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Abstract: In contrast to Rydberg blockade, Rydberg anti-blockade allows multiple atoms to be si-
multaneously excited in the presence of significant nonlocal interactions and can lead to distinct
phenomena and applications. This inspires us to examine here general conditions, numerical verifica-
tions, and realistic restrictions regarding the collective anti-blockade excitations of N Rydberg atoms
equally arranged along a ring. We find that by adjusting the detuning of a pump field to compensate
for nonlocal interactions between one atom and all others, it is viable to realize resonant excitations of
N atoms but suppress far-detuned excitations of N − 1 and fewer atoms under different conditions
for an odd and an even number of atoms. Population dynamics of this Rydberg ring further show
that one-step anti-blockade implementation can be attained at a cutoff time of the pump field, which
increases quickly with the number of atoms. Hence, roughly perfect anti-blockade excitations are
attainable only for a not-too-large N due to inevitable spontaneous Rydberg decay.

Keywords: Rydberg atoms; Rydberg anti-blockade; population dynamics

1. Introduction

Highly excited Rydberg atoms of principal quantum numbers n ≫ 1 are a promising
neutral-atom platform for realizing quantum computing, simulation, metrology, and so
on [1] due to their nontrivial features, including large dipole moments, long radiative
lifetimes, and strong nonlocal interactions [2]. It is of particular interest that nonlocal
Rydberg interactions, usually manifested as van der Waals (vdW) interactions (∝ n11/r6

ij)

or dipole–dipole interactions (∝ n4/r3
ij) with rij being the distance between two atoms

i and j, may prohibit the same Rydberg excitations of other atoms within a mesoscopic
volume by inducing a large enough energy shift when one atom has been excited to a
Rydberg state by a resonant pump field. This is the so-called Rydberg blockade effect [3,4],
an effective resource for implementing multi-qubit gates [5,6], spatial Kramers–Kronig rela-
tions [7], electromagnetically-induced grating [8,9], multi-particle entanglement [10–12],
single-photon sources [13,14], etc.

An opposite effect is Rydberg anti-blockade [15], which allows the simultaneous
excitations of multiple atoms to a common Rydberg state. It was first proposed in [16]
and subsequently realized in [17] by considering a three-level ladder system of ultracold
Rydberg gas. So far, two methods of Rydberg anti-blockade have been proposed: one is
the simultaneous driving [18,19] where a coherent field is suitably detuned to compensate
for the (average) Rydberg shift so as to realize collective excitations of all atoms from
the ground state to the Rydberg state; another is the sequential driving [20] where a first
coherent field resonantly excites one atom to a Rydberg state while a second coherent field
excites other atoms to the same state by compensating for the (average) Rydberg shift with
a suitable detuning. There have been extensive studies on the realization and application
of the Rydberg anti-blockade for atomic pairs or ensembles [21–31], while little attention
has been paid to regularly arranged finite atoms, e.g., in a ring or a square optical lattice.
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With the development of state-of-the-art techniques, it is now viable to precisely
capture and arrange a finite number of cold atoms using optical tweezers. We note, in
particular, that Lukin et al. have prepared one-dimensional atomic arrays [32] while two-
dimensional [33,34] and three-dimensional atomic arrays [35] have been implemented using
the technology of mobile optical tweezers. Recently, it has been shown that defect-free large-
scale and heterogeneous atomic arrays could also be realized in experiments [36]. These
regular atomic structures have been explored for different purposes, e.g., to implement
quantum logic gates based on atomic qubits [37–41] and quantum simulation tasks such as
Ising-like [42–44] and XY-spin Hamiltonians [45–47]. As far as we know, they are rarely
studied for achieving Rydberg anti-blockade and relevant applications.

In this work, we consider a two-dimensional ring model of two-level Rydberg atoms
illuminated by a pump laser to realize their collective anti-blockade in one step. First, we
aim at deriving the general anti-blockade conditions with respect to an odd and an even
number of equally separated Rydberg atoms, respectively. Then, we try to attain the pump
field cutoff time when all atoms are excited from the ground state to the Rydberg state yet
without populating all intermediate states. Finally, we examine the population dynamics
of three-, four-, five-, and six-atom systems via numerical simulations to verify analytical
expectations on one hand and find realistic restrictions on the other hand. It is found that
the perfect elimination of all intermediate states requires a large enough ratio between
the pump detuning and Rabi frequency. This inevitably results in a cutoff time increasing
quickly with the number of atoms so that spontaneous Rydberg decay, though typically
very small, is negligible just for a few atoms. Hence, the strategy of using a pump laser to
achieve one-step Rydberg anti-blockade is valid only for a not-too-large number of atoms.

2. Model and Equations

2.1. Level Configuration and Geometric Arrangement

We consider in Figure 1 a few identical two-level atoms with the ground |g〉 and
Rydberg |r〉 states loaded into optical traps of equal distance rn1, typically in the range
of {2, 10} µm [42,48,49]. They are driven by a common pump field of frequency ωp and
amplitude Ep with detuning ∆p = ωp − ωrg and Rabi frequency Ωp = Epµgr/2h̄, where
ωrg and µgr have been defined as resonant frequency and dipole moment on transition
|g〉 ↔ |r〉, respectively. Any two of the N trapped atoms interact also through a van
der Waals (vdW) potential Vij = C6/r6

ij with C6 being the vdW coefficient and rij the
distance between atom i and atom j. This consideration is valid when rn1 is large enough
to exceed the vdW distance dvdW for a certain Rydberg state, which can be estimated with
the ARC Toolkit [50]. In our ring model, the atoms can be fixed either by tight optical
tweezers [32–36] or in deep optical lattices [51–53], leaving atomic position fluctuations
negligible as compared to rn1 for ultracold atoms, e.g., at the sub µK temperatures.

In the interaction picture, with the rotating-wave and electric-dipole approximations,
the total Hamiltonian of an N-atom system is HN = Ha +Hv, where

Ha = h̄
N

∑
i=1

[−∆p|r〉i〈r|+ (Ωp|r〉i〈g|+ H.c.)], (1)

denotes the atom–field interactions while

Hv = h̄
N−1

∑
i=1

N

∑
j=i+1

Vij|rr〉ij〈rr|, (2)

denotes the atom–atom interactions. In order to facilitate discussions, we separately deal
with two specific cases where an even or an odd number of Rydberg atoms are equally
arranged along a ring. We will examine, in particular, with Hamiltonian HN , the general
conditions for realizing an anti-blockade effect as well as their numerical verifications and
realistic restrictions for the even-number and odd-number cases, respectively.
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Figure 1. Geometric arrangements for (a) three, (b) four, (c) five, and (d) six Rydberg atoms equally
spaced along a ring. Blue, red, and green lines with arrows represent nearest, next-nearest, and
next-next-nearest neighbor interactions between different atomic pairs, respectively. (e) Two-level
configuration for each atom arranged along the ring when a coherent pump field is applied to couple
ground state |g〉 to Rydberg state |r〉 with Rabi frequency Ωp and detuning ∆p.

2.2. Anti-Blockade Conditions of Rydberg Excitations

2.2.1. A Ring of Odd-Number Rydberg Atoms

Here we start from the simplest three-atom case (see Figure 1a) to derive a corresponding
anti-blockade condition with the energy level diagram given in Figure 2. In this case, the
interactions of all Rydberg pairs are identical with V12 = V23 = V13 = V1 since any two atoms
are equally spaced along the ring. Then, if ground state |ggg〉 is assumed to exhibit a zero
energy, as usual, the energies of singly excited states |ggr〉, |grg〉, and |rgg〉 will remain
unshifted with E = h̄ωrg in the absence of any Rydberg interactions; the energies of doubly
excited states |grr〉, |rrg〉, and |rgr〉 will be shifted from 2E to 2E + h̄V1 = 2h̄ωrg + h̄V1 due
to a single Rydberg interaction; the energy of fully excited state |rrr〉 will suffer a larger shift
from 3E to 3E + 3h̄V1 = 3h̄ωrg + 3h̄V1 in the presence of three pairs of Rydberg interactions.

Figure 2. Eight-level configuration in the three-atom basis, where singly, doubly, and fully excited
Rydberg states exhibit different shifts due to vanishing or nonzero vdW interactions. The pump field
is applied on three-photon resonance yet with large single-photon and two-photon detunings.

One key to realizing the collective anti-blockade effect is to compensate the en-
ergy shift of fully excited state |rrr〉 caused by Rydberg interactions with an appropri-
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ate detuning of the coherent pump field. In other words, we should try to attain the
resonant excitation between |ggg〉 and |rrr〉 by modulating the coherent pump field to
achieve 3h̄ωp = 3E + 3h̄∆p = 3E + 3h̄V1, i.e., ∆p = V1. Note, however, that we also
need to avoid populating all intermediate (singly and doubly) excited states by mak-
ing them far-detuned from the ground state. More specifically, in the case of ∆p = V1,
the single-photon detuning (E + h̄∆p)− E = h̄V1 is identical to the two-photon detuning
(2E + 2h̄∆p)− (2E + h̄V) = h̄V1. Then, the three-atom anti-blockade condition should be

∆p = V1 ≫ Ωp, (3)

so as to suppress the excitation of all (singly and doubly excited) intermediate states.
In the five-atom case, however, there are two kinds of Rydberg interactions (see

Figure 1c) in the presence of two groups of atomic pairs with different spacings. Hence, we
should define V12 = V23 = V34 = V45 = V15 = V1 as the nearest neighbor interactions and
V13 = V14 = V24 = V25 = V35 = V2 as the next-nearest neighbor interactions. Via a similar
analysis, it is not difficult to attain the five-atom anti-blockade condition

∆p = V1 + V2 ≫ Ωp, (4)

required for realizing the resonant excitation of the fully excited state |rrrrr〉 and meanwhile
suppressing the far-detuned excitations of all intermediate states.

Through careful induction, the general anti-blockade condition for N = 2k + 1
(k = 1, 2, 3, . . . ) equally spaced atoms along a ring can be summarized as

∆p =
k

∑
i=1

C6

(

sin α
2

rn1 sin i α
2

)6

≫ Ωp, (5)

where the vdW potentials Vi have been expressed as a function of coefficient C6, distance
rn1, index i, and angle α = 2π/N (see Appendix A for details).

2.2.2. A Ring of Even-Number Rydberg Atoms

Here we start from the four-atom case (see Figure 1b) since the simplest two-atom case
has been well discussed in previous works [10,20,25,27,39] with the anti-blockade condition
being simply ∆p = 0.5V1 ≫ Ωp. In this four-atom case, there exist both nearest (V1) and
next-nearest (V2) neighbor interactions, which exhibit different contributions to the shift of
an excited state containing two or more Rydberg atoms as can be found in the energy level
diagram given in Figure 3.

Figure 3. Sixteen-level configuration in the four-atom basis, where singly, doubly, triply, and fully
excited Rydberg states exhibit different shifts due to different vdW interactions. The pump field is
applied on four-photon resonance with large one, two, and three-photon detunings.
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In the spirit of relevant discussions on three-atom anti-blockade, four-photon reso-
nance is required to realize a full transfer of all atoms from ground state |g〉 to Rydberg
state |r〉, i.e., 4h̄ωrg = 4E + 4h̄∆p = 4E + 4h̄V1 + 2h̄V2, thus yielding ∆p = V1 + 0.5V2.
In this case, it is not difficult to find that both single-photon and three-photon detun-
ings are V1 + 0.5V2 while the two-photon detuning is V1 + V2 or 2V1. Considering that
2V1 > V1 +V2 > V1 + 0.5V2 due to V1 > V2, it is viable to avoid populating all intermediate
(singly, doubly, and triply) excited states with sufficiently large pump detunings

∆p = V1 + 0.5V2 ≫ Ωp, (6)

for realizing a four-atom anti-blockade.
As to the six-atom case, a similar analysis allows us to find the following anti-

blockade condition

∆p = V1 + V2 + 0.5V3 ≫ Ωp, (7)

with V3 denoting the next-next-nearest neighbor interactions. Via careful induction, the
general anti-blockade condition for N = 2k (k = 1, 2, 3, 4, . . . ) equally spaced atoms along a
ring can be summarized as

∆p =
C6

2

(

sin α
2

rn1

)6

+
k−1

∑
i=1

C6

(

sin α
2

rn1 sin i α
2

)6

≫ Ωp, (8)

clearly different from Equation (5) for an odd number of Rydberg atoms (see Appendix A
for details).

2.3. Effective Hamiltonians and Cutoff Times

In realistic experiments, a perfect transfer of all atoms from ground state |g〉 to Rydberg
state |r〉 could be attained only if the pump field is cut off at an appropriate time. To
this end, we first choose the three-atom system as an example to calculate its effective
Hamiltonian [54] when all intermediate states are safely eliminated under the anti-blockade
condition ∆p = V1 ≫ Ωp. With details on the calculation procedure given in Appendix B,
we can write down the effective Hamiltonian

Heff

3 = h̄δeff3 (|ggg〉〈ggg|+ |rrr〉〈rrr|) + (h̄Ωeff

3 |ggg〉〈rrr|+ H.c.), (9)

where Ωeff

3 = 6Ω3
p/∆2

p represents the effective pump Rabi frequency while δeff3 = 3Ω2
p/∆p

is the common Stark shift of both ground state |ggg〉 and fully excited state |rrr〉. This
shift arising from the virtual absorption and emission of pump photons is trivial and
can be removed in calculations because, as two identical diagonal terms, they will not
result in a three-photon detuning; hence, they do not participate in the anti-blockade
dynamic evolution.

To be more specific, we assume that the effective pump field is a squared pulse of
duration τ3 and the three atoms are initially prepared in ground state |ggg〉. Then, the
anti-blockade cutoff time, i.e., τ3 for a π/2 squared pump pulse, can be calculated through

|Ωeff

3 |τ3 =
π

2
, (10)

at which the three atoms will be in a fully excited state |rrr〉 as verified in the next section.
Effective Hamiltonians Heff

4 , Heff

5 , and Heff

6 for four-atom, five-atom, and six-atom
systems, respectively, are listed in Appendix B with which it is easy to learn the correspond-
ing effective pump Rabi frequencies Ωeff

4 , Ωeff

5 , and Ωeff

6 . Then, the cutoff times τ4, τ5,
and τ6 can be calculated via |Ωeff

N |τN = π/2.
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3. Results and Discussion

In this section, we examine the dynamic evolutions of a few N-atom systems under
the anti-blockade conditions attained above. This will be conducted by numerically solving
the master equation of density operator ρ

∂tρ = −i/h̄[HN , ρ] + L(ρ), (11)

where L(ρ) = 1
2 ∑

N
j=1[2LjρL†

j − L†
j Ljρ − ρL†

j Lj] is the Lindblad operator describing the

dissipation process with Lj =
√

Γ|g〉j〈r|. Here, Γ represents the spontaneous decay rate
and |g〉j〈r| represents the lowering operator for atom j. Approximate numerical results can
also be attained by replacing HN with Heff

N to consider only the ground state and the fully
excited state.

First, we plot in Figure 4 the population dynamic evolutions in the ground and the
fully excited states for three atoms equally spaced along a ring in the absence (a) or presence
(b) of spontaneous Rydberg decay. Figure 4a shows that the dashed lines attained with
the effective Hamiltonian Heff

3 and the solid lines attained with the original Hamiltonian
H3 overlap well, indicating that all intermediate states can be safely eliminated since
populations evolve only between the ground and fully excited states. Note, in particular,
that the vertical dotted line refers to the cutoff time τ3 ≃ 1.78 µs where we have ρrr,rr,rr → 1,
indicating that a roughly perfect anti-blockade Rydberg excitation can be achieved in
one step. Figure 4b further shows that a rather ideal anti-blockade Rydberg excitation
ρrr,rr,rr > 0.99 can be attained even in a more realistic situation with Γ = 2π× 1ms−1,
which just results in a small number of populations leaked out to the intermediate states in
a limited time t = τ3.

Figure 4. Population evolutions of ground (squares) and fully excited (circles) states for the three-
atom system with (a) Γ = 0; (b) Γ = 2π× 1ms−1 [55]. Solid lines refer to exact results attained with
H3, while dashed lines refer to approximate results attained with Heff

3 . Vertical dotted lines denote
the cutoff time τ3. Other parameters are ∆p = V1 ≃ 500 MHz, Ωp = ∆p/15, and ρgg,gg,gg(0) = 1.0
with rn1 ≃ 2.56 µm and C6 = 140 GHz µm−6 for state |r〉 = |60S〉 of 87Rb atoms.

Then, we examine in Figure 5, how the anti-blockade condition ∆p = V1 ≫ Ωp

depends on the ratio ∆p/Ωp and how the cutoff time τ3 varies against the ratio ∆p/Ωp for
a fixed Ωp in the more realistic situation with Γ = 2π× 1ms−1. Figure 5a shows that a
population in the fully excited state is already quite large with ρrr,rr,rr > 0.92 at ∆p/Ωp ≃ 10
but gradually achieves a maximal value ρrr,rr,rr > 0.99 at ∆p/Ωp ≃ 15, indicating a roughly
perfect population transfer from state |ggg〉 to state |rrr〉. With the further increase in
∆p/Ωp, however, it seems that ρrr,rr,rr decreases a little bit, which can be attributed to
the more accumulated spontaneous decay at a longer cutoff time since ρrr,rr,rr becomes
saturated for ∆p/Ωp & 15 if we set Γ = 0. This is verified by Figure 5b where the cutoff
time slowly prolongs from τ3 ≃ 0.5 µs at ∆p/Ωp = 10, to τ3 ≃ 1.8 µs at ∆p/Ωp = 15,
τ3 ≃ 4.2 µs at ∆p/Ωp = 20, and τ3 ≃ 8.2 µs at ∆p/Ωp = 25.
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Figure 5. (a) Population of the fully excited state at the cutoff time and (b) the cutoff time against the
scaled pump detuning ∆p/Ωp with Ωp = 33 MHz for the three-atom system. Other parameters are
the same as in Figure 4.

Now, we transfer to the case where more atoms are arranged along a ring and consider
in Figure 6 the four-atom, five-atom, and six-atom systems as an example. From the
left three panels (a, c, e) we can see that, in the absence of spontaneous Rydberg decay,
the deviation of approximate results attained with Heff

N from exact results attained with
HN becomes more and more evident with the increase in the number N of atoms, but
it is still acceptable for N = 6 with the approximate and exact maximal values being
ρrr,rr,rr,rr,rr,rr ≃ 0.97 and ρrr,rr,rr,rr,rr,rr ≃ 0.99, respectively, at the cutoff time τ6 ≃ 146.1 µs.
This once again confirms the validity of our effective Hamiltonian method by eliminating
all intermediate states, hence the validity of our one-step anti-blockade strategy from
the ground state to the fully excited state. Note that the cutoff time τN increases quickly
with number N of atoms and we have τ4 ≃ 7.8 µs, τ5 ≃ 34.3 µs, τ6 ≃ 146.1 µs, in
particular, because a direct transition between the ground state and the fully excited state
requires an N-photon process with the effective Rabi frequency Ωeff

N exactly or roughly

proportional to Ωp

(

Ωp/∆p

)N−1. Hence, Ωeff

N decreases rapidly with N for fixed values
Ωp and Ωp/∆p ≪ 1. The right three panels (b,d,f) show instead the exact results attained
in the presence of spontaneous Rydberg decay, from which we find that the cutoff time τN

becomes evidently less on one hand and the maximal value ρrr,...,rr largely reduces on the
other hand.

To gain a clearer picture of the observations in Figure 6, we finally examine in Figure 7
how the fully excited state is populated at the cutoff time for different numbers of atoms.
Figure 7a shows that τN increased quickly with N and reached about 146 µs for Γ = 0
while 140 µs for Γ = 2π× 1ms−1 in the case of N = 6 as other parameters remained
fixed. The quick increase in τN with N then resulted in what is observed in Figure 7b:
ρrr,...,rr(τN) depends weakly on N in the absence of spontaneous Rydberg decay but is
sensitive to N in the presence of spontaneous Rydberg decay. To be more specific, we
have ρrr,rr,rr,rr,rr,rr(τ6) ≃ 0.97 for Γ = 0 while ρrr,rr,rr,rr,rr,rr(τ6) ≃ 0.64 for Γ = 2π× 1ms−1.
It is also clear that a better anti-blockade effect can be realized for a shorter cutoff time.
Hence, we have made similar calculations in Figure 7c,d by replacing ∆p/Ωp = 15 with
∆p/Ωp = 12, which still works for eliminating the intermediate states. It is found that
the cutoff time has been largely reduced (e.g., with τ6 ≃ 38 µs) and the fully excited state
becomes more populated (e.g., with ρrr,rr,rr,rr,rr,rr(τ6) ≃ 0.85). Note, in particular, that
a rather good anti-blockade effect can be attained for N = 5 and Γ = 2π× 1ms−1, as
characterized by ρrr,rr,rr,rr,rr(τ5) ≃ 0.93 at τ5 ≃ 11 µs.
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Figure 6. Dynamic evolutions of ground (squares) and fully excited (circles) states for the
(a,b) four-atom, (c,d) five-atom, and (e,f) six-atom systems with (a,c,e) Γ = 0; (b,d,f) Γ = 2π× 1ms−1.
Solid lines refer to exact results attained with H4,5,6, while dashed lines refer to approximate results
attained with Heff

4,5,6. Vertical dotted lines denote the cutoff time τN . Other parameters are the same
as in Figure 4.

Finally, we examine in Figure 8 how fast population ρrr,...,rr(τN) in the fully excited
state decays as Γ gradually increases for different atomic systems. It is clear that a faster
Rydberg population decay occurs always for a larger number N of atoms in a ring of dipole
traps and/or a larger ratio ∆p/Ωp between the probe detuning and Rabi frequency. Note,
in particular, that the Rydberg population decay is negligible for N = 3 and N = 4, turns
out to be visible for N = 5, but becomes remarkable for N = 6 in the case of Γ < 1 kHz. To
be more specific, we have ρrr,rr,rr,rr,rr,rr(τ6) = 0.97 for Γ = 0 while ρrr,rr,rr,rr,rr,rr(τ6) = 0.64
for Γ = 2π× 1ms−1 in Figure 8a with ∆p/Ωp = 15; ρrr,rr,rr,rr,rr,rr(τ6) = 0.95 for Γ = 0 while
ρrr,rr,rr,rr,rr,rr(τ6) = 0.85 for Γ = 2π× 1ms−1 in Figure 8b with ∆p/Ωp = 12.

An alternative solution is to shorten the cutoff time by reducing rn1, which promises
the increase in ∆p and Ωp at a fixed ratio, yielding thus a larger effective Rabi frequency.
Note, however, that due to realistic restrictions in the experiment, ∆p and Ωp cannot be
increased at will so our Rydberg anti-blockade strategy is limited to finite atoms in a
blockade volume, i.e., not-too-dense atomic ensembles with at most six-body interactions.
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Figure 7. (a,c) Cutoff time and (b,d) population of the fully excited state at a corresponding cutoff
time against number N of atoms with (a,b) ∆p/Ωp = 15; (c,d) ∆p/Ωp = 12. Solid lines refer to Γ = 0
while dashed lines refer to Γ = 2π× 1ms−1. Other parameters are the same as in Figure 4.

Figure 8. Population of the fully excited state at a corresponding cutoff time against Γ and N with
(a) ∆p/Ωp = 15; (b) ∆p/Ωp = 12. The four lines in each panel correspond to N = 3, N = 4, N = 5,
and N = 6 in order from top to bottom. Other parameters are the same as in Figure 4.

4. Conclusions

In summary, we have studied the possible realizations of collective anti-blockade
excitations for a few Rydberg atoms equally arranged along a ring. By discussing the cases
of odd and even numbers of atoms separately, we have derived two general conditions for
transferring all atoms from the ground state to the fully excited state yet without populating
the intermediate states. We have also derived the effective Rabi frequency answering for
population oscillations between the ground and fully excited states, and then the cutoff
time of a pump field where all atoms are excited to the Rydberg state. These analytical
results have been verified via numerical calculations from which we find that under a
certain anti-blockade condition, the collective excitations of all atoms arranged along a ring
can be realized at the pump field cutoff time in one step. Note that this cutoff time quickly
increases with the number of atoms so that the accumulated effect of spontaneous Rydberg
decay becomes more and more significant, which then results in the imperfect Rydberg
anti-blockade with the intermediate states being more or less populated. We believe that



Photonics 2023, 10, 1172 10 of 15

our analytical and numerical results exhibit some essential implications for realizing the
collective Rydberg anti-blockade; though they do not apply to too many atoms and could
be the basis for an experiment leading to a nontrivial quantum light source.
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Appendix A. Details on Deriving Anti-Blockade Conditions

When deriving the general anti-blockade conditions in Equations (5) and (8), we have
considered some details on the geometric arrangement for an odd or even number of
equally spaced atoms along a ring. Taking the odd number of atoms first as an example, in
the case of N = 3, Equation (3) can be rewritten as

∆p = V1 =
C6

r6
n1

≫ Ωp, (A1)

where r12 = r23 = r31 = rn1 is the nearest neighbor interatomic distance as shown in
Figure A1a.

Figure A1. Geometric arrangement of (a) three or (b) five equally spaced atoms along a ring of center
O and radius R. Here, rn1 and rn2 represent the nearest and the next-nearest neighbor interatomic
distances, respectively; α = 2π/N with (a) N = 3 or (b) N = 5 represents the angle ∠iO(i + 1) for
i < N or ∠iO1 for i = N.

In the case of N = 5, we know from Figure A1b that Equation (4) instead becomes

∆p = V1 + V2 =
C6

r6
n1

+
C6

r6
n2

≫ Ωp, (A2)

where r12 = r23 = r34 = r45 = r51 = rn1 and r13 = r14 = r24 = r25 = r35 = rn2 are the
nearest and the next-nearest neighbor interatomic distances, respectively. Now, we try to
express rn2 in terms of rn1 and the angle α = 2π/5, as defined in Figure 8b with respect
to ring center O and two nearest neighbor atoms. It is easy to learn from the (blue) acute
triangle that rn1 = 2R sin(α/2) and from the (red) obtuse triangle that rn2 = 2R sin(α).
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Then, we can attain rn2 = rn1 sin(α)/ sin(α/2) so that the five-atom anti-blockade condition
turns out to be

∆p =
C6

r6
n1

+
C6

(

rn1
sin α
sin α

2

)6 ≫ Ωp. (A3)

Similarly, in the case of N = 7, we can attain

∆p =
C6

r6
n1

+
C6

(

rn1
sin α
sin α

2

)6 +
C6

(

rn1
sin 3α

2
sin α

2

)6 ≫ Ωp, (A4)

which, through a straightforward induction, has been generalized to yield Equation (5).
As an even number of atoms are involved, with the same definitions of α, rn1, rn2, . . . ,

we can attain

∆p =
C6

r6
n1

+
1
2

C6
(

rn1
1

sin α
2

)6 ≫ Ωp, (A5)

from Equation (6) in the case of N = 4, while

∆p =
C6

r6
n1

+
C6

(

rn1
sin α
sin α

2

)6 +
1
2

C6
(

rn1
1

sin α
2

)6 ≫ Ωp, (A6)

from Equation (7) in the case of N = 6. They have been generalized to yield Equation (8).

Appendix B. Details on Deriving Effective Hamiltonians

We start by showing some details on deriving the three-atom effective Hamiltonian
in Equation (9). The total Hamiltonian of a three-atom system can be rewritten on the
three-atom basis as H3 = HI

3 +H0
3 with

HI
3 = h̄[Ωp(|ggg〉〈ggr|+ |ggg〉〈grg|+ |ggg〉〈rgg|+ |ggr〉〈grr|

+ |ggr〉〈rgr|+ |grg〉〈grr|+ |grg〉〈rrg|+ |rgg〉〈rgr|
+ |rgg〉〈rrg|+ |grr〉〈rrr|+ |rgr〉〈rrr|+ |rrg〉〈rrr|) + H.c.], (A7)

and

H0
3 = −h̄∆p(|rgg〉〈rgg|+ |grg〉〈grg|+ |rgg〉〈rgg|)

+ h̄(V1 − 2∆p)(|grr〉〈grr|+ |rgr〉〈rgr|+ |rrg〉〈rrg|)
+ h̄(3V1 − 3∆p)|rrr〉〈rrr|. (A8)

Moving to the rotation frame with respect to U3 = eiH0
3t/h̄, it is viable to transform HI

3 into

H′
3 = h̄Ωpei∆pt(|ggg〉〈ggr|+ |ggg〉〈grg|+ |ggg〉〈rgg|)

+ h̄Ωpei(∆p−2V1)t(|grr〉〈rrr|+ |rgr〉〈rrr|+ |rrg〉〈rrr|)
+ h̄Ωpei(∆p−V1)t(|ggr〉〈grr|+ |ggr〉〈rgr|+ |grg〉〈grr|
+ |grg〉〈rrg|+ |rgg〉〈rgr|+ |rgg〉〈rrg|) + H.c., (A9)

based on which a perturbation method can be used to calculate the effective Hamiltonian Heff

3 .
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Under the anti-blockade condition ∆p = V1 ≫ Ωp, we first obtain with

|ggg〉〈ggg|H′
3|ggr〉〈ggr|H′

3|grr〉〈grr|H′
3|rrr〉〈rrr|

∆2
p

+
|ggg〉〈ggg|H′

3|ggr〉〈ggr|H′
3|rgr〉〈rgr|H′

3|rrr〉〈rrr|
∆2

p

+
|ggg〉〈ggg|H′

3|grg〉〈grg|H′
3|grr〉〈grr|H′

3|rrr〉〈rrr|
∆2

p

+
|ggg〉〈ggg|H′

3|grg〉〈grg|H′
3|rrg〉〈rrg|H′

3|rrr〉〈rrr|
∆2

p

+
|ggg〉〈ggg|H′

3|rgg〉〈rgg|H′
3|rgr〉〈rgr|H′

3|rrr〉〈rrr|
∆2

p

+
|ggg〉〈ggg|H′

3|rgg〉〈rgg|H′
3|rrg〉〈rrg|H′

3|rrr〉〈rrr|
∆2

p
, (A10)

the effective Rabi frequency Ωeff

3 = 6Ω3
p/∆2

p between states |ggg〉 and |rrr〉; second, we
obtain with

|ggg〉〈ggg|H′
3|ggr〉〈ggr|H′

3|ggg〉〈ggg|
∆p

+
|ggg〉〈ggg|H′

3|grg〉〈grg|H′
3|ggg〉〈ggg|

∆p

+
|ggg〉〈ggg|H′

3|rgg〉〈rgg|H′
3|ggg〉〈ggg|

∆p
, (A11)

and

|rrr〉〈rrr|H′
3|grr〉〈grr|H′

3|rrr〉〈rrr|
∆p

+
|rrr〉〈rrr|H′

3|rgr〉〈rgr|H′
3|rrr〉〈rrr|

∆p

+
|rrr〉〈rrr|H′

3|rrg〉〈rrg|H′
3|rrr〉〈rrr|

∆p
, (A12)

a common Stark shift δeff3 = 3Ω2
p/∆p for states |ggg〉 and |rrr〉. Then, we can write down

Heff

3 in Equation (9).
Similarly, we can write down the effective Hamiltonians

Heff

4 =

(

4h̄Ω2
p

∆p
|gggg〉〈gggg|+

4h̄Ω2
p

∆p
|rrrr〉〈rrrr|

)

+

[

h̄Ω4
p

∆2
p

(

16
V1 + V2

+
4

V1

)

|gggg〉〈rrrr|+ H.c

]

, (A13)

for a four-atom system under the anti-blockade condition ∆p = V1 + 0.5V2 ≫ Ωp;

Heff

5 =

(

5h̄Ω2
p

∆p
|ggggg〉〈ggggg|+

5h̄Ω2
p

∆p
|rrrrr〉〈rrrrr|

)

+

{40h̄Ω5
p

∆2
p

[

1
(V1 + 2V2)2 +

1
(V1 + 2V2)(2V1 + V2)

+
1

(2V1 + V2)
2

]

|ggggg〉〈rrrrr|+ H.c.
}

, (A14)
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for a five-atom system under the anti-blockade condition ∆p = V1 + V2 ≫ Ωp;

Heff

6 =

(

6h̄Ω2
p

∆p
|gggggg〉〈gggggg|+

6h̄Ω2
p

∆p
|rrrrrr〉〈rrrrrr|

)

+

{

h̄Ω6
p

∆2
p

[

96
(V1 + 2V2 + V3)2(V1 + 2V2 + 1.5V3)

+
144

(V1 + 2V2 + V3)(V1 + 2V2 + 1.5V3)(2V1 + V2 + V3)

+
120

(V1 + 2V2 + V3)(2V1 + 2V2 + 0.5V3)(2V1 + V2 + V3)

+
48

(2V1 + V2 + V3)2(2V1 + 2V2 + 0.5V3)

+
96

(V1 + 2V2 + V3)(2V1 + 2V2 + 0.5V3)(2V1 + 2V2)

+
168

(2V1 + V2 + V3)(2V1 + 2V2 + 0.5V3)(2V1 + 2V2)

+
48

(2V1 + V2 + V3)(3V1 + 1.5V3)(2V1 + 2V2)

]

|gggggg〉〈rrrrrr|+ H.c.
}

, (A15)

for a six-atom system under the anti-blockade condition ∆p = V1 + V2 + 0.5V3 ≫ Ωp. With
these effective Hamiltonians, it is viable to further define effective Rabi frequencies Ωeff

4 ,
Ωeff

5 , and Ωeff

6 depending on various Rydberg interactions as well as common Stark shifts
δeff4 , δeff5 , and δeff6 independent of all Rydberg interactions.
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