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Abstract. K̄NN three body resonance has been studied by the K̄NN − πΣN coupled channel Faddeev
equation. The S-matrix pole has been investigated using the scattering amplitude on the unphysical Rie-
mann sheet. As a result we found a three-body resonance of the strange dibaryon system with a binding
energy B ∼ 76MeV and a width Γ ∼ 54MeV.

PACS. 11.30.Rd Chiral symmetries – 11.80.Jy Many-body scattering and Faddeev equation – 13.75.Jz
Kaon-baryon interaction – 21.45.+v Few-body systems

1 Introduction

Meson-nucleus bound states offer an important tool to
study the meson properties inside the nuclear medium and
the interaction of the meson below the threshold energy.
The K̄-nuclear system is particularly interesting because
of the I = 0 resonance Λ(1405) below the K̄N threshold.
The attractive kaon-nucleus interaction obtained from the
analysis of the X-ray from the kanonic-atom[1,2] might be
largely related to the Λ(1405). In a few nucleon system,
where one hopes to learn about the kaon-nucleon interac-
tion with less ambiguity on nuclear many body dynamics,
possible deeply bound states of the kaon in nuclei have
been proposed by Akaishi and Yamazaki[3–5]. The kaon-
nucleus optical potential is constructed from the kaon-
nucleon g-matrix in the nuclear medium. The predicted
binding energy B and width Γ of the smallest nuclear
system K−pp is (B,Γ ) = (48, 61)MeV. FINUDA collabo-
ration reported a signal of the K−pp bound state from the
analysis of the invariant mass distribution of Λ− p in the
K− absorption reaction on nuclei[6]. The reported cen-
tral value of the binding energy is (B,Γ ) = (115, 67)MeV,
which is twice larger than the theoretical prediction. Re-
cently a question raised[7] on the K̄N − πΣ interaction
used in Ref. [3,4], where the interaction in the πΣ channel
is absent, and on the interpretation of the invariant mass
spectrum[8], which might be explained by the K−pp → Λp
reaction with the final state interaction.

Intuitively, the K−pp resonance may be regarded as
the bound state of the Λ(1405) and the nucleon inter-
acting with the kaon exchange mechanism. The binding
energy of this resonance will be strongly influenced by the
dynamics of the Λ(1405) resonance. For the resonance in-
teraction in a few body system, it will be very important
to take into account fully the kaon-nucleon dynamics in
the K̄NN three-body system including the decay of the
Λ(1405) into the πΣ state. The purpose of this work is to

study the strange dibaryon system by taking into account
the three-body dynamics using the K̄NN − πΣN cou-
pled channel Faddeev equation. The three-body resonance
has been investigated on the three-neutron[10,12], πNN
dibaryon[13] and ΣNN hypernuclei[14,15]. The resonance
can be studied from the pole of the S-matrix or scattering
amplitude. The pole position can be obtained by studying
the eigenvalue of the kernel of scattering equation, which is
analytically continued in the unphysical sheet. We briefly
explain our K̄NN − πΣN coupled channel equation and
the procedure to search the three-body resonance in sec-
tion 2.

The structure of the Λ(1405) has been a long stand-
ing issue. The chiral Lagrangian[16,17] approach is able
to describe well the low energy K̄N reaction. A genuine
q3 picture of the Λ(1405) coupled with meson-baryon[18]
may not be yet excluded. In this work we describe a
K̄N −πΣ state using the s-wave meson-baryon potentials
guided from the lowest order chiral Lagrangian. With this
procedure, the strength of the potentials and the relative
strength of the potentials among various meson-baryon
channels are not parameters but determined from the chi-
ral Lagrangian. In this model, the Λ(1405) is ’unstable
bound state’, whose pole in the unphysical sheet will be-
come the K̄N bound state when the coupling between
K̄N and πΣ is turned off. The model of the two-body
meson-baryon interaction used in this work is explained
in section 3. We then report our results on the K̄NN
dibaryon resonance in section 4.

2 Coupled channel Faddeev equation and
resonance pole

In this section we briefly explain our coupled channel equa-
tion and a method to find resonance pole from the cou-
pled channel Faddeev equation. Our starting point is the
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Alt-Grassberger-Sandhas equation[19] for the three-body
scattering problem. The AGS equation for the three-body
scattering amplitude Ui,j is given as

Ui,j = (1 − δi,j)G−1
0 +

∑
n�=i

tnG0Un,j . (1)

We label the scattering amplitude U by the spectator par-
ticles i, j = 1, 2, 3. ti is the two-body t-matrix with the
spectator particle i and G0 = 1/(W −H0 + iε) is the three
particle Green’s function.

With the separable two-body interaction given as

vi = |gi > γi < gi|, (2)

the AGS-equation in Eq. (1) takes the following form

Xi,j = (1 − δi,j)Zi,j +
∑
n�=i

∫
dpnZi,nτnXn,j . (3)

The amplitude Xi,j is the matrix element of Ui,j between
states G0|pi, gi > with the plane wave spectator |pi > and
the interacting pair |gi >, as

Xi,j = < pi, gi|G0Ui,jG0|pj , gj > . (4)

The driving term Zi,j of Eq. (3) is the particle ex-
change interaction defined as

Zi,j = < pi, gi|G0|pj , gj > . (5)

The ’isobar’ propagator τi is given as

ti = |gi > τi < gi|, (6)

with

τi(W ) = [1/γi −
∫

dqi
< gi|qi >< qi|gi >

W − Ei(pi) − Ejk(pi, qi)
]−1, (7)

where Ei and Ejk are the energies of the spectator and the
interacting pair, respectively. qi is the relative momentum
of the pair j, k.

In our K̄NN resonance problem, we have included fol-
lowing K̄NN and πΣN Fock space components,

|a > = |N1, N2, K̄3 >, (8)
|b > = |N1, Σ2, π3 >, (9)
|c > = |Σ1, N2, π3 > . (10)

After symmetrizing the amplitude for N1 and N2[20] and
the partial wave expansion of the amplitude[9] restrict-
ing s-wave, the AGS-equation reduces into the following
coupled integral equation,

Xl,m(pl, pm) = Zl,m(pl, pm) +
∑

n

∫
dpnp2

n

× Kl,n(pl, pn)Xn,m(pn, pm). (11)

Here we used simplified notation for the kernel K = Zτ .

We follow the method for searching the three-body
resonance used by Matsuyama and Yazaki[11–13]. The
AGS-equation of Eq. (11) is the Fredholm type integral
equation with the kernel K = Zτ . Using the eigenvalue
ηa(W ) and the eigenfunction |φa(W ) > of the kernel for
given energy W ,

Zτ |φa(W ) > = ηa(W )|φa(W ) >, (12)

the scattering amplitude X can be written as

X =
∑

a

|φa(W ) >< φa(W )|Z
1 − ηa(W )

. (13)

At the energy W = Wp where ηa(Wp) = 1, the amplitude
has a pole and therefore Wp gives the bound state or
resonance energy.

3 Model of the meson-baryon interaction

We investigate the strange S = −1 dibaryon state with the
total angular momentum J = 0, parity π = −1 and isospin
I = 1/2, which is expected to have a larger I = 0 K̄N
component than the spin triplet state. The s-wave meson-
baryon (K̄N − πΣ, πN) interactions and baryon-baryon
interactions are included. In the following we concentrate
on the most important K̄N interaction.

The leading order chiral effective Lagrangian for the
octet baryon ψB and the pseudoscalar meson φ fields is
given as

Lint =
i

8F 2
π

tr(ψ̄Bγµ[[φ, ∂µφ], ψB ]). (14)

The meson-baryon potential derived from the chiral La-
grangian can be written as

< p′, α|VBM |p, β > = −Cα,β
1

(2π)38F 2
π

EM ′(p′) + EM (p)√
4EM ′(p′)EM (p)

× vα(p′)vβ(p). (15)

Here p and p′ are the momentum of the meson in the
initial state β and the final state α. The strength of
the potential at zero momentum is determined by the
pion decay constant Fπ. The relative strength among the
meson-baryon states is given by the constants Cα,β , which
are CK̄N−K̄N = 6, CK̄N−πΣ =

√
6 and CπΣ−πΣ = 8.

The only parameter of our model is cut off Λ of the
phenomenologically introduced vertex function vα(p) =
Λ4

α/(p2 + Λ2
α)2.

The cut off Λ is determined so as to reproduce the scat-
tering length of K̄N by Martin[21], which is summarized
in Table 1. We have two models for the non-relativistic
and relativistic kinematic energies. The relativistic form
of the kinetic energy may be necessary for the small pion
mass in the πΣN channel. The I = 0 scattering length
is close to the value −1.70 + i0.68(fm) of Ref. [21] but
the real part of our I = 1 scattering length is a little bit
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Table 1. The relativistic and non-relativistic models of the K̄N interaction. The values of the cut off parameters (Λ) are shown.
We also show the pole positions of the Λ(1405) in our models.

ΛK̄N (MeV) ΛπΣ(MeV) ΛπΛ(MeV) Scattering Length(fm) Resonance energy(MeV)

Relativistic Model I=0 1125 1300 −1.71 + i0.56 1413.6 − i29.0
I=1 1100 1100 1100 0.66 + i0.64

Non-rela. Model I=0 960 900 −1.78 + i0.59 1414.3 − i26.4
I=1 850 950 900 0.78 + i0.66
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Fig. 1. The total cross section of K−p → K−p (Left),
K−p → π+Σ− (Center) and K−p → π0Λ (Right) reactions.
The solid (dashed) curves show the results using relativistic
(non-relativistic) model. Data are taken from Ref. [25–29].

larger than 0.37 + i0.60(fm) of Ref. [21]. They are con-
sistent with the data of the kaonic hydrogen atom[22–24].
In K̄N − πΣ for I = 0 channel, the two models have a
resonance in K̄N physical and πΣ unphysical sheet. Both
models give a satisfactory description of the total cross
section of the K−p reaction at low energies as can be seen
in Fig. 1.

4 Results and discussion

We have searched for a resonance pole of the K̄NN−πΣN
coupled channel equation using the method described in
section 2 and the K̄N interaction explained in section 3. In

Fig. 2. Deformed contour of the momentum integration.

addition, the NN interaction for 1S0 channel and the πN
interaction are included in the AGS-equation. However the
ΣN interaction is not included in this work.

In order to investigate the resonance position, we have
to analytically continue the equation into the unphysical
energy sheet. For this purpose we deform the contour of
the momentum integration so that we will not cross the
singularity of the Z and τ of the kernel. The singulari-
ties are due to the πΣN, K̄NN continuum in the Green’s
function and the K̄N two-body resonance corresponding
to the Λ(1405), and the singularity of the potential for
the complex momentum. As an example the momentum
contour is shown by the solid curve in Fig. 2 for W =
2mN + mK − 70 − i32MeV . We searched for a resonance
energy below K̄NN and above the πΣN threshold in the
K̄NN -physical and πΣN -unphysical Riemann-sheet. The
shaded area is the ’forbidden region’ due to the singularity
of Z for the kaon exchange mechanism. We have studied
all ’forbidden region’ for π,N and K exchange mechanism
and determined the integration contour.

At first, we take into account only the K̄N−K̄N inter-
action. Therefore coupling with πΣN channel is switched
off and the contour of the momentum integration is on
the real axis. In this case, we find a bound state pole of
the AGS-equation below K̄NN threshold on the physical
sheet. The results are shown in Fig. 3 marked by a and a′
for the ’relativistic’ and ’non-relativistic’ model. Then in-
cluding the NN interaction, the binding energy is further
increased to 29.1MeV (25.2MeV) at b (b′) for ’relativistic’
(’non-relativistic’) model. The K̄N interaction included in
τ and Z in this model is strong enough to bind the K̄NN
system.
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Fig. 3. The pole trajectories of the K̄NN − πΣN scattering
amplitude for the Jπ = 0− and T = 1/2 state. Two trajectories
correspond to the relativistic model (solid line and filled circles)
and non-relativistic one (dashed line and filled triangles).

In the next step, we take into account the channel cou-
pling between K̄N state and πΣ state keeping the kaon
and nucleon exchange mechanisms in Z. We trace the tra-
jectory of the resonance pole by artificially modifying the
strength of K̄N−πΣ transition potential from zero to the
value of our model. The solid and dashed curve in Fig. 3
represent the pole trajectory corresponding to relativistic
and non-relativistic model, respectively. The bound state
pole moves into the K̄NN physical and πΣN unphysical
energy sheet and reaches to c (c′). The width of the reso-
nance is due to the decay of the K̄NN bound state to the
πΣN and πΛN states through the imaginary part of the τ .
Finally we include the π exchange mechanism in Z and the
π−N two-body scattering terms in τ , which plays a rather
minor role in determining the pole position. The final re-
sult of the K̄NN − πΣN resonance poles are denoted by
d and d′ in Fig. 3. The pole position of the three-body res-
onance is W = M − iΓ/2 = 2mN +mK −76.1−27.1iMeV
(2mN + mK − 69.7 − 34.2i) for the relativistic (non-
relativistic) model. Our resonance has deeper binding en-
ergy and similar width compared with the prediction of
Ref. [4]. Recently Shevchenko, Gal and Mares [30] studied
K−pp system using coupled channel Faddeev equation,
which is a quite similar approach as our present study.
They reported B ∼ 55 − 70MeV and Γ ∼ 95 − 110MeV.
Their binding energy is similar to ours, while our relativis-
tic model gives smaller width.

In summary we have studied strange dibaryon states
using the K̄NN − πΣN coupled channel Faddeev equa-
tion. We found a resonance pole of the strange dibaryon
at B ∼ 76MeV and Γ ∼ 54MeV in a relativistic model. It
is however noticed that the K̄N interaction is not well de-
termined experimentally and further investigations to find
a possible range of the resonance energy is necessary. The
full content of our work will be reported elsewhere [31].
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ful discussion on the three-body resonance. This work is sup-
ported by a Grant-in-Aid for Scientific Research on Priority
Areas(MEXT),Japan with No. 18042003 and the 21st Century
COE Program, “Towards a New Basic Science:Depth and Syn-
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