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The understanding and precise prediction of non-equilibrium quantum many-
body dynamics, in particular across a critical point, remains a difficult task due
to the relevance of all length scales near the critical point. Furthermore, the
number of parameters required to characterise the state of the system increases
exponentially with the number of particles, making the numerical investigation
of such a system extremely difficult.

In this thesis, we use ultracold 87Rb atoms prepared in a bilayer two-dimensional
(2D) trap to probe the Berezinskii-Kosterlitz-Thouless (BKT) phase transition
in detail, both in and out of equilibrium. These experiments use a multiple-
radiofrequency dressed trap, which allows dynamical control of the trapped atoms
as well as the precise determination of the many-body wavefunction. For the
characterisation of the 2D Bose gases using matter-wave interferometry, a novel
technique was developed to obtain high contrast fringes by selective imaging of
slices of the atomic cloud. This allow the observation of local fluctuations, such
as phase correlation function, local vortex density and coherence full counting
statistics. Utilising these observables, we have identified the BKT critical point
and characterised microscopic features of harmonically-trapped 2D Bose gases in
equilibrium. With this information about the system, we probe the non-equilibrium
dynamics of 2D Bose gases following a quench across the BKT critical point. The
system is quenched by a coherent splitting, which introduces a sudden reduction of
density resulting in the quench from the superfluid to thermal phase. We monitor the
dynamics towards the vortex-proliferated state and find that the vortex-unbinding
dynamics is well described by the real-time renormalisation group theory. Finally,
we show preliminary results for a tunnel-coupled bilayer 2D gas, in which we probe
the oscillations of the relative phase of the two layers of superfluid.

The results presented in this thesis demonstrate that the multiple-RF dressing
technique is a very powerful tool for investigating quantum many-body phenomena.
This paves the way for future studies of non-equilibrium critical dynamics and
their description with renormalisation-group theory.
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The universal nature of a phase transition connects a wide range of physical

systems falling under the same universality class, and allows a unified description

close to the critical point regardless of microscopic details of individual models. This

remarkable feature is also expected to hold for some dynamical critical behaviours,

with an astonishing consequence of connecting the results from tabletop experiments

to cosmological phenomena [1–3]. As such, it is of great interest to build a versatile

physical system that allows detailed investigation of universal critical phenomena

both in and out of equilibrium.

One of these universality classes in two spatial dimensions has a unique feature:

while the true long-range order (LRO) is precluded in systems at nonzero tempera-

tures according to Mermin-Wagner theorem [4, 5], a quasi-order develops through

the Berezinskii-Kosterlitz-Thouless (BKT) mechanism [6, 7]. The BKT transition

is driven by unbinding of vortex-antivortex pairs, underscoring the topological

1



1. Introduction 2

nature of the transition. The importance of this phase transition is highlighted by

the Nobel Prize in Physics in 2016 for Kosterlitz and Thouless. This transition

is characterized by the first-order correlation function g1(r, r′) = 〈Ψ†(r)Ψ(r′)〉,

where Ψ(r) is the bosonic field operator at location r, which changes from algebraic

scaling ∼ r−η in the superfluid phase, to exponential scaling in the thermal phase,

with universal exponent ηc = 0.25 at the transition.

In the past few decades, ultracold quantum gases have emerged as clean and

highly controllable quantum simulators for the study of quantum many-body

phenomena which are often out of reach using existing numerical simulation

techniques [8, 9]. The exceptional controllability of these systems make them

an ideal platform to probe universal critical phenomena of a variety of phase

transitions [2, 10–13]. The BKT transition is no exception, and the first observation

was reported in 2006 by a pioneering work by Hadzibabic et al. [14]. A wealth of

BKT physics has been investigated since then, as introduced in the next section.

In this thesis, we present a new experimental approach for probing the BKT

transition in 2D quantum gases, both in and out of equilibrium. Firstly, we probe in

equilibrium local phase fluctuation of the system, which reveals the phase correlation

function and local vortex density. This allows a comprehensive investigation of

the BKT transition in inhomogeneous 2D systems, with a precise observation of

critical point. Furthermore, our experimental approach allows the investigation

of the BKT dynamical critical phenomena, by the coherent splitting of 2D Bose

gases. With this, we observe the relaxation dynamics of 2D system quenched out

of a quasi-ordered phase into a vortex-proliferated disordered phase. We identify

novel dynamical phases of a 2D system, especially the superheated superfluid phase

that survives for up to a few hundred milliseconds.

In the following sections of this chapter, we give a brief introduction to three

important aspects of the research presented in thesis and refer to subsequent chapters

for detailed discussion: 1) the two-dimensional quantum gases, 2) the matter-wave

interferometry technique for the investigation of 2D system, and 3) an introduction

to general relaxation dynamics in cold-atom systems, as well as the description
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of a particular dynamics that we study in this thesis, the reverse Kibble-Zurek

mechanism which is expected in the BKT critical regime.

1.1 Quantum gases in two dimensions and the
critical point

Ultracold atoms are usually trapped in a harmonic confinement created by either op-

tical or magnetic methods with potential V (x, y, z) = mω2
xx

2/2+mω2
yy

2/2+mω2
zz

2/2

where m is the atomic mass and the angular frequencies ωi characterise the strength

of confinement in i = x, y, z directions. The characteristic energy scales of many-

body systems are the thermal energy scale kBT and the chemical potential µ which

are usually comparable to, or larger than, ~ωi for typical cold-atom experiments,

where ~ is the reduced Planck constant and kB is the Boltzmann constant. To

observe 2D phenomena, we require tight confiement in one direction such that

kBT, µ� ~ωz. (1.1.1)

This restricts the kinetic motion of atoms to the x− y plane, since almost all atoms

are in the ground state of the harmonic potential along z. This freezing out of

transverse kinetic motion is a consequence of quantum mechanical nature of the

system, which discretises the energy levels. Fig. 1.1 illustrates the realisation of a 2D

system. A more detailed description, including the crossover to three-dimensional

behaviour when ~ωz . kBT , is given in Chapter 2.

The investigation of 2D systems using ultracold gases, especially the investigation

of critical points, has a rather long history. Early experimental and theoretical

works emerged back in the early 2000s [15–18], soon after the first realisation

of Bose-Einstein condensation (BEC) in dilute Bose gases [19, 20]. In 2006,

first direct observation of the BKT critical point was reported using a matter-

wave interferometric technique [14]. The direct evidence of thermally activated

vortices were reported. Dynamical features such as the scissors mode [21], critical

velocity [22] and sound modes [23] provide further evidence of superfluid behaviour

in 2D Bose gases. Despite the lack of LRO in the thermodynamic limit, the
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Figure 1.1: Creating 2D systems using trapped ultracold atoms. A pancake-shaped,
oblate trapped cloud (blue plane) is shown with an illustration of cylindrically-symmetric
trapping potentials (gray panels) in the axial (right, panel, z) and radial (left panel, r)
directions. In the z direction, the confinement is tight, resulting in large energy level
spacing in the harmonic trap. For the condition kBT, µ� ~ωz, the atoms cannot acquire
enough thermal or interaction energy to populate excited states, and the dynamics is
frozen in the z direction.

experimentally relevant, finite-sized 2D Bose gas is expected to support two distinct

phase transitions, the BEC and BKT transitions. The intricate connection of

these was studied in Ref. [24], where the critical point was measured with a

wide range of interaction strengths and it was found that at finite interaction

strength, the emergence of coherence is due to the BKT mechanism. Only recently

the first-order correlation function was observed by measuring the momentum

distribution [25]; however the reported algebraic exponent at the critical point was

a factor of six larger than the universal theoretical value due to inhomogeneity

and thermal components [26]. Even after two decades of investigations into 2D

Bose gases, questions remain such as the correct treatment of inhomogeneity for

the correlation properties and quantitative comparison to the theoretical model,

including the temperature dependence of vortex density and algebraic exponent.

These are the objectives of our experimental investigation into the BKT transition

in equilibrium, presented in Chapter 5.
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1.2 Matter-wave interferometry

A useful feature of the ultracold atoms is the possibility of observing matter-wave

interference [27]. This is a direct consequence of ultralow temperatures, such

that the thermal de Broglie wavelengths λth is larger than typical interparticle

distances. Intuitively, particles act coherently as a single wave, and matter-wave

interference fringes of tens of thousands massive particles can be observed when

two of such ultracold clouds are spatially overlapped, in analogy to the Young’s

two-slit experiment using light. This is illustrated in Fig. 1.2.

The matter-wave analogue of interferometric measurement is an extremely

powerful technique for metrology purposes such as searching for gravitational waves

[28, 29]. This tool has also led to the enormous success of research into the

spatial phase fluctuation of low-dimensional quantum systems both in and out of

equilibrium [30–33]; as low-dimensional systems cannot maintain true long-range

order, their order parameter possesses spatially fluctuating phase at any non-

zero temperature. Cold atomic systems offer an window into the phase structure

through spatial interference patterns, as illustrated in Fig. 1.2. These patterns

allow us to extract the correlation function of the system [31, 32, 34]1. Detailed

theoretical and experimental tools for analysing such complex patterns are presented

in Chapters 2 and 4.

1.3 Non-equilibrium dynamics in reduced dimen-
sions

Ultracold atoms are ideal systems to probe the non-equilibrium (NEQ) dynamics

of many-body systems. Atoms are levitated in ultrahigh vacuum of ∼ 10−11

mbar and the systems experience almost no interaction with the outside world

over the duration of typical experiments. This allows us to consider the system

as isolated and undergoing unitary evolution, in contrast to an open quantum

system connected to a thermal bath characterised by infinite degrees of freedom.
1In continuous system, other techniques to extract correlation function exists, such as spatial

spin correlations [35, 36].
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Figure 1.2: Illustration of matter-wave interference. (a-c) Illustration of matter-wave
interference analogous to Young’s double-slit experiment. (a) Two phase-coherent gases
are released from two separate traps. (b) As the clouds expand and spatially overlap, they
start to show interference fringes. (c) The two condensates overlap completely, showing a
modulation of density with high contrast. (d) Example matter-wave interference pattern:
experimentally measured density distribution of interfering 2D clouds showing interference
patterns along z, with phase fluctuation along x.

Additionally, the interactions are usually weak, thus providing a timescale of

dynamics that is experimentally accessible without extreme effort. These features

make the non-equilibrium dynamics of this many-body system tractable both

theoretically and experimentally. As such, systems of ultracold atoms have been

a testbed of numerous novel dynamical phenomena.

In continuous systems, the dimensionality plays a significant role in the relaxation

dynamics. The most intriguing example is the 1D quantum gas, which remains out

of equilibrium indefinitely [31, 37]. Intrinsic fluctuation of the order parameter in

such systems provide a wide variety of observables for the investigation into these

NEQ states, such as full-counting statistics [31] and higher-order correlation [38].

In 3D systems, the effect of criticality on NEQ dynamics has been and is an

active field of research [2, 11, 39, 40]. As pointed out at the start of this chapter, the

dynamics near the critical point often exhibit an universal behaviour; an example of

which is the non-equilibrium energy distribution, which shows a universal, self-similar

scaling [11, 40, 41]. A notable theoretical framework to understand such behaviour

is the Kibble-Zurek mechanism [1, 42], originally proposed for the investigation

of cosmological phenomena in superfluid helium.
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The physics of 2D systems has marginal features of 1D and 3D systems. A

wealth of interesting behaviours exist thanks to intrinsic thermal fluctuation of the

system at finite temperature, in a similar manner to 1D systems. Additionally, the

BKT critical point is expected to modify the dynamics significantly and whether

the universality holds out of equilibrium in this universality class still remains

elusive. This is the main topic of this thesis, and the description of the specific

dynamics that we probe is given in the next section.

1.4 The reverse Kibble-Zurek mechanism

In physical sciences, states or processes with topological features are often discussed

in the context of being protected from perturbation [43, 44]. This relies on the

robustness of topology that characterises the system, which therefore remains

invariant under smooth perturbations.

In the context of BKT phases in 2D ultracold gases, the topological nature

of the transition raise a question: what happens when the system is quenched

into a topologically different phase? One particular experimental realisation of

this idea, the dynamics after quench from quasi-ordered to thermal phase, was

proposed by Mathey et al. [45, 46]. The dynamics of such a 2D system towards the

thermal equilibrium with abundant vortices is predicted to be slowed down even

in the presence of interaction2. Mathey coined the phrase reverse-Kibble-Zurek

mechanism; the Kibble Zurek mechanism describes the dynamics after quenched into

ordered phase, with topological defects (vortices) originating from local emergence

of order parameters. In the reverse process, topological excitations are created from

thermal fluctuations and there is relaxation into a thermal phase with abundant

vortices. Fig. 1.3 illustrates these ideas.

In this thesis, we probe such phenomena in 2D quantum gases. We prepare

a 2D Bose gas in the superfluid regime, and quench the system into the thermal

regime by splitting an initial single cloud into two. We observe the time evolution of
2In 3D, such a slow thermalisation behaviour following a quench from the BEC phase was

observed, with precise control of interactions [47, 48].
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t
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KZM

Figure 1.3: Illustration of the Kibble-Zurek mechanism (KZM) and the reverse Kibble-
Zurek mechanism (rKZM). The colours of the panels indicate the state of the system,
from (quasi-) ordered (white) to disordered (orange). (Top row) As the temperature of
the system is rapidly ramped across the critical point towards the ordered phase, the
so-called ‘freeze-out’ occurs when the growth of correlation length does not follow the
quench rate; the spontaneous breaking of symmetry occurs locally, creating patches of
well-defined phases (indicated by gray arrows with boundaries). At the intersection of
patches, topological defects appear depending on the circulation of phases around the
intersection (red and blue circulating arrows). The system equilibrates to a ordered phase
but with topological defects depending on the quench speed. (bottom row) The rKZM
starts with a quasi-ordered phase in the 2D system, quenched into a disordered phase with
phonon and vortex excitations. The ordered phase in 2D supports phonon excitations,
illustrated as small number of wavy lines. After the quench, phonon excitations rapidly
equilibrate and only at longer times are thermally activated vortices expected.

the system towards the vortex-proliferated state using matter-wave interferometry

technique, which provides the insight into the transient states in great detail.

The experimental implementation of the splitting quench and the experimental

results are presented in Chapter 6.

1.5 Overview of this thesis

In Chapter 2, we develop the theoretical basis for the remaining part of this thesis.

We give a detailed description of interacting 2D Bose gases both in and out of

equilibrium. In Chapter 3, we describe the experimental platform used to study the
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BKT transition. The central technique is the multiple-RF dressed potential, and

detailed technical considerations are given. In Chapter 4, we describe the analysis

technique of matter-wave interference patterns to extract statistical properties of

2D gases, as well as other calibration methods to correctly characterise the 2D

system. Chapter 5 is devoted to reporting our experimental observation of the

BKT transition in equilibrium. Chapter 6 describes the dynamics of a 2D system

quenched out of the BKT superfluid phase. In Chapter 7, we consider quantum

tunneling between a pair of 2D gases, and report our work towards the realisation

of bilayer 2D gases with controlled coupling. Finally, chapter 8 summarises the

work and gives an overview of experimental prospects.
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In this chapter, we review the theoretical description of the system of interest,

namely weakly-interacting 2D Bose gases in harmonic traps. A phase transition

10
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unique to 2D systems is the BKT transition, and this is described for a discrete

system in the first section of this chapter. We then move on to a specific physical

model of dilute Bose gases in 2D. We begin our analysis with a description of an

ideal gas in a 2D harmonic trap, which exhibits saturation-driven Bose-Einstein

condensation. Furthermore, we consider the crossover to the 3D regime as a

function of temperature and axial confinement of the gas. Next, we introduce

contact interaction between particles and examine various treatments of their

effect. We consider the density and phase fluctuations separately, which prevail at

different temperature regimes. We find that the phase fluctuation is the dominant

contribution at low temperatures, and that the effective Hamiltonian in this regime

can be mapped to the 2D XY model in which BKT transition occurs. We give

detailed description of the phase fluctuation in 2D Bose gases including bilayer

system consisting of two 2D gases with variable coupling. Finally, we remark on the

non-equilibrium dynamics of 2D Bose gases quenched out of the BKT superfluid

phase. We identify the connection of dynamical critical phenomena to equilibrium

scaling and introduce renormalisation-group treatment of such physical phenomena.

2.1 The BKT transition

The microscopic theory of phase transition in 2D systems was first introduced

by Berezinskii, Kosterlitz and Thouless [6, 7]. Detailed theoretical derivation is

outside of the scope of this thesis, and we use a simplified argument to introduce

the central concept of the theory.

The characteristic model of BKT theory is the so-called 2D XY model onto

which, with certain conditions, many physical realisations of 2D systems can be

mapped [49]. Consider a 2D square lattice of classical fixed-length spins s in 2D,

with nearest-neighbour interactions of the form

H = −K
∑
〈i,j〉

si · sj = −K
∑
〈i,j〉

cos(θi − θj), (2.1.1)
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where θ is the angle of the spin. In the continuous limit, and at low temperature

where all spins are approximately aligned, expansion of Eq. (2.1.1) gives

H = K ′
∫

(∇θ(r))2d2r, (2.1.2)

where K ′ generally differs from K. Two distinct types of excitations can be

considered in 2D systems: phonons and vortices. Phonons are smooth deformations

of phase field θ with wavevector k and the significant effect of the low-dimensional

system is that phonons exist at any finite temperatures. On the other hand, the

vortex excitations have integer multiples of 2π phase winding around a point, a

vortex core. The main mechanism underlying the transition in 2D systems was

identified by BKT to be vortex excitations [50]. While phonons are present in 2D

systems at low temperature they are not strong enough to break the superfluidity;

but vortex excitations destroy the quasi-order.

The presence of such a vortex-induced critical point can be identified in a simple

argument in terms of the single vortex free energy Fv = Ev − TSv, presented by

Kosterlitz in Ref. [50]. We first consider the energy of a vortex placed at the centre

of the system with circular geometry of radius R. The energy of such excitation is

Ev = K ′
∫ R

ξ

1
r2d

2r = 2πK ′ ln
(
R

ξ

)
, (2.1.3)

where we introduce a short-range cutoff ξ; this is the lattice constant for discrete

systems and for an atomic system the natural choice is the healing length that

we introduce later.

The entropy associated with a vortex with area of its core πξ2 is related to

the logarithm of the number of possibilities of spatial configurations. For a single

vortex, this is given by Sv = 2kB ln
(
R
ξ

)
, which comes from the number of possible

arrangements πR2/πξ2: the area of the system divided by that of a single vortex.

Finally, the free energy associated with a vortex is

Fv = Ev − TSv = 2π(K ′ − kBT

π
) ln

(
R

ξ

)
(2.1.4)
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We notice that this changes sign at Tc = πK ′/kB. At high temperature Tc <

T , the vortex excitations are favoured while T < Tc indicates stability against

vortices; thus there is a sudden qualitative change in the behaviour of vortex

excitations. Furthermore, while the vortex-proliferated system exhibits short-

range coherence with exponential decay of correlation, the phonon-dominated

low-temperature system has only algebraic decay of correlation [50]. The algebraic

decay is extremely slow compared to the exponential decay (in fact the correlation

length is divergent), and this change in the behaviour of correlation function

constitutes a phase transition.

The illustration of the BKT transition in Fig 2.1 shows the discretised phase fields

below (a) and above (b) the BKT transition, obtained by Monte Carlo simulation1.

The long-distance behaviours of phases (angles of small arrows) is quasi-uniform in

(a) while clear phase disruptions are evident in (b). The phase disruption is clearest

around the vortices which are marked with black circles or squares, with different

marker indicating a different winding direction of the phase around the vortex core.

BKT theory predicts that vortices appear even in the quasi-ordered phase; however

vortices of opposing signs of circulations are bound together and screen each other’s

effect at long distance, as illustrated in the left panel by locally disturbed phase field

only around the pair of vortices. Such short-distance excitations are called bound

vortex pairs, and short-distance physics in the proximity of the phase transition

is strongly affected by these pairs. While the analytical treatment of such pairs

is difficult, the renormalisation-group technique can correctly incorporate them

through a series of renormalisations of the short-distance effects. This led to the

precise derivation of the critical point in 2D system by BKT [6, 7], which was first

confirmed experimentally by Bishop and Reppy [51], in 2D liquid helium.

The disruption of phase by vortices, in panels (a) and (b) can be clearly seen

in phase profiles along a line, as plotted in (c) and (d). A more quantitative

argument can be made using the correlation function g1(r) = 〈si · sj〉 where the

mean is taken over pairs of spins (i, j) with equal distance r, as well as over many
1using a python implementation in https://github.com/Shiling42/XY-MODEL
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Figure 2.1: The illustration of phase fluctuations in the 2D XY model. Illustrations
of the phase field on 2D lattice at low (a) and high (b) vortex density. (c,d) show the
phase profile along lines indicated by arrows in upper panels. (e,f) plot the corresponding
scaled correlation functions.

realisations of phase fields. The theoretically predicted correlation functions in

superfluid and normal phases are plotted in Fig. 2.1 (e) and (f). There is a

qualitative difference in these functions, with the low-temperature phase having

maintained correlation at long distance. This is the result of quasi-long-range

order with diverging correlation length. The correct functional form in the SF

regime was derived by BKT [6, 50] to be an algebraic form g1(r) ∝ r−η with

temperature-dependent exponent η = T/4TBKT. At higher temperature, the decay

of correlations is much faster, following an exponential function [50]. From this, we

see that the correlations decay to zero at infinite distance r →∞ in both phases,

in accordance with Mermin-Wagner theorem [4, 5]. The temperature dependence
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of η implies the value of η at the critical point,

ηc = 0.25. (2.1.5)

This value is universal, meaning that this relation holds regardless of microscopic

details of the physical system. However, the critical value is expected to be different

for finite-size systems, with logarithmic dependence on the system size L [52],

η(L) = η(∞)(
1 + 1

2
1

ln(L)+C

) , (2.1.6)

with non-universal constant C ∼ 0.5 [53]. For the square-lattice 2D XY model,

the size L is defined by the size of the systetm in the number of lattice sites

along one direction; in continuous systems, L is well approximated by the system

size divided by the smallest length scale for the system dynamics, for example,

the healing length for Bose gases.

The BKT transition occurs in a wide range of physical systems such as liquid

helium [51], superconducting films [54], Josephson junction arrays [55], ultracold

atoms [14] and polariton condensates [56], which all lie in the XY universality

class. We will take a detailed look at the case of a dilute Bose gas in 2D harmonic

trap in the rest of this chapter.

2.2 Ideal Bose gases in a 2D harmonic trap

We begin our analysis with a non-interacting gas in a 3D cylindrically-symmetric

harmonic confinement with large anisotropy ωr � ωz. In contrast to the uniform

2D Bose gases in the thermodynamic limit where long-range order is precluded, this

trapped system undergoes a BEC transition even in the strict quasi-2D case,

as we see below.

2.2.1 Equation of state

We consider a harmonic trap with weak in-plane and tight axial confinement

V (r, z) = 1
2mω

2
rr

2 + 1
2mω

2
zz

2 with large anisotropy ωr � ωz. For temperatures

~ωr � kBT . ~ωz, we can treat the z degree of freedom quantum-mechanically while
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radial kinetics is treated semiclassically. For this nonuniform system, we employ the

local density approximation (LDA), in which we replace global chemical potential µ

by µ−V (r). This gives a local density by integration over the Bose distribution [57]

n(r) =
∞∑
ν=0

∫ ∞
0

d(k2)
4π

{
exp

[
β

(
~2k2

2m + V (r) + ν~ωz − µ
)]
− 1

}−1

= − 1
λ2

th

∞∑
ν=0

ln
(
1− eβµ−βV (r)−βν~ωz

)
, (2.2.1)

where β = 1/kBT . An illustration of this density distribution is shown in Fig. 2.3.

Firstly, we consider a situation where the 2D approximation is good kBT � ~ωz,

such that the population of axial excited states are negligible and only ν = 0

contributes to Eq. (2.2.1). The total number of atoms are

N(T ) = −
∫
d2r

1
λ2

th
ln
(
1− eβµ−βV (r)

)
, (2.2.2)

The critical atom number for the ideal-gas BEC transition is found by setting µ

to zero. Eq. (2.2.2) can then be solved and gives

Nc,2d = π2

6

(
kBT

~ωr

)2

, (2.2.3)

or equivalently,

Tc,2d =
√

6N~ωr
πkB

. (2.2.4)

This number coincides with the one obtained by a quantum-mechanical treatment

of ideal Bose gases in a purely 2D harmonic trap in the thermodynamic limit; the

maximum number of atoms that can be placed in excited states of a harmonic

oscillator V (r) is Nc,2d, and atom number exceeding this value results in the

macroscopic occupation of the ground state. It follows from Eq. (2.2.1) that the

central phase-space density (PSD) D = nλ2
th at the critical point is divergent

for a non-interacting gas.
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2.2.2 Effect of the third dimension

When the temperature is higher than the harmonic-oscillator level spacing in

axial potential ~ωz < kBT , the system is allowed to explore the excited states in

z direction, and it is expected that the condensation phenomena will smoothly

converge towards conventional 3D BEC transition. This can be seen by incorporating

ν > 0 levels in Eq. (2.2.1), and the Tc can be found by numerically solving the

implicit equation for given ωz and N [57]

Tc = α(N)/F (Tc), (2.2.5)

where α(N) = Nh2/(2πmkB) and

F (Tc) = −
∫
d2r

∞∑
ν=0

ln
[
1− exp

(
−V (r)− ν~ωz

kBTc

)]
. (2.2.6)

We plot the resulting critical temperatures, rescaled with the purely 2D result Tc,2d as

a function of ~ωz/kBTc,2d in Fig. 2.2. We find that the critical temperature smoothly

crosses over from 3D to 2D scaling at around ~ωz/kBT ∼ 0.5 where the quasi-2D

scaling is defined as Tc/Tc,2d = 1− exp(−~ωz/kBTc,2d)/2ζ(2)3/2 [57]. For our typical

experimental parameters the ratio ~ωz/kBT & 1 is comfortably in the 2D regime.

Figure 2.2: The condensation temperature in the 2D-3D crossover regime around
~ωz ∼ kBT . The dotted line is the scaling of the 3D BEC critical temperature in a 3D
harmonic trap and the dashed line is the scaling for a 2D BEC.
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2.3 Interacting Bose gases in 2D

We now introduce contact interactions between constituent particles. This changes

the nature of the system fundamentally, beyond the change in equation of state

caused by the addition of a mean-field potential. As we will see, it is found

that the critical point that we reach in experiments with finite interaction is the

interaction-driven BKT transition, instead of the saturation-driven BEC transition.

2.3.1 Interaction in quasi-2D Bose gases

To consider the interaction of 2D Bose gases, we first notice that the quasi-2D

limit typically realised in the lab is insufficient for the scattering problem to be

truly 2D [16, 49]. This is most easily seen by the comparison of the length scale of

the system along the z direction, given by the Gaussian ground-state wavepacket

with its characteristic size `0 =
√
~/mωz ∼ 1 µm to the 3D s-wave scattering

length of 87Rb atoms, as ∼ 5.3 nm [58]. This means the scattering is still 3D,

while the motion of atoms is constrained to 2D. As such, the as determines the

interaction strength following [59]

g = 4π~2as
m

∫
dz ρ(z) ∼

√
8πas
`0

~2

m
, (2.3.1)

where ρ(z) is the density distribution along the z direction and the last part

is satisfied for quasi-2D limit, which is a good approximation for the range of

parameters used in experiments reported in this thesis. For typical experimental

parameters, we have dimensionless interaction strength g̃ = mg/~2 =
√

8πas/`0 =

0.076. We notice that the interaction strength g̃ possesses no intrinsic length scale

associated with the in-plane physics. This is in contrast to the 3D case, where as
is always relevant for the 3D dynamics. This leads to the scale-invariance of the

system, which will be elucidated in Section 2.3.5. The effect of the third dimension,

as discussed in Section 2.2.2, adds a correction to the interaction strength of the

gas through the broadening of the wavefunction along the z direction. This effect

can be incorporated into Eq. (2.3.1) and renormalises the interaction strength

to geff = g
√

tanh(~ωz/2kBT ) [57, 59].
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2.3.2 Mean-field approach

We now approach the equation of state of 2D Bose gases using the mean-field

treatment, which replaces the external potential V (r) with Veff(r) = V (r) + 2gn(r).

The significant effect of this is that the integration Eq. (2.2.2) can now be made

arbitrarily large by setting appropriate µ. This means that the condensation

phenomena is absent in an interacting system, at least in the mean-field picture.

The critical point, if present, is then the interaction-mediated one, and we find that

the BKT transition is the mechanism behind it as we see in the following sections.

Using the mean-field approach, we can make a prediction of the density distri-

bution in a harmonic trap, at sufficiently high temperatures. For this, we revisit

the expression for the local density Eq. (2.2.1) with the addition of a mean-field

potential. To reach a self-consistent solution, we use an iterative approach given

in Ref. [57]. The result is shown in Fig. 2.3, together with the ideal gas limit

Eq. (2.2.1). We observe significant broadening of the density distribution as the

interaction is increased, which is a direct consequence of additional mean-field

potential around the centre of the trap.

For interacting gases, the effect of a third dimension has a known effect on the

density distribution. We plot the radial density distribution for the weak quasi-2D

limit ω̃z = ~ωz/kBT . 1 in Fig. 2.3 on the right. The slope of the lines in Fig. 2.3

right panel represents the Gaussian width, which converges to the quasi-2D limit as

we increase the value of ω̃z. By comparison of curves at different ω̃z, we find that

ω̃z & 1 is already a good approximation of the quasi-2D limit ω̃z � 1.

2.3.3 Suppression of density fluctuations

We now consider the fluctuation properties of 2D Bose gases. The full Hamiltonian

of 2D Bose gases with contact interaction is

Ĥ =
∫
d2r[Ψ̂†(r) ~

2

2m∇
2Ψ̂(r) + g

2Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)], (2.3.2)

where Ψ̂(r) is the bosonic field operator at location r. This neglects the harmonic

potential, which will be incorporated using LDA later in this chapter. In Eq. (2.3.2),



2. Theoretical Background 20

Figure 2.3: Mean-field density distribution in the harmonic trap. The temperature is
set so that the system is deep in the thermal regime. (left) Density distribution from
MF theory at varying interaction strength, calculated using (2.2.1) with peak chemical
potential µ = 10−4. The black dashed line is the ideal gas prediction. (right) Density
distribution at varying axial trapping frequency: ω̃z = 0.1 is close to 3D limit and ω̃z = 3
is deep in the 2D regime. The density distributions are shown in log-linear plot as a
function of squared distance r2, such that a Gaussian density distribution leads to a
straight line.

the mean interaction energy is given by the g〈n2〉/2. So at sufficiently low

temperature, if we keep the mean density fixed the energy is minimized by reducing

the density fluctuations. The temperature regime for suppressed density fluctuation

is thus found by comparing the thermal and interaction energies, kBT � g〈n〉 or

D � 2π
g̃
, (2.3.3)

where D = 〈n〉λ2
th is the PSD of the system. As we will see in Section 2.3.5, D � 1

is already a sufficient criteria for suppressed density fluctuation. This criteria is

almost always satisfied for the range of parameters used in the experimental work

of this thesis, except for the far edges of density distributions in harmonic trap

which we only consider for thermometry of the gas. With the suppression of density

fluctuations the kinetic term of Eq. (2.3.2) reduces to only having a contribution

from phase fluctuation and we can approximate Eq. (2.3.2) to

Heff = n
~2

2m

∫
d2r(∇ϕ(r))2, (2.3.4)
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where we approximate the Bosonic field operator in terms of the density and phase,

Ψ̂(r) ∼
√
neiϕ(r) and neglect the interaction term which is only an additive constant

for the suppressed density fluctuation. We find from Eq. (2.3.4) that the 2D Bose

gas at low temperature exhibits ‘stiffness’ against phase modulations. While this

is a good approximation at T � Tc, as the temperature is increased close to the

critical point the short-distance physics such as vortex pairs start to take effect and

the population of thermal components without ‘stiffness’ becomes large. In such a

case, we obtain an effective Hamiltonian describing the long-range behaviour of the

system by replacing the total density n by the superfluid density ns < n [60].

Importantly, the effective Hamiltonian Eq. (2.3.4) is equivalent to the low-

temperature (spin-wave) effective Hamiltonian of 2D XY model Eq. (2.1.1). Assum-

ing that Eq. (2.3.4) is a good approximation near the critical point (as indeed it is,

see Sec. 2.3.5), the critical point from the simplified argument in Section 2.1 can

now be expressed for atomic systems as Tc = πns~2/2mkB by which we recover the

well-known expression for the universal superfluid density at the critical point [60],

nsλ
2
th = 4. (2.3.5)

2.3.4 Classical-field approximation

While the mean-field approach works well in the normal regime, an alternative

approach is needed at lower temperature in the fluctuation region. This is because

near the critical point, the perturbative approach to the ideal-gas theory does

not work well, as discussed in Ref. [17]. To better characterise the system in the

fluctuation region, the field operators in Hamiltonian Eq. (2.3.2) can be treated

as a classical field2, which amounts to replacing Ψ̂(r) with a complex number

ψ(r). The resulting Hamiltonian is

H =
∫
d2r

[
~2

2m |∇ψ|
2 + V (r)|ψ|2 + g

2 |ψ|
4
]
. (2.3.6)

This approach has wide applicability, from the prediction of the critical point [17] to

the detailed understanding of equation of state in the fluctuation region [18]. We will
2The temperature needs to be high enough that the quantum effects are not important; this is

almost always satisfied for typical experiment with 2D Bose gases.
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also use the classical-field Monte-Carlo simulation of our specific experimental system

using this method to benchmark our experimental results, as presented in chapter 4.

Based on the classical-field simulation, the BKT critical point in weakly-

interacting 2D Bose gases was predicted back in 2001 by Prokof’ev et al. [17]. The

authors used the finite-size scaling of an uniform system to identify the superfluid

critical point in 2D gas and obtained the critical total PSD for the BKT transition

Dc = ntotλ
2
th = ln

(
ξ

g̃

)
, (2.3.7)

with ξ = 380(3) [17]. For our experimental parameters, we thus predict the critical

PSD to be Dc = ln(ξ/0.076) = 8.5. Furthermore, the authors of Ref. [17] predicted

the scaling of quasicondensate, defined by

Q = 2〈|ψ2|〉2 − 〈|ψ|4〉. (2.3.8)

In terms of density we can define the quasicondensate density nqc by n2
qc = 2〈n〉2 −

〈n2〉, which is zero for thermal gas with Gausssian fluctuation 〈n2〉 = 2〈n〉2 while

the low-temperature gas with suppressed density fluctuation has 〈n2〉 = 〈n〉2 and

nqc is equal to total density. The temperature scaling of the quasicondensates are

given later in this chapter, in Fig. 2.4 and Fig. 2.5.

2.3.5 Universal, scale-invariant equation of state

As we have already seen in Section 2.3.1, the quasi-2D Bose gas possesses intrinsic

scale-invariance, which is closely connected to the symmetry of the Hamiltonian [61].

As the interaction energy cannot provide an absolute energy scale, the only relevant

scales are the chemical potential and temperature [62]; this means that the equation

of state of the gas is expected to be only dependent on the ratio of chemical potential

to temperature µ/kBT for a given interaction strength g̃. This fact was confirmed

in experiments using 2D Bose gases in harmonic traps [62, 63]. Furthermore, the

authors of Ref. [17] pointed out that the interaction dependence can be absorbed

by referencing the chemical potential to the value at critical point, using

X = µ̃− µ̃c
g̃

, (2.3.9)
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where µ̃ = µ/kBT and µ̃c is the rescaled critical chemical potential µ̃c = g̃
π

ln
(

13.2
g̃

)
.

This leaves the equation of state only dependent on X, realising a universal

description in the fluctuation region. This remarkable feature was confirmed

experimentally with harmonically-trapped 2D Bose gases using LDA in Ref. [62–64].

Fig. 2.4 shows a universal curve of total, quasicondensate and superfluid density,

based on the calculation in [18].

Figure 2.4: Universal equation of state around the critical point in 2D Bose gases,
data obtained from [18]. The PSD of total, quasicondensate and superfluid components
are plotted against the unitless parameter X. The dotted black line is the Hartree-Fock
mean-field (HFMF) prediction of the total density distribution [65], which smoothly
connects to the results of [18].

2.3.6 Application of the universal EOS to trapped gases

While the universal description of 2D Bose gas above was derived for an uniform

system, the predictions in Fig. 2.4 can be applied to harmonically-trapped 2D Bose

gases by invoking the LDA3 which amounts to replacing the chemical potential

with a local effective quantity,

µloc(r) = µ− mω2
rr

2

2 . (2.3.10)

3The applicability of the LDA in an interacting 2D gases in a harmonic trap was discussed in
Ref. [66] in which the authors demand the condition ~ωr < g̃kBT for LDA to be reasonable; this
is always satisfied for the range of parameters used in this thesis.
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Using this, we show in Fig. 2.5 the predicted density profiles in a harmonic trap for

three different values of peak chemical potentials. The universal description is only

applicable in the fluctuation region |X| . 4 and we have observed that the extension

of the description to normal regime X < −4 often results in negative density. To

correctly characterise the low-density region at the far edges of trap, we use mean-

field prediction shown in 2.3.1 with quasi-2D limit (ω̃z →∞). The obtained MF

density distribution smoothly connects to the universal description at X ∼ −2.

Figure 2.5: Density profiles of total (black), quasicondensate (red) and superfluid (blue)
components. Central chemical potentials are µ/µc = 1.2, 0.9 and 0.4. from left to right,
interaction strength g̃ = 0.076 and the radial trap frequency is ωr/2π = 11 Hz. The
temperature of the gases are 65, 71 and 84 nK, chosen such that total atom number is
5× 104.

From Fig. 2.5, the qualitative difference in the density distribution is evident

between different peak chemical potentials, below µ < µc and above the critical

point µc . µ; a narrow central peak consisting of large fraction of quasicondensate

appears above the critical chemical potential.

To fully characterise the emergence of bimodal distribution, we plotted the total

density distributions over a wider range of peak chemical potentials in Fig. 2.6

(left panel). We observe the gradual emergence of a central peak around r2 . 500,

on top of a broader Gaussian distribution.
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Figure 2.6: Emergence of a bimodal density distribution and two-step transition.
(left) Density distribution of a harmonically-trapped 2D Bose gas, with peak chemical
potentials from µ/µc = 0.13 (blue) to µ/µc = 3.7 (green). The temperature of the gas
was chosen such that total atom number is around 5× 104. (right) The fraction of atoms
in the Thomas-Fermi peak (purple, square), superfluid component (green, circle) and
quasicondensate component (blue, triangle) in a harmonic trap. The blue dotted line is
the linear extrapolation of the quasicondensate fraction data.

For more quantitative comparison, we have fitted the density distribution

with a bimodal model,

f(r) = ae−x
2/2σ2

r + bmax(1− x2/R2, 0), (2.3.11)

where the first term is responsible for the broad Gaussian of normal gas and the

second term arise from the Thomas-Fermi density profile of low-momentum modes

in a harmonic trap [67]. The Fig. 2.6 right panel shows the fraction of atoms in the

inverted parabola (Thomas-Fermi peak), along with the fraction of atoms in the

superfluid and quasicondensate components. The superfluid component shows a

sharp onset at around TSF ∼ 70 nK as a result of finite jump in its density at the

transition, and increases linearly. The Thomas-Fermi component however emerges

smoothly below TTF ∼ 80 nK. The emergence of bimodality, often referred to as the

superfluid transition, is more accurately attributed to the emergence of significant

quasicondensate fraction for the range of interaction and trap configurations that

is typically used in our experiment. The middle panel of Fig. 2.5 illustrates this

situation well; the total density shows a clear bimodal shape, with central peak
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consisting of large fraction of quasicondensate and no superfluid. As such, we

treat the critical point TTF separately from the superfluid critical point, and refer

to it as the quasicondensate critical point.

2.3.7 Critical point in a harmonic trap

So far, we have seen that the superfluid transition in a 2D Bose gas occurs at a

critical total PSD Eq. (2.3.7), as well as reviewed the theoretical prediction of the

density distribution in harmonic trap. Combining both, we can make a prediction of

the superfluid critical point in a harmonic trap, as a function of total atom number

and temperature which is a more straightforward guide for our experimental work.

According to Ref. [68], the analytical expression for such a critical point is

TBKT ' Tc,2d

[
1 + 3g̃

π3 ln2
(
g̃

16

)
+ 6g̃

16π2

(
15 + ln g̃

16

)]−1/2
. (2.3.12)

In Fig. 2.7, we show the phase diagram of 2D Bose gases in a harmonic trap. The

superfluid phase boundary obtained from Eq. (2.3.12) agrees with the classical-field

result of Ref. [18] with LDA.

Figure 2.7: Phase diagram of harmonically-trapped 2D Bose gases, obtained by the
application of classical-field results in Ref. [18] to a harmonic trap with ωr/2π = 11 Hz
using the LDA as described in Section 2.3.6. The green points indicate the onset of finite
superfluid fraction and blue points are the atom number where 10 % quasicondensate
fraction is observed when increasing the atom number at fixed temperature. The red
dashed line is the analytical expression for the superfluid transition in harmonic trap, Eq.
(2.3.12).
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2.4 Phase fluctuation in 2D Bose gases

As already pointed out with Eq. (2.3.4), interacting 2D Bose gases at low tem-

perature are dominated by phase fluctuations, characterised by the phase stiffness

Hamiltonian in Eq. (2.3.4). As described in Section 2.1, the equivalent model

of the 2D XY model possess a superfluid critical point while being dominated

by fluctuations at any nonzero temperature. We give a detailed description of

the properties of phase fluctuations in 2D Bose gases and extend the theory to

harmonically-trapped and bilayer 2D Bose gases which are of interest in order

to understand the experimental results.

2.4.1 Phase correlation function

In a uniform quasi-2D Bose gas in the vicinity of BKT critical point, density

fluctuations are strongly suppressed and excitations are limited to phase modes.

As a result, the long-distance behaviour of the first-order correlation function

reduces to a phase correlation function,

g1(r, r′) = 〈Ψ†(r)Ψ(r′)〉 ∼ n〈ei(φ(r)−φ(r′))〉. (2.4.1)

Since the BKT critical point is below the quasicondensate critical point, we

expect the BKT transition to be observed through an investigation of phase

correlation functions.

So far, several experimental attempts have been made to characterise the phase

fluctuation of trapped 2D Bose gas. The first attempt used the matter-wave

interference contrast [14] of a stack of several 2D gases. This quantity is related to

the average phase coherence of the system [69]. Another method used the density

noise of a single 2D cloud after free expansion, as a result of interference between

separate parts of the cloud during the expansion [70]; the power spectrum of this

density noise is related to the phase coherence of the system [71].

As we describe in Chapter 3, we performed experiments to locally probe the

phase fluctuation of a 2D system by a matter-wave interferometry technique, with an

addition of a density slicing method. This allows us to directly compute the phase
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correlation function in Eq. (2.4.1) from the experimental data as described in

detail in Chapter 5.

2.4.2 Phase fluctuation in an inhomogeneous system

The LDA treats the inhomogeneity of trapped Bose gases by replacing the global

chemical potential with a local one defined by µ− V (r). The assumption for LDA

is that within a length scale shorter than any significant change in V (r), local

equilibration is established. In this spirit, the phase fluctuation properties can be

treated to obtain the approximate form of correlation decay in an inhomogeneous

system. The authors of Ref. [26] proposed applying LDA to the correlation properties

of the 2D gas by comparing the LDA treatment of phase fluctuation to spin-wave

theory in the presence of a harmonic trap. This procedure of LDA for phase

fluctuations is called local correlation approximation (LCA); the essence of the

procedure is the replacement of the algebraic exponent η by a local one η(r, r′),

η(r, r′) = η0
n0√

n(r)n(r′)
, (2.4.2)

where η0 is the local algebraic exponent at the centre of the trap and n0 is the peak

density. We compare the correlation function for inhomogeneous and uniform

systems in Fig. 2.8.

2.4.3 Density fluctuation after free expansion

An intriguing consequence of the phase fluctuation in 1D and 2D quasicondensates

is the appearance of characteristic density fluctuation after free expansion, due to

the interference of separate parts of the same cloud during the TOF. In 1D, the

phase fluctuations translate into strong density fluctuations along the transverse

direction and such an effect was extensively studied in both single-well and double-

well cases [72]. In a double-well configuration, the density correlation analysis gave

the effective temperature of the common phase degrees of freedom, providing a

complementary observable to the relative phase measurements based on matter-

wave interference [73]. In 2D, some theoretical and experimental results [70–72, 74]
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Figure 2.8: Local correlation approximation for the correlation function. Normalised
correlation function in a uniform (black) and inhomogeneous (purple) systems are shown,
on both panels with different axes scaling. The inset shows the Thomas-Fermi density
distribution used to calculate the correlation function with LCA.

confirm the appearance of a characteristic density power spectrum. The density

correlation function is defined by

g2(r1, r2) = 〈n(r1)n(r2)〉
〈n(r1)〉〈n(r2)〉 , (2.4.3)

where the expectation is taken over an ensemble of realisations. The density

correlation function can be probed by the experimental technique that was employed

in this thesis (see Section 5.4.2); the two-point correlation function of the sliced

density corresponds to Eq. (2.4.3) with correction due to the finite thickness Ly
and finite imaging resolution.

2.5 Bilayer 2D gases

Motivated by our specific experimental system of double-well 2D Bose gases, we now

consider coupled bilayer 2D systems. The effective low-temperature Hamiltonian

Eq. (2.1.2) becomes [75]

H =K1

∫
(∇φ1(r))2d2r +K2

∫
(∇φ2(r))2d2r

+ J
∫

cos(φ1(r)− φ2(r))d2r, (2.5.1)
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Figure 2.9: Theoretical prediction of the correlation function after 3 ms TOF in the
superfluid regime, obtained from Ref. [71]. Calculation was performed for an uniform
system and assuming no in situ density fluctuations.

where φi(r) with i = 1, 2 are the phases of layers 1 and 2, respectively. The

linear coupling of the two layers is characterised by energy scale J [76]. Usually,

such a situation is studied via symmetric and antisymmetric superpositions of

the phases in each layer,

θ(r) = φ1(r)− φ2(r),

ϕ(r) = φ1(r) + φ2(r).

The Hamiltonian Eq. (2.3.4) can now be expressed in terms of θ(r) and ϕ(r),

Htot = Ha +Hs +Hm, (2.5.2)

Ha = (K1 +K2)
∫

(∇θ(r))2d2r + J
∫

cos(θ(r))d2r, (2.5.3)

Hs = (K1 +K2)
∫

(∇ϕ(r))2d2r, (2.5.4)

Hm = (K1 −K2)
∫
∇θ(r)∇ϕ(r)d2r. (2.5.5)

We thus see that with K1 = K2, the mixing Hamiltonian becomes zero, Hm = 0,

and the symmetric and antisymmetric degrees of freedom decouple.

In atomic systems, the condition for decoupling of symmetric and antisymmetric

modes is the same density in the two layers n1 = n2. Such decoupling should be

treated with care in 2D atomic systems; while the density fluctuations are suppressed

in each of the layers at sufficiently low temperature, careful treatment of their effect
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in a bilayer system is needed to confirm the decoupling of phases θ(r) and ϕ(r).

In the special case of a pair of 1D gases, the symmetric and antisymmetric modes

decouple and stay out of equilibrium for an extended period of time following a

quench [31]. In the following, we look at equilibrium properties of bilayer 2D Bose

gases for the two separate cases of zero coupling J = 0 and finite coupling J > 0.

2.5.1 Decoupled layers

We first take a look at the case of J = 0, a pair of independent 2D Bose gases.

In atomic systems, this can be realised by a sufficient spatial separation of the

two layers and most of our experimental investigation focuses on such a scenario,

as detailed in Chapters 5 and 6. As we briefly described in Chapter 1, our main

experimental observables for the 2D Bose gases are the relative phases θ(r). In

this section, we describe the connection of relative phase fluctuation properties and

the physics of a single 2D system, such as the BKT transition.

In the following, we show that spatial correlation of the relative phases θ(r)

is related to the one-body correlation function g1(r, r′) of individual layers in the

absence of the coupling J . We start by considering the two-point correlation of

relative phases of two independent clouds:

C(r, r′) := 〈Ψ1(r)Ψ†2(r)Ψ†1(r′)Ψ2(r′)〉
〈|Ψ1(r)|2〉〈|Ψ2(r′)|2〉 , (2.5.6)

where Ψj(r) are the bosonic field operators at location r of clouds (j = 1, 2). We

describe Ψj(r) in terms of the density-phase representation as Ψj(r) =
√
nj(r)eiφj(r).

Assuming uniform and equal density nj(r) ∼ n2D for each cloud and small density

fluctuations we can simplify the expression to Ψj(r) ∼ √n2De
iφj(r). Writing the

relative phase of the two fields θ(r) = φ1(r) − φ2(r) gives

C(r, r′) = 〈ei(θ(r)−θ(r′))〉, (2.5.7)

which is the phase correlation function of relative phases θ(r) that we probe

experimentally throughout this thesis. If the two clouds in the double-well are

decoupled, the fields Ψ1(r) and Ψ2(r) are fluctuating independently. Furthermore,
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assuming that the two clouds are identical and have the same correlation function

g1(r, r′), we find

C(r, r′) ' 〈Ψ†(r)Ψ(r′)〉2
〈|Ψ(r)|2〉〈|Ψ(r′)|2〉 = g1(r, r′)2

n2
2D

. (2.5.8)

As such, we find that the phase correlation function C(r, r′) is closely related

to the first-order correlation function.

2.5.2 The effect of finite coupling strength

We now take a look at the effect of coupling J > 0. In the limiting case of infinite

coupling J →∞, the phases in two layers φ1, φ2 are forced to align φ1(r) = φ2(r).

If K1 = K2, we arrive at a simple effective Hamiltonian [76]

Htot = 2K1

∫
(∇φ1(r))2d2r. (2.5.9)

This is the same as the single-layer case but with twice the coefficient K because of

the presence of second layer. We thus expect that in the presence of strong coupling,

the BKT critical temperature will be doubled, Tc,bilayer = 2Tc.

At intermediate strength of the coupling J with identical layers K1 = K2, the

effective Hamiltonian for the antisymmetric degree of freedom Eq.(2.5.3) is

Ha = 2K
∫

(∇θ(r))2d2r + J
∫

cos(θ(r))d2r. (2.5.10)

From the two limiting cases J = 0 and J = ∞, we expect the BKT critical

temperature to smoothly change from Tc to 2Tc as the coupling strength is increased.

Furthermore, it is found that the competition of thermal, interaction and phase-

locking energy scales in such a system results in a rich variety of novel phases, as

predicted in theoretical works [75–77]. In addition, many intriguing NEQ phenomena

can be probed by dynamically modulating the coupling strength J . One example is

a sudden quench of the J from zero to a finite value, with phase-imbalanced initial

state. The relaxation towards the phase-locked equilibrium state and its relation

to the sine-Gordon model is a subject of theoretical interest [78–80]. An opposite

quench can be considered, in which a phase-locked state is prepared and the J is
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suddenly turned to zero. The relaxation dynamics towards equilibrium, as well as

the relation to BKT critical phenomena, has been studied theoretically [45, 81]. We

have performed experiments where the time evolution is investigated after quenching

the bilayer coupling to a finite value from close to zero as described in Chapter 7.

2.6 Non-equilibrium dynamics across a critical
point

Non-equilibrium critical dynamics are ubiquitous, including the boiling of water,

rapid financial market crashes [82] and the emergence of structure in early universe

[42]. Their intriguing connection to universal equilibrium critical scaling is an active

field of study [2]. In a typical experimental setting, the Hamiltonian of the system

is quenched or ramped to a different one which (in equilibrium) corresponds to a

different phase; the system is then expected to evolve towards the new equilibrium

characteristic of the new phase. This is schematically illustrated in Fig. 2.10.

The relaxation dynamics is generally affected by the presence of a critical

point even in the simplest case of dynamics with a single timescale. For example,

the emergence of a global order parameter after a dynamical second-order phase

transition is related to the equilibrium universality class, through the Kibble-

Zurek mechanism [2]. More complex relaxation dynamics may occur, which has

multiple timescales with nontrivial transient states often surviving for an extended

period of time. An example of this is the critical slowing down as a precursor

of sudden dynamical transition [82].

2.6.1 Renormalisation group theory

Universal critical phenomena, both in and out of equilibrium, are often closely

related to renormalisation group (RG) theory. Intuitively, RG theory treats a given

system characterised by a small set of parameters {si} in successively coarse-grained

spatial scales. With an appropriate choice of rescaling protocol, each coarse-graining

step can be constructed so that it only changes the set of parameters {si} → {s̃i}

while keeping the equation of motion unchanged. The set of parameters {si}
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New equilibriumInitial state

quench

i) single timescale 𝜏

ii) multiple timescales
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Figure 2.10: Emergence of an equilibrium distribution following a quench across
phase transition (PT). A quench is a sudden (non-adiabatic) change that takes an initial
equilibrium system (green, left) to the other side of the PT with a non-equilibrium (NEQ)
distribution (purple, top). Since the NEQ state often cannot be rigorously attributed to
either side of phase transition, the NEQ state is distributed across the phase boundary
(dotted line). From the NEQ state, various distinct relaxation dynamics towards the
equilibrium state (blue, right) are expected, of which two cases are shown. i) The simplest
case of single timescale towards the equilibrium. ii) Generally, more complex dynamics
occurs with multiple timescales, e.g. when there are multiple excitations involved at the
interface of distinct phases, or when the presence of critical point significantly alters the
rate of equilibration.

that stay relevant under the coarse-graining are the fundamental properties of

the phase transition relevant at all length scales, and these are the important

quantities characterising the universality class of the phase transition [83]. For

infinitesimal coarse-graining steps, for example of the length scale r → r(1 + dl),

the change in the parameters is often expressed in terms of differential equations,

which are called RG flow equations.

As an example, we briefly introduce the BKT renormalisation group which

was used to formally prove the BKT transition in 2D XY model [50]. System

parameters of interest are the vortex fugacity gv = e−εc , where εc is the vortex

core energy, and the coupling strength K/T , and the renormalisation of length

scale integrates out the short-range physics such as paired vortices, to obtain new

parameters {gv, K/T}. As the short-range physics is successively integrated out, we

are left only with long-distance physics such as free vortices and spin-waves. The
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BKT RG procedures can be expressed by coupled differential equations [50]

dx

dl
= −(x+ 2)3y2

8l ,

dy

dl
= xy

l
, (2.6.1)

where x = πK/T−2 and y = be−βεc ; here b is a model-specific nonuniversal constant

and εc denotes the vortex core energy. In Fig. 2.11, we show the RG flow diagram

of Eq. (2.6.1). We notice x = 0 separates two distinct regimes under the evolution

of l. At high temperature x > 0, the y goes to infinity at the long-l limit; this

indicates that the vortex energy is close to zero, and vortex excitations can occur at

effectively no cost, whereas x < 0 means y → 0 so that the vortex excitations are

suppressed, and we expect quasi-order in the system. Indeed, a critical point can be

identified by nontrivial fixed points of an RG flow, i.e. dx
dl

= dy
dl

= 0 and T 6= 0,∞ [84].

This gives Tc = πK/2, in agreement with the single-vortex argument in Sec. 2.1 [50].

Figure 2.11: Plot of BKT RG flow, Eq. (2.6.1) near x = y = 0. The arrows indicate
increasing l. The purple thick line separates two regimes with different l→∞ asymptote,
y → 0 (below the line) or y → ∞ (above the line or x < 0), separating the two BKT
phases.
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2.6.2 Real-time RG

Even for a well-understood equilibrium phase transition, its non-equilibrium coun-

terpart is generally very difficult to treat analytically. Therefore, a wide variety of

theoretical tools have been imported from theories of equilibrium phase transition to

tackle non-equilibrium dynamics across a critical point, e.g. real-time RG treatments

have been used to predict various dynamical critical phenomena [85, 86]. For the non-

equilibrium BKT critical dynamics, an RG-based treatment was proposed in Refs.

[45, 46]; the situation considered in these works is the dynamical vortex unbinding,

which occurs after quenching the system from superfluid to thermal phase.

After suddenly increasing the effective temperature of a 2D system above Tc,

the unbinding of vortex pairs into free vortices is expected to be slow because of

their energy barriers [45]. The goal of the real-time RG treatment of the non-

equilibrium BKT transition is to precisely predict the vortex unbinding dynamics,

from a non-equilibrium initial condition of 2D system after a sudden quench. In the

following, we treat a system prepared in a non-equilibrium initial state characterised

by algebraic exponent η and vortex fugacity gv at time t0. We then aim to study

its long-time, long-distance behaviour towards equilibrium by coarse-graining the

time and space simultaneously, in a similar manner to the spatial coarse-graining of

equilibrium RG treatment. Formally, one step of rescaling is done for spatial and

temporal coordinates r and t, by r → r(1 + dl) and t → t(1 + dl). The resulting

RG equations are then given in terms of ‘flow’ parameter l. For simplicity, we use

time instead of the flow parameter by t = t0e
l [46], which gives

dgv
dt

=
(

2− 1
2η

)
gv
t
,

dη

dt
= 4π2g2

v

ηt
. (2.6.2)

From the time evolution obtained from Eq. (2.6.2), the dynamics of vortex density

in non-equilibrium system can be obtained by the mean-field relation of vortex

density nv and gv, η [87],

nv(t) ∝ exp
−2 ln

(
gv(t)

2

)
1

2η(t) − 2

 . (2.6.3)
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We plot the time evolution of η and nv with selected initial conditions in Fig. 2.12.

With the initial conditions used in Fig. 2.12, the η flows to infinity and indicates

the transition into thermal state; this is due to relatively high gv(t0) values. The

temporal growth of η is linear at long time, while nv scales exponentially in time

with varying time for the onset of sharp increase in vortex density.

Figure 2.12: The numerical solution of the real-time RG equation Eq. (2.6.2). The
initial condition at t0 = 50 was gv(t0) = 0.05 and η(t0) ranges from 0.04 (blue) to 0.22
(green).

Furthermore, we have fitted the numerical solution of RG equations in Fig. 2.12

to obtain the dependence of these dynamics to the initial temperature T = 4η0TBKT.

We use a linear function f(t) = κt+ b for the time evolution of η and exponential

model f(t) = nce
(t−t0)/γ for the vortex density, as shown in Fig. 2.13 left panels. We

find that the κ scale exponentially as a function of the inverse of initial temperature,

κ(T ) ∝ e−ζ/T from the linear dependence on log-linear plot in Fig. 2.13 top right

panel. The characteristic timescale of vortex unbinding t0 depends linearly on the

initial temperature where the initial temperature is close to the critical point, while

the γ shows only slow dependence on the initial temperature.

Remarkably, with transformation x = 1/2η − 2 and y =
√

2πgv, we recover the
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0.1 0.15 0.2 0.25

Figure 2.13: The numerical solution of the real-time RG equation Eq. (2.6.2) and their
fit. Left panels show the time evolution of η and nv under the RG flow equation Eq.
(2.6.2), for two selected initial conditions at t0 = 50 chosen to be gv(t0) = 0.06, and η(t0)
= 0.06 (blue) and 0.1 (green). The η was fitted with the linear function f(t) = κt + b
and κ against 1/η is shown in the top right panel. The vortex density was fitted with an
exponential f(t) = nce

(t−t0)/γ where nc was fixed to nc = 0.01; the fit results are shown
in the bottom right panel, where the arrows indicate the corresponding axes for γ and t0.

same form as the equilibrium flow equations Eq. (2.6.1),

dx

dt
= −(x+ 2)3y2

8t ,

dy

dt
= xy

t
. (2.6.4)

We then find that the non-equilibrium scaling in time (and space) can be cast

into the equilibrium scaling by an appropriate transformation. This indicates the

universality out of equilibrium, where the scaling parameters for an equilibrium

phase transition matches that of critical dynamics out of equilibrium.

In Chapter 6, we compare the real-time RG predictions to the experimen-

tally observed non-equilibrium dynamics in a 2D system quenched across the

BKT transition.
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To experimentally prepare a 2D system with ultracold atoms, one must confine

atoms in highly oblate geometries such that the quasi-2D condition Eq. (1.1.1)

39
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is met. To achieve this, we use RF-dressed potentials to create an oblate trap

geometry for the atoms with advantages over optical trapping methods, such as low

heating rates and being defect-free. The robustness of the RF dressing technique

allows a wide range of applications, such as the cold-atom experiments in space

performed by NASA [88, 89] and the atom-chip technologies including compact

atom interferometers [90, 91]. Here, we extend the RF dressing technique and

create a double-well potential using a multiple-RF dressing [34, 92–96]. In addition

to the detailed description of the final trapping technique, we give an account of

the experimental procedures to cool an atomic vapour from room temperature to

degeneracy. We further address the requirements of experimental parameters to

probe the BKT critical phenomena, including the stability and repeatability of

the experiments which are essential to obtain the large amount of data required

for the measurement of statistical properties of 2D gases.

3.1 RF-dressed Quadrupole potentials

We first review the theory of RF-dressed potentials and their characteristics which

are essential for the design of the apparatus of the BKT experiments.

3.1.1 Atoms in a DC magnetic field

Atoms with total angular momentum F have magnetic moment µ = −gFµBF

where gF is the Landé g-factor and µB is the Bohr magneton. In the presence of

a weak DC magnetic field, B = |B|, the interaction Hamiltonian is

H = −µ ·B. (3.1.1)

The eigenstates are the Zeeman states |mF 〉 with eigenenergy1Em = mFgFµBB, i.e.

H|mF 〉 = Em|mF 〉. (3.1.2)

The quantum number mF takes integer or half-integer values. For 87Rb atoms in

F = 1 in the lowest hyperfine level the states are mF = −1, 0, 1. In the presence of a
1We have neglected the effect of quadratic Zeeman effect, which is not significant in the range

of magnetic field that we use throughout this thesis.



3. Experimental realisation of a 2D double-well potential 41

magnetic field gradient e.g. |B| ∝ x, the atoms are either attracted to the high-field

(positive x) or low-field (negative x) directions depending on the sign of mFgF . This

makes confinement of atoms possible by creating a quadrupole magnetic field, for

example an anti-Helmholz configuration of two circular coils, which has the form

B = b(ex + ey − 2ez). (3.1.3)

where b is the magnetic field gradient (units of G/m). We use this trapping technique

in an early stage of our experimental sequence. In the quadrupole trap, we perform

evaporative cooling by forced ejection of atoms with higher than average energy.

This is achieved by applying weak RF field at a frequency ωrf corresponding to

potential energy in the trap Erf = ~ωrf . The RF field induces transitions between

magnetic states including states with quantum numbers such that gFmF ≤ 0 which

are untrapped, and atoms in these states leave the trap. Since transitions occur in

an energy-selective manner, the mean kinetic energy of the atoms can be reduced

and rethermalisation by atomic collisions results in lower temperature of the gas.

The procedure is illustrated in Fig. 3.1.

While the quadrupole trap is conceptually and experimentally simple, it has

a major shortcoming that prevents the production of quantum gases. The issue

arises when atoms congregate around the centre of the trap where the magnetic

field is zero and so different mF states become degenerate. Initially trapped atoms

traversing the central region can thus change their internal state into one with

different mF , causing them to leave the trap. This is called Majorana loss, and there

are various techniques to overcome it. One example is the additional blue-detuned

optical dipole trap propagating at the centre of the trap (‘plug beam’), such that

atoms are repelled from the point where the loss occurs. Another technique involves

addition of a strong RF magnetic field, to form a trap with a minimum shifted

from the centre, as we describe in the next section.
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Figure 3.1: Quadrupole magnetic trap and evaporative cooling. (left) Energies of
Zeeman states mF = −1, 0 and 1 with gF = −1/2 in a quadrupole magnetic field with
gradient b = 100 G/cm. Atoms in the mF = −1 state (purple) are trapped. Black arrows
indicate the magnetic resonance conditions for atoms in the quadrupole trap with an
additional weak RF field at frequency ω/2π = 5 MHz. Atoms that reach the resonance
become untrapped and leave. (right) Illustration of evaporative cooling. We apply an RF
to remove atoms from the initial energy distribution. As atomic collisions rethermalise
the system, we recover Boltzmann distribution but with a lower temperature.

3.1.2 Dressed-atom formalism

Applying a strong RF field to the atoms in a static magnetic field gives a composite

system of RF photons and atoms in the magnetic field with Hamiltonian

Htot = Hrf ⊗H. (3.1.4)

In the absence of atom-photon interactions, the eigenstates of this Hamiltonian

are tensor products of the Zeeman states and Fock states,

Htot|Nrf〉 ⊗ |mF 〉 = (Nrf~ωrf +mFgFµBB)|Nrf〉 ⊗ |mF 〉, (3.1.5)

where Nrf is the RF photon number. These eigenstates form a ladder of states

with different photon number Nrf , which are generally macroscopic for strong

RF fields. Now let us consider atom-photon interaction Hint that couples the

RF field and atomic states. The treatment of atom-photon interaction can be

simplified by several steps of approximations. Firstly, for a strong RF field, the

semiclassical approximation can be made such that the RF field is a classical,
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oscillating magnetic field

Btot = BDC(r) +Brf(t). (3.1.6)

In our experimental context, the DC field is in z direction while the RF fields are

in x− y plane, BDC(r) = bz(z)ez with bz(z) = −2bz and Brf(t) = bxex sin(ωrft) +

byey sin(ωrft+ φ). RF field can be configured to have either linear (by = 0) or

circular (bx = by, φ = π/2) polarisations2. The amplitude of AC magnetic field

is often expressed in terms of the Rabi frequency, defined by Ω = |gF |µBbx/2~ for

a linear RF polarisation and Ω = |gF |µBbx/~ for a circular field. We define the

angular frequency detuning from magnetic resonance, δ(z) = ω0(z) − ωrf where

ω0(z) = |gF |µBbz(z)/~ is the magnetic resonance condition.

Within the semiclassical approximation, the Hamiltonian is Hsc = gFµBF ·Btot.

The detailed treatment of Hsc can be found in Ref. [97], where it is shown that

the rotating wave approximation (RWA) further simplifies the Hamiltonian to a

diagonalised expression in rotating frame

HRWA = ΩgF
′, (3.1.7)

where Ωg(z) =
√
δ(z)2 + Ω2 is the generalised Rabi coupling and F ′ is relative to the

effective direction of the static field in the rotating frame. Eigenstates of Hamiltonian

Eq. (3.1.7) are given byHRWA|m̃〉 = m̃~Ωg|m̃〉. The resulting dependence of energies

to the spatial position forms a confining potential. The potential shape is given by

the dependence of the generalised Rabi coupling to the position through δ(z),

V (z) = m̃~

√√√√(ωrf −
|gF |µBbz(z)

~

)2

− Ω2, (3.1.8)

for atoms in state m̃. Fig. 3.2 (a) shows the potential V (z) for m̃ = −1, 0, 1

states; V (z) confines atoms with m̃ > 0 in a potential well centred at the location

where δ = 0. There is a condition for the atoms to remain trapped as they

traverse the region of magnetic resonance [97, 98]. Depending on the velocity of
2The atom-photon coupling depends the polarisation and gF . This fact was exploited to realise

a gF -dependent species-selective potential of atoms in Ref. [93] by the use of elliptical polarisations
bx 6= by, φ = π/2.
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the particle, the internal state may fail to follow the m̃F > 0 dressed eigenstate,

resulting in a nonadiabatic transition into untrapped states by a Landau-Zener

transition [97]. For atoms to be trapped, the Landau-Zener loss rate Γ must be

small, i.e. the loss rate must obey [98]

Γ ∼ 2ωz
π

exp
(
− π~Ω2

2|gF |µBb

√
m

2kBT

)
� 1. (3.1.9)

This adiabaticity condition for atoms to be trapped leads the RF-dressed potential

often being called an adiabatic potential. Dressed atoms in a static quadrupole field

(Eq. (3.1.3)) are confined close to an isomagnetic surface which satisfies√
x2 + y2 + 4z2 = ~ωrf

|gF |µBb
. (3.1.10)

Fig. 3.2 (b) illustrates an isomagnetic surface. We often refer to the RF-dressed

quadrupole trap as a ‘shell trap’ because of its geometry. In the laboratory,

gravitational force pulls the atoms to the bottom of the shell (indicated by yellow

region in Figure. 3.2 (b)), where the axial confinement along z is tight compared to

the radial direction x, y with typical anisotropy ωz/ωr ∼ 100. Atoms are trapped

at a distance R below the quadrupole node, with

R = ~ωrf

2|gF |µBb

(
1 + ε√

1− ε2

Ω
ω

)
, (3.1.11)

where ε = mg
2mF |gF |µBb ; the term with ε comes from the gravitational sag of potential

minimum below the position of the magnetic resonance. The radial confinement

is analogous to a pendulum motion of the atoms as they follow the isomagnetic

surface in the presence of gravity3. On the other hand, the axial confinement

is dominantly determined by the dressed potential Eq. (3.1.8). The oscillation

frequencies in the trap that characterises the confinement, are given by [99]

ωz = 2|gF |µBb
~

√
mF~
mΩ (1− ε2)3/4, (3.1.12)

ωr =
√

g

4R

√
1− ~mFΩ

mgR

√
1− ε2, (3.1.13)

for a cylidrically-symmetric circularly-polarised dressing RF field.
3We have neglected the effect of spatially-varying atom-light coupling strength. This is a good

approximation in the parameter regime used in this thesis where the spheroid size R ∼ 600 µm is
large compared to the size of the trapped atomic cloud ∼ 30 µm.
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Figure 3.2: The RF-dressed ‘shell’ potential. (a) The eigenenergies of uncoupled (Eq.
(3.1.2), dotted lines) and coupled (Eq. (3.1.7), solid lines) systems. (b) The 3D illustration
of the RF-dressed potential minimum in the quadrupole magnetic field Eq. (3.1.3). In
the presence of gravity along the −ez direction, atoms are trapped at the bottom of the
shell indicated by yellow. Part of the shell structure is cut away for clarity.

3.1.3 MRF-dressed potentials

By applying multiple frequency components, we can create a much wider variety

of trapping geometries such as a double-well potential [93, 94, 96, 100] and lattice

[101]. Using this method, we have demonstrated coherent splitting of a BEC and

the observation of matter-wave interference in our lab [94]. The Hamiltonian in

the semiclassical approximation is

HMRF = gFµBF ·

BDC +
∑
j

bjex sin(ωjt+ φj)
 , (3.1.14)

for RF fields linearly polarised along x. An analytical treatment of multi-frequency

atom-photon coupling is challenging, requiring special care to treat the complex

degeneracy of the states [102]. Nevertheless, simplified techniques to treat such

effect exist thanks to the commensurate frequency combinations {ωj} that we use.

We typically use commensurate frequencies with fundamental frequency ωf in order

to avoid dense RF transition spectrum mediated by higher-order combinations

of incommensurate frequencies, which leads to a wideband atom loss channel.

With Hamiltonian periodic in time with period 2π/ωf , we can resort to Floquet

theory to numerically calculate the eigenenergies [103]. The result of a numerical

simulation with three-component RF double-well potential is displayed in Fig. 3.3.

The amplitudes of the frequency components can be individually controlled to form
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different potential shapes such as single-well, flat bottom potential and asymmetric

double-well. Fig. 3.3 (c) and (d) shows the eigenenergies of MRF-dressed atoms,

illustrating the controllability of the potential by the manipulation of the RF

amplitudes. Similarly to the single-RF case, we express RF field amplitudes by

Rabi frequencies for each frequency components Ωj = |gF |µBbj/2~.

Figure 3.3: The multiple-RF dressed potential and their controllability. (a) The
MRF-dressed potential with RF frequencies 7.14, 7.2 and 7.26 MHz with amplitudes
[Ω7.14,Ω7.2,Ω7.26]/2π = [20, 35, 20] kHz. z is the distance from the quadrupole node with
a quadrupole gradient b = 95 G/cm. (b) The trapping surfaces for the MRF-dressed
potential configured to be a double-well as shown in (a). Two spheroidal traps with
same origin and different size are created. The difference in the size of spheroids are
exaggerated for clarity. (c) The transformation of the potential from a single-well to
a double-well is accomplished by changing the Ω7.2/2π from 57 kHz (green) to 35 kHz
(blue). (d) Controllability of the double-well asymmetry by the change in Ω7.26/2π, from
10 kHz (blue) to 30 kHz (green).

3.1.4 Parameter regime for the BKT transition in a MRF-
dressed potential

In this part, we discuss the characteristics of MRF-dressed potentials to identify the

parameter regime where we are able to observe the BKT critical phenomena. The

condition for the observation of critical phenomena, the 2D condition (1.1.1) and
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the expected critical point (2.3.12), as well as the experimental capability determine

the parameter regime where observation is plausible.

2D condition and criteria for observing BKT transition

The condition for 2D confinement of atoms is determined by the axial trapping

frequency and temperature4, kBT < ~ωz. The lowest temperature routinely achieved

in the experiment is in the range5 30 − 50 nK, where a measurable fraction of

thermal atoms are present to extract the temperature. This requires a certain

trapping frequency ωz to achieve a 2D system, 1 kHz . ωz/2π. Moreover, the

atom number needs to be large enough around the critical point to be above the

current experimental detection threshold, namely 104 . Nc for the range of trap

frequencies, expansion time and cloud temperatures used in this thesis.

The 2D condition can be cast into experimental control parameters such as

RF frequency fRF, amplitude of the RF field (in terms of Rabi frequency) Ω, and

quadrupole gradient b from Eqs. (2.3.12), (3.1.12) and (3.1.13). Fig. 3.4 (a) shows

ωz as a function of RF amplitude Ω and static field gradient b. As expected from

Eq. (3.1.12), we find that with higher b and lower Ω, the confinement is tighter

along z and the 2D condition is better satisfied. However, as we describe later,

higher ωz leads to intrinsic loss from the trap and lower Ω increasing the coupling

of atoms to the noise present in the experiment, leading to shorter lifetime of the

gas. We thus need to find an optimal point to maximize the lifetime of atoms

while satisfying the 2D condition.

Fig. 3.4 (b) shows the BKT critical atom number NBKT from Eq. (2.3.12) at the

temperature T = ~ωz/kB with the dressing RF frequency fRF = 7.2 MHz that we

typically use in the experiment. To satisfy the 2D condition across the BKT critical

temperature (at a constant atom number), the total atom number of the system

needs to be kept well below the atom numbers shown in Fig. 3.4 (b); the inset
4The chemical potential µ is usually small, µ/kB ∼ 10nK and we almost always satisfy µ < ~ωz

with the operational parameter regime of RF-dressed potentials in our apparatus.
5While we can achieve much lower temperature, our straightforward thermometry method

using the thermal component fails to work reliably at temperatures below around 20 nK, see
Section 4.1.3.
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shows the same quantity with a different RF frequency fRF = 2 MHz which was

used previously in our lab. The main difference arising from this change of the fRF

is the radial trap frequency, which determines the critical atom number for a given

temperature in harmonic trap. The critical atom number is significantly reduced

with fRF = 2 MHz such that the signal-to-noise (S/N) ratio becomes low around

the critical point and it becomes difficult to probe the BKT critical phenomena.

10
00

12
50

12
50

15
00

20
00

25
00

10
00

0

15
00

0

20
00

0

30
00

0

40
00

0
60

00
0 30

0040
00

60
00

10
00

0

Figure 3.4: Experimental parameter regime to observe the BKT critical phenomena.
(a) Vertical trapping frequency ωz/2π in a single-RF dressed potential in Hz, as a function
of RF amplitude Ω and the quadrupole magnetic field gradient b. (b) The BKT critical
atom number for the temperature at the limit of 2D condition T = ~ωz/kB, using Eq.
(2.3.12) for the dressing RF frequency 7.2 MHz. Inset shows the same quantity with same
axes scale, but for a different dressing RF frequency of 2 MHz.

Non-adiabatic loss

At low RF amplitude Ω/2π ∼ 10 kHz and high static field gradient b, the Landau-

Zener losses become important because of the exponential increase as in Eq. (3.1.9).

This sets the fundamental limit of ωz that can be achieved for dressed atoms, thus

the temperature range that can be probed while keeping the 2D condition. Fig. 3.5

(a) shows the rate of atom loss Γ at the expected BKT critical point. The timescale

of our experiment with the 2D gas is usually ∼ 1 s which requires Γ � 1 s−1.

The non-adiabatic losses thus bound the RF amplitudes to be Ω/2π & 10 kHz.

Combining the results with Fig. 3.4, we show in Fig. 3.6 the parameter regime

to observe 2D phenomena in a RF-dressed potential. Additionally, even above
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10 kHz ∼ Ω/~ experimental imperfections limit the lifetime of atoms in the dressed

trap, as we describe below.
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Figure 3.5: The Landau-Zener losses and the effect of noise on the experiment. (a)
The Landau-Zener loss rate (s−1) for atoms trapped in a single-RF dressed trap with
temperature at predicted BKT critical temperature Eq. (2.3.12). (b) The effect of low-
frequency noise to the atom loss rate. The time evolution of trapped atom number in a
linearly-polarised trap with Ω/2π = 20 kHz and b = 140 G/cm. An RF switch decouples
an electric circuit that produces undesired noise from the experiment, thus protecting the
trapped atoms. The obtained lifetime of the atoms are 0.48 s (switch closed) and 8.8 s
(switch open). A jump in the RF phase caused by an error in the RF generator resulted
in a sudden reduction of observed atom number in one of the measurements at holdtime
∼ 0 s, for the ‘switch open’ dataset.

Effect of electrical noise

The MRF-dressed potential has a number of loss channels for the trapped atoms, as

previously investigated in Ref. [92]. This limits the lifetime of the atoms in the trap

even when Landau-Zener losses are not significant. There are many frequencies for

which external noise can couple atoms in a trapped state to untrapped states; these

transitions arise from the higher-order terms involving a complex combinations of

dressing RFs. Furthermore, noise near the dressing RF frequency causes vibration

of the trap, resulting in heating by parametric or dipolar excitation [104]. As such,

it is crucial to eliminate electric and magnetic noise in the lab as much as possible.

During the work towards this thesis, we have significantly reduced the noise coupled

to the experiment by bias field electronics, and increased the lifetime of single-RF

dressed potential by a factor of 20. Measurement at 20 kHz Rabi frequency, close to
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Figure 3.6: The parameter regime to observe 2D phenomena in a RF-dressed potential.
Shaded area corresponds to high vertical trap frequency fz > 1 s−1 to ensure 2D
confinement and low nonadiabatic loss Γ � 1 Hz. As described in the main text,
noise in the experiment and the efficiency of loading into MRF-dressed potential further
limit the available region in this plot.

the value routinely used for the experiment, is shown in Fig. 3.5 (b) before and after

the experimental improvements. Unidentified low-frequency noise from other circuits

still affect the atoms, at a few particular frequencies [104]. The current lifetime

is sufficient for the measurements reported in this thesis. Further improvement

would be possible however a new apparatus is being constructed with completely

redesigned coils which should be more stable and have less cross-coupling [105, 106]

Spin-flip losses

Another source of atom loss is a mechanism similar to that of Majorana transitions

in a quadrupole trap. When two, or more, different |m̃F 〉 states have the same

energy, then spin flip into different |m̃F 〉 state may occur. One such mechanism

in a MRF-dressed potential occur when the Rabi frequency equals the frequency

separation of the multiple dressing RFs Ω = ωf . This is illustrated in Fig. 3.7 (a).

Another case where the Majorana-like losses are observed is when the states with

different m̃F as well as the Fock state of fundamental RF photon field, namely

|m̃F , N〉 and |m̃′F , N − 1〉, have the same energy

N~ωf + Vm̃F (z) = (N − 1)~ωf + Vm̃′
F

(z). (3.1.15)
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While we have not fully understood the origin of loss mechanism in such case,

avoiding this situation usually leads to more efficient and stable loading of the

atoms into a double-well. An example of potentials where we observed such loss

is illustrated in Fig. 3.7 (b). Our experimental procedures, such as the coherent

splitting shown in Fig. 3.15, are carefully designed to avoid these losses.

Figure 3.7: Additional loss mechanism in MRF-dressed potentials. (a) The Majorana-
like loss mechanism that occurs when the Rabi frequency of one of the RF frequency
components are exactly at the fundamental RF frequency ωf . The dressed eigenenergies
with dressing RFs 7.14, 7.2 and 7.26 MHz are shown, with their field amplitudes
[Ω7.14,Ω7.26]/2π = [20, 27] kHz and Ω7.2/2π ranges from 40 (blue) to 80 (green) kHz with 5
kHz increment. The eigenenergy with Ω7.2 = ωf = 2π×60 kHz is shown in red, with which
the loss is expected. (b) The illustration of the observed loss mechanism between dressed
eigenstates with different RF photon number, |N, m̃F 〉 (blue) and |N − 1, m̃F 〉 (green).
Atoms are initially trapped in the |N, m̃F = 1〉 state (blue, lowest). The potentials for
|m̃F = 1, N〉 (blue) and |m̃F = −1, N − 1〉 intersect at z = −540 µm and −550 µm as
indicated by red markers. The intersection at z = −550 µm is close to the potential
minimum, and causes atom loss from the well centred at z = −548 µm. The energies
shown include gravitational potential.

Relative phases

For multiple RFs that have common fundamental frequency, the relative phases

are important as the exact shape of waveform depend on the phases. Appropriate

choices of the relative phases of multiple RFs are thus crucial for the stability of

loading into a MRF-dressed double-well potential. The relative phase of the RFs

affect the potential through the difference in the alignment of RF fields. This effect

is most clearly seen when the MRF-dressed potential is configured to be a single-well

potential, as illustrated in Fig. 3.8 (a). Since the loading of atoms into a double-well



3. Experimental realisation of a 2D double-well potential 52

necessarily involves an initial step of MRF-dressed potential configured to be a single-

well, the relative phases of RFs, and their stability, significantly affect the splitting of

the cloud of atoms as the potential evolves into a double-well. Fig. 3.8 (c) shows the

strength of confinement as a function of relative phases of three RFs. As expected,

we see that the potential shape is only dependent on a single parameter, φ7.14 +φ7.26.

Figure 3.8: The effect of RF relative phases on MRF-dressed potentials. (a) MRF-
dressed potential with RF frequencies 1.95, 2 and 2.05 MHz with amplitudes Ω/2π for
respective frequencies 35, 44 and 42 kHz. Colours of lines indicate the phase difference of
1.95 and 2 MHz components, from 0(blue) to π (green) radians. (b) The same plot as
(a) with different amplitudes Ω/2π for each frequencies 35, 15 and 42 kHz, configured to
create a double-well potential. (c) The trap frequencies measured with the configurations
in (a) as a function of phase difference of RFs.

Amplitude stability

In the experiment, the final evaporative cooling sequence is performed in a single-RF

dressed potential by forced evaporation using an additional weak RF field (see

Section 3.4.1). The RF transition of atoms in the RF-dressed potential resembles

that in the quadrupole trap, with major difference being the existence of transitions
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that are assisted by dressing RF photons. In particular, we use the transition

at angular frequency ωrf + Ω for the evaporation sequence with detuning δevap =

ωprobe − ωrf − Ω. Since the frequency detuning depends on RF field amplitude

Ω, the energy threshold for the atoms to leave the trap depends linearly on the

RF amplitude. Thus the stability of RF amplitudes is important to consistently

perform the evaporation sequence.

Furthermore, the amplitudes of the multiple RFs affect the loading into the

double-well potential, especially the population imbalance between the wells. We typ-

ically require less than 1% fluctuation of the RF amplitudes to avoid these problems.

3.2 RF field generation

The RF-dressing technique described above requires strong and very stable RF

fields to be applied to the atoms. Furthermore, the use of multiple RF introduces

the intricacy of controlling relative phases of RF components. We have implemented

the RF signal generator using Artiq6 software and hardware package that addresses

the phase stability issue that plagued our previous RF generator. Furthermore,

the RF signal chain was improved to meet the stringent stability requirement for

the investigation of BKT critical phenomena.

3.2.1 Impedance matching

A major challenge in implementing RF-dressed potentials in the lab is the generation

of sufficiently strong RF fields using macroscopic coils of dimensions of a few

centimetres. AC signals propagating in the signal chain experience a fraction of their

power reflected at the interface of components with different impedance; not only

does this cause power loss, the standing wave formed by input and reflected signals

can damage the amplifier and other RF components. Thus we use the impedance

matching techniques to transform the input impedance of the macroscopic coil to

match the output impedance of the standard RF components, typically 50 Ohm.
6https://m-labs.hk/experiment-control/artiq/.
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Wire-wound coils have a self-resonance frequency (SRF) determined by the

inductive and capacitive contributions of the solenoid. The coil has a complex

impedance, Zcoil(ω) = Zr(ω) + iZi(ω) where Zr(ω), Zi(ω) ∈ R. The imaginary

part of the complex impedance is positive Zi(ω) > 0 in the inductive regime at

frequencies below the SRF, and Zi(ω) < 0 in the capacitive regime above the SRF.

We had implemented a simple capacitive matching at 2MHz below the SRF of 4

MHz, by cancelling the imaginary impedance of the coil with a series capacitor

[105], but this was not adequate for the experimental work reported in this thesis.

To observe the BKT transition in the RF-dressed potential, we found that, as

described in Section 3.1.4, that much higher dressing frequency around 10 MHz is

required. This makes it necessary to impedance-match well above the SRF, which

is not common practice and the literature on this is scarce. While it is conceptually

simple to match above the SRF by using a series inductance to cancel the imaginary

part of the impedance, difficulty arises because the inductive components such

as wire-wound coils have intrinsic capacitance as well as resistance. Additionally,

since commercially available inductor components with the high current rating

have only limited selection of their values, the impedance matching above the

SRF thus becomes a trial and error7. We found that for an inductive impedance

matching, components with low DC resistance and high SRF generally worked

better to match at higher frequencies. The final matching network is shown in

Figure. 3.9 (a) blue shaded region. The series capacitance was added to suppress

the propagation of low-frequency noise to the coils.

3.2.2 Stability of the RF amplitudes and phases

As discussed in Section 3.1.4, very stable RF amplitudes and phases are essential

for the reproducible manipulation of quantum gases. Both amplitudes and phases

of RFs are critical because the double-well potential and their population balance

sensitively depend on these parameters. Fluctuations of less than 1% in amplitude,

as well as 0.1π radian in phase are required, for extremely large datasets that take
7For mechanical rigidity of the circuit we only used surface-mount components; this further

limited the selection of component values.
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Figure 3.9: RF signal chain and impedance matching. (a) The RF signal chain to apply
RF magnetic field to the atoms using a macroscopic RF coil near the glass cell. Gray
shaded area indicates industrial standard 50 Ω components. The impedance matching
circuits is marked by blue shaded region, which matches the impedance of RF coil and
semi-rigid coax to 50 Ω at the desired frequency 7.2 MHz. (b) The reflection coefficient S11,
in linear scale (not dB scale), measured at the input of impedance matching circuit using
a vector-network analyser (Bode 100, OMICRON lab). Colours indicate the two different
circuits (individual coils and matching circuits) responsible for creating RF field in x
and y directions. Red dash-dotted line indicates the frequency used for the experiment,
7.2 MHz. (c) The pickup voltage Vp at different RF output frequencies (markers) which
serves as a measure of the magnetic field amplitude. Solid lines are a Gaussian fit to the
data.

a period of several weeks to acquire, in order to explore statistical properties of

2D gases. A significant part of the improvement in the stability of RF amplitudes

was achieved by the replacement of the twisted-pair signal cables with semi-rigid

coaxial cables, as well as the appropriate choice of RF frequency in the impedance

matching characteristics. Even with these improvements to the apparatus, it was

necessary to operate the experiment continuously in order to keep long-term drifts

to a minimum. Continuous operation for many days allows the temperature of

the whole experimental apparatus including the RF components to reach a stable

thermal equilibrium, thus stabilising the amplitude of the RF field. Fig. 3.10 shows

the amplitudes of three different RF components, as probed by co-wound pickup

wires, plotted over the duration of 12 days while the dataset for Chapter 6 was

taken. We have excluded a very small number of outliers up to 100 points out
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of more than 12000 points in total, in which no RF was measured because of a

temporary error of the DDS. These outliers affect the atom loading significantly

and are easy to post-select by the anomalously low atom number.

Figure 3.10: RF amplitude stability over a 12-day period during a long continuous
data-taking. One multiple-RF waveform from the pickup coil is recorded and analysed to
extract the mean amplitude of the three RF components for each experimental realisation.
One experimental run contributes one data point for each frequency component in the
graph.

The relative phase stability of multiple RFs is also essential, as discussed in

Section 3.1.4. The control of relative phases of different RF signals to the level of

0.01π radian is usually challenging: for our RF frequency of 7.2 MHz, a timing

difference of 2 ns already results in 0.01π radian difference of the phase. Thus,

a slight signal delay or logic-clock synchronisation error would lead to a sudden

jump of phase difference, as is discussed previously by Bentine [107]. The previous

implementation of the RF signal generator failed to satisfy these requirements

especially for the higher RF frequency 7.2 MHz, and we have upgraded our DDS

controller using an FPGA control system Artiq8 and the open-source software

package developed for it. These RF generators are the Urukul9 units, RF generators

which house four direct digital synthesis chips (DDS, Analog Devices AD9910).

This open-source hardware has been developed as part of the Artiq project (the

hardware family Sinara10); this project was primarily motivated by the requirements

for quantum information processing with trapped ions but meets our requirements
8https://m-labs.hk/experiment-control/artiq/
9https://github.com/sinara-hw/Urukul/wiki

10https://sinara-hw.github.io/
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very well, i.e. complex and precise timing sequences and the multiple controllable

RFs. An essential improvement over the previous system of RF generators is the

synchronisation of clock of the FPGA system and the clocks of the multiple AD9910

DDS chips that it controls. The effect of this clock synchronisation is shown in

Fig. 3.11 (a) and (b), where the sudden jumps of the relative phases are eliminated.

We have also plotted the long-term stability of the relative phases of the multiple

RFs in Fig. 3.11 (c) which shows excellent consistency over the two week period

shown in the graph. The finite fluctuation of phase differences are due to the slow

drift of impedance matching characteristics.

Figure 3.11: Phase jumps and long-term phase stability. (a) The relative phases of
the 7.2 MHz sinusoidal output signals from two different DDS chips on an Urukul card,
triggered simultaneously using our old DDS control system. The lack of synchronisation of
the FPGA and DDS clocks causes the sudden jumps of the RF phases that are observed.
(b) The same measurement as (a) but with the DDS chips controlled and triggered using
the Artiq control system, achieving clock synchronisation for every run. (c) Long-term
relative phase stability of the MRF signal frequency components, referenced to the mean
phase difference 〈∆φ〉. The three frequency component is derived from different DDS
chips.
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3.2.3 Turn-off of the RF signals

Another improvement from our previous implementation of RF sources is the ability

to stop the RFs at a specified phase, using the conditional sequencing functionality

of Artiq. The spin F of atoms undergoes complex oscillation in the RF-dressed

potential, precessing around an effective B-field in the rotating frame, which is

also oscillating in the lab frame. As we describe later, we project atoms into bare

Zeeman states from a dressed state and let the atoms undergo time-of-flight (TOF)

expansion in the presence of a residual magnetic field. Since the Zeeman state with

mF = 0 is insensitive to the residual magnetic field, the analysis of this state after

a projection is thus preferable. It is thus important to maximise the fraction of

atoms projected into mF = 0. The overlap of the RF-dressed atomic states with

the mF = 0 depends on the RF phases at the time of projection into bare Zeeman

states. Fig. 3.12 illustrates the procedure used to control the RF phase to maximize

the fraction of atoms projected onto mF = 0. For experiments with MRF-dressed

potentials, we sweep the phase of the fundamental frequency ωf at turn-off to

maximize the detected fraction. We found that in the double-well configuration,

maximizing the fraction of mF = 0 population for one of the wells usually results in

a maximum (and same) fraction for the other well as shown in Fig. 3.12 (b) and (c).

3.3 The laser system

The detail of our laser system is described in past theses, Refs. [107–109]. Our laser

system consists of three Toptica DL Pro external-cavity diode lasers (ECDL). The

first ECDL is the reference laser, which is locked to 87Rb D2 line F = 2→ F ′ = 3

‘cooling’ transition using modulation transfer spectroscopy [110]. The other two

lasers provide ‘repumping’ and ‘cooling’ light, both offset-locked to the first laser.

The repumping light is resonant for F = 1 → F ′ = 2 transition.

For the laser cooling stage which requires hundreds of mW of laser power, we

amplify the laser intensity in two stages. The first stage is the additional injection-

locked diode laser which increases the power of cooling light to around 100 mW.
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Figure 3.12: The control of the RF phase for the projection into Zeeman states. (a) A
single image of atomic density taken after the TOF sequence involving the projection of
dressed states into Zeeman states. When the RFs are turned off, the atoms in different
Zeeman states experience different forces along the z direction in the residual quadrupole
magnetic field. The population of each Zeeman substate can be inferred by the atom
numbers of three localised clouds as we see in the image. (b) and (c) The fraction of
atoms projected onto each Zeeman state, as a function of the phase of the fundamental
RF, ωf , at the time of RF turn-off. The MRF-dressed potential was configured to be a
double-well as shown in Fig. 3.3 and (b) is measured with atoms localised in the well near
the resonance at 7.14 MHz, while (c) is for atom trapped in the other well. Solid lines are
a guide to the eye.

The cooling light is combined with repumping light, and both frequencies are

amplified using a tapered amplifier11 to obtain around 400 mW of light of which

the cooling light has the dominant power.

The light for the detection of atoms is also derived from the cooling and

repumper ECDLs. For stability of the detection, the cooling light used for the

absorption imaging is intensity-stabilised using a photodetector and a PID controller

(Stanford Research Systems SIM960).

3.4 Experimental procedure

Here we describe the complete procedure of the experimental sequence to cool

atoms from room temperature to tens of nanokelvin. Greater detail of each of

the steps can be found in past theses [102, 107–109] by graduate students who

have contributed to this work. Fig. 3.13 illustrates our experimental apparatus,

as well as the overview of the experimental sequence.
11Eagleyard EYP-TPA-0780-01000



3. Experimental realisation of a 2D double-well potential 60
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Magnetic trapping

+ evaporative cooling

Magneto-optical trap (MOT) Quadrupole trap

Time-orbiting potential

RF-dressed potential

Figure 3.13: Overview of the experiment. We first laser cool atoms in the pyramidal
MOT (left) and magnetically transport them to a UHV glass cell (right), where we
perform a series of evaporative cooling sequences in different confinements, as listed in
the figure. The UHV glass cell is surrounded by coils to produce DC and AC magnetic
fields, which are described in detail in Fig. 3.14. This figure and Fig. 3.14 are based on
the 3D model of the experiment made by Elliot Bentine.

Our vacuum chamber consists of two parts. The first part is the laser cooling

stage, where 87Rb atoms are captured from a room-temperature vapour and cooled

in a magneto-optical trap (MOT) [111]. During the MOT loading, we typically

apply UV light (using LEDs) onto the vacuum glass window, such that the pressure

of Rb is increased because of light-induced atom desorption (LIAD) giving faster

loading of the MOT. The typical MOT loading time with LIAD is around 10 seconds,

during which around 2× 109 atoms accumulate in the MOT. The atoms are then

magnetically transported [108] over a distance of ∼80 centimetres to the ultra-high

vacuum glass cell, where magnetic trapping and further cooling is performed. The

transport causes the atoms to be heated up and therefore afterwards atoms are

evaporatively cooled down in a quadrupole trap, from hundreds of µK to tens of

µK. Since the Majorana loss rate increases at a lower temperature, we stop the

cooling in the quadrupole trap at a relatively high temperature compared to the

Bose-condensation point. Subsequently, we turn on the rotating bias field at 7

kHz to realise a time-orbiting potential (TOP) trap, which shifts the quadrupole

node away from the centre of time-averaged potential and avoids Majorana losses.
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After further cooling in the TOP trap, RF dressing fields are turned on to load

atoms into a time-averaged adiabatic trap (TAAP) while the TOP bias fields are

kept on. The final evaporation sequence is performed in the TAAP trap, where a

partially-condensed 3D cloud is obtained. The bias fields ensure that the atoms

are initially trapped outside of the resonant spheroid, such that the sudden turn-on

of RF fields do not heat up the trapped atoms. Since the oscillation of the TOP

field is circularly symmetric in the x − y plane, we must ensure the cylindrical

symmetry of the dressed trap to avoid heating and we choose circularly-polarised RF

along the z axis in this stage. In the TAAP trap, we perform the final evaporative

cooling sequence to reach a final desired temperature. After the evaporative cooling

and rethermalisation, we ramp down the TOP bias field to slowly transfer atoms

from a TAAP to the RF-dressed potential12.

Quadrupole

Evap RF

RF coil

TOP bias coil

UHV cell
10 mm × 16 mm × 70 mm
(innder dimension)

ø 1.5 mm, 7 turns
w 49 mm × h 26 mm

× d 11 mm ø 1.3 mm, three-layer, (5,4,5) turns
w 30 mm × h 24 mm

× d 7 mm

33 mm dia. single loop

3.3 mm× 3.3 mm wire
5 turns × 4 layers
36 mm inner dia. 

Figure 3.14: Close-up view of the coils used to generate magnetic fields. RF and TOP
coils are installed along two directions x and y to create circulary-polarised field around
the z axis. The Evap. RF coil creates a weak RF field along the z direction to perform
forced evaporative cooling. The TOP and quadrupole coils are cut away for clarity. The
ultrahigh vacuum (UHV) glass cell has glass thickness of 2 mm.

3.4.1 Double-well loading

Following the loading of a BEC into the circularly-polarised single-RF shell trap,

we further manipulate the RF fields to load atoms into 2D double-well potential by

splitting a single condensate into two. Since we only work with linearly-polarised
12The detail of the loading from TOP, TAAP and then the RF-dressed potential can be found

in thesis by Bentine [107]



3. Experimental realisation of a 2D double-well potential 62

-550 -545 -540

0

0.02

0.04

0.06

-550 -545 -540

0

0.02

0.04

0.06

-352.3 -348.6 -344.9

0

0.02

0.04

0.06

-550 -545 -540

0

0.02

0.04

0.06

Figure 3.15: The slow loading and splitting procedure for the MRF double-well potential.
The RF amplitude ramp (bottom) is shown with the corresponding trapping potentials
(MRF-dressed eigenenergies, Vq), whose time evolution is indicated by the colours of the
plots from orange (initial) to blue (final). The shading (grey) links the five snapshots of
the potential to the time axis. (a) The two additional RFs, Ω7.14 and Ω7.26, are turned
on while the amplitude of the central RF, Ω7.2, is kept high such that the turn-on does
not perturb the clouds. The effect is negligible near the potential minima while the
geometry of the trap far from the trap centre is modified significantly by the emergence
of higher-order avoided crossing. (b) For the realisation of a 2D double-well the RF
amplitudes satisfy Ω < ωf (indicated by red dash-dotted line; see Fig. 3.7), Ω7.2 must be
turned down below ωf before the splitting ramp. To minimise the loss of atoms occurring
at Ω7.2 = ωf , the amplitudes are ramped quickly through this range in 7 ms (this is
the steep amplitude ramp starting at 0.1s in the above). Ω7.14 and Ω7.26 are ramped
simultaneously to keep the change in the potential geometry to a minimum during this
process. (c) To prepare for the splitting of trapped atoms, the potential is transformed
into a flat-bottom geometry. (d) Coherent splitting is performed slowly to avoid collective
excitations. It is also important to split symmetrically to minimize excitations. Since
the splitting process is very sensitive to the initial and final potential geometry, this
particular section of the ramp is completed soon after the cloud is split and reasonably
decoupled. This allows the final potential geometry to be changed without affecting the
population balance of the two wells. (e) Finally, the double-well potential is modified to
satisfy quasi-2D conditions as well as to ensure complete decoupling of wells. Due to the
effect of gravity, it is necessary to slightly imbalance the wells to achieve the same axial
trapping frequencies for the two wells; see Figure. 3.20 for trap calibration.
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RF fields when creating MRF-dressed potentials, we first need to slowly change

the RF from circular to linear polarisation. This is achieved by ramping down

the output from the y coil so that the final field is only along x. To avoid the

excitation of collective modes such as sloshing during this process, we perform the

ramp adiabatically over 1s. Once linear polarisation is achieved, we commence the

loading into MRF-dressed potentials. The combination of RF frequencies used for

the experiments in this thesis is typically 7.14, 7.2, and 7.26 MHz.

Depending on the nature of the experiment, the purpose of the double-well

loading is different. For the investigation of equilibrium BKT transition shown in

Chapter 5, the loading is performed as slowly as possible to avoid the excitation

of collective modes and atom loss. On the other hand, for the investigation of

quench dynamics across the BKT critical point (Chapter 6), we need to split

the cloud more quickly than the in-plane dynamics of the system on a timescale

∼ 2π/ωr ∼ 100 ms. The elimination of the collective mode is achieved by an

additional stage of the experiment, specifically for the fast splitting within timescale

∼ 10 ms (see Chapter 6).

In both cases, the transformation from the single- to multiple-RF dressing is

a challenging task. The main challenge is the atom loss during the RF amplitude

ramps as described in Sec. 3.1.4. The RF amplitudes cannot simply be ramped

up to final value, since a smooth change in the Rabi frequencies results in the

effective Rabi frequency being ramped over a wide range of the low-frequency

regime, where the electric noise is prevalent. The RFs on the other hand cannot be

jumped straight to a final desired value, since the frequency separation of 60 kHz

corresponds to a small spatial separation of 4.5 µm in our typical magnetic field

gradient of b = 94 G/cm and sudden perturbation of the trap near the locations

of atoms would unavoidably cause collective motion.

To circumvent the aforementioned issues, the loading into MRF potentials

needed to be performed in five separate stages as detailed in Fig. 3.15. Essentially,

we prepare atoms in a single-RF potential with ωrf/2π = 7.2 MHz at Ω7.2/2π > 100

kHz, and first turn on the other two RFs at around Ω/2π ∼ 10 kHz to avoid the
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coupling to low-frequency noise as well as keeping the perturbation to the atoms

to a minimum by the large amplitude difference Ω7.14,Ω7.26 � Ω7.2 of original

and the other RF components. To avoid the Majorana-like loss illustrated in

Fig. 3.7 (a), we then quickly ramp the Ω7.2/2π from 100 kHz to ∼ 50 kHz. We

modify the other two RF components at the same time, such that the potential

shape does not change over this short amplitude ramp over the duration of 7 ms.

The splitting of atoms is performed adiabatically after these two stages, which

serves to avoid loss mechanisms.

3.5 Detection of 2D gases

To characterise the state of 2D gases, we image the density distribution of atoms

either in situ, or after TOF expansion, using absorption imaging. Observation is

performed in either vertical or horizontal directions in the lab, i.e. either parallel

or perpendicular to the direction of gravity.

The imaging is carried out by sending a resonant laser pulse onto the atom,

to drive F = 2 → F ′ = 3 cyclic transition. While the imaging is performed on

atoms in F = 2 state, the preferred hyperfine state to carry out the experiment

with atoms is the F = 1 hyperfine level since it has longer lifetime in the trap. We

transfer atoms into F = 2 by means of optical pumping and a separate optical

path was prepared to send in the repumping light.

Resonant light is absorbed by the atomic cloud leaving a region of ‘shadow’ in the

transmitted laser beam where the light intensity is lower than for an unattenuated

incident beam. We send the light onto a charge-coupled device (CCD) to measure

the intensity distribution I(xp, yp) where coordinates xp and yp are the pixel location

of the CCD. As well as the ‘absorption image’ of the laser beam after passing through

the cloud, Ia(xp, yp), we capture an auxiliary image of the incident beam after the

atoms have been dispersed, Ii(xp, yp). We then obtain the spatial distribution of

optical density according to Beer’s law with the effect of saturation taken into

account [112]: OD(xp, yp) = log(Ia/Ii)+(Ii−Ia)/Isat, where Isat = 1.67 mW/cm2 is

the saturation intensity for circularly polarised light [113]. The calibration of optical
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density to the actual atomic density is performed using knowledge of the conditions

for the BEC critical point in a 3D trap [114], as discussed in Section 3.5.4.

The optical system makes the absorption image extracted from OD(xp, yp) a

convolution of the actual density distribution and the point spread function (PSF)

of the imaging system that can be well-approximated by a Gaussian:

fPSF(r) ∝ exp
(
− r2

2σ2
PSF

)
. (3.5.1)

We refer to σPSF as the imaging resolution throughout this thesis. The standard

imaging resolution (the radius of the first zero of the Airy disc) is related to

this by rAiry = 2.9σPSF. Fig. 3.16 shows the optical setup around the glass cell,

designed to probe and manipulate the atoms. We give further information on

each imaging setup in the following sections.
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Figure 3.16: The apparatus used to probe and manipulate atoms. This illustration of
the optical setup around the ultra high-vacuum (UHV) glass cell shows the arrangement
of the optical components which are used to detect (Horizontal and Vertical imaging)
and manipulate (DMD) the atoms. Polarisation cleaning and waveplates for polarisation
control are not shown for the horizontal imaging and DMD optics for clarity of the
illustration.
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(a) (b) (c)

TOF TOF

Figure 3.17: Three different types of imaging setups to probe 2D gases. (a) Vertical
imaging records the 2D density distribution of atoms by sending the probe light (grey)
along the direction of gravity. Repumping light (not shown) is applied to the entire
cloud. (b) Horizontal imaging with full repumping of the cloud. The repumping beam
(red) transfers all atoms into F = 2 state, thereby allowing the total atom number
as well as far wings of the density distribution to be recorded for thermometry. The
double-well situation is shown for illustration; the integration of the density along the
imaging axis means that the observed contrast of interference fringe is low. (c) Density
slicing method using spatially-modulated repumping light, to image only a thin slice
of density distribution along the imaging axis. The matter-wave interference pattern is
clearer than the case in (b), since integration of the fluctuating fringe pattern is avoided.
The position and thickness of the sheet of repumping light can be chosen arbitrarily by
changing the pattern displayed on the DMD.

3.5.1 Vertical imaging

The vertical imaging records the in-plane density distribution of 2D gases. The

optical system consists of a custom-made objective lens with high numerical aperture

(NA) [108], a f = 500 mm achromat eyepiece lens and an electron-multiplying

CCD (EMCCD, Andor iKon-M). The NA of the objective lens is 0.27, resulting in

resolution of σPSF = 0.5 µm at the wavelength of 780 nm that we use for detection.

This optical path is shared with the light reflected from a digital micromirror device

(DMD) which is propagating in an opposite direction to the imaging beam, as

shown in Fig. 3.16. As we describe later in Section 3.5.3, the light from DMD

creates an arbitrary spatial pattern of light for selective repumping and potential

shaping and utilises the high NA of the objective lens.
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3.5.2 Horizontal imaging

The horizontal imaging detects the density distribution along the radial direction

and is the main detection method throughout this thesis since the matter-wave

interference patterns can be observed. The imaging system consist of two lenses, a

doublet lens with f = 75 mm as an objective lens and a f = 200 mm eyepiece lens,

resulting in image-plane pixel size of `p = 1.67 µm. The optical resolution of this

imaging setup was measured using a USAF resolution target13 to be σPSF = 2.1 µm.

3.5.3 Beam shaping with a DMD and selective imaging

The standard absorption imaging of cold atoms entails the integration of density

along the imaging axis. This integration is problematic for the investigation of

interfering 2D Bose gases, since the fluctuation of the interference patterns along the

imaging axis causes the loss of information. To mitigate the effect, we implemented

a method of spatially-selective imaging of the atoms by spatially-selective repumping

of atoms into the F = 2 state. Fig. 3.18 (b) shows absorption images obtained

by using a laser light with a complex shape to selectively repump a partially

condensed cloud of atoms and detect them using imaging along the vertical axis.

Thanks to the high resolution of the vertical imaging, a small-scale structure can be

painted onto the atom, as shown in Fig. 3.18. For the selective imaging, we shape

the repumping light into a thin sheet with variable thickness Ly as illustrated in

Fig. 3.17 (c). The programmability of the DMD allows us to arbitrarily choose

the position and the thickness of this sheet.

The DMD can also be used to shape the confining potential of the atoms using

far-detuned intense light, in this way we will be able to implement a wide variety of

potential shapes such as a box trap [13], disordered potential [115] and an ‘entropy

reservoir’ [116] to realise complex Hamiltonian, allowing us to probe novel physics.

We have installed the 532 nm laser system required for the potential shaping with

far-detuned light, shown as a part of Fig. 3.16. However, there has not been sufficient
131951 USAF resolution chart, defined by U.S. Air Force MIL-STD-150A standard of 1951
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experimental time for the precise alignment and characterisation of such arbitrary

potential, and this remains an exciting prospect for future work with this apparatus.

12o

onoff

Figure 3.18: Illustration of the DMD. (a) The DMD consists of an array of small
square-shaped mirrors, which can be individually tilted to a certain angle by a force
applied from the complementary metal-oxide-semiconductor (CMOS) substrate. (b) An
application of DMD light shaping to the spatially-selective repumping of atoms in a 2D
confinement. The image was taken vertically, to directly image the repumped atoms in
situ.

3.5.4 Imaging detectivity calibration

To calibrate our imaging detectivity, we observe the 3D BEC critical point in

a cylindrically symmetric time-averaged adiabatic potential [117] with trap fre-

quencies: ωr/2π = 54 Hz and ωz/2π = 300 Hz, resulting in geometric mean

ω/2π = (ωrωrωz)1/3/2π = 96 Hz. We use this method because it is insensitive

to experimental imperfections such as imperfect polarisation of the probing light

and it provides absolute calibration of atom number. For the range of temperatures

and atom numbers used in this process, the system is three-dimensional (not

quasi-2D). We calibrate the atom number by comparing the critical atom number

to the theoretical value:

Nc = ζ(3)
(
kBT

~ω

)3 ( 1
1− 3.426(as/λ)

)3

+ δN, (3.5.2)

where ζ is the Riemann zeta function. δN is the finite-size correction [118] that

result in 3 % higher critical atom number for the parameters used in this procedure.

Another correction term (1 − 3.426(as/λ))−3 in Eq. (3.5.2) is the mean-field
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correction [114] where as is the s-wave scattering length and λ = h/
√

2πmkBT is

the thermal de Broglie wavelength. We chose the range of atom numbers used

for this calibration such that the average optical density after TOF is close to

the values for data shown in the main text.

Figure 3.19: The determination of the 3D BEC critical point in a TAAP trap for
the calibration of imaging. The fraction of atoms in the central Thomas-Fermi peak
N0/N is shown as a function of the temperature of the cloud in the trap with the total
atom number varying from 5× 104 to 1.2× 105. The critical point was identified by the
temperature at the onset of N0/N , indicated by the black arrow. The calibration was
done by comparing the measured atom number and temperature at the critical point to
the expression Eq. (3.5.2).

3.6 Trap characterisation

While we can accurately predict the potential geometry given the combination of RF

amplitudes using the Floquet numerical procedure, however, precise experimental

determination of the actual RF amplitudes is difficult, mainly because of the small

separation of the commensurate RF frequencies. Therefore, we measure a few

important characteristics of the double-well by alternative methods. Determination

of the confinement is achieved by observing the collective oscillation of atoms in

the trap. We apply a momentum kick to the atoms by a sudden change in the

quadrupole field strength (for the vertical trap calibration) or by a sudden addition

of a horizontal bias field (to produce a kick in x and y). For the vertical trap

frequency calibration in a double-well, we slightly modified the usual double-well

loading scheme shown in Fig. 3.15, such that atoms are localised in one of the wells,
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before we performed the measurement. The results are presented in Fig. 3.20 (a)

and (b) for the measurements in the vertical and x directions.

The calibration in the y direction is not straightforward since we do not have

sufficient optical access to observe the motions of atoms along the y direction.

Instead of building another imaging apparatus, we use the density slicing method

to detect the oscillation of the atomic cloud along the imaging axis; to determine

the position of atoms, we perform multiple experimental sequences with different

positions of the repumping light sheet and reconstruct the density distribution,

as shown in Fig. 3.20 (c). We repeat the procedure at variable times after the

impulse is applied to the atoms and obtain the oscillation frequency in the trap, see

Fig. 3.20 (d). We further characterise the spatial separation of the two wells using

the matter-wave interference wavenumbers, which is discussed in the next chapter.

Figure 3.20: Trap characterisation. (a) Measurement of vertical trap oscillations in left
(blue) and right (green) wells. Position of atoms after 16 ms TOF is plotted against the
time elapsed after a vertical kick. The two measurements were performed separately with
slightly different double-well loading parameters which ensure loading of Bose-condensed
atoms into only one well. The measured frequencies are 1.01(3) kHz and 0.99(4) kHz. (b)
Measurement of the radial trap oscillation (in x direction), perpendicular to imaging axis.
The measured frequency is 10.9(2) Hz. (c) Measurement of density distribution along the
imaging (y) axis using the density slicing method. The DMD position is in the unit of
pixels, corresponding to a real-space length of 0.5 µm. Different colours indicate different
times after the kick and solid lines are Gaussian fit. (d) Measurement of trap oscillation
along the imaging axis y. Each point represent the centre of the fitted Gaussian at each
time. The trap oscillation frequency is 11.0(5) Hz, in good agreement with the result of
the measurement along x, as in (b). A datapoint at 0.15 s is missing due to a fit failure.
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Observation of the BKT transition in 2D Bose gases has so far relied on a

variety of observables. The most straightforward way to characterise the system

is the in situ density distribution [62–64] and the density distribution after free

expansion [70, 119, 120]. Furthermore, the cold atomic system offers observables

to be probed that are not accessible in other experimental systems such as the

spatial phase fluctuations [14, 32, 94]. In this section, we describe the analysis

methods used to extract properties of 2D systems along with examples of our

relevant experimental results. A more detailed discussion of the BKT critical

71
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phenomena can be found in Chapters 5 and 6. We further discuss the practical

considerations to be made when investigating the 2D system in the presence of

finite imaging resolution and inhomogeneity.

4.1 Density distribution

We rely on the measurement of the density distribution using absorption imaging

techniques to infer various properties of 2D gases. The density distribution of

harmonically-trapped, weakly-interacting 2D Bose gases was described theoretically

in detail in Chapter 2. In this section, we show the method of analysing the

experimental data that we use in the following sections, such as fitting and

thermometry procedures.

4.1.1 The in situ density distribution

The in situ density distribution can be measured by using the vertical imaging

system introduced in Section 3.5.1. As described in Section 2.3.6, within the

LDA the measurement of the density distribution in a harmonic trap provides a

single-shot determination of the equation of state for a range of local chemical

potentials [63]. However, our current experimental setting has a problem for the

precise measurements near the critical point. This is because at high atom density,

the calculation of the optical density via the simple Beer’s law is not accurate. As

described in Ref. [64], at a small inter-atom distance shorter than the wavelength

of the laser n−1/2 . 780 nm, collective phenomena take place and modify the

atom-light interaction. To circumvent the problem, short high-intensity imaging

may be used [64]. Since we have not implemented high-intensity imaging yet, we

have limited ourselves to thermal and crossover regime of the BKT critical point for

the in situ density measurement, where the collective phenomena is not important.

The density distribution of atoms obtained with the vertical imaging system,

of atoms with temperature around 100 nK in a single-RF dressed potential with

ωr = 25 Hz, is shown in Fig. 4.1 (a), and Fig. 4.1 (b) shows their azimuthally

averaged density distribution.



4. Characterising 2D quantum gases 73

Figure 4.1: in situ density distribution, scale invariance and universality. (a) The
averaged density distribution of a 2D Bose gas trapped in a single-RF dressed harmonic trap
with ωr/2π = 25 Hz and ωz/2π = 1.8 kHz, at temperature 100 nK. (b) Azimuthal average
of the density distribution shown in (a). The red line is the Hartree-Fock fit result of the
far wing of the density distribution, obtained by fitting the solution of implicit equation
D(r) = − ln(1− exp(µ/kBT − g̃D(r)/π − V (r)/kBT )) to the density distribution in the
low-density region, with free parameters µ and T . (c) The demonstration of scale
invariance of 2D Bose gases. Rescaled density distribution ñ = nλ2

th is plotted against
rescaled local chemical potential µ̃(r) = (µ− V (r))/kBT of data taken with temperatures
100 nK (blue) to 170 nK (green), in the thermal regime. Inset shows the same data with
the original scales. (d) The universality of the 2D Bose gas near the BKT critical point.
The rescaled density distribution is plotted against (µ̃− µ̃c)/g̃ = (µ− V (r)− µc)/kBT g̃
for three different effective interaction strengths g̃ = 0.078, 0.084 and 0.093. In a similar
manner to (c), the data collapse onto a single line; this is the demonstration of universality
close to the critical point predicted in Ref. [18].

Furthermore, the in situ density distribution can be used to confirm the scale

invariance and universality of 2D Bose gases that we discussed in Section 2.3.5.

Within the LDA, the in situ density distribution is a direct measurement of the

equation of state across a range of local chemical potential. As such, by taking

images using vertical imaging at different temperatures or interaction strengths, we

can readily observe the temperature and interaction dependence of the equation
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of state, as shown in the following.

Fig. 4.1 (c) shows the azimuthally averaged density distributions ñ = nλ2
th

as a function of rescaled local chemical potential, µ̃(r) = (µ − V (r))/kBT . The

data shown are at different temperatures ranging from 100 nK to 170 nK, as

measured using the fit of the Hartree-Fock prediction to the wings of the density

distribution [65]. All the curves collapse onto a single line, which is a manifestation

of the scale invariance of the system. This can be seen by comparison to the

density distributions with the original scales for r and n, shown in the inset of

Fig. 4.1 (c) which are clearly distinct.

Fig. 4.1 (d) shows the density distribution taken at the same temperature but

with different effective 2D interaction strength; this interaction can be varied because

of its dependence on the vertical oscillation frequency ωz, as implicit in Eq. (2.3.1).

As discussed in Sec. 2.3.5, the data collapse onto a single line by subtracting the

local chemical potential by µc and dividing it by the interaction strength. Since the

behaviour of the system is not dependent on the microscopic detail of the system,

i.e. interaction strength, this indicates the universal behaviour of 2D Bose gas

close to a critical point, as previously reported [62].

4.1.2 TOF expansion of quasi-2D Bose gases

The TOF expansion is a method routinely used to extract the momentum distri-

bution of cold atomic gases. For the quasi-2D gases, the expansion dynamics is

simplified compared to that of 3D gases because the tight confinement in z direction

results in a rapid expansion of the gas at the start of the TOF expansion, making

the effect of interactions during TOF negligible. The expansion along the radial

direction r and the axial direction z are thus separable, and we focus on the radial

expansion dynamics to extract the thermodynamic quantities of the 2D gas. The

expansion of cloud along the tightly-confined z direction is simplified since only

the ground state is populated when the quasi-2D condition is met. The size of the

cloud increases linearly with expansion time at a sufficiently long time [121],

lz(t) = lz(0)
√

1 + ω2
zt

2 ' lz(0)ωzt. (4.1.1)
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On the other hand, the radial expansion is more complex since harmonic oscillator

excited states are thermally occupied.

Fig. 4.2 shows the expansion dynamics of quasi-2D gases initially trapped in

RF-dressed potential. Fig. 4.2 (a) illustrates the expansion dynamics after projecting

the dressed states into bare Zeeman states; three daughter clouds appear by Stern-

Gerlach-like spatial separation of the states in the residual quadrupole magnetic

field after the RF fields are turned off. Even with instantaneous turn-off of the

current source, the quadrupole field dies away in a finite duration of around 3

ms after the RF turn-off. After the quadrupole field is completely removed, all

the clouds undergo free expansion. The red line indicates the free-fall trajectory

z(t) = z(0) − gEt
2/2 where gE is the gravitational acceleration at the surface of

earth; the magnetically insensitive mF = 0 cloud in the middle follows this curve

after its projection into this Zeeman state. We focus on mF = 0 states for analysis,

and use the other clouds only to count the total number of atoms.

To visualise the expansion dynamics of 2D clouds in the radial direction, we

plot the integrated density distribution in Fig. 4.2 (b) for TOF durations from 3 ms

(orange) to 21 ms (blue). The temperature of the gas was around 40 nK and the

system is in the superfluid regime. The density profile shows a bimodal distribution

as expected from classical-field theory in Sec. 2.3.6. During the TOF, while the

central peak shows negligible change in its shape, the wider Gaussian wing shows

clear expansion (see Fig. 4.2 (b-d)). For quantitative analysis, we have fitted the

density distributions with a bimodal distribution defined by

n(x) = nge
− x2

2σ2
g + nTF max

(
0, 1− x2

R2

)
. (4.1.2)

The expansion dynamics in the radial direction has two limiting cases. The

first case is the Gaussian wing of the density distribution, where the local chemical

potential is very small and thermal-gas approximation can be made. For such a

low-density part of the gas, a ballistic expansion of thermal gas is expected. This is

seen in the fit results of Gaussian width σg, plotted in Fig. 4.2 (c) for four different
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temperatures. The expansion is fitted well by the form for a thermal gas [67],

σ2
g = 2kBT

m
· 1 + ω2

r t
2

ω2
r

. (4.1.3)

From the fits in Fig. 4.2, we extract temperatures 40(2), 45(2), 58(6) and 83(5)

nK from the blue to green data points.

The second case is the analysis of the central peak of the density distribution,

which is attributed to zero-momentum modes in a 3D BEC. Similarly, we find that

this central peak is associated with low-momentum modes in quasi-2D Bose gases,

as we see in Fig. 4.2 (d) which shows the time evolution of the Thomas-Fermi radius

R during the expansion. We also plot the vertical extent of the cloud in Fig. 4.2

(e), which shows a linear increase with TOF as expected [121].

4.1.3 Analysing images at fixed TOF duration

As shown in the last section, we can determine the temperature of the system

from the standard, integrated absorption image after TOF. Assuming the radial

symmetry of the system and the known expansion dynamics, we can estimate

various other quantities of interest as we describe below. The following relations

are used throughout this thesis to characterise the 2D gases.

Firstly, as we have derived in the last section, the temperature of the gas can be

obtained by the expansion of the component that is a thermal gas,

kBT = 1
2m

(
ω2
r

1 + ω2
r t

2σg

)
. (4.1.4)

We note that a finite population of excited levels in the axial harmonic oscillator may

affect this method of thermometry as pointed out in Refs. [57, 65]. Nevertheless,

our experimental parameters are well within the quasi-2D regime, as the mean-

field and thermal energy scales are smaller than ~ωz, and so the population of

excited levels is negligible. The observed agreement of the experimentally measured

density distribution and strictly 2D Monte Carlo simulation presented in Chapter

5 (see Fig. 5.5 (b), Fig. 5.11 and Fig. 5.10) further confirms the reliability of the

thermometry method described above.
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Figure 4.2: TOF expansion of quasi-2D Bose gases. (a) The combined images of atoms
released from a MRF-dressed potential at variable TOF durations. The red line indicates
the free-fall trajectory. (b) Integrated radial density distributions of 2D Bose gases for
TOF durations ranging from 3 ms (orange) to 21 ms (blue). (c) The size of the wide
Gaussian part of the density distributions, shown in (b), as a function of TOF duration.
Different colour indicates different temperatures of the gas, from 37 nK (blue) to 78 nK
(green). Solid lines are the fit with Eq. (4.1.3). (d) Thomas-Fermi radius R of the central
peak at 37 nK (blue) and 43 nK (green). The red line is a guide to the eye. (e) The
vertical extent (Gaussian standard deviation) of the gas as a function of TOF durations.
Solid lines are linear fits, as in Eq. (4.1.1).

Furthermore, the one-to-one mapping of the Gaussian size after TOF to in situ

size, together with the extracted atom number associated with TF and Gaussian

profiles, allows determination of the in situ density distribution; from fit results

of TOF images using Eq. (4.1.2), we calculate the populations in the Gaussian

and Thomas-Fermi parts Ng and NTF and obtain the estimated in situ density

distribution as

n(r) = ng,0e
− r2

2σ2α2 + nTF,0 max
(

0, 1− r2

R2

)
, (4.1.5)

where α = (1 + ω2
r t

2)−1; the peak 2D densities ng,0 and nTF,0 are chosen such that

the populations of each component in the in situ distribution Eq. (4.1.5) match to

that obtained in TOF images. We found good agreement of the estimated in situ
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density distribution to that obtained from the Monte Carlo simulation performed

for our particular experimental parameters (see Chapter 5).

4.2 Matter-wave interference patterns

We investigate the fluctuation properties of 2D Bose gases using matter-wave

interference (MWI). The MWI patterns reveal the intrinsic fluctuation of the 2D

system from which we obtain the correlation functions. In this section, we give a

description of the matter-wave interference analysis methods, as well as the effect of

finite imaging resolution. An important consideration is the method of accounting for

the inhomogeneity of the system in our analysis leading to the correlation function.

4.2.1 Matter-wave interference

We calculate the density distribution of quasi-2D Bose gases which are initially

trapped in a double-well potential and released for a TOF expansion. The

wavefunction in the z direction consists of two Gaussian wavepackets in the

two wells j = 1, 2 with initial spatial separation d, and the total wavefunction

is ϕ(z, t) = ϕ1(z, t) + ϕ2(r, t). The expansion of the individual wavepacket is

described by [67]

ϕj(z, t) ∝ exp
[
iφj(r)− (z ± d/2)2(1 + iht/ml20)

2l2t

]
, (4.2.1)

where the φj(r) is the in situ phase of each cloud, l2t = l20 + (ht/ml0)2 and l0 is the

initial wavepacket size. The corresponding density distribution after TOF is

n(z, t) = |ϕ(z, t)|2 = |ϕ1(r, t)|2 + |ϕ2(r, t)|2 + 2 Re[ϕ1(r, t)∗ϕ2(r, t)], (4.2.2)

∝ exp
(
− r

2

2l2t

)[
1 + cos

(
md

~t
z + φ1 − φ2

)]
, (4.2.3)

where we have used exp
(
− (z±d/2)2

2l2t

)
' exp

(
− z2

2l2t

)
and lt ' ht/ml0 for sufficiently

long TOF duration such that lt � l0, d. The density distribution of 2D gases

released from a double-well trap thus shows a sinusoidal modulation of density

with a Gaussian envelope. The periodicity of the modulation is ∆z ∼ 2π ~t
md

.

Additionally, the phase profile of the interference pattern along r depends on the
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phase difference of the initial gases φ1 − φ2 and this allows us to infer the spatial

distribution of the in situ relative phase.

As described in Sec. 3.5.3, we image slices of the density distribution with

thickness Ly to reveal the local fluctuation of the phases. This technique works if

the Ly is shorter than the characteristic length scale for the change in phase, i.e. the

phase correlation length r0. Thus, when investigating the BKT critical phenomena,

we only take data in the superfluid and crossover regime where the detection of the

phase profile is feasible, i.e. Ly . r0. The thickness of the slice needs to be large

enough to give a good signal-to-noise ratio in the absorption imaging; typically, we

use a thickness Ly = 5 µm which is a compromise between the two constraints and is

short enough to probe the phase correlation function across the BKT critical point.

4.2.2 Extracting phases

To extract the phases from the observed interference pattern, we fit the column

density distribution nx(z) with the fit function

nx(z) = np exp
(
−(z − z0)2

2σ2
z

) [
1 + c0 cos(kz + θ(x))

]
, (4.2.4)

where np, z0, σz, c0, k and θ(x) are the fit parameters. With the density slicing

method, the extracted phase θ(x) encodes a specific realisation of the fluctuations

of the in situ local relative phase along the line r = (x, y = 0) between the pair

of 2D gases. Fig. 4.3 (a) illustrates the fitting.

For small well separations, where d ∼ lt(t = 0), the fit becomes increasingly

difficult as the interference fringe spacing becomes comparable to the extent of

the cloud ∆z ∼ lt(tTOF). In such cases, the Fourier transform is a better method

to extract the phases by taking the argument of complex fast Fourier transform

(FFT) amplitude at the fringe wavenumber k = ~tTOF/md. We thus used the FFT

for the results reported in Chapter 7, where the well separation is made small,

d ∼ 2 µm to induce coupling between the two wells. We compare the two phase

extraction methods in Fig. 4.3. Fig. 4.3(b) shows that for a fringe wavelength

longer than 0.2σz, the FFT method is more reliable.
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Figure 4.3: Phase extraction from interference patterns. (a) artificially generated
density profiles along z using Eq. (4.2.4) at different θ with the added white noise of
amplitude at 10 % of the peak value. Red lines are fit with Eq. (4.2.4). (b) Comparison of
two methods to extract the phases. For a range of fringe wavelengths from 0.02σz to 0.7σz,
we generated 20 images with different phases θ in the same way as (a) and extracted the
phases using two methods. The root-mean-squared errors of true and measured phases are
shown as a function of fringe wavelength divided by the extent of the Gaussian envelope
σz.

4.2.3 Postselection of fit results

Even at a small fringe wavelength where the fitting with Eq. (4.2.4) is expected to

work well, noise and imperfections in the experiment lead to cases where the fit fails

to converge and returns unrealistic parameters. Anomalous jumps of phases from

failed fit attempts significantly affect the correlation analysis, therefore we postselect

fit results that can be considered a reasonable fit and exclude those that can be

considered a fit error or absence of interference signal. This selection is based on

the fact that the double-well separation is fixed for any temperature of the gas and

thus the k must be fixed. Therefore we use anomalous values of k as an indication

of fit failure, and exclude these datapoints from further analysis. Specifically, we

discard datapoints where the fitted value of k is outside the region of the peak of

its histogram, as illustrated in Fig. 4.4 for the datasets shown in Chapter 5.

4.2.4 Obtaining the phase-correlation function

As we have discussed in Sec. 2.5.1, the correlation function of the relative phases of

two decoupled 2D gases is related to the first-order correlation function of each layer,

thus providing a direct probe of the BKT transition. In this section, we describe

the specific method used to obtain the phase correlation function of the 2D system.
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Figure 4.4: Histogram of the fringe wavenumber k from fits with Eq. (4.2.4), performed
on the experimental data shown in Chapter 5. The red dashed lines indicate the range of
k that we use for postselection.

For each experimental run, we obtain the relative phase profile θ(x) as described

previously. From θ(x), we first calculate the two-point phase correlation function

ei[θ(x)−θ(x′)] for all combinations of locations x and x′ within the interfering part of

the cloud. We then determine the averaged correlation function

Cexp(x, x′) = 1
Nr

∑
j

eiθ(x)−iθ(x′), (4.2.5)

where the index j runs over Nr individual experimental realisations. Typically

Nr is on the order of 100. The real part of the correlation function Cr(x, x′) =

Re [Cexp(x, x′)], equals 1 for perfect correlation between pairs of points and 0 for

uncorrelated pairs of points.

Fig. 4.5(b) shows an example of this correlation Cr(x, x′), using the data of an

equilibrium system in crossover regime at T ∼ 40 nK, from Chapter 5. The range

of spatial correlations around the diagonal x = x′ indicates the coherence of the

system. Cr(x, x′) is related to the one-body correlation function g1(r, r′) by

C(r, r′) ' 〈Ψ†(r)Ψ(r′)〉2
〈|Ψ(r)|2〉〈|Ψ(r′)|2〉 = g1(r, r′)2

n2 . (4.2.6)

To quantify the decay of correlations, we calculate C(x) by averaging Cr(x, x′)

over the set of points with the same spatial separation x = x− x′. This averaging

was performed over antidiagonal and their adjacent and second adjacent elements

of Cr(x, x′), corresponding to the points that are distanced x/2, x/2 ± 1 and
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Figure 4.5: Extraction of the phase correlation function C(x). (a) An example phase
profile extracted from an interference pattern using the fit function Eq. (4.2.4). The
bottom panel shows the phase profile in radians. (b) From the phase profiles θ(x) extracted
from large number of images, we calculate the two-point phase correlation Eq. (4.2.5).
Diagonal elements Cr(x, x) = 1 by definition. (c) From Cr(x, x′), the correlation function
C(x) at distance x (in number of pixels) is calculated by taking the mean of x-th diagonal
elements of Cr(x, x′) according to Eq. (4.2.7). The shaded region is the uncertainties
obtained by the bootstrapping method. The elements of the Cr(x, x′) included in the
averaging are indicated by the rectangles (red, blue and green), corresponding to C(x)
data points marked by circles in matching colours.

x/2± 2 pixels from the centre of the cloud (see Fig. 4.5(c) inset). The averaged

correlation function C(x) is defined as

C(x) = 1
Nx

−x/2+2∑
x=−x/2−2

Re [C(x, x+ x)] , (4.2.7)

where Nx = 5 is the number of pixels used for the averaging. This procedure

is illustrated in Fig. 4.5 (c).

4.3 Effect of finite imaging resolution

The imaging system in our apparatus has finite imaging resolution with point-

spread function (PSF) approximated by Gaussian with a standard deviation of

σPSF = 2.1 µm. The observed images involve a density distribution convolved with

the PSF of the imaging system. Specifically, this is expected to affect the short-range

correlations x ∼ σPSF. The change in short-range correlation is not expected to
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affect our determination of the BKT critical point significantly because we are only

interested in the long-distance behaviour of the correlation functions to probe BKT

critical phenomena. However, it is important to quantitatively estimate the effect.

Superfluid regime

To model the effect of imaging resolution to the correlation analysis within the

superfluid regime, we assume the equilibrium phonon mode population [122] and the

effect of imaging resolution can be straightforwardly modelled by multiplying the

phonon mode populations with the Fourier transform of the PSF, exp(−σ2
PSFk

2/2).

We plot the normalised correlation function with true exponent η = 0.2 and imaging

resolution σSF =0,0.5,...,2.5 in Figure 4.6 (a), along with fitting with a power-law

function f(x) = ax−η. As expected, the long-distance decay of the correlation

function is unchanged by having finite imaging resolution. In Figure 4.6 (b),

we present the results of fitting which show that a finite imaging resolution of

σPSF = 2.1 µm has negligible effect on the extracted value of η within the superfluid

regime.

Figure 4.6: Effect of imaging resolution on the measurement of the algebraic exponent
η. Points represent normalised one-body correlation functions g′1(x) = g1(x)/n in the
superfluid regime, simulated with the effect of imaging in real-space with σPSD=0,0.5,...,2.5
µm from bottom to top (blue to green). σPSF=0 corresponds to the absence of any imaging
effect. Lines in corresponding colours are fitted curves with f(x) = ax−η. (inset) Fitted
values of η as a function of imaging resolution with η0 = 0.2 (circle), 0.1 (square) and
0.05 (triangle).
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Thermal regime

To estimate the effect of finite imaging resolution on the correlation function in the

thermal regime, we have simulated the fluctuations of the system using the Ornstein-

Uhlenbeck stochastic process [123] with the time axis replaced by the real-space

axis along a direction perpendicular to the imaging direction. This process gives

fluctuating phase profiles with exponentially decaying two-point phase correlation

with a given correlation length ξ0 and was used in the analysis of experiments

elsewhere to simulate the fluctuating phase profiles of 1D gases [32]. The effect of

imaging resolution was incorporated by convolving the interference pattern arising

from the ballistic expansion of a pair of phase-fluctuating clouds along z direction

[67] with a Gaussian PSF. We generate N = 200 images at each set of parameters

and apply the image analysis procedure as described in Section 4.2.4 to obtain the

correlation functions. In Fig. 4.7 (b) the correlation functions in the presence of finite

imaging effect are plotted. The inset of Fig. 4.7 (b) shows the correlation length r0

extracted by fitting the correlation functions obtained with σPSF = 2.1 µm. The

plot shows the measured correlation length against the true correlation function used

to generate the data, ξ0. From this, we find that the imaging effect systematically

shifts the observed correlation length up to around σPSF.

4.4 Effect of inhomogeneity on correlation func-
tions

Power-law model

In harmonically trapped 2D Bose gases, the spatially varying density of the gas

modulates the local thermodynamic quantities. For the analysis based on correlation

properties of 2D gases, the inhomogeneity introduces deviation from the BKT

picture derived for uniform systems. It is thus necessary to properly account for

the inhomogeneity when analysing the correlation functions.

Recently, a spin-wave theory in trapped 2D systems was derived in Ref. [26],

focusing on the effect of the harmonic trap on the correlation function. It was
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Figure 4.7: Effect of imaging resolution in the thermal regime. (a) Simulated density
distribution after TOF with phase correlation length ξ0 = 10 µm. The left image is the
simulated distribution without any imaging effect and that on the right figure is the output
of the simulated imaging process, including the finite imaging resolution and pixel size.
(b) Phase correlation functions obtained from simulated images, with imaging resolution
0,1,2,3 µm ( blue to green) and ξ0 = 8 µm. (inset) Fitted correlation length from the
correlation functions, with σPSF = 2.1 µm. Error bars are 95% confidence intervals. The
red solid line is r0 = ξ0 and red dash-dotted line is r0 = ξ0 + 2.1 µm.

found that the density-dependent modulation of the exponent η from local density

n(r) according to

g1(r, r′) ∝ |r − r′|−η
n0√

n(r)n(r′) , (4.4.1)

reproduces the result of trapped spin-wave theory well [26], where n0 is the peak

density. This procedure was named the local correlation approximation (LCA). We

use the procedure with the minor modification described below to derive a model

which we used to fit the correlation function fSF(x) and to extract the algebraic

exponent η for all the correlation measurements reported in this thesis.

Since the data points in the correlation function C(x) are averaged over multiple

locations, we replace n(r) of Eq. (4.4.1) with n(x) defined by

n(x) = 1
Nx

−x/2+2∑
x=−x/2−2

√
n(x)n(x+ x), (4.4.2)

where Nx = 5, same as Eq. (4.2.7). For n(x), we used estimated in situ density

distributions as described in Section 4.1.3. We then use the model function

fSF = ax−2η0α(x), (4.4.3)
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where α(x) = max(n(x))
n(x) with fit parameters a and η and the factor of two in the

exponent stems from the fact that the fluctuation from two clouds contribute to the

measured correlation function (see Eq. (4.2.6)). This model gives a good description

of the long-range behaviour of the measured correlation decay in the superfluid

regime, as shown in Fig. 4.8 and the obtained value of η corresponds to the mean

value within the region of interest, 80% of the Thomas-Fermi diameter.

Figure 4.8: The effect of inhomogeneity to the correlation function. The experimental
measurement of the correlation function in the superfluid regime (black points) is plotted,
taken from results shown in Chapter 5. The correlation function was fitted with a
power-law model (purple) and power-law model within the LCA (blue).

Exponential model

In an inhomogeneous trapping potential the density varies over a characteristic

length scale that is relatively long compared to the short-ranged correlation function

in the thermal regime. This smooth density variation is expected to have only a

small effect on the correlations in this regime, however we have not found a suitable

theoretical treatment in the literature and have developed the approach described

here. As above, we simulate the exponentially decaying correlation function using

the Ornstein-Uhlenbeck stochastic process [123], this time with spatially varying

correlation length ξ(x) depending on the location within the trap. We assume that

the local correlation length ξ(x) decays exponentially as a function of distance from

the centre of the cloud, ξ(x) ∝ exp(−x/b) and fix the correlation length at the
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centre of the trap ξ0. Fig. 4.9 shows correlation function obtained from homogeneous

(black) and inhomogeneous (red) model which overlap within uncertainties. The

close agreement of two correlation functions is reflected in the exponential fit of

these functions, which gives correlation lengths in agreement with each other within

their confidence intervals. We found the same results regardless of the scaling factor

b, and even with small b such that ξ(x) ∼ 0 at the edge of the analysis region.

Figure 4.9: The effect of inhomogeneity on the correlation function in the thermal
regime. Exponentially-decaying correlation functions, as expected in the thermal regime,
are obtained from an Ornstein-Uhlenbeck simulation. The black line is corresponds to
constant local correlation length ξ0 = 8 µm across the system while the red line is for a
non-uniform local correlation length, decaying to close to zero at the edges of the cloud.
The shaded region denoting the 1σ uncertainty was obtained by the bootstrapping method
from the realisations of the Ornstein-Uhlenbeck process and the inset shows the same
quantities on log-linear scale.

Although the above arguments hold within each distinct phase, further theoretical

investigation is needed to determine the effect of inhomogeneity within the crossover

regime, where the BKT transition is crossed at a certain radius of the cloud rBKT.

4.5 Vortex detection

The extracted phase profiles also provide a way to detect vortices in the 2D Bose

gases by looking for sharp disruptions of the phase θ(x). As shown in Fig. 2.1

(c) and (d), the phase profile along a line cutting through a vortex core has

a sharp dislocation of phase.
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The methodology that we use to find vortices is similar to that in Ref. [14], in

which the criterion for a vortex at location x was taken to be a phase difference

greater than 2π/3 between adjacent pixels. To avoid false counting, we make

the following improvements to the vortex detection method described in Ref. [14].

Firstly, since our imaging resolution is comparable to the expected size of a vortex

core ∼ 1 µm and, furthermore, a single pixel corresponds to an equivalent size in the

image plane, the vortex detection is performed by evaluating the phase difference

at second adjacent pixels (next-nearest neighbours). Secondly, to avoid the local

phases returned from failed fitting being counted as a vortex, we only consider

positions where the postselection criteria shown in Fig. 4.4 is satisfied for the pair

pixel locations. Fig. 4.10 illustrates the vortex detection. The vortex detection

was performed within 90% of the TF region; we analyse a wider region than for

the correlation analysis, to obtain better statistics.

Figure 4.10: Vortex detection. Example images with vortices are shown, with
corresponding phase profiles θ(x) obtained by fitting with Eq. (4.2.4). The disruption
of the relative phases at certain positions x is evident by comparison with Fig. 4.5. In
the phase profiles on the right panel, grey shaded regions indicate either outside of the
Thomas-Fermi region or a failed fit at the pixel column (e.g. bottom right panel at
x = 12). The vortex detected in the bottom panel coincides with a grey shaded area; this
suggests the presence of a vortex core where the phase cannot be defined.
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With the density slicing method, we can extract the local vortex density because

the location of vortex in image xv can be mapped onto a small region1 in the 2D

plane centred at rv = (xv, 0). This would not be possible without the density

slicing method, as the position along the y axis cannot be determined with standard

absorption images that integrate along y. To obtain the vortex density distribution,

we first calculate the local vortex probability Pv(x) which is defined by the ratio

of the number of detected vortices to the number of phase difference evaluations

at each location x. Here, datapoints that are rejected by the postselection criteria

are not counted towards the number of phase evaluations. Then, we define the

local vortex density as the Pv(x) divided by the 2D area of detection region for

a single pixel `pLy = 8.4 µm2,

nv(x) = Pv(x)
`pLy

= (vortex count)
(number of phase evaluations) ·

1
8.4 µm2 . (4.5.1)

We relate the local vortex density to the local PSD at the corresponding position,

as described in Chapter 5. The local density along the slice is obtained from a one-

to-one mapping of the TOF density distribution to the in situ density distribution

as discussed in Section 4.1.3.

1The finite thickness of the slice Ly = 5 µm and image-plane pixel size `p = 1.67 µm mean that
a vortex detected at pixel location xv is located in a small region x ∈ [xv − `p/2, xv + `p/2] and
y ∈ [−Ly/2, Ly/2].
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In this chapter, we present our experimental results on the BKT transition

in equilibrium 2D Bose gases using matter-wave interferometry to probe local

phase fluctuations of trapped 2D systems. This enables us to measure the phase

correlation function changing from an algebraic to an exponential decay when the

system crosses the BKT transition. We identify the transition temperature Tc by the

change in functional form of the correlation functions, from algebraic to exponential.

From the critical temperature, we identify the critical exponent ηc. Furthermore,

we measure the local vortex density as a function of the local phase-space density,

which shows a temperature-independent behaviour following an exponential growth

90



5. BKT transition in equilibrium 2D systems 91

across the transition. Our experimental investigation is supported by Monte Carlo

simulations to provide a comprehensive understanding of the BKT transition in

a trapped system. Furthermore, we present the full counting statistics of the

interference contrast as well as the density-noise correlation of double-well 2D gases

after expansion, which provide deeper insight into the properties of 2D systems

in equilibrium across the BKT critical point.

5.1 Preparation of the 2D cloud

We prepare 2D gases in equilibrium by a slow splitting into a double-well potential

and a subsequent equilibration time of 500 ms. We initially prepare atoms in a

single-RF dressed 3D trap as described in Section 3.4, and turn on the other two

RF components to form the MRF-dressed potential. The initial parameters for the

MRF-dressed potential are chosen to spatially overlap with the single-RF dressed

potential, which minimises heating and atom loss. Subsequently, the RF amplitudes

are ramped over 220 ms to transform the MRF potential from a single well to a

double-well potential, and to increase the confinement along the z direction to

ωz/2π = 1 kHz while radial trapping frequency remains at ωr/2π = 11 Hz, thus

realising 2D clouds. The characteristic dimensionless 2D interaction strength is

g̃ =
√

8πas/`0 = 0.076 and there are N ≈ 3.5 × 104 atoms in each well. The

detail of the multi-stage ramp used to transform into a double-well is given in

Section 3.4.1. The gas has a final temperature in the range 31−47 nK, which is

controlled by forced evaporation in the TAAP stage.

After equilibrating the gases for 500 ms, the MRF-dressed potential is turned

off by first switching off the RF fields and subsequently the quadrupole magnetic

field. As described in Chapter 4, when the RF field turns off, the internal state of

the atoms is projected into Zeeman substates labelled by quantum numbers mF .

Only atoms with mF = 0 are used for the analysis of matter-wave interference and

temperature measurements [94] but the populations in mF = ±1 states are included

in the count when determining the total atom number N . We choose the phase of

the RF at the turn-off to ensure equal proportions of atoms are projected to mF = 0
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Figure 5.1: Probing local phase fluctuations using matter-wave interference. (a)
Schematic of the experimental procedure. We begin with quasi-2D Bose gases trapped
in a double-well potential (blue discs, top). The clouds fall and undergo time-of-flight
(TOF) expansion, such that they spatially overlap and produce interference fringes with
fluctuating phases (blue wavy planes). The red sheet of thickness Ly denotes the thin laser
beam that repumps a slice of the atoms. We image repumped atoms using resonant light
(depicted as a blue beam propagating along the y direction), producing an absorption
image captured by a CCD camera. (b) Matter-wave interference images with weak (left)
and strong (right) phase fluctuations, both at T̃ = 0.52.

from each well, such that the density profile of atoms in the mF = 0 state after TOF

gives complete information of the system up to a global rescaling of density. The

separation of the wells is 7 µm which is large compared to the characteristic length

scale of the cloud along the z direction `0 ∼ 1 µm and the two clouds are decoupled.

We ensure the populations in the two wells are equal by maximizing the observed

matter-wave interference contrast as described in our recent publication Ref. [94].

The density scaling factor can be obtained by counting the number of atoms in

mF = ±1 components. Throughout this chapter, we set the temperature scale for

our system using the condensation temperature of an ideal 2D Bose gas in a harmonic

trap, T0 =
√

6N(~ωr/πkB) ≈ 75 nK and use rescaled temperatures T̃ = T/T0.

Finally, to locally probe the fluctuating matter-wave interference patterns after

TOF expansion with duration tTOF = 16.2 ms, we apply a sheet of repumping light

that propagates vertically (in z direction) with thickness Ly = 5 µm and width
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much larger than the extent of the cloud of atoms before absorption imaging. All

atoms are initially in a state with F = 1 and are then selectively pumped to F = 2

by the sheet of repumping light, which we image using light resonant for the atoms

in the F = 2 state. The selective imaging method is illustrated in Fig. 5.1 (a). We

ensure the repumping light passes through the centre of the cloud by moving the

pattern along the y direction, in parallel to the propagation of imaging light, to

the position where the total absorption signal is maximum.

Fig. 5.1 (b) shows examples of interference patterns obtained from two inde-

pendent measurements at the temperature T̃ = 0.52. The wavenumber of the

interference fringes along the z direction is consistent with k = md/~tTOF [67],

where d = 7 µm is the spatial separation between the double-well minima. The

interference pattern is only visible in the narrow Thomas-Fermi peak of the density

distribution, in agreement with the results reported in Ref. [119].

5.2 Numerical Simulation of an equilibrium sys-
tem

We complement our experimental observations with a numerical simulation per-

formed for our specific parameters by Dr. V. Singh (Hamburg University). Here, the

classical Monte-Carlo simulation is used to study the BKT transition in a trapped

2D Bose gas of 87Rb atoms. The system is described by the many-body Hamiltonian

Ĥ =
∫

dr
[ ~2

2m∇ψ̂
†(r) · ∇ψ̂(r) + g

2 ψ̂
†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

+ V (r)ψ̂†(r)ψ̂(r)
]
, (5.2.1)

where ψ̂ (ψ̂†) is the bosonic annihilation (creation) operator and the 2D interaction

strength is g̃ = 0.076 as in the experiments. The simulation maps the system onto

a lattice system of size Nx × Ny, which introduces a discretization length l. For

the continuum limit, l is chosen such that it is smaller than or comparable to the

healing length ξ = ~/
√

2mgn and the de Broglie wavelength [122].

The simulation method involves a classical-field approximation, i.e., replacing

the operators ψ̂ by complex numbers ψ [124] and the initial states are generated in a
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grand-canonical ensemble of temperature T and chemical potential µ via a classical

Metropolis algorithm. The lattice size used in the simulation is Nx×Ny = 200×200

and l = 0.5 µm. µ is chosen such that the cloud consists of about 3.5 × 104

atoms, corresponding to the atom number in each well of the experiment. T

in the range 10 − 62 nK, which covers a wide range of temperatures across the

BKT transition. The simulated cloud corresponds to the equilibrium system that

the experiment reaches after a slow splitting and 500 ms of equilibration time.

For each sample, ψ(x) is used to determine the phase φ(x) and density of the

central line along the x direction.

Figure 5.2: Illustration of the correlation analysis from the Monte-Carlo simulation
result. The MC simulation was performed by Dr. V. Singh (Hamburg University). (Left)
The spatial distribution of the phase φ(r), obtained from the MC simulation. The
temperature of the gas was 47 nK, resulting in an TF radius of ∼ 20 µm. (Right) The
phases φ in the left panel along a line going through the centre of the cloud. Such
one-dimensional data was used for the phase correlation analysis of MC results reported
in this thesis, which uses the exact same code used for the analysis of experimental data
and thus reproduces the experimental situation well. Gray shaded regions are outside of
80% of the TF region, which are not used for the correlation analysis.

Using the phase data φ(x) from the simulation, we calculate the phase correlation

function C ′sim(x) in the same way as described in Section 4.2.4 with 500 realisations at

each temperature. To compare with experimental results, we use Csim(x) = C ′2sim(x)

since the fluctuation of two clouds are contributing to the relative phase fluctuation

that we observe in the experiment while the simulation is done in a single 2D

system. We calculate the phase correlation function within the 80% region of
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the Thomas-Fermi diameter obtained from the simulation results, similarly to

the analysis of experimental data.

Vortices are identified by calculating the phase winding around the lattice

plaquette of size l× l using ∑ δφ(x, y) = δxφ(x, y) + δyφ(x+ l, y) + δxφ(x+ l, y+ l) +

δyφ(x, y+ l), where the phase differences between sites are taken to be δx/yφ(x, y) ∈

(−π, π]. A Vortex and an antivortex are identified by a phase winding of 2π and −2π,

respectively. We determine the density profile n(x) and the vortex distribution nv(x)

by averaging them over the region Ly = 5 µm and the ensemble, where nv counts

both a vortex and an antivortex. The correspondence between n(x) and nv(x) allows

us to determine nv as a function of the local PSD as we show in the following sections.

5.3 Correlation properties across the BKT tran-
sition

The local fluctuations of the interference fringes contain the phase information of

the in situ clouds. At each location x, we fit the interference pattern with the

function Eq. (4.2.4). The extracted phase θ(x) encodes a specific realisation of the

fluctuations of the in situ local relative phase along the line r = (x, y = 0) between

the pair of 2D gases. From θ(x), we calculate the two-point phase correlation Eq.

(4.2.5). Fig. 5.3 shows Cr(x, x′) determined at the temperatures ranging from

T̃ = 0.41 to 0.61. We have Nr = 220 experimental realisations at each temperature.

The range of spatial correlations around the diagonal x = x′ is broad at low

temperature, as compared to the measurement at higher temperature.

To quantify the decay of correlations, we calculate C(x) by averaging Cr(x, x′)

over points with the same spatial separation x = x−x′, as described in Section 4.2.4.

This averaging was performed over a central region corresponding to 80% of the TF

diameter, to limit the analysis to where clear interference fringes are observed.

Fig. 5.4 shows the measurements of C(x) for various temperatures. C(x) decays

slowly at short and intermediate distances for a low-temperature system. However,

at higher temperatures, C(x) decays rapidly with increasing distance x. This
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Figure 5.3: Phase correlation functions. Two-point phase correlation functions Cr(x, x′)
in the 2D gases, obtained from 220 images from the experiment at temperatures indicated
above each panel.

qualitative change of the correlation decay with temperature indicates the crossover

to the thermal phase across the BKT transition.

At low temperatures, we observe a large deviation between simulation and

experiment; this is due to the small length scale structure that can be analysed in

the simulation with 0.5 µm grid size compared to the experiment which is limited

by the imaging resolution σPSF = 2.1 µm; short-range physics affects the correlation

at short length in the simulation while in the experiment such an effect is masked

by the imaging resolution. However, the long-range behaviour of the correlation

functions are similar (see also Section 4.3) and since we are only interested in the

long-range physics, the deviation has only a small effect to the identification of

BKT physics, as we see in the following chapters. Furthermore, the coarse-graining

procedure of the simulation data (such as one shown in Fig. 5.2) via convolution

of the phasor distribution eiψ(x) with a Gaussian kernel results in a reasonable

agreement with the measurements.

We fit the correlation functions with the algebraic model function with spatial

modulation of exponent fSF(x) = ax−2η0α(x) according to LCA, as described in

Section 4.4. We further fit the correlation functions with exponential models

fth(x) = be−2x/r0 where b and correlation length r0 are fit parameters. The factor
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Figure 5.4: Phase correlation functions. Phase correlation functions C(x) from
experimental data (black connected points) at temperatures indicated above graphs.
Uncertainties were obtained by a bootstrapping resampling method (grey shaded areas)
[125]. The green line is the correlation function from simulation Csim(x) at corresponding
temperatures, T̃ =0.42, 0.46, 0.49, 0.53, 0.53, 0.56, 0.59, 0.6 from left top to right bottom
subfigures. The red lines are the correlation function from the simulation, with the effect
of imaging resolution taken into account by the coarse-graining of phase profiles obtained
from the simulation (such as one shown in Fig. 5.2).

of two in the exponent of both fth(x) and fSF(x) are due to the fact that the

fluctuations of two 2D clouds are contributing to the correlation function that

we observe, as discussed in Section 2.5.1.

To quantify the temperature dependence of the phase fluctuation across the BKT

transition we analyse the temperature dependence of η(T ) and r0(T ), determined

from our data. In Fig. 5.5 (a), we show η(T ) for various values of T̃ . By definition,

η(T ) should scale linearly as η ≡ T/(4TBKT) in the superfluid phase, where TBKT

is the BKT critical temperature [60]. Indeed, our measurement of η(T ) follows a

linear dependence for T/T0 . 0.52, where the system is deep in the superfluid

regime. We show in Fig. 5.5 (a) the linear fit to the first four data points

showing the linear scaling.

However, as the system approaches the crossover regime, η(T ) deviates from the

linear behaviour and increases more rapidly. To compare with the measurements,

we performed Monte-Carlo (MC) simulations of a cloud at equilibrium having the

same parameters as in the experiment as described in Section 5.2. We show the
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simulation results of η(T ) in Fig. 5.5 (a), which agree with the experimental results.

At higher temperatures, the value of η diverges rapidly, as the system crosses over

to the thermal phase, as we describe below.

Figure 5.5: Characterising the BKT transition in a 2D Bose gas. (a) Measurements
of the algebraic exponent η (filled circles) are compared with the results of Monte-Carlo
simulations (open circles) as a function of the scaled temperature T̃ . η is determined by
fitting the correlation function with an algebraic model fSF. The solid line is the linear
fit to the data points at T̃ < 0.52 which returns the slope 0.24(3). (b) Measurements of
the correlation length r0 (filled squares) are compared with the simulation results (open
squares), where r0 is determined by fitting the correlation function with an exponential
model fth. The values of the temperature-dependent Thomas-Fermi diameter are shown
for the experiment (continuous line) and the simulation (dotted line). The error bars in
η and r0 denote standard fit errors, while the error bars in temperature are statistical
errors.

In Fig. 5.5 (b), we show the correlation length r0(T ) and the temperature-

dependent TF diameter. Since r0 cannot be well-defined above the system size, the

value of r0 is bounded by the TF diameter. We considered here the TF region as

the effective system size; this is motivated by the fact that the quasicondensation is

required to observe BKT phenomena since the suppression of density fluctuation

results in the mapping of effective Hamiltonian of 2D Bose gases to the 2D XY

model (see Section 2.3.3). As we have observed in Section 2.3.6, the Thomas-Fermi

peak of the system corresponds to the region of the cloud where a significant fraction

of quasicondensate is present. As such, we treat the TF region as the system in

which the BKT physics can take place.
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In a finite-size system, as the transition temperature is crossed, r0 becomes

smaller than the system size. We observe the deviation of r0 from the effective

system size (TF diameter, solid black line), which we identify as a signature of phase

transition from the (quasi-)LRO to short-range order which occurs at T̃ ∼ 0.55. In

Fig. 5.5 (b) we present the simulation results for r0(T ) and the TF diameter, which

show consistent behaviour in agreement with the measurements.

The BKT critical point is identified by the sudden change in the functional

form of the first-order correlation function. In Fig. 5.6, we plot the χ2 statistic of

the algebraic and the exponential fits. The χ2
alg shows a clear transition between

two values while the χ2
exp increases sharply below T̃ ∼ 0.55. At low temperature

T̃ . 0.53, χ2-test of the best fit model at the 5 % significance level reject the

exponential model while accepting the algebraic model with LCA. At T̃ & 0.53,

while the exponential model is preferred with about 20 % lower χ2 values, the model

selection is marginal; the χ2
alg value is close to the critical χ2 value and we cannot

confidently reject the algebraic model. Nevertheless, the corresponding p values are

0.2 and 0.5 for the algebraic and exponential models, allowing us to confidently

choose the exponential model as the preferred model at higher temperatures.

To find the critical temperature, we fitted the χ2
alg with a arctangent function, and

χ2
exp with a piecewise function which is constant above T̃c,exp and linear below T̃c,exp.

The fitted functions are plotted in Fig. 5.6 as dotted lines. From the two fitted values

T̃c,exp and T̃c,alg, we find the critical temperature Tc = (T̃c,exp + T̃c,alg)/2 = 0.53(1).

The obtained critical temperature is in good agreement with the temperature at

which the correlation length r0 deviates from the system size (TF diameter), which

is the signature of critical point in finite-size system. To obtain the critical algebraic

exponent, we interpolate the result in Fig. 5.5 (a) with polynomial function and find

η(T̃c) = 0.17(3) which is 30% lower than the universal critical exponent ηBKT=0.25.

The lower critical exponent is attributed to the finite-size effect with expression

Eq. (2.1.6); for a system with linear size L ∼ 30, one expects ηc = 0.21. The choice

of parameter L is motivated by our specific experiment, the TF radius ∼ 30 µm

divided by the healing length ξ ∼ 1 µm.
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Figure 5.6: χ2 statistic of the exponential model (purple ,fexp) and algebraic model
with LCA (blue, fSF). Dotted lines are the fit to the temperature dependence of χ2; see
text.

While the critical temperature obtained in this work requires a significant fraction

of atoms within the detection region (80% of the TF region) to be superfluid, this

definition differs from the usual one which requires only the centre of the trap

to become superfluid. The deviation of the observed critical temperature to the

theoretical prediction, such as the quasi-2D prediction Tc/T0 = 0.74 [57], can be

described by these differences; indeed, for narrower correlation analysis region we

found increasing critical temperature which gives the expected zero-region critical

temperature at the centre of the trap at Tc/T0 = 0.68(4) with the corresponding

critical PSD Dc = 9(1), in agreement with the theoretical prediction Dc = 8.5 [17]

for the interaction strength g̃ = 0.076 used in this thesis.

5.3.1 Interference contrast analysis

Previous work on the interferometric observation of the BKT transition [14] relied

on the method proposed in Ref. [69], namely the decay of integrated contrast as

a function of integration area is used to determine the correlation property of the

system characterising the BKT transition. In essence, the decay of interference

contrast as a function of integration area AI scales algebraically, and the exponent γ

approximates η deep in the SF regime while γ ' 0.5 in the thermal regime. With the

selective repumping method used in this work, the product of the image integration

length Lx and the thickness of the slice Ly equals the integration area, AI = LxLy.
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Figure 5.7: The comparison of the phase correlation analysis method to the previously
used contrast-based analysis method proposed in Ref. [69]. (a) The decay of squared
contrast as a function of integration area AI at temperatures 31 nK (blue, top) to 47 nK
(bottom, green). Power-law fitting of c0

2 (solid lines) is performed where Ly � Ix < (80%
of TF diameter) is satisfied, indicated by larger markers. (b) The comparison of exponent
γ obtained from the fits in (a) and the η obtained from power-law fits of phase correlation
function described in the main text. The two quantities are expected to agree in the
superfluid regime according to Ref. [69]. Errors in γ are standard errors of the fit.

For a comparison of our method to the one used in Ref. [14], we performed the

contrast-based analysis and the result is presented in Fig. 5.7 (b). While the two

methods return similar results at low temperatures that are deep in the superfluid

regime, deviation is apparent even within the superfluid regime. This shows that

the presence of a larger fraction of thermal atoms affects the contrast-based analysis

within the crossover regime.

5.3.2 Local correlation and critical radius

Instead of the global fluctuation properties of the gas, the density slicing method

allows us to locally probe phase fluctuations. This allows us to test the applicability

of LDA on the phase fluctuation properties. In Fig. 5.8 (a), we show the histogram

of phase fluctuations between points separated by two pixels, 2`p ∼ 3.5 µm. The

fluctuations are approximately Gaussian at low temperature, with much wider

width at higher temperature. Using the variance of the phase difference, we obtain

the local algebraic exponent η using [26]

η(x) ' 〈∆θ(x, x+ 2`p)2〉
2 ln

(
4`2
p/λ

2
th

) . (5.3.1)
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In Fig. 5.8 (b), we plot the local η against local PSD Dloc. The points approximately

collapse on the theoretical prediction of η from Ref. [18] (as described in Section 2.3.5)

independent of temperature, supporting the applicability of the LDA on phase

correlation properties.
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Figure 5.8: Observation of the local phase fluctuation and local η. (a) histogram
of phase fluctuation at distance ∆x = 2(pixel) ∼ 3.4 µm , at temperatures T̃ = 0.41
(left) and 0.54 (right). (b) Local algebraic exponent obtained by the magnitude of local
phase fluctuation, Eq. (5.3.1). The colours of the points indicate eight different dataset
with temperatures ranging from T̃ = 0.41 (blue) to 0.61 (green). Red solid line is the
classical-field theory prediction of η [18].

Furthermore, we probe the full distribution of local η in the system by repeating

the measurement for different locations y of the slicing region. In Fig. 5.9, we

probe the reconstructed distribution of density and local algebraic exponent. The

slight asymmetry of the density distribution is due to the long-term drift of the

experiment which slightly changes the position of atoms along x between the

separate measurements of individual y slices. We identify the approximate critical

radius by the critical value ηc = 0.17 and plot it in Fig. 5.9 (b).

5.4 Density distributions

The density distribution of 2D gases in a harmonic trap is another source of

information about the system properties, as discussed in Section 2.3.6. Importantly,

the bimodality of the density distribution indicates the suppression of density

fluctuation which is important to observe the BKT critical phenomena. Fig. 5.10 (a)

shows the mean density profile at temperatures ranging from T̃ = 0.41 to T̃ = 0.81,
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Figure 5.9: Tomographic reconstruction of the density profile and local phase fluctuations
at T̃ = 0.47. (a) The density distribution of the 2D Bose gases reconstructed from density
slicing method at different slice location y. (b) The local algebraic exponent η obtained
from the interference measurement at varying slice position y. The black dotted circle is
the approximate critical radius rc ∼ 14 µm obtained from the measured local η.

obtained with the density slicing method. The observed density distribution fits

well with the bimodal distribution and we plot the fraction of atoms in the TF

peak in Fig. 5.10 (c). We plot in Fig. 5.10 (b) the estimated in situ density

distribution, from the one-to-one mapping of TOF and in situ density distribution

as discussed in Section 4.1.3. We find good agreement of the distributions between

the experiment and simulation.

5.4.1 Phase-space density

The theoretical prediction of the critical PSD at the BKT transition in 2D Bose

gases is Dc = ln(380/g̃) = 8.5 [17]. We find the mean PSD for our trapped

system by averaging the 2D density within 80% of the TF diameter, where we

performed the correlation analysis. In Fig. 5.11, we show these measurements

together with the corresponding simulation results of the mean PSD for various

values of T̃ . We find good agreement of the total PSD between the experiment

and simulation. The observed PSD at Tc in the experiment Dc,exp ∼ 10 is in

close agreement with the theoretical prediction. We further plot the results of

the superfluid PSD Ds = nsλ
2, where ns is the 2D superfluid density. We obtain

Ds using the measurement of η(T ) via Ds = 1/η(T ) [60]. In Fig. 5.11 we also
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Figure 5.10: Mean density profile across the BKT transition. (a) Measurements of
the sliced density distribution after TOF from T̃ = 0.41 (blue) to T̃ = 0.81 (green). The
solid lines are the bimodal fit with Eq. (4.1.2). (b) The comparison of the estimated in
situ density distribution in the experiment (filled markers) and the simulated distribution
(open markers). The range of colours indicates the temperature and is the same scheme
as (a). (c) The fraction of atoms in the TF peak, obtained from the bimodal fits of
experimental data (filled markers) and mean density from the simulation (open markers).
Error bars are standard errors.

show the measurements of the quasicondensate PSD D0 = n0λ
2, where n0 is the

mean density of the TF peak of the density distribution. The results of D0 show

similar behaviour to the results of Ds below the transition, which suggest that ns
is close to n0 in our trapped system. This is in good agreement with the result

of the classical-field theory presented in Fig. 2.6, where the TF fraction and the

SF fraction agree and scale linearly below the superfluid transition. However, we

could not observe the finite ‘superfluid jump’ of SF density as seen in Fig. 2.6;

the inhomogeneity and finite-size of the system broadens the phase transition. We

note that the quasicondensation critical temperature, defined by the emergence

of a narrow TF peak in the density distribution, is at a higher temperature of

T/T0 ∼ 0.7 than the superfluid transition temperature. This suggests that the

BKT critical point is below the quasicondensation threshold as we have seen in

Fig. 2.6, as well as previously reported elsewhere in [66, 126].
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Figure 5.11: Phase-space density (PSD) across the BKT transition. Measurements of
the mean PSD within the central TF region of the cloud (filled circles) are compared with
the corresponding simulation results (open circles). The superfluid PSD Ds (triangles)
and quasicondensate PSD D0 (squares) are determined using the measurements of η(T )
and the quasicondensate density, respectively; see text.

5.4.2 Density-noise correlation

In addition to the mean density distributions, we can further infer the system

properties from individual realisations of fluctuating density distributions after

TOF. As described in Section 2.4.3, the fluctuation of density after TOF is

dominated by the initial phase fluctuations, as different parts of the cloud interfere

during the expansion [70, 71]. In Fig. 5.12 (a), we show the fluctuating density

distribution recorded with the density slicing method. Such fluctuation is washed

out in a standard imaging method. To characterise the fluctuation of density, we

calculated Fourier amplitudes |F [n(x)]| =
∫
dx n(x)e−ikx of the density distribution

after expansion.

In Fig. 5.12 (b), clear peak structures are observed at low temperatures at

k/2π ∼ 0.18µm−1, which we observed to be washed out at higher temperatures

above the critical point or in the absence of atomic signal. While the peak position

remains constant, the peak height depends on the temperature of the gas and the

peak height rescaled by the mean density is found to be in a linear relationship with

the algebraic exponent η, as predicted in theory [71]. This result is in qualitative
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Figure 5.12: Density noise after TOF measured with the density slicing method. (a)
Realisations of the density distribution at temperatures T̃ = 0.41 (blue), 0.54 (purple)
and 0.7 (green). Plots are displaced vertically for clarity. Solid lines are bimodal fit results
of each realisation. (b) The averaged spectrum of the density distributions, at varying
temperatures. The dashed line in blue is the spectrum of averaged density distribution
over 220 realisations. Clear peak structures are observed at k/2π ∼ 0.18µm−1, and we
obtain its height by Gaussian fit; we obtain the unitless peak height, rescaled by the mean
density nm, which is plotted in the inset where the red line is the linear fit.

agreement with that predicted in theoretical work Ref. [72] and reported in Ref.

[70]; for further quantitative analysis, we need a detailed theoretical investigation

to incorporate our specific imaging and analysis procedure.

From the same data, we have also obtained the density-noise correlation function,

g′2(r, r′) = 〈δn(r)δn(r′)〉
〈n2

m〉
, (5.4.1)

where δn(r) = n(r)− nbimodal(r) and nbimodal(r) is the fitted bimodal distribution

of each density distribution realisations. In this work, we use r → x since the

density slicing method limits us to the measurement of local density at y = 0. We

show the density-noise correlation function g′2(x, x′) in Fig. 5.13 (a). To obtain

2D density, we have integrated the images after TOF along the z direction. The

mean in Eq. (5.4.1) was taken over Nr = 220 experimental realisations. We further

analyse an averaged form of the correlation function

g′2(r) = 〈δn(x)δn(x+ r)〉
〈n2〉

, (5.4.2)

where the mean is taken over experimental realisations and x. We plot g′2 at two

temperatures in superfluid regime, in Fig. 5.13 (b). The largest difference between
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g′2 and g2 is that the density noise correlation function g′2 has a long-distance limit

of 0, while the standard density correlation function g2 has 1. From comparison of

Fig. 2.9 and Fig. 5.13 (b), we find that the behaviour of experimentally observed g′2
is similar to the theoretically predicted g2. However, we need further theoretical

investigation to make quantitative comparisons.

-4

-2

0

2

4

6

10-3

Figure 5.13: Density noise correlation in 2D Bose gases after TOF expansion. (a)
Density-noise correlation g′2(x, x′) at temperature T̃ = 0.44(1). (b) Averaged form of the
correlation function g′2(r) at two temperatures deep in the superfluid regime (blue, purple)
and the thermal regime. The characteristic oscillation is washed out deep in the thermal
regime.

5.5 Vortices

The BKT transition is driven by thermal vortex unbinding, which suppresses the

quasi-long-range order above the critical temperature. This underlying mechanism

is detected by matter-wave interferometry, where thermally activated free vortices

are observed as sharp dislocations in the interference patterns. This enables us

to determine the local vortex density using our selective imaging method. In Fig.

5.14 (a), we show examples of matter-wave interference patterns obtained from two

independent measurements at T̃ = 0.55 and 0.52. The sharp phase dislocations

are indicated by red vertical lines, which we count as vortices. We obtain local

vortex density nv(x) by averaging the vortex number over many images at the

location x. In Fig. 5.14 (b), we show the vortex density nv, averaged over the
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TF region (see Section 4.5 for details); nv is small at low temperatures and onset

of sharp increase was observed at T̃ ∼ T̃c.

Figure 5.14: Vortex proliferation in 2D Bose gases. (a) Typical interference patterns
with phase dislocations (indicated by red vertical lines), which we count as vortices. (b)
Mean vortex density nv as a function of T̃ . The error bars for nv are the statistical
uncertainty, given by the square root of the number of detected vortices scaled to the
vortex density. Vertical dashed line is the Tc = 0.53 obtained by the change in functional
form of correlation function, see Fig. 5.6.

In Fig. 5.15, we plot the measured local vortex density nv(x) against the

local PSD Dloc = n(x)λ2, where n(x) is the local 2D density at the location

x. The measurement results for different temperatures collapse onto a common

exponential (continuous line), which is clearly visible in the inset. This demonstrates

that the vortex density is only dependent on the local PSD, which indicates the

applicability of LDA to vortex nucleation in an inhomogeneous system. In Fig. 5.15

we also present the simulation result of the vortex density, which agrees well

with the experimental results.

5.6 Contrast full-counting statistics

In addition to the correlation properties of the gas obtained through the ensemble

average, the full counting statistics can provide additional insight into the fluctuation

of the system across the BKT transition. For the interfering 2D Bose gases, the

amplitude of the integrated interference signal is expected to show a characteristic

change in its higher moments across the BKT transition [127, 128]. The integrated
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Figure 5.15: Local vortex distribution in a harmonically-trapped 2D Bose gas. Local
vortex density nv(x) is plotted against local PSD Dloc = n(x)λ(T )2, where n(x) is the
local 2D density at the location x. The measurements (filled circles) and the simulations
(open circles) cover a range of temperatures between T̃ = 0.41 and 0.61. Experimental
datasets with eight different temperatures contribute to this plot, while there are datasets
with four temperatures from the simulation. The continuous line is the exponential fit to
the data. Inset shows the same results on a log-linear scale to highlight the exponential
scaling across the BKT transition. Error bars are statistical, and the datapoints for each
temperature were binned into local PSDs for clarity.

interference signal is characterised by the Fourier transform of the integrated density

distribution, defined by the operator

Â =
∫

Ω
d3x n̂(x)e−ikz, (5.6.1)

where n̂(x) is the three-dimensional density distribution after expansion, Ω is

the 3D integration volume and k = md/~tTOF is the fringe wavenumber. The

eigenvalues α of the Hermitian operator Â, which are the experimentally observed

values according to standard quantum mechanics, take any value between 0 and the

half of atom number NΩ/2 within the integration volume1[128]. In the laboratory,

the measurement of Â corresponds to the Fourier amplitudes at wavenumber

kq = md/~tTOF. For simplicity, we scale the interference amplitude by the atom

number in the integration volume to obtain2 the probability distribution of V = 2α
NΩ

.

The integration volume has a large extent along z to cover the entire density
1The absolute limit of the α is NΩ, but with the density bounded to be positive the limit

becomes NΩ/2. α = NΩ/2 corresponds to the interference contrast of unity.
2We numerically confirmed that the rescaled fringe amplitude V corresponds to the fringe

contrast. We used FFT rather than the fitting with Eq. (4.2.4) to obtain V.
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Figure 5.16: Full counting statistics of matter-wave interference contrast V. The
histogram of V, scaled to show relative probability, is plotted for different integration
lengths in the image Lx and the temperature of the system. 2D systems at non-zero
temperatures have phase fluctuations so the measured values of V are always less than 1.
Up to 3000 data points contribute to each histogram.

distribution while integration along y over a length equal to the thickness of the

sheet Ly = 5 µm. The integration along the x direction is controllable, by choosing

the number of pixels to be integrated over. Fig. 5.16 shows histograms of V at

three temperatures across the BKT transition, for three different values of the

integration length Lx. At low temperature with η = 0.1, these histograms have a

similar form independent of Lx. At high temperature, however, the distribution of

V has a strong dependence on the length scale Lx, as a result of strong short-range

phase fluctuations, r0 � Lx.

In Fig. 5.17 (a), we plot the full counting statistics of the squared contrast

V2 obtained with Lx = 15 µm. The probability distribution undergoes strong

shape modification as the temperature is changed across the BKT critical point,

as predicted by theory [127, 128]. We also show a theory comparison with one of

the distribution functions deep in the superfluid regime in Fig. 5.17 (b). Further

quantitative comparison with the theory requires the incorporation of the finite
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imaging resolution into the theoretical prediction.

Figure 5.17: Temperature dependence of squared contrast distribution. (a) The
temperature dependence of the probability distributions p(V2). Points were obtained
from the histogram of V2/〈V2〉 which were rescaled so that the height corresponds to
probability density. Colour indicates the temperature of the system, from T̃ = 0.41 (blue)
to T̃ = 0.61 (green). (b) Comparison of experimental results deep in the superfluid
regime to the theoretical prediction for anisotropic, homogeneous 2D gas in Ref. [128].
The anisotropy of the detection region is 9`p/Ly ∼ 3 for the experimental data. The
theoretical prediction (solid line) was rescaled to match the scale of relative probability
distribution used for the experimental result, which is dependent on the bin size.

5.7 Conclusion

In conclusion, we have measured the local phase fluctuations of 2D Bose gases via

matter-wave interferometry. Our measurements of the phase correlation function

and the vortex density provide a comprehensive understanding of the BKT transition

in 2D Bose gases. We have mapped out the temperature dependence of the algebraic

exponent η and identified the transition by the change in the functional form of the

correlation function. The critical temperature was confirmed by the vortex density

of the system. We have shown that the local vortex density in inhomogeneous 2D

systems follows an exponential scaling as a function of the local PSD, which is

temperature independent. Our observation of the density noise correlation function

and full counting statistics of interference contrast provides a way to deepen our

understanding of 2D Bose gases in and out of equilibrium. Our experimental

observations are supported by Monte-Carlo simulations.
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The study of non-equilibrium critical dynamics in 2D systems remains a challenge

despite significant experimental and theoretical effort. On the theory side, the

analytical treatment of BKT critical behaviour is particularly hard because of

the presence of vortex excitations. In experiments, it is typically difficult to fully

characterise transient states. As we have seen in the last chapter, the interferometric

method with selective imaging of 2D Bose gases allows us to understand the

properties of 2D system in great detail, in ways that were not possible previously.

This experimental advancement, as well as the precise determination of the critical

point in Chapter 5 presents an opportunity to study the non-equilibrium critical

112
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Figure 6.1: Coherent splitting as a quench across the BKT critical point. (a) The
schematics of the experimental procedure. A 2D Bose gas is prepared in its superfluid state,
and we quench the system by splitting into two daughter clouds. The quench suddenly
brings the system parameters to those corresponding to a vortex-proliferated thermal
phase as indicated by the arrow in (b), and we monitor the relaxation dynamics towards
equilibrium using matter-wave interferometry. (b) The phase digram of harmonically-
trapped 2D Bose gases, similar to Fig. 2.7. In the quench the atom number changes from
N to N/2 non-adiabatically, thereby traversing the critical point for initial temperatures
within the range of 50 nK . T . 75 nK for an initial atom number N = 9× 104.

dynamics in a 2D system.

We observe the dynamics after a sudden quench of a 2D quantum gas across

the BKT transition. In particular, we are interested in the relaxation dynamics of

a 2D system after a sudden quench from quasi-ordered to disordered state. The

non-equilibrium initial state is prepared by coherent splitting, which quenches the

system by a sudden reduction of density to approximately a half of its initial value.

This is schematically illustrated by the red arrow going from N = 9× 104 to N/2

on the phase diagram in Fig. 6.1. The critical point in the equilibrium system was

measured in Chapter 5, providing a reference point for this experiment. In addition,

the initial relative phase is spatially uniform at the time of quench t = 0 regardless

of the state of the gas before splitting. This ensures well-defined initial conditions

and allows for precise characterisation of the dynamics towards thermal equilibrium.

In this chapter, we first report the experimental realisation of sudden quench

using the MRF-dressed potential. The quench requires a splitting that is fast enough
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to be non-adiabatic while avoiding excitation of collective modes, and we have made

careful improvements to the splitting sequence presented in Fig. 3.15 to satisfy

these requirements. We benchmark our measurements by numerical simulations,

and report a comparison to the real-time renormalisation group theory [46].

6.1 Experimental realisation of fast splitting

The prerequisite to probe non-equilibrium dynamics is the non-adiabatic change in

the system Hamiltonian. For two-dimensional Bose gases across the BKT critical

point, the properties of the system that can be changed are temperature and density.

Naively, a sudden change in temperature of ultracold gases can be achieved simply

via parametric vibration or photon scattering. However, such straightforward

heating requires the addition of significant energy to the system. Furthermore, the

initial states that are created are often not well-defined because of the randomness

of the process, which makes precise characterisation of the relaxation dynamics

difficult. In comparison, the coherent splitting of a single 2D system into two is

a much cleaner method to prepare the system in a non-equilibrium initial state.

While the system is isolated from the environment such that the temperature and

total atom number remain unchanged, we can non-adiabatically change the density

of the cloud to cross the critical point in the quench. The antisymmetric phase

mode θ(x) after the coherent splitting has no fluctuation at t = 0, as demonstrated

in our lab recently [94], and the dynamics towards thermal equilibrium can be

tracked from a well-defined initial state.

To realise a sudden quench experimentally, we perform a similar splitting to

that used for the investigation of the equilibrium 2D system but with much shorter

duration of 12 ms. The splitting was performed over 220 ms for the experiments

in Chapter 5 to prepare the equilibrium system by an adiabatic ramp of potential

(see Fig. 3.15). The splitting duration of 12 ms is adiabatic for the vertical degrees

of freedom with tight confinement ωz/2π = 1 kHz, but rapid enough to realise a

non-adiabatic change in the Hamiltonian for the radial dynamics on a characteristic

timescale of 2π/ωr ∼ 100 ms.
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Figure 6.2: MRF loading and fast splitting procedure. The time evolution of RF
amplitudes Ω and quadrupole gradient (bottom) is shown with corresponding trapping
potentials (MRF-dressed eigenenergies, Vq) at selected times. The MRF loading ramp
up to 107 ms is similar to the one shown in Fig. 3.15: we initially turn on Ω7.14 and
Ω7.26 at small amplitude to avoid the perturbation to the atoms, and subsequently ramp
quickly to satisfy Ω < ωf (red dashed line, see Fig. 3.15) for all RF components. After
the fast ramp from 100 to 107 ms, atoms are confined in an MRF-dressed 2D single-well
potential as shown in panel (a) The change in the potential up to this stage are performed
adiabatically with minimum perturbation to the atoms, and the system is considered to
be close to an equilibrium. Additionally, we hold the atoms for 400 ms to equilibrate
the system further. At the end of the hold period, we quickly ramp the quadrupole field
gradient for 10ms to change the radial confinement ωr, in order to avoid the collective
motion of atoms after the splitting. Finally, we start the splitting at 507 ms for 12 ms,
realising a double-well potential.

The experimental procedure of fast splitting is shown in Fig. 6.2. We first

prepare a single 2D cloud trapped in a MRF-dressed potential by adiabatically

transforming from single-RF dressed potential to multiple-RF dressed potential,

in the same way as described in Chapter 3. We then let the system equilibrate

further by waiting for 400 ms while keeping the atoms in the single 2D trap. Before

commencing the splitting, we quickly ramp the quadrupole magnetic field gradient

b down by 50%, to reduce the radial confinement. This additional stage was found
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to be necessary to avoid the excitation of the monopole mode after the splitting.

The duration of the ramp is 10 ms; this is long enough to satisfy the adiabatic

condition for the vertical degrees of freedom while being short enough for the

in-plane dynamics. As such, this can be considered a part of the quench. Finally,

we perform the coherent splitting over 12 ms as depicted in Fig. 6.2 (b).

After the splitting, the potential is closely matched to that used for the

investigation of the equilibrium 2D system reported in Chapter 5, in which the

confinement for both potential wells are ωz/2π = 1 kHz, ωr/2π = 11 Hz and

double-well separation is d = 7 µm. This allows us to use the precise measurement

of the critical point in Chapter 5 as a reference point, as well as to compare the

critical scaling both in and out of equilibrium.

6.2 Monte-Carlo simulation

As in Chapter 5, we benchmark our experimental results with the Monte Carlo

simulation, performed specifically for our case by Dr. V. Singh (Hamburg University).

In that numerical work the sudden splitting of the gas is treated using a classical-

field simulation of two-component gas in a single harmonic trap, with each species

having the same mass and intra-species interaction strength g = g11 = g22. Each

component 1 and 2 correspond to the separate wells in the experiment, and a

decoupled double-well is realised by setting the inter-species interaction g12 as well

as tunnel coupling J to zero. The total Hamiltonian is

Ĥ =
∑
j

∫
dr
[ ~2

2m∇ψ̂j
†(r) · ∇ψ̂j(r) + g

2 ψ̂
†
j(r)ψ̂†j(r)ψ̂j(r)ψ̂j(r) + V (r)ψ̂†j(r)ψ̂j(r)

]

+ g12

∫
drψ̂†1(r)ψ̂†2(r)ψ̂2(r)ψ̂1(r) + J

∫
dr
[
ψ̂†1(r)ψ̂2(r) + ψ̂†2(r)ψ̂1(r)

]
, (6.2.1)

where j = 1, 2 and the term with g12 is the inter-species interaction and the tunneling

term with J couples two clouds. The discretisation length for these simulations

is 0.5 µm, as for the simulation performed in Chapter 5.

The coherent splitting in the simulation is implemented by suddenly turning the

g12 value from g to zero; this corresponds to the spatial density overlap between
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the two clouds being suddenly reduced to zero in the experiment. Additionally, the

coupling J is turned on at the time of splitting and ramped down exponentially

with time constant τe = 60 ms. This is motivated by the transient coupling of

the two wells in the experiment during the splitting sequence, as well as the weak

excitation of the vertical motion of atoms which is damped out over duration ∼ τe.

Figure 6.3: Illustration of the MC simulation scheme; the values of g12 and J are
plotted against time. The y axis is shifted for each quantities for clarity (dotted lines
in corresponding colours denote zero energy). Initially, the interaction terms g12 have
the same finite values corresponding to the experimental values, g = g12 ∼ ~2g̃/m. At
t=0, we suddenly turn g12 to zero and turn on the inter-layer coupling J , while g stays
constant throughout. The peak value of J is chosen to be the same as g. This is the
simplification of the transient state after the splitting where residual coupling between
layers exists during and soon after the splitting.

We plot in Fig. 6.3 the parameters used for the MC simulation. At time t = 0,

g12 jumps down to zero, J jumps up to a finite value corresponding to the energy

scale equivalent to the interaction energy scale. The coupling J is introduced to

reproduce the transient phenomena due to finite excitation of the system after

the splitting; the value of J is quickly ramped down to 0 within tens of ms. As

we see later, the BKT critical dynamics is much slower, on the order of hundreds

of ms, such that this transient effect does not significantly affect the observation

of BKT phenomena at long time.

As we describe later, there is a slow linear heating of the system in the MRF-

dressed trap and we add heating in the simulation at a rate comparable to the
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experimental value, by the addition of stochastic noise at each timestep. Since the

energy input into the system by the heating is small over the experimental timescale,

it does not significantly alter the relaxation dynamics; but it was important for

the quantitative comparison of experiment and simulation.

6.3 Observation of the decoherence dynamics

Once the cloud is split, we vary the holdtime after the quench and probe the

system by observing the matter-wave interference in the same way as presented in

Chapters 4 and 5. By performing the correlation and vortex analysis, we obtain

the correlation function C(x) at each time, from which we calculate the algebraic

exponent η, correlation length r0 as well as averaged vortex density nv. The number

of experimental repeats at each time was Nr = 60, about four times smaller than

the dataset used in Chapter 5. To have enough statistics to obtain the correlation

function, we modified the evaluation of correlation function (Eq. (4.2.7)) to

C(x) = 1
Nx

L/2−x∑
x=−L/2

Re [C(x, x+ x)] , (6.3.1)

where L is 80% of the Thomas-Fermi diameter and Nx is the number of pixels

within [−L/2, L/2− x]. This procedure introduces only a small differences to the

mean correlation function1, and the fitted values of η and r0.

We have performed the experiments with a range of initial temperatures covering

the BKT critical regime while keeping the total atom number at N ∼ 9× 104. The

‘strength’ of the quench is thus determined by how deep in the thermal regime the

system is quenched to, which can be characterised by the rescaled temperature

T̃ = T/T0 ∝ T/
√
N where T is the temperature before the quench and T0 is

obtained from the atom number following the quench.

In Fig. 6.4, we plot the correlation functions C(x) obtained after the quench

with two different initial temperatures. While the correlation function after the
1This was confirmed quantitatively using the dataset for the equilibrium system shown in

Chapter 5 where Nr = 220. The estimation of errors on C(x) is slightly modified by using Eq.
(4.2.7), due to varying number of datapoints Nx contributing to C(x) depending on the distance
x. As such, the χ2 statistic is difficult to compare between different datasets and we use squared
fit residuals to select the preferred fit model (fSF or fExp) at each time, see Fig. 6.6.
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quench is similar for both temperatures (blue, t=0.04 s), the temporal decay is

much faster at higher temperature. The functional form of C(x) crosses over from

algebraic to exponential, as we discuss later in Section 6.4.

Figure 6.4: Time evolution of the correlation functions following a quench. The
temperature shown above each panel is the rescaled temperature after the quench. The
shaded region denotes the standard error obtained from bootstrapping resampling method
[125, 129].

In Fig. 6.5, we illustrate the measured decoherence dynamics. Fig. 6.5 (b) shows

the time evolution of squared interference contrast c0
2 of integrated interference

patterns (purple), which takes the value of 1 for a completely phase-coherent system

and 0 without any coherence over long distances. In the experiment, the presence

of a finite thermal component and the effect of finite imaging resolution reduces the

maximum contrast to ∼ 0.5 as observed in equilibrium (see Fig. 5.16). We indicate

the ‘critical time’ tc by the green vertical line, which we obtain by the change

in functional form of the correlation function, as we discuss later in Section 6.4.

While the initial rapid decay of c0
2 before the tc does not accompany any vortex

excitations, the following slow decay after tc is associated with exponential growth of

vortex density nv (blue). This indicates the two-step relaxation of a quench-heated

2D system, as discussed in Section 1.4.

Finite heating in the trap

Before proceeding to the detailed analysis of the time evolution, we first report on

the intrinsic heating of atoms in our MRF-dressed trap. The heating effect comes
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Figure 6.5: Illustration of the observed relaxation dynamics. (a) Examples of
images showing observed matter-wave interference patterns. (left) typical image taken
immediately after the quench, with only small fluctuation in phase. (middle) At short
times, smooth variation of the phases indicate the phonon excitations. (right) At longer
times, sudden phase jumps were observed, indicating the nucleation of vortices. (b)
Illustration of thermalisation dynamics. The average squared contrast c0

2 and vortex
density nv are plotted as a function of time after the quench. The vertical dashed line is
the critical time at which the correlation function changes from algebraic to exponential;
see Fig. 6.6. The contrast c0

2 is obtained from the integrated image over entire slice region,
and this value indicates the overall coherence of the system. The uncertainty in vortex
density is statistical and the uncertainty in c0

2 is the standard error. The temperature
after the quench was T̃ = 0.54 after the quench.

from the unidentified noise in the experimental apparatus which perturbs the atoms

causing heating at a rate of 4 nK/s. This very low value shows that RF-dressed

trapping is a very good method, nevertheless the intrinsic heating causes the system

to drift towards the thermal state, but the change in T̃ is slow enough that the

BKT critical phenomena still dominate the relaxation dynamics.

6.4 Time evolution of the algebraic exponent η

In Fig. 6.6, we show the time evolution of χ2 values from exponential and algebraic

fitting of correlation functions, as well as the algebraic exponent η. The values
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of χ2 show a clear crossover at a few hundred ms after the quench, indicating a

transition from algebraic order to short-range correlations. η starts near 0 after the

quench, and increases linearly in time. Using this linear relation, we obtain the

critical exponent ηc = 0.14(2) which is close to the value obtained in equilibrium.

This value of the critical exponent is smaller than the universal value ηBKT = 0.25

because of the finite-size effect (see Eq. (2.1.6)). We show the value of η even after

the system enters the exponential regime because even in the thermal regime η

is useful as a measure of phase fluctuation.

Figure 6.6: Determination of the dynamical critical exponent ηc. (top) The χ2 statistic
of the algebraic and exponential fits. Vertical line indicates the critical time tc at which
the functional form of the correlation function change to exponential. (bottom) The
time evolution of η after the quench. The exponent η was obtained by fitting the phase
correlation functions with algebraic model with LCA, Eq. (4.4.3). From tc, we obtain the
critical exponent ηc = 0.14(2) (horizontal dotted line). Open connected markers denote η
obtained from the MC simulation. The solid purple line is a linear fit to the experimental
data.

In Fig. 6.7, we show the time evolution of η and the ratio of χ2 values for algebraic

and exponential fits, χ2
SF/χ

2
th, at different initial temperatures: χ2

SF/χ
2
th > 1 indicates

the algebraic scaling, while χ2
SF/χ

2
th < 1 for the exponential regime. We obtain the

temperature-dependent critical time tc by looking for χ2
SF/χ

2
th = 1, which is marked

as the vertical dash-dotted lines in Fig. 6.7. We find linear temporal evolution
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of the algebraic exponent η with temperature-dependent slope, as expected from

the real-time RG theory described in Section 2.6.2.

Figure 6.7: The time evolution of the algebraic exponent η after the splitting. Each
panel corresponds to different initial temperature of the system, at T̃ =0.37, 0.42, 0.52,
0.54, 0.62, 0.67, 0.68 and 0.75, from top left (blue) to bottom right (green) panel. The
ratio of χ2 values for the algebraic and exponential fit is below 1 for the thermal regime
and above 1 in quasi-ordered state. At relatively high temperature and at long time
(∼ 500 ms), the fluctuation of the phase is large so that the χ2 is dominated by the
fluctuation of the datapoints, resulting in the ratio χ2

SF/χ
2
th to approach unity at long

time. Straight line is the linear fit to the experimental data (point) while fluctuating line
is the numerical simulation result at corresponding temperature. The vertical line denotes
the critical time tc at which the correlation function change from algebraic to exponential
scaling. We obtain the critical exponent ηc for each dataset by the measured tc and the
result of linear fit to the η(t).

In Fig. 6.8, we show the temperature dependence of observed critical exponent

ηc and critical time tc. We obtain the mean critical exponent ηc = 0.16(3), which is

in agreement with the value obtained in equilibrium within uncertainties.
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Figure 6.8: The critical exponents obtained from the results shown in Fig. 6.7. The
horizontal dotted line is ηc = 0.16(3) obtained by averaging the critical exponents measured
at different temperatures and the shaded region denotes the standard deviation. Inset
shows the critical time tc against the temperature of the system. The shaded region in
inset denotes T̃ < 0.5 where the critical point is not crossed by the quench. The error
bars in tc are half of the separation of datapoints in the experiment dt/2 = 48 ms, and
the uncertainties in each critical exponent datapoint are based on the uncertainty in tc.

6.4.1 Arrhenius law

As we have seen in Fig. 6.4, the relaxation dynamics after the quench shows

strong dependence on the initial temperature, T̃ . In our experiment, the range of

temperature after the splitting ranges from T̃ = 0.35 to T̃ = 0.8, corresponding to

the rescaled temperature before the splitting from T̃i = 0.25 to T̃i = 0.58. Since the

observed critical point in equilibrium was T̃c ∼ 0.53 (see Chapter 5), datasets with

temperature after splitting 0.53 . T̃ , are expected to show the critical behaviour.

In Fig. 6.9, we show the temperature dependence of the slope of η(t) obtained

by fitting the time evolution of η at each temperature with f(t) = tκ. While

there is a clear dependence on the temperatures above T̃ & 0.5, the data flattens

out at lower temperatures. At low temperatures, since the critical point is not

crossed by the quench, the time evolution of η is mainly driven by the intrinsic

heating in the trap, at the rate of 4 nK/s.

In the following, we compare the data with the Arrhenius equation

κ(T ) = A exp
(
− Ea
kBT

)
+ κ0, (6.4.1)
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where A, Ea and κ0 are the free parameters. The Arrhenius law characterises the

temperature dependence of chemical reaction rates, and can be used to obtain

the activation energy Ea of the reaction. We have added a phenomenological

offset term κ0 to the usual Arrhenius equation, to account for the heating in the

trap. In our situation, the energy barrier Ea is expected to be the finite energy

associated with the nucleation of vortices, as discussed in a simplified argument

in Section 2.1. We plot the fit results for experimental and MC datapoints in

Fig. 6.9 as solid and dotted lines. The results of fitting to the experimental data

are Ea = 4.4(6) × kBT0 and κ0 = 2.8(8) s−1. As a comparison, this activation

energy Ea corresponds to the energy of a single vortex2 placed in a circularly-shaped

2D superfluid of density ns = 10 µm−2, with the healing length ξ = 1 µm and

a system radius R = 15 µm. The healing length and the system size are the

same as the experimental value. Since the typical peak density of the atoms in

experiments is 40 µm−2, this result is consistent with a superfluid fraction of around

0.25, which is comparable to the number observed in equilibrium (see Fig. 5.10 and

Fig. 5.11). Furthermore, the constant heating term κ0 corresponds to a heating

rate of 3.0(8) nK/s, which is in close agreement with the independently observed

heating rate in the MRF-dressed trap.

6.4.2 Superheated superfluid

The presence of superfluid in interacting Bose gases is related to the emergence of

non-zero ‘macroscopic wavefunction’ 〈Ψ̂〉, which remains finite only with long-range

coherence in the system3 and is equivalent to the Penrose-Onsager criterion for

BEC, limr→∞ g1(r) > 0 [130]4.

2This is calculated using Eq. (2.1.3), with the short-range cutoff replaced by the healing length
for an atomic system.

3In the 2D Bose gases in quasicondensate regime, 〈Ψ̂〉 is finite only if there is a long-range
phase coherence; this is easily seen by considering density-phase representation Ψ =

√
neiφ with

no density fluctuation. With completely random phase, 〈Ψ̂〉 becomes zero while with broken
symmetry 〈Ψ̂〉 becomes finite.

4This condition should be modified to limr→L g1(r) > 0 for finite-size systems, where L is the
system size.
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Figure 6.9: Temperature dependence of the time evolution of algebraic exponent η.
The slope of η(t) observed in the experimental data (Purple, filled) is plotted against the
temperature after splitting T̃ (t = 0). Solid line is fit with Eq. (6.4.1). The result from
the MC simulation is shown in blue (open markers), with a dashed line that is the fit
with Eq. (6.4.1).

To characterise the superfluidity of the transient state where η(t) < ηc, we need to

obtain the first-order correlation function of the system g1(r). The characterisation

of g1(r) using the relative phase correlation as performed in Chapter 5, needs to

be treated with care in the non-equilibrium setting in this chapter since there is

strong correlation between two clouds soon after the splitting, when the two clouds

have the same phase profile. Rapid loss of correlation between the two wells, and

the approach of the relative phase correlation function towards the normalised

g1 function, is expected to occur in 2D systems since they are not integrable, in

contrast to 1D systems where the symmetric and antisymmetric modes remain out

of equilibrium for extended period of time [30]. In 2D, theoretical results suggest

that all symmetric and antisymmetric phase and density modes quickly equilibrate

into a single temperature, supporting the observation of g1 function in the transient

state by relative phases [45, 46]. Indeed, in the numerical simulation of the quench

dynamics, we observe that the symmetric and antisymmetric phase fluctuations

converge to having the same correlation functions within a few hundred milliseconds.
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6.5 Dynamical vortex unbinding

The direct observation of vortices further elucidates the character of the observed

non-equilibrium state and the dynamics towards a vortex-proliferated thermal phase.

We detect vortices in the non-equilibrium systems within 90% of the TF region,

using the technique described in Section 4.5. In Fig. 6.10, we show the time evolution

of averaged vortex density nv following a quench. We find that the proliferation of

vortices follows an exponential scaling, as expected from the real-time RG theory

shown in Section 2.6.2. The vortex density is fitted well with an exponential model

f(t) = nce
(t−t0)/γ, plotted as solid lines in Fig. 6.10. We have used the critical

vortex density nc = 2× 10−3 µm−2 from the result in equilibrium (see Fig. 5.14),

to find the characteristic timescale for the vortex unbinding.

Figure 6.10: Time evolution of the vortex density nv. Each panel corresponds to
different initial temperature of the system, at T̃ =0.35, 0.37, 0.39, 0.54, 0.62, 0.67, 0.68
and 0.75, from top left (blue) to bottom right (green) panel. Solid lines are the fitted
exponential model f(t) = nce

(t−t0)/γ

The result of the exponential fitting is shown in Fig. 6.11. For the range of

initial temperature at which the critical point is crossed by the quench 0.5 . T̃ ,

the γ is almost constant and t0 scales linearly. This is in qualitative agreement

with the results of real-time RG discussed in Section 2.6.2, where we observed

linear dependence of t0 and only a small dependence of γ on the initial temperature.
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However, at T̃ . 0.5, the dynamics is driven by slow heating of the system and the

obtained γ and t0 show a different behaviour to the ones in T̃ > 0.5.

Figure 6.11: The best-fit parameters of the exponential fits in Fig. 6.10. Left panel
shows the scaling factor γ for varying temperatures. Dotted line is the mean value within
the region 0.5 < T̃ and grey shading is the standard deviation. Right panel shows the
characteristic vortex unbinding timescale t0. Dotted line is the linear fit to datapoints
that are T̃ > 0.5. Shaded region is a guide to the eye. The error in γ and t0 are the 1σ
uncertainties from bootstrapping.

6.6 Real-time RG comparison

To understand the dynamics of vortices, we compare the experimental results with

real-time RG theory introduced in Section 2.6.2. The RG flow equations Eq. (2.6.2)

predicts the time evolution of g(t) and η(t), given an initial condition η0(t0), g0(t0)

at time t0. To incorporate the heating in the MRF-dressed trap from unidentified

electrical noise, we have added a phenomenological heating term ζ fixed at 10−4,

corresponding to the value in experiment for the time t in the RG equations scaled

to milliseconds. The modified RG equation is

dg(t)
dt

=
(

2− 1
2η(t)

)
g(t)
t
,

dη(t)
dt

= 4π2g2

η(t)t + ζ. (6.6.1)

To directly compare the experimental results with the flow equation, we transform

the parameters into x = 1/2η − 2 and y =
√

2πgv, and plot in Fig. 6.12. We have

obtained the gv from the MF relation of the vortex fugacity and vortex density,
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Eq. (2.6.3). The initial condition of the experiment immediately after the quench

is η ∼ 0, gv ∼ 0, which is equivalent to x → ∞, y = 0. Following the quench,

the phonon thermalisation drives the system towards smaller x (larger η), and

eventually cross the critical point. Since the critical point in our (finite-size) system

is ηc = 0.16, we observe the onset of increase in y near xc = 1/2ηc−2 = 1.1, which is

different from the universal value xBKT=0. Once the critical point is crossed, the y

values increase rapidly, closely following the RG flow. As such, the RG equation Eq.

(6.6.1) partially describes the observed vortex unbinding dynamics at late times. A

quantitative RG description of the experimentally observed dynamics in the crossover

regime x ∼ 1 where there are finite-size effects requires further theoretical work.

Figure 6.12: Comparison of the experimental results and the real-time RG flow Eq.
(6.6.1). Experimental data at different initial conditions are plotted using the variables:
x = 1/2η−2 and y =

√
2πgv. The vortex fugacity is obtained from the MF relation of the

vortex fugacity and vortex density, Eq. (2.6.3). The experimentally observed dynamics
was from bottom right (x→∞, y = 0) towards the top left region, as indicated by the
blue arrow.

6.7 Conclusion

In this chapter, we have explored the relaxation dynamics of a 2D system following

a quench from superfluid to thermal regime. The quench was realised using coherent

splitting, which prepares the system in a well-defined, highly non-equilibrium initial



6. Quench dynamics across the BKT transition 129

state. The relaxation dynamics exhibits two regimes: quick phonon thermalisation

and the slow vortex nucleation. We found the temporal scaling of the algebraic

exponent η and vortex density, which are in qualitative agreement with the

predictions of real-time RG theory. We have further compared the observed

dynamics on RG flow diagram.



7
Dynamics of coupled 2D Bose gases

Contents
7.1 Two-mode model . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Coupled MRF-dressed double-well potentials . . . . . 135

7.2.1 Experimental procedure . . . . . . . . . . . . . . . . . . 135
7.3 Experimental results . . . . . . . . . . . . . . . . . . . . 136

7.3.1 Phase accumulation . . . . . . . . . . . . . . . . . . . . 137
7.3.2 Phase oscillation after recoupling . . . . . . . . . . . . . 138

7.4 Conclusion and future plans . . . . . . . . . . . . . . . . 140
7.4.1 Population difference measurement . . . . . . . . . . . . 141
7.4.2 Effect of in-plane phase fluctuations and the BKT transition142

In this chapter, we present the experimental work towards the observation of

Josephson oscillation in tunnel-coupled bilayer 2D superfluids. We have realised

a double-well potential with ∼ 1 µm well separation while keeping the quasi-2D

condition, and observed the dynamics of phase-imbalanced bilayer 2D gases. In

contrast to the previous chapters where the coupling between two layers was kept

to a negligible value, here we investigate the non-equilibrium dynamics of bilayer

2D system with finite inter-layer coupling. In this investigation we are interested

mainly in the global phase difference of two clouds and its time evolution, instead

of the spatial correlation of local phases. As such, we prepare the 2D cloud deep in

the superfluid regime to reduce the thermal effects that would affect the visibility

130
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of the dynamics. The system of two superfluids with weak tunnel-coupling has

similarities with a superconducting Josephson junction [131–134]. The atomic

system realisations are called bosonic Josephson junctions (BJJ) and have been

studied extensively [78, 135–141]. In this chapter, we will first describe the simplified

model of Bose gases in a double-well potential using the two-mode approximation

and analyse the expected dynamics. We then discuss the experimental investigation

with coupled 2D Bose gases, in which we suddenly introduce a coupling between two

phase-imbalanced 2D gases and monitor the subsequent dynamics. This investigation

is a crucial step towards the understanding of the physics of coupled bilayer 2D

Bose gases, such as the novel phase of 2D gases associated with the proliferation

of half-vortices [77] and the dynamical control of conductivity for the quantum

simulation of the light-induced superconductivity [142]. The realisation of controlled

tunnelling in a MRF-dressed potential is also an important ingredient to realise

conditional spin squeezing using the non-destructive imaging method, as described

in Appendix A as well as our recent preprint [143]. We note that the Josephson

junction dynamics of 2D gases separated by a weak link within the same plane was

recently realised elsewhere [144, 145], and this is an active topic of research.

7.1 Two-mode model

In this section, we introduce the theoretical tools used to understand the observed

dynamics. We introduce the two-mode approximation of Bose gases in a double-

well potential, which simplifies the description of the systems and allows us to

make a prediction of the dynamics. A comprehensive review of this topic can

be found in Refs. [146, 147].

For simplicity, we consider 1D dynamics of atoms confined in double-well

potentials, which corresponds to the dynamics in the tightly-confined z direction

in our experiment.
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The full Hamiltonian of a Bose gas in a double-well potential V (r) with

contact interactions is

Ĥ =
∫
dr[−Ψ̂†(r) ~

2

2m∇
2Ψ̂(r) + g

2Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

+ Ψ̂†(r)V (r)Ψ̂(r)]. (7.1.1)

In the double-well potential, the two lowest energy eigenstates are symmetric and

antisymmetric respectively with small separation of their energies, as illustrated

in Fig. 7.1. The two-mode approximation amounts to limiting the wavefunction

of the system to these two spatial modes, which we label as ψg and ψe which is

valid provided all the energy of the system is lower than the energy of even higher

excited states. We define left and right modes as the combinations

ψL = ψe + ψg√
2

, ψR = ψe − ψg√
2

, (7.1.2)

corresponding to localised modes in either left or right wells. We then rewrite the

Figure 7.1: Illustration of energy level structure in double-well potential. Two lowest
energy eigenstates ψg (blue) and ψe (green) are shown. At sufficiently low temperature
and interaction energy, these two states are macroscopically occupied and higher levels
(purple, dotted) can be ignored. This is the two-mode approximation that we use.

wavefunction Ψ(r) with linear superposition of left and right modes,

Ψ̂ = ψLâL + ψRâR, (7.1.3)

where â†L, â
†
R (âL, âR) are the creation (annihilation) operators for particles in the

left and right localised modes. The two-mode approximation leads to a two-site
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Bose-Hubbard Hamiltonian [146–148],

ĤBH = −J(â†LâR + â†RâL) + ∆
2 (n̂R − n̂L) + U

2 [n̂L(n̂L − 1) + n̂R(n̂R − 1)] ,
(7.1.4)

where the number operators are n̂R = â†RâR, n̂L = â†LâL, U is the interaction energy

of atoms in same well and ∆ is the small potential energy difference between the

two wells, as illustrated in Fig. 7.2.

Figure 7.2: Illustration of the parameters in the Hamiltonian Eq. (7.1.4). The left and
right localised modes ψL and ψR are shown in green and blue, with associated interaction
energies U which are assumed to be the same for each modes. The amplitude J gives
tunnelling between the two wells. ∆ describes the asymmetry of the potential.

The coupling strength J is given by [149]

J = −
∫
dr

(
~2

2m∇ψL∇ψR + ψLV (r)ψR
)
. (7.1.5)

This quantity can be estimated from the spatial distribution of localised modes

ψL, ψR in the double-well potential. To estimate the magnitude of J , we approximate

the double-well potential by two harmonic potentials VL,R(r) = 1
2mω

2
z(r ± d/2)2 at

distances ±d/2 from the centre. Further, we assume non-interacting gases and take

Gaussian ground states in each harmonic potential as the left and right localised

modes, characterised by the harmonic oscillator length `0. The integration in Eq.

(7.1.5) can then be performed to obtain [132, 148]

J = ~ωz
2

(
d2

4`0
2 − 1

)
e−d

2/4`02
. (7.1.6)
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From Eq. (7.1.6), we see that the coupling strongly depends on the ratio d/`0,

and sharply increases as d approaches the size of the wavefunction d ∼ `0 from

above. We note that the prediction Eq. (7.1.6) is only to be used for the qualitative

understanding of the dependence of J on d/`0; for example, the value of J also

depends strongly on the number of atoms and their interaction strength, through

various contributions such as the deformation of wavefunctions [148].

To gain insight into the dynamics under Eq. (7.1.4), we approximate further

by applying a mean-field approach [149, 150], which amounts to replacing the

annihilation operators by amplitudes that depend of their mean values: we replace

the annihilation operators in left and right modes by

âL →
√
nLe

iφL ,

âR →
√
nRe

iφR , (7.1.7)

where nL, nR, φL, φR ∈ R. Using this approximation turns Eq. (7.1.4) into a classical

Hamiltonian and the time evolution can be expressed in terms of the total atom

number N = nL + nR, fractional population difference n = (nL − nR)/N and

phase difference θ = φR − φL [150]

ṅ = −JN
2

~
√

1− n2 sin θ,

θ̇ = −∆
~

+ UN

~
n+ JN2

~
n√

1− n2
cos θ. (7.1.8)

We plot in Fig. 7.3 the time evolution of θ and n for ∆ = 0 and U/J = 20/N , and

with two different initial conditions of n and θ. Assuming small phase and population

differences, we find Josephson oscillation of two quantities (green plot in Fig. 7.3);

but for larger population difference, a qualitatively different dynamics emerges

which is called self-trapping [139, 146]. We notice that with the condition n = 0 and

any θ under the conditions of ∆ = 0 and U/J = 20/N , no self-trapping is expected.



7. Dynamics of coupled 2D Bose gases 135

Figure 7.3: The time evolution of the phase difference θ and population imbalance n in
the two-mode approximation with ∆ = 0 and U/J = 20/N . Left panels show the time
evolution of n and θ at two selected initial conditions, θ(0) = 0.3π, n(0) = 0 (green) and
θ(0) = 0.7π, n(0) = −0.5 (blue). The θ monotonically decreases for the initial condition
θ(0) = 0.7π, n(0) = −0.5 (blue). Right panel shows the trajectories in the phase space.
The green lines follows a behaviour similar to Josephson oscillations, while the dynamics
following blue lines is the so-called self-trapping, with the black line separating the two
regimes.

7.2 Coupled MRF-dressed double-well potentials

From Eq. (7.1.6), we find that realisation of a coupled system requires the distance

between the two clouds to be small on the order of the spatial extent of wavefunctions.

The spatial extent of the gas in the double-well is typically `0 . 1 µm, and thus

we require a comparable spatial separation of the two wells. Utilising the excellent

controllability of MRF-dressed double-well potentials, we can achieve precise control

of double-well separations, as illustrated in Fig. 7.4. For the experiments reported

in this chapter, we used narrow separations of the dressing RF frequencies [7.17, 7.2,

7.23] MHz and a higher quadrupole field gradient of b = 140 G/cm compared to the

experimental conditions used in Chapters 5 and 6. These values give a separation

of ∼ 1.5 µm for which we expect a tunnelling rate of hundreds of Hz.

7.2.1 Experimental procedure

We illustrate our experimental procedure in Fig. 7.5. To observe the Josephson

oscillation, we prepare a pair of phase-imbalanced 2D gases and suddenly introduce

coupling to initiate the time evolution, in a similar manner to the experiment in 1D
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Figure 7.4: Controllability of the double-well separation in a MRF-dressed potential.
A wide range of well separations can be chosen by appropriate choice of RF frequency
combinations and quadrupole field gradient b. The double-well potential created by a RF
frequency combinations of [7.14, 7.2, 7.26] MHz and b = 100 G/m is plotted in purple,
corresponds to the separation of the wells used in Chapter 5. We plot the potential with
[7.17, 7.2, 7.23] MHz and b=140 G/m in blue, which are the values used in this chapter.
Vertical dotted lines indicate the RF resonance locations in corresponding colours.

Bose gases performed elsewhere [78, 91]. We start by a coherent splitting of a single

cloud into two, which prepares a well-defined initial state with θ = 0. We ensure the

equal population of two wells n ∼ 0 by maximizing the observed interference contrast.

After the splitting, we keep the energy of the barrier, between the two wells, Eb high

such that the two wells are separated with negligible coupling in this particular stage

of the experiment. We then imprint the phase difference by introducing asymmetry

∆ of the potential, while keeping the two clouds sufficiently decoupled. Finally, we

introduce coupling of the two clouds by reducing the spatial separation of the two

wells and lowering the barrier. We observe the dynamics of the relative phase θ

using matter-wave interferometry, as described in the following section.

7.3 Experimental results

We start with a cloud of N ∼ 4 × 104 atoms in a MRF dressed trap, with a

temperature around 20 nK such that the system is deep in the superfluid regime.

Typical trap frequencies are ωr/2π = 13 Hz and ωz/2π = 1.5 kHz, and the quasi-2D

conditions kBT, µ . ~ωz are satisfied for each well. We perform a coherent splitting

over 6 ms into a symmetric double-well with a high energy barrier Eb/h = 5 kHz.
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Splitting Phase imprinting Recoupling Evolution

Figure 7.5: Illustration of the experimental sequence. (a), upper row, shows the vertical
trapping potential. (b), middle row, shows the state of the 2D clouds during the sequence.
The first stage consists of the coherent splitting of a single 2D clouds into two, resulting
in a two clouds with the same global phase. We ensure that the coupling of the two wells
is negligible immediately after the splitting. After the splitting, we imprint the global
phase difference θ = t∆/h by applying energy difference between the two wells, while
keeping small coupling. The phase difference is indicated as the different colours of two
layers, and we are interested in the phases after the recoupling (indicated by purple).
Once the desired phase difference is achieved, we change the potential to introduce the
coupling between wells and observe the dynamics.

Immediately after the splitting, we introduce an asymmetry ∆/h =1 kHz between

the two wells and wait for a variable time to imprint a phase difference. Finally, we

ramp down the energy barrier to Eb/h = 1 kHz in order to increase the coupling

J , while eliminating the asymmetry; this was performed over a duration of 2 ms,

during which the spatial separation of the wells reduces to d = 1.5 µm.

We show typical matter-wave interference patterns in Fig. 7.6 obtained after

tTOF = 10 ms TOF expansion. Interference fringes at wavenumber k = md/~tTOF

are observed along the z direction. To obtain the phase θ, we have analysed the

interference patterns at 20 individual pixel columns within the interfering part

of the cloud using FFT (see Fig. 4.3).

7.3.1 Phase accumulation

In Fig. 7.7 , we show the histogram of the phase obtained from the measurements

at a few selected times during the phase imprinting stage. The double-well trap
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Figure 7.6: Typical matter-wave interference patterns observed after the recoupling
quench. Relatively long fringe separation is observed compared to the results in Chapters
5 and 6, because of the small separation of the wells. The horizontal dotted line indicates
the centre of mass of the cloud in vertical direction, and having the interference peak at
the line indicates zero relative phase between two clouds, θ = 0.

was configured to be asymmetric with |∆|/h = 1 kHz, with a high energy barrier

Eb/h ∼ 5 kHz and well distance d & 2 µm such that the coupling J is negligible for

the duration of phase accumulation of a few ms. Each column of the bottom panel

in Fig. 7.7 corresponds to a single histogram (selected histograms are shown in

top panels); 120 datapoints contribute towards each histogram, which are obtained

from 6 images taken at each time. We observe the linear increase of phase at

a rate corresponding to the value of ∆/h, as expected from Eq. (7.1.8) with

J = 0 and U = 0.

7.3.2 Phase oscillation after recoupling

Once we have the desired phase difference θ, we introduce coupling between the

two 2D clouds and observe the dynamics. We transform the potential such that

the asymmetry ∆ is eliminated and the energy barrier between the wells Eb/h is

reduced to 1 kHz. The separation of the wells is reduced to d = 1.5 µm to obtain a

large value of J . In Fig. 7.8, we plot the time evolution of the phases θ following

the recoupling. We have chosen a phase accumulation time of 300 µs, corresponding

to an initial phase difference of θ(t = 0) ∼ π/2. The observed dynamics of θ
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Figure 7.7: Time evolution of the relative phase θ in a decoupled asymmetric double-well.
(Top) Histogram of observed relative phases at a few selected times after the splitting
and deformation of the double-well (see Fig. 7.5). Red dashed lines are Gaussian fits to
the distributions. (Bottom) The time evolution of the relative phase in a imbalanced
double-well. Each pixel column corresponds to a single histogram, obtained from images
taken at a given time. Red line is a guide to the eye.

show oscillations of around 1 ms period. We fitted the phase dynamics with a

sinusoidal, shown as the red line. The best-fit value of the oscillation frequency is

f =850(30) Hz. This value of f is on the same order as the value of 300 Hz obtained

from the GPE simulation for similar parameters and potential [105]. The large

deviation between these two values may arise because of the miscalibration of the

atom number; this work on Josephson oscillation was done before the atom number

measurement was properly calibrated using the method described in Section 3.5.4.

We also note that the slight difference of the confinements of the two wells in the

experiment was not taken into account in the GPE simulation.

We have further observed the phase dynamics with different trap configurations.

Different trap geometry can be achieved by changing the RF amplitude of the 7.2

MHz component, Ω7.2, which controls the barrier height between the wells. The

range of the values of Ω7.2/h are 19.5, 20, 20.5, 21 and 21.25 kHz, which corresponds

to Eb/h = 1.2, 1, 0.8, 0.5 and 0.25 kHz and the double-well spatial separation
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Figure 7.8: The phase oscillation following the recoupling. (top) The time evolution of
the phase difference θ following quench. 100 datapoints contribute to the histogram at
each time from 5 images. The red line is the sinusoidal fit. (bottom, left) Time evolution
of the fringe wavenumber, obtained by fitting the interference patterns with Eq. (4.2.4).
Black horizontal line and the shaded region denotes the mean and standard deviation
of k. (bottom, right) Histogram of the observed phase, integrated over whole duration
shown in top panel.

d = 1.6, 1.5, 1.4, 1.2 and 0.9 µm. Higher Eb/h (and larger d) leads to smaller

coupling strength J , and we expect to observe a smaller phase oscillation frequencies.

Indeed, as we see in Fig. 7.9 bottom right panel, the observed oscillation frequencies

strongly depend on the value of Eb.

7.4 Conclusion and future plans

In conclusion, we have presented the experimental method used to achieve small

separations of the wells d ∼ 1 µm and observed the phase oscillation dynamics

following a recoupling quench. The high controllability of the MRF-dressed potential

allows a wide range of spatial well separation to be realised, resulting in a good

controllability of the coupling strength. Using the MRF-dressed potential, we have

prepared a phase-imbalanced pair of 2D superfluids and observed the oscillation of

the relative phase following a recoupling quench. The observed sinusoidal oscillation

of the relative phases and their frequencies are consistent with that of tunnel-
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Figure 7.9: Time evolution of the relative phase θ in a coupled double-well for different
barrier energies and double-well separations, with Eb/h = 1.2, 1, 0.8, 0.5 and 0.25 kHz
from top left panel to middle bottom panel. Solid lines are the sinusoidal fit. The
corresponding well separations d are 1.6, 1.5, 1.4, 1.2 and 0.9 µm. Solid lines are the
sinusoidal fit and uncertainties of datapoints denote standard error from experimental
repeats. Bottom right panel shows the observed frequency from the sinusoidal fit against
the energy barrier Eb/h. Solid line is the fit to the frequency data with an exponential as
a guide to the eye. The value of the Eb is determined from the measured RF amplitudes,
based on the Floquet numerical simulation of the MRF-dressed potential [107].

coupled systems. However, our current experimental technique does not allow the

measurement of population imbalance between the two wells, which is required to

confirm the Josephson dynamics; see Section 7.4.1. Furthermore, the time range

that was observed is not enough to determine the long-time limit of the dynamics

and to investigate whether the dynamics damps, and if so, at what timescale. One

of the main limiting factors was the monopole oscillation of the cloud following the

splitting, which prevents the observation of clear interference patterns at long time

A straightforward way to overcome the limitations is the slow loading scheme as

used in Chapter 5 which was developed after the work reported in this chapter.

Further experimental investigation is required to fully understand the dynamics.

7.4.1 Population difference measurement

To fully explore the dynamical regime of the two-mode model, it is necessary to

observe the population difference n between the two wells. This is also essential

to precisely identify the initial state of the system. The intrinsic difficulty of
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measuring the population difference when there is tight 2D confinement of the

atoms arise because the atoms expand quickly during the timescale of less than

1 ms along the direction of the double-well. As such, it is not easy to count

the number of atoms separately. The small distance between the two wells is

comparable to the imaging resolution, so that in situ measurement of individual

wells is also difficult. A promising method for population counting is the well-

selective horizontal momentum kick, which can be implemented by an additional

RF field in the z direction. Alternatively, a non-destructive dispersive measurement

in a MRF-dressed potential can be used to continuously monitor the evolution

of atom number difference, see Appendix A.

7.4.2 Effect of in-plane phase fluctuations and the BKT
transition

The two-mode model was derived with the assumption that the two lowest energy

eigenstates are macroscopically occupied. The measurements reported in this

chapter used a low temperature of 20 nK (deep in the superfluid regime), but it is

possible to work at higher temperature while keeping the validity of the two-mode

approximation in the z direction (as well as satisfying the quasi-2D condition for

each double-well minima). The observation of clear phase oscillation serves as a

further confirmation of the coherence in 2D Bose gases, in a similar manner to

[144]. In bilayer 2D Bose gas, strong tunnel coupling modifies the phase diagram,

and may exhibit novel phases [75, 77]. We have observed strong density dips and

vortices in coupled 2D Bose gases, as shown in Fig. 7.10. The density fluctuations

after the TOF are associated with the spatial fluctuation in symmetric phases

[73], and provides alternative observable to understand the Josephson dynamics of

phase-fluctuating 2D gases. The presence of vortices in coupled bilayer 2D gases

and their interaction along the z direction is of theoretical interest [77].
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Figure 7.10: Matter-wave interference patterns of coupled 2D gases showing density
dips and vortices. The images were taken with double-well separation of d = 1.5 µm,
where the two clouds are considered to be coupled. The left panel shows the image with
sharp density dips in the x direction (indicated by red arrows), and the right panel shows
an image with vortex (red dashed line). Both images were taken with the density slicing
method.
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8.1 Conclusion

This thesis describes experimental work to probe the properties of 2D Bose gases

in and out of equilibrium. Using the MRF-dressed potential, we create a highly

controllable double-well potential for 2D systems, and observe the matter-wave

interference. An essential technical aspect is the density slicing method, which allows

the direct computation of the phase correlation function. Using this technique, the

BKT transition was observed in equilibrium 2D Bose gases. The critical point was

identified by the sudden change in the functional form of the correlation function,

and we obtained the critical exponent ηc = 0.17(3) in a harmonically-trapped, finite-

size system. Our experimental technique allows the observation of a wide range of

144
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properties in 2D Bose gases across the critical point, such as local vortex density,

density-noise correlation, full counting statistics and the local algebraic exponent.

Based on the detailed understanding of the equilibrium system from extensive

experimental measurements, we investigated a non-equilibrium 2D system quenched

across the BKT critical point. The quench was performed by coherently splitting a

single 2D cloud into two daughter clouds, which suddenly brings the system from

superfluid to thermal phase. The subsequent relaxation exhibits two-step dynamics

involving the phonon excitations and vortex nucleation. The analysis of phonon

excitation dynamics using the algebraic exponent η suggests that the finite energy

associated with the nucleation of vortices slowed down the dynamics. We further

compared the observed dynamics with the real-time RG theory.

2D gases in a MRF-dressed double-well potential can be trapped with a narrow

spatial separation d ∼ 1 µm, where quantum tunneling between the two systems

are expected. We have achieved this by making a double-well potential with a

small frequency separation of the dressing RFs. The high controllability of the

MRF-dressed potential allows us to prepare two 2D Bose gases with an arbitrary

phase difference, with which a phase oscillation can be initiated by the recoupling

quench. The observed phase oscillation dynamics is consistent with that of a Bose

gas in a tunnel-coupled double-well, however further extensive measurements are

required to fully understand the behaviour.

The major improvements made to the experimental apparatus over the course

of the work reported in this thesis allowed stable operation of the tens of thousands

of sequences over the duration of weeks, without additional recalibrations. The

fluctuations of the RF field amplitudes were kept to the 0.1 % level, which was crucial

to gather very large data sets and hence observe effects that would otherwise by

obscured by statistical uncertainty. The stability and the reliability of the experiment

is illustrated by the fact that the majority of the final data presented in this thesis

was taken while the experiment was operated remotely from Tokyo for three months;

with only brief twice-a-week in situ adjustments of lasers during that period.
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8.2 Future experiments

The experimental and theoretical tools that have been developed during the work

for this thesis can be used for a variety of exciting future investigations. I conclude

this chapter by listing a few of these prospects.

8.2.1 Short-range physics

Currently, the sensitivity of the imaging limits our investigations to the superfluid

and crossover regime (and hence cannot access deep in thermal regime). The

detection capability of the imaging system sets the lowest density of the cloud that

can be imaged with sufficiently high signal-to-noise ratio, and with the density slicing

technique we only image a fraction of the total cloud so the observation of interference

patterns require a certain threshold 2D density. By improving the detection

capability such as with the improvement of imaging system, we could extend

the temperature range that can be probed, e.g. to include the vortex-dominated

phase. This may enable observation of the ‘superfluid jump’ [23] by the divergence of

η. The improved detection method would also allow for more detailed investigation

of short-range physics such as vortex pair correlations in a non-equilibrium system,

and would allow us to further map the phase diagram of 2D Bose gases.

8.2.2 Coupled bilayer XY model

The pair of 2D gases in a MRF-dressed potential can be coupled via quantum tun-

neling. The tunneling induces not only the dynamical effect as presented in Chapter

7; in equilibrium, the phase-locking effect [75, 77] can complete with the thermal

fluctuations leading to a novel phase transition which lies in a mixed universality

class [77]. The investigation of such a system requires an alternative observable

such as the symmetric phase mode and direct vortex imaging, which is possible

with existing experimental capabilities and theoretical tools described in this thesis.
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8.2.3 Controlled tunneling and driven 2D Josephson junc-
tion

The MRF-dressed double-well potential allows individual control of each well on

a microsecond timescale by the modulation of RF amplitudes. This makes it an

unique platform to investigate dynamical control of Josephson dynamics which

can be applied to realise a quantum simulation of light-induced superconductivity,

as proposed theoretically in Ref. [142].

8.2.4 Arbitrary potentials

The DMD installed in this work for the selective imaging can also be used to shape

the laser light to form an arbitrary dipole potential on the atoms (using light that is

far detuned from the atomic resonance). The combination of MRF-dressed potential

and arbitrary optical potential allows a wide range of investigations. An example

is the uniform potential, which can be created by placing a repulsive ring-shaped

potential centred on the cloud in the dressed potential. An uniform system allows

precise comparison with theory, and a wide variety of novel dynamical phenomena

can be probed without being affected by the collective excitations intrinsic in the

harmonic trap, such as monopole and dipole mode.

8.2.5 Many-body localization

Most physical systems reach thermal equilibrium over time, losing their memory of

the initial state. It generally requires inherent symmetry of the Hamiltonian or lack

of interaction to avoid, or slow down, the thermalisation process. One intriguing

exception is systems subject to strong disorder, which retain local memory even in

the presence of interaction. The phenomenon is known as many-body localization

(MBL) and is the subject of active research [151–154]

Using the 2D double-well potential and an additional optical disorder potential,

we can study the MBL phase with our novel initial state preparation method

and detection scheme, namely the coherently split two-dimensional (2D) quantum

gas subject to disorder, probed using matter-wave interferometry. This method
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will allow the detailed observation of MBL phases in a continuous 2D system

as predicted theoretically [155]. The matter-wave interferometry method allows

detailed study of how the system retains its initial memory, such as through higher-

order correlations [30, 38]. The competition of quasi-order and the localisation

is also of great interest [155].

So far, detailed experimental studies of disordered quantum gases in 2D have

been difficult because the low percolation threshold results in classical trapping

even at low temperatures. Recently, in 2020, it was shown elsewhere that the

point-like disorder method is effective to probe Anderson localisation in 2D Bose

gases without being affected by classical trapping [115, 156]. This approach can be

directly applied to the investigation of MBL in 2D quantum gases thus providing

an excellent opportunity for future investigation.
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A.4.1 Spin squeezing in a double-well potential . . . . . . . . 158

Here, we describe theoretical and preliminary experimental work towards the

realisation of non-destructive measurement of atoms in the MRF-dressed double-

well potential, as well as the realisation of conditional spin squeezing. In principle,

this approach can detect the atoms in each of the well independent of the spatial

separation of the wells and thus this method is not limited by the resolution

of any optical system, i.e. it is not diffraction limited. Utilising the complex

dynamics of internal states of atoms in the MRF-dressed potential, we show

that the dispersive monitoring of the spin constitutes non-destructive imaging

of the spatial atomic distribution in the MRF-dressed trap. We show preliminary

experimental results for this imaging technique, and propose a method using it

to produce conditionally number-squeezed states in a two-mode BEC. We note

150
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that the dispersive measurement of single-RF dressed atomic vapour was recently

reported elsewhere [157].

A.1 Position-dependent spin dynamics

We consider an atom in a hyperfine state F , trapped in a MRF-dressed potential.

The RF fields are linearly polarised AC magnetic fields with n different angular fre-

quencies ωj and amplitudes Bj . The Hamiltonian describing the dynamics of atoms is

Ĥ0 = ω0(z)F̂z + gFµB
~

n∑
j=0
F̂ · exBj sin (ωjt), (A.1.1)

where ω0 is the angular Larmor frequency at position z. In the quadrupole magnetic

field B(r) = b(xex + yey − 2zez); limiting the region of interest to x = y = 0 and

z < 0 as in the experiment, the Larmor frequency can be expressed as

ω0(z) = 2gFµBbz/~. (A.1.2)

The first term of Eq (A.1.1) makes the dynamics of spins position-dependent, with

resonances where δj(z) = ωj − ω0(z) = 0. Figure A.1 shows numerically calculated,

spatially-dependent spectral power of time evolution of 〈Fx(t)〉. The dressing RF

frequencies are 2π×(3.57, 3.6, 3.63) MHz and b = 150 G/cm, resulting in the

separation of the wells d = 1.2 µm.

A.2 Dispersive measurement of spin dynamics

The position-dependent dynamics of spins shown in Fig. A.1 can be probed by

coupling the atomic spin to the polarisation modes of coherent light. Such coupling

is induced by circular or linear birefringence of the atomic medium [157–159],

Faraday or Voigt effect. We propose to probe the spin dynamics in a MRF-dressed

potential with Voigt effect, using far detuned light. In particular, this approach

determines the spatial distribution of the atoms in a double-well potential by

the spectrum of the signal. In Fig. A.2, we show the schematics of experimental

setup. A linearly polarised laser beam propagates along the direction of a static
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Figure A.1: (Top) Numerically calculated posititon-dependent power spectrum of
single-spin dynamics 〈Fz(t)〉. The dressing RFs are at frequencies (3.57, 3.6, 3.63) MHz
with field amplitudes (0.57, 0.71, 0.57) Gauss. The resonance condition for each frequency
component δj(z) = 0 are indicated by vertical dotted lines. (Bottom) The MRF-dressed
double-well potential.

magnetic field z, and detect the time-varying, polarisation-dependent phase shift

using polarimetry consisting of Wollaston prism and a balanced photodetector. The

probe beam is initially linearly polarised, and we monitor the time evolution of

power difference in circular polarisations; see below.

To describe the atom-light interaction, we now introduce the polarisability

Hamiltonian which describes the coupling of single spin and the polarisation of

optical modes. A comprehensive review of this topic can be found in Ref. [160].

In the following, we use Stokes operators to describe the photon flux of different

polarisations of light propagating along z:

Ŝ0 = 1
2
(
â†+â+ + â†−â−

)
,

Ŝx = 1
2
(
â†+â− + â†−â+

)
= 1

2
(
â†xâx − â†yây

)
,

Ŝy = i

2
(
â†−â+ − â†+â−

)
= 1

2
(
â†+45â+45 − â†−45â−45

)
,

Ŝz = 1
2
(
â†+â+ − â†−â−

)
, (A.2.1)

where â†±(â±) are the creation (annihilation) operators for the right and left circular

polarisations, â†±45(â±45) is with the linear polarisation in ± 45 degrees between

x and y axes and â†x,y(âx,y) along x and y axes.
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Figure A.2: Experimental setup for the dispersive detection of MRF-dressed atoms.
Atoms are trapped at the bottom of double-well ’shell’ traps (green transparent half-
spheroids). We probe the distribution of atoms in the double-well by a polarised laser
beam frequency-locked far from resonance (red semi-transparent beam, propagating from
right to left). The time-dependent scattering of light into a different polarisation mode in
the atomic medium results in the modulation of the polarisation, which we monitor with
a polarimeter consisting of a quarter-waveplate (λ/4), a Wollaston prism and a balanced
photodetector (BPD). The direction of gravity is the same direction as BDC shown in the
figure.

For the interaction of atoms with an off-resonant light field at angular frequency

ωL, the dipole Hamiltonian can be approximated into the polarisability form [160],

which can be decomposed into irreducible spherical tensor components α [160, 161]:

Ĥint =
∑

k=0,1,2
Ê(−) α̂

(k)

~∆ Ê(+)

= g
2α(0)

3∆ Ŝ01̂ + g
α(1)

∆ ŜzF̂z

+ g
α(2)

∆
{
Ŝx(F̂ 2

x − F̂ 2
y ) + Ŝy(F̂xF̂y + F̂yF̂x) + Ŝ0

[
3F̂ 2

z − f(f + 1)1̂
]
/3
}
,

(A.2.2)

where g = ωL/(2ε0Na), ε0 is the vacuum permittivity, ∆ is the detuning of the

probe light from atomic transition and 1 is the identity operator in the atomic

subspace; α(k) ∈ R with k = 0, 1, 2 for the scalar, vector and tensor polarisabilities.

Using the Eq. (A.2.2) and Eq. (A.1.1), we can study the time evolution of

coupled atom-light system. Assuming small values of α(k) (corresponding to large

frequency detuning of the laser) such that the dynamics of atomic spin is unaffected

by the interaction, we can first obtain the time evolution of atomic spins F̂ , from

which we obtain the equation of motion for the Stokes operators. Using the
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initial probe light polarisation of Ŝy, we find the Stokes operators Ŝj(t) after time

evolution under Eq. (A.2.2) are [157]

Ŝx(t) = 2g2α(1)

c~2 Ŝy
∑
i

F̂z,i(t) (A.2.3)

Ŝy(t) = Ŝy, (A.2.4)

Ŝz(t) = 2g2α(2)

c~2 Ŝy
∑
i

(
F̂ 2
x,i(t)− F̂ 2

y,i(t)
)
, (A.2.5)

where the interaction time is assumed to be short enough such that the change

in the input polarisation Ŝy is negligible. The sum over indices i in Eq. (A.2.3)

and Eq. (A.2.5) are performed over all atoms in the trap. From Eq. (A.2.5)

and the definition of Ŝz in Eq. (A.2.1), we see that the differential measurement

of photon flux in right- and left-handed circular polarisation gives the measure

of ∑i

(
F̂ 2
x,i(t)− F̂ 2

y,i(t)
)
. Equivalently, the measurement of linear polarisation

components gives the measure of ∑i F̂z,i.

Figure A.3: (Top) Position-dependent power spectrum of single-spin dynamics 〈F̂ 2
x (t)−

F̂ 2
y (t)〉, with dressing RF frequencies 2π×(3.57, 3.6, 3.63) MHz and amplitudes (0.57,

0.71, 0.57) Gauss. (Bottom) the potential energy of dressed eigenstates we consider for
the calculation shown in the top figure.

To predict the measurement, in Fig. A.3 we show the numerically calculated

power spectrum of the single-spin dynamics 〈F̂ 2
x (t)− F̂ 2

y (t)〉 under Eq. (A.1.1). We

observe clear resonance structure in a similar manner to Fig. A.1, but the signal is at

twice the frequency of the dressing RF. From this result and Eq. (A.2.5), we find that
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the measurement of Ŝz through the polarimeter at twice the dressing RF frequency

constitutes measurement of atoms at the RF resonance positions (equivalently, to

within a small offset, at the positions of each well). The position selectivity of this

process allows the in situ determination of population difference in a double-well

potential, independent of spatial separation of the wells. This is a significant

advantage over the optical imaging method, which is fundamentally limited by

the diffraction limit of the imaging setup which is on the order of micrometres

and usually worse due to imperfections of the experiments and refraction of probe

light in the dense atomic medium.

A.2.1 Backaction of the measurement

In quantum mechanics the measurement process affects the atomic dynamics. If

engineered correctly, backaction can be utilised to produce a correlated state

of atoms, such as spin squeezed states [162, 163]. However, in most cases, the

backaction results in dephasing of the atomic dynamics and the reduction of signals.

In this section, we describe one of the possible dephasing mechanisms caused by

the measurement process. For illustration purpose, we use the term proportional to

α(1) in Eq. (A.2.2) as the interaction Hamiltonian Ĥint. The initial state of the atomic

spin in Schrödinger picture is |ψa〉0 = |F,m〉, and the system of light can is described

by the product of coherent states in x and y polarised modes, |ψL〉0 = |βx〉 ⊗ |βy〉.

Since the flux of photons that passes through the cloud in a small timestep dt, the

atom-light interaction at a given time occurs only for a small fraction of the light

beam. As such, we expand the coherent states |β〉 in a Fock basis [164, 165],

|ψL〉 ' |0x〉|0y〉+ βx|1x〉|0y〉+ βy|0x〉|1y〉. (A.2.6)

Furthermore, we expand the propagator to the second-order of the duration of

interaction a photon, dt.

U = exp
(
−iĤintdt

~

)
' 1− iĤintdt

~
− Ĥ2

intdt
2

2~2 . (A.2.7)
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From above results, we can explicitly compute the propagator for atoms U |ψL〉,

U |ψL〉 ' |ψL〉+ γF̂z(βx|0x〉|1y〉+ βy|1x〉|0y〉) + γ2F̂ 2
z (βx|1x〉|0y〉+ βy|0x〉|1y〉) ,

(A.2.8)

where γ = gα(1)/(~∆).

In the following, we express the time evolution of atomic states using density

matrix for atomic states ρa = |ψa〉〈ψa| = |m〉〈m| and light fields ρL = |ψL〉〈ψL|.

The atomic state after the interaction can be calculated by applying propagator U

to atom-light state ρa ⊗ ρL and taking the partial trace over the probe field TrL:

ρa(t+ dt) =TrL
[
Uρa ⊗ ρLU †

]
=
∑
n,m

〈nx|〈my|UρaU †|nx〉|my〉 (A.2.9)

=ρa + γ2(β2
x + β2

y)
(
ρaF̂zρa − {F̂ 2

z , ρa}
)

(A.2.10)

=ρa + γ2S
(
ρaF̂zρa − {F̂ 2

z , ρa}
)
dt, (A.2.11)

where we defined the total photon flux S = (β2
x + β2

y)/dt in Eq (A.2.11).

We add the unitary evolution under Eq (A.1.1) to obtain the Lindblad mas-

ter equation [166]

ρa(t+ dt) = ρa − i[Ĥ0, ρa]dt+ γ2S
(
ρaF̂zρa − {F̂ 2

z , ρa}
)
dt, (A.2.12)

We note that this is the ensemble-averaged result over realisations of measurement

results at the polarimeter, and numerical simulation of individual trajectory is

possible with the stochastic version of the master equation [166].

In Fig. A.4, we show the power spectrum of spin dynamics 〈Fz(z)〉, numerically

calculated using Eq (A.2.12). The backaction causes the dephasing of the spin

dynamics and thus can contribute to a finite decay of the signal. This can be evaded

by directly applying the stroboscopic measurement technique in Ref. [159].

A.3 Preliminary experimental results

In this section, we present preliminary experimental results demonstrating the non-

destructive Voigt measurement method. We prepared 3×106 thermal 87Rb atoms in

a three-RF dressed potentials, and probed the system using a linearly polarised light
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Figure A.4: Time evolution of the power spectum of 〈Fz(z)〉 at the RF resonance
frequency, which linearly affect the non-destructive measurement signal strength. The
time evolution was numerically calculated using the master equation Eq. (A.2.12) and
plotted against the number of periods of the RF.

detuned from the atomic transition. The RF frequency components were (3.47, 3.6,

3.63) MHz with amplitudes (0.42, 1.81, 0.42) Gauss. This forms a three-RF single-

well potential, resulting in atoms localising around the 3.6 MHz magnetic resonance.

The probe beam was sent in the direction of static magnetic field, 246 MHz blue

detuned from F = 1 → F ′ = 2 transition. From the discussion above, we expect

to observe the effect from the α(2) term, which measures ∑i

(
F̂ 2
x,i(t)− F̂ 2

y,i(t)
)
. We

plot the recorded signal in Fig. A.5 left panels.

We further analyse the signal using spectrogram, as shown in Fig. A.5 right.

As expected from Fig. A.3 and our choice of dressing frequencies, we observe the

signal at 7.17, 7.2 and 7.23 MHz. Since the atoms are localised around the 3.6 MHz

magnetic resonance, we did not observe strong peaks at 7.14 and 7.26 MHz.

We observe rapid decay of signals once the probe beam is applied; We found

that a significant fraction of atoms is repumped into F = 2 state during the

measurement process. In a future experiment, much larger detuning from the

atomic transition is desired.

A.4 Conclusion and outlook

We have presented theoretical and experimental results towards the non-destructive

measurement of atomic distribution in a MRF-dressed potential. The experimental
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Figure A.5: (Top, left) The balanced photodetector output signal with probe beam
coupled to thermal atoms in MRF-dressed potential. The bottom panel shows the first
10 µs. Dressing RF combinations were (3.47, 3.6, 3.63) MHz and amplitudes (0.42, 1.81,
0.42) Gauss. (Right) Spectrogram of the signal plotted on the left. Clear peaks at 7.17,
7.2 and 7.23 MHz (indicated by black dotted lines) are observed.

result suggests the validity of the measurement setup, however significant improve-

ments are required to utilise this method for the non-destructive measurement

of BEC trapped in double-well potentials.

A.4.1 Spin squeezing in a double-well potential

The theoretical results in our recent preprint Ref. [143] show that the continuous

non-destructive measurement of the spatial two-mode BECs result in quantum

correlated states, such as spin squeezed state and macroscopic cat state. The

experimental technique presented in this Appendix is a way of directly implementing

the scheme described in Ref. [143].
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