R 5R
— = 1 12m? — —
+327T2 { 24Mdyn 6 [K + log (R/ mR)} gRR 36
dF, (Er — §)Ro
B 2 as N 6
(mR + gRR) [2 dm? |m2, Ry m3
dF,
+2 ng(m%, Ro) d5 (R - RU)
dR |m2.R
49 dFys (€r — l)R
2
+ [f@—l—log (R/12m3) — 12 - T My o

donde hemos agrupado potencias de ./\/lflyn en el miembro derecho, y definimos k = 11/6 — 2.

La funcién Fyg y sus derivadas que no fueron especificadas en la expresién anterior estan
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evaluadas en m% y Ry, y son las que corresponden la eleccién del punto de renormalizacion.
Esta ecuacién puede inmediatamente llevarse a la siguiente forma

/\R§g2 :| Mcziyn

M4
Ags —2m 4 leS -

= 4
R R + CdS 07 (5 )

es decir, una ecuacién cuadratica para /\/lflyn /R, donde los coeficientes dependen de los distintos

pardametros renormalizados, de ¢ vy de R,

Ags = 1— % [m +log (R/12m7,) — g—i + 2% o %} . (5.5a)
Bus = — (m% + §R> + 3;;;;2 {g + élog (R/12m%) + € + %

+ (m}, + &rR) [2 C;Z;jj —— (Er— g T_né )Ro}

9 {Fds(mg, Ro) + dj }‘;S e (R— Ro)l } (5.5b)
Cas = —728*12, (5.5¢)

Aqui Cyg es siempre negativo, mientras que en principio Agzs v Bgs pueden tener cualquier
signo. Se puede ver que, para tener una solucion Miyn(é, R) real y positiva para todo ¢, es

necesario que Ags > 0, mientras que no hay restricciones sobre Bygs. Las soluciones son

* 1 * 192 2
—(R Bus — 2%) + \/ |[RBas — 257 |" — 4R? AusCas
2A4s ’

donde sé6lo una de las ramas da una solucién positiva, mientras que la otra rama da una solucién

Miyn(&a R) =

(5.6)

negativa. Cual rama es la apropiada depende del signo de Bys. Por el momento mantenemos

ambas.

Con esta solucién podemos volver a (5.2) e integrar para obtener el potencial efectivo. El

resultado es

2 AR )2 . - T
2R <Bds — ) <BdS - & > —A4dasCas Xagt _op R
_|_

2

Vigr(0.R) = F

8Ad5)\*R 8AdS
* 19 2 * 12
CysR*In \/(Bds - Agf{ > —4A45C4s + Bas — Aéﬁ ] A
R

+

5.7
Y 127 (5.7)
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Esta es una funcién tanto de ¢ como de R, que est4 bien definida para todo ¢ siempre y cuando
AdS > 0.

5.2. Ruptura espontanea de simetria

El potencial efectivo tiene un extremo en ¢, = 0, que es la solucién trivial de (4.50) para ¢
constante. Es inmediato comprobar que éste debe ser un minimo, dado que
d*Vey

i = M3, (¢ =0,R) > 0. (5.8)

¢3*=0
donde la condicion de positividad se desprende de la aproximacion de Hartree. Nos interesa
investigar si existen otros minimos que rompan la simetria Z5, es decir, para ¢, # 0. Segun la

ecuacién (4.50), esto sucede cuando
_ 3 _

Usando (5.6) esta condicién puede reexpresarse como una ecuacién cuadrdtica para ¢, cuyas

soluciones son

ap | —Bas* \/Bgs —4(Aus — 332 Cus
6=
AR 2 (AdS - 3A_R>

(5.10)

2R

Como se mencion6 mas arriba, en la aproximacion de Hartree el potencial efectivo tiene siempre
un minimo en ¢, = 0. Por lo tanto para que exista otro minimo en ¢, # 0, debe haber un maximo
en algtin punto intermedio. Por esta razén, debemos considerar ambas ramas de (5.10), y buscar
bajo qué condiciones ambas soluciones son reales y positivas. Antes que nada, puede verse que
Ags — 3\, /2Ar < 0 si Ag es suficientemente pequeno (0 < Ag < 1 es suficiente en general). En
ese caso, las condiciones son que buscamos son Big — 4 (Ags — 3\3/2Ar) Cas > 0y Bgs > 0.

Estas pueden juntarse en una sola

BdS -2 BAR — Adg |Cd5| > 0. (511)
2R

Observar que la imposicién de que Bgg > 0 selecciona la rama superior en (5.6) y (5.7).

Entonces ahora podemos buscar valores de los parametros para los cuales se satisfagan
simultdneamente las condiciones para que el potencial esté bien definido, Ags > 0, y para que
haya ruptura de simetria (5.11). Los coeficientes Ags, Bys y Cas dependen de m%, &, Ar, Ry
Ry.
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5.2.1. Caso Ry =0

Comencemos por el caso Ry = 0, es decir, con el punto de renormalizacién en el espacio de
Minkowski. Graficamos en la Figura 5.1 las regiones en el plano Ag-m%/R para las cuales cada
una de estas condiciones se cumple, considerando tanto el caso minimamente acoplado £g = 0,
asi como también £ < 0. El caso £ > 0 es cualitativamente similar al caso minimamente
acoplado, salvo una leve reduccién de la region donde es posible la ruptura de simetria. En

todos los casos consideramos |£z| < 1 de manera que M? < H.

0 of =
-5 -5 i
& «
N\ ~10 o~ _10F B
o o
1S £ .
> S N
° ) RS L L
-15 ~ -1 - H
~20f] P ‘ T .
0_‘.0 ‘ : 0_‘2‘ : ‘014 : A o_‘e O.‘8 1.0 0.0 O.‘Z O.‘A O.‘G O.‘S 1.0
AR AR
(a) Acoplamiento minimo ({g = 0) (b) Acoplamiento no minimo (5 < 0)

Figura 5.1: Estos graficos muestran aquellas regiones para las cuales el potencial efectivo esta
bien definido para todo ¢ (rayas de baja densidad) y donde las condiciones para la existencia
de soluciones con ruptura de simetria se cumplen (rayas de alta densidad), como funciones de
Ar (eje horizontal) y log(m%/R) (eje vertical), para g = 0y g = —5 x 1072, La primera
condicién se cumple siempre en ambos casos, mientras que la ruptura espontanea de simetria
existe para m%/R pequena. La regiéon de ruptura de simetria del primer grafico se mueve atin

mas hacia abajo y hacia la derecha al incrementar £ a valores positivos.

En la Figura 5.2 se muestran varias curvas del potencial efectivo para valores fijos de los
parametros pero variando los valores de R. Se puede ver que el potencial efectivo siempre
tiene un minimo en ¢ = 0, mientras que a veces también puede tener otro minimo para ¢ #
0. Remarcamos que fue necesario tomar valores de m% mds de 20 érdenes de magnitud por
debajo de R para poder ver el minimo con ruptura de simetria. Por lo tanto, este minimo

puede entenderse como una peculiaridad del acercamiento al limite no masivo. También vale
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Figura 5.2: Potencial efectivo para diferentes valores de m%/R. En todos los casos g = 0y
Ar = 0,6. Siempre hay un minimo para ¢ = 0, mientras que también puede o no haber un

minimo para ¢ # 0 con un méximo en el medio, dependiendo del valor de m%/R.

mencionar que este no es el tipico escenario de ruptura de simetria que exhibe una restauracion
al incrementar el valor de R, como se discute en general en la literatura, dado que aqui la

dependencia con R es justamente la opuesta.

Es importante tener en cuenta que la razén por la cual estdn permitidas las soluciones con
¢, # 0 es la presencia del término con Ap en (4.50), el cual viene como una consecuencia de
imponer las relaciones de consistencia 2PI. Por el contrario, tanto en la expansién 1/N como
en la aproximacién Gaussiana usual, la ausencia de dicho término requiere que ./\/liyn = 0 para
que ¢, # 0, v en tal caso no existe un vacio invariante de De Sitter y la ruptura de simetria no

es posible [55].

5.2.2. Caso Ry >0

El andlisis procede igual que en el caso anterior, pero ahora con un pardmetro nuevo a tener
en cuenta, Ry. Empecemos por considerar R = Ry, que resulta la manera mas natural de fijar
su valor. El primer hecho interesante es que la ecuacién de la masa dindmica (5.3) no depende
explicitamente de £z cuando R = Ry, sino solo a través de la combinacién yy = m%/ Ry + &g.

Para ver esto es necesario reemplazar explicitamente la funcién Fj;g y sus derivadas evaluadas
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en m% y Ry,

-t B oD
+ %{ (y - %) [ln (R%) +9(y) — 9(yo) — (yo - é) g/(yo)]
- (1) (w-5) + (- é)Qg%yo)}, (5.12

donde también se utiliza la variable y = M?iyn /R. Esto simplifica el anélisis ya que deja sélo dos

parametros libres, yo y Ag. En la Figura 5.3 se muestra el plano Ag-log(yo), en donde se puede
observar que, si bien existe una regién en la cual el potencial efectivo esta bien definido (rayas
de baja densidad), las condiciones de ruptura de simetria no se cumplen. Enfatizamos que en
este caso con R = Ry, no hay ningin otro parametro libre, ya que todas las combinaciones de
m%/Ry y g para las cuales yo > 0 fueron tenidas en cuenta. Este es un resultado importante,
que muestra la ausencia de ruptura de simetria en la aproximaciéon de Hartree en De Sitter,
si uno fija las relaciones de consistencia en la misma geometria. Esto resulta natural al menos

para ejemplos en los cuales la backreaction puede ser despreciada.

0ff-

Figura 5.3: Este grafico muestra en el caso R = Ry, la regién en la cual el potencial efectivo

est4 bien definido para todo ¢ (rayas de baja densidad) en el plano Az-log(yo). No hay regién

en la que se cumplan las condiciones de ruptura de simetria. No hay ningin otro parametro
libre.

Finalmente, consideramos el caso con R # Ry. Mostramos en la Figura 5.4 gréaficos en el
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plano log(R/Ry)-log(m%/Ry) de las regiones de interés para {g y A fijos. Observar que estos
graficos estan en un plano diferente en el espacio de parametros en contraste a los graficos que
analizamos anteriormente. En el caso con acoplamiento minimo, las dos regiones se superponen
s6lo para R > Ry y con valores de m%/ R, en una pequena ventana. En particular, esto implica
que en limite de masas pequenias m% < Ry, R, no es posible la ruptura de simetria. Mds atin, el
potencial efectivo no esté bien definido para todo ¢. Esto es diferente a lo que hemos visto en
la Figura 5.1a para el caso Ry = 0, donde la situacién era Ry < m% < R, es decir, el limite de
espacio plano era tomado primero. Es bien sabido que los limites no masivo y de espacio plano

en De Sitter no conmutan. Si ahora permitimos que £z # 0, nos encontramos con una situacion

log(mg?/ Rg)
log(mg?/ Rg)

.....

log(R/ Rqp) log(R/ Rg)

(a) Acoplamiento minimo ({r = 0) (b) Acoplamiento no minimo ({g > 0)

Figura 5.4: Estos graficos muestran aquellas regiones para las cuales el potencial efectivo esta
bien definido para todo ¢ (rayas de baja densidad) y donde las condiciones para la existencia
de soluciones con ruptura de simetria se cumplen (rayas de alta densidad), como funciones de
log(R/Ry) (eje horizontal) y log(m%/Ro) (eje vertical), para Ag = 0,1. Para ég = 0 ambas
regiones se superponen sélo para R > Ry y con m%/Ry en un rango limitado, mientras que
para £z = 4 x 1073 el potencial efectivo esta bien definido en todas partes y existe ruptura de

simetria para R/ Ry y m% /Ry pequenos. Los graficos no cambian cualitativamente al variar \g.

diferente. Ambas regiones se superponen para ciertos valores de los parametros, permitiendo
un potencial bien definido con ruptura de simetria. Algunos ejemplos de dicho potencial se
muestran en la Figura 5.5 para diferentes valores de R/Ry. La ruptura esponténea de simetria
ocurre para valores pequenios de R/ Ry y luego la simetria se restaura para valores mayores de

dicho cociente.
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Figura 5.5: Potencial efectivo para m%/Rg = 107°, ég = 4 x 1073 y Ag = 0,1; para diferentes
valores de R/Ry. La ruptura esponténea de simetria se observa para valores pequenos de R/ Ry,

mientras que para valores mayores la simetria se restaura. El valor critico en este caso es

R/Ry ~ 6,5 x 1073,

5.2.3. Restauracion de simetria en el limite de N grande

Como se ha discutido en el capitulo anterior, las ecuaciones del valor medio del campo en el
limite de NV grande difieren de aquellas en la aproximacién de Hartree con N = 1. En particular,

la condicién para tener un extremo del potencial en ¢, # 0, segiin la ecuacién (4.86), resulta,
M, (6, R) = 0. (5.13)
Luego, al insertar esta condicién en la ecuacién para el propagador (4.85), se tiene
OG;(z,z") = 0. (5.14)

Sin embargo, como mencionamos en el capitulo 3, es bien sabido que no existe un propagador
invariante de De Sitter para un campo escalar minimamente acoplado y sin masa [13, 14]. Por

lo tanto, un ¢ # 0 constante no puede ser una solucién de las ecuaciones (4.84) y (4.85).

Con este argumento, se descarta la existencia de soluciones con ruptura de simetria en De
Sitter en el limite de N grande [42, 55]. Permanece como pregunta abierta si la restauracién de

simetria se da para todo N.

5.3. Discusion

En este capitulo nos hemos concentrado en el espacio-tiempo de De Sitter. Para esta métrica

determinada, hemos escrito la forma explicita la ecuacién de la masa dinamica en la aproxima-
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cién de Hartree. Luego, hemos hallado la solucién autoconsistente de dicha ecuacién en el limite
infrarrojo y calculado el potencial efectivo a partir de la misma. Posteriormente hemos realiza-
do un anélisis del potencial efectivo para diferentes valores de la curvatura del espacio-tiempo
de De Sitter R, de los parametros renormalizados y de la curvatura R, asociada al punto de
renormalizacién. Este andlisis es de alguna manera andlogo al realizado en [24] para un campo
escalar auto-interactuante a temperatura finita, donde el punto de renormalizacién es elegido

para un valor finito de la temperatura fijo.

Nuestros resultados muestran que la simetria Z5 puede romperse espontaneamente cuando
se utiliza la renormalizacion consistente, aunque no en condiciones generales. Esto debe con-
trastarse con los resultados previos obtenidos usando una renormalizacion estandar de la teoria,
como puede verse facilmente a partir de las ecuaciones del valor medio del campo y del propa-
gador. En efecto, cuando las relaciones de consistencia no son tenidas en cuenta y no se permite
la presencia de diferentes contratérminos, las ecuaciones (4.50) y (4.51) son aquellas del limite
de N grande. Por lo tanto no es posible hallar ruptura espontanea de simetria utilizando la

renormalizacion estandar.

De todas formas, estos resultados no son concluyentes sobre la existencia o no de la ruptura
espontdnea de la simetria Z,. No estd claro si la existencia de soluciones con ¢ # 0 es un
artefacto de la aproximacion de Hartree o no. Es plausible que la inclusion del diagrama del
“atardecer® en el cdlculo de la accién efectiva 2PI restaure la simetria Z,. Para abordar esta
cuestién hay varias complicaciones técnicas a ser resueltas. Por un lado, el uso del formalismo
de camino temporal cerrado, o IN-IN, sera inevitable al considerar los términos no locales en
la accién efectiva 2PI. Por otra parte, la inclusion de diagramas de mayor ntmero de loops
en la accién efectiva 2PI involucra algunos puntos sutiles en la renormalizacién, incluso en

espacio-tiempo plano [25], que tendrén su contrapartida en espacios curvos.

Por ultimo, es importante demostrar que este procedimiento de renormalizacion consistente
puede ser extendido en espacio-tiempos curvos generales para hacer finito también al sector de

gravedad de la teoria. Este es el principal objetivo del préoximo capitulo.



Capitulo 6

Ecuaciones de Einstein Semiclasicas y
soluciones autoconsistentes en la

aproximacion de Hartree

Hasta ahora nos hemos ocupado de las ecuaciones del valor medio del campo y de la masa
dindamica, obtenidas a partir de la accién efectiva 2PI en la aproximacién de Hartree. Estas dan
la dindmica de ¢ y G para una eleccién dada de la métrica guv- Sin embargo, estas ecuaciones no
tienen en cuenta el efecto del campo cuantico sobre la geometria de fondo. Con el fin de evaluar
si esta backreaction es importante o no, tenemos que hacer frente a las EES en el contexto
de la accién efectiva 2PI. Primero, se debe verificar que el procedimiento de renormalizacién
consistente es aplicable también a dichas ecuaciones. Luego, se puede estudiar como la dinamica
conjunta de la métrica clasica y el campo cuantico puede modificar las conclusiones sobre la

posibilidad de ruptura espontanea de simetria.

En este capitulo se presentan los resultados publicados en [31].

6.1. Renormalizacion de las ecuaciones de Einstein semiclasicas en

espacios curvos generales

En el capitulo 2 hemos discutido como definir el valor de expectacién del tensor de energia-
momento que entra en el miembro derecho de las EES (2.38), a partir de la variacién de la accién

efectiva 1PI respecto de la métrica (2.13). Aqui, generalizamos esa definicién considerando en

71
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su lugar la accion efectiva 2P1,

2 5F2P1[¢_), G, QW]
V=g oghv

<me> - = (61)

Siguiendo la discusion del capitulo 2, una definicion correcta del valor de expectacion requiere
la utilizacién del formalismo IN-IN. Sin embargo, a los fines de la renormalizacién, esto no
es indispensable. Asimismo, como se ha mencionado en el capitulo 4, en la aproximacién de

Hartree los resultados son equivalentes en los formalismos IN-OUT e IN-IN.

El procedimiento de renormalizacién involucra el célculo de (7)) y la regularizacién de
sus divergencias. Estas pueden ser de dos tipos, independientes del campo ¢ y por lo tanto
s6lo geométricas, como en el caso del campo libre discutido en el capitulo 2, o por el contrario
dependientes de ¢ y relacionado con las autointeracciones. Para que las EES sean renormaliza-
bles en el contexto de la renormalizacion consistente, las divergencias no geométricas deben ser
canceladas completamente con la misma eleccién de contratérminos que para las ecuaciones de

campo y el propagador.

Vamos a seguir el procedimiento habitual y definir el tensor de energia-momento renorma-
lizado como en (2.36), donde el cuarto orden adiabatico se entiende como la expansién que
contiene hasta cuatro derivadas de la métrica y hasta dos derivadas del valor medio del campo
[47]. Nuestro objetivo es mostrar que con la misma eleccién de contratérminos que para las ecua-
ciones de campo y del propagador, la cantidad (7),,)qq solo contiene divergencias geométricas

que pueden absorberse en las constantes gravitacionales desnudas.

El valor de expectacién (7),,) puede calcularse de manera similar al caso libre (2.34) [48]

/\BQ 2 )\B4 -4
[G1]

ot g =t o 62)

<Tuu> - Tuu(ﬁg) + <T;{u>

B,libre

donde los términos nuevos entre corchetes provienen de la autointeraccién (3.5), y donde el
subindice B indica que los pardmetros en esas expresiones son los desnudos. Notar en particular
que la contribucién cuadrética en [G1] se interpreta como proveniente del valor de expectacién
("), recordando que en la aproximacién de Hartree (con N = 1) los valores de expectacién de
productos de campos se pueden escribir en términos (¢?) = [G1]/2, usando que los estados son
Gaussianos (4.37).

Para la renormalizacién es ttil separar en las expresiones para 7, (¢)|siore ¥ (T, /{V) los
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acoplamientos entre partes renormalizadas y contratérminos de sustraccién no minima (4.76),

_ - on
Tu@),, = Twl@),, + 0 (Bt 0008+ FC) B (63)
-
<Tp,fu> B = <T/fu> R + Eg <_[G1];MV + glﬂ/D[Gl] + RMV[G1]> ) (64)

donde el subindice R indica que ahora los parametros son los renormalizados. Notar que, si bien
no hay divergencias en T}, (®)|g ibre, la cantidad (T, )| todavia tiene divergencias provenientes

del limite de coincidencia de G; y el de sus derivadas (ver ec. (2.35)).

Aqui es importante recordar que la funcién de 2-puntos G (z, ') que aparece en estas expre-
siones esta dada por una ecuacion autoconsistente, en virtud del tratamiento no perturbativo
de la accién efectiva 2PI. En la aproximacién de Hartree, ésta satisface la ecuacién (4.51), que
implica que en este caso la funciéon de 2-puntos es aquella de un campo libre con masa mgyn y

acoplamiento con la curvatura &g.

Ahora estamos listos para demostrar que los contratérminos elegidos anteriormente para
renormalizar las ecuaciones del campo y de la masa dinamica también cancelan las divergencias
no geométricas de (7},,). Las expresiones que involucran a [G1] y sus derivadas pueden expresarse
en términos de mj,, y de las constantes desnudas usando que la masa dindmica se define
mediante la igualdad entre las ecuaciones (4.49) y (4.51), que en una forma més conveniente se
lee

A - Aro —
S (G = mly, — 0ER — mi — S 26 (6.5)

Con este reemplazo, junto con (6.3), (6.4) y (6.2) tenemos

- (3AB2 — Ap4) -
(Tw) = Tuld)| = +(Th)| + =2,
255 2 2 2 Mgy m%
B2 [_md?””%w + Gu DMy, + Gy, | + 2)\;;2 Guor = My~ \B Iy
552 ~m2 m% m?
o OH,, — 252G MMy,
iy T,
2 s ¢
+(mR - mdyn)?gw/' (66)

Aqui el término proporcional a ¢* ya es finito dada la relacién (4.48) entre los contratérminos, y
es por lo tanto igual a A Rgz_54gm, /12. Los términos de la segunda linea contienen las divergencias

no geométricas que deberdan cancelarse con aquellas de <T,{u>| Rr, mientras que aquellos de la
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tercera linea contienen divergencias puramente geométricas. Por ltimo, el término de la cuarta

linea es finito.

Vale enfatizar que las divergencias en la ecuacién (6.6) son proporcionales a polos simples
en €. De hecho, a partir de la definicion de 55 = &g — &g vy de las relaciones (4.79) es sencillo

ver que

& (1 1 1
oo = () (e 5) (o7
0 | | (&r—3) 1) | (€r—35)
)\_Bz_)\m[ )\RG +J _2<§R_6) )\RG +J
_1)?2
+M, (6.7b)

con J definido en (4.79), las cuales son expresiones exactas. Observar que A5 contiene sélo un

polo simple,

1 1 1

=<+ = 6.8

Aga A 16732¢ (6.8)
Ahora expandimos (7},,) hasta el cuarto orden adiabatico. Usaremos las expresiones explici-
tas del limite de coincidencia de Gy y sus derivadas dados en la referencia [47]. La expansién

adiabdtica hasta orden cuatro de (T,) = (T )R es

~ 1 oma N\, ¢ , (1 1
(Twhoas = 155 2 gmdynng(—2—§)+mdyn S Shlgw + {&r = ¢ | B

< 0 (1= 8) {3l + (60— ¢ ) Rulen] ~ 0
" (% - gR) [l + (gR - i) I D[ﬂﬂ} r (—%)] , (6.9)

donde las expresiones para [], [€2] ¥ [€41..,] pueden encontrarse en el Apéndice A de [47].
Notar que aqui, sin embargo, estas contribuciones estdn expresadas en términos de g en lugar

de ¢g. Expandiendo para e — 0, reagrupando los términos geométricos para formar los tensores
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apropiados y separando la parte divergente llegamos a la siguiente expresion,

1 1

- 1 1
<Tuu>ad4 - 167T2€{_§mflyn9uy + Qm?iyn (gR - 6) GMV + % |:(2)HH,V - Huuj|

1\? 1
o) (o) o)
4 2 2 ;
Migym 1 Meyn, Mdyn 1 Dayn
L= _1 —_ = G l/]‘ <
+ 647]_29# [2 Il( ﬂQ ):| + ]_67T2 éR 6 g . ILL2
1 [1 1y’
~ (@, "))~ (¢r—>) Om
+ 3271'2 [90 ( n% ,uu) (é-R 6) pv

1 2 2 mgyn
+ 2(&n—7) (gwOmly, —md,., )| [1+n )l (6.10)

Remplazando la ecuacién (6.10) en la ecuacién (6.6) se puede verificar que se cancelan las
divergencias no geométricas en (6.6) (aquellas que involucran a mj,,). Este resultado muestra

la renormalizabilidad de las EES dentro del procedimiento de renormalizacion consistente.

Para completar el andlisis, escribimos la expresién completa para el orden adiabatico cuatro,

la cual separamos en su parte divergente y convergente:

(T/W>ad4 = <Tuu>2’§i + <Tm/>gccﬁ> (6~11)
con
1 1 [2 m? ~|m% (ér—3) Ro
T\ - In(—=2)|(®H,, —H,) - 26 R 6 G
i 90327TQ|:6+ +n(ﬂ2)}( o= M) =208 '
= (€R - 1) dm | m? (SR —) Ry m*
) & +J| WH, R 6 p— R 6.12
LT S Ve RN I TR we = Gamzdu s (012)
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<Tul/>2(:ﬁ = T;w (¢)

AR 74 m% 2 m% (53 - %) Ry
‘R,libre * E(b v+ <7 Mdyn +

A 322 v
LM (32?1 e LY Fo_, dFus
6472 | N, 2 B m dmgyn m2,Ro Juw
L], o L\« 2 2 dFys
+ 1672 _deynGW - (gR - 6) ( )H;w + 29, 0mg,,, — Zmdyn;w, AR 2 Ro
1 m;h 2 1 1 (2)
M {_Tg“” 2y \&r = ) G+ 55 (P = Ho)
2 2
1 md n
2 12 4
Mayn 1 2 2 0 Mg
T 1672 (55: - 6) G + (mR - mdyn) ?g,ul/ + @g,uu : (6.13)

Como se esperaba, la parte divergente contiene divergencias puramente geométricas. La par-
te convergente es finita, depende del campo, y puede ser escrita en términos de los parame-
tros renormalizados (y por lo tanto independiente de fi). Hemos incluido la contribucién finita
—% G en (T,,)%% para asegurar el limite correcto a 1-loop del contratérmino de la constante

cosmoldgica.

Ahora podemos sumar y restar (7},,)qq4 €n el miembro derecho de las EES (2.38),

KBI(GMV + ABg,uV) + a1 (I)H,uz/ + (0%)2] (2)H,uy + a3p Hp,l/ -

(T} = (Twaas] + (T Yadis + (T (6.14)

donde la cantidad entre corchetes en el miembro derecho se identifica segin (2.36) como (T},,) ren,

es decir, el valor de expectacion renormalizado del tensor de enegia-momento. Para completar

la renormalizacién absorbemos (7},,)%% en una redefinicién de las constantes gravitacionales
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desnudas del miembro izquierdo,

kg = kg + Z—E { (SR — é) E + % + %ln (2—?)} - dj}f m%’RO} : (6.15a)
Apky' = Mgy — T’;%Zf% [% %m (M—z%) - difgjn | 6?31:2, (6.15b)
1B = QR — (516%%) { ({R — é) E + % + %ln (n;_z{)} — djés m%’RO} , (6.15¢)
Qo = QiR + 144107T2 E + % + %ln (TZ—E%)} , (6.15d)
L 144107r2 E N % N %m (M—%ﬂ . (6.15¢)

Estos son consistentes con los resultados conocidos de 1-loop [47] al sustituir los pardmetros
desnudos en el lado derecho (en los contratérminos) por los renormalizados y fijar Ry — 0, lo
que justifica la eleccién de (T),,)%7 en (6.12). La relacién entre los pardmetros desnudos de la
parte gravitacional y aquellos renormalizados es dependiente de fi. En el capitulo 4 hemos visto

que lo mismo ocurre al calcular los contratérminos asociados a los parametros renormalizados
del campo (4.76).

Finalmente, las EES renormalizadas son
“J_«zlGW + ARHJ_%lguV + QiR me + aor (Q)HW + azr Hy = (T )ren + (L) aans (6.16)

las cuales, como era de esperar, pueden ser expresadas en términos de sélo los parametros
renormalizados. Esto concluye la prueba de la renormalizacion consistente de las EES en el
contexto de la aproximacién de Hartree a la acciéon efectiva 2PI, en espacios curvos generales.
Este resultado se complementa con aquellos del capitulo 4, donde se probé la renormalizabilidad

de las ecuaciones del valor medio del campo y de la masa dindmica en este mismo contexto.

6.2. Las ecuaciones semiclasicas de Einstein en De Sitter

En esta seccién aplicamos los resultados anteriores al espacio-tiempo de De Sitter y calcu-
lamos explicitamente el tensor de energia-momento renormalizado y las EES. Posteriormente,
consideramos las ecuaciones del campo y la masa dinamica en conjunto con las EES para

analizar la existencia de soluciones autoconsistentes con y sin ruptura espontanea de simetria.
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En De Sitter todas las cantidades geométricas son proporcionales a g,,, con un factor de

proporcionalidad que sélo depende de R y el nimero de dimensiones d:

R, = %gum (6.17a)
(%V:(é_%)R@M (6.17D)
=L () ot
@H,, — %z (1 _ 3) R g, (6.17d)
H,, = ﬁ (1 — 3) R? g, (6.17e)

Lo mismo sucede con cualquier otro tensor de segundo rango, por ejemplo
1
[Gl;,uzl] = E[DGl] g,uzw (618)

La invarianza de De Sitter también implica que cualquier escalar invariante es constante, y en
particular que [G;] es independiente del punto espacio-temporal. El tensor de energia-momento
también serd proporcional a g,,,. En efecto, de la expresién general (6.2) junto con las ecuaciones
(2.33) y (2.35), y usando (6.17), se obtiene

2 Apu - (1 1 1 2

(Tw) = —%d)z - %& + &pg° (a - 5) R — %[DGH] - %[Gl]
1 G 1 1 Ago - A
+Zmaﬂ+@¥}(E—Q)R—j?&mﬂ—g§mm Gu (6.19)

Nuevamente utilizando la ecuacién (6.5) para simplificar la expresion y escribiendo d = 4 + e,

llegamos a

T = {ﬁ@&—éwm—A“$—1@@+i@Eha]

2 4 4 8 2
1 4 - 1 ~
o <4—+6 - 1) [sgm — 5 (mh, — o¢R) [Gﬂ] } G (6.20)

Aqui todavia no podemos poner ¢ — 0 en el denominador, ya que esta multipicado tanto por

pardametros desnudos como por [G1], que contienen polos en € que pueden conducir a términos
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finitos en dicho limite. Luego de algunas manipulaciones y de descartar los términos de O(e),
resulta

B 1[.. € ~ m2 (fR—l)RO
(Tw) = {5{5m2+(1+4+6) 55}2] <A§+32—7f2> (6.21)
4 \ edf [ (r—3 1(m% (&h—3%)R
+ (4+€> €8§<(R)\R6>+J> R2+§<T§+(R327f2) O) (m%_mzyn)

1 ) 1\ 1?
1ogr2 | M T\ Sr =G ) B 0

Para calcular el valor de expectacion renormalizado, (T),)ren = (L) — (1)) ads Decesitamos

1 2 72 /\R*4
— Z(mdyn+€RR)¢ +E¢ +

evaluar (7},,)qas (dado en la ecuacién (6.11)) en De Sitter. Para ello, utilizamos las expresio-
nes geométricas en d dimensiones (6.17). Separando nuevamente el resultado en (7, )aa =

(T )ads + ()i se tiene,

: 1 R 1 m%  (§&r— %) Ro
div - 5 2 R A 6770
Tavdods = {647r22160 2 [5 (H 4+e )‘%R} (Ag T e

4 e o€ (6r— ) 2 My
J| R — » 6.22
+(4+e) 8 ( o Gar2 [ 9 (622)
<T >con _ m_%% m_%% (SR_%) R0+ m%% mdyn § _
piedt ) o Ny, 3272 3272 | T Gam? \OF
My [320% 1 (€r— )R dFus
Toeae |y 2 L,
™1 R R Mgyn 'mp:Ro
2 r 2 2
mdyn 2 1 mdyn 7ndynR dFdS
I —Z\Rl1 —
6anz | T <£R 6> } n(mgz 3272 dR lm2Ro
2 1 12
2 mg (éR - 6) Ry &R Gb AR 74
-~ AL Pkl CR . 2
dyn [A}; T e M+ 5 B ) 5+ 750" 0 0 (6:23)

Notar que el primer término de la ecuacién (6.22) es finito y es el origen de la anomalia de
traza [11]. Este término serd relevante a la hora de buscar soluciones autoconsistentes en De

Sitter, como ya sucede en el caso de campos libres [64]. Juntando todo, el valor de expectacién
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renormalizado resulta

1 3272 (§r— %) Ro dFus 7
To)ren = —— 2 6 -2 Gy — M7 _1622
(T,) 12 {mdyn [( N + 2 dm?iyn 2 Ro (M, — mp) ¢
1 m> dF, dF,
) dyn ds 2 as
_ —— | R|1 —2R -
{mdy” ! <€R 6) ] ' ( i ) AR Ly dm?, mR]
1 1 2 R2
- g(amg) me m}g (6.24)

Para hacer contacto con el resultado conocido a 1-loop, podemos usar la ecuacién (4.75) para

llegar a una expresion més familiar [47]

1 dFdS dFdS
Thren = ———=<X2m2 | F 2 Ry)) — R — m? —F 2 R
() 64#2{ Mayn | Fas (Mg, o) = Ro dR m2,Ro Bdm3,, m3,.ry as My F)

1 1\? R2
S — ) R+ —3q,.. 6.25
2 (53 6) * 2160}9“ (6:25)

Fijando Ry — 0y usando (3.13) para ng(mflyn, R), se obtiene una expresién que es exactamente
la misma que en el célculo a 1-loop [47], en la medida que aqui se reemplace mﬁyn = m%+Ard?/2,
en lugar de que mj,,, sea una solucién de la ecuacién autoconsistente (4.75). Mas atin, es sencillo

ver que se satisface el limite de campo libre usual [11], ya que mj,, — m3 cuando Ag — 0.

Finalmente, escribimos las EES en De Sitter. En el miembro derecho tenemos

4 12
1 m? ¢r— 1) R
i (2 (G ) i

R 1 1 2
4 2
— Mp -+ 2160 — 5 |:mdyn + (SR - 6) R:| }guw

mientras que en el izquierdo tenemos G, + Arg,, = (—R/4+ AR)g,.- Los tensores cuadraticos
O g

2
a las divergencias que los parametros desnudos «o;p, con ¢ = 1,2, 3, tienen en d — 4, queda un

1 — AR -
<T;w>ren + <T;w>con = [__(mzlyn + éRR)(bZ + _R¢4] Guv (626)

A H w Y H,, se anulan para d = 4, por lo que no aparecen aqui. Sin embargo, debido

remanente finito proporcional a k% en el miembro derecho de las EES en dicho limite, que como

mencionamos es la anomalia de traza. Entonces, factorizando el g,, presente en ambos lados,
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nos queda una ecuacién escalar (y algebraica) para el unico grado de libertad de la métrica, R,

R 1 | R m%  (&r— %) Ro
M2 o A - 2) 2 R 6 2 . 2Y 4 9
pl ( 1T R) . {—2160 + 327 <_)\7% T (M3, —m%) — mz(6.27)

_ Ap o, 1 1 2
+ 167 (m3,, + ErR)$* — 647r21—§¢4 -3 [m?lyn + <§R - 6) R] } :

donde M, es la masa de Planck, con kg = 87r/M§l = 871G y.

6.2.1. Soluciones de De Sitter autoconsistentes

Para estudiar la relevancia del efecto de backreaction, es decir, si los campos cuanticos
afectan la dindmica de la métrica de fondo, se deben resolver simultaneamente las ecuaciones
del valor medio del campo (4.50), la ecuacién de la masa dindmica (4.75) y las EES (6.27) de
forma autoconsistente para ¢, m,, v la curvatura escalar de De Sitter R. Este es un sistema
cerrado de ecuaciones algebraicas dado un conjunto predefinido de pardmetros m%, &g, Ag y
AR, cuyas soluciones fisicamente interesantes en un escenario cosmoldgico son aquellas con Ry
M¢21yn = m?lyn + &g R ambos positivos. La inclusion de las EES (6.27) pone un nuevo pardmetro
en juego , a saber, la constante cosmolégica Ar, asi como una nueva escala de masa Mgz- En el
andlisis presentado en el capitulo anterior, R era considerado fijo (es decir, como un parametro)
y el potencial efectivo y sus minimos fueron estudiados con el fin de encontrar los valores de los
parametros restantes m%, &, Ar v Ry para los cuales existen soluciones con ruptura espontanea
de simetria. Haber considerado a R como fijo tiene sentido bajo el supuesto de que el efecto
del campo cuantico sobre la métrica de fondo es pequeno, y por lo tanto es posible desacoplar
las EES de las ecuaciones del campo y de la masa dindmica. Si este es el caso, el valor de R se

vuelve efectivamente independiente de ¢ y Mc%yn, y viene dado simplemente por el parametro

Ag.

El objetivo de esta seccion es encontrar algunos ejemplos de soluciones autoconsistentes de
las tres ecuaciones para los tres grados de libertad. Con este fin, tomamos como punto de partida
algunos conjuntos de valores de los parametros m%, £, Ag y Ry que permitan tanto soluciones
simétricas como aquellas con ruptura de simetria, segin el andlisis del capitulo anterior. Luego,
buscamos soluciones de ¢, m?lyn y R para diversos valores de A y analizamos cémo éstos
difieren de la solucién clasica (definida como aquella en ausencia de backreaction, o Mgl — 00).
Si esta diferencia es pequena, entonces la backreaction puede ser ignorada, de lo contrario, debe

tenerse en cuenta.
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Un punto adicional de discusién es si los parametros Ry y Ar deben estar relacionados o
no. Si esto llegara a ser el caso, una manera sensata de fijar uno dado el otro seria utilizar la

solucién clasica Ry = 4Ag.

Fase simétrica

Como se discutié anteriormente, el potencial efectivo siempre tiene un minimo en ¢ = 0

como consecuencia de la restriccion impuesta por la aproximacion de Hartree szn > 0.

Resolvemos el sistema de ecuaciones fijando ¢ = 0 en (5.6) para obtener M?lyn como una

funcién sélo de R y luego reemplazamos en la EES (6.27) para obtener una ecuacion de la forma
Ar = I4(R). (6.28)

donde I, depende también de los parametros m%, g, Ar v Ro. El subindice s se refiere al caso

simétrico. Los resultados numéricos se muestran mas adelante.

Fase con ruptura espontanea de la simetria

El minimo no simétrico del potencial estd dado por la ecuacién (5.9), cuyas soluciones
#*(R) son (5.10). Ambas ramas dan una solucién con M, > 0, la menor correspondiente a
un maximo y la mayor a un minimo del potencial. Segin el andlisis descripto en el capitulo
anterior, la condicion sobre los coeficientes Aqg, Bgs v Cas para la existencia de soluciones con

ruptura de simetria esta expresada en la desigualdad (5.11).

Nuevamente, reemplazar ¢(R) y M3, (R) en la EES da una ecuacién de la forma
Agr = I,5(R). (6.29)
El subindice 7s se refiere a la ruptura de simetria. Notar que en general I,4(R) es diferente a

L(R).

Resultados numéricos

En lo que sigue se presentan los resultados numéricos en términos de la desviaciéon relativa
(R— R.)/ R de las soluciones de la backreaction R con respecto a la solucién clasica Ry = 4Ag
como funcién de Ag, tanto para la fase simétrica como para aquella con ruptura de simetria,

cuando existe.
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Figura 6.1: Desviacién relativa de la solucién a la backreaction para la curvatura del espacio-tiempo
de De Sitter con respecto a la solucién clésica, (R — R)/R., como funcién de Ar para diferentes
valores de la constante de acoplamiento Ag. Los parametros fijos son Ry = 4AR, m%% = 10*5M5l. El
panel de la izquierda corresponde a g = 0 y el de la derecha a ég = 4 x 1073, Todas las curvas
corresponden a la fase simétrica (la tinica posible cuando Ry = 4ARr). De abajo hacia arriba: Ag = 0,1
(linea de guiones azul), Agr = 0,2 (linea de puntos y guiones roja), Ag = 0,5 (linea punteada marrén).
Notar que para valores suficientemente pequenios de Ag las curvas son continuadas por lineas sélidas

negras, indicando las regiones donde M?lyn > R/10.

Analicemos en primer lugar el caso en que Ry = 4Ag. Esto significa que los parametros
renormalizados se definen en el valor de la curvatura escalar del espacio-tiempo de De Sitter
que la teoria habria tenido en ausencia de backreaction. Es notable que en este caso no existen
soluciones con ruptura espontanea de simetria. A modo de ejemplo, en la Figura 6.1 hemos
representado la desviacién relativa para diferentes valores de la constante de acoplamiento \g,
de abajo hacia arriba: A\g = 0,1, 0,2 y 0,5, con todas las curvas correspondiendo a la fase
simétrica, y my = 107°My;. En el panel de la izquierda se tiene acoplamiento minimo con
la curvatura £z = 0, mientras que en el panel de la derecha su valor es £ = 4 x 1073. Es
interesante ver que, debido a las correcciones cudnticas, la curvatura escalar R puede ser tanto
mayor como menor al valor clasico dependiendo del valor de Ag. Notar que hay ciertos valores
de Agr no existen soluciones. Por un lado, se puede ver que la aproximacion Mflyn < R se
rompe para valores suficientemente pequetnios de Ar. Para hacer esto explicito, en la Figura 6.1
y en lo que sigue, se usan lineas solidas negras cuando M?lyn > R/10. Por otro lado, dado que
solo estamos considerando casos donde el potencial efectivo para ¢ esta bien definido, existe
una cota minima (dependiente de Ag) para la suma m%/R + &g segin se ha discutido en los

capitulos anteriores, la cual se viola para valores suficientemente grandes de Ag.
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Figura 6.2: Lo mismo que en la Figura 6.1, pero para valores diferentes de la curvatura escalar Ry
asociada con el punto de renormalizacién. Panel izquierdo: soluciones simétricas para Ry = 0 (linea de
guiones azul) y Ry = 10*3Mgl (linea de puntos y guiones roja) con parametros fijos m% = 10*4M§l,
¢r = 0, y Ap = 0,1. Las curvas son practicamente indistinguibles, mostrando que las soluciones

no dependen fuertemente de Ry. Panel derecho: soluciones con ruptura de la simetria para Ry =
7 X IO*QSM; (linea de guiones azul), Ry = 10*27M51 (linea de puntos y guiones roja), y Ry =
1,25 x 10*27M5l (linea punteada marrén) donde los pardmetros fijos son m% =5 X 10730M§p §r =0,
v Ar = 0,1. En este caso, los valores de Ry fueron elegidos para estar en el rango en el cual existen las

soluciones con ruptura de simetria.

Analizemos ahora los casos donde Ry es considerado fijo e independiente de Ag. En la Figura
6.2, el panel de la izquierda corresponde a la fase simétrica, mientras que el panel de la derecha
a la fase con ruptura de simetria. Se puede ver que la backreaction es mas significativa en la
fase con ruptura(por ejemplo, la desviacién es del 1% para A ~ 0,04 Mp%, Ry ~ 10*27M51 y
m% =5 x 107 M2), mientras que en la fase simétrica la solucién se mantiene mas cerca de la
clasica. La diferencia entre la backreaction y las soluciones cldsicas puede volverse importante
para valores grandes de la constante cosmolégica (no mostrado en la Figura). En efecto, se
puede mostrar que la solucién de la backreaction para R se anula en el limite de Ar grande
(superplanckiano). Sin embargo, adoptando una perspectiva de teorias de campos efectivas, nos

restringimos aqui a valores subplanckianos.

Dado que en general la solucion con ruptura de simetria solo es posible para una eleccién
adecuada de los parametros, los valores de Ry en el panel de la derecha fueron elegidos cuidado-
samente para que se encuentren dentro de la ventana estrecha donde existen estas soluciones,

y que desaparezcan por debajo de un valor pequenio de Ag dependiente de los pardmetros (de-
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bajo de 10’3M§l en los ejemplos que se muestran). Es posible verificar que la aproximacién
M?lyn < R se puede romper dependiendo de los valores de los parametros. Para los valores
considerados en el panel de la izquierda de la Figura 6.2, esto sucede para valores suficientemen-
te pequenos de Ag, mientras que para aquellos en el panel derecho, la aproximacién mantiene

su validez.
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Figura 6.3: La desviacién (R — R.)/Re vs. Ag para las soluciones a la backreaction correspondientes
a las fases simétrica (a la izquierda) y con ruptura de simetria (a la derecha). Paneles superiores: tres
curvas correspondientes a distintos valores del acoplamiento con la curvatura: &g = 4 x 1072 (linea de

guiones azul), £g = 1072 (Iinea de puntos y guiones roja), y g = 2 x 1072 (linea punteada marrén),
donde los parametros fijos son m% = 10_7Mgl, AR =01y Ry = 10_2Mgl. Paneles inferiores: cuatro
curvas diferentes mostrando la dependencia con el valor de Ry para mQR = 10_7M5l, €r =4 x 1073,

y Ar = 0,1: Ry = 10_2Mgl (linea de guiones azul), Ry = 5 X 10_3M51 (linea de puntos y guiones
roja), Ry = 10*3M§l (linea punteada marrén), y Ry = IO*QSMI?I (linea de guiones verde). Notar que

no existen soluciones con ruptura de simetria para los ultimos dos valores de Ry.

La backreaction para el caso de un acoplamiento no minimo con la curvatura se ilustra
en la Figura 6.3, donde la izquierda (derecha) los paneles se corresponden con las soluciones

simétricas (con ruptura de simetria). Los paneles superiores muestran la dependencia de las
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soluciones con el acoplamiento a la curvatura £g, mientras que en los paneles inferiores dicho
acoplamiento &g es fijo v se consideran diferentes valores de Ry. En particular, a partir de
la Figura de la parte inferior izquierda, se puede ver que en el caso simétrico, el efecto de
las correcciones cuanticas puede aumentar o disminuir el valor de la curvatura escalar R del
espacio-tiempo de De Sitter con respecto a la clasica, dependiendo del valor de Ag. En la fase
simétrica hay soluciones autoconsistentes para valores grandes de Ag, mientras que en la fase
con ruptura de simetria sélo existen soluciones para Ag por debajo de una cota superior (que
depende de los pardmetros). Se debe tener en cuenta que también hay un limite superior para
Ry por debajo del cual, bajo nuestras aproximaciones, no existe ninguna soluciéon con ruptura
de simetria sin importar el valor de Ar. Por otro lado, se puede comprobar que la aproximacién
M¢2iyn < R deja de ser valida para valores suficientemente pequenos de Ar en la fase con
ruptura de simetria, asi como también en el caso simétrico, pero sélo cuando R es menor a
cierto valor critico que depende de los parametros. Sin embargo, como se puede ver a partir de
los ejemplos considerados en las dos Figuras de los paneles de la izquierda, para valores més
grandes de Ry, hay soluciones simétricas donde en cambio la aproximacion deja de valer para
valores grandes de Ag, mientras sigue siendo vélida todo el camino hasta Ap — 0. En estos
ultimos casos, se puede concluir que existe una divergencia de la desviacion relativa en este
limite, lo que indica que a medida que R, — 0, la curvatura escalar R va a un valor positivo
finito. Por lo tanto, para este conjunto de parametros el efecto de la backreaction es crucial

para determinar la curvatura del espacio-tiempo.

6.3. Discusion

En el capitulo 4 mostramos que en la aproximacion de Hartree a la accién efectiva 2PI, el
procedimiento de renormalizacién consistente introducido en [29] en el espacio-tiempo plano
puede generalizarse a espacio-tiempos curvos para hacer finitas las ecuaciones del valor medio
del campo y de la masa dinamica. En este capitulo nuestro primer objetivo ha sido mostrar que
esto puede extenderse también a las EES, renormalizando el sector gravitacional de la teoria.
Es decir, hemos demostrado que el mismo conjunto de contratérminos se puede utilizar para
renormalizar las EES (junto con los contratérminos gravitacionales habituales que son necesarios
incluso para los campos libres). A fin de mantener la covarianza de la teoria regularizada, hemos

utilizado el método de regularizacion dimensional.

En la seccién 6.2, hemos aplicado nuestros resultados al espacio-tiempo de De Sitter. He-

mos considerado la forma explicita de las ecuaciones de valor medio y de la masa dinamica,
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calculadas en los capitulos previos, junto con la EES para esta métrica en particular, encontran-
do algunas soluciones de De Sitter autoconsistentes. La resolucién numeérica simultanea de las
ecuaciones algebraicas resultantes nos permitié analizar la aparicién de ruptura espontanea de
simetria y, al mismo tiempo, evaluar el efecto de las fluctuaciones cuanticas en la métrica clasica.
Las conclusiones importantes de nuestro analisis son, por un lado, que cuando Ar = 4Ry no se
encuentran soluciones con ruptura de simetria, y por otro lado, que el efecto de la backreation
depende en gran medida del valor de la curvatura escalar en el punto de renormalizacién Ry. En-
contramos soluciones autoconsistentes en las cuales la backreaction es importante y soluciones
en las que no lo es, en funcién de los valores de los parametros. En particular, hemos encontrado
soluciones de De Sitter autoconsistentes en ausencia de constante cosmologica Agr = 0, donde

los efectos cuanticos desempenan un papel crucial.

En cuanto a los efectos infrarrojos, como se puede observar en la ecuacién (6.25), no apa-
recen contribuciones peligrosas en el valor de expectacion renormalizado del tensor de energia-
momento en De Sitter. Esto es en parte debido a la generacién de masa dinamica proveniente
de la resumacion no perturbativa del formalismo 2PI, que tiene como consecuencia la regula-
rizacion de las divergencias infrarrojas del propagador. Al nivel del valor de expectacién del
tensor de enegia-momento, que depende del propagador y sus derivadas, es de notar también

que los términos potencialmente peligrosos aparecen suprimidos por un factor mflyn.



Capitulo 7

Otros métodos no perturbativos en De
Sitter

Hasta aqui nos hemos focalizado en un método no perturbativo en particular de la teoria
de campos, a saber, la accion efectiva 2PI. Dicho método resulta muy poderoso ya que permite
realizar ciertas resumaciones infinitas de diagramas de Feynman. Otro método no perturbativo,
también en el contexto de la teoria de campos usual, es el del grupo de renormalizacion dindamico
[54]. En este ultimo, se define una accién efectiva parcial integrando los modos de longitud
de onda hasta cierto cutoff en momentos, y luego se estudia la evoluciéon de las constantes

renormalizadas al variar dicho valor de cutoff.

En ambos casos, estos métodos permiten capturar algunos efectos no perturbativos como
ser la generacién dindmica de masa en De Sitter, pero su rango de aplicaciones no se restringe a
este espacio-tiempo en particular. Sin embargo, estos métodos también tienen sus limitaciones,
como ser que, en general, resulta técnicamente muy complicado ir méas alla del limite de N-
grande. Por esta razdn, la relevancia de los resultados obtenidos para el caso de interés, N = 1,
queda todavia sin ser esclarecida. Como hemos visto, los intentos de aplicar el método de la
accion efectiva 2PI a N = 1, nos han forzado a realizar truncaciones no sistematicas y luego
tratar de remendarlas mediante la imposicién de las relaciones de consistencia. Las conclusiones
obtenidas en dicho caso muestran una fuerte dependencia de los resultados con el punto de

renormalizacion.

En éste capitulo presentaremos otro tipo de métodos no perturbativos que nacen del caso
de estudio en particular, el espacio-tiempo de De Sitter, y que estan particularmente adaptados

para estudiar el problema infrarrojo. Estos métodos son el formalismo de inflacién estocastica

39
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[32, 17], y la teoria de campos en el espacio de De Sitter euclideo [39, 40]. En ambos casos, la
equivalencia de estos métodos con aquellos basados en la teoria de campos IN-IN convencional
todavia se debate abiertamente en la literatura, si bien se ha logrado cierto progreso en el caso

de un campo masivo.

Posteriormente en el capitulo 8, discutiremos nuestro anélisis de la equivalencia entre el
formalismo euclideo y los resultados obtenidos con la accién efectiva 2PI en el limite de N
grande. En particular, estudiaremos el caso no masivo, el cual escapa a los intentos conocidos

en la literatura de establecer una equivalencia.

7.1. Inflacidn estocastica

En esta seccién discutiremos el formalismo de inflacién estocdstica [32, 17], mediante la cual
se plantea el problema de la evolucién de los modos de longitud de onda muy larga a tiempos

largos en la situacion inflacionaria a través de una formulacién estocastica.

Debido a la expansion cuasi-exponencial del Universo durante la etapa inflacionaria, los
modos del campo salen continuamente del horizonte y se vuelve clésicos (para un andlisis en
detalle ver [65]). Mirando uno de esos modos ¢ con longitud de onda mucho mayor que el
horizonte, se tiene una variable clasica independiente de ¥, y la interaccion de este grado de
libertad con los modos cuanticos de longitud de onda menor es descripto de manera efectiva

mediante una fuente de ruido estocastico £ en una ecuacién de tipo Langevin,

L 0V
o+ 5 = &), (7.1)

con las condiciones (£(t)) = 0y (£(t)E(t)) = gé(t — t'). La segunda implica una estadistica

Gaussiana para el ruido.

En esta interpretacién, la pregunta a hacerse no es cudl es la evolucién temporal de ¢(t),
ya que en cada realizacion del ruido estocastico, la historia serd diferente. En cambio, hay
cantidades que representan propiedades estadisticas del ensamble de realizaciones del sistema,
como ser la varianza (¢(t)?). En esta situacién, la cantidad til que debemos conocer es la
funcién de distribucién de probabilidad del campo p(¢,t), la cual satisface una ecuacién de
Fokker-Planck en virtud de (7.1),

LAY

10| P e ) )

0¢ 8m2  J¢p?



-91—

La solucién general puede ser dificil de hallar, sin embargo estamos interesados en el com-
portamiento a tiempos largos. Para ello podemos suponer que el sistema alcanzara un estado

estacionario y por lo tanto d; = 0. Es sencillo entonces resolver (7.2) y llegar a
2
p(9) = Ne~sim¥ (9, (73)

donde N es un factor de normalizacién que se encarga de que p(¢) se comporte como una
densidad de probabilidad, es decir, fj;o do p(¢) = 1. Con este resultado es posible calcular

valores de expectacién a tiempos largos de distintos observables que sean una funcién del campo

o) .
©@) = [ ds0(0)0) (7.4)

7.1.1. El resultado de Starobinsky y Yokoyama

El resultado interesante de Starobinsky y Yokoyama surge al analizar la varianza de un
campo no masivo, que, como hemos visto, en su tratamiento habitual en la teoria de campos
perturbativa en De Sitter exhibe divergencias infrarrojas. En este caso el potencial del campo
contiene unicamente el término de auto-interaccién (3.5), y por lo tanto la varianza de ¢ puede

calcularse a partir de (7.4) como la siguiente integral,

+oo too d 2 _%%WL
)= [ dsdtoio) - f;jm e &
—00 o e 3H%4!

donde en la segunda igualdad el denominador viene del factor de normalizacién N. Estas
integrales pueden calcularse exactamente, conduciendo al famoso resultado,
sr() s

T (3) VA 8mMG,’

el cual, por comparacién con el resultado proveniente de la teoria de campos en el formalismo

(0°) = (7.6)

IN-IN para un campo masivo (3.17), nos permite definir una masa dindmica [17],

, VAT ()
TS ()

Este resultado, de caracter no perturbativo, muestra que a pesar de la ausencia de una masa

M

(7.7)

en el potencial clasico, la auto-interaccion del campo genera una masa de forma dinamica. La
dependencia de ésta con la constante de acoplamiento es no analitica, en particular va como
V), lo cual explica la imposibilidad de hallarlo en una expansién perturbativa ordinaria en

potencias .
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7.1.2. Equivalencia con la teoria de campos IN-IN

Este tratamiento parece suficientemente sencillo, pero deja plateados varios interrogantes.
La primera pregunta que surge es sobre su validez, dado que escencialmente se esté reemplazan-
do un problema cuédntico con infinitos grados de libertad por un problema estocastico clasico
con un solo grado de libertad. ; Es posible demostrar la equivalencia entre ambos tratamientos?
JEn qué limite o régimen de validez? Por otro lado, se espera que los resultados provenientes
del formalismo de inflacion estocéstica capturen solamente la parte mas infrarroja del com-
portamiento. La siguiente pregunta es entonces si es posible calcular correcciones de forma
sistematica al resultado estocastico mas alla del limite infrarrojo. Este tipo de preguntas han
sido planteadas en la literatura e investigadas por diversos autores. A continuacion repasaremos

brevemente algunos argumentos presentados en [36, 38] en relacién a la equivalencia.

Primero, se puede mostrar que los observables de la teoria estocastica pueden obtenerse a

partir de la funcional generatriz

Z = /D§ o3 ey /D¢> 5(¢+ 0,V/3H — &), (7.8)

a partir de la cual pueden definirse unas reglas de Feynman estocasticas. Luego, se busca llegar
a reglas equivalentes partiendo de la integral funcional de la teoria de campos IN-IN, tomando
el limite infrarrojo de forma apropiada. Para ello, primero se reescribe (7.8) introduciendo un

campo auxiliar ¢ e integrando sobre el ruido &,

—i dt{ Lo)Gg! ((b) e }
Z:/DWW v , (7.9)

donde aqui se ha definido,

Gl(t,t/) o t t/
Go=| 2 iGr(t.t) (7.10)
—ZGA(t,t/) 0

y ademas se tiene que
acf)‘/mt w . A 77Z)_¢3
3H3 7 313H%
A partir de esta representacién para Z es posible leer las siguientes reglas de Feynman para

(7.11)

definir la teoria de pertubaciones en A, representadas en la Figura 7.1.

Por otro lado, en el formalismo IN-IN de la teoria de campos en la base de Keldysh (2.48),

la matriz de propagadores tiene la forma (2.49), y los vértices de interaccién estdn dados por
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—iGR(t, 1) —iGA(t, 1) F(t,t)

“iﬁg.[ dr

Figura 7.1: Reglas de Feynman de la teorfa estocdstica derivadas a partir de (7.9).

_‘1% Jd'z at(x) _i% 1l d*x a*(z)

Figura 7.2: Reglas de Feynman de la teoria de campos IN-IN en la base de Keldysh.

(3.27). Las reglas de Feynman asociadas son aquellas representadas en la Figura 7.2. Aqui ya
comienzan a verse algunas similitudes, como la estructura de la matriz de propagadores, pero
también aparecen algunas diferencias, como la dependencia espacial en los propagadores y en
las integrales del caso IN-IN, asi como la presencia de un vértice de interaccién adicional que

no vemos en el caso estocastico.

Aqui es donde el andlisis se centra en el limite infrarrojo M? < H?. Por un lado, puede
mostrarse que en dicho limite la dependencia de los propagadores con las coordenadas espaciales

T desaparece, quedando solamente una dependencia temporal,

3H4 _ M2 t*tl
M)
42 M2

1
§GgM’(;c, 7)) o~ (7.12)

2

H - 2,y
G0 @) = GV a) = 0t —1)0 (=) — |7 — ) e F L (713)

Ademas puede observarse que el propagador retardado esta suprimido con respecto al propa-
gador estadistico por un factor H?/M?, como ya hemos visto anteriormente. Por esta razén,
los diagramas que contienen vértices del tipo A¢.¢% estaran suprimidos respecto a aquellos con

vértices A3 pa.

Los pasos finales involucran un analisis de las integrales que aparecen en los diagramas de
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Feynman. En [38] se prueba que, en el limite infrarrojo, estas integrales se reducen [ d*z — [ dt.
Este es un punto para nada trivial, el cual no reproduciremos aqui. La equivalencia diagramatica
(perturbativa) queda entonces establecida para campos masivos M? > 0 en el limite infrarrojo.
Sin embargo, el caso de mayor interés, M = 0, queda fuera del andlisis por las mismas razones

que en la teoria de campos en el formalismo IN-IN, los problemas infrarrojos.

Otros intentos en la literatura [33, 34, 35] buscan reducir la teoria de campos en el formalismo
IN-IN al formalismo estocastico, separando el campo en modos de longitud de onda menor y
mayor que el horizonte ¢ y ¢~. Luego, el ruido estocastico ¢ aparece a causa de una funcién
ventana dependiente del tiempo. Estas técnicas se asemejan a aquellas de la mecanica cuantica

de sistemas abiertos, también aplicable a la teoria cuantica de campos.

Actualmente quedan varias preguntas sin responder en relacién al formalismo de inflacién
estocastica y su validez para estudiar los efectos infrarrojos en De Sitter. Por ejemplo, queda
todavia por ser establecida la equivalencia con la teoria de campos en el formalismo IN-IN en el
caso de un campo no masivo M = 0. Este es, sin duda, el caso de mayor interés en el contexto
de los problemas infrarrojos. Otras preguntas abiertas incluyen: ;Qué tipo de resumacion, en
términos de la teoria de perturbaciones usual, estd implicita en el resultado estocastico no
perturbativo? ;Se podra llevar a cabo la misma resumaciéon con el método de la accion efectiva
2PI o algtin otro método no perturbativo de la teoria de campos en el formalismo IN-IN? ; Cémo
pueden calcularse correcciones més alla del limite infrarrojo de forma sistematica en la teoria

estocastica?

7.2. Espacio De Sitter euclideo

Otra técnica no perturbativa en De Sitter proviene de definir la teoria de campos en el espacio
de De Sitter euclideo. En esta seccién seguiremos el desarrollo no perturbativo inicialmente
propuesto en [39], y posteriormente extendido en [40] para incluir correcciones perturbativas
mas alla del limite infrarrojo. En particular, haremos una generalizacion al caso de un campo con
simetria O(N) [44]. En lo que queda de este capitulo consideraremos la primera contribucién a
la masa dinamica en el limite infrarrojo. Dejamos para el capitulo 8 el calculo de las correcciones
mas alla de este limite, tanto a la masa dinamica como a la funcién de 2-puntos general, y la
comparacion con los resultados obtenidos en la teoria de campos lorentziana en el formalismo
2PI.
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7.2.1. Prolongacién analitica y compactificaciéon

El espacio de De Sitter euclideo se obtiene a partir del espacio-tiempo de De Sitter loren-
tziano en coordenadas globales (3.3) mediante una continuacién analitica t — —i(7 — 7/2H),
seguido de una compactificacién en el tiempo imaginario 7 = 74 27/ H. La métrica que resulta

tiene signatura euclidea y corresponde a una d-esfera de radio H~!
ds* = H* [d6* + sin(6)*d?] (7.14)

donde §# = H7. La accién euclidea correspondiente a (3.4) para un campo escalar en el modelo
O(N) se escribe

A
Sp = / dz\/g B% (=0 + M?) da + 557($a8a)’ | (7.15)

donde ya utilizamos que, al estar en De Sitter, el pardmetro de masa relevante es M? =
m?+&d(d—1)H?. En d dimensiones, la constante de acoplamiento del campo tiene unidades de
H*=4 vy por lo tanto puede ser expresada como A = p*~?),, con A, una constante adimensional

y p una escala con unidades de masa.

Dado que este espacio es compacto, podemos expandir al campo en una suma discreta de

modos

a(z) = Zj b1 Yz(2), (7.16)

donde Y7 (z) son los arménicos esféricos en d dimensiones, etiquetados por el vector de indices
L=(L,Lyq,.,Ly),con L>L4g1>--->|L]. Estos satisfacen la ecuacion,

OY;(z) = —H?L(L +d — 1)Y; (), (7.17)

y las relaciones de ortogonalidad

[ Vi) = Hp (7.13)

T

donde hemos introducido el atajo notacional fx = ddx\/ﬁ. Insertando esta expansion en la
parte libre de la accién (7.15) y usando las propiedades (7.17) y (7.18) se puede obtener una

expansion para el propagador libre euclideo (en la fase simétrica),

GOz, 7)) = 6,GM(z,2)
Yz (x)Yi(2)
— d L L

(7.19)



—-96—

donde el superindice indica la masa. Se puede mostrar [40] que en efecto éste es el propagador
en el vacio de Bunch-Davies (3.9) en tiempo imaginario, es decir, donde ahora la distancia in-
variante y(z, 2') estd definida sobre la esfera (7.14). Los propagadores lorentzianos se recuperan
realizando la continuacién analitica inversa con la prescripcién apropiada (3.10). Esto lleva a
dos observaciones importantes, por un lado en el espacio euclideo no hay distincién entre los
distintos propagadores, sino que se tiene uno solo G (x, 2'), por otro lado, el limite de coinci-
dencia del propagador es igual tomado en el espacio euclideo que en el lorentziano. Asimismo,
no tiene sentido contemplar el formalismo IN-IN, ya que no hay una definiciéon asintotica de los

estados de vacio en el pasado y futuro.

7.2.2. Tratamiento no perturbativo del modo cero

La contribucién a (7.19) para L = 0, G§* = [Y5[2H?/M?, es claramente responsable por
las divergencias infrarrojas en las funciones de correlacién del campo escalar cuando M? — 0
descriptas en el capitulo 3 (ver ec. (3.17)). Esto motiva separar ¢,(z) = ¢o, + ¢Ea(:c) con el
objetivo de tratar de forma especial al modo cero ¢q,, €l cual es constante, distinguiéndolo de

la parte inhomogénea g%a(x) De la misma manera, separamos el propagador en dos partes,
GM (2, 2) = G + GM (2, ), (7.20)

donde ahora G(M), al que llamamos propagador libre ultravioleta, tiene la propiedad de ser finito
en el limite M? — 0. Vale destacar que esto, sin embargo, no es suficiente para resolver todos los
problemas infrarrojos del propagador no masivo, ya que éste aiin mantiene su comportamiento
para puntos separados (decaimiento no exponencial a tiempos muy separados comparados con
H~! [66]). Si bien esto no importa en el espacio euclideo donde la separacién maxima estd
acotada gracias a la compactificacion, puede ser relevante en vistas a la eventual continuacién

analitica para volver al espacio-tiempo lorentziano.

Consideremos ahora cémo se separa la parte de interaccién de la accién euclidea (7.15),

_

g —
Elint — 8N

|¢0|4 + Sint[qumqga]a (721)

donde S;,,; es la accion de interaccién entre los modos cero y ultravioletas, y Vj es el volumen
total del espacio De Sitter euclideo en d dimensiones, que gracias a su compactificacion resulta

finito e igual a la hipersuperficie de una d-esfera

d+1

2m 2 1
V, = d — —
T /d WIE (ZL) H?  |Yz2HY (7.22)
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Con el fin de calcular las funciones de correlacion cuanticas de la teoria, definimos la funcional

generatriz en presencia de las fuentes Jy, y ja(x),

Z[J07j] — N/ dgbo/Dqge_SE_fm(JOE(ﬁOa"rja(Z)a)

= exp (—émt {5% %D ZolJo) Z[J). (7.23)

En la segunda linea se definen las funcionales generatrices Z f[j], asociada a una teoria libre
con propagador ultravioleta @(M)(x, x'); vy Zo[Jo], correspondiente a una teoria que involucra
solamente al modo cero, incluyendo el término de auto-interaccién ~ \|¢o|*. Esta iltima resulta
equivalente a un problema unidimensional de mecanica cuantica ordinaria. Esta parte da la
contribuciéon mas importante en el limite infrarrojo, y puede ser calculada de manera exacta
en varios casos de interés [39]. Es precisamente aqui donde se estd realizando una resumacién
no perturbativa. Por otra parte, la interaccion entre ambos sectores puede tratarse de manera

perturbativa, lo que proveé correcciones més alld del limite infrarrojo [40].

7.2.3. Potential efectivo euclideo

Como ya mencionamos, el potencial efectivo da informacion valiosa sobre el efecto que las
fluctuaciones cudnticas tienen sobre el campo medio de fondo ¢. Estamos interesados particu-
larmente en la generacion dinamica de masa a partir de los efectos cudnticos. Para estudiar
este problema desde el punto de vista del formalismo euclideo, analizamos primero el potencial
efectivo para relacionar su parte cuadratica, es decir la masa dindmica, con la varianza del

modo cero.

Comenzamos definiendo la accién efectiva en este caso,

[0, 6] = W) = [ (Guuoa + ) a(@)) (724
con W1Jy, J] = —log(Z[Jy, J]) la funcional generatriz de los diagramas conectados, y donde

_ SW [ Jy, J

, = el 7.25

%o 5o (7.25)
- SW [ Jy, J

y = e 7.26

¢ 5. (7.26)

define a los campos “clasicos”. El potencial efectivo se obtiene al evaluar la accién efectiva en

un campo constante, es decir ¢ = 0, lo cual a su vez requiere que J = 0, y luego dividiendo por
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el volumen del espacio V. Entonces

VaVes (o) = Tlo, 0] = W[Jy, 0] = Goaoa. (7.27)

Con el fin de calcular el término cuadrético de V,s(¢y) como funcién de ¢y, realizamos la
siguiente expansion,
16°T [¢07 ]

[¢07 ] [0 0] + 5 (5¢0a5¢0b O(bOa(bOb + ... 5 (728)

donde el término lineal se anula en ¢y = 0, como puede apreciarse al diferenciar (7.27) con

respecto a Q_ﬁo, 5 [_ |
I ¢07 0 o
5&0(1

y teniendo en cuenta que, en la fase simétrica, el campo medio ¢q se anula si y sélo si Jy = 0.

—Joa; (7.29)

Tomando otra derivada a la expresion anterior pero ahora respecto de .Jy, obtenemos

2 n n 2 n
5ab — _5 F[¢0_a O] _ _5¢0c o _F[¢D_) 0]’ (730)
5<]0b5¢0a 5J0b 5¢005¢0a

donde hemos usado la regla de la cadena para la segunda igualdad. Por otra parte, differien-

ciando (7.25) con respecto a Jy, se tiene

Shoe W o, ] (7.31)
lo cual, reemplazado en la expresion previa conduce a la conclusién de que
27 % 2 -1
0P0adPon dJoad Jop
Ahora debemos evaluar para ¢o = 0 (Jy = 0),
§2W 1y, 0] 1 62Z[Jy, 0]
_ = —(oadop), 7.33
8 J0ab Joy Z[0,0] 6J0a0Job (900 o) (7.33)
0= 0

permitiéndonos identificar a la funcién de 2-puntos exacta correspondiente al modo cero (PoqPop) -
En la fase simétrica, cualquier tensor de segundo rango con respecto a los indices internos del
grupo O(N) es proporcional a la identidad d,,. Por lo tanto, la expresién anterior puede ser
invertida facilmente, -

52F[¢0, 0] B N

“00 0 5 2 34
A L P (7:34)
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donde hemos expresado el resultado en términos de la varianza de mddulo |¢yg|, es decir (¢3) =
dab{Goadop) . Finalmente, reemplazamos esta ultima expresién en la ecuacién (7.28) y dividimos

por V;, obteniendo el potencial efectivo a orden cuadratico,

- 1 N
Verp(do) = V()‘i‘im

Este es un resultado exacto de la teoria euclidea valido para todo N y A, que muestra que la

|90l® + O(|¢o|*). (7.35)

masa dinamica estd dada por la inversa de la varianza de modo cero.

Al primer orden infrarrojo, la interaccién entre el modo cero y los modos ultravioletas puede

ser despreciada en (7.23), y por lo tanto se tiene que

2

[ @y g alswet 4

[ dV o o Va[si ot 242 e3]

62 Zo[Jo)]

2\
<¢0>0 — Vab 6J0a5J0b

(7.36)

Jo=0

Para el caso M = 0 esto puede calcularse de forma exacta, dando como resultado una masa

dindmica a primer orden infrarrojo igual a,

[Nx1 T[4

donde aqui I" es la funcion Gamma de Euler. Para N = 1, se recupera el resultado de [39], que

se corresponde con el que se obtiene a partir del formalismo estocéstico (7.7),

_ V3AR?T [7]
- 8r F[%]’
N=1

M?lyn,o (738>

donde aquf evaluamos d = 4, y por lo tanto V; = 87%/3. Al comparar con (7.7), tener en cuenta
que alli la definicién del acoplamiento A es aquella de N = 1, dada por (3.5), mientras que aqui

estamos usando la definicién de O(N) dada por (3.4) (cambia un factor 3).

En el préximo capitulo calcularemos correcciones perturbativas mas alla del limite infrarrojo
en vistas a una comparacién con resultados no perturbativos provenientes del formalismo de la

accion efectiva 2PI de la teoria lorentziana.
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Capitulo 8

Mas alla del limite infrarrojo en el

espacio De Sitter euclideo

Como hemos visto, el formalismo euclideo permite recuperar el resultado estocastico, pero a
diferencia de éste, ademés permite calcular correcciones més alla del limite infrarrojo de manera
sistematica. La situacion en relacién a la equivalencia entre el formalismo euclideo y la teoria de
campos lorentziana en el formalismo IN-IN es similar al caso estocéastico, es decir, se ha hecho
progreso Unicamente en el caso masivo [41]. Por otra parte, el caso no masivo sigue sin estar

contemplado en dichos analisis. Resulta de importancia avanzar en esa direccion.

Con esta meta en mente, en este capitulo consideramos el calculo de correcciones mas alla
del limite infrarrojo a la funciéon de 2-puntos del campo en el formalismo euclideo hasta segundo
orden. Esto incluye la varianza del modo cero, necesaria para calcular la masa dindmica, como
también la funcion de 2-puntos de los modos inhomogéneos con puntos separados. En particular,

mantendremos la generalidad en N.

Desde el punto de vista de los métodos no perturbativos de la teoria cuantica de campos
lorentziana en el formalismo IN-IN, no esperamos que la aproximacién de Hartree para un tnico
campo (N = 1), discutida en los capitulos precedentes, coincida con el resultado euclideo en el
caso no masivo. En efecto, se sabe que la masa dinamica calculada en esta aproximacién difiere
del resultado estocastico (y por lo tanto del euclideo en el limite infrarrojo), aunque es notable
que la diferencia sea sélo de un 15 % [17]. Por otra parte, la accién efectiva 2PI da resultados no
perturbativos confiables el limite de NV — oo. Este sera entonces nuestro punto de comparacion

entre los formalismos euclideo y lorentziano.

Los resultados aqui presentados estdn siendo preparados para su publicacién [44].

101



-102-

8.1. Correcciones mas alla del limite infrarrojo

Las correcciones al resultado infrarrojo provienen de expandir perturbativamente la expo-
nencial de la accién de interaccién Sy,; en la expresién (7.23). La auto-interaccién del modo
cero ya fue tenida en cuenta de manera no perturbativa en Zy[.Jy]. La expresién explicita para

la parte de interaccién es

2 Aabed®0aP00Pecd + 40ab0cd®oaPpPedd + OapdeadaPsdeda|, (8.1)

_ A ;

donde Agpeq €s el tensor totalmente simétrico de cuarto rango
Aabcd = 5ab50d + §acébd + 5ad5l)c- (82)

Aqui no incluimos a los términos lineales en ngS que aparecen al separar los términos de masa y
de interaccion de la accion completa, ya que estos se anulan dado que f ddaz\/ﬁYE(x) = 0 para

L > 0, gracias a la ortogonalidad de los arménicos esféricos (7.18).

La primera correccién a la funcional generatriz viene de expandir la exponencial a orden
lineal, manteniendo de S;,; el término con exactamente dos potencias de ¢o y dos de (]g, es decir,
el primer término de (8.1). El orden siguiente tiene dos contribuciones, la primera proveniente
del cuadrado de este mismo término, y la segunda proveniente del tltimo término de (8.1) a
orden lineal. Considerando estas correcciones hasta segundo orden a la funcional generatriz,

llegamos a la siguiente expresiéon

A A Sl [ 800
2o, ] = Zol 02l = 1 A“"C%JoaéJOb/ 0Je(w)5 Ja(w)

A

1 A2 5420 Jo) 6z [
+ Aabchefgh S X
216N? 0Joa0Job0Joe0 Jog J Jaar 8Jo(x)0 Jg(2)0.T, ()8, (2")

A 8* Zy[J]
8NZO[JO]5ab56d/ 570 (2)60,(2)8.1.(2)6 Tu(z)

(8.3)

Aqui hemos seguido el procedimiento usual en teoria cuantica de campos haciendo los reem-
plazos ¢o, — 0/0Joa ¥ q@a(x) — 0 /5ja($) Como discutimos previamente, para estudiar la
generacion de masa dindmica, necesitamos la varianza del modo cero. Sin embargo, puede re-
sultar valioso también analizar el comportamiento de la funcién de 2-puntos completa para

puntos separados, ya que contiene informacién adicional sobre la parte no-local, inaccesible si
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uno se queda so6lo con la masa dindmica. La funcién de 2-puntos del campo completo ¢ se separa

en las siguientes contribuciones,

(Pa()d6(2")) = (Boadon) + (Pa()dr(2)), (8.4)

donde el término cruzado se anula por ortogonalidad. Llamaremos a cada uno de los términos
parte infrarroja y parte ultravioleta respectivamente. A continuacién calcularemos ambas hasta

segundo orden a partir de (8.3), comenzando por la segunda.

8.1.1. Parte ultravioleta

Para calcular la parte ultravioleta de la funcién de dos puntos de ngS, tomamos dos derivadas

funcionales de Z[Jy, J] con respecto a J,(z) y evaluamos para J = 0,

A o 1 (52Z[J0>j]
(Gal2)0n@)) = 755 5.1y (x)0Jy(2")

(8.5)

Jo,j:()

donde aqui el factor Z[0,0]~! se ocupa de la normalizacién de la teorfa interactuante,

20,07 = 14 (N 4 2)(@)eValGM]

4N
A A(M)12 N2 2/ 12\ 27727 A(M) 12
FE(N + VGNP + (N + 2RV
—onz |V VG 2N+ 8) » (2, ") (8.6)

donde [G(M)], el limite de coincidencia del propagador ultravioleta libre de masa M, es in-
dependiente de x por invarianza de De Sitter. Para llegar a esta expresion hemos usado que
Aupedded = (N +2)6ap, asi como también las expresiones (D.1) y (D.2) para escribir las derivadas
de Z f[j] en términos de propagadores libres, apoyandonos en el hecho de que se trata de una

funcional generatriz libre (Apéndice D). Por otra parte, para las derivadas de Z[.Jy] tenemos

52 ZJo] (¢5)o
D — =& 2 .
5J0a5job . <¢0a¢0b>0 ab N ) (8 7)
64ZO[<]0] <¢4>0
= A, 00 .
0 Joa0Jond Jocd Jua | “PIN(N +2) (8.8)

donde (po,d0m)0 es la funcién de 2-puntos exacta del modo cero al orden més bajo infrarrojo.

Decimos exacta porque incluye la auto-interaccion del modo cero de forma no perturbativa.
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Por conveniencia, en la tltima igualdad hemos expresado el resultado en términos de la traza
de éstas funciones con respecto a los indices internos del grupo O(N), asumiendo estar en la
fase simétrica. En general, cualquiera de las funciones de n-puntos “trazadas” del modo cero al

orden més bajo infrarrojo pueden ser expresadas mediante integrales ordinarias,

f ngZ50 ¢§P6_Vd [ﬁ‘i’%*‘j\%‘bg]

(60 = , (8.9)

A M2
[ dN g e*Vd[m%Jer’g]
si n = 2p es par, mientras que se anulan si n es impar.
Volviendo al célculo de la funcién de 2-puntos de los modos ultravioletas, aprovechamos
que no es necesario aqui diferenciar respecto de Jy, para entonces evaluar desde un principio en

Jo = 0y asi simplificar un poco los célculos. Luego, la derivada segunda de Z|.Jy, j] necesaria

para la ecuacion (8.5) es

5220, J] e —i(N+2)<¢§>o/ 5 Z[J]
0Ja(@)d (") | ;_, 8T ()0 Jy(x 01; 4N 2 0JY J(x 2z, 2) i
58 Z,[J]
(N + 4)8eades +4 “lef}// !
32N3|: dYef N—|—2 yzé‘]abcdefxx yy,zz)JO
6717

N i1 (5.10)

8N 2 0 0peaer (0,00, 2,2, 2, 2) i

Nuevamente hemos utilizado (D.1), (D.2) y las expresiones andlogas (D.3) y (D.4) para re-
emplazar las derivadas de Z f[j] en la expresién (8.10), y luego hemos multiplicado por (8.6),

manteniendo los términos al orden apropiado. El resultado es

(Gu@)r(a)) = 0 { G0, ~ 25 R, [ GG, Gz,

[ 720G G N+ 2V (- <¢3>3)]

/G(sz M)(z, 2))

+4%(N+8)<¢o> /y M(x,y)@(M)(y,z)G(M)(z,x’)}. (8.11)

Por un lado, esta expresion aun debe ser renormalizada mediante la inclusién de contratérminos,

debido a las divergencias presentes en [G(M)]. Los detalles del proceso son relegados al Apéndice



~105-

F. Separando
[G(M)] = [G(M)]div + [G(M)]Tem (8.12)

se puede ver que es posible hacer finita a la ecuacién (8.11) con un contratérmino de masa de

la siguiente forma

SM? = —%(N + 2)[GM)] 4. (8.13)

Por otro lado, las integrales de los propagadores ultravioletas libres en el espacio euclideo
que aparecen en (8.11) pueden ser expresados en términos de las derivadas con respecto de la
masa de un unico propagador. Esto se muestra en el Apéndice E, y el resultado es

OGM) (2, 2"

/ G, )G (s, 0t) =~ ), (8.14)

PG (z, 2')

1
R YO (8.15)

/ / GO (2, y) G (y, 2) G (2, 0) =
Y,z

)

y por lo tanto luego de la renormalizacién, la ecuacién (8.11) se puede escribir como

AN +2)
N2

OGM) (2, 2"
omM?

(da()dn(a’)) = 0 { G (o) + (®5)o

A ) A2 -
o OV + DG = S (N + 2PVl G (6510 — (60)7)
" OGM) (z, 2/
oOM?
22 4 azé'(M)(x, ')
+W<N + 8)<¢o>ow}~ (8.16)

Este resultado podria corresponder a la expansién de un propagador ultravioleta libre con
respecto a una masa dependiente de A en el caso que los coeficientes de los diferentes términos
guarden la relacion apropiada entre si. Esto se puede verificar en el limite de N grande, como

veremos hacia el final de la seccion.

Un punto a considerar es que, sin embargo, a menos que podamos resumar todas las contri-
buciones, un resultado como (8.16) depende de los propagadores ultravioletas libres evaluados
en la masa clasica M. Al considerar el caso no masivo M = 0, la presencia de los propagadores
GO (z,2') (y sus derivadas) en puntos separados no asegura un buen comportamiento a tiem-
pos muy separados en comparacién a H~! [66]. De todas formas, esto no afecta el cdlculo de la

varianza del campo, para el cual debe tomarse el limite de coincidencia.
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8.1.2. Parte infrarroja

Ahora nos concentramos en calcular la parte infrarroja de la funcién de 2-puntos, es decir,
la varianza del modo cero. Para ello, tomamos dos derivadas de la functional generatriz Z|.Jy, J ]

con respecto a Jy y evaluamos para Jy = 0,

1 52 [‘]Oa ]
Z[0,0] dJoadJop

(Poadon) = (8.17)

0,J =

Al igual que antes, es ttil primero poner J=0 y luego derivar,

52 [J07 ]
5<]0a6<]06

- % { (5} {1 - %(N + 2>vd[é<M>]2} ) ﬁw +2){¢o)oValG™] (8.18)

32N2 <¢0>

(N +2)2VGM)? 4+ 2(N +8) // / GM) (g, x')2] }

donde nuevamente hemos utilizado (8.7) y (8.8) y el caso andlogo,

0°Zo[Jo] (800
Seade Sap~—t=. 8.19
T 6 D08 Jnd Joc Joad Joed Jog | N (8.19)
En el iltimo término de (8.18) podemos reemplazar [, G (z,2)? = —9[GM]/OM? en

virtud de (8.14). Esto muestra que, ademés de [G“™)], ahora tenemos otra cantidad deivergente

A[GM)]/OM?, la cual separamos de manera similar

8[G(M)] 8[C¥(M)] 8[C¥(M)]
T o ) | —arE ) , (8.20)

y luego procedemos a renormalizar siguiendo los detalles del Apéndice F. Concluimos que el

resultado puede hacerse finito si se introduce un contratérmino para compensar esta divergencia,

a saber

A2 G
oA = —W(N+8)< SV )Q (8.21)
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Finalmente, podemos escribir la varianza del modo cero a segundo orden en correcciones ultra-

violetas,

(G0u) = 6 { ilo | 2V +2) (16203 ~ (6] ValO“ e

2

o (N 4207 (6830 — 3(6holata + 2R VAICWIL,,
N 6 o\ /4 O[GM]
_W(N + 8) [<¢0>0 - <¢0>0<¢0>0} Va (0—/\/12)f }
= Ot 8.22
~ g 22

Estas correcciones pueden interpretarse como una correccién a la masa dindmica szn. Como
hemos mencionado anteriormente, en el limite de N grande las correcciones a la parte ultra-
violeta podran también ser interpretadas como una correccién a una cierta masa dindmica
ultravioleta ngn(U V). Lo que es més, ésta serd igual a la masa dindmica que se lee de la
varianza del modo cero, y por lo tanto el propagador completo se corresponde a un propagador

libre en De Sitter con masa M Esta es justamente la situacion en el espacio lorentziano

2
dyn*
en el limite de N grande, donde la resumacién provista por el formalismo 2PI conduce a una

ecuacién autoconsistente para la masa dinamica.

8.1.3. Resultado no masivo euclideo en el limite de N grande

Aqui consideramos en particular el caso en el cual el parametro de masa es nulo M = 0.
Sabemos que este es el caso en el cual la teoria perturbativa usual tiene problemas, segin lo
discutido en el capitulo 3. Las funciones de n-puntos del modo cero al orden méas bajo infrarrojo

pueden calcularse exactamente

o doogg Ry (N \ET [
< 0 >0 = T Vo a =22 N (823)
S dgo @~ e 308 Vax) T[]

Como se observa en esta expresién, estas funciones exhiben un escaleo del tipo ¢y ~ A~%/%. Dado
que siempre tenemos valores de expectacién de potencias pares de ¢q en los distintos resultados
calculados més arriba, esto conduce a un incremento en un factor 1/ VA por cada ®3 en los
diferentes términos de la expansién perturbativa. Esto tiene el efecto de generar una expansion

perturbativa en potencias de v/A, en lugar de \. Esta dependencia no analitica es una clara
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indicacién de la naturaleza no perturbativa de los resultados obtenidos con este tratamiento.
Vale remarcar que, si M # 0, las funciones anteriores recuperan la analiticidad en A, y por lo

tanto se tiene en ese caso una expansion perturbativa usual en potencias de A.

Ahora tomamos el limite de N — oo en los resultados euclideos (8.16) y (8.22), evaludndolos
en el caso no masivo segin (8.23),
OGM)(z, x’))

(6a(2)0() = b { G<°><x,w'>+( o \/2—Avd+§[é<0>]m]
1 32@(M)(x,x’) A ?
"2 (W) Vav, } (8.2

2 1. 1 [Vih - 1 [ X [9[GM)]
R P21 () O AN PRT) T S BTN Bl i |

Lo primero a comprobar en estos resultados es que, al orden de precisiéon con el que hemos

(o0a®ob) = Sab

hecho el célculo, la parte ultravioleta (8.24) es compatible con un propagador ultravioleta libre.
Esto se desprende del hecho que dos veces el coeficiente que acompana a la derivada segunda
de G(M)(x, 2’) respecto de M2, coincide con el cuadrado del coeficiente de la derivada primera.

Esto permite definir una masa dinamica ultravioleta, la cual conocemos a orden A,

[ A A A
M?lyn<UV> = 2_% + Z[G(O)]Ten- (826)

En segundo lugar, ésta masa coincide a su vez con la masa dindmica que se calcula a partir de
la varianza del modo cero. Ambas observaciones permiten concluir que, al orden calculado, el

resultado en el limite N — oo del propagador completo (po.Pos) + <g§a(:p)qz§b(x’ )) es compatible

2

con un propagador en De Sitter libre con masa Mg, .

Esperamos que esta propiedad se man-
tenga a todo orden en A\, como precisamente sucede en la teoria de campos lorentziana en el
limite de NV grande, segin se lee de la ec. (4.85) (alli estd escrita para un espacio-tiempo curvo
general, por lo que la conclusién también es valida en De Sitter en particular). Sélo faltaria
comprobar si las masas dinamicas euclidea y lorentziana coinciden, al menos hasta el orden de

precision en A con el que conocemos el resultado euclideo.

8.2. Comparacion con la teoria cuantica de campos lorentziana

En esta seccién calcularemos la masa dinamica en a partir del formalismo 2PI lorentziano

en el limite de N — oo. Para llevarla a una expresion comparable con los resultados euclideos,
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debemos expresar el resultado en términos de los parametros de sustraccion minima. Como
hemos discutido en el capitulo 4, esto es posible sin problemas en el limite de N grande del

modelo O(N), a diferencia de lo que ocurre en la aproximacién de Hartree para N = 1.
Consideremos la ecuacion de la masa dinamica, aun sin renormalizar, que se obtiene de
combinar (4.85) con (4.82),

A+0X) = (A4

Miyn = M+ M 4 === =[G )], (8.27)

donde separamos m% + {pR = M% = M? + 0M? y Ap = A+ 6\

Segun la discusién llevada a cabo en el capitulo 7 posteriormente a la definicién del pro-
pagador euclideo en De Sitter (7.19), el limite de coincidencia de éste es igual al limite de
coincidencia de los propagadores lorentzianos. Esta observacion crucial nos permite, sin pérdi-
da de generalidad, expresar [GMan)] en la ecuacién anterior haciendo uso de (7.20) con x — 2,
es decir

1

[G(Mdyn)] — W + [@(Mdyn)]’ (8.28)
dyn

donde hemos expresado G(()M) = 1/VaM3,,.. Luego, expandiendo para M3, < H?, tenemos

M4
+0 < H‘ﬂf”) . (8.29)

1 .
(GMam)] = VAME T [GO) + M3,

a[(;(M)]
oM?2

dyn M=0

Reemplazando esta expresién en (8.27) obtenemos la ecuacién autoconsistente para M
A A[GM)
Separando [G(] y %

renormalizacién procede como se ha descripto en el capitulo 4. Los contratérminos necesarios

3yn‘
en sus partes divergentes y finitas segun (8.12) y (8.20), la
=0

son

A B[GM)]
2 A (GO + M2 (8—M2>0dw
M = —— o : ) (8.30a)
2 1A <6[G< >1>
2\ MG i

¢ (5
SA = 2\ O o (8.30b)
I (2500) | '

2 oMm? 0,div

Vale destacar que estos contratérminos coinciden, al ser evaluados en d = 4, con los utilizados

en la aproximacién de Hartree (4.57). Por otro lado, al ser expandidos en A al orden maés

bajo, también coinciden con aquellos del célculo euclideo (8.13) y (8.21), en la medida que
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estos tltimos sean expandidos para masas pequenas y N — oo. Algunos detalles de estas
comparaciones se dan en el Apéndice G.
La ecuacién para la masa dinamica renormalizada entonces queda

1 . A[GM)]
(0) =
Vd,/\/l + [G ]ren Mdyn ( aMQ o :

dyn

A
MG, = M+ = gb +3

Esta es una ecuacién algebraica cuadratica para ./\/l?iyn, tal como las que hemos analizado en el

capitulo 5. La solucién positiva en la fase simétrica (¢ = 0) es

—M? - %[G(O)}mn \/<M2 [ 0)]ren>2 + % [1 N % <6[§/£"A;)]>0 fin:|

2 1_a<6[@“‘>1)
1-3(%),

Finalmente para comparar con el resultado euclideo, consideremos el caso no masivo M = 0

(8.31)

2 _
My, =

y calculemos 1/ Vd./\/lflyn a partir de la masa dindmica (8.31). Dado que el calculo euclideo en
ese caso resulta perturbativo en v/, hacemos una expansién del resultado lorentziano al orden

apropiado en A. Obtenemos

(M
L 2 Loy 4 L Y aop _l [ A (oG]
VM3, Vad 200 T8V 2 g\ oM )
+O(N). (8.32)

Este resultado coincide con la varianza del modo cero obtenida en el formalismo euclideo para
N — o0y M =0, ec. (8.25).

8.3. Discusion

La teoria de campos en el espacio de De Sitter euclideo permite recuperar el resultado de
inflacién estocastica para campos no masivos al tratar el modo cero de manera no perturba-
tiva [39]. A diferencia del tratamiento estocdstico, el formalismo euclideo admite correcciones
sisteméticas provenientes de los modos ultravioletas, tratados de forma perturbativa [40]. Esto
resulta prometedor, sin embargo por el momento los intentos de probar la equivalencia entre la
teorfa de campos euclidea y la teoria de campos IN-IN se basan en el caso masivo [41]. Es de

gran interés establecer si esta equivalencia es valida en el caso no masivo, lo que permitiria a su
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vez darle confianza a los resultados estocasticos, cuya equivalencia con la teoria IN-IN tampoco

ha sido demostrada en ese caso.

Una manera de comprobar en parte la equivalencia es comparar con resultados conocidos
provenientes de la teoria de campos IN-IN. Alli, los resultados no perturbativos mas confiables
son aquellos en el limite de N grande. Por esta razon, en este capitulo hemos generalizado la
teoria de campos en el espacio de De Sitter euclideo al modelo con simetria O(N). A partir
de esto hemos considerado las correcciones ultravioletas a los resultados de orden infrarrojo
mas bajo, analizando la renormalizacion. En este contexto, calculamos la masa dinamica a
segundo orden en la expansién infrarroja, asi como la funcién de 2-puntos para puntos separados.
Verificamos que el resultado para la masa dindmica en el limite de N grande es compatible
con los resultados obtenidos a partir de la accion efectiva 2PI en ese limite, incluyendo la
restauracion de la simetria. Nuestros resultados son vélidos para todo N, hasta la segunda

correccién en v/ (caso no masivo).

Sin embargo, observamos que para campos no masivos, el comportamiento para puntos
separados sigue teniendo problemas a tiempos largos. Esto tultimo se debe a que estamos ex-
pandiendo los propagadores ultravioletas alrededor del caso no masivo. Si pudieramos realizar
una resumacion a todo orden, recuperariamos un propagador masivo (como sucede en el caso
de N — o0). Queda como pregunta abierta si es posible redefinir la parte perturbativa de este
formalismo, para resumar cierta clase de contribuciones para esquivar este problema. Una vez
resuelto, deberia ser factible realizar la continuacién analitica de los resultados para volver al
espacio-tiempo de De Sitter lorentziano, y comprobar si éstos satisfacen o no las ecuaciones
de Schwinger-Dyson correspondientes. Si este fuera el caso, se podrian obtener resultados no
perturbativos més alla del limite N — oo con un método técnicamente mas accesible que los

que se estan desarrollando actualmente [54].
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Capitulo 9

Conclusiones y Perspectivas

En este capitulo final resumiremos los resultados de esta tesis, exhibidos principalmente en

los capitulos 4, 5, 6 y 8, y discutiremos también su relacién con trabajos previos en estos temas.

El estudio de la teoria de campos en el espacio-tiempo de De Sitter es gran de interés por
varias razones, entre las cuales se destacan sus aplicaciones cosmoldgicas tanto en la evolucién
del Universo temprano como para describir la aceleracion césmica actual. En el primer caso, es
importante entender los efectos infrarrojos y su rol en las predicciones de los modelos inflaciona-
rios. En general, estas se basan en resultados provenientes de la teoria de campos perturbativa.
Sin embargo, para campos con masa M? < H? los efectos infrarrojos podrian invalidar dicho
tratamiento. En relacion al problema de la energia oscura, los efectos cuanticos también podrian

ser relevantes para dilucidar el origen de la costante cosmoldgica.

Para estudiar el problema infrarrojo es necesario un tratamiento no perturbativo. Se espera
que las interacciones generen una masa dindmica que regule las divergencias infrarrojas [17, 18].
Dentro de la teoria de campos en el formalismo IN-IN | uno de los métodos no perturbativos
mas ampliamente desarrollados es el de la accién efectiva 2PI [23], donde cada orden en la
expansion en loops contiene una resumacion de subconjunto infinito de diagramas de Feynman
de la teoria perturbativa usual. Para el modelo con simetria O(N) en el limite de N — oo, la
accion efectiva 2PI toma una forma local que resuma todos los diagramas tipo daisy y super-
daisy de la teoria perturbativa estandar. Aqui, los efectos no perturbativos se condensan en
una ecuacién autoconsistente para la masa dinamica. Avanzar mas alld en la expansién en 1/N

involucra el calculo de contribuciones no locales, las cuales son técnicamente muy complejas.

Es importante investigar si las predicciones del caso N — oo, como ser la ausencia de

soluciones con ruptura de simetria en De Sitter [42], se extienden a valores finitos de N y en

113
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particular al caso N = 1. Para ello, una posibilidad es considerar la aproximacién de Hartree
que consiste en truncar la accién efectiva 2PI a nivel local, en espiritu similar al limite de N
grande. Esta es, sin embargo, una truncacién no controlada por ningin parametro pequeno.
Para corregir en parte esta situacion se impone la validez de las relaciones de consistencia de la
accion efectiva 2PI exacta durante el proceso de renormalizaciéon. Esto demanda la introducciéon
de mas de un contratérmino por cada parametro de la accién clasica. Este procedimiento ha
sido extensivamente estudiado en el espacio-plano [29], donde estos métodos son aplicados, por

ejemplo, en el estudio de las transiciones de fase a temperatura finita [24, 25, 26].

La generalizacion de este procedimiento al espacio-tiempo de De Sitter fue realizada sélo de
manera parcial en la literatura [58]. En general se ha ignorado la diferencia entre los pardmetros
de sustraccion minima y los renormalizados. Nuestro primer objetivo ha sido mostrar que el
procedimiento de “renormalizacién consistente” puede ser aplicado a las ecuaciones del valor
medio del campo y del propagador en espacios curvos generales [30]. Si bien varios calculos
explicitos que fueron realizados previamente en el espacio-tiempo plano utilizan como regula-
dor un cutoff en momentos (ver, por ejemplo, [25]), esto es problematico en espacios curvos.
Por esta razon, utilizamos regularizacion dimensional con el fin de mantener la covarianza de la
teoria regularizada, mediante la utilizacion de la expansion adiabédtica completa del propaga-
dor. Luego, hemos escrito las ecuaciones renormalizadas en términos de los pardmetros fisicos
definidos a partir del potencial efectivo, y hemos mostrado explicitamente que, cuando se ex-
presan en términos de estos parametros fisicos, las ecuaciones son independientes de la escala i
introducida por la regularizacién dimensional. A la hora de fijar las relaciones de consistencia,
éstas deben ser establecidas en un espacio-tiempo de curvatura constante Ry, y por lo tanto
nos encontramos ante la eleccién del valor de Ry. Analizando los casos Ry = 0y Ry > 0, hemos
visto que los parametros de sustraccién minima enfrentan diferentes restricciones. Este andlisis
es de alguna manera andlogo al realizado en [24] para un campo escalar auto-interactuante
a temperatura finita, donde el punto de renormalizacion es elegido para un valor finito de la
temperatura fijo, pero consideramos que en el caso de De Sitter, esta discusién fue pasada por

alto en los trabajos previos del tema.

Una conclusién relevante de nuestro trabajo es que la aproximacion de Hartree y la aplicacién
de las relaciones de consistencia imponen restricciones sobre los parametros de sustraccion
minima de la teorfa. Por un lado, la masa renormalizada m?% debe ser positiva. Por otro lado, la
definicion del la constante de acoplamiento renormalizada Ar en términos de la derivada cuarta
del potencial efectivo junto con la relaciéon de consistencia para la funcién de 4-puntos implican

relaciones entre los parametros de sustraccion minima y los renormalizados independientes de
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it. De estas relaciones, esté claro que algunas elecciones de parametros de sustraccion minima
pueden no ser compatibles con las relaciones de consistencia. En particular, no es posible tomar

A= Ag, £ =0y m? < 0 simultdneamente, como han hecho otros autores en la literatura [58].

Nuestro siguiente objetivo ha sido extender el procedimiento de renormalizacion consistente
de la aproximacién de Hartree a las ecuaciones de Einstein semiclasicas (EES) [31]. Para ello,
hemos mostrado que en espacios curvos generales, el mismo conjunto de contratérminos que
permtieron renormalizar de forma consistente las ecuaciones del valor medio del campo y del
propagador, sirven para renormalizar las EES (junto con los contratérminos gravitacionales
habituales que son necesarios incluso para los campos libres). En cuanto a los efectos infrarrojos,
los términos potencialmente peligrosos en el valor de expectacién renormalizado del tensor de
energfa-momento en De Sitter (6.25) aparecen suprimidos por un factor mgyn. Por lo tanto, la
generacién de masa dindmica proveniente de la resumacion no perturbativa del formalismo 2PI,
que tiene como consecuencia la regularizaciéon de las divergencias infrarrojas del propagador,

también regula la fuente de las EES.

En el espacio-tiempo de De Sitter, hemos calculado el potencial efectivo en el limite infrarrojo
con la finalidad de investigar la existencia de ruptura espontanea de simetria. Primero nos
hemos focalizado en el caso en el cual la backreaction puede ser despreciada [30]. Nuestros
resultados muestran que la simetria Z, puede romperse espontaneamente cuando se utiliza la
renormalizacién consistente, aunque no en condiciones generales. Esto debe contrastarse con los
resultados previos obtenidos usando una renormalizacion estandar de la teoria, como puede verse
facilmente a partir de las ecuaciones del valor medio del campo y del propagador. En efecto,
cuando las relaciones de consistencia no son tenidas en cuenta y no se permite la presencia
de diferentes contratérminos, las ecuaciones (4.50) y (4.51) se vuelven (4.84) y (4.85) [55]. En
este caso, la ausencia de un vacio invariante de De Sitter para campos no masivos prohibe la
existencia de soluciones con ruptura de simetria. Lo mismo ocurre en el limite de N grande
del modelo O(N), donde las relaciones de consistencia se satisfacen automaticamente orden a
orden en una expansién en 1/N y por lo tanto no hay necesidad de contratérminos adicionales.

Las ecuaciones son nuevamente (4.84) y (4.85) [55] y el mismo argumento se aplica [42, 55].

Para investigar si estas conclusiones cambian al permitir la backreaction, hemos considerado
la forma explicita de las ecuaciones de valor medio, la masa dinamica y las EES, con el fin de
buscar soluciones autoconsistentes en De Sitter [31]. La resolucién numérica simultdnea de
estas ecuaciones nos permitié analizar la aparicion de ruptura espontanea de simetria y, al
mismo tiempo, evaluar el efecto que las fluctuaciones cuanticas tiene sobre la métrica clasica.

Hemos encontrado que no hay ruptura de simetria cuando se fija el punto de renormalizacién
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a partir de la constante cosmoldgica segun la relacion clasica Agp = 4Ry, pero pueden existir
bajo otras condiciones. Otra conclusion importante de nuestro analisis es que la importancia
de la backreation depende en gran medida del valor de la curvatura escalar en el punto de
renormalizacion Ry. En particular, hemos encontrado soluciones de De Sitter autoconsistentes
en ausencia de constante cosmolégica Arp = 0, donde los efectos cuanticos desempenan un
papel crucial. Estas soluciones son relevantes para el problema de la energia oscura. Por esta
razon, seria importante analizar la factibilidad fenomenolégica de las mismas, comparando los
parametros con las cotas extraidas de las observaciones cosmoldgicas y astronémicas. Esto queda

pendiente para posibles trabajos futuros.

Para comprobar si los resultados obtenidos son validos mas alld de la aproximaciéon de
Hartree seria necesario incluir el diagrama del ”atardecer “ en el célculo de la accién efectiva 2PI.
Para abordar esta cuestion hay varias complicaciones técnicas a ser resueltas. Por un lado, el uso
del formalismo de camino temporal cerrado, o IN-IN, sera inevitable al considerar los términos
no locales en la accién efectiva 2PI. Por otra parte, la inclusién de diagramas de mayor niimero
de loops en la accion efectiva 2PI involucra algunos puntos sutiles en la renormalizacién, incluso
en espacio-tiempo plano [25], que tendrdn su contrapartida en espacios curvos. Otro método
no perturbativo dentro del contexto de la teoria de campos IN-IN que fue aplicado a De Sitter
de forma exitosa en la literatura es el del grupo de renormalizacién dindmico [54]. Ignorando
la interaccién del campo por encima de cierto cutoff en momentos (fisicos, no coméviles), los
autores han podido calcular la primera correccién en 1/N a la masa dindmica. Estos resultados
son prometedores, pero es importante ir mas alla del limite infrarrojo y considerar la influencia

de los modos de longitud de onda menor.

Una alternativa completamente distinta involucra otros métodos no perturbativos que nacen
del caso de estudio en particular, el espacio-tiempo de De Sitter, y que estan particularmente
adaptados para estudiar el problema infrarrojo. Estos métodos son el formalismo de inflacién
estocastica [17], y la teoria de campos en el espacio de De Sitter euclideo [39, 40]. En ambos
casos, la equivalencia de estos métodos con aquellos basados en la teoria de campos IN-IN con-
vencional todavia se debate abiertamente en la literatura, si bien se ha logrado cierto progreso

en el caso de campos masivos.

En inflacion estocastica, los modos del campo salen continuamente del horizonte y se vuelven
clasicos. La interaccion entre los modos de longitud de onda mucho mayor que el horizonte y los
modos cuanticos es descripta de manera efectiva mediante una fuente de ruido estocéstico £ en
una ecuacién de tipo Langevin. A partir de una funcién de densidad de probabilidad, obtenida

al resolver la ecuacién de Fokker-Planck correspondiente, pueden calcularse las funciones de
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correlacion del campo en el limite infrarrojo. El resultado mas relevante en la literatura en
relacion al problema infrarrojo en De Sitter proviene del calculo de la masa dinamica para
un solo campo no masivo (N = 1), ec. (7.7), a partir de este formalismo. Interesantemente,
éste difiere del resultado para N — oo meramente en un 15 %. Por otro lado, la desventaja
principal de este enfoque es la dificultad de calcular correcciones mas alla del limite infrarrojo
de manera sistematica. Ademas, los intentos de probar su equivalencia con la teoria de campos

en el formalismo IN-IN se limitan por el momento al caso masivo [34, 35, 36, 38|.

La teoria de campos en el espacio de De Sitter euclideo es otra opcién interesante. Dadas las
simetrias del espacio-tiempo de De Sitter en coordenadas globales en d dimensiones, al realizar
una prolongacién analitica al tiempo imaginario, es necesario compactificarlo, teniendo como re-
sultado una d-esfera euclidea. Definiendo la teoria de campos en esta esfera es posible recuperar
el resultado de inflacién estocdstica para campos no masivos al tratar el modo constante (que
ahora es discreto gracias a la compactificacién) de manera no perturbativa [39]. A diferencia
del tratamiento estocastico, el formalismo euclideo si admite correcciones sisteméticas prove-
nientes de los modos ultravioletas, tratados de forma perturbativa. Esto resulta prometedor,
sin embargo por el momento los intentos de probar la equivalencia entre la teoria de campos
euclidea y la teoria de campos lorentziana en el formalismo IN-IN se basan en el caso masivo
[41]. Es de gran interés establecer si esta equivalencia es valida en el caso no masivo, lo que
permitiria a su vez darle confianza a los resultados estocasticos, cuya equivalencia con la teoria

de campos lorentziana tampoco ha sido demostrada en ese caso.

Una manera de comprobar en parte la equivalencia seria comparar con resultados conocidos
provenientes de la teoria de campos en el formalismo IN-IN. Alli, los resultados no perturbativos
mas confiables son aquellos en el limite de N grande. Por esta razon, en nuestro trabajo més
reciente [44] hemos generalizado la teoria de campos en el espacio de De Sitter euclideo al
modelo con simetria O(N). A partir de esto hemos considerado las correcciones ultravioletas a
los resultados de orden infrarrojo mas bajo, analizando la renormalizacién. En este contexto,
calculamos la masa dindmica a segundo orden en la expansion infrarroja, asi como la funcién
de 2-puntos para puntos separados. Nuestros resultados eucideos son validos para todo N.
Verificamos que el resultado para la masa dindmica en el limite de N grande es compatible
con los resultados obtenidos a partir de la accion efectiva 2PI en ese limite, incluyendo la

restauraciéon de la simetria.

Sin embargo, observamos que para campos no masivos, el comportamiento para puntos
separados sigue teniendo problemas a tiempos largos. Esto tultimo se debe a que estamos ex-

pandiendo los propagadores ultravioletas alrededor del caso no masivo. Si pudiéramos realizar
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una resumacion a todo orden, recuperariamos un propagador masivo (como sucede en el caso
de N — 00). Queda como pregunta abierta si es posible redefinir la parte perturbativa de este
formalismo, para resumar cierta clase de contribuciones para esquivar este problema. Una vez
resuelto, deberia ser factible realizar la continuacién analitica de los resultados para volver al
espacio-tiempo de De Sitter lorentziano, y comprobar si éstos satisfacen o no las ecuaciones de

Schwinger-Dyson correspondientes.

En general, la equivalencia de estos métodos alternativos con la teoria de campos IN-IN en
el caso no masivo sigue siendo una pregunta abierta. Nuestros resultados en el espacio de De
Sitter euclideo son prometedores en vistas a progresar en esa direccién [44]. Sin embargo, ain
se deben sortear las otras dificultades mencionadas. Otro punto interesante es la posibilidad
de implementar una estrategia similar directamente en la teoria de campos lorentziana en el
formalismo IN-IN. En este caso, la principal dificultad yace en la definicién del "modo cero“
en el espacio-tiempo de De Sitter lorentziano donde se tiene un continuo de modos. Luego, la
implementacion de una resumacién no perturbativa de las contribuciones provenientes de dicho
modo debe ser implementada. Finalmente, las correcciones provenientes del resto de los modos

ultravioletas se deben tratar perturbativamente.

Otras preguntas interesantes incluyen la posibilidad de aplicar algunas de estas técnicas mas
alla del espacio-tiempo de De Sitter, pasando al caso de mayor interés cosmoldgico, donde la
expansion es cuasi-exponencial. Por un lado, esto introduce la dificultad de que las magnitudes
de interés, como ser la masa dinamica, pasarian a depender del tiempo. Por otro lado, esto
simultaneamente daria una solucion al problema infrarrojo. En efecto, si el periodo inflacionario
tiene un fin, esto le pone un limite al crecimiento de las fluctuaciones cuanticas de los campos no
masivos. De hecho, este mecanismo es el responsable de generar las perturbaciones primordiales
en el Universo temprano. Hasta dénde los problemas infrarrojos deben o no ser tratados con
los métodos no perturbativos en el contexto inflacionario dependera fuertemente del modelo

particular considerado.



Apéndice A

Limite de coincidencia del propagador
libre en De Sitter

Aqui proveemos algunos detalles del cédlculo de la funcién F (mflyn, {R}) para el espacio-
tiempo de De Sitter, ec. (3.13). Debemos expandir el propagador coincidente para d — 4, es decir

¢ — 0, mientras se mantiene fijo R, y por esta razén reescribimos v3 = (d 41) mdy” —&rd(d—1)

como 75 = ¢ 41) - <—m1d%m + ﬁR) d(d — 1). Entonces, expandiendo (3.12) para ¢ — 0:
RTITG+u)T(E-w)[2 13 R

Gi] = : 2 - ——+y+1 + _|_ + i

] 96m2T (L +v) T (E—wy) | e 6 77 " \48mp2 ¥ vy )+ 2

~—

} +O(e), (A1

Ao o) o))
n=4

donde ¢ (z) = I'' () /T'(x) es la funcién DiGamma, 4 es una escala de masa arbitraria introducida
para mantener las unidades usuales cuando d # 4. Notar que a pesar de que vy = Dy, SUS
derivadas no coinciden dvy/d(d)|4=4 # dvq/d(d)|4=4. De ahora en adelante € puede ser evaluado
en 0 en aquellos términos no divergentes. Utilizando las propiedades de las funciones Gamma

y DiGamma podemos simplificar el pre-factor y la expresién entre corchetes, obteniendo

R [(1 \[2 13 R dv,
[Gﬂ—gw{(r”‘*) R =) B R } (A2)
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donde usamos la notacién abreviada 1y = 1 (% + V4). Ahora, reemplazando las expresiones de

vy y dvg/d(d)|4=4 obtenemos

1 1 2 13 R

(M +ErR) } (A.3)

i
4

SN

o, reordenando un poco la expresién y sustituyendo vz — 1 + In(R/487p?) — In(R/1242),

61 = g [+ (0 )] o i e (- )

x [ln(1;2)+¢++¢_} —%}. (A4)

En esta forma, esta expresion puede compararse directamente con la primera linea de (2.30).

La funcién F(m2, ,{R}) en el espacio-tiempo de De Sitter resulta,
dyn

1 1 R
FdS(mflyn’ R) = _5 |:m3yn + <€R - 6) R:| In (12m§yn> + 'QZ)-i— + ¢—
1 1 R
- = A5
+ 5 (fR 6> R+ 367 (A.5)

donde R = 12H?. Esta funcién tiene todas las propiedades esperadas, es decir, se escribe sélo
en términos de los pardametros renormalizados, es independiente de € y fi, y satisface los limites
apropiados (2.32a), (2.32b) y (2.32¢). A la hora de verificar dichos limites es uitil tener en cuenta

que

lim
2
RS0 12m dyn

, 1 1 N A 1N\ 1
lm |:m?lyn + <§R - 6) R} {E + <¢+ - w,) d_zg- = (fR - 6) UETS (A.6b)

Yy +1Y_ +1n ( ) =0, (A.6a)




Apéndice B
Relaciones de consistencia 2PI1

En este apéndice repasaremos brevemente la derivacion de las relaciones de consistencia de
la accion efectiva 2PI que permiten establecer la relacién entre los diferentes contratérminos.
Estas son las ecuaciones (4.32) y (4.33). Empecemos por recordar que la accién efectiva 1PI
completa se obtiene evaluando la accién efectiva 2PI, también completa, en la solucién G(¢) a

la ecuacién del propagador,
T1pi[@] = Tapile, G(0)). (B.1)

De la ecuacién (4.25) tenemos que la ecuacion del propagador es, formalmente,

0l pr i ~—1 4 -1 Ol it
N Z —m - B.2
a a
0, equivalentemente
G_{le(Qg) = G(;b - 212(@7 (B.3)
donde definimos la auto-energia
- n 5an
S1a() = 2i—2 (B.4)
0Gz |,

La primera derivada funcional de I'; p;[¢] con respecto a ¢, la cual igualada a cero da la ecuacién

del campo, puede escribirse como

r® oI'[¢] _ 6Lapr  0lapr| 060G _ 0l9pr
' 01 |, 061 " Galg 01 06
I
= @'G(ﬂaéﬁa + i mt ) (B5)
’ o |,
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donde en la tercera igualdad hemos usado que (B.2).

Como fue mencionado en el capitulo 4, existen varias definiciones posibles de las funciones de
n-puntos en este contexto. Para la teoria A¢* es suficiente si nos concentramos en las funciones

de dos y cuatro puntos.

Por un lado, tenemos las funciones de dos y cuatro puntos que se obtienen tomando derivadas

funcionales de 'y p;[¢] con respecto a ¢:

2  0°T[¢]
F12 - 5¢15¢2 dz)a (B6)

@ 5T [¢]
D = 560000300 . (B.)

Derivando funcionalmente la ecuacién (B.5), obtenemos las siguientes expresiones para la fun-

cion de 2-puntos

6°I'[¢] 62T i 0 Tine | 0Gap
= iGoig + —— = <. B.8
0100 3 012 0100 o 010G ap o 0 (B2
Usando que B - -
6Gia 6 A 6G1a  0Gio - 0G
_ T a B.
A T ()
y que, a partir de la ecuacién (B.3) se tiene
5é12 = 62(1&)
505 = G1aGpp—= 505" (B.10)
podemos escribir
§°T'[¢] 8% ine it | ~ ~ 0%
=iGoiy + —— o GacGra——. B.11
So100s |-~ 12 550665 T 5610Gw| 50, (B1D)
¢ G G
Luego, se puede mostrar que
5212 . (52Fint . 52 znt Gab
= 27 B.12
o 030Gz | 5G125Gab 5093 (B.12)
521—‘””5 = 5Ecd
— 5¢35G12 i + A12 abGachd 5¢3 (BlS)
donde A12,34 se define como
Ao =4 ﬂ (B.14)
’ 0G120G'34 a
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Por lo tanto, dX12/0¢3 satisface una ecuacién autoconsistente. De manera similar, se puede

definir una funcién vértice de 4-puntos como la solucién autoconsistente de la siguiente ecuaciéon
_ _ i~ L
Vigga = Nioga + §A12,abGachchd,34, (B.15)
o0, expresada en forma matricial

V=A+ %I\CJV:[\ LVGRA, (B.16)
donde la tltima igualdad se desprende de las propiedades de simetria de V' (que son las misma
de F%),?A) y A,

Para obtener la funcién de 4-puntos se deben tomar dos derivadas adicionales, sin embargo,
esto se vuelve rapidamente inmanejable. Por lo tanto, consideremos el caso en el cual la teoria
exhibe una simetria interna Zs, es decir, es invariante ante ¢ — —¢. En este caso, las funciones

de n-puntos con n impar se anulan al ser evaluadas en ¢ = 0, por ejemplo

0312 R
— =2%——— =0. (B.17)
03 30 dp30G2 o
Teniendo esto en cuenta, la funcion de 4-puntos resulta
5T 53T %%
F(4) _ it + int acG cd
BT 061802005004 |, 0616020Gw | " 605864
53Fint = = 5226d 53Fint = = (52icd
TR T e We n wcGap—t B.18
5610030Gun | 50001+ 0100:0Gm |, Top P

A partir de la ecuacion (B.13) y explotando la simetria Z;, obtenemos una ecuacién autocon-
sistente
6%

+ A abGacG Ze
12,ab b b 50a

52212 . 53F7Lnt

036y lm (B.19)

cuya solucién puede ser expresada en términos de la funcién Vs 34, solucién de (B.15),

53 Fint

0¢30040G g c

62212 . 53Fint

= 20—
03004 0¢30040G 12 c

i A A
+ EWQ,abGachdQZ

. o oA A
= 1 <A34,12 + §V12,abGachdA34,cd) (B.20)
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donde hemos definido
63 Fint

A =2— B.21
12,34 5610620 Gan ( )

Luego, la funcion de 4-puntos puede ser escrita como

4 _ [
3 501002003064

0, de forma matricial

r

7 - 7 - - =
+ 5 |:A12,abGachbAcd,34 + 5A12,abGachchd,efGehGifAhi,:M + perm| ,
G

5T ) _ o
r® — 551 o+ % {AG2AT + %AGQVGQAJr —i—perm} . (B.22)
G
En la teoria exacta se satisface la siguiente relacién:
52Fint 5Fmt
=2 (B.23)
56:00| 3Gl

La cual es la primera relacién de consistencia (4.32) que hemos usado. Diferenciando con res-

pecto a GG obtenemos

5, 5%
So50Cn| = 2sansm| (B-24)
$10020G'34 30 120G |
es decir
Ao 3s = Moz (B.25)
Dado esto, la funcién de 2-puntos (B.11) resulta
5an CN—
'Y =Gyl + 2= =Gy, (B.26)
' G112 -

donde hemos utilizado la ecuacién del propagador (B.2) para llegar a la tiltima igualdad.

De manera similar, pero ahora para la funcién de 4-puntos (B.22), usando (B.25) y (B.15)

se obtiene
4F . o B . o o _
r® —= 65¢Z4nt + % {AGQAJr + %AGQVGQAT + perm
G
e I
= 5ot + EVGQAJr + perm (B.27)
c
54Fint ‘7 n
= oo + [V — A+ perm] (B.28)
G
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0, més explicitamente

@ N

1234 = m i + [‘712,34 — Niogs + Vigos — Aigos + Vigos — /_\14,23} . (B.29)

Esta ultima ecuacién es la segunda relacion de consistencia que estabamos buscando. Para

poder implementarla, es necesario considerar otra relacion valida en la teoria exacta:

F%),M(CZ =0) = Vigaa(¢ = 0), (B.30)

entonces se puede reescribir la expresién anterior como

(52 Fimg 1 54Fint

—_— + perms(2,3,4)| — ——————— ,
e en IR I T T W

Tohy = 2 (B.31)

donde hemos aprovechado las propiedades de simetria de F%)M. Esta es la segunda relacién de

consistencia que hemos utilizado (4.33).
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Apéndice C

Relacion entre los parametros
renormalizados y los de sustraccion
minima

En esta seccién resumimos el calculo de los parametros renormalizados a partir del potencial

efectivo con el punto de renormalizacion en el espacio-tiempo de Minkowski. Obtenemos su

relaciéon con los parametros de sustraccion minima.

Para m% usamos (4.62a) junto con (4.59) y (2.32a), dando

A m2
m?{ = m2 + 327r2m%2 In ([L—f) (Cl)

0, equivalentemente

m2

m%:[l_#ln<%§>] (C.2)

Luego, para g, vemos de la ecuacién (4.62b) que debemos imponer la condicién dmflyn JdR|o =

0. Para ello, tomamos la derivada de (4.62a) respecto de R,

dm?, A 1 A [ [dm3, 1], (ma
n _ 1 n _ N yn
ar Tt T St gm (5R 6)+327r2{[ iR TR 6] n( 2 )

1 1 dm3, dF
+ {mﬁyn + (gR — 6) R] — d—;zy - Qﬁ} . (C.3)

dyn

Ahora podemos evaluar para ¢ = 0y R = 0, usando (4.62a) y (2.32c), e imponer la condicién
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mencionada anteriormente. Esto lleva a

A 1 A 1 2
=t gm (gR - 6) T 3202 (53 - 6) = (%) (C.4)

0, con un poco de algebra

(63—%):[1_ (€= 3) — (C.5)

32/>r2 - 32);1’2 In (%ﬂ
Finalmente para Ay debemos tomar dos derivadas de (4.59) respecto de ¢,
dmflyn

A m2 1 1
R — )\ l yn 2 _ R
a0 S { “( i ) i {mdy" i (&f 6) } 3,

2dF(m?iyn,{l’%}) dmfly,n
dmg,, do

(C.6)

Antes de tomar la segunda derivada, evaluamos esta expresién para ¢ = 0y R = 0, ya que seré

A A m2
1— — In{—=2)| =0 C.7
) { 3272 3272 < 2 >] (€1

lo = 0. Ahora, volviendo a derivar

necesaria luego,
2
dmdyn

de

2
dmdyn

d¢

d*m? A m2 1 1
. yn _ )\ 1 dyn 2 _ = R
i3 e n( P >+ [mdy” (gR 6) ]mzw

- 2dF(m?lyn’ {R}) d2n/f(21yn
dmgyn d¢?

lo cual implica

dmﬁyn
do

+[...] (C.8)
y luego evaluando para ¢ = 0y R = 0, y usando el resultado previo junto con (4.62c), finalmente

llegamos a
A

m2 ’
[1 - # - 32);r2 In (ﬁ)]

A\p = (C.9)




Apéndice D
Derivadas funcionales de Z f[j]

Usando que Z f[j | es la funcional generatriz de una teoria libre, es facil evaluar sus derivadas
funcionales en J = 0 en términos del propagador ultravioleta libre G’(x, 2'). En este apéndice
obviamos el superindice (m) en el propagador para mantener una notacién manejable. Lo que

nos interesa aqui es seguir el detalle de los indices del grupo O(N). Las expresiones ttiles son

95 13
~ d Zf[{] B G(m)(fﬁl,JTg)éab, (Dl)
5Ja(.171)(5(]b(l’2) Jj—0
45 13
= = 5 Zf[l]} = = G(m) (Il, .Z’Q)G(m) (I‘g, x4)6ab50d
0Ja(21)0p(22)0 c(23)0 Ja(Ta) | 5_,

~

+G (5’717 $3)é(m) (1327 $4>5ac5bd

+G (21, 24) G (22, 23) 50000 (D.2)

En el caso de la derivada sexta, no es necesario escribir la expresion mas general posible para

seis puntos diferentes, ya que solo necesitamos algunos casos particulares en los cuales algunos
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de los puntos estan evaluados en coincidencia. Los dos casos necesarios son
887 [J]
cdef // f
,x! (SJabcdef (x1, 29, x, 2,2, 2") |

N+ 4)0.y00r + 4
(N + 4)dcades + (N +2)

= N

+4(N + 2)%6, V4G / Gy, 2)G(x, x2)

8(N + 38) ab// (21, 2)G (2 932)@(:1:,:1:

/ 6°Z41J]
cd ef
§5.J6 Jibedef (15 T, T, 2, T, T) o

J=0
(N +22V2C] + 2(N +8) / (o 2')?

= N(N +2)6,Va[G12G (21, 2)

5abé($1,$2)

+4(N + 2)6,4[G] / G(xy,2)G(x,25) (D.4)

xT



Apéndice E

Integrales del propagador ultravioleta

libre en el espacio de De Sitter euclideo

El propagador ultravioleta libre en el espacio de De Sitter euclideo admite la siguiente

expansion en armoénicos esféricos

Yi(2)YZi(2')
M d
M (@) = H §H2LL+d—L1)+M2

(E.1)

Entonces se tiene, por ejemplo

; H?LL+d—1)+M2 S IPL(L+d— 1)+ M '

donde hemos usado las relaciones de ortogonalidad de los armoénicos esféricos en d dimensiones
(7.18).

En el calculo de las correcciones a la parte ultravioleta de la funcién de 2-puntos a segundo

orden aparece, por un lado, la siguiente integral

é(M) G(M) nNo— g (‘[Z ) Y*( )
/Z (z,2) 677z 0) = Z [H2L(L+d—1)+/\/12][ (I +d—1) + M

L+#0,L740
Yi(2)Y/ ()
_ —d
B g [H2L(L +d — 1) + M2’ (E:3)
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donde nuevamente hemos expandido y luego integrado usando la ortogonalidad. Aqui se puede

hacer la observacion que

1 0 1
[HQL(L+d—1)+M2]2:_8M2 H2L(L+d—1)+ M?]’ (E.4)

y por lo tanto, bajo el supuesto que se pueden intercambiar la derivada y la serie, se concluye

que R
/ GM (2, )G (2, ') = — 0G‘§J>\% v) (E.5)
De manera similar, se puede mostrar que
P2GM) (2, 2)

R R - 1
(M) (M) (M) nN—_-2-2 \"r)
//yz GV (z, )GV (y, 2) GV (z,2) > oM (E.6)



Apéndice F

Renormalizacion en espacio de De

Sitter euclideo

El proceso de renormalizacion se lleva a cabo incluyendo dos contratérminos en la accién,
[ 0MP¢ada/2y [ ONbatpa)?/8N. Es vélido asumir que su dependencia en A serd como en el
caso perturbativo usual, es decir M2 ~ X\ y 6X ~ A2, y por lo tanto al segundo orden en las
correcciones ultravioletas necesitamos considerar términos con dM?, (0 M?)? y §\. Esto lleva a

las siguientes nuevas contribuciones a la funcional generatriz (8.3),

Azl J) = ZlaZI (6o - 50

0 JoadJow
R N ()]
-2 PO g2y Sl

5ab 5cd

+2,] vd((w?) Vb 54 Zo[Jo]
! 8 SN ) 6J10u0 050 Jou0 Joa

SM?
+Zo[Jo]

Z [ JINVI[G] — / %5@]

— (é0)o

LA VaoM? / 6°Z;(J] 0120 [ ]
AN 5 abed xéjc(x)(;jd(x) (SJOa(SJOb(SJOe(SJOf
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Rastreando estos términos en el calculo de ambas partes untravioleta e infrarroja de la funcion

de 2-puntos conduce a las siguientes nuevas contribuciones,

A ((Gu(@)dn(x)) = bu [ L V2V (6 — (6)3) | M2

4N2
X / G (2, 2)GM (2, 1), (F.1)
a ser agregada a (8.11), y
g Vo M?
A ({Poado)) = Wb { - 5 ({95)5 — (¢0)0) (F.2)

(V2M2?2 Vish A T2 AGM)
e T e (N DSMPVRG)

a ser agregadas al paso anterior a (8.22) (no mostrado), el cual es igual a (8.22) pero removiendo

+ ({85)0 — (620 (dp)0)

12 212
M + L(N + 2)5M2Vd2[G(M)]

+ ((60)5 — (@)oldoh) |~ N

las etiquetas ren y fin.

Con estas contribuciones provenientes de los contratérminos, es sencillo ver que las eleccio-
nes (8.13) y (8.21) para éstos conducen a resultados finitos. El resultado son las expresiones
renormalizadas (8.16) y (8.22).



Apéndice G

Comparacion entre contratérminos

lorentzianos y euclideos

Primero veamos que los contratérminos obtenidos en 2PI cuando N — oo en d dimensiones,
(8.30), coinciden con los utilizados en la aproximacion de Hartree (4.57). Pare esto es necesario
explicitar las partes divergentes en sustraccién minima cuando d = 4. De la expansion de

Schwinger-DeWitt (2.30) se obtiene que en ese caso

N 0 G(M) . M2 —2H2
G iy + M? ( [a i ]> =[G = % (G.1)
0,div
y
Skl (@.2)
oM? o 8w’ '

Utilizando la segunda, es inmediato ver que (8.30b) coincide con (4.57c). Por otro lado, el
contratérmino 6 M?, (8.30a), debe compararse con la combinacién dm? + 1266 H2, con ém? y
d¢ dados por (4.57a) y (4.57b) respectivamente. Mediante (G.1), éstas coinciden.

En segundo lugar, comparemos nuevamente los contratérminos (8.30), pero esta vez con
aquellos que provienen del célculo euclideo, (8.13) y (8.21). Para ello, notemos que al expandir

los primeros en A al orden mas bajo equivale simplemente a aproximar los denominadores por
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la unidad,
M os G
2 _ 2 )7 2 2=
oM 5 G iy + M ( BIVE , (G.3)
0,div
A2 [ Q[GM)]
o\ = —7< EIVE Od'. (G.4)

Para llevar los contratérminos euclideos a la misma forma, consideramos el limite de M? < H?,

lo que lleva a reemplazar

. . IlGM)
(G giy = (GO g0 + M2 ( [a e ]) : (G.5)
0,div
a[(;(M)] a[(;(M)]
<—3M2 ~ “ONE , (G.6)
div 0,div

en (8.13) y (8.21) (estas expansiones son exactas si d = 4, en virtud de (G.1) y (G.2)). Final-

mente, solo resta tomar N — oo.
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