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The understanding and precise prediction of non-equilibrium quantum many-
body dynamics, in particular across a critical point, remains a difficult task due
to the relevance of all length scales near the critical point. Furthermore, the
number of parameters required to characterise the state of the system increases
exponentially with the number of particles, making the numerical investigation
of such a system extremely difficult.

In this thesis, we use ultracold 8"Rb atoms prepared in a bilayer two-dimensional
(2D) trap to probe the Berezinskii-Kosterlitz-Thouless (BKT) phase transition
in detail, both in and out of equilibrium. These experiments use a multiple-
radiofrequency dressed trap, which allows dynamical control of the trapped atoms
as well as the precise determination of the many-body wavefunction. For the
characterisation of the 2D Bose gases using matter-wave interferometry, a novel
technique was developed to obtain high contrast fringes by selective imaging of
slices of the atomic cloud. This allow the observation of local fluctuations, such
as phase correlation function, local vortex density and coherence full counting
statistics. Utilising these observables, we have identified the BKT critical point
and characterised microscopic features of harmonically-trapped 2D Bose gases in
equilibrium. With this information about the system, we probe the non-equilibrium
dynamics of 2D Bose gases following a quench across the BKT critical point. The
system is quenched by a coherent splitting, which introduces a sudden reduction of
density resulting in the quench from the superfluid to thermal phase. We monitor the
dynamics towards the vortex-proliferated state and find that the vortex-unbinding
dynamics is well described by the real-time renormalisation group theory. Finally,
we show preliminary results for a tunnel-coupled bilayer 2D gas, in which we probe
the oscillations of the relative phase of the two layers of superfluid.

The results presented in this thesis demonstrate that the multiple-RF dressing
technique is a very powerful tool for investigating quantum many-body phenomena.
This paves the way for future studies of non-equilibrium critical dynamics and
their description with renormalisation-group theory.
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The wuniversal nature of a phase transition connects a wide range of physical
systems falling under the same universality class, and allows a unified description
close to the critical point regardless of microscopic details of individual models. This
remarkable feature is also expected to hold for some dynamical critical behaviours,
with an astonishing consequence of connecting the results from tabletop experiments
to cosmological phenomena [1-3]. As such, it is of great interest to build a versatile
physical system that allows detailed investigation of universal critical phenomena
both in and out of equilibrium.

One of these universality classes in two spatial dimensions has a unique feature:
while the true long-range order (LRO) is precluded in systems at nonzero tempera-
tures according to Mermin-Wagner theorem [4, 5], a quasi-order develops through
the Berezinskii-Kosterlitz-Thouless (BKT) mechanism [6, 7]. The BKT transition

is driven by unbinding of vortex-antivortex pairs, underscoring the topological
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nature of the transition. The importance of this phase transition is highlighted by
the Nobel Prize in Physics in 2016 for Kosterlitz and Thouless. This transition
is characterized by the first-order correlation function g;(r,r’) = (¥f(r)¥(r’)),
where W(7) is the bosonic field operator at location 7, which changes from algebraic
scaling ~ =" in the superfluid phase, to exponential scaling in the thermal phase,
with universal exponent 7. = 0.25 at the transition.

In the past few decades, ultracold quantum gases have emerged as clean and
highly controllable quantum simulators for the study of quantum many-body
phenomena which are often out of reach using existing numerical simulation
techniques [8, 9]. The exceptional controllability of these systems make them
an ideal platform to probe universal critical phenomena of a variety of phase
transitions [2, 10-13]. The BKT transition is no exception, and the first observation
was reported in 2006 by a pioneering work by Hadzibabic et al. [14]. A wealth of
BKT physics has been investigated since then, as introduced in the next section.

In this thesis, we present a new experimental approach for probing the BKT
transition in 2D quantum gases, both in and out of equilibrium. Firstly, we probe in
equilibrium local phase fluctuation of the system, which reveals the phase correlation
function and local vortex density. This allows a comprehensive investigation of
the BKT transition in inhomogeneous 2D systems, with a precise observation of
critical point. Furthermore, our experimental approach allows the investigation
of the BKT dynamical critical phenomena, by the coherent splitting of 2D Bose
gases. With this, we observe the relaxation dynamics of 2D system quenched out
of a quasi-ordered phase into a vortex-proliferated disordered phase. We identify
novel dynamical phases of a 2D system, especially the superheated superfluid phase
that survives for up to a few hundred milliseconds.

In the following sections of this chapter, we give a brief introduction to three
important aspects of the research presented in thesis and refer to subsequent chapters
for detailed discussion: 1) the two-dimensional quantum gases, 2) the matter-wave
interferometry technique for the investigation of 2D system, and 3) an introduction

to general relaxation dynamics in cold-atom systems, as well as the description



1. Introduction 3

of a particular dynamics that we study in this thesis, the reverse Kibble-Zurek

mechanism which is expected in the BKT critical regime.

1.1 Quantum gases in two dimensions and the
critical point

Ultracold atoms are usually trapped in a harmonic confinement created by either op-
tical or magnetic methods with potential V (x,y, z) = mwiz?/2+mw y® /24+mw? 2% /2
where m is the atomic mass and the angular frequencies w; characterise the strength
of confinement in ¢ = z,y, z directions. The characteristic energy scales of many-
body systems are the thermal energy scale k7" and the chemical potential p which
are usually comparable to, or larger than, hw; for typical cold-atom experiments,
where h is the reduced Planck constant and kg is the Boltzmann constant. To

observe 2D phenomena, we require tight confiement in one direction such that
kT, p < hw,. (1.1.1)

This restricts the kinetic motion of atoms to the x — y plane, since almost all atoms
are in the ground state of the harmonic potential along z. This freezing out of
transverse kinetic motion is a consequence of quantum mechanical nature of the
system, which discretises the energy levels. Fig. 1.1 illustrates the realisation of a 2D
system. A more detailed description, including the crossover to three-dimensional
behaviour when hw, < kgT, is given in Chapter 2.

The investigation of 2D systems using ultracold gases, especially the investigation
of critical points, has a rather long history. Early experimental and theoretical
works emerged back in the early 2000s [15-18], soon after the first realisation
of Bose-Einstein condensation (BEC) in dilute Bose gases [19, 20]. In 2006,
first direct observation of the BKT critical point was reported using a matter-
wave interferometric technique [14]. The direct evidence of thermally activated
vortices were reported. Dynamical features such as the scissors mode [21], critical
velocity [22] and sound modes [23] provide further evidence of superfluid behaviour

in 2D Bose gases. Despite the lack of LRO in the thermodynamic limit, the
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Figure 1.1: Creating 2D systems using trapped ultracold atoms. A pancake-shaped,
oblate trapped cloud (blue plane) is shown with an illustration of cylindrically-symmetric
trapping potentials (gray panels) in the axial (right, panel, z) and radial (left panel, r)
directions. In the z direction, the confinement is tight, resulting in large energy level
spacing in the harmonic trap. For the condition kpT, 4 < hw,, the atoms cannot acquire
enough thermal or interaction energy to populate excited states, and the dynamics is
frozen in the z direction.

experimentally relevant, finite-sized 2D Bose gas is expected to support two distinct
phase transitions, the BEC and BKT transitions. The intricate connection of
these was studied in Ref. [24], where the critical point was measured with a
wide range of interaction strengths and it was found that at finite interaction
strength, the emergence of coherence is due to the BKT mechanism. Only recently
the first-order correlation function was observed by measuring the momentum
distribution [25]; however the reported algebraic exponent at the critical point was
a factor of six larger than the universal theoretical value due to inhomogeneity
and thermal components [26]. Even after two decades of investigations into 2D
Bose gases, questions remain such as the correct treatment of inhomogeneity for
the correlation properties and quantitative comparison to the theoretical model,
including the temperature dependence of vortex density and algebraic exponent.
These are the objectives of our experimental investigation into the BKT transition

in equilibrium, presented in Chapter 5.
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1.2 Matter-wave interferometry

A useful feature of the ultracold atoms is the possibility of observing matter-wave
interference [27]. This is a direct consequence of ultralow temperatures, such
that the thermal de Broglie wavelengths A, is larger than typical interparticle
distances. Intuitively, particles act coherently as a single wave, and matter-wave
interference fringes of tens of thousands massive particles can be observed when
two of such ultracold clouds are spatially overlapped, in analogy to the Young’s
two-slit experiment using light. This is illustrated in Fig. 1.2.

The matter-wave analogue of interferometric measurement is an extremely
powerful technique for metrology purposes such as searching for gravitational waves
[28, 29]. This tool has also led to the enormous success of research into the
spatial phase fluctuation of low-dimensional quantum systems both in and out of
equilibrium [30-33]; as low-dimensional systems cannot maintain true long-range
order, their order parameter possesses spatially fluctuating phase at any non-
zero temperature. Cold atomic systems offer an window into the phase structure
through spatial interference patterns, as illustrated in Fig. 1.2. These patterns
allow us to extract the correlation function of the system [31, 32, 34]'. Detailed
theoretical and experimental tools for analysing such complex patterns are presented

in Chapters 2 and 4.

1.3 Non-equilibrium dynamics in reduced dimen-
sions

Ultracold atoms are ideal systems to probe the non-equilibrium (NEQ) dynamics
of many-body systems. Atoms are levitated in ultrahigh vacuum of ~ 107!
mbar and the systems experience almost no interaction with the outside world
over the duration of typical experiments. This allows us to consider the system
as isolated and undergoing unitary evolution, in contrast to an open quantum

system connected to a thermal bath characterised by infinite degrees of freedom.

'In continuous system, other techniques to extract correlation function exists, such as spatial
spin correlations [35, 36].
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Figure 1.2: Illustration of matter-wave interference. (a-c) Illustration of matter-wave
interference analogous to Young’s double-slit experiment. (a) Two phase-coherent gases
are released from two separate traps. (b) As the clouds expand and spatially overlap, they
start to show interference fringes. (c¢) The two condensates overlap completely, showing a
modulation of density with high contrast. (d) Example matter-wave interference pattern:
experimentally measured density distribution of interfering 2D clouds showing interference
patterns along z, with phase fluctuation along x.

Additionally, the interactions are usually weak, thus providing a timescale of
dynamics that is experimentally accessible without extreme effort. These features
make the non-equilibrium dynamics of this many-body system tractable both
theoretically and experimentally. As such, systems of ultracold atoms have been
a testbed of numerous novel dynamical phenomena.

In continuous systems, the dimensionality plays a significant role in the relaxation
dynamics. The most intriguing example is the 1D quantum gas, which remains out
of equilibrium indefinitely [31, 37]. Intrinsic fluctuation of the order parameter in
such systems provide a wide variety of observables for the investigation into these
NEQ states, such as full-counting statistics [31] and higher-order correlation [38].

In 3D systems, the effect of criticality on NEQ dynamics has been and is an
active field of research [2, 11, 39, 40]. As pointed out at the start of this chapter, the
dynamics near the critical point often exhibit an universal behaviour; an example of
which is the non-equilibrium energy distribution, which shows a universal, self-similar
scaling [11, 40, 41]. A notable theoretical framework to understand such behaviour
is the Kibble-Zurek mechanism [1, 42], originally proposed for the investigation

of cosmological phenomena in superfluid helium.
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The physics of 2D systems has marginal features of 1D and 3D systems. A
wealth of interesting behaviours exist thanks to intrinsic thermal fluctuation of the
system at finite temperature, in a similar manner to 1D systems. Additionally, the
BKT critical point is expected to modify the dynamics significantly and whether
the universality holds out of equilibrium in this universality class still remains
elusive. This is the main topic of this thesis, and the description of the specific

dynamics that we probe is given in the next section.

1.4 The reverse Kibble-Zurek mechanism

In physical sciences, states or processes with topological features are often discussed
in the context of being protected from perturbation [43, 44]. This relies on the
robustness of topology that characterises the system, which therefore remains
invariant under smooth perturbations.

In the context of BKT phases in 2D ultracold gases, the topological nature
of the transition raise a question: what happens when the system is quenched
into a topologically different phase?” One particular experimental realisation of
this idea, the dynamics after quench from quasi-ordered to thermal phase, was
proposed by Mathey et al. [45, 46]. The dynamics of such a 2D system towards the
thermal equilibrium with abundant vortices is predicted to be slowed down even
in the presence of interaction?. Mathey coined the phrase reverse-Kibble-Zurek
mechanism; the Kibble Zurek mechanism describes the dynamics after quenched into
ordered phase, with topological defects (vortices) originating from local emergence
of order parameters. In the reverse process, topological excitations are created from
thermal fluctuations and there is relaxation into a thermal phase with abundant
vortices. Fig. 1.3 illustrates these ideas.

In this thesis, we probe such phenomena in 2D quantum gases. We prepare
a 2D Bose gas in the superfluid regime, and quench the system into the thermal

regime by splitting an initial single cloud into two. We observe the time evolution of

2In 3D, such a slow thermalisation behaviour following a quench from the BEC phase was
observed, with precise control of interactions [47, 48].
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Figure 1.3: Illustration of the Kibble-Zurek mechanism (KZM) and the reverse Kibble-
Zurek mechanism (rKZM). The colours of the panels indicate the state of the system,
from (quasi-) ordered (white) to disordered (orange). (Top row) As the temperature of
the system is rapidly ramped across the critical point towards the ordered phase, the
so-called ‘freeze-out’ occurs when the growth of correlation length does not follow the
quench rate; the spontaneous breaking of symmetry occurs locally, creating patches of
well-defined phases (indicated by gray arrows with boundaries). At the intersection of
patches, topological defects appear depending on the circulation of phases around the
intersection (red and blue circulating arrows). The system equilibrates to a ordered phase
but with topological defects depending on the quench speed. (bottom row) The rKZM
starts with a quasi-ordered phase in the 2D system, quenched into a disordered phase with
phonon and vortex excitations. The ordered phase in 2D supports phonon excitations,
illustrated as small number of wavy lines. After the quench, phonon excitations rapidly
equilibrate and only at longer times are thermally activated vortices expected.

the system towards the vortex-proliferated state using matter-wave interferometry
technique, which provides the insight into the transient states in great detail.
The experimental implementation of the splitting quench and the experimental

results are presented in Chapter 6.

1.5 Overview of this thesis

In Chapter 2, we develop the theoretical basis for the remaining part of this thesis.
We give a detailed description of interacting 2D Bose gases both in and out of

equilibrium. In Chapter 3, we describe the experimental platform used to study the
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BKT transition. The central technique is the multiple-RF dressed potential, and
detailed technical considerations are given. In Chapter 4, we describe the analysis
technique of matter-wave interference patterns to extract statistical properties of
2D gases, as well as other calibration methods to correctly characterise the 2D
system. Chapter 5 is devoted to reporting our experimental observation of the
BKT transition in equilibrium. Chapter 6 describes the dynamics of a 2D system
quenched out of the BKT superfluid phase. In Chapter 7, we consider quantum
tunneling between a pair of 2D gases, and report our work towards the realisation
of bilayer 2D gases with controlled coupling. Finally, chapter 8 summarises the

work and gives an overview of experimental prospects.
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namely weakly-interacting 2D Bose gases in harmonic traps. A phase transition
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unique to 2D systems is the BKT transition, and this is described for a discrete
system in the first section of this chapter. We then move on to a specific physical
model of dilute Bose gases in 2D. We begin our analysis with a description of an
ideal gas in a 2D harmonic trap, which exhibits saturation-driven Bose-Einstein
condensation. Furthermore, we consider the crossover to the 3D regime as a
function of temperature and axial confinement of the gas. Next, we introduce
contact interaction between particles and examine various treatments of their
effect. We consider the density and phase fluctuations separately, which prevail at
different temperature regimes. We find that the phase fluctuation is the dominant
contribution at low temperatures, and that the effective Hamiltonian in this regime
can be mapped to the 2D XY model in which BKT transition occurs. We give
detailed description of the phase fluctuation in 2D Bose gases including bilayer
system consisting of two 2D gases with variable coupling. Finally, we remark on the
non-equilibrium dynamics of 2D Bose gases quenched out of the BKT superfluid
phase. We identify the connection of dynamical critical phenomena to equilibrium

scaling and introduce renormalisation-group treatment of such physical phenomena.

2.1 The BKT transition

The microscopic theory of phase transition in 2D systems was first introduced
by Berezinskii, Kosterlitz and Thouless [6, 7]. Detailed theoretical derivation is
outside of the scope of this thesis, and we use a simplified argument to introduce
the central concept of the theory.

The characteristic model of BKT theory is the so-called 2D XY model onto
which, with certain conditions, many physical realisations of 2D systems can be
mapped [49]. Consider a 2D square lattice of classical fixed-length spins s in 2D,

with nearest-neighbour interactions of the form

H=-K> s;-s;=—K) cos(6; —0;), (2.1.1)
(i:4) (i:4)
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where 6 is the angle of the spin. In the continuous limit, and at low temperature

where all spins are approximately aligned, expansion of Eq. (2.1.1) gives
H=K / (VO(r))2d?r, (2.1.2)

where K’ generally differs from K. Two distinct types of excitations can be
considered in 2D systems: phonons and vortices. Phonons are smooth deformations
of phase field # with wavevector k and the significant effect of the low-dimensional
system is that phonons exist at any finite temperatures. On the other hand, the
vortex excitations have integer multiples of 27 phase winding around a point, a
vorter core. The main mechanism underlying the transition in 2D systems was
identified by BKT to be vortex excitations [50]. While phonons are present in 2D
systems at low temperature they are not strong enough to break the superfluidity;

but vortex excitations destroy the quasi-order.

The presence of such a vortex-induced critical point can be identified in a simple
argument in terms of the single vortex free energy F, = E, — T'S,, presented by
Kosterlitz in Ref. [50]. We first consider the energy of a vortex placed at the centre
of the system with circular geometry of radius R. The energy of such excitation is

B, =K' /R Lr = oK’ ln<R>, (2.1.3)
e §
where we introduce a short-range cutoff &; this is the lattice constant for discrete
systems and for an atomic system the natural choice is the healing length that
we introduce later.

The entropy associated with a vortex with area of its core 7¢? is related to
the logarithm of the number of possibilities of spatial configurations. For a single
vortex, this is given by S, = 2kpg ln(g), which comes from the number of possible
arrangements wR?/m&%: the area of the system divided by that of a single vortex.

Finally, the free energy associated with a vortex is

F, = B, — TS, — 2n(K' — *2T) ln(?) (2.1.4)

(e
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We notice that this changes sign at 7, = 7K'/kg. At high temperature 7, <
T, the vortex excitations are favoured while 7" < T, indicates stability against
vortices; thus there is a sudden qualitative change in the behaviour of vortex
excitations. Furthermore, while the vortex-proliferated system exhibits short-
range coherence with exponential decay of correlation, the phonon-dominated
low-temperature system has only algebraic decay of correlation [50]. The algebraic
decay is extremely slow compared to the exponential decay (in fact the correlation
length is divergent), and this change in the behaviour of correlation function
constitutes a phase transition.

The illustration of the BKT transition in Fig 2.1 shows the discretised phase fields
below (a) and above (b) the BKT transition, obtained by Monte Carlo simulation®.
The long-distance behaviours of phases (angles of small arrows) is quasi-uniform in
(a) while clear phase disruptions are evident in (b). The phase disruption is clearest
around the vortices which are marked with black circles or squares, with different
marker indicating a different winding direction of the phase around the vortex core.
BKT theory predicts that vortices appear even in the quasi-ordered phase; however
vortices of opposing signs of circulations are bound together and screen each other’s
effect at long distance, as illustrated in the left panel by locally disturbed phase field
only around the pair of vortices. Such short-distance excitations are called bound
vortex pairs, and short-distance physics in the proximity of the phase transition
is strongly affected by these pairs. While the analytical treatment of such pairs
is difficult, the renormalisation-group technique can correctly incorporate them
through a series of renormalisations of the short-distance effects. This led to the
precise derivation of the critical point in 2D system by BKT [6, 7], which was first
confirmed experimentally by Bishop and Reppy [51], in 2D liquid helium.

The disruption of phase by vortices, in panels (a) and (b) can be clearly seen
in phase profiles along a line, as plotted in (c) and (d). A more quantitative
argument can be made using the correlation function g,(r) = (s; - s;) where the

mean is taken over pairs of spins (4, 7) with equal distance r, as well as over many

lusing a python implementation in https://github.com/Shiling42/XY-MODEL
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Figure 2.1: The illustration of phase fluctuations in the 2D XY model. Illustrations
of the phase field on 2D lattice at low (a) and high (b) vortex density. (c,d) show the
phase profile along lines indicated by arrows in upper panels. (e,f) plot the corresponding
scaled correlation functions.

realisations of phase fields. The theoretically predicted correlation functions in
superfluid and normal phases are plotted in Fig. 2.1 (e) and (f). There is a
qualitative difference in these functions, with the low-temperature phase having
maintained correlation at long distance. This is the result of quasi-long-range
order with diverging correlation length. The correct functional form in the SF
regime was derived by BKT [6, 50] to be an algebraic form g(r) oc =" with
temperature-dependent exponent 1 = T'/4Tgkr. At higher temperature, the decay
of correlations is much faster, following an exponential function [50]. From this, we
see that the correlations decay to zero at infinite distance » — oo in both phases,

in accordance with Mermin-Wagner theorem [4, 5]. The temperature dependence
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of n implies the value of n at the critical point,
ne = 0.25. (2.1.5)

This value is universal, meaning that this relation holds regardless of microscopic
details of the physical system. However, the critical value is expected to be different
for finite-size systems, with logarithmic dependence on the system size L [52],

1(00)
1 b)
L+ %1n(L)+C>

with non-universal constant C' ~ 0.5 [53]. For the square-lattice 2D XY model,

(L) = ( (2.1.6)

the size L is defined by the size of the systetm in the number of lattice sites
along one direction; in continuous systems, L is well approximated by the system
size divided by the smallest length scale for the system dynamics, for example,
the healing length for Bose gases.

The BKT transition occurs in a wide range of physical systems such as liquid
helium [51], superconducting films [54], Josephson junction arrays [55], ultracold
atoms [14] and polariton condensates [56], which all lie in the XY universality
class. We will take a detailed look at the case of a dilute Bose gas in 2D harmonic

trap in the rest of this chapter.

2.2 Ideal Bose gases in a 2D harmonic trap

We begin our analysis with a non-interacting gas in a 3D cylindrically-symmetric
harmonic confinement with large anisotropy w, < w,. In contrast to the uniform
2D Bose gases in the thermodynamic limit where long-range order is precluded, this
trapped system undergoes a BEC transition even in the strict quasi-2D case,

as we see below.

2.2.1 Equation of state

We consider a harmonic trap with weak in-plane and tight axial confinement
V(r,z) = tmw?r? + Jmw?2? with large anisotropy w, < w,. For temperatures

hw, < kgT < hw,, we can treat the z degree of freedom quantum-mechanically while
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radial kinetics is treated semiclassically. For this nonuniform system, we employ the
local density approximation (LDA), in which we replace global chemical potential p
by p— V' (r). This gives a local density by integration over the Bose distribution [57]

(oo (2 v o) -1}

m

=3 G

1 [e.e]
=5 z_%ln(l — BV vk, (2.2.1)

where § = 1/kgT. An illustration of this density distribution is shown in Fig. 2.3.
Firstly, we consider a situation where the 2D approximation is good kgT < hw.,,
such that the population of axial excited states are negligible and only v = 0

contributes to Eq. (2.2.1). The total number of atoms are
2, 1 Bu—BV (r)
N(T) = —/d 7’—2111(1 — et ), (2.2.2)
At

The critical atom number for the ideal-gas BEC transition is found by setting u

to zero. Eq. (2.2.2) can then be solved and gives

7T2 kBT 2
Nyoy = = , 2.2.3
a=7 (50 223

or equivalently,

V6N hw,

Tc?d:
' 7Tk’B

(2.2.4)

This number coincides with the one obtained by a quantum-mechanical treatment
of ideal Bose gases in a purely 2D harmonic trap in the thermodynamic limit; the
maximum number of atoms that can be placed in excited states of a harmonic
oscillator V(r) is Ng24, and atom number exceeding this value results in the
macroscopic occupation of the ground state. It follows from Eq. (2.2.1) that the
central phase-space density (PSD) D = n)3 at the critical point is divergent

for a non-interacting gas.
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2.2.2 Effect of the third dimension

When the temperature is higher than the harmonic-oscillator level spacing in
axial potential hw, < kgT, the system is allowed to explore the excited states in
z direction, and it is expected that the condensation phenomena will smoothly
converge towards conventional 3D BEC transition. This can be seen by incorporating
v > 0 levels in Eq. (2.2.1), and the T, can be found by numerically solving the

implicit equation for given w, and N [57]
T.=a(N)/F(T,), (2.2.5)

where a(N) = Nh?/(2rmkp) and

F(T,) = —/d27“ i In ll - exp<_v(;)3;cymz>1 . (2.2.6)

We plot the resulting critical temperatures, rescaled with the purely 2D result 75, o4 as
a function of hw, /kpT: 24 in Fig. 2.2. We find that the critical temperature smoothly
crosses over from 3D to 2D scaling at around hw, /kgT ~ 0.5 where the quasi-2D
scaling is defined as T,./T, g = 1 — exp(—hw, /kpT,24)/2¢(2)3/? [57]. For our typical

experimental parameters the ratio hw,/kgT 2 1 is comfortably in the 2D regime.

1 I
0.8+ - = quasi-2D limit
N L S 3D BEC
06
&~
0.4+
0.2 L : : : ‘
0 1 2 3 4
hw, kT

Figure 2.2: The condensation temperature in the 2D-3D crossover regime around
hw, ~ kpT. The dotted line is the scaling of the 3D BEC critical temperature in a 3D
harmonic trap and the dashed line is the scaling for a 2D BEC.
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2.3 Interacting Bose gases in 2D

We now introduce contact interactions between constituent particles. This changes
the nature of the system fundamentally, beyond the change in equation of state
caused by the addition of a mean-field potential. As we will see, it is found
that the critical point that we reach in experiments with finite interaction is the

interaction-driven BKT transition, instead of the saturation-driven BEC transition.

2.3.1 Interaction in quasi-2D Bose gases

To consider the interaction of 2D Bose gases, we first notice that the quasi-2D
limit typically realised in the lab is insufficient for the scattering problem to be
truly 2D [16, 49]. This is most easily seen by the comparison of the length scale of
the system along the z direction, given by the Gaussian ground-state wavepacket
with its characteristic size ¢, = \/m ~ 1pm to the 3D s-wave scattering
length of 8Rb atoms, a, ~ 5.3nm [58]. This means the scattering is still 3D,
while the motion of atoms is constrained to 2D. As such, the a, determines the

interaction strength following [59]

Arh2a V8mag h?
g= [z o) ~ i

2.3.1
m by m (2.3.1)

where p(z) is the density distribution along the z direction and the last part
is satisfied for quasi-2D limit, which is a good approximation for the range of
parameters used in experiments reported in this thesis. For typical experimental
parameters, we have dimensionless interaction strength § = mg/h? = \/8ra/ly =
0.076. We notice that the interaction strength g possesses no intrinsic length scale
associated with the in-plane physics. This is in contrast to the 3D case, where a
is always relevant for the 3D dynamics. This leads to the scale-invariance of the
system, which will be elucidated in Section 2.3.5. The effect of the third dimension,
as discussed in Section 2.2.2, adds a correction to the interaction strength of the
gas through the broadening of the wavefunction along the z direction. This effect

can be incorporated into Eq. (2.3.1) and renormalises the interaction strength

to ger = g\/tanh(hwz/%’BT) [57, 59].




2. Theoretical Background 19

2.3.2 Mean-field approach

We now approach the equation of state of 2D Bose gases using the mean-field
treatment, which replaces the external potential V' (r) with Veg(r) = V(r) + 2gn(r).
The significant effect of this is that the integration Eq. (2.2.2) can now be made
arbitrarily large by setting appropriate pu. This means that the condensation
phenomena is absent in an interacting system, at least in the mean-field picture.
The critical point, if present, is then the interaction-mediated one, and we find that
the BKT transition is the mechanism behind it as we see in the following sections.

Using the mean-field approach, we can make a prediction of the density distri-
bution in a harmonic trap, at sufficiently high temperatures. For this, we revisit
the expression for the local density Eq. (2.2.1) with the addition of a mean-field
potential. To reach a self-consistent solution, we use an iterative approach given
in Ref. [57]. The result is shown in Fig. 2.3, together with the ideal gas limit
Eq. (2.2.1). We observe significant broadening of the density distribution as the
interaction is increased, which is a direct consequence of additional mean-field
potential around the centre of the trap.

For interacting gases, the effect of a third dimension has a known effect on the
density distribution. We plot the radial density distribution for the weak quasi-2D
limit &, = hw, /kgT < 1 in Fig. 2.3 on the right. The slope of the lines in Fig. 2.3
right panel represents the Gaussian width, which converges to the quasi-2D limit as
we increase the value of «,. By comparison of curves at different «,, we find that

W, 2 1 is already a good approximation of the quasi-2D limit w7, > 1.

2.3.3 Suppression of density fluctuations

We now consider the fluctuation properties of 2D Bose gases. The full Hamiltonian

of 2D Bose gases with contact interaction is

i o TGt ()& () B () T ()], (2.3.2)

where \f/('r) is the bosonic field operator at location . This neglects the harmonic

potential, which will be incorporated using LDA later in this chapter. In Eq. (2.3.2),
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Figure 2.3: Mean-field density distribution in the harmonic trap. The temperature is
set so that the system is deep in the thermal regime. (left) Density distribution from
MF theory at varying interaction strength, calculated using (2.2.1) with peak chemical
potential g = 10~%. The black dashed line is the ideal gas prediction. (right) Density
distribution at varying axial trapping frequency: «J, = 0.1 is close to 3D limit and 7, = 3
is deep in the 2D regime. The density distributions are shown in log-linear plot as a

function of squared distance 72, such that a Gaussian density distribution leads to a

straight line.

the mean interaction energy is given by the g(n?)/2. So at sufficiently low
temperature, if we keep the mean density fixed the energy is minimized by reducing
the density fluctuations. The temperature regime for suppressed density fluctuation

is thus found by comparing the thermal and interaction energies, kg7 < g{n) or

D> 21 (2.3.3)
g

where D = (n)\3, is the PSD of the system. As we will see in Section 2.3.5, D > 1
is already a sufficient criteria for suppressed density fluctuation. This criteria is
almost always satisfied for the range of parameters used in the experimental work
of this thesis, except for the far edges of density distributions in harmonic trap
which we only consider for thermometry of the gas. With the suppression of density
fluctuations the kinetic term of Eq. (2.3.2) reduces to only having a contribution

from phase fluctuation and we can approximate Eq. (2.3.2) to

Hyg = ni/d%(Vgp(r)){ (2.3.4)
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where we approximate the Bosonic field operator in terms of the density and phase,
\Tl(r) ~ /ne?") and neglect the interaction term which is only an additive constant
for the suppressed density fluctuation. We find from Eq. (2.3.4) that the 2D Bose
gas at low temperature exhibits ‘stiffness’ against phase modulations. While this
is a good approximation at T' < T, as the temperature is increased close to the
critical point the short-distance physics such as vortex pairs start to take effect and
the population of thermal components without ‘stiffness’ becomes large. In such a
case, we obtain an effective Hamiltonian describing the long-range behaviour of the
system by replacing the total density n by the superfluid density n, < n [60].
Importantly, the effective Hamiltonian Eq. (2.3.4) is equivalent to the low-
temperature (spin-wave) effective Hamiltonian of 2D XY model Eq. (2.1.1). Assum-
ing that Eq. (2.3.4) is a good approximation near the critical point (as indeed it is,
see Sec. 2.3.5), the critical point from the simplified argument in Section 2.1 can
now be expressed for atomic systems as T. = mng h?/2mkp by which we recover the

well-known expression for the universal superfluid density at the critical point [60],
n A, = 4. (2.3.5)

2.3.4 Classical-field approximation

While the mean-field approach works well in the normal regime, an alternative
approach is needed at lower temperature in the fluctuation region. This is because
near the critical point, the perturbative approach to the ideal-gas theory does
not work well, as discussed in Ref. [17]. To better characterise the system in the
fluctuation region, the field operators in Hamiltonian Eq. (2.3.2) can be treated
as a classical field?, which amounts to replacing \if(r) with a complex number

Y(r).  The resulting Hamiltonian is
H= /d% hiva V) + Lo (2.3.6)
2m 2

This approach has wide applicability, from the prediction of the critical point [17] to

the detailed understanding of equation of state in the fluctuation region [18]. We will

2The temperature needs to be high enough that the quantum effects are not important; this is
almost always satisfied for typical experiment with 2D Bose gases.
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also use the classical-field Monte-Carlo simulation of our specific experimental system
using this method to benchmark our experimental results, as presented in chapter 4.

Based on the classical-field simulation, the BKT critical point in weakly-
interacting 2D Bose gases was predicted back in 2001 by Prokof’ev et al. [17]. The
authors used the finite-size scaling of an uniform system to identify the superfluid

critical point in 2D gas and obtained the critical total PSD for the BKT transition

D, = Nt Ay, = ln<g>, (2.3.7)

with & = 380(3) [17]. For our experimental parameters, we thus predict the critical
PSD to be D, = In(£/0.076) = 8.5. Furthermore, the authors of Ref. [17] predicted

the scaling of quasicondensate, defined by

Q = 2{|v*)* — {[v[*). (2.3.8)

In terms of density we can define the quasicondensate density nq. by ngc = 2(n)? —
(n?), which is zero for thermal gas with Gausssian fluctuation (n?) = 2(n)? while
the low-temperature gas with suppressed density fluctuation has (n?) = (n)? and
nqe is equal to total density. The temperature scaling of the quasicondensates are

given later in this chapter, in Fig. 2.4 and Fig. 2.5.

2.3.5 Universal, scale-invariant equation of state

As we have already seen in Section 2.3.1, the quasi-2D Bose gas possesses intrinsic
scale-invariance, which is closely connected to the symmetry of the Hamiltonian [61].
As the interaction energy cannot provide an absolute energy scale, the only relevant
scales are the chemical potential and temperature [62]; this means that the equation
of state of the gas is expected to be only dependent on the ratio of chemical potential
to temperature pu/kgT for a given interaction strength g. This fact was confirmed
in experiments using 2D Bose gases in harmonic traps [62, 63]. Furthermore, the
authors of Ref. [17] pointed out that the interaction dependence can be absorbed

by referencing the chemical potential to the value at critical point, using

x =1t (2.3.9)
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where i = pu/kgT and /i, is the rescaled critical chemical potential /i, = gln(l?’g'Q).
This leaves the equation of state only dependent on X, realising a universal
description in the fluctuation region. This remarkable feature was confirmed
experimentally with harmonically-trapped 2D Bose gases using LDA in Ref. [62-64].
Fig. 2.4 shows a universal curve of total, quasicondensate and superfluid density,

based on the calculation in [18].

Figure 2.4: Universal equation of state around the critical point in 2D Bose gases,
data obtained from [18]. The PSD of total, quasicondensate and superfluid components
are plotted against the unitless parameter X. The dotted black line is the Hartree-Fock
mean-field (HFMF) prediction of the total density distribution [65], which smoothly
connects to the results of [18].

2.3.6 Application of the universal EOS to trapped gases

While the universal description of 2D Bose gas above was derived for an uniform
system, the predictions in Fig. 2.4 can be applied to harmonically-trapped 2D Bose
gases by invoking the LDA3 which amounts to replacing the chemical potential

with a local effective quantity,

mw?r?

2

Foe (1) = 1 — (2.3.10)

3The applicability of the LDA in an interacting 2D gases in a harmonic trap was discussed in
Ref. [66] in which the authors demand the condition Aiw, < gkgT for LDA to be reasonable; this
is always satisfied for the range of parameters used in this thesis.
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Using this, we show in Fig. 2.5 the predicted density profiles in a harmonic trap for
three different values of peak chemical potentials. The universal description is only
applicable in the fluctuation region | X| < 4 and we have observed that the extension
of the description to normal regime X < —4 often results in negative density. To
correctly characterise the low-density region at the far edges of trap, we use mean-
field prediction shown in 2.3.1 with quasi-2D limit (w0, — o). The obtained MF

density distribution smoothly connects to the universal description at X ~ —2.
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Figure 2.5: Density profiles of total (black), quasicondensate (red) and superfluid (blue)
components. Central chemical potentials are u/p. = 1.2,0.9 and 0.4. from left to right,
interaction strength g = 0.076 and the radial trap frequency is w,/27 = 11 Hz. The
temperature of the gases are 65, 71 and 84 nK, chosen such that total atom number is
5 x 10%.

From Fig. 2.5, the qualitative difference in the density distribution is evident
between different peak chemical potentials, below u < u. and above the critical
point u. < p; a narrow central peak consisting of large fraction of quasicondensate
appears above the critical chemical potential.

To fully characterise the emergence of bimodal distribution, we plotted the total
density distributions over a wider range of peak chemical potentials in Fig. 2.6
(left panel). We observe the gradual emergence of a central peak around r* < 500,

on top of a broader Gaussian distribution.
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Figure 2.6: FEmergence of a bimodal density distribution and two-step transition.
(left) Density distribution of a harmonically-trapped 2D Bose gas, with peak chemical
potentials from p/p. = 0.13 (blue) to pu/pu. = 3.7 (green). The temperature of the gas
was chosen such that total atom number is around 5 x 10%. (right) The fraction of atoms
in the Thomas-Fermi peak (purple, square), superfluid component (green, circle) and
quasicondensate component (blue, triangle) in a harmonic trap. The blue dotted line is
the linear extrapolation of the quasicondensate fraction data.

For more quantitative comparison, we have fitted the density distribution

with a bimodal model,
F(r) = ae™**/*7 4 bmax(1 — 22/ R2,0), (2.3.11)

where the first term is responsible for the broad Gaussian of normal gas and the
second term arise from the Thomas-Fermi density profile of low-momentum modes
in a harmonic trap [67]. The Fig. 2.6 right panel shows the fraction of atoms in the
inverted parabola (Thomas-Fermi peak), along with the fraction of atoms in the
superfluid and quasicondensate components. The superfluid component shows a
sharp onset at around Tsp ~ 70 nK as a result of finite jump in its density at the
transition, and increases linearly. The Thomas-Fermi component however emerges
smoothly below Trr ~ 80 nK. The emergence of bimodality, often referred to as the
superfluid transition, is more accurately attributed to the emergence of significant
quasicondensate fraction for the range of interaction and trap configurations that
is typically used in our experiment. The middle panel of Fig. 2.5 illustrates this

situation well; the total density shows a clear bimodal shape, with central peak
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consisting of large fraction of quasicondensate and no superfluid. As such, we
treat the critical point Trp separately from the superfluid critical point, and refer

to it as the quasicondensate critical point.

2.3.7 Critical point in a harmonic trap

So far, we have seen that the superfluid transition in a 2D Bose gas occurs at a
critical total PSD Eq. (2.3.7), as well as reviewed the theoretical prediction of the
density distribution in harmonic trap. Combining both, we can make a prediction of
the superfluid critical point in a harmonic trap, as a function of total atom number
and temperature which is a more straightforward guide for our experimental work.

According to Ref. [68], the analytical expression for such a critical point is

D (5) + o (5em )]
Toxr ~ Toog |1+ 212 (L 15+ In L . 9.3.12
BKT ’Qd[ T 6) Tee T ( )

In Fig. 2.7, we show the phase diagram of 2D Bose gases in a harmonic trap. The
superfluid phase boundary obtained from Eq. (2.3.12) agrees with the classical-field
result of Ref. [18] with LDA.
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Figure 2.7: Phase diagram of harmonically-trapped 2D Bose gases, obtained by the
application of classical-field results in Ref. [18] to a harmonic trap with w, /27 = 11 Hz
using the LDA as described in Section 2.3.6. The green points indicate the onset of finite
superfluid fraction and blue points are the atom number where 10 % quasicondensate
fraction is observed when increasing the atom number at fixed temperature. The red
dashed line is the analytical expression for the superfluid transition in harmonic trap, Eq.
(2.3.12).
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2.4 Phase fluctuation in 2D Bose gases

As already pointed out with Eq. (2.3.4), interacting 2D Bose gases at low tem-
perature are dominated by phase fluctuations, characterised by the phase stiffness
Hamiltonian in Eq. (2.3.4). As described in Section 2.1, the equivalent model
of the 2D XY model possess a superfluid critical point while being dominated
by fluctuations at any nonzero temperature. We give a detailed description of
the properties of phase fluctuations in 2D Bose gases and extend the theory to
harmonically-trapped and bilayer 2D Bose gases which are of interest in order

to understand the experimental results.

2.4.1 Phase correlation function

In a uniform quasi-2D Bose gas in the vicinity of BK'T critical point, density
fluctuations are strongly suppressed and excitations are limited to phase modes.
As a result, the long-distance behaviour of the first-order correlation function

reduces to a phase correlation function,
g1(r,7) = (U)W (r')) ~ (e O0-90D). (2.4.1)

Since the BKT critical point is below the quasicondensate critical point, we
expect the BKT transition to be observed through an investigation of phase
correlation functions.

So far, several experimental attempts have been made to characterise the phase
fluctuation of trapped 2D Bose gas. The first attempt used the matter-wave
interference contrast [14] of a stack of several 2D gases. This quantity is related to
the average phase coherence of the system [69]. Another method used the density
noise of a single 2D cloud after free expansion, as a result of interference between
separate parts of the cloud during the expansion [70]; the power spectrum of this
density noise is related to the phase coherence of the system [71].

As we describe in Chapter 3, we performed experiments to locally probe the
phase fluctuation of a 2D system by a matter-wave interferometry technique, with an

addition of a density slicing method. This allows us to directly compute the phase
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correlation function in Eq. (2.4.1) from the experimental data as described in

detail in Chapter 5.

2.4.2 Phase fluctuation in an inhomogeneous system

The LDA treats the inhomogeneity of trapped Bose gases by replacing the global
chemical potential with a local one defined by u — V' (r). The assumption for LDA
is that within a length scale shorter than any significant change in V(r), local
equilibration is established. In this spirit, the phase fluctuation properties can be
treated to obtain the approximate form of correlation decay in an inhomogeneous
system. The authors of Ref. [26] proposed applying LDA to the correlation properties
of the 2D gas by comparing the LDA treatment of phase fluctuation to spin-wave
theory in the presence of a harmonic trap. This procedure of LDA for phase
fluctuations is called local correlation approzimation (LCA); the essence of the
procedure is the replacement of the algebraic exponent 1 by a local one n(r, '),

Ny

— 2.4.2
n(r)n(r’) (242

n(r,r’) =mno

where 7 is the local algebraic exponent at the centre of the trap and ng is the peak
density. We compare the correlation function for inhomogeneous and uniform

systems in Fig. 2.8.

2.4.3 Density fluctuation after free expansion

An intriguing consequence of the phase fluctuation in 1D and 2D quasicondensates
is the appearance of characteristic density fluctuation after free expansion, due to
the interference of separate parts of the same cloud during the TOF. In 1D, the
phase fluctuations translate into strong density fluctuations along the transverse
direction and such an effect was extensively studied in both single-well and double-
well cases [72]. In a double-well configuration, the density correlation analysis gave
the effective temperature of the common phase degrees of freedom, providing a
complementary observable to the relative phase measurements based on matter-

wave interference [73]. In 2D, some theoretical and experimental results [70-72, 74]
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Figure 2.8: Local correlation approximation for the correlation function. Normalised
correlation function in a uniform (black) and inhomogeneous (purple) systems are shown,
on both panels with different axes scaling. The inset shows the Thomas-Fermi density
distribution used to calculate the correlation function with LCA.

confirm the appearance of a characteristic density power spectrum. The density

correlation function is defined by

(n(r)n(rs))
n(r1))(n(rs))’

where the expectation is taken over an ensemble of realisations. The density

g2(T1,72) = < (2.4.3)

correlation function can be probed by the experimental technique that was employed
in this thesis (see Section 5.4.2); the two-point correlation function of the sliced
density corresponds to Eq. (2.4.3) with correction due to the finite thickness L,

and finite imaging resolution.

2.5 Bilayer 2D gases

Motivated by our specific experimental system of double-well 2D Bose gases, we now

consider coupled bilayer 2D systems. The effective low-temperature Hamiltonian

Eq. (2.1.2) becomes [75]

H =K\ [(Voi(r)Pdr + Ka [(Toa(r)*dr
+ J/cos(gbl(r) — ¢o(7))d*r, (2.5.1)
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Figure 2.9: Theoretical prediction of the correlation function after 3 ms TOF in the
superfluid regime, obtained from Ref. [71]. Calculation was performed for an uniform
system and assuming no in situ density fluctuations.

where ¢;(r) with i = 1,2 are the phases of layers 1 and 2, respectively. The
linear coupling of the two layers is characterised by energy scale J [76]. Usually,
such a situation is studied via symmetric and antisymmetric superpositions of

the phases in each layer,

0(r) = ¢1(r) — da(r),
p(r) = ¢1(r) + ¢o(r).

The Hamiltonian Eq. (2.3.4) can now be expressed in terms of 8(r) and ¢(r),

Hiow = Ha + Hg + Hy, (2.5.2)
H, = (K, + ) / (VO(r)2d?r + J / cos(0(r))d?r, (2.5.3)
H, = (K + K>) / (Vo(r))2d?r, (2.5.4)
H, = (K1 — Ka) / VO(r)V(r)d?r. (2.5.5)

We thus see that with K; = K5, the mixing Hamiltonian becomes zero, H,, = 0,
and the symmetric and antisymmetric degrees of freedom decouple.

In atomic systems, the condition for decoupling of symmetric and antisymmetric
modes is the same density in the two layers n; = ny. Such decoupling should be
treated with care in 2D atomic systems; while the density fluctuations are suppressed

in each of the layers at sufficiently low temperature, careful treatment of their effect
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in a bilayer system is needed to confirm the decoupling of phases 6(r) and p(r).
In the special case of a pair of 1D gases, the symmetric and antisymmetric modes
decouple and stay out of equilibrium for an extended period of time following a
quench [31]. In the following, we look at equilibrium properties of bilayer 2D Bose

gases for the two separate cases of zero coupling J = 0 and finite coupling J > 0.

2.5.1 Decoupled layers

We first take a look at the case of J = 0, a pair of independent 2D Bose gases.
In atomic systems, this can be realised by a sufficient spatial separation of the
two layers and most of our experimental investigation focuses on such a scenario,
as detailed in Chapters 5 and 6. As we briefly described in Chapter 1, our main
experimental observables for the 2D Bose gases are the relative phases 6(r). In
this section, we describe the connection of relative phase fluctuation properties and
the physics of a single 2D system, such as the BKT transition.

In the following, we show that spatial correlation of the relative phases (r)
is related to the one-body correlation function g;(r,r’) of individual layers in the
absence of the coupling J. We start by considering the two-point correlation of

relative phases of two independent clouds:

C(r,r') := (v

(|r)\If£(r)\I/J{(T')‘I’2(7“/)> (2.5.6)

1
(W ()P (r)2)
where U;(7) are the bosonic field operators at location 7 of clouds (j = 1,2). We
describe U, (7) in terms of the density-phase representation as V,(r) = \/m '),
Assuming uniform and equal density n;(r) ~ ngp for each cloud and small density

fluctuations we can simplify the expression to W;(r) ~ \/nape® ™. Writing the

relative phase of the two fields 0(r) = ¢1(r) — ¢2(r) gives
Clr, o) = (0040 (257)

which is the phase correlation function of relative phases 6(r) that we probe
experimentally throughout this thesis. If the two clouds in the double-well are

decoupled, the fields W, (r) and Ws(r) are fluctuating independently. Furthermore,
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assuming that the two clouds are identical and have the same correlation function

gi1(r,7r"), we find

LU )
) = B e E gy (258)

As such, we find that the phase correlation function C(r,r’) is closely related

to the first-order correlation function.

2.5.2 The effect of finite coupling strength

We now take a look at the effect of coupling J > 0. In the limiting case of infinite
coupling J — oo, the phases in two layers ¢y, ¢o are forced to align ¢;(r) = ¢o(r).

If K1 = K, we arrive at a simple effective Hamiltonian [76]
Hips = 2K, /(V¢1(T))2d2r. (2.5.9)

This is the same as the single-layer case but with twice the coefficient K because of
the presence of second layer. We thus expect that in the presence of strong coupling,
the BKT critical temperature will be doubled, T pijayer = 27-.

At intermediate strength of the coupling J with identical layers K; = Ks, the

effective Hamiltonian for the antisymmetric degree of freedom Eq.(2.5.3) is
H, = 2K / (VO(r))2d?r + J / cos(6(r))d?r. (2.5.10)

From the two limiting cases J = 0 and J = oo, we expect the BKT critical
temperature to smoothly change from T, to 27, as the coupling strength is increased.
Furthermore, it is found that the competition of thermal, interaction and phase-
locking energy scales in such a system results in a rich variety of novel phases, as
predicted in theoretical works [75-77]. In addition, many intriguing NEQ phenomena
can be probed by dynamically modulating the coupling strength J. One example is
a sudden quench of the J from zero to a finite value, with phase-imbalanced initial
state. The relaxation towards the phase-locked equilibrium state and its relation
to the sine-Gordon model is a subject of theoretical interest [78-80]. An opposite

quench can be considered, in which a phase-locked state is prepared and the J is
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suddenly turned to zero. The relaxation dynamics towards equilibrium, as well as
the relation to BKT critical phenomena, has been studied theoretically [45, 81]. We
have performed experiments where the time evolution is investigated after quenching

the bilayer coupling to a finite value from close to zero as described in Chapter 7.

2.6 Non-equilibrium dynamics across a critical
point

Non-equilibrium critical dynamics are ubiquitous, including the boiling of water,
rapid financial market crashes [82] and the emergence of structure in early universe
[42]. Their intriguing connection to universal equilibrium critical scaling is an active
field of study [2]. In a typical experimental setting, the Hamiltonian of the system
is quenched or ramped to a different one which (in equilibrium) corresponds to a
different phase; the system is then expected to evolve towards the new equilibrium
characteristic of the new phase. This is schematically illustrated in Fig. 2.10.
The relaxation dynamics is generally affected by the presence of a critical
point even in the simplest case of dynamics with a single timescale. For example,
the emergence of a global order parameter after a dynamical second-order phase
transition is related to the equilibrium universality class, through the Kibble-
Zurek mechanism [2]. More complex relaxation dynamics may occur, which has
multiple timescales with nontrivial transient states often surviving for an extended
period of time. An example of this is the critical slowing down as a precursor

of sudden dynamical transition [82].

2.6.1 Renormalisation group theory

Universal critical phenomena, both in and out of equilibrium, are often closely
related to renormalisation group (RG) theory. Intuitively, RG theory treats a given
system characterised by a small set of parameters {s;} in successively coarse-grained
spatial scales. With an appropriate choice of rescaling protocol, each coarse-graining
step can be constructed so that it only changes the set of parameters {s;} — {5;}

while keeping the equation of motion unchanged. The set of parameters {s;}
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i) single timescale T
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ii) multiple timescales

New equilibrium
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Figure 2.10: Emergence of an equilibrium distribution following a quench across
phase transition (PT). A quench is a sudden (non-adiabatic) change that takes an initial
equilibrium system (green, left) to the other side of the PT with a non-equilibrium (NEQ)
distribution (purple, top). Since the NEQ state often cannot be rigorously attributed to
either side of phase transition, the NEQ state is distributed across the phase boundary
(dotted line). From the NEQ state, various distinct relaxation dynamics towards the
equilibrium state (blue, right) are expected, of which two cases are shown. i) The simplest
case of single timescale towards the equilibrium. ii) Generally, more complex dynamics
occurs with multiple timescales, e.g. when there are multiple excitations involved at the
interface of distinct phases, or when the presence of critical point significantly alters the
rate of equilibration.

that stay relevant under the coarse-graining are the fundamental properties of
the phase transition relevant at all length scales, and these are the important
quantities characterising the universality class of the phase transition [83]. For
infinitesimal coarse-graining steps, for example of the length scale r — r(1 4 dl),
the change in the parameters is often expressed in terms of differential equations,
which are called RG flow equations.

As an example, we briefly introduce the BKT renormalisation group which
was used to formally prove the BKT transition in 2D XY model [50]. System
parameters of interest are the vortex fugacity g, = e, where €. is the vortex
core energy, and the coupling strength K/T', and the renormalisation of length
scale integrates out the short-range physics such as paired vortices, to obtain new
parameters {g,, K/T}. As the short-range physics is successively integrated out, we

are left only with long-distance physics such as free vortices and spin-waves. The
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BKT RG procedures can be expressed by coupled differential equations [50]

dx (x + 2)%y?

dl ]l

dy wy

A 4 26.1
dl [’ (2.6.1)

where ¥ = 7K /T —2 and y = be~P; here b is a model-specific nonuniversal constant
and €, denotes the vortex core energy. In Fig. 2.11, we show the RG flow diagram
of Eq. (2.6.1). We notice = 0 separates two distinct regimes under the evolution
of [. At high temperature x > 0, the y goes to infinity at the long-/ limit; this
indicates that the vortex energy is close to zero, and vortex excitations can occur at
effectively no cost, whereas z < 0 means y — 0 so that the vortex excitations are
suppressed, and we expect quasi-order in the system. Indeed, a critical point can be
identified by nontrivial fixed points of an RG flow, i.e. % = % = g and T # 0, 0o [84].

This gives T, = mK /2, in agreement with the single-vortex argument in Sec. 2.1 [50].

0.1

-0.1 -0.05 0 0.05 0.1

Figure 2.11: Plot of BKT RG flow, Eq. (2.6.1) near z = y = 0. The arrows indicate
increasing [. The purple thick line separates two regimes with different [ — oo asymptote,
y — 0 (below the line) or y — oo (above the line or = < 0), separating the two BKT
phases.
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2.6.2 Real-time RG

Even for a well-understood equilibrium phase transition, its non-equilibrium coun-
terpart is generally very difficult to treat analytically. Therefore, a wide variety of
theoretical tools have been imported from theories of equilibrium phase transition to
tackle non-equilibrium dynamics across a critical point, e.g. real-time RG treatments
have been used to predict various dynamical critical phenomena [85, 86]. For the non-
equilibrium BKT critical dynamics, an RG-based treatment was proposed in Refs.
[45, 46]; the situation considered in these works is the dynamical vortex unbinding,
which occurs after quenching the system from superfluid to thermal phase.
After suddenly increasing the effective temperature of a 2D system above T,
the unbinding of vortex pairs into free vortices is expected to be slow because of
their energy barriers [45]. The goal of the real-time RG treatment of the non-
equilibrium BKT transition is to precisely predict the vortex unbinding dynamics,
from a non-equilibrium initial condition of 2D system after a sudden quench. In the
following, we treat a system prepared in a non-equilibrium initial state characterised
by algebraic exponent 1 and vortex fugacity g, at time t,. We then aim to study
its long-time, long-distance behaviour towards equilibrium by coarse-graining the
time and space simultaneously, in a similar manner to the spatial coarse-graining of
equilibrium RG treatment. Formally, one step of rescaling is done for spatial and
temporal coordinates r and ¢, by » — (1 + dl) and t — t(1 4 dl). The resulting
RG equations are then given in terms of ‘low’” parameter [. For simplicity, we use
time instead of the flow parameter by t = tge! [46], which gives
dgy = (2 — 1) Yo
dt 2n) t’

dn 47T2g3
at it

(2.6.2)

From the time evolution obtained from Eq. (2.6.2), the dynamics of vortex density
in non-equilibrium system can be obtained by the mean-field relation of vortex

density n, and g,,n [87],

ny(t) o< exp [—12)] : (2.6.3)
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We plot the time evolution of n and n, with selected initial conditions in Fig. 2.12.
With the initial conditions used in Fig. 2.12, the n flows to infinity and indicates
the transition into thermal state; this is due to relatively high g,(to) values. The
temporal growth of n is linear at long time, while n, scales exponentially in time

with varying time for the onset of sharp increase in vortex density.

= 0.5+
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t

Figure 2.12: The numerical solution of the real-time RG equation Eq. (2.6.2). The
initial condition at tyg = 50 was g,(tg) = 0.05 and 7n(ty) ranges from 0.04 (blue) to 0.22

(green).

Furthermore, we have fitted the numerical solution of RG equations in Fig. 2.12
to obtain the dependence of these dynamics to the initial temperature T" = 419 TgkT.
We use a linear function f(t) = xt + b for the time evolution of 1 and exponential
model f(t) = n.e®%)/7 for the vortex density, as shown in Fig. 2.13 left panels. We
find that the x scale exponentially as a function of the inverse of initial temperature,
k(T) o< e=¢/T from the linear dependence on log-linear plot in Fig. 2.13 top right
panel. The characteristic timescale of vortex unbinding ¢y, depends linearly on the
initial temperature where the initial temperature is close to the critical point, while
the v shows only slow dependence on the initial temperature.

Remarkably, with transformation z = 1/2n — 2 and y = v/27g,, we recover the
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Figure 2.13: The numerical solution of the real-time RG equation Eq. (2.6.2) and their
fit. Left panels show the time evolution of  and n, under the RG flow equation Eq.
(2.6.2), for two selected initial conditions at tg = 50 chosen to be g,(t9) = 0.06, and n(tp)
= 0.06 (blue) and 0.1 (green). The n was fitted with the linear function f(t) = xt + b
and x against 1/n is shown in the top right panel. The vortex density was fitted with an
exponential f(t) = n.e(*"%0)/7 where n. was fixed to n, = 0.01; the fit results are shown
in the bottom right panel, where the arrows indicate the corresponding axes for v and tg.

same form as the equilibrium flow equations Eq. (2.6.1),

dx (z +2)%y?

dt st

dy xy

A 2.6.4
dt ~ t ( )

We then find that the non-equilibrium scaling in time (and space) can be cast
into the equilibrium scaling by an appropriate transformation. This indicates the
universality out of equilibrium, where the scaling parameters for an equilibrium
phase transition matches that of critical dynamics out of equilibrium.

In Chapter 6, we compare the real-time RG predictions to the experimen-
tally observed non-equilibrium dynamics in a 2D system quenched across the

BKT transition.
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To experimentally prepare a 2D system with ultracold atoms, one must confine

atoms in highly oblate geometries such that the quasi-2D condition Eq. (1.1.1)

39
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is met. To achieve this, we use RF-dressed potentials to create an oblate trap
geometry for the atoms with advantages over optical trapping methods, such as low
heating rates and being defect-free. The robustness of the RF dressing technique
allows a wide range of applications, such as the cold-atom experiments in space
performed by NASA [88, 89] and the atom-chip technologies including compact
atom interferometers [90, 91]. Here, we extend the RF dressing technique and
create a double-well potential using a multiple-RF dressing [34, 92-96]. In addition
to the detailed description of the final trapping technique, we give an account of
the experimental procedures to cool an atomic vapour from room temperature to
degeneracy. We further address the requirements of experimental parameters to
probe the BKT critical phenomena, including the stability and repeatability of
the experiments which are essential to obtain the large amount of data required

for the measurement of statistical properties of 2D gases.

3.1 RF-dressed Quadrupole potentials

We first review the theory of RF-dressed potentials and their characteristics which

are essential for the design of the apparatus of the BK'T experiments.

3.1.1 Atoms in a DC magnetic field

Atoms with total angular momentum F' have magnetic moment pu = —gpugF
where gr is the Landé g-factor and up is the Bohr magneton. In the presence of

a weak DC magnetic field, B = |B], the interaction Hamiltonian is
H=—-pu-B. (3.1.1)
The eigenstates are the Zeeman states |mp) with eigenenergy! E,, = mpgrupB, i.e.
Hlmpg) = En|mp). (3.1.2)

The quantum number my takes integer or half-integer values. For " Rb atoms in

F' =1 in the lowest hyperfine level the states are mrp = —1,0, 1. In the presence of a

"'We have neglected the effect of quadratic Zeeman effect, which is not significant in the range
of magnetic field that we use throughout this thesis.



3. Experimental realisation of a 2D double-well potential 41

magnetic field gradient e.g. |B| o z, the atoms are either attracted to the high-field
(positive x) or low-field (negative x) directions depending on the sign of mpgp. This
makes confinement of atoms possible by creating a quadrupole magnetic field, for

example an anti-Helmholz configuration of two circular coils, which has the form

B = (e, + e, —2e,). (3.1.3)

where b is the magnetic field gradient (units of G/m). We use this trapping technique
in an early stage of our experimental sequence. In the quadrupole trap, we perform
evaporative cooling by forced ejection of atoms with higher than average energy.
This is achieved by applying weak RF field at a frequency w,¢ corresponding to
potential energy in the trap E.; = hw,s. The RF field induces transitions between
magnetic states including states with quantum numbers such that gpmp < 0 which
are untrapped, and atoms in these states leave the trap. Since transitions occur in
an energy-selective manner, the mean kinetic energy of the atoms can be reduced
and rethermalisation by atomic collisions results in lower temperature of the gas.
The procedure is illustrated in Fig. 3.1.

While the quadrupole trap is conceptually and experimentally simple, it has
a major shortcoming that prevents the production of quantum gases. The issue
arises when atoms congregate around the centre of the trap where the magnetic
field is zero and so different mp states become degenerate. Initially trapped atoms
traversing the central region can thus change their internal state into one with
different m g, causing them to leave the trap. This is called Majorana loss, and there
are various techniques to overcome it. One example is the additional blue-detuned
optical dipole trap propagating at the centre of the trap (‘plug beam’), such that
atoms are repelled from the point where the loss occurs. Another technique involves
addition of a strong RF magnetic field, to form a trap with a minimum shifted

from the centre, as we describe in the next section.
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Figure 3.1: Quadrupole magnetic trap and evaporative cooling. (left) Energies of
Zeeman states mp = —1,0 and 1 with g = —1/2 in a quadrupole magnetic field with
gradient b = 100 G/cm. Atoms in the mp = —1 state (purple) are trapped. Black arrows
indicate the magnetic resonance conditions for atoms in the quadrupole trap with an
additional weak RF field at frequency w/2m =5 MHz. Atoms that reach the resonance
become untrapped and leave. (right) Illustration of evaporative cooling. We apply an RF
to remove atoms from the initial energy distribution. As atomic collisions rethermalise
the system, we recover Boltzmann distribution but with a lower temperature.

3.1.2 Dressed-atom formalism

Applying a strong RF field to the atoms in a static magnetic field gives a composite

system of RF photons and atoms in the magnetic field with Hamiltonian
Hiow = Hyy ® H. (3.1.4)

In the absence of atom-photon interactions, the eigenstates of this Hamiltonian

are tensor products of the Zeeman states and Fock states,
Htot‘Nrf> & ’mF> = (Nrfhwrf + mFgF,uBB)‘Nrf> & ’mF>7 (315)

where Ny is the RF photon number. These eigenstates form a ladder of states
with different photon number N, which are generally macroscopic for strong
RF fields. Now let us consider atom-photon interaction Hj, that couples the
RF field and atomic states. The treatment of atom-photon interaction can be
simplified by several steps of approximations. Firstly, for a strong RF field, the

semiclassical approximation can be made such that the RF field is a classical,
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oscillating magnetic field
Byt = Bpe(r) + Big(t). (3.1.6)

In our experimental context, the DC field is in z direction while the RF fields are
in z — y plane, Bpc(r) = b.(2)e, with b,(2) = —2bz and Bi(t) = b,e, sin(wt) +
bye,sin(wit + ¢). RF field can be configured to have either linear (b, = 0) or
circular (b, = b,, ¢ = 7/2) polarisations®>. The amplitude of AC magnetic field
is often expressed in terms of the Rabi frequency, defined by 2 = |gr|ugb,/2h for
a linear RF polarisation and €2 = |gp|ugb,/h for a circular field. We define the
angular frequency detuning from magnetic resonance, 0(z) = wp(z) — wys where
wo(z) = |gr|upb.(2)/h is the magnetic resonance condition.

Within the semiclassical approximation, the Hamiltonian is Hy. = gpupF - Bio.
The detailed treatment of Hy. can be found in Ref. [97], where it is shown that
the rotating wave approximation (RWA) further simplifies the Hamiltonian to a

diagonalised expression in rotating frame
Hpwa = Q,F', (3.1.7)

where Q4(2) = \/m is the generalised Rabi coupling and F” is relative to the
effective direction of the static field in the rotating frame. Eigenstates of Hamiltonian
Eq. (3.1.7) are given by Hrwa|m) = mhS,|m). The resulting dependence of energies
to the spatial position forms a confining potential. The potential shape is given by

the dependence of the generalised Rabi coupling to the position through §(z),

b.(2)\
Vo) = iy (- 18Y g 315)
for atoms in state m. Fig. 3.2 (a) shows the potential V(z) for m = —1,0,1
states; V' (z) confines atoms with 7 > 0 in a potential well centred at the location

where 6 = 0. There is a condition for the atoms to remain trapped as they

traverse the region of magnetic resonance [97, 98]. Depending on the velocity of

2The atom-photon coupling depends the polarisation and gz. This fact was exploited to realise
a gr-dependent species-selective potential of atoms in Ref. [93] by the use of elliptical polarisations

by # by, ¢ = 7/2.
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the particle, the internal state may fail to follow the mpr > 0 dressed eigenstate,
resulting in a nonadiabatic transition into untrapped states by a Landau-Zener
transition [97]. For atoms to be trapped, the Landau-Zener loss rate I" must be

small, i.e. the loss rate must obey [98]

2w Th$)? m
'~ = exp|— < 1. 3.1.9
w P ( 2|lgr|usb 2k3T> ( )

This adiabaticity condition for atoms to be trapped leads the RF-dressed potential

often being called an adiabatic potential. Dressed atoms in a static quadrupole field

(Eq. (3.1.3)) are confined close to an isomagnetic surface which satisfies

hw,
Va2 422 = L (3.1.10)

l9r|1Bb

Fig. 3.2 (b) illustrates an isomagnetic surface. We often refer to the RF-dressed
quadrupole trap as a ‘shell trap’ because of its geometry. In the laboratory,
gravitational force pulls the atoms to the bottom of the shell (indicated by yellow
region in Figure. 3.2 (b)), where the axial confinement along z is tight compared to
the radial direction z,y with typical anisotropy w,/w, ~ 100. Atoms are trapped

at a distance R below the quadrupole node, with

hw,g € Q
=— |1+ ——|, 3.1.11
2|gp|ppb ( V1 —€2W> ( )

where ¢ = the term with ¢ comes from the gravitational sag of potential

__ mg .
2mplgr|ppb’
minimum below the position of the magnetic resonance. The radial confinement
is analogous to a pendulum motion of the atoms as they follow the isomagnetic
surface in the presence of gravity®. On the other hand, the axial confinement

is dominantly determined by the dressed potential Eq. (3.1.8). The oscillation

frequencies in the trap that characterises the confinement, are given by [99]

W, = 2|9F|“Bb\/ Qh(1 e2)3/4, (3.1.12)
hmFQ 2
=/ - 1.1
4R\/ mgR Vi-e (3:.1.13)

for a cylidrically-symmetric circularly-polarised dressing RF field.

3We have neglected the effect of spatially-varying atom-light coupling strength. This is a good
approximation in the parameter regime used in this thesis where the spheroid size R ~ 600 pm is
large compared to the size of the trapped atomic cloud ~ 30 pm.
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Figure 3.2: The RF-dressed ‘shell’ potential. (a) The eigenenergies of uncoupled (Eq.
(3.1.2), dotted lines) and coupled (Eq. (3.1.7), solid lines) systems. (b) The 3D illustration
of the RF-dressed potential minimum in the quadrupole magnetic field Eq. (3.1.3). In
the presence of gravity along the —e, direction, atoms are trapped at the bottom of the
shell indicated by yellow. Part of the shell structure is cut away for clarity.

3.1.3 MRF-dressed potentials

By applying multiple frequency components, we can create a much wider variety
of trapping geometries such as a double-well potential [93, 94, 96, 100] and lattice
[101]. Using this method, we have demonstrated coherent splitting of a BEC and
the observation of matter-wave interference in our lab [94]. The Hamiltonian in

the semiclassical approximation is

Hurr = gripF - | Bpe + Y bjeg sin(w;t + ¢;) | (3.1.14)
J

for RF fields linearly polarised along x. An analytical treatment of multi-frequency
atom-photon coupling is challenging, requiring special care to treat the complex
degeneracy of the states [102]. Nevertheless, simplified techniques to treat such
effect exist thanks to the commensurate frequency combinations {w;} that we use.
We typically use commensurate frequencies with fundamental frequency wy in order
to avoid dense RF transition spectrum mediated by higher-order combinations
of incommensurate frequencies, which leads to a wideband atom loss channel.
With Hamiltonian periodic in time with period 2m/wy, we can resort to Floquet
theory to numerically calculate the eigenenergies [103]. The result of a numerical
simulation with three-component RF double-well potential is displayed in Fig. 3.3.

The amplitudes of the frequency components can be individually controlled to form
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different potential shapes such as single-well, flat bottom potential and asymmetric
double-well. Fig. 3.3 (c¢) and (d) shows the eigenenergies of MRF-dressed atoms,
illustrating the controllability of the potential by the manipulation of the RF
amplitudes. Similarly to the single-RF case, we express RF field amplitudes by

Rabi frequencies for each frequency components Q; = |gp|upb;/2h.
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Figure 3.3: The multiple-RF dressed potential and their controllability. (a) The
MRF-dressed potential with RF frequencies 7.14, 7.2 and 7.26 MHz with amplitudes
[Q7.14, Q7.2, Q7.06] /27 = [20, 35, 20] kHz. z is the distance from the quadrupole node with
a quadrupole gradient b = 95 G/cm. (b) The trapping surfaces for the MRF-dressed
potential configured to be a double-well as shown in (a). Two spheroidal traps with
same origin and different size are created. The difference in the size of spheroids are
exaggerated for clarity. (c) The transformation of the potential from a single-well to
a double-well is accomplished by changing the Q75/27 from 57 kHz (green) to 35 kHz
(blue). (d) Controllability of the double-well asymmetry by the change in Q7 .9¢/27, from
10 kHz (blue) to 30 kHz (green).

3.1.4 Parameter regime for the BKT transition in a MRF-
dressed potential

In this part, we discuss the characteristics of MRF-dressed potentials to identify the
parameter regime where we are able to observe the BKT critical phenomena. The

condition for the observation of critical phenomena, the 2D condition (1.1.1) and
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the expected critical point (2.3.12), as well as the experimental capability determine

the parameter regime where observation is plausible.

2D condition and criteria for observing BKT transition

The condition for 2D confinement of atoms is determined by the axial trapping
frequency and temperature?, kpT < hw,. The lowest temperature routinely achieved
in the experiment is in the range® 30 — 50 nK, where a measurable fraction of
thermal atoms are present to extract the temperature. This requires a certain
trapping frequency w, to achieve a 2D system, 1 kHz < w,/27. Moreover, the
atom number needs to be large enough around the critical point to be above the
current experimental detection threshold, namely 10* < N, for the range of trap
frequencies, expansion time and cloud temperatures used in this thesis.

The 2D condition can be cast into experimental control parameters such as
RF frequency frr, amplitude of the RF field (in terms of Rabi frequency) €2, and
quadrupole gradient b from Egs. (2.3.12), (3.1.12) and (3.1.13). Fig. 3.4 (a) shows
w, as a function of RF amplitude ) and static field gradient b. As expected from
Eq. (3.1.12), we find that with higher b and lower €2, the confinement is tighter
along 2z and the 2D condition is better satisfied. However, as we describe later,
higher w, leads to intrinsic loss from the trap and lower €2 increasing the coupling
of atoms to the noise present in the experiment, leading to shorter lifetime of the
gas. We thus need to find an optimal point to maximize the lifetime of atoms
while satisfying the 2D condition.

Fig. 3.4 (b) shows the BKT critical atom number Ngkr from Eq. (2.3.12) at the
temperature T' = hw,/kp with the dressing RF frequency frrp = 7.2 MHz that we
typically use in the experiment. To satisfy the 2D condition across the BKT critical
temperature (at a constant atom number), the total atom number of the system

needs to be kept well below the atom numbers shown in Fig. 3.4 (b); the inset

4The chemical potential y is usually small, u/kp ~ 10nK and we almost always satisfy u < hw,
with the operational parameter regime of RF-dressed potentials in our apparatus.

SWhile we can achieve much lower temperature, our straightforward thermometry method
using the thermal component fails to work reliably at temperatures below around 20 nK, see
Section 4.1.3.
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shows the same quantity with a different RF frequency frr = 2 MHz which was
used previously in our lab. The main difference arising from this change of the frp
is the radial trap frequency, which determines the critical atom number for a given
temperature in harmonic trap. The critical atom number is significantly reduced
with frp = 2 MHz such that the signal-to-noise (S/N) ratio becomes low around

the critical point and it becomes difficult to probe the BKT critical phenomena.
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Figure 3.4: Experimental parameter regime to observe the BKT critical phenomena.
(a) Vertical trapping frequency w, /27 in a single-RF dressed potential in Hz, as a function
of RF amplitude © and the quadrupole magnetic field gradient b. (b) The BKT critical
atom number for the temperature at the limit of 2D condition T' = hw, /kp, using Eq.
(2.3.12) for the dressing RF frequency 7.2 MHz. Inset shows the same quantity with same
axes scale, but for a different dressing RF frequency of 2 MHz.

Non-adiabatic loss

At low RF amplitude ©/27 ~ 10 kHz and high static field gradient b, the Landau-
Zener losses become important because of the exponential increase as in Eq. (3.1.9).
This sets the fundamental limit of w, that can be achieved for dressed atoms, thus
the temperature range that can be probed while keeping the 2D condition. Fig. 3.5
(a) shows the rate of atom loss I" at the expected BKT critical point. The timescale
of our experiment with the 2D gas is usually ~ 1 s which requires I' < 1 s7!.
The non-adiabatic losses thus bound the RF amplitudes to be /27 2 10kHz.

Combining the results with Fig. 3.4, we show in Fig. 3.6 the parameter regime

to observe 2D phenomena in a RF-dressed potential. Additionally, even above
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10kHz ~ Q/h experimental imperfections limit the lifetime of atoms in the dressed

trap, as we describe below.
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Figure 3.5: The Landau-Zener losses and the effect of noise on the experiment. (a)
The Landau-Zener loss rate (s~!) for atoms trapped in a single-RF dressed trap with
temperature at predicted BKT critical temperature Eq. (2.3.12). (b) The effect of low-
frequency noise to the atom loss rate. The time evolution of trapped atom number in a
linearly-polarised trap with /27 = 20 kHz and b = 140 G/cm. An RF switch decouples
an electric circuit that produces undesired noise from the experiment, thus protecting the
trapped atoms. The obtained lifetime of the atoms are 0.48 s (switch closed) and 8.8 s
(switch open). A jump in the RF phase caused by an error in the RF generator resulted
in a sudden reduction of observed atom number in one of the measurements at holdtime
~ 0 s, for the ‘switch open’ dataset.

Effect of electrical noise

The MRF-dressed potential has a number of loss channels for the trapped atoms, as
previously investigated in Ref. [92]. This limits the lifetime of the atoms in the trap
even when Landau-Zener losses are not significant. There are many frequencies for
which external noise can couple atoms in a trapped state to untrapped states; these
transitions arise from the higher-order terms involving a complex combinations of
dressing RFs. Furthermore, noise near the dressing RF frequency causes vibration
of the trap, resulting in heating by parametric or dipolar excitation [104]. As such,
it is crucial to eliminate electric and magnetic noise in the lab as much as possible.
During the work towards this thesis, we have significantly reduced the noise coupled
to the experiment by bias field electronics, and increased the lifetime of single-RF

dressed potential by a factor of 20. Measurement at 20 kHz Rabi frequency, close to
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Figure 3.6: The parameter regime to observe 2D phenomena in a RF-dressed potential.
Shaded area corresponds to high vertical trap frequency f, > 1 s~! to ensure 2D
confinement and low nonadiabatic loss I' < 1 Hz. As described in the main text,
noise in the experiment and the efficiency of loading into MRF-dressed potential further
limit the available region in this plot.

the value routinely used for the experiment, is shown in Fig. 3.5 (b) before and after
the experimental improvements. Unidentified low-frequency noise from other circuits
still affect the atoms, at a few particular frequencies [104]. The current lifetime
is sufficient for the measurements reported in this thesis. Further improvement
would be possible however a new apparatus is being constructed with completely

redesigned coils which should be more stable and have less cross-coupling [105, 106]
Spin-flip losses

Another source of atom loss is a mechanism similar to that of Majorana transitions
in a quadrupole trap. When two, or more, different |/mp) states have the same
energy, then spin flip into different |mp) state may occur. One such mechanism
in a MRF-dressed potential occur when the Rabi frequency equals the frequency
separation of the multiple dressing RFs © = wy. This is illustrated in Fig. 3.7 (a).
Another case where the Majorana-like losses are observed is when the states with
different mp as well as the Fock state of fundamental RF photon field, namely

|mp, N) and |m/p, N — 1), have the same energy

Nhwy + Vi (2) = (N = Dhwy + Ve (2). (3.1.15)
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While we have not fully understood the origin of loss mechanism in such case,
avoiding this situation usually leads to more efficient and stable loading of the
atoms into a double-well. An example of potentials where we observed such loss
is illustrated in Fig. 3.7 (b). Our experimental procedures, such as the coherent

splitting shown in Fig. 3.15, are carefully designed to avoid these losses.
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Figure 3.7: Additional loss mechanism in MRF-dressed potentials. (a) The Majorana-
like loss mechanism that occurs when the Rabi frequency of one of the RF frequency
components are exactly at the fundamental RF frequency w;. The dressed eigenenergies
with dressing RFs 7.14, 7.2 and 7.26 MHz are shown, with their field amplitudes
[Q7.14, Q7.96] /27 = [20, 27] kHz and Q7 2 /27 ranges from 40 (blue) to 80 (green) kHz with 5
kHz increment. The eigenenergy with 275 = wy = 27 x 60 kHz is shown in red, with which
the loss is expected. (b) The illustration of the observed loss mechanism between dressed
eigenstates with different RF photon number, |N,mp) (blue) and |[N — 1,7mp) (green).
Atoms are initially trapped in the |N,mp = 1) state (blue, lowest). The potentials for
|mp = 1,N) (blue) and |mp = —1, N — 1) intersect at z = —540 pm and —550 pm as
indicated by red markers. The intersection at z = —550 pm is close to the potential
minimum, and causes atom loss from the well centred at z = —548 pm. The energies
shown include gravitational potential.

Relative phases

For multiple RFs that have common fundamental frequency, the relative phases
are important as the exact shape of waveform depend on the phases. Appropriate
choices of the relative phases of multiple RFs are thus crucial for the stability of
loading into a MRF-dressed double-well potential. The relative phase of the RFs
affect the potential through the difference in the alignment of RF fields. This effect
is most clearly seen when the MRF-dressed potential is configured to be a single-well

potential, as illustrated in Fig. 3.8 (a). Since the loading of atoms into a double-well
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necessarily involves an initial step of MRF-dressed potential configured to be a single-
well, the relative phases of RFs, and their stability, significantly affect the splitting of
the cloud of atoms as the potential evolves into a double-well. Fig. 3.8 (¢) shows the
strength of confinement as a function of relative phases of three RFs. As expected,

we see that the potential shape is only dependent on a single parameter, ¢7.14 + ¢7.96-
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Figure 3.8: The effect of RF relative phases on MRF-dressed potentials. (a) MRF-
dressed potential with RF frequencies 1.95, 2 and 2.05 MHz with amplitudes /27 for
respective frequencies 35, 44 and 42 kHz. Colours of lines indicate the phase difference of
1.95 and 2 MHz components, from 0(blue) to 7 (green) radians. (b) The same plot as
(a) with different amplitudes Q/27 for each frequencies 35, 15 and 42 kHz, configured to
create a double-well potential. (c) The trap frequencies measured with the configurations
in (a) as a function of phase difference of RFs.

Amplitude stability

In the experiment, the final evaporative cooling sequence is performed in a single-RF
dressed potential by forced evaporation using an additional weak RF field (see
Section 3.4.1). The RF transition of atoms in the RF-dressed potential resembles

that in the quadrupole trap, with major difference being the existence of transitions
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that are assisted by dressing RF photons. In particular, we use the transition
at angular frequency wyy 4 €2 for the evaporation sequence with detuning devap =
Wprobe — Wyt — §2. Since the frequency detuning depends on RF field amplitude
(), the energy threshold for the atoms to leave the trap depends linearly on the
RF amplitude. Thus the stability of RF amplitudes is important to consistently
perform the evaporation sequence.

Furthermore, the amplitudes of the multiple RFs affect the loading into the
double-well potential, especially the population imbalance between the wells. We typ-

ically require less than 1% fluctuation of the RF amplitudes to avoid these problems.

3.2 RF field generation

The RF-dressing technique described above requires strong and very stable RF
fields to be applied to the atoms. Furthermore, the use of multiple RF introduces
the intricacy of controlling relative phases of RF components. We have implemented
the RF signal generator using Artiq® software and hardware package that addresses
the phase stability issue that plagued our previous RF generator. Furthermore,
the RF signal chain was improved to meet the stringent stability requirement for

the investigation of BK'T critical phenomena.

3.2.1 Impedance matching

A major challenge in implementing RF-dressed potentials in the lab is the generation
of sufficiently strong RF fields using macroscopic coils of dimensions of a few
centimetres. AC signals propagating in the signal chain experience a fraction of their
power reflected at the interface of components with different impedance; not only
does this cause power loss, the standing wave formed by input and reflected signals
can damage the amplifier and other RF components. Thus we use the impedance
matching techniques to transform the input impedance of the macroscopic coil to

match the output impedance of the standard RF components, typically 50 Ohm.

Shttps://m-labs.hk/experiment-control /artiq/.
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Wire-wound coils have a self-resonance frequency (SRF) determined by the
inductive and capacitive contributions of the solenoid. The coil has a complex
impedance, Z.o(w) = Z.(w) + iZ;(w) where Z.(w), Z;(w) € R. The imaginary
part of the complex impedance is positive Z;(w) > 0 in the inductive regime at
frequencies below the SRF, and Z;(w) < 0 in the capacitive regime above the SRF.
We had implemented a simple capacitive matching at 2MHz below the SRF of 4
MHz, by cancelling the imaginary impedance of the coil with a series capacitor
[105], but this was not adequate for the experimental work reported in this thesis.

To observe the BKT transition in the RF-dressed potential, we found that, as
described in Section 3.1.4, that much higher dressing frequency around 10 MHz is
required. This makes it necessary to impedance-match well above the SRF, which
is not common practice and the literature on this is scarce. While it is conceptually
simple to match above the SRF by using a series inductance to cancel the imaginary
part of the impedance, difficulty arises because the inductive components such
as wire-wound coils have intrinsic capacitance as well as resistance. Additionally,
since commercially available inductor components with the high current rating
have only limited selection of their values, the impedance matching above the
SRF thus becomes a trial and error’. We found that for an inductive impedance
matching, components with low DC resistance and high SRF generally worked
better to match at higher frequencies. The final matching network is shown in
Figure. 3.9 (a) blue shaded region. The series capacitance was added to suppress

the propagation of low-frequency noise to the coils.

3.2.2 Stability of the RF amplitudes and phases

As discussed in Section 3.1.4, very stable RF amplitudes and phases are essential
for the reproducible manipulation of quantum gases. Both amplitudes and phases
of RFs are critical because the double-well potential and their population balance
sensitively depend on these parameters. Fluctuations of less than 1% in amplitude,

as well as 0.17 radian in phase are required, for extremely large datasets that take

"For mechanical rigidity of the circuit we only used surface-mount components; this further
limited the selection of component values.
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Figure 3.9: RF signal chain and impedance matching. (a) The RF signal chain to apply
RF magnetic field to the atoms using a macroscopic RF coil near the glass cell. Gray
shaded area indicates industrial standard 50 €2 components. The impedance matching
circuits is marked by blue shaded region, which matches the impedance of RF coil and
semi-rigid coax to 50 €2 at the desired frequency 7.2 MHz. (b) The reflection coefficient Si1,
in linear scale (not dB scale), measured at the input of impedance matching circuit using
a vector-network analyser (Bode 100, OMICRON lab). Colours indicate the two different
circuits (individual coils and matching circuits) responsible for creating RF field in =
and y directions. Red dash-dotted line indicates the frequency used for the experiment,
7.2 MHz. (c) The pickup voltage V), at different RF output frequencies (markers) which
serves as a measure of the magnetic field amplitude. Solid lines are a Gaussian fit to the
data.

a period of several weeks to acquire, in order to explore statistical properties of
2D gases. A significant part of the improvement in the stability of RF amplitudes
was achieved by the replacement of the twisted-pair signal cables with semi-rigid
coaxial cables, as well as the appropriate choice of RF frequency in the impedance
matching characteristics. Even with these improvements to the apparatus, it was
necessary to operate the experiment continuously in order to keep long-term drifts
to a minimum. Continuous operation for many days allows the temperature of
the whole experimental apparatus including the RF components to reach a stable
thermal equilibrium, thus stabilising the amplitude of the RF field. Fig. 3.10 shows
the amplitudes of three different RF components, as probed by co-wound pickup
wires, plotted over the duration of 12 days while the dataset for Chapter 6 was

taken. We have excluded a very small number of outliers up to 100 points out
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of more than 12000 points in total, in which no RF was measured because of a
temporary error of the DDS. These outliers affect the atom loading significantly

and are easy to post-select by the anomalously low atom number.
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Figure 3.10: RF amplitude stability over a 12-day period during a long continuous
data-taking. One multiple-RF waveform from the pickup coil is recorded and analysed to
extract the mean amplitude of the three RF components for each experimental realisation.
One experimental run contributes one data point for each frequency component in the
graph.

The relative phase stability of multiple RFs is also essential, as discussed in
Section 3.1.4. The control of relative phases of different RF signals to the level of
0.017 radian is usually challenging: for our RF frequency of 7.2 MHz, a timing
difference of 2ns already results in 0.017 radian difference of the phase. Thus,
a slight signal delay or logic-clock synchronisation error would lead to a sudden
jump of phase difference, as is discussed previously by Bentine [107]. The previous
implementation of the RF signal generator failed to satisfy these requirements
especially for the higher RF frequency 7.2 MHz, and we have upgraded our DDS
controller using an FPGA control system Artiq® and the open-source software
package developed for it. These RF generators are the Urukul® units, RF generators
which house four direct digital synthesis chips (DDS, Analog Devices AD9910).
This open-source hardware has been developed as part of the Artiq project (the
hardware family Sinara!®); this project was primarily motivated by the requirements

for quantum information processing with trapped ions but meets our requirements

8https://m-labs.hk/experiment-control /artiq/
https://github.com/sinara-hw/Urukul /wiki
Ohttps://sinara-hw.github.io/
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very well, i.e. complex and precise timing sequences and the multiple controllable
RFs. An essential improvement over the previous system of RF generators is the
synchronisation of clock of the FPGA system and the clocks of the multiple AD9910
DDS chips that it controls. The effect of this clock synchronisation is shown in
Fig. 3.11 (a) and (b), where the sudden jumps of the relative phases are eliminated.
We have also plotted the long-term stability of the relative phases of the multiple
RFs in Fig. 3.11 (c¢) which shows excellent consistency over the two week period
shown in the graph. The finite fluctuation of phase differences are due to the slow

drift of impedance matching characteristics.
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Figure 3.11: Phase jumps and long-term phase stability. (a) The relative phases of
the 7.2 MHz sinusoidal output signals from two different DDS chips on an Urukul card,
triggered simultaneously using our old DDS control system. The lack of synchronisation of
the FPGA and DDS clocks causes the sudden jumps of the RF phases that are observed.
(b) The same measurement as (a) but with the DDS chips controlled and triggered using
the Artiq control system, achieving clock synchronisation for every run. (c) Long-term
relative phase stability of the MRF signal frequency components, referenced to the mean
phase difference (A¢). The three frequency component is derived from different DDS
chips.
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3.2.3 Turn-off of the RF signals

Another improvement from our previous implementation of RF sources is the ability
to stop the RFs at a specified phase, using the conditional sequencing functionality
of Artiq. The spin F' of atoms undergoes complex oscillation in the RF-dressed
potential, precessing around an effective B-field in the rotating frame, which is
also oscillating in the lab frame. As we describe later, we project atoms into bare
Zeeman states from a dressed state and let the atoms undergo time-of-flight (TOF)
expansion in the presence of a residual magnetic field. Since the Zeeman state with
mp = 0 is insensitive to the residual magnetic field, the analysis of this state after
a projection is thus preferable. It is thus important to maximise the fraction of
atoms projected into mpr = 0. The overlap of the RF-dressed atomic states with
the mpr = 0 depends on the RF phases at the time of projection into bare Zeeman
states. Fig. 3.12 illustrates the procedure used to control the RF phase to maximize
the fraction of atoms projected onto mr = 0. For experiments with MRF-dressed
potentials, we sweep the phase of the fundamental frequency w; at turn-off to
maximize the detected fraction. We found that in the double-well configuration,
maximizing the fraction of mp = 0 population for one of the wells usually results in

a maximum (and same) fraction for the other well as shown in Fig. 3.12 (b) and (c).

3.3 The laser system

The detail of our laser system is described in past theses, Refs. [107-109]. Our laser
system consists of three Toptica DL Pro external-cavity diode lasers (ECDL). The
first ECDL is the reference laser, which is locked to 8"Rb D2 line F' =2 — F' = 3
‘cooling’ transition using modulation transfer spectroscopy [110]. The other two
lasers provide ‘repumping’ and ‘cooling’ light, both offset-locked to the first laser.
The repumping light is resonant for F = 1 — F’ = 2 transition.

For the laser cooling stage which requires hundreds of mW of laser power, we
amplify the laser intensity in two stages. The first stage is the additional injection-

locked diode laser which increases the power of cooling light to around 100 mW.
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Figure 3.12: The control of the RF phase for the projection into Zeeman states. (a) A
single image of atomic density taken after the TOF sequence involving the projection of
dressed states into Zeeman states. When the RFs are turned off, the atoms in different
Zeeman states experience different forces along the z direction in the residual quadrupole
magnetic field. The population of each Zeeman substate can be inferred by the atom
numbers of three localised clouds as we see in the image. (b) and (c) The fraction of
atoms projected onto each Zeeman state, as a function of the phase of the fundamental
RF, wy, at the time of RF turn-off. The MRF-dressed potential was configured to be a
double-well as shown in Fig. 3.3 and (b) is measured with atoms localised in the well near
the resonance at 7.14 MHz, while (c) is for atom trapped in the other well. Solid lines are
a guide to the eye.

The cooling light is combined with repumping light, and both frequencies are
amplified using a tapered amplifier!! to obtain around 400 mW of light of which
the cooling light has the dominant power.

The light for the detection of atoms is also derived from the cooling and
repumper ECDLs. For stability of the detection, the cooling light used for the
absorption imaging is intensity-stabilised using a photodetector and a PID controller

(Stanford Research Systems SIM960).

3.4 Experimental procedure

Here we describe the complete procedure of the experimental sequence to cool
atoms from room temperature to tens of nanokelvin. Greater detail of each of
the steps can be found in past theses [102, 107-109] by graduate students who
have contributed to this work. Fig. 3.13 illustrates our experimental apparatus,

as well as the overview of the experimental sequence.

HEagleyard EYP-TPA-0780-01000
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Figure 3.13: Overview of the experiment. We first laser cool atoms in the pyramidal
MOT (left) and magnetically transport them to a UHV glass cell (right), where we
perform a series of evaporative cooling sequences in different confinements, as listed in
the figure. The UHV glass cell is surrounded by coils to produce DC and AC magnetic
fields, which are described in detail in Fig. 3.14. This figure and Fig. 3.14 are based on
the 3D model of the experiment made by Elliot Bentine.

Our vacuum chamber consists of two parts. The first part is the laser cooling
stage, where 8’Rb atoms are captured from a room-temperature vapour and cooled
in a magneto-optical trap (MOT) [111]. During the MOT loading, we typically
apply UV light (using LEDs) onto the vacuum glass window, such that the pressure
of Rb is increased because of light-induced atom desorption (LIAD) giving faster
loading of the MOT. The typical MOT loading time with LIAD is around 10 seconds,
during which around 2 x 10° atoms accumulate in the MOT. The atoms are then
magnetically transported [108] over a distance of ~80 centimetres to the ultra-high
vacuum glass cell, where magnetic trapping and further cooling is performed. The
transport causes the atoms to be heated up and therefore afterwards atoms are
evaporatively cooled down in a quadrupole trap, from hundreds of K to tens of
uK. Since the Majorana loss rate increases at a lower temperature, we stop the
cooling in the quadrupole trap at a relatively high temperature compared to the
Bose-condensation point. Subsequently, we turn on the rotating bias field at 7
kHz to realise a time-orbiting potential (TOP) trap, which shifts the quadrupole

node away from the centre of time-averaged potential and avoids Majorana losses.
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After further cooling in the TOP trap, RF dressing fields are turned on to load
atoms into a time-averaged adiabatic trap (TAAP) while the TOP bias fields are
kept on. The final evaporation sequence is performed in the TAAP trap, where a
partially-condensed 3D cloud is obtained. The bias fields ensure that the atoms
are initially trapped outside of the resonant spheroid, such that the sudden turn-on
of RF fields do not heat up the trapped atoms. Since the oscillation of the TOP
field is circularly symmetric in the x — y plane, we must ensure the cylindrical
symmetry of the dressed trap to avoid heating and we choose circularly-polarised RF
along the z axis in this stage. In the TAAP trap, we perform the final evaporative
cooling sequence to reach a final desired temperature. After the evaporative cooling
and rethermalisation, we ramp down the TOP bias field to slowly transfer atoms

from a TAAP to the RF-dressed potential'?.

Quadrupole
3.3 mm X 3.3 mm wire
5 turns X 4 layers
36 mm inner dia.

UHV cell —_

10 mm X 16 mm X 70 mm
(innder dimension)

Evap RF

33 mm dia. single loop

TOP bias coil

¢ 1.5 mm, 7 turns
w49 mm X h 26 mm

xd 11 mm ¢ 1.3 mm, three-layer, (54.5) turns

. w 30 mm X h 24 mm
RF coil % d7 mm

Figure 3.14: Close-up view of the coils used to generate magnetic fields. RF and TOP
coils are installed along two directions x and y to create circulary-polarised field around
the z axis. The Evap. RF coil creates a weak RF field along the z direction to perform
forced evaporative cooling. The TOP and quadrupole coils are cut away for clarity. The
ultrahigh vacuum (UHV) glass cell has glass thickness of 2 mm.

3.4.1 Double-well loading

Following the loading of a BEC into the circularly-polarised single-RF' shell trap,
we further manipulate the RF fields to load atoms into 2D double-well potential by

splitting a single condensate into two. Since we only work with linearly-polarised

12The detail of the loading from TOP, TAAP and then the RF-dressed potential can be found
in thesis by Bentine [107]
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Figure 3.15: The slow loading and splitting procedure for the MRF double-well potential.
The RF amplitude ramp (bottom) is shown with the corresponding trapping potentials
(MRF-dressed eigenenergies, V;), whose time evolution is indicated by the colours of the
plots from orange (initial) to blue (final). The shading (grey) links the five snapshots of
the potential to the time axis. (a) The two additional RFs, 714 and Q7 96, are turned
on while the amplitude of the central RF, (279, is kept high such that the turn-on does
not perturb the clouds. The effect is negligible near the potential minima while the
geometry of the trap far from the trap centre is modified significantly by the emergence
of higher-order avoided crossing. (b) For the realisation of a 2D double-well the RF
amplitudes satisfy < w; (indicated by red dash-dotted line; see Fig. 3.7), Q7.2 must be
turned down below w; before the splitting ramp. To minimise the loss of atoms occurring
at {72 = wy, the amplitudes are ramped quickly through this range in 7 ms (this is
the steep amplitude ramp starting at 0.1s in the above). Q714 and Q796 are ramped
simultaneously to keep the change in the potential geometry to a minimum during this
process. (c) To prepare for the splitting of trapped atoms, the potential is transformed
into a flat-bottom geometry. (d) Coherent splitting is performed slowly to avoid collective
excitations. It is also important to split symmetrically to minimize excitations. Since
the splitting process is very sensitive to the initial and final potential geometry, this
particular section of the ramp is completed soon after the cloud is split and reasonably
decoupled. This allows the final potential geometry to be changed without affecting the
population balance of the two wells. (e) Finally, the double-well potential is modified to
satisfy quasi-2D conditions as well as to ensure complete decoupling of wells. Due to the
effect of gravity, it is necessary to slightly imbalance the wells to achieve the same axial
trapping frequencies for the two wells; see Figure. 3.20 for trap calibration.
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RF fields when creating MRF-dressed potentials, we first need to slowly change
the RF from circular to linear polarisation. This is achieved by ramping down
the output from the y coil so that the final field is only along x. To avoid the
excitation of collective modes such as sloshing during this process, we perform the
ramp adiabatically over 1s. Once linear polarisation is achieved, we commence the
loading into MRF-dressed potentials. The combination of RF frequencies used for
the experiments in this thesis is typically 7.14,7.2, and 7.26 MHz.

Depending on the nature of the experiment, the purpose of the double-well
loading is different. For the investigation of equilibrium BKT transition shown in
Chapter 5, the loading is performed as slowly as possible to avoid the excitation
of collective modes and atom loss. On the other hand, for the investigation of
quench dynamics across the BKT critical point (Chapter 6), we need to split
the cloud more quickly than the in-plane dynamics of the system on a timescale
~ 21 /w, ~ 100 ms. The elimination of the collective mode is achieved by an
additional stage of the experiment, specifically for the fast splitting within timescale
~ 10 ms (see Chapter 6).

In both cases, the transformation from the single- to multiple-RF dressing is
a challenging task. The main challenge is the atom loss during the RF amplitude
ramps as described in Sec. 3.1.4. The RF amplitudes cannot simply be ramped
up to final value, since a smooth change in the Rabi frequencies results in the
effective Rabi frequency being ramped over a wide range of the low-frequency
regime, where the electric noise is prevalent. The RFs on the other hand cannot be
jumped straight to a final desired value, since the frequency separation of 60 kHz
corresponds to a small spatial separation of 4.5 um in our typical magnetic field
gradient of b = 94 G/cm and sudden perturbation of the trap near the locations
of atoms would unavoidably cause collective motion.

To circumvent the aforementioned issues, the loading into MRF potentials
needed to be performed in five separate stages as detailed in Fig. 3.15. Essentially,
we prepare atoms in a single-RF potential with w,¢/2m = 7.2 MHz at Q75/27 > 100
kHz, and first turn on the other two RFs at around /27 ~ 10 kHz to avoid the
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coupling to low-frequency noise as well as keeping the perturbation to the atoms
to a minimum by the large amplitude difference 2714, 2796 < €275 of original
and the other RF components. To avoid the Majorana-like loss illustrated in
Fig. 3.7 (a), we then quickly ramp the Q72/27 from 100 kHz to ~ 50 kHz. We
modify the other two RF components at the same time, such that the potential
shape does not change over this short amplitude ramp over the duration of 7 ms.
The splitting of atoms is performed adiabatically after these two stages, which

serves to avoid loss mechanisms.

3.5 Detection of 2D gases

To characterise the state of 2D gases, we image the density distribution of atoms
either in situ, or after TOF expansion, using absorption imaging. Observation is
performed in either vertical or horizontal directions in the lab, i.e. either parallel
or perpendicular to the direction of gravity.

The imaging is carried out by sending a resonant laser pulse onto the atom,
to drive FF = 2 — F’ = 3 cyclic transition. While the imaging is performed on
atoms in F' = 2 state, the preferred hyperfine state to carry out the experiment
with atoms is the F' = 1 hyperfine level since it has longer lifetime in the trap. We
transfer atoms into F' = 2 by means of optical pumping and a separate optical
path was prepared to send in the repumping light.

Resonant light is absorbed by the atomic cloud leaving a region of ‘shadow’ in the
transmitted laser beam where the light intensity is lower than for an unattenuated
incident beam. We send the light onto a charge-coupled device (CCD) to measure
the intensity distribution I(z,,y,) where coordinates z,, and y, are the pixel location
of the CCD. As well as the ‘absorption image’ of the laser beam after passing through
the cloud, 1,(z,,y,), we capture an auxiliary image of the incident beam after the
atoms have been dispersed, [;(x,,y,). We then obtain the spatial distribution of
optical density according to Beer’s law with the effect of saturation taken into
account [112]: OD(zp,y,) = log(1,/L;) + (I; — 1)/ Lsat, where I = 1.67 mW /cm? is

the saturation intensity for circularly polarised light [113]. The calibration of optical
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density to the actual atomic density is performed using knowledge of the conditions
for the BEC critical point in a 3D trap [114], as discussed in Section 3.5.4.

The optical system makes the absorption image extracted from OD(zp,y,) a
convolution of the actual density distribution and the point spread function (PSF)

of the imaging system that can be well-approximated by a Gaussian:

2

frsp(r) o< exp (— : ) : (3.5.1)
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We refer to opsr as the imaging resolution throughout this thesis. The standard
imaging resolution (the radius of the first zero of the Airy disc) is related to
this by raiy = 2.90psp. Fig. 3.16 shows the optical setup around the glass cell,
designed to probe and manipulate the atoms. We give further information on

each imaging setup in the following sections.
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Figure 3.16: The apparatus used to probe and manipulate atoms. This illustration of
the optical setup around the ultra high-vacuum (UHV) glass cell shows the arrangement
of the optical components which are used to detect (Horizontal and Vertical imaging)
and manipulate (DMD) the atoms. Polarisation cleaning and waveplates for polarisation
control are not shown for the horizontal imaging and DMD optics for clarity of the
illustration.
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Figure 3.17: Three different types of imaging setups to probe 2D gases. (a) Vertical
imaging records the 2D density distribution of atoms by sending the probe light (grey)
along the direction of gravity. Repumping light (not shown) is applied to the entire
cloud. (b) Horizontal imaging with full repumping of the cloud. The repumping beam
(red) transfers all atoms into F' = 2 state, thereby allowing the total atom number
as well as far wings of the density distribution to be recorded for thermometry. The
double-well situation is shown for illustration; the integration of the density along the
imaging axis means that the observed contrast of interference fringe is low. (¢) Density
slicing method using spatially-modulated repumping light, to image only a thin slice
of density distribution along the imaging axis. The matter-wave interference pattern is
clearer than the case in (b), since integration of the fluctuating fringe pattern is avoided.

The position and thickness of the sheet of repumping light can be chosen arbitrarily by
changing the pattern displayed on the DMD.

©

3.5.1 Vertical imaging

The vertical imaging records the in-plane density distribution of 2D gases. The
optical system consists of a custom-made objective lens with high numerical aperture
(NA) [108], a f = 500 mm achromat eyepiece lens and an electron-multiplying
CCD (EMCCD, Andor iKon-M). The NA of the objective lens is 0.27, resulting in
resolution of opsp = 0.5 nm at the wavelength of 780 nm that we use for detection.
This optical path is shared with the light reflected from a digital micromirror device
(DMD) which is propagating in an opposite direction to the imaging beam, as
shown in Fig. 3.16. As we describe later in Section 3.5.3, the light from DMD
creates an arbitrary spatial pattern of light for selective repumping and potential

shaping and utilises the high NA of the objective lens.
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3.5.2 Horizontal imaging

The horizontal imaging detects the density distribution along the radial direction
and is the main detection method throughout this thesis since the matter-wave
interference patterns can be observed. The imaging system consist of two lenses, a
doublet lens with f = 75 mm as an objective lens and a f = 200 mm eyepiece lens,
resulting in image-plane pixel size of ¢, = 1.67 pm. The optical resolution of this

imaging setup was measured using a USAF resolution target!3 to be opgp = 2.1 pm.

3.5.3 Beam shaping with a DMD and selective imaging

The standard absorption imaging of cold atoms entails the integration of density
along the imaging axis. This integration is problematic for the investigation of
interfering 2D Bose gases, since the fluctuation of the interference patterns along the
imaging axis causes the loss of information. To mitigate the effect, we implemented
a method of spatially-selective imaging of the atoms by spatially-selective repumping
of atoms into the F' = 2 state. Fig. 3.18 (b) shows absorption images obtained
by using a laser light with a complex shape to selectively repump a partially
condensed cloud of atoms and detect them using imaging along the vertical axis.
Thanks to the high resolution of the vertical imaging, a small-scale structure can be
painted onto the atom, as shown in Fig. 3.18. For the selective imaging, we shape
the repumping light into a thin sheet with variable thickness L, as illustrated in
Fig. 3.17 (c¢). The programmability of the DMD allows us to arbitrarily choose
the position and the thickness of this sheet.

The DMD can also be used to shape the confining potential of the atoms using
far-detuned intense light, in this way we will be able to implement a wide variety of
potential shapes such as a box trap [13], disordered potential [115] and an ‘entropy
reservoir’ [116] to realise complex Hamiltonian, allowing us to probe novel physics.
We have installed the 532 nm laser system required for the potential shaping with

far-detuned light, shown as a part of Fig. 3.16. However, there has not been sufficient

131951 USAF resolution chart, defined by U.S. Air Force MIL-STD-150A standard of 1951
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experimental time for the precise alignment and characterisation of such arbitrary

potential, and this remains an exciting prospect for future work with this apparatus.
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Figure 3.18: [Illustration of the DMD. (a) The DMD consists of an array of small
square-shaped mirrors, which can be individually tilted to a certain angle by a force
applied from the complementary metal-oxide-semiconductor (CMOS) substrate. (b) An
application of DMD light shaping to the spatially-selective repumping of atoms in a 2D
confinement. The image was taken vertically, to directly image the repumped atoms in

(a) )

situ.

3.5.4 Imaging detectivity calibration

To calibrate our imaging detectivity, we observe the 3D BEC critical point in
a cylindrically symmetric time-averaged adiabatic potential [117] with trap fre-
quencies: w,/27 = 54Hz and w,/2r = 300Hz, resulting in geometric mean
0/2m = (wpwew,) /3 /27 = 96 Hz. We use this method because it is insensitive
to experimental imperfections such as imperfect polarisation of the probing light
and it provides absolute calibration of atom number. For the range of temperatures
and atom numbers used in this process, the system is three-dimensional (not
quasi-2D). We calibrate the atom number by comparing the critical atom number

to the theoretical value:

kpT\® 1 3
0 () () o s

where ( is the Riemann zeta function. 0N is the finite-size correction [118] that

result in 3 % higher critical atom number for the parameters used in this procedure.

Another correction term (1 — 3.426(as/A))™® in Eq. (3.5.2) is the mean-field
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correction [114] where ay is the s-wave scattering length and A\ = h/v/2rmkpT is
the thermal de Broglie wavelength. We chose the range of atom numbers used
for this calibration such that the average optical density after TOF is close to

the values for data shown in the main text.
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Figure 3.19: The determination of the 3D BEC critical point in a TAAP trap for
the calibration of imaging. The fraction of atoms in the central Thomas-Fermi peak
No/N is shown as a function of the temperature of the cloud in the trap with the total
atom number varying from 5 x 104 to 1.2 x 105. The critical point was identified by the
temperature at the onset of Ny/N, indicated by the black arrow. The calibration was
done by comparing the measured atom number and temperature at the critical point to
the expression Eq. (3.5.2).

3.6 Trap characterisation

While we can accurately predict the potential geometry given the combination of RF
amplitudes using the Floquet numerical procedure, however, precise experimental
determination of the actual RF amplitudes is difficult, mainly because of the small
separation of the commensurate RF frequencies. Therefore, we measure a few
important characteristics of the double-well by alternative methods. Determination
of the confinement is achieved by observing the collective oscillation of atoms in
the trap. We apply a momentum kick to the atoms by a sudden change in the
quadrupole field strength (for the vertical trap calibration) or by a sudden addition
of a horizontal bias field (to produce a kick in z and y). For the vertical trap
frequency calibration in a double-well, we slightly modified the usual double-well

loading scheme shown in Fig. 3.15, such that atoms are localised in one of the wells,



3. Experimental realisation of a 2D double-well potential 70

before we performed the measurement. The results are presented in Fig. 3.20 (a)
and (b) for the measurements in the vertical and x directions.

The calibration in the y direction is not straightforward since we do not have
sufficient optical access to observe the motions of atoms along the y direction.
Instead of building another imaging apparatus, we use the density slicing method
to detect the oscillation of the atomic cloud along the imaging axis; to determine
the position of atoms, we perform multiple experimental sequences with different
positions of the repumping light sheet and reconstruct the density distribution,
as shown in Fig. 3.20 (c). We repeat the procedure at variable times after the
impulse is applied to the atoms and obtain the oscillation frequency in the trap, see
Fig. 3.20 (d). We further characterise the spatial separation of the two wells using

the matter-wave interference wavenumbers, which is discussed in the next chapter.
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Figure 3.20: Trap characterisation. (a) Measurement of vertical trap oscillations in left
(blue) and right (green) wells. Position of atoms after 16 ms TOF is plotted against the
time elapsed after a vertical kick. The two measurements were performed separately with
slightly different double-well loading parameters which ensure loading of Bose-condensed
atoms into only one well. The measured frequencies are 1.01(3) kHz and 0.99(4) kHz. (b)
Measurement of the radial trap oscillation (in x direction), perpendicular to imaging axis.
The measured frequency is 10.9(2) Hz. (c) Measurement of density distribution along the
imaging (y) axis using the density slicing method. The DMD position is in the unit of
pixels, corresponding to a real-space length of 0.5 um. Different colours indicate different
times after the kick and solid lines are Gaussian fit. (d) Measurement of trap oscillation
along the imaging axis y. Each point represent the centre of the fitted Gaussian at each
time. The trap oscillation frequency is 11.0(5) Hz, in good agreement with the result of
the measurement along z, as in (b). A datapoint at 0.15 s is missing due to a fit failure.
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Observation of the BKT transition in 2D Bose gases has so far relied on a
variety of observables. The most straightforward way to characterise the system
is the in situ density distribution [62-64] and the density distribution after free
expansion [70, 119, 120]. Furthermore, the cold atomic system offers observables
to be probed that are not accessible in other experimental systems such as the
spatial phase fluctuations [14, 32, 94]. In this section, we describe the analysis
methods used to extract properties of 2D systems along with examples of our

relevant experimental results.

71

A more detailed discussion of the BKT critical
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phenomena can be found in Chapters 5 and 6. We further discuss the practical
considerations to be made when investigating the 2D system in the presence of

finite imaging resolution and inhomogeneity.

4.1 Density distribution

We rely on the measurement of the density distribution using absorption imaging
techniques to infer various properties of 2D gases. The density distribution of
harmonically-trapped, weakly-interacting 2D Bose gases was described theoretically
in detail in Chapter 2. In this section, we show the method of analysing the
experimental data that we use in the following sections, such as fitting and

thermometry procedures.

4.1.1 The in situ density distribution

The in situ density distribution can be measured by using the vertical imaging
system introduced in Section 3.5.1. As described in Section 2.3.6, within the
LDA the measurement of the density distribution in a harmonic trap provides a
single-shot determination of the equation of state for a range of local chemical
potentials [63]. However, our current experimental setting has a problem for the
precise measurements near the critical point. This is because at high atom density,
the calculation of the optical density via the simple Beer’s law is not accurate. As
described in Ref. [64], at a small inter-atom distance shorter than the wavelength
of the laser n=/2 < 780 nm, collective phenomena take place and modify the
atom-light interaction. To circumvent the problem, short high-intensity imaging
may be used [64]. Since we have not implemented high-intensity imaging yet, we
have limited ourselves to thermal and crossover regime of the BKT critical point for
the in situ density measurement, where the collective phenomena is not important.

The density distribution of atoms obtained with the vertical imaging system,
of atoms with temperature around 100 nK in a single-RF dressed potential with
w, = 25 Hz, is shown in Fig. 4.1 (a), and Fig. 4.1 (b) shows their azimuthally

averaged density distribution.
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Figure 4.1: in situ density distribution, scale invariance and universality. (a) The
averaged density distribution of a 2D Bose gas trapped in a single-RF dressed harmonic trap
with w, /27 = 25 Hz and w, /27 = 1.8 kHz, at temperature 100 nK. (b) Azimuthal average
of the density distribution shown in (a). The red line is the Hartree-Fock fit result of the
far wing of the density distribution, obtained by fitting the solution of implicit equation
D(r) = —In(1 — exp(u/kgT — gD(r)/m — V(r)/kgT)) to the density distribution in the
low-density region, with free parameters g and 7. (c) The demonstration of scale
invariance of 2D Bose gases. Rescaled density distribution n = n)\fh is plotted against
rescaled local chemical potential fi(r) = (u— V (r))/kpT of data taken with temperatures
100 nK (blue) to 170 nK (green), in the thermal regime. Inset shows the same data with
the original scales. (d) The universality of the 2D Bose gas near the BKT critical point.
The rescaled density distribution is plotted against (i — fic)/g = (. — V(r) — pe)/ksTg
for three different effective interaction strengths g = 0.078,0.084 and 0.093. In a similar
manner to (c), the data collapse onto a single line; this is the demonstration of universality
close to the critical point predicted in Ref. [18].

Furthermore, the in situ density distribution can be used to confirm the scale
invariance and universality of 2D Bose gases that we discussed in Section 2.3.5.
Within the LDA, the in situ density distribution is a direct measurement of the
equation of state across a range of local chemical potential. As such, by taking
images using vertical imaging at different temperatures or interaction strengths, we

can readily observe the temperature and interaction dependence of the equation
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of state, as shown in the following.

Fig. 4.1 (c) shows the azimuthally averaged density distributions 7 = nA2,
as a function of rescaled local chemical potential, ji(r) = (u — V(r))/kgT. The
data shown are at different temperatures ranging from 100 nK to 170 nK, as
measured using the fit of the Hartree-Fock prediction to the wings of the density
distribution [65]. All the curves collapse onto a single line, which is a manifestation
of the scale invariance of the system. This can be seen by comparison to the
density distributions with the original scales for » and n, shown in the inset of
Fig. 4.1 (¢) which are clearly distinct.

Fig. 4.1 (d) shows the density distribution taken at the same temperature but
with different effective 2D interaction strength; this interaction can be varied because
of its dependence on the vertical oscillation frequency w,, as implicit in Eq. (2.3.1).
As discussed in Sec. 2.3.5, the data collapse onto a single line by subtracting the
local chemical potential by p. and dividing it by the interaction strength. Since the
behaviour of the system is not dependent on the microscopic detail of the system,
i.e. interaction strength, this indicates the universal behaviour of 2D Bose gas

close to a critical point, as previously reported [62].

4.1.2 TOF expansion of quasi-2D Bose gases

The TOF expansion is a method routinely used to extract the momentum distri-
bution of cold atomic gases. For the quasi-2D gases, the expansion dynamics is
simplified compared to that of 3D gases because the tight confinement in z direction
results in a rapid expansion of the gas at the start of the TOF expansion, making
the effect of interactions during TOF negligible. The expansion along the radial
direction r and the axial direction z are thus separable, and we focus on the radial
expansion dynamics to extract the thermodynamic quantities of the 2D gas. The
expansion of cloud along the tightly-confined z direction is simplified since only
the ground state is populated when the quasi-2D condition is met. The size of the

cloud increases linearly with expansion time at a sufficiently long time [121],

L(t) = L(0)y/1 + w22 = [ (0)w,t. (4.1.1)
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On the other hand, the radial expansion is more complex since harmonic oscillator
excited states are thermally occupied.

Fig. 4.2 shows the expansion dynamics of quasi-2D gases initially trapped in
RF-dressed potential. Fig. 4.2 (a) illustrates the expansion dynamics after projecting
the dressed states into bare Zeeman states; three daughter clouds appear by Stern-
Gerlach-like spatial separation of the states in the residual quadrupole magnetic
field after the RF fields are turned off. Even with instantaneous turn-off of the
current source, the quadrupole field dies away in a finite duration of around 3
ms after the RF turn-off. After the quadrupole field is completely removed, all
the clouds undergo free expansion. The red line indicates the free-fall trajectory
z(t) = 2(0) — grt®/2 where gg is the gravitational acceleration at the surface of
earth; the magnetically insensitive mz = 0 cloud in the middle follows this curve
after its projection into this Zeeman state. We focus on mp = 0 states for analysis,
and use the other clouds only to count the total number of atoms.

To visualise the expansion dynamics of 2D clouds in the radial direction, we
plot the integrated density distribution in Fig. 4.2 (b) for TOF durations from 3 ms
(orange) to 21 ms (blue). The temperature of the gas was around 40 nK and the
system is in the superfluid regime. The density profile shows a bimodal distribution
as expected from classical-field theory in Sec. 2.3.6. During the TOF, while the
central peak shows negligible change in its shape, the wider Gaussian wing shows
clear expansion (see Fig. 4.2 (b-d)). For quantitative analysis, we have fitted the

density distributions with a bimodal distribution defined by

_ 2
n(z) = nge % + nrp max <O, 1-— ;) : (4.1.2)

The expansion dynamics in the radial direction has two limiting cases. The
first case is the Gaussian wing of the density distribution, where the local chemical
potential is very small and thermal-gas approximation can be made. For such a
low-density part of the gas, a ballistic expansion of thermal gas is expected. This is

seen in the fit results of Gaussian width oy, plotted in Fig. 4.2 (c) for four different
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temperatures. The expansion is fitted well by the form for a thermal gas [67],

2 2]€BT 1 —|—wft2
g ) :

(4.1.3)

o
2
m w;

From the fits in Fig. 4.2, we extract temperatures 40(2), 45(2), 58(6) and 83(5)
nK from the blue to green data points.

The second case is the analysis of the central peak of the density distribution,
which is attributed to zero-momentum modes in a 3D BEC. Similarly, we find that
this central peak is associated with low-momentum modes in quasi-2D Bose gases,
as we see in Fig. 4.2 (d) which shows the time evolution of the Thomas-Fermi radius
R during the expansion. We also plot the vertical extent of the cloud in Fig. 4.2

(e), which shows a linear increase with TOF as expected [121].

4.1.3 Analysing images at fixed TOF duration

As shown in the last section, we can determine the temperature of the system
from the standard, integrated absorption image after TOF. Assuming the radial
symmetry of the system and the known expansion dynamics, we can estimate
various other quantities of interest as we describe below. The following relations
are used throughout this thesis to characterise the 2D gases.
Firstly, as we have derived in the last section, the temperature of the gas can be
obtained by the expansion of the component that is a thermal gas,
2
@T:ém(HﬁﬁﬂQ. (4.1.4)
We note that a finite population of excited levels in the axial harmonic oscillator may
affect this method of thermometry as pointed out in Refs. [57, 65]. Nevertheless,
our experimental parameters are well within the quasi-2D regime, as the mean-
field and thermal energy scales are smaller than Aw,, and so the population of
excited levels is negligible. The observed agreement of the experimentally measured
density distribution and strictly 2D Monte Carlo simulation presented in Chapter
5 (see Fig. 5.5 (b), Fig. 5.11 and Fig. 5.10) further confirms the reliability of the

thermometry method described above.
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Figure 4.2: TOF expansion of quasi-2D Bose gases. (a) The combined images of atoms
released from a MRF-dressed potential at variable TOF durations. The red line indicates
the free-fall trajectory. (b) Integrated radial density distributions of 2D Bose gases for
TOF durations ranging from 3 ms (orange) to 21 ms (blue). (¢) The size of the wide
Gaussian part of the density distributions, shown in (b), as a function of TOF duration.
Different colour indicates different temperatures of the gas, from 37 nK (blue) to 78 nK
(green). Solid lines are the fit with Eq. (4.1.3). (d) Thomas-Fermi radius R of the central
peak at 37 nK (blue) and 43 nK (green). The red line is a guide to the eye. (e) The
vertical extent (Gaussian standard deviation) of the gas as a function of TOF durations.
Solid lines are linear fits, as in Eq. (4.1.1).

Furthermore, the one-to-one mapping of the Gaussian size after TOF to in situ
size, together with the extracted atom number associated with TF and Gaussian
profiles, allows determination of the in situ density distribution; from fit results
of TOF images using Eq. (4.1.2), we calculate the populations in the Gaussian
and Thomas-Fermi parts Ny, and Ntp and obtain the estimated in situ density

distribution as

2 r?
TZ(’I“) = Ngyo€ 20202 + ntr,0 Max (0, 1-— R2> s (415)
where o = (1 4+ w?t?)~!; the peak 2D densities n, and nrro are chosen such that
the populations of each component in the in situ distribution Eq. (4.1.5) match to

that obtained in TOF images. We found good agreement of the estimated in situ
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density distribution to that obtained from the Monte Carlo simulation performed

for our particular experimental parameters (see Chapter 5).

4.2 Matter-wave interference patterns

We investigate the fluctuation properties of 2D Bose gases using matter-wave
interference (MWI). The MWTI patterns reveal the intrinsic fluctuation of the 2D
system from which we obtain the correlation functions. In this section, we give a
description of the matter-wave interference analysis methods, as well as the effect of
finite imaging resolution. An important consideration is the method of accounting for

the inhomogeneity of the system in our analysis leading to the correlation function.

4.2.1 Matter-wave interference

We calculate the density distribution of quasi-2D Bose gases which are initially
trapped in a double-well potential and released for a TOF expansion. The
wavefunction in the z direction consists of two Gaussian wavepackets in the
two wells 7 = 1,2 with initial spatial separation d, and the total wavefunction
is (z,t) = @1(z,t) + pa(r,t). The expansion of the individual wavepacket is
described by [67]

(24 d/2)%(1 + iht/ml(%)] | (4.2.1)

©;(z,t) o exp [iqﬁj(r) - o0

where the ¢;(r) is the in situ phase of each cloud, 7 = I§ 4+ (ht/mly)? and [y is the

initial wavepacket size. The corresponding density distribution after TOF is

n(z,t) = |o(z,1)]* = o1 (r, t)]* + |02 (r, 1)|* + 2Refpr (7, 1) o (r, 1)), (4.2.2)
2 d
X exp (‘éé) ll + cos (n;ufz + o1 — ¢2>] , (4.2.3)
where we have used exp (— (Zi;%w) ~ exp (—%) and [; ~ ht/ml, for sufficiently

long TOF duration such that I, > [y, d. The density distribution of 2D gases
released from a double-well trap thus shows a sinusoidal modulation of density
with a Gaussian envelope. The periodicity of the modulation is Az ~ QW%.

Additionally, the phase profile of the interference pattern along r depends on the
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phase difference of the initial gases ¢; — ¢ and this allows us to infer the spatial
distribution of the in situ relative phase.

As described in Sec. 3.5.3, we image slices of the density distribution with
thickness L, to reveal the local fluctuation of the phases. This technique works if
the L, is shorter than the characteristic length scale for the change in phase, i.e. the
phase correlation length rg. Thus, when investigating the BKT critical phenomena,
we only take data in the superfluid and crossover regime where the detection of the
phase profile is feasible, i.e. L, < ry. The thickness of the slice needs to be large
enough to give a good signal-to-noise ratio in the absorption imaging; typically, we
use a thickness L, = 5 pm which is a compromise between the two constraints and is

short enough to probe the phase correlation function across the BKT critical point.

4.2.2 Extracting phases

To extract the phases from the observed interference pattern, we fit the column
density distribution n,(z) with the fit function

(z — 20)?
202

z

ng(z) = n,exp (— ) {1 + cocos(kz + 0(x)) ]|, (4.2.4)

where ny, 29,0, co, k and 6(z) are the fit parameters. With the density slicing
method, the extracted phase 0(x) encodes a specific realisation of the fluctuations
of the in situ local relative phase along the line 7 = (z,y = 0) between the pair
of 2D gases. Fig. 4.3 (a) illustrates the fitting.

For small well separations, where d ~ [;(t = 0), the fit becomes increasingly
difficult as the interference fringe spacing becomes comparable to the extent of
the cloud Az ~ [;(tTor). In such cases, the Fourier transform is a better method
to extract the phases by taking the argument of complex fast Fourier transform
(FFT) amplitude at the fringe wavenumber k = hAittor/md. We thus used the FET
for the results reported in Chapter 7, where the well separation is made small,
d ~ 21m to induce coupling between the two wells. We compare the two phase
extraction methods in Fig. 4.3. Fig. 4.3(b) shows that for a fringe wavelength

longer than 0.20,, the FFT method is more reliable.
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Figure 4.3: Phase extraction from interference patterns. (a) artificially generated
density profiles along z using Eq. (4.2.4) at different 6 with the added white noise of
amplitude at 10 % of the peak value. Red lines are fit with Eq. (4.2.4). (b) Comparison of
two methods to extract the phases. For a range of fringe wavelengths from 0.020, to 0.70,,
we generated 20 images with different phases € in the same way as (a) and extracted the
phases using two methods. The root-mean-squared errors of true and measured phases are
shown as a function of fringe wavelength divided by the extent of the Gaussian envelope
0.

4.2.3 Postselection of fit results

Even at a small fringe wavelength where the fitting with Eq. (4.2.4) is expected to
work well, noise and imperfections in the experiment lead to cases where the fit fails
to converge and returns unrealistic parameters. Anomalous jumps of phases from
failed fit attempts significantly affect the correlation analysis, therefore we postselect
fit results that can be considered a reasonable fit and exclude those that can be
considered a fit error or absence of interference signal. This selection is based on
the fact that the double-well separation is fixed for any temperature of the gas and
thus the k& must be fixed. Therefore we use anomalous values of k as an indication
of fit failure, and exclude these datapoints from further analysis. Specifically, we
discard datapoints where the fitted value of £ is outside the region of the peak of
its histogram, as illustrated in Fig. 4.4 for the datasets shown in Chapter 5.

4.2.4 Obtaining the phase-correlation function

As we have discussed in Sec. 2.5.1, the correlation function of the relative phases of
two decoupled 2D gases is related to the first-order correlation function of each layer,
thus providing a direct probe of the BKT transition. In this section, we describe

the specific method used to obtain the phase correlation function of the 2D system.
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Figure 4.4: Histogram of the fringe wavenumber k from fits with Eq. (4.2.4), performed
on the experimental data shown in Chapter 5. The red dashed lines indicate the range of
k that we use for postselection.

For each experimental run, we obtain the relative phase profile §(z) as described
previously. From 6(z), we first calculate the two-point phase correlation function
0(x)—0

e'l @] for all combinations of locations z and x’ within the interfering part of

the cloud. We then determine the averaged correlation function
Cexp(z,2") = N 3 )i (4.2.5)

where the index j runs over N, individual experimental realisations. Typically
N, is on the order of 100. The real part of the correlation function C"(z,z") =
Re [Cexp(z, 2')], equals 1 for perfect correlation between pairs of points and 0 for
uncorrelated pairs of points.

Fig. 4.5(b) shows an example of this correlation C"(z, 2’), using the data of an
equilibrium system in crossover regime at 1" ~ 40 nK, from Chapter 5. The range
of spatial correlations around the diagonal x = 2’ indicates the coherence of the

system. C"(x,z’) is related to the one-body correlation function g;(r, ') by

L) gl
)= R eE e - e (4.26)

To quantify the decay of correlations, we calculate C(Z) by averaging C"(zx,z’)
over the set of points with the same spatial separation T = x — /. This averaging
was performed over antidiagonal and their adjacent and second adjacent elements

of C"(x, "), corresponding to the points that are distanced T/2, T/2 £ 1 and
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Figure 4.5: Extraction of the phase correlation function C(Z). (a) An example phase
profile extracted from an interference pattern using the fit function Eq. (4.2.4). The
bottom panel shows the phase profile in radians. (b) From the phase profiles 6(z) extracted
from large number of images, we calculate the two-point phase correlation Eq. (4.2.5).
Diagonal elements C"(x, ) = 1 by definition. (¢) From C"(x, '), the correlation function
C(7) at distance T (in number of pixels) is calculated by taking the mean of Z-th diagonal
elements of C"(z,2’) according to Eq. (4.2.7). The shaded region is the uncertainties
obtained by the bootstrapping method. The elements of the C"(x,z’) included in the
averaging are indicated by the rectangles (red, blue and green), corresponding to C(T)
data points marked by circles in matching colours.

Z/2 £ 2 pixels from the centre of the cloud (see Fig. 4.5(c) inset). The averaged

correlation function C(Z) is defined as

—F/2+2
C(x) = % S Re[Clr.z +7)). (4.2.7)
T p—7/2-2

where Nz = 5 is the number of pixels used for the averaging. This procedure

is illustrated in Fig. 4.5 (c).

4.3 Effect of finite imaging resolution

The imaging system in our apparatus has finite imaging resolution with point-
spread function (PSF) approximated by Gaussian with a standard deviation of
opsr = 2.1 um. The observed images involve a density distribution convolved with
the PSF of the imaging system. Specifically, this is expected to affect the short-range

correlations T ~ opgrp. The change in short-range correlation is not expected to
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affect our determination of the BKT critical point significantly because we are only
interested in the long-distance behaviour of the correlation functions to probe BKT

critical phenomena. However, it is important to quantitatively estimate the effect.
Superfluid regime

To model the effect of imaging resolution to the correlation analysis within the
superfluid regime, we assume the equilibrium phonon mode population [122] and the
effect of imaging resolution can be straightforwardly modelled by multiplying the
phonon mode populations with the Fourier transform of the PSF, exp(—opgpk?/2).
We plot the normalised correlation function with true exponent n = 0.2 and imaging
resolution ogp =0,0.5,...,2.5 in Figure 4.6 (a), along with fitting with a power-law
function f(x) = ax™". As expected, the long-distance decay of the correlation
function is unchanged by having finite imaging resolution. In Figure 4.6 (b),
we present the results of fitting which show that a finite imaging resolution of
opsr = 2.1 pm has negligible effect on the extracted value of n within the superfluid

regime.

0.6
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Figure 4.6: Effect of imaging resolution on the measurement of the algebraic exponent
7. Points represent normalised one-body correlation functions ¢f(z) = gi(x)/n in the
superfluid regime, simulated with the effect of imaging in real-space with opgp=0,0.5,...,2.5
pum from bottom to top (blue to green). opgp=0 corresponds to the absence of any imaging
effect. Lines in corresponding colours are fitted curves with f(z) = axz™". (inset) Fitted
values of 7 as a function of imaging resolution with 7y = 0.2 (circle), 0.1 (square) and
0.05 (triangle).
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Thermal regime

To estimate the effect of finite imaging resolution on the correlation function in the
thermal regime, we have simulated the fluctuations of the system using the Ornstein-
Uhlenbeck stochastic process [123] with the time axis replaced by the real-space
axis along a direction perpendicular to the imaging direction. This process gives
fluctuating phase profiles with exponentially decaying two-point phase correlation
with a given correlation length &, and was used in the analysis of experiments
elsewhere to simulate the fluctuating phase profiles of 1D gases [32]. The effect of
imaging resolution was incorporated by convolving the interference pattern arising
from the ballistic expansion of a pair of phase-fluctuating clouds along z direction
[67] with a Gaussian PSF. We generate N = 200 images at each set of parameters
and apply the image analysis procedure as described in Section 4.2.4 to obtain the
correlation functions. In Fig. 4.7 (b) the correlation functions in the presence of finite
imaging effect are plotted. The inset of Fig. 4.7 (b) shows the correlation length rg
extracted by fitting the correlation functions obtained with opgr = 2.1 pm. The
plot shows the measured correlation length against the true correlation function used
to generate the data, &. From this, we find that the imaging effect systematically

shifts the observed correlation length up to around opgp.

4.4 Effect of inhomogeneity on correlation func-
tions

Power-law model

In harmonically trapped 2D Bose gases, the spatially varying density of the gas
modulates the local thermodynamic quantities. For the analysis based on correlation
properties of 2D gases, the inhomogeneity introduces deviation from the BKT
picture derived for uniform systems. It is thus necessary to properly account for
the inhomogeneity when analysing the correlation functions.

Recently, a spin-wave theory in trapped 2D systems was derived in Ref. [26],

focusing on the effect of the harmonic trap on the correlation function. It was
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(a)

Z(pm)

Figure 4.7: Effect of imaging resolution in the thermal regime. (a) Simulated density
distribution after TOF with phase correlation length &y = 10 pm. The left image is the
simulated distribution without any imaging effect and that on the right figure is the output
of the simulated imaging process, including the finite imaging resolution and pixel size.
(b) Phase correlation functions obtained from simulated images, with imaging resolution
0,1,2,3 pym ( blue to green) and {, = 8 pm. (inset) Fitted correlation length from the
correlation functions, with opgp = 2.1 pm. Error bars are 95% confidence intervals. The
red solid line is g = &y and red dash-dotted line is 79 = £y + 2.1 pm.

found that the density-dependent modulation of the exponent n from local density
n(r) according to
Cp—_m0
gr(r, ") o o — | VRenen (4.4.1)
reproduces the result of trapped spin-wave theory well [26], where ng is the peak
density. This procedure was named the local correlation approximation (LCA). We
use the procedure with the minor modification described below to derive a model
which we used to fit the correlation function fsp(Z) and to extract the algebraic
exponent 7 for all the correlation measurements reported in this thesis.
Since the data points in the correlation function C(Z) are averaged over multiple

locations, we replace n(r) of Eq. (4.4.1) with n(Z) defined by

—T/242
n(F) = ]\1[ _2/22 Jn(@)n(z + ), (4.4.2)

where Nz = 5, same as Eq. (4.2.7). For n(x), we used estimated in situ density

distributions as described in Section 4.1.3. We then use the model function

fop = az 2@ (4.4.3)
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where a(T) = % with fit parameters a and 1 and the factor of two in the

exponent stems from the fact that the fluctuation from two clouds contribute to the
measured correlation function (see Eq. (4.2.6)). This model gives a good description
of the long-range behaviour of the measured correlation decay in the superfluid
regime, as shown in Fig. 4.8 and the obtained value of 1 corresponds to the mean

value within the region of interest, 80% of the Thomas-Fermi diameter.
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Figure 4.8: The effect of inhomogeneity to the correlation function. The experimental
measurement of the correlation function in the superfluid regime (black points) is plotted,
taken from results shown in Chapter 5. The correlation function was fitted with a
power-law model (purple) and power-law model within the LCA (blue).

Exponential model

In an inhomogeneous trapping potential the density varies over a characteristic
length scale that is relatively long compared to the short-ranged correlation function
in the thermal regime. This smooth density variation is expected to have only a
small effect on the correlations in this regime, however we have not found a suitable
theoretical treatment in the literature and have developed the approach described
here. As above, we simulate the exponentially decaying correlation function using
the Ornstein-Uhlenbeck stochastic process [123], this time with spatially varying
correlation length &(z) depending on the location within the trap. We assume that
the local correlation length £(z) decays exponentially as a function of distance from

the centre of the cloud, &(x) o exp(—x/b) and fix the correlation length at the
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centre of the trap &y. Fig. 4.9 shows correlation function obtained from homogeneous
(black) and inhomogeneous (red) model which overlap within uncertainties. The
close agreement of two correlation functions is reflected in the exponential fit of
these functions, which gives correlation lengths in agreement with each other within
their confidence intervals. We found the same results regardless of the scaling factor

b, and even with small b such that {(z) ~ 0 at the edge of the analysis region.
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Figure 4.9: The effect of inhomogeneity on the correlation function in the thermal
regime. Exponentially-decaying correlation functions, as expected in the thermal regime,
are obtained from an Ornstein-Uhlenbeck simulation. The black line is corresponds to
constant local correlation length £y = 8 pm across the system while the red line is for a
non-uniform local correlation length, decaying to close to zero at the edges of the cloud.
The shaded region denoting the 1o uncertainty was obtained by the bootstrapping method
from the realisations of the Ornstein-Uhlenbeck process and the inset shows the same
quantities on log-linear scale.

Although the above arguments hold within each distinct phase, further theoretical
investigation is needed to determine the effect of inhomogeneity within the crossover

regime, where the BKT transition is crossed at a certain radius of the cloud rgkr.

4.5 Vortex detection

The extracted phase profiles also provide a way to detect vortices in the 2D Bose
gases by looking for sharp disruptions of the phase 6(x). As shown in Fig. 2.1
(¢) and (d), the phase profile along a line cutting through a vortex core has

a sharp dislocation of phase.
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The methodology that we use to find vortices is similar to that in Ref. [14], in
which the criterion for a vortex at location z was taken to be a phase difference
greater than 27 /3 between adjacent pixels. To avoid false counting, we make
the following improvements to the vortex detection method described in Ref. [14].
Firstly, since our imaging resolution is comparable to the expected size of a vortex
core ~ 1 m and, furthermore, a single pixel corresponds to an equivalent size in the
image plane, the vortex detection is performed by evaluating the phase difference
at second adjacent pixels (next-nearest neighbours). Secondly, to avoid the local
phases returned from failed fitting being counted as a vortex, we only consider
positions where the postselection criteria shown in Fig. 4.4 is satisfied for the pair
pixel locations. Fig. 4.10 illustrates the vortex detection. The vortex detection
was performed within 90% of the TF region; we analyse a wider region than for

the correlation analysis, to obtain better statistics.
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Figure 4.10: Vortex detection. Example images with vortices are shown, with
corresponding phase profiles §(z) obtained by fitting with Eq. (4.2.4). The disruption
of the relative phases at certain positions x is evident by comparison with Fig. 4.5. In
the phase profiles on the right panel, grey shaded regions indicate either outside of the
Thomas-Fermi region or a failed fit at the pixel column (e.g. bottom right panel at
x = 12). The vortex detected in the bottom panel coincides with a grey shaded area; this
suggests the presence of a vortex core where the phase cannot be defined.
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With the density slicing method, we can extract the local vortex density because
the location of vortex in image x, can be mapped onto a small region! in the 2D
plane centred at r, = (x,,0). This would not be possible without the density
slicing method, as the position along the y axis cannot be determined with standard
absorption images that integrate along y. To obtain the vortex density distribution,
we first calculate the local vortex probability P,(z) which is defined by the ratio
of the number of detected vortices to the number of phase difference evaluations
at each location x. Here, datapoints that are rejected by the postselection criteria
are not counted towards the number of phase evaluations. Then, we define the
local vortex density as the P,(z) divided by the 2D area of detection region for
a single pixel ¢,L, = 8.4pm?

Py(x) (vortex count) 1

Ny () (4.5.1)

- (,L,  (number of phase evaluations) " 8.4pm?’

We relate the local vortex density to the local PSD at the corresponding position,
as described in Chapter 5. The local density along the slice is obtained from a one-
to-one mapping of the TOF density distribution to the in situ density distribution

as discussed in Section 4.1.3.

IThe finite thickness of the slice L, = 5pm and image-plane pixel size £, = 1.67 pm mean that
a vortex detected at pixel location , is located in a small region x € [z, — €,/2, z, + {,/2] and
y € [—Ly/2,Ly/2].
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In this chapter, we present our experimental results on the BKT transition
in equilibrium 2D Bose gases using matter-wave interferometry to probe local
phase fluctuations of trapped 2D systems. This enables us to measure the phase
correlation function changing from an algebraic to an exponential decay when the
system crosses the BKT transition. We identify the transition temperature 7, by the
change in functional form of the correlation functions, from algebraic to exponential.
From the critical temperature, we identify the critical exponent 7.. Furthermore,
we measure the local vortex density as a function of the local phase-space density,

which shows a temperature-independent behaviour following an exponential growth

90
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across the transition. Our experimental investigation is supported by Monte Carlo
simulations to provide a comprehensive understanding of the BK'T transition in
a trapped system. Furthermore, we present the full counting statistics of the
interference contrast as well as the density-noise correlation of double-well 2D gases
after expansion, which provide deeper insight into the properties of 2D systems

in equilibrium across the BKT critical point.

5.1 Preparation of the 2D cloud

We prepare 2D gases in equilibrium by a slow splitting into a double-well potential
and a subsequent equilibration time of 500 ms. We initially prepare atoms in a
single-RF dressed 3D trap as described in Section 3.4, and turn on the other two
RF components to form the MRF-dressed potential. The initial parameters for the
MRF-dressed potential are chosen to spatially overlap with the single-RF dressed
potential, which minimises heating and atom loss. Subsequently, the RF amplitudes
are ramped over 220 ms to transform the MRF potential from a single well to a
double-well potential, and to increase the confinement along the z direction to
w,/2m = 1kHz while radial trapping frequency remains at w, /27 = 11 Hz, thus
realising 2D clouds. The characteristic dimensionless 2D interaction strength is
g = \/gas/&) = 0.076 and there are N ~ 3.5 x 10* atoms in each well. The
detail of the multi-stage ramp used to transform into a double-well is given in
Section 3.4.1. The gas has a final temperature in the range 31 —47nK, which is
controlled by forced evaporation in the TAAP stage.

After equilibrating the gases for 500 ms, the MRF-dressed potential is turned
off by first switching off the RF fields and subsequently the quadrupole magnetic
field. As described in Chapter 4, when the RF field turns off, the internal state of
the atoms is projected into Zeeman substates labelled by quantum numbers mpg.
Only atoms with mp = 0 are used for the analysis of matter-wave interference and
temperature measurements [94] but the populations in mpr = +1 states are included
in the count when determining the total atom number N. We choose the phase of

the RF at the turn-off to ensure equal proportions of atoms are projected to mg = 0
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Figure 5.1: Probing local phase fluctuations using matter-wave interference. (a)
Schematic of the experimental procedure. We begin with quasi-2D Bose gases trapped
in a double-well potential (blue discs, top). The clouds fall and undergo time-of-flight
(TOF) expansion, such that they spatially overlap and produce interference fringes with
fluctuating phases (blue wavy planes). The red sheet of thickness L, denotes the thin laser
beam that repumps a slice of the atoms. We image repumped atoms using resonant light
(depicted as a blue beam propagating along the y direction), producing an absorption
image captured by a CCD camera. (b) Matter-wave interference images with weak (left)
and strong (right) phase fluctuations, both at 7' = 0.52.

from each well, such that the density profile of atoms in the mpr = 0 state after TOF
gives complete information of the system up to a global rescaling of density. The
separation of the wells is 7 um which is large compared to the characteristic length
scale of the cloud along the z direction ¢y ~ 1 pm and the two clouds are decoupled.
We ensure the populations in the two wells are equal by maximizing the observed
matter-wave interference contrast as described in our recent publication Ref. [94].
The density scaling factor can be obtained by counting the number of atoms in
mp = £1 components. Throughout this chapter, we set the temperature scale for
our system using the condensation temperature of an ideal 2D Bose gas in a harmonic
trap, Ty = V6N (fiw, /mkp) ~ 75 nK and use rescaled temperatures 7' = T/Tp.
Finally, to locally probe the fluctuating matter-wave interference patterns after
TOF expansion with duration tror = 16.2ms, we apply a sheet of repumping light

that propagates vertically (in z direction) with thickness L, = 5pm and width
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much larger than the extent of the cloud of atoms before absorption imaging. All
atoms are initially in a state with F' =1 and are then selectively pumped to F' = 2
by the sheet of repumping light, which we image using light resonant for the atoms
in the F' = 2 state. The selective imaging method is illustrated in Fig. 5.1 (a). We
ensure the repumping light passes through the centre of the cloud by moving the
pattern along the y direction, in parallel to the propagation of imaging light, to
the position where the total absorption signal is maximum.

Fig. 5.1 (b) shows examples of interference patterns obtained from two inde-
pendent measurements at the temperature 7' = 0.52. The wavenumber of the
interference fringes along the z direction is consistent with k& = md/htror [67],
where d = 7pm is the spatial separation between the double-well minima. The
interference pattern is only visible in the narrow Thomas-Fermi peak of the density

distribution, in agreement with the results reported in Ref. [119].

5.2 Numerical Simulation of an equilibrium sys-
tem

We complement our experimental observations with a numerical simulation per-

formed for our specific parameters by Dr. V. Singh (Hamburg University). Here, the

classical Monte-Carlo simulation is used to study the BKT transition in a trapped

2D Bose gas of 8"Rb atoms. The system is described by the many-body Hamiltonian
i = [ ar[ o) - v + Lt o

F V)5 (5.21)

where ¢ (1) is the bosonic annihilation (creation) operator and the 2D interaction
strength is § = 0.076 as in the experiments. The simulation maps the system onto
a lattice system of size N, x NNV, which introduces a discretization length [. For
the continuum limit, [ is chosen such that it is smaller than or comparable to the
healing length £ = h//2mgn and the de Broglie wavelength [122].

The simulation method involves a classical-field approximation, i.e., replacing

the operators 1& by complex numbers 1 [124] and the initial states are generated in a
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grand-canonical ensemble of temperature 7" and chemical potential p via a classical
Metropolis algorithm. The lattice size used in the simulation is IV, x N, = 200 x 200
and [ = 0.5um. p is chosen such that the cloud consists of about 3.5 x 10%
atoms, corresponding to the atom number in each well of the experiment. T
in the range 10 — 62nK, which covers a wide range of temperatures across the
BKT transition. The simulated cloud corresponds to the equilibrium system that
the experiment reaches after a slow splitting and 500 ms of equilibration time.
For each sample, ¢ (z) is used to determine the phase ¢(x) and density of the

central line along the x direction.
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Figure 5.2: Illustration of the correlation analysis from the Monte-Carlo simulation
result. The MC simulation was performed by Dr. V. Singh (Hamburg University). (Left)
The spatial distribution of the phase ¢(7), obtained from the MC simulation. The
temperature of the gas was 47 nK, resulting in an TF radius of ~ 20 pum. (Right) The
phases ¢ in the left panel along a line going through the centre of the cloud. Such
one-dimensional data was used for the phase correlation analysis of MC results reported
in this thesis, which uses the exact same code used for the analysis of experimental data
and thus reproduces the experimental situation well. Gray shaded regions are outside of
80% of the TF region, which are not used for the correlation analysis.

Using the phase data ¢(z) from the simulation, we calculate the phase correlation

function C’

sim

(7) in the same way as described in Section 4.2.4 with 500 realisations at
each temperature. To compare with experimental results, we use Cy;, (Z) = C2, ()
since the fluctuation of two clouds are contributing to the relative phase fluctuation

that we observe in the experiment while the simulation is done in a single 2D

system. We calculate the phase correlation function within the 80% region of
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the Thomas-Fermi diameter obtained from the simulation results, similarly to
the analysis of experimental data.

Vortices are identified by calculating the phase winding around the lattice
plaquette of size { x [ using Y 0¢(x,y) = 0,0(x,y) +0yp(x +1,y) +op(x+ 1L y+1) +
dy¢(x,y +1), where the phase differences between sites are taken to be d,/,¢(x,y) €
(—m, m]. A Vortex and an antivortex are identified by a phase winding of 27 and —27,
respectively. We determine the density profile n(x) and the vortex distribution n,(z)
by averaging them over the region L, = 5pm and the ensemble, where n, counts
both a vortex and an antivortex. The correspondence between n(x) and n,(x) allows

us to determine n, as a function of the local PSD as we show in the following sections.

5.3 Correlation properties across the BKT tran-
sition

The local fluctuations of the interference fringes contain the phase information of
the in situ clouds. At each location x, we fit the interference pattern with the
function Eq. (4.2.4). The extracted phase 6(z) encodes a specific realisation of the
fluctuations of the in situ local relative phase along the line r» = (z,y = 0) between
the pair of 2D gases. From 6(z), we calculate the two-point phase correlation Eq.
(4.2.5). Fig. 5.3 shows C"(z,2") determined at the temperatures ranging from
T = 0.41 to 0.61. We have N, = 220 experimental realisations at each temperature.
The range of spatial correlations around the diagonal x = 2’ is broad at low
temperature, as compared to the measurement at higher temperature.

To quantify the decay of correlations, we calculate C(Z) by averaging C"(x, z")
over points with the same spatial separation T = x — a2/, as described in Section 4.2.4.
This averaging was performed over a central region corresponding to 80% of the TF
diameter, to limit the analysis to where clear interference fringes are observed.

Fig. 5.4 shows the measurements of C(Z) for various temperatures. C(T) decays
slowly at short and intermediate distances for a low-temperature system. However,

at higher temperatures, C(Z) decays rapidly with increasing distance Z. This
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Figure 5.3: Phase correlation functions. Two-point phase correlation functions C" (x, ')
in the 2D gases, obtained from 220 images from the experiment at temperatures indicated
above each panel.
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qualitative change of the correlation decay with temperature indicates the crossover
to the thermal phase across the BKT transition.

At low temperatures, we observe a large deviation between simulation and
experiment; this is due to the small length scale structure that can be analysed in
the simulation with 0.5 pm grid size compared to the experiment which is limited
by the imaging resolution opsr = 2.1 pm; short-range physics affects the correlation
at short length in the simulation while in the experiment such an effect is masked
by the imaging resolution. However, the long-range behaviour of the correlation
functions are similar (see also Section 4.3) and since we are only interested in the
long-range physics, the deviation has only a small effect to the identification of
BKT physics, as we see in the following chapters. Furthermore, the coarse-graining
procedure of the simulation data (such as one shown in Fig. 5.2) via convolution
of the phasor distribution e with a Gaussian kernel results in a reasonable
agreement with the measurements.

We fit the correlation functions with the algebraic model function with spatial
modulation of exponent fsp(Z) = az~27%@ according to LCA, as described in
Section 4.4. We further fit the correlation functions with exponential models

fin(T) = be~2/™ where b and correlation length 7y are fit parameters. The factor
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Figure 5.4: Phase correlation functions. Phase correlation functions C(z) from
experimental data (black connected points) at temperatures indicated above graphs.
Uncertainties were obtained by a bootstrapping resampling method (grey shaded areas)
[125]. The green line is the correlation function from simulation Cgim(Z) at corresponding
temperatures, T =0.42, 0.46, 0.49, 0.53, 0.53, 0.56, 0.59, 0.6 from left top to right bottom
subfigures. The red lines are the correlation function from the simulation, with the effect
of imaging resolution taken into account by the coarse-graining of phase profiles obtained
from the simulation (such as one shown in Fig. 5.2).

of two in the exponent of both fi,(Z) and fsp(Z) are due to the fact that the
fluctuations of two 2D clouds are contributing to the correlation function that
we observe, as discussed in Section 2.5.1.

To quantify the temperature dependence of the phase fluctuation across the BK'T
transition we analyse the temperature dependence of n(7") and r¢(7"), determined
from our data. In Fig. 5.5 (a), we show n(T") for various values of T. By definition,
n(T') should scale linearly as n = T'/(4Tgkr) in the superfluid phase, where Tgkr
is the BKT critical temperature [60]. Indeed, our measurement of n(7") follows a
linear dependence for T/Ty < 0.52, where the system is deep in the superfluid
regime. We show in Fig. 5.5 (a) the linear fit to the first four data points
showing the linear scaling.

However, as the system approaches the crossover regime, n(7") deviates from the
linear behaviour and increases more rapidly. To compare with the measurements,
we performed Monte-Carlo (MC) simulations of a cloud at equilibrium having the

same parameters as in the experiment as described in Section 5.2. We show the
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simulation results of n(7") in Fig. 5.5 (a), which agree with the experimental results.
At higher temperatures, the value of 7 diverges rapidly, as the system crosses over
to the thermal phase, as we describe below.

(a) | | | (b)

05| 1t 4 ok

B \\\\\\ 0
04 & 1 a0l

%o ~
g
S03F 0 12
0 10 20 to c 20t
T (pm)
0.2+ Cf¢
10+
o=~ o MC
I oS |
0.1 - C"f | # Exp .
0.4 0.5 0.6
T

Figure 5.5: Characterising the BKT transition in a 2D Bose gas. (a) Measurements
of the algebraic exponent 7 (filled circles) are compared with the results of Monte-Carlo
simulations (open circles) as a function of the scaled temperature T. n is determined by
fitting the correlation function with an algebraic model fgg. The solid line is the linear
fit to the data points at T' < 0.52 which returns the slope 0.24(3). (b) Measurements of
the correlation length r¢ (filled squares) are compared with the simulation results (open
squares), where rg is determined by fitting the correlation function with an exponential
model fi;,. The values of the temperature-dependent Thomas-Fermi diameter are shown
for the experiment (continuous line) and the simulation (dotted line). The error bars in
n and ro denote standard fit errors, while the error bars in temperature are statistical
errors.

In Fig. 5.5 (b), we show the correlation length ro(7") and the temperature-
dependent TF diameter. Since ry cannot be well-defined above the system size, the
value of ry is bounded by the TF diameter. We considered here the TF region as
the effective system size; this is motivated by the fact that the quasicondensation is
required to observe BKT phenomena since the suppression of density fluctuation
results in the mapping of effective Hamiltonian of 2D Bose gases to the 2D XY
model (see Section 2.3.3). As we have observed in Section 2.3.6, the Thomas-Fermi
peak of the system corresponds to the region of the cloud where a significant fraction
of quasicondensate is present. As such, we treat the TF region as the system in

which the BKT physics can take place.
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In a finite-size system, as the transition temperature is crossed, ro becomes
smaller than the system size. We observe the deviation of ry from the effective
system size (TF diameter, solid black line), which we identify as a signature of phase
transition from the (quasi-)LRO to short-range order which occurs at 7' ~ 0.55. In
Fig. 5.5 (b) we present the simulation results for 79(7") and the TF diameter, which
show consistent behaviour in agreement with the measurements.

The BK'T critical point is identified by the sudden change in the functional
form of the first-order correlation function. In Fig. 5.6, we plot the y? statistic of
the algebraic and the exponential fits. The Xfﬂg shows a clear transition between
two values while the ngp increases sharply below T ~ 0.55. At low temperature
T < 0.53, x%test of the best fit model at the 5 % significance level reject the
exponential model while accepting the algebraic model with LCA. At T > 0.53,
while the exponential model is preferred with about 20 % lower x? values, the model
selection is marginal; the Xglg value is close to the critical x? value and we cannot
confidently reject the algebraic model. Nevertheless, the corresponding p values are
0.2 and 0.5 for the algebraic and exponential models, allowing us to confidently
choose the exponential model as the preferred model at higher temperatures.

To find the critical temperature, we fitted the leg with a arctangent function, and
ngp with a piecewise function which is constant above quxp and linear below Tc,exp.
The fitted functions are plotted in Fig. 5.6 as dotted lines. From the two fitted values
quxp and Tc,alg, we find the critical temperature T, = (Tc,exp + Tqalg) /2 =0.53(1).
The obtained critical temperature is in good agreement with the temperature at
which the correlation length rq deviates from the system size (TF diameter), which
is the signature of critical point in finite-size system. To obtain the critical algebraic
exponent, we interpolate the result in Fig. 5.5 (a) with polynomial function and find
n(T,) = 0.17(3) which is 30% lower than the universal critical exponent 1pxr=0.25.
The lower critical exponent is attributed to the finite-size effect with expression
Eq. (2.1.6); for a system with linear size L ~ 30, one expects 7. = 0.21. The choice
of parameter L is motivated by our specific experiment, the TF radius ~ 30 pm

divided by the healing length £ ~ 1pum.
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Figure 5.6: x? statistic of the exponential model (purple ,fexp) and algebraic model
with LCA (blue, fsp). Dotted lines are the fit to the temperature dependence of x?; see
text.

While the critical temperature obtained in this work requires a significant fraction
of atoms within the detection region (80% of the TF region) to be superfluid, this
definition differs from the usual one which requires only the centre of the trap
to become superfluid. The deviation of the observed critical temperature to the
theoretical prediction, such as the quasi-2D prediction T,./T, = 0.74 [57], can be
described by these differences; indeed, for narrower correlation analysis region we
found increasing critical temperature which gives the expected zero-region critical
temperature at the centre of the trap at 7../7) = 0.68(4) with the corresponding
critical PSD D, = 9(1), in agreement with the theoretical prediction D, = 8.5 [17]

for the interaction strength g = 0.076 used in this thesis.

5.3.1 Interference contrast analysis

Previous work on the interferometric observation of the BKT transition [14] relied
on the method proposed in Ref. [69], namely the decay of integrated contrast as
a function of integration area is used to determine the correlation property of the
system characterising the BK'T transition. In essence, the decay of interference
contrast as a function of integration area A; scales algebraically, and the exponent ~y
approximates 7 deep in the SF regime while v ~ 0.5 in the thermal regime. With the
selective repumping method used in this work, the product of the image integration

length L, and the thickness of the slice L, equals the integration area, A; = L,L,.
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Figure 5.7: The comparison of the phase correlation analysis method to the previously
used contrast-based analysis method proposed in Ref. [69]. (a) The decay of squared
contrast as a function of integration area A; at temperatures 31 nK (blue, top) to 47 nK
(bottom, green). Power-law fitting of ¢y? (solid lines) is performed where L, < I, < (80%
of TF diameter) is satisfied, indicated by larger markers. (b) The comparison of exponent
~ obtained from the fits in (a) and the 7 obtained from power-law fits of phase correlation
function described in the main text. The two quantities are expected to agree in the
superfluid regime according to Ref. [69]. Errors in 7 are standard errors of the fit.

For a comparison of our method to the one used in Ref. [14], we performed the
contrast-based analysis and the result is presented in Fig. 5.7 (b). While the two
methods return similar results at low temperatures that are deep in the superfluid
regime, deviation is apparent even within the superfluid regime. This shows that
the presence of a larger fraction of thermal atoms affects the contrast-based analysis

within the crossover regime.

5.3.2 Local correlation and critical radius

Instead of the global fluctuation properties of the gas, the density slicing method
allows us to locally probe phase fluctuations. This allows us to test the applicability
of LDA on the phase fluctuation properties. In Fig. 5.8 (a), we show the histogram
of phase fluctuations between points separated by two pixels, 2¢, ~ 3.5um. The
fluctuations are approximately Gaussian at low temperature, with much wider
width at higher temperature. Using the variance of the phase difference, we obtain

the local algebraic exponent 1 using [26]

_ (B0, +20,)%)

n(z) = 2n(42/32,) (5.3.1)
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In Fig. 5.8 (b), we plot the local  against local PSD Dy,.. The points approximately
collapse on the theoretical prediction of 7 from Ref. [18] (as described in Section 2.3.5)
independent of temperature, supporting the applicability of the LDA on phase

correlation properties.
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Figure 5.8: Observation of the local phase fluctuation and local 7. (a) histogram
of phase fluctuation at distance Az = 2(pixel) ~ 3.4pm , at temperatures T = 0.41
(left) and 0.54 (right). (b) Local algebraic exponent obtained by the magnitude of local
phase fluctuation, Eq. (5.3.1). The colours of the points indicate eight different dataset
with temperatures ranging from T' = 0.41 (blue) to 0.61 (green). Red solid line is the
classical-field theory prediction of n [18].

Furthermore, we probe the full distribution of local 7 in the system by repeating
the measurement for different locations y of the slicing region. In Fig. 5.9, we
probe the reconstructed distribution of density and local algebraic exponent. The
slight asymmetry of the density distribution is due to the long-term drift of the
experiment which slightly changes the position of atoms along = between the
separate measurements of individual y slices. We identify the approximate critical

radius by the critical value 7. = 0.17 and plot it in Fig. 5.9 (b).

5.4 Density distributions

The density distribution of 2D gases in a harmonic trap is another source of
information about the system properties, as discussed in Section 2.3.6. Importantly,
the bimodality of the density distribution indicates the suppression of density
fluctuation which is important to observe the BKT critical phenomena. Fig. 5.10 (a)

shows the mean density profile at temperatures ranging from 7 = 0.41 to T = 0.81,
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Figure 5.9: Tomographic reconstruction of the density profile and local phase fluctuations
at T = 0.47. (a) The density distribution of the 2D Bose gases reconstructed from density
slicing method at different slice location y. (b) The local algebraic exponent 1 obtained
from the interference measurement at varying slice position y. The black dotted circle is
the approximate critical radius r. ~ 14 pm obtained from the measured local 7.

obtained with the density slicing method. The observed density distribution fits
well with the bimodal distribution and we plot the fraction of atoms in the TF
peak in Fig. 5.10 (¢). We plot in Fig. 5.10 (b) the estimated in situ density
distribution, from the one-to-one mapping of TOF and in situ density distribution
as discussed in Section 4.1.3. We find good agreement of the distributions between

the experiment and simulation.

5.4.1 Phase-space density

The theoretical prediction of the critical PSD at the BKT transition in 2D Bose
gases is D, = In(380/g) = 8.5 [17]. We find the mean PSD for our trapped
system by averaging the 2D density within 80% of the TF diameter, where we
performed the correlation analysis. In Fig. 5.11, we show these measurements
together with the corresponding simulation results of the mean PSD for various
values of T. We find good agreement of the total PSD between the experiment
and simulation. The observed PSD at 7, in the experiment D, ey, ~ 10 is in
close agreement with the theoretical prediction. We further plot the results of
the superfluid PSD D, = n,\?, where n, is the 2D superfluid density. We obtain
D, using the measurement of n(T") via Dy = 1/n(T) [60]. In Fig. 5.11 we also



5. BKT transition in equilibrium 2D systems 104

(a) 900 —
Z 400 8% = 0
: 70|
° o -10
;300 F 5 1
& 0 0 40| © :
— 200 s 2 (4m) ] 047}
8
T 100 O+
2 O

(b)

n(z) (pm™?)

Figure 5.10: Mean density profile across the BKT transition. (a) Measurements of
the sliced density distribution after TOF from T = 0.41 (blue) to T = 0.81 (green). The
solid lines are the bimodal fit with Eq. (4.1.2). (b) The comparison of the estimated in
situ density distribution in the experiment (filled markers) and the simulated distribution
(open markers). The range of colours indicates the temperature and is the same scheme
as (a). (c) The fraction of atoms in the TF peak, obtained from the bimodal fits of
experimental data (filled markers) and mean density from the simulation (open markers).
Error bars are standard errors.

show the measurements of the quasicondensate PSD Dy = ngA2, where ng is the
mean density of the TF peak of the density distribution. The results of Dy show
similar behaviour to the results of D, below the transition, which suggest that ng
is close to ng in our trapped system. This is in good agreement with the result
of the classical-field theory presented in Fig. 2.6, where the TF fraction and the
SF fraction agree and scale linearly below the superfluid transition. However, we
could not observe the finite ‘superfluid jump’ of SF density as seen in Fig. 2.6;
the inhomogeneity and finite-size of the system broadens the phase transition. We
note that the quasicondensation critical temperature, defined by the emergence
of a narrow TF peak in the density distribution, is at a higher temperature of
T/Ty ~ 0.7 than the superfluid transition temperature. This suggests that the
BKT critical point is below the quasicondensation threshold as we have seen in

Fig. 2.6, as well as previously reported elsewhere in [66, 126].
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Figure 5.11: Phase-space density (PSD) across the BKT transition. Measurements of
the mean PSD within the central TF region of the cloud (filled circles) are compared with
the corresponding simulation results (open circles). The superfluid PSD D (triangles)
and quasicondensate PSD Dy (squares) are determined using the measurements of 7(7")
and the quasicondensate density, respectively; see text.

5.4.2 Density-noise correlation

In addition to the mean density distributions, we can further infer the system
properties from individual realisations of fluctuating density distributions after
TOF. As described in Section 2.4.3, the fluctuation of density after TOF is
dominated by the initial phase fluctuations, as different parts of the cloud interfere
during the expansion [70, 71]. In Fig. 5.12 (a), we show the fluctuating density
distribution recorded with the density slicing method. Such fluctuation is washed
out in a standard imaging method. To characterise the fluctuation of density, we
calculated Fourier amplitudes |F[n(z)]| = [ dz n(x)e™™* of the density distribution
after expansion.

In Fig. 5.12 (b), clear peak structures are observed at low temperatures at
k/2m ~ 0.18pm™!, which we observed to be washed out at higher temperatures
above the critical point or in the absence of atomic signal. While the peak position
remains constant, the peak height depends on the temperature of the gas and the
peak height rescaled by the mean density is found to be in a linear relationship with

the algebraic exponent 7, as predicted in theory [71]. This result is in qualitative
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Figure 5.12: Density noise after TOF measured with the density slicing method. (a)
Realisations of the density distribution at temperatures 7' = 0.41 (blue), 0.54 (purple)
and 0.7 (green). Plots are displaced vertically for clarity. Solid lines are bimodal fit results
of each realisation. (b) The averaged spectrum of the density distributions, at varying
temperatures. The dashed line in blue is the spectrum of averaged density distribution
over 220 realisations. Clear peak structures are observed at k/27 ~ 0.18pm ™!, and we
obtain its height by Gaussian fit; we obtain the unitless peak height, rescaled by the mean
density n,,, which is plotted in the inset where the red line is the linear fit.

agreement with that predicted in theoretical work Ref. [72] and reported in Ref.
[70]; for further quantitative analysis, we need a detailed theoretical investigation
to incorporate our specific imaging and analysis procedure.

From the same data, we have also obtained the density-noise correlation function,

dy(r,7') = <5"(2§S("‘/)>, (5.4.1)
where 0n(r) = n(7) — Nimodal (7") and Npimodar(7) is the fitted bimodal distribution
of each density distribution realisations. In this work, we use r — =z since the
density slicing method limits us to the measurement of local density at y = 0. We
show the density-noise correlation function gy(z,2’) in Fig. 5.13 (a). To obtain
2D density, we have integrated the images after TOF along the z direction. The
mean in Eq. (5.4.1) was taken over N, = 220 experimental realisations. We further

analyse an averaged form of the correlation function

ga(r) = (5?%(1?)2522(;5 o, (5.4.2)

where the mean is taken over experimental realisations and z. We plot ¢ at two

temperatures in superfluid regime, in Fig. 5.13 (b). The largest difference between
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g5 and gy is that the density noise correlation function g} has a long-distance limit
of 0, while the standard density correlation function g, has 1. From comparison of
Fig. 2.9 and Fig. 5.13 (b), we find that the behaviour of experimentally observed ¢
is similar to the theoretically predicted go. However, we need further theoretical

investigation to make quantitative comparisons.
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Figure 5.13: Density noise correlation in 2D Bose gases after TOF expansion. (a)
Density-noise correlation gh(z,2’) at temperature T' = 0.44(1). (b) Averaged form of the
correlation function gh(r) at two temperatures deep in the superfluid regime (blue, purple)
and the thermal regime. The characteristic oscillation is washed out deep in the thermal
regime.

5.5 Vortices

The BKT transition is driven by thermal vortex unbinding, which suppresses the
quasi-long-range order above the critical temperature. This underlying mechanism
is detected by matter-wave interferometry, where thermally activated free vortices
are observed as sharp dislocations in the interference patterns. This enables us
to determine the local vortex density using our selective imaging method. In Fig.
5.14 (a), we show examples of matter-wave interference patterns obtained from two
independent measurements at 7' = 0.55 and 0.52. The sharp phase dislocations
are indicated by red vertical lines, which we count as vortices. We obtain local
vortex density n,(x) by averaging the vortex number over many images at the

location z. In Fig. 5.14 (b), we show the vortex density n,, averaged over the
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TF region (see Section 4.5 for details); n, is small at low temperatures and onset

of sharp increase was observed at T ~ T,.
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Figure 5.14: Vortex proliferation in 2D Bose gases. (a) Typical interference patterns
with phase dislocations (indicated by red vertical lines), which we count as vortices. (b)
Mean vortex density n, as a function of T. The error bars for n, are the statistical
uncertainty, given by the square root of the number of detected vortices scaled to the
vortex density. Vertical dashed line is the T, = 0.53 obtained by the change in functional
form of correlation function, see Fig. 5.6.

In Fig. 5.15, we plot the measured local vortex density n,(z) against the
local PSD Dj,. = n(z)A?, where n(x) is the local 2D density at the location
x. The measurement results for different temperatures collapse onto a common
exponential (continuous line), which is clearly visible in the inset. This demonstrates
that the vortex density is only dependent on the local PSD, which indicates the
applicability of LDA to vortex nucleation in an inhomogeneous system. In Fig. 5.15
we also present the simulation result of the vortex density, which agrees well

with the experimental results.

5.6 Contrast full-counting statistics

In addition to the correlation properties of the gas obtained through the ensemble
average, the full counting statistics can provide additional insight into the fluctuation
of the system across the BKT transition. For the interfering 2D Bose gases, the
amplitude of the integrated interference signal is expected to show a characteristic

change in its higher moments across the BKT transition [127, 128]. The integrated
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Figure 5.15: Local vortex distribution in a harmonically-trapped 2D Bose gas. Local
vortex density n,(x) is plotted against local PSD Dy, = n(x)A(T)?, where n(z) is the
local 2D density at the location z. The measurements (filled circles) and the simulations
(open circles) cover a range of temperatures between T = 0.41 and 0.61. Experimental
datasets with eight different temperatures contribute to this plot, while there are datasets
with four temperatures from the simulation. The continuous line is the exponential fit to
the data. Inset shows the same results on a log-linear scale to highlight the exponential
scaling across the BKT transition. Error bars are statistical, and the datapoints for each
temperature were binned into local PSDs for clarity.

interference signal is characterised by the Fourier transform of the integrated density

distribution, defined by the operator
A= / & w(z)e ™, (5.6.1)
Q

where 7i(x) is the three-dimensional density distribution after expansion, €2 is
the 3D integration volume and k = md/httor is the fringe wavenumber. The
eigenvalues a of the Hermitian operator fl, which are the experimentally observed
values according to standard quantum mechanics, take any value between 0 and the
half of atom number Ng/2 within the integration volume![128]. In the laboratory,
the measurement of A corresponds to the Fourier amplitudes at wavenumber
k, = md/htror. For simplicity, we scale the interference amplitude by the atom

2

number in the integration volume to obtain? the probability distribution of V = No-

The integration volume has a large extent along z to cover the entire density

!The absolute limit of the o is Ng, but with the density bounded to be positive the limit
becomes Nq /2. a = Nq /2 corresponds to the interference contrast of unity.

2We numerically confirmed that the rescaled fringe amplitude V corresponds to the fringe
contrast. We used FFT rather than the fitting with Eq. (4.2.4) to obtain V.
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Figure 5.16: Full counting statistics of matter-wave interference contrast V. The
histogram of V, scaled to show relative probability, is plotted for different integration
lengths in the image L, and the temperature of the system. 2D systems at non-zero
temperatures have phase fluctuations so the measured values of V are always less than 1.
Up to 3000 data points contribute to each histogram.

distribution while integration along y over a length equal to the thickness of the
sheet L, = 5pum. The integration along the x direction is controllable, by choosing
the number of pixels to be integrated over. Fig. 5.16 shows histograms of V at
three temperatures across the BKT transition, for three different values of the
integration length L,. At low temperature with n = 0.1, these histograms have a
similar form independent of L,. At high temperature, however, the distribution of
V has a strong dependence on the length scale L,, as a result of strong short-range
phase fluctuations, rq < L,.

In Fig. 5.17 (a), we plot the full counting statistics of the squared contrast
V? obtained with L, = 15um. The probability distribution undergoes strong
shape modification as the temperature is changed across the BKT critical point,
as predicted by theory [127, 128]. We also show a theory comparison with one of
the distribution functions deep in the superfluid regime in Fig. 5.17 (b). Further

quantitative comparison with the theory requires the incorporation of the finite
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imaging resolution into the theoretical prediction.
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Figure 5.17: Temperature dependence of squared contrast distribution. (a) The
temperature dependence of the probability distributions p(V?). Points were obtained
from the histogram of V?/(V?) which were rescaled so that the height corresponds to
probability density. Colour indicates the temperature of the system, from 7" = 0.41 (blue)
to T = 0.61 (green). (b) Comparison of experimental results deep in the superfluid
regime to the theoretical prediction for anisotropic, homogeneous 2D gas in Ref. [128].
The anisotropy of the detection region is 9¢,/L, ~ 3 for the experimental data. The
theoretical prediction (solid line) was rescaled to match the scale of relative probability
distribution used for the experimental result, which is dependent on the bin size.

5.7 Conclusion

In conclusion, we have measured the local phase fluctuations of 2D Bose gases via
matter-wave interferometry. Our measurements of the phase correlation function
and the vortex density provide a comprehensive understanding of the BK'T transition
in 2D Bose gases. We have mapped out the temperature dependence of the algebraic
exponent n and identified the transition by the change in the functional form of the
correlation function. The critical temperature was confirmed by the vortex density
of the system. We have shown that the local vortex density in inhomogeneous 2D
systems follows an exponential scaling as a function of the local PSD, which is
temperature independent. Our observation of the density noise correlation function
and full counting statistics of interference contrast provides a way to deepen our
understanding of 2D Bose gases in and out of equilibrium. Our experimental

observations are supported by Monte-Carlo simulations.



Quench dynamics across the BKT
transition

Contents

6.1 Experimental realisation of fast splitting ... ... .. 114
6.2 Monte-Carlo simulation. . . .. ... ........... 116
6.3 Observation of the decoherence dynamics . . . . . . .. 118
6.4 Time evolution of the algebraic exponent n . . . . . . . 120

6.4.1 Arrheniuslaw . . . . ... ... L 123

6.4.2 Superheated superfluid . . . . .. .. ... 124
6.5 Dynamical vortex unbinding . . . . . ... ... ... .. 126
6.6 Real-time RG comparison . ... ............. 127
6.7 Conclusion . ... ... ... ... oo 128

The study of non-equilibrium critical dynamics in 2D systems remains a challenge

despite significant experimental and theoretical effort. On the theory side, the

analytical treatment of BKT critical behaviour is particularly hard because of

the presence of vortex excitations. In experiments, it is typically difficult to fully

characterise transient states. As we have seen in the last chapter, the interferometric

method with selective imaging of 2D Bose gases allows us to understand the

properties of 2D system in great detail, in ways that were not possible previously.

This experimental advancement, as well as the precise determination of the critical

point in Chapter 5 presents an opportunity to study the non-equilibrium critical

112
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Figure 6.1: Coherent splitting as a quench across the BKT critical point. (a) The
schematics of the experimental procedure. A 2D Bose gas is prepared in its superfluid state,
and we quench the system by splitting into two daughter clouds. The quench suddenly
brings the system parameters to those corresponding to a vortex-proliferated thermal
phase as indicated by the arrow in (b), and we monitor the relaxation dynamics towards
equilibrium using matter-wave interferometry. (b) The phase digram of harmonically-
trapped 2D Bose gases, similar to Fig. 2.7. In the quench the atom number changes from
N to N/2 non-adiabatically, thereby traversing the critical point for initial temperatures
within the range of 50nK < 7T < 75nK for an initial atom number N = 9 x 10%.

dynamics in a 2D system.

We observe the dynamics after a sudden quench of a 2D quantum gas across
the BKT transition. In particular, we are interested in the relaxation dynamics of
a 2D system after a sudden quench from quasi-ordered to disordered state. The
non-equilibrium initial state is prepared by coherent splitting, which quenches the
system by a sudden reduction of density to approximately a half of its initial value.
This is schematically illustrated by the red arrow going from N =9 x 10* to N/2
on the phase diagram in Fig. 6.1. The critical point in the equilibrium system was
measured in Chapter 5, providing a reference point for this experiment. In addition,
the initial relative phase is spatially uniform at the time of quench ¢t = 0 regardless
of the state of the gas before splitting. This ensures well-defined initial conditions
and allows for precise characterisation of the dynamics towards thermal equilibrium.

In this chapter, we first report the experimental realisation of sudden quench

using the MRF-dressed potential. The quench requires a splitting that is fast enough
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to be non-adiabatic while avoiding excitation of collective modes, and we have made
careful improvements to the splitting sequence presented in Fig. 3.15 to satisfy
these requirements. We benchmark our measurements by numerical simulations,

and report a comparison to the real-time renormalisation group theory [46].

6.1 Experimental realisation of fast splitting

The prerequisite to probe non-equilibrium dynamics is the non-adiabatic change in
the system Hamiltonian. For two-dimensional Bose gases across the BKT critical
point, the properties of the system that can be changed are temperature and density.
Naively, a sudden change in temperature of ultracold gases can be achieved simply
via parametric vibration or photon scattering. However, such straightforward
heating requires the addition of significant energy to the system. Furthermore, the
initial states that are created are often not well-defined because of the randomness
of the process, which makes precise characterisation of the relaxation dynamics
difficult. In comparison, the coherent splitting of a single 2D system into two is
a much cleaner method to prepare the system in a non-equilibrium initial state.
While the system is isolated from the environment such that the temperature and
total atom number remain unchanged, we can non-adiabatically change the density
of the cloud to cross the critical point in the quench. The antisymmetric phase
mode 6(z) after the coherent splitting has no fluctuation at ¢ = 0, as demonstrated
in our lab recently [94], and the dynamics towards thermal equilibrium can be
tracked from a well-defined initial state.

To realise a sudden quench experimentally, we perform a similar splitting to
that used for the investigation of the equilibrium 2D system but with much shorter
duration of 12 ms. The splitting was performed over 220 ms for the experiments
in Chapter 5 to prepare the equilibrium system by an adiabatic ramp of potential
(see Fig. 3.15). The splitting duration of 12 ms is adiabatic for the vertical degrees
of freedom with tight confinement w, /27 = 1 kHz, but rapid enough to realise a
non-adiabatic change in the Hamiltonian for the radial dynamics on a characteristic

timescale of 27 /w, ~ 100 ms.
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Figure 6.2: MRF loading and fast splitting procedure. The time evolution of RF
amplitudes © and quadrupole gradient (bottom) is shown with corresponding trapping
potentials (MRF-dressed eigenenergies, V;) at selected times. The MRF loading ramp
up to 107 ms is similar to the one shown in Fig. 3.15: we initially turn on Q714 and
Q796 at small amplitude to avoid the perturbation to the atoms, and subsequently ramp
quickly to satisfy 2 < w; (red dashed line, see Fig. 3.15) for all RF components. After
the fast ramp from 100 to 107 ms, atoms are confined in an MRF-dressed 2D single-well
potential as shown in panel (a) The change in the potential up to this stage are performed
adiabatically with minimum perturbation to the atoms, and the system is considered to
be close to an equilibrium. Additionally, we hold the atoms for 400 ms to equilibrate
the system further. At the end of the hold period, we quickly ramp the quadrupole field
gradient for 10ms to change the radial confinement w,, in order to avoid the collective
motion of atoms after the splitting. Finally, we start the splitting at 507 ms for 12 ms,
realising a double-well potential.

The experimental procedure of fast splitting is shown in Fig. 6.2. We first
prepare a single 2D cloud trapped in a MRF-dressed potential by adiabatically
transforming from single-RF dressed potential to multiple-RF dressed potential,
in the same way as described in Chapter 3. We then let the system equilibrate
further by waiting for 400 ms while keeping the atoms in the single 2D trap. Before
commencing the splitting, we quickly ramp the quadrupole magnetic field gradient

b down by 50%, to reduce the radial confinement. This additional stage was found
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to be necessary to avoid the excitation of the monopole mode after the splitting.
The duration of the ramp is 10 ms; this is long enough to satisfy the adiabatic
condition for the vertical degrees of freedom while being short enough for the
in-plane dynamics. As such, this can be considered a part of the quench. Finally,
we perform the coherent splitting over 12 ms as depicted in Fig. 6.2 (b).

After the splitting, the potential is closely matched to that used for the
investigation of the equilibrium 2D system reported in Chapter 5, in which the
confinement for both potential wells are w,/2r = 1 kHz, w,/2r = 11 Hz and
double-well separation is d = 7pm. This allows us to use the precise measurement
of the critical point in Chapter 5 as a reference point, as well as to compare the

critical scaling both in and out of equilibrium.

6.2 Monte-Carlo simulation

As in Chapter 5, we benchmark our experimental results with the Monte Carlo
simulation, performed specifically for our case by Dr. V. Singh (Hamburg University).
In that numerical work the sudden splitting of the gas is treated using a classical-
field simulation of two-component gas in a single harmonic trap, with each species
having the same mass and intra-species interaction strength g = g;1 = g92. Each
component 1 and 2 correspond to the separate wells in the experiment, and a
decoupled double-well is realised by setting the inter-species interaction g5 as well

as tunnel coupling J to zero. The total Hamiltonian is
=3 [a 0, ) V) + S 000, 0) + V) e
+ i [ Al d D)) + 7 [ ax[d)da) + 3], ©6.2.)

where 7 = 1,2 and the term with g5 is the inter-species interaction and the tunneling
term with J couples two clouds. The discretisation length for these simulations
is 0.5 pm, as for the simulation performed in Chapter 5.

The coherent splitting in the simulation is implemented by suddenly turning the

g12 value from g to zero; this corresponds to the spatial density overlap between
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the two clouds being suddenly reduced to zero in the experiment. Additionally, the
coupling J is turned on at the time of splitting and ramped down exponentially
with time constant 7. = 60 ms. This is motivated by the transient coupling of
the two wells in the experiment during the splitting sequence, as well as the weak

excitation of the vertical motion of atoms which is damped out over duration ~ ..

g12

.........

0 0.1 0.2 0.3 0.4
time after quench (s)

Figure 6.3: Illustration of the MC simulation scheme; the values of g12 and J are
plotted against time. The y axis is shifted for each quantities for clarity (dotted lines
in corresponding colours denote zero energy). Initially, the interaction terms g2 have
the same finite values corresponding to the experimental values, g = g1 ~ h%g/m. At
t=0, we suddenly turn g2 to zero and turn on the inter-layer coupling J, while g stays
constant throughout. The peak value of J is chosen to be the same as g. This is the
simplification of the transient state after the splitting where residual coupling between
layers exists during and soon after the splitting.

We plot in Fig. 6.3 the parameters used for the MC simulation. At time ¢ = 0,
g12 jumps down to zero, J jumps up to a finite value corresponding to the energy
scale equivalent to the interaction energy scale. The coupling J is introduced to
reproduce the transient phenomena due to finite excitation of the system after
the splitting; the value of J is quickly ramped down to 0 within tens of ms. As
we see later, the BKT critical dynamics is much slower, on the order of hundreds
of ms, such that this transient effect does not significantly affect the observation
of BKT phenomena at long time.

As we describe later, there is a slow linear heating of the system in the MRF-

dressed trap and we add heating in the simulation at a rate comparable to the
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experimental value, by the addition of stochastic noise at each timestep. Since the
energy input into the system by the heating is small over the experimental timescale,
it does not significantly alter the relaxation dynamics; but it was important for

the quantitative comparison of experiment and simulation.

6.3 Observation of the decoherence dynamics

Once the cloud is split, we vary the holdtime after the quench and probe the
system by observing the matter-wave interference in the same way as presented in
Chapters 4 and 5. By performing the correlation and vortex analysis, we obtain
the correlation function C(Z) at each time, from which we calculate the algebraic
exponent 7, correlation length ry as well as averaged vortex density n,. The number
of experimental repeats at each time was N, = 60, about four times smaller than
the dataset used in Chapter 5. To have enough statistics to obtain the correlation

function, we modified the evaluation of correlation function (Eq. (4.2.7)) to
C@) = > RelC(z,z+71)], (6.3.1)

where L is 80% of the Thomas-Fermi diameter and Nz is the number of pixels
within [—L/2, L/2 — T|. This procedure introduces only a small differences to the
mean correlation function!, and the fitted values of n and 7.

We have performed the experiments with a range of initial temperatures covering
the BKT critical regime while keeping the total atom number at N ~ 9 x 10%. The
‘strength’ of the quench is thus determined by how deep in the thermal regime the
system is quenched to, which can be characterised by the rescaled temperature
T = T/Ty, < T/v/N where T is the temperature before the quench and Tj is
obtained from the atom number following the quench.

In Fig. 6.4, we plot the correlation functions C'(z) obtained after the quench

with two different initial temperatures. While the correlation function after the

!This was confirmed quantitatively using the dataset for the equilibrium system shown in
Chapter 5 where N, = 220. The estimation of errors on C(%) is slightly modified by using Eq.
(4.2.7), due to varying number of datapoints Nz contributing to C(Z) depending on the distance
7. As such, the x? statistic is difficult to compare between different datasets and we use squared
fit residuals to select the preferred fit model (fsp or frxp) at each time, see Fig. 6.6.
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quench is similar for both temperatures (blue, t=0.04 s), the temporal decay is
much faster at higher temperature. The functional form of C(z) crosses over from

algebraic to exponential, as we discuss later in Section 6.4.

T=035 T = 0.54
t = 0.04s t = 0.04s
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Figure 6.4: Time evolution of the correlation functions following a quench. The
temperature shown above each panel is the rescaled temperature after the quench. The

shaded region denotes the standard error obtained from bootstrapping resampling method
[125, 129].

In Fig. 6.5, we illustrate the measured decoherence dynamics. Fig. 6.5 (b) shows
the time evolution of squared interference contrast cy? of integrated interference
patterns (purple), which takes the value of 1 for a completely phase-coherent system
and 0 without any coherence over long distances. In the experiment, the presence
of a finite thermal component and the effect of finite imaging resolution reduces the
maximum contrast to ~ 0.5 as observed in equilibrium (see Fig. 5.16). We indicate
the ‘critical time’ t. by the green vertical line, which we obtain by the change
in functional form of the correlation function, as we discuss later in Section 6.4.
While the initial rapid decay of ¢y? before the ¢, does not accompany any vortex
excitations, the following slow decay after t. is associated with exponential growth of
vortex density n, (blue). This indicates the two-step relaxation of a quench-heated

2D system, as discussed in Section 1.4.
Finite heating in the trap

Before proceeding to the detailed analysis of the time evolution, we first report on

the intrinsic heating of atoms in our MRF-dressed trap. The heating effect comes
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Figure 6.5: Illustration of the observed relaxation dynamics. (a) Examples of
images showing observed matter-wave interference patterns. (left) typical image taken
immediately after the quench, with only small fluctuation in phase. (middle) At short
times, smooth variation of the phases indicate the phonon excitations. (right) At longer
times, sudden phase jumps were observed, indicating the nucleation of vortices. (b)
Ilustration of thermalisation dynamics. The average squared contrast cy? and vortex
density n, are plotted as a function of time after the quench. The vertical dashed line is
the critical time at which the correlation function changes from algebraic to exponential;
see Fig. 6.6. The contrast cy? is obtained from the integrated image over entire slice region,
and this value indicates the overall coherence of the system. The uncertainty in vortex
density is statistical and the uncertainty in c? is the standard error. The temperature
after the quench was T' = 0.54 after the quench.

from the unidentified noise in the experimental apparatus which perturbs the atoms
causing heating at a rate of 4 nK/s. This very low value shows that RF-dressed
trapping is a very good method, nevertheless the intrinsic heating causes the system
to drift towards the thermal state, but the change in 7 is slow enough that the

BKT critical phenomena still dominate the relaxation dynamics.

6.4 Time evolution of the algebraic exponent n

In Fig. 6.6, we show the time evolution of x? values from exponential and algebraic

fitting of correlation functions, as well as the algebraic exponent 7. The values
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of x? show a clear crossover at a few hundred ms after the quench, indicating a
transition from algebraic order to short-range correlations. 7 starts near 0 after the
quench, and increases linearly in time. Using this linear relation, we obtain the
critical exponent 7. = 0.14(2) which is close to the value obtained in equilibrium.
This value of the critical exponent is smaller than the universal value ngxr = 0.25
because of the finite-size effect (see Eq. (2.1.6)). We show the value of 1 even after
the system enters the exponential regime because even in the thermal regime 7

is useful as a measure of phase fluctuation.
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Figure 6.6: Determination of the dynamical critical exponent 7. (top) The x? statistic
of the algebraic and exponential fits. Vertical line indicates the critical time t. at which
the functional form of the correlation function change to exponential. (bottom) The
time evolution of n after the quench. The exponent n was obtained by fitting the phase
correlation functions with algebraic model with LCA, Eq. (4.4.3). From t., we obtain the
critical exponent 7. = 0.14(2) (horizontal dotted line). Open connected markers denote 7
obtained from the MC simulation. The solid purple line is a linear fit to the experimental
data.

In Fig. 6.7, we show the time evolution of 1 and the ratio of x? values for algebraic
and exponential fits, x2r/x2,, at different initial temperatures: x2p/x3, > 1 indicates
the algebraic scaling, while x2p/x3, < 1 for the exponential regime. We obtain the
temperature-dependent critical time ¢. by looking for x2p/x3, = 1, which is marked

as the vertical dash-dotted lines in Fig. 6.7. We find linear temporal evolution
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of the algebraic exponent n with temperature-dependent slope, as expected from

the real-time RG theory described in Section 2.6.2.
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Figure 6.7: The time evolution of the algebraic exponent n after the splitting. Each
panel corresponds to different initial temperature of the system, at 7' =0.37, 0.42, 0.52,
0.54, 0.62, 0.67, 0.68 and 0.75, from top left (blue) to bottom right (green) panel. The
ratio of x? values for the algebraic and exponential fit is below 1 for the thermal regime
and above 1 in quasi-ordered state. At relatively high temperature and at long time
(~ 500 ms), the fluctuation of the phase is large so that the x? is dominated by the
fluctuation of the datapoints, resulting in the ratio X%F / X%h to approach unity at long
time. Straight line is the linear fit to the experimental data (point) while fluctuating line
is the numerical simulation result at corresponding temperature. The vertical line denotes
the critical time ¢, at which the correlation function change from algebraic to exponential
scaling. We obtain the critical exponent 7. for each dataset by the measured t. and the
result of linear fit to the n(t).

In Fig. 6.8, we show the temperature dependence of observed critical exponent
n. and critical time t.. We obtain the mean critical exponent 7, = 0.16(3), which is

in agreement with the value obtained in equilibrium within uncertainties.



6. Quench dynamics across the BKT transition 125

0.3

0.25 |

0.2}

Tle

0.15 F

0.1}

Figure 6.8: The critical exponents obtained from the results shown in Fig. 6.7. The
horizontal dotted line is 7. = 0.16(3) obtained by averaging the critical exponents measured
at different temperatures and the shaded region denotes the standard deviation. Inset
shows the critical time t. against the temperature of the system. The shaded region in
inset denotes T' < 0.5 where the critical point is not crossed by the quench. The error
bars in t. are half of the separation of datapoints in the experiment dt/2 = 48 ms, and
the uncertainties in each critical exponent datapoint are based on the uncertainty in ..

6.4.1 Arrhenius law

As we have seen in Fig. 6.4, the relaxation dynamics after the quench shows
strong dependence on the initial temperature, 7. In our experiment, the range of
temperature after the splitting ranges from 7' = 0.35 to 7' = 0.8, corresponding to
the rescaled temperature before the splitting from T} = 0.25 to 7; = 0.58. Since the
observed critical point in equilibrium was 7, ~ 0.53 (see Chapter 5), datasets with
temperature after splitting 0.53 < T, are expected to show the critical behaviour.

In Fig. 6.9, we show the temperature dependence of the slope of 7n(t) obtained
by fitting the time evolution of n at each temperature with f(t) = tx. While
there is a clear dependence on the temperatures above T 2 0.5, the data flattens
out at lower temperatures. At low temperatures, since the critical point is not
crossed by the quench, the time evolution of 7 is mainly driven by the intrinsic
heating in the trap, at the rate of 4 nK/s.

In the following, we compare the data with the Arrhenius equation

E
k(T) = Aexp ( - k;T> + Ko, (6.4.1)
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where A, E, and kg are the free parameters. The Arrhenius law characterises the
temperature dependence of chemical reaction rates, and can be used to obtain
the activation energy FE, of the reaction. We have added a phenomenological
offset term kq to the usual Arrhenius equation, to account for the heating in the
trap. In our situation, the energy barrier E, is expected to be the finite energy
associated with the nucleation of vortices, as discussed in a simplified argument
in Section 2.1. We plot the fit results for experimental and MC datapoints in
Fig. 6.9 as solid and dotted lines. The results of fitting to the experimental data
are B, = 4.4(6) x kgTy and kg = 2.8(8) s™'. As a comparison, this activation
energy E, corresponds to the energy of a single vortex? placed in a circularly-shaped
2D superfluid of density n, = 10pm~2, with the healing length ¢ = 1um and
a system radius R = 15pum. The healing length and the system size are the
same as the experimental value. Since the typical peak density of the atoms in
experiments is 40 pm ™2, this result is consistent with a superfluid fraction of around
0.25, which is comparable to the number observed in equilibrium (see Fig. 5.10 and
Fig. 5.11). Furthermore, the constant heating term xq corresponds to a heating
rate of 3.0(8) nK/s, which is in close agreement with the independently observed

heating rate in the MRF-dressed trap.

6.4.2 Superheated superfluid

The presence of superfluid in interacting Bose gases is related to the emergence of
non-zero ‘macroscopic wavefunction’ (\i/>, which remains finite only with long-range
coherence in the system® and is equivalent to the Penrose-Onsager criterion for

BEC, lim, 00 g1(r) > 0 [130]%.

2This is calculated using Eq. (2.1.3), with the short-range cutoff replaced by the healing length
for an atomic system.

3In the 2D Bose gases in quasicondensate regime, (@} is finite only if there is a long-range
phase coherence; this is easily seen by considering density-phase representation ¥ = /ne’® with
no density fluctuation. With completely random phase, <\il> becomes zero while with broken
symmetry () becomes finite.

4This condition should be modified to lim,_, 7 g1(r) > 0 for finite-size systems, where L is the

system size.
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Figure 6.9: Temperature dependence of the time evolution of algebraic exponent 7.
The slope of n(t) observed in the experimental data (Purple, filled) is plotted against the
temperature after splitting T'(t = 0). Solid line is fit with Eq. (6.4.1). The result from
the MC simulation is shown in blue (open markers), with a dashed line that is the fit
with Eq. (6.4.1).

To characterise the superfluidity of the transient state where n(t) < 7., we need to
obtain the first-order correlation function of the system g;(r). The characterisation
of g1(r) using the relative phase correlation as performed in Chapter 5, needs to
be treated with care in the non-equilibrium setting in this chapter since there is
strong correlation between two clouds soon after the splitting, when the two clouds
have the same phase profile. Rapid loss of correlation between the two wells, and
the approach of the relative phase correlation function towards the normalised
g1 function, is expected to occur in 2D systems since they are not integrable, in
contrast to 1D systems where the symmetric and antisymmetric modes remain out
of equilibrium for extended period of time [30]. In 2D, theoretical results suggest
that all symmetric and antisymmetric phase and density modes quickly equilibrate
into a single temperature, supporting the observation of g; function in the transient
state by relative phases [45, 46]. Indeed, in the numerical simulation of the quench
dynamics, we observe that the symmetric and antisymmetric phase fluctuations

converge to having the same correlation functions within a few hundred milliseconds.
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6.5 Dynamical vortex unbinding

The direct observation of vortices further elucidates the character of the observed
non-equilibrium state and the dynamics towards a vortex-proliferated thermal phase.
We detect vortices in the non-equilibrium systems within 90% of the TF region,
using the technique described in Section 4.5. In Fig. 6.10, we show the time evolution
of averaged vortex density n, following a quench. We find that the proliferation of
vortices follows an exponential scaling, as expected from the real-time RG theory
shown in Section 2.6.2. The vortex density is fitted well with an exponential model
f(#) = n.e%)/7 plotted as solid lines in Fig. 6.10. We have used the critical
vortex density n, = 2 x 1073 pm~2 from the result in equilibrium (see Fig. 5.14),

to find the characteristic timescale for the vortex unbinding.
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Figure 6.10: Time evolution of the vortex density n,. Each panel corresponds to
different initial temperature of the system, at T =0.35, 0.37, 0.39, 0.54, 0.62, 0.67, 0.68
and 0.75, from top left (blue) to bottom right (green) panel. Solid lines are the fitted
exponential model f(t) = n.et=)/7

The result of the exponential fitting is shown in Fig. 6.11. For the range of
initial temperature at which the critical point is crossed by the quench 0.5 < T,
the v is almost constant and %, scales linearly. This is in qualitative agreement
with the results of real-time RG discussed in Section 2.6.2, where we observed

linear dependence of ¢y and only a small dependence of v on the initial temperature.
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However, at 7' < 0.5, the dynamics is driven by slow heating of the system and the

obtained ~ and t, show a different behaviour to the ones in 7' > 0.5.
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Figure 6.11: The best-fit parameters of the exponential fits in Fig. 6.10. Left panel
shows the scaling factor « for varying temperatures. Dotted line is the mean value within
the region 0.5 < T and grey shading is the standard deviation. Right panel shows the
characteristic vortex unbinding timescale ty. Dotted line is the linear fit to datapoints
that are 7 > 0.5. Shaded region is a guide to the eye. The error in v and ¢ are the 1o
uncertainties from bootstrapping.

6.6 Real-time RG comparison

To understand the dynamics of vortices, we compare the experimental results with
real-time RG theory introduced in Section 2.6.2. The RG flow equations Eq. (2.6.2)
predicts the time evolution of ¢g(t) and 7(t), given an initial condition ny(to), go(to)
at time ty. To incorporate the heating in the MRF-dressed trap from unidentified
electrical noise, we have added a phenomenological heating term ( fixed at 107%,
corresponding to the value in experiment for the time ¢ in the RG equations scaled

to milliseconds. The modified RG equation is

WO, LYo

dt 2n(t)
dn(t) 4% g2
=i 6 (6.6.1)

To directly compare the experimental results with the flow equation, we transform
the parameters into z = 1/2n — 2 and y = v/27g,, and plot in Fig. 6.12. We have

obtained the g, from the MF relation of the vortex fugacity and vortex density,
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Eq. (2.6.3). The initial condition of the experiment immediately after the quench
is n ~ 0,9, ~ 0, which is equivalent to + — oo,y = 0. Following the quench,
the phonon thermalisation drives the system towards smaller = (larger n), and
eventually cross the critical point. Since the critical point in our (finite-size) system
is 7. = 0.16, we observe the onset of increase in y near x. = 1/2n.—2 = 1.1, which is
different from the universal value xgxr=0. Once the critical point is crossed, the y
values increase rapidly, closely following the RG flow. As such, the RG equation Eq.
(6.6.1) partially describes the observed vortex unbinding dynamics at late times. A
quantitative RG description of the experimentally observed dynamics in the crossover

regime x ~ 1 where there are finite-size effects requires further theoretical work.
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Figure 6.12: Comparison of the experimental results and the real-time RG flow Eq.
(6.6.1). Experimental data at different initial conditions are plotted using the variables:
r=1/2n—2and y = v/27g,. The vortex fugacity is obtained from the MF relation of the
vortex fugacity and vortex density, Eq. (2.6.3). The experimentally observed dynamics
was from bottom right (z — oo,y = 0) towards the top left region, as indicated by the
blue arrow.

6.7 Conclusion

In this chapter, we have explored the relaxation dynamics of a 2D system following
a quench from superfluid to thermal regime. The quench was realised using coherent

splitting, which prepares the system in a well-defined, highly non-equilibrium initial
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state. The relaxation dynamics exhibits two regimes: quick phonon thermalisation
and the slow vortex nucleation. We found the temporal scaling of the algebraic
exponent n and vortex density, which are in qualitative agreement with the
predictions of real-time RG theory. We have further compared the observed

dynamics on RG flow diagram.
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In this chapter, we present the experimental work towards the observation of

Josephson oscillation in tunnel-coupled bilayer 2D superfluids. We have realised

a double-well potential with ~ 1pm well separation while keeping the quasi-2D

condition, and observed the dynamics of phase-imbalanced bilayer 2D gases. In

contrast to the previous chapters where the coupling between two layers was kept

to a negligible value, here we investigate the non-equilibrium dynamics of bilayer

2D system with finite inter-layer coupling. In this investigation we are interested

mainly in the global phase difference of two clouds and its time evolution, instead

of the spatial correlation of local phases. As such, we prepare the 2D cloud deep in

the superfluid regime to reduce the thermal effects that would affect the visibility

150
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of the dynamics. The system of two superfluids with weak tunnel-coupling has
similarities with a superconducting Josephson junction [131-134]. The atomic
system realisations are called bosonic Josephson junctions (BJJ) and have been
studied extensively [78, 135-141]. In this chapter, we will first describe the simplified
model of Bose gases in a double-well potential using the two-mode approximation
and analyse the expected dynamics. We then discuss the experimental investigation
with coupled 2D Bose gases, in which we suddenly introduce a coupling between two
phase-imbalanced 2D gases and monitor the subsequent dynamics. This investigation
is a crucial step towards the understanding of the physics of coupled bilayer 2D
Bose gases, such as the novel phase of 2D gases associated with the proliferation
of half-vortices [77] and the dynamical control of conductivity for the quantum
simulation of the light-induced superconductivity [142]. The realisation of controlled
tunnelling in a MRF-dressed potential is also an important ingredient to realise
conditional spin squeezing using the non-destructive imaging method, as described
in Appendix A as well as our recent preprint [143]. We note that the Josephson
junction dynamics of 2D gases separated by a weak link within the same plane was

recently realised elsewhere [144, 145], and this is an active topic of research.

7.1 Two-mode model

In this section, we introduce the theoretical tools used to understand the observed
dynamics. We introduce the two-mode approximation of Bose gases in a double-
well potential, which simplifies the description of the systems and allows us to
make a prediction of the dynamics. A comprehensive review of this topic can
be found in Refs. [146, 147].

For simplicity, we consider 1D dynamics of atoms confined in double-well
potentials, which corresponds to the dynamics in the tightly-confined 2 direction

in our experiment.
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The full Hamiltonian of a Bose gas in a double-well potential V(r) with

contact interactions is

2

= / dr[—@f(m;;v%(r) + 29 () B () B () B ()
+ U () V()T (). (7.1.1)

In the double-well potential, the two lowest energy eigenstates are symmetric and
antisymmetric respectively with small separation of their energies, as illustrated
in Fig. 7.1. The two-mode approximation amounts to limiting the wavefunction
of the system to these two spatial modes, which we label as v, and 1, which is
valid provided all the energy of the system is lower than the energy of even higher

excited states. We define left and right modes as the combinations

_ VetV o Ve~ Yy
YL = 73 , VR = 73

corresponding to localised modes in either left or right wells. We then rewrite the

(7.1.2)

Lz

Figure 7.1: Illustration of energy level structure in double-well potential. Two lowest
energy eigenstates 1, (blue) and 1. (green) are shown. At sufficiently low temperature
and interaction energy, these two states are macroscopically occupied and higher levels
(purple, dotted) can be ignored. This is the two-mode approximation that we use.

wavefunction W(r) with linear superposition of left and right modes,

U = rag + Yrig, (7.1.3)

where dTL, ELE (ar,ag) are the creation (annihilation) operators for particles in the

left and right localised modes. The two-mode approximation leads to a two-site
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Bose-Hubbard Hamiltonian [146-148],

ta At oA A u. .. R
HBH = —J(OJ}/CLR + CL}LDLCLL) + *(HR — TLL) + 5 [nL(nL — 1) + nR(nR — 1)} s

2
(7.1.4)
where the number operators are iy = dEdR, ny = dTL&L, U is the interaction energy
of atoms in same well and A is the small potential energy difference between the

two wells, as illustrated in Fig. 7.2.

Figure 7.2: Illustration of the parameters in the Hamiltonian Eq. (7.1.4). The left and
right localised modes 7, and 1 are shown in green and blue, with associated interaction
energies U which are assumed to be the same for each modes. The amplitude J gives
tunnelling between the two wells. A describes the asymmetry of the potential.

The coupling strength J is given by [149]

2
J=- /dT’ (;’lV¢LV¢R + @/)LV(’I’)@DR) . (715)

This quantity can be estimated from the spatial distribution of localised modes

Y1, YR in the double-well potential. To estimate the magnitude of J, we approximate
the double-well potential by two harmonic potentials Vi, (r) = 3mw?(r & d/2)* at
distances +d/2 from the centre. Further, we assume non-interacting gases and take
Gaussian ground states in each harmonic potential as the left and right localised
modes, characterised by the harmonic oscillator length ¢y,. The integration in Eq.
(7.1.5) can then be performed to obtain [132, 148]

hw, [ d? 2 02
J = (4602_1> e~ /407 (7.1.6)




7. Dynamics of coupled 2D Bose gases 134

From Eq. (7.1.6), we see that the coupling strongly depends on the ratio d/¢y,
and sharply increases as d approaches the size of the wavefunction d ~ ¢; from
above. We note that the prediction Eq. (7.1.6) is only to be used for the qualitative
understanding of the dependence of J on d/{y; for example, the value of J also
depends strongly on the number of atoms and their interaction strength, through
various contributions such as the deformation of wavefunctions [148].

To gain insight into the dynamics under Eq. (7.1.4), we approximate further
by applying a mean-field approach [149, 150], which amounts to replacing the
annihilation operators by amplitudes that depend of their mean values: we replace

the annihilation operators in left and right modes by

A (2039
ar — \/nre ,

ar — /npe'r, (7.1.7)

where np, ng, ¢r, g € R. Using this approximation turns Eq. (7.1.4) into a classical
Hamiltonian and the time evolution can be expressed in terms of the total atom
number N = ny + ng, fractional population difference n = (n; — ng)/N and

phase difference 0 = ¢ — ¢ [150]

N2
n= _Jh V1—n?siné,

A N N2
oyt n—i—J D cost. (7.1.8)

O=—73+7 h Vo n?

We plot in Fig. 7.3 the time evolution of # and n for A = 0 and U/J = 20/N, and
with two different initial conditions of n and #. Assuming small phase and population
differences, we find Josephson oscillation of two quantities (green plot in Fig. 7.3);
but for larger population difference, a qualitatively different dynamics emerges
which is called self-trapping [139, 146]. We notice that with the condition n = 0 and

any ¢ under the conditions of A =0 and U/J = 20/N, no self-trapping is expected.
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Figure 7.3: The time evolution of the phase difference 6 and population imbalance n in
the two-mode approximation with A =0 and U/J = 20/N. Left panels show the time
evolution of n and 0 at two selected initial conditions, 6(0) = 0.37,n(0) = 0 (green) and
6(0) = 0.7m,n(0) = —0.5 (blue). The # monotonically decreases for the initial condition
0(0) = 0.7, n(0) = —0.5 (blue). Right panel shows the trajectories in the phase space.
The green lines follows a behaviour similar to Josephson oscillations, while the dynamics
following blue lines is the so-called self-trapping, with the black line separating the two
regimes.

7.2 Coupled MRF-dressed double-well potentials

From Eq. (7.1.6), we find that realisation of a coupled system requires the distance
between the two clouds to be small on the order of the spatial extent of wavefunctions.
The spatial extent of the gas in the double-well is typically £y < 1pum, and thus
we require a comparable spatial separation of the two wells. Utilising the excellent
controllability of MRF-dressed double-well potentials, we can achieve precise control
of double-well separations, as illustrated in Fig. 7.4. For the experiments reported
in this chapter, we used narrow separations of the dressing RF frequencies [7.17, 7.2,
7.23] MHz and a higher quadrupole field gradient of b = 140 G/cm compared to the
experimental conditions used in Chapters 5 and 6. These values give a separation

of ~ 1.5pum for which we expect a tunnelling rate of hundreds of Hz.

7.2.1 Experimental procedure

We illustrate our experimental procedure in Fig. 7.5. To observe the Josephson
oscillation, we prepare a pair of phase-imbalanced 2D gases and suddenly introduce

coupling to initiate the time evolution, in a similar manner to the experiment in 1D
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Figure 7.4: Controllability of the double-well separation in a MRF-dressed potential.
A wide range of well separations can be chosen by appropriate choice of RF frequency
combinations and quadrupole field gradient b. The double-well potential created by a RF
frequency combinations of [7.14, 7.2, 7.26] MHz and b = 100 G/m is plotted in purple,
corresponds to the separation of the wells used in Chapter 5. We plot the potential with
[7.17, 7.2, 7.23] MHz and b=140 G/m in blue, which are the values used in this chapter.
Vertical dotted lines indicate the RF resonance locations in corresponding colours.

Bose gases performed elsewhere [78, 91]. We start by a coherent splitting of a single
cloud into two, which prepares a well-defined initial state with & = 0. We ensure the
equal population of two wells n ~ 0 by maximizing the observed interference contrast.
After the splitting, we keep the energy of the barrier, between the two wells, Ej high
such that the two wells are separated with negligible coupling in this particular stage
of the experiment. We then imprint the phase difference by introducing asymmetry
A of the potential, while keeping the two clouds sufficiently decoupled. Finally, we
introduce coupling of the two clouds by reducing the spatial separation of the two
wells and lowering the barrier. We observe the dynamics of the relative phase 6

using matter-wave interferometry, as described in the following section.

7.3 Experimental results

We start with a cloud of N ~ 4 x 10* atoms in a MRF dressed trap, with a
temperature around 20 nK such that the system is deep in the superfluid regime.
Typical trap frequencies are w, /27 = 13 Hz and w, /27 = 1.5 kHz, and the quasi-2D
conditions kT, u < hw, are satisfied for each well. We perform a coherent splitting

over 6 ms into a symmetric double-well with a high energy barrier E,/h = 5 kHz.
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Figure 7.5: Illustration of the experimental sequence. (a), upper row, shows the vertical
trapping potential. (b), middle row, shows the state of the 2D clouds during the sequence.
The first stage consists of the coherent splitting of a single 2D clouds into two, resulting
in a two clouds with the same global phase. We ensure that the coupling of the two wells
is negligible immediately after the splitting. After the splitting, we imprint the global
phase difference 6 = tA/h by applying energy difference between the two wells, while
keeping small coupling. The phase difference is indicated as the different colours of two
layers, and we are interested in the phases after the recoupling (indicated by purple).
Once the desired phase difference is achieved, we change the potential to introduce the
coupling between wells and observe the dynamics.

Immediately after the splitting, we introduce an asymmetry A/h =1 kHz between
the two wells and wait for a variable time to imprint a phase difference. Finally, we
ramp down the energy barrier to Fj,/h = 1 kHz in order to increase the coupling
J, while eliminating the asymmetry; this was performed over a duration of 2 ms,
during which the spatial separation of the wells reduces to d = 1.5 pm.

We show typical matter-wave interference patterns in Fig. 7.6 obtained after
tror = 10 ms TOF expansion. Interference fringes at wavenumber k& = md/htror
are observed along the z direction. To obtain the phase , we have analysed the
interference patterns at 20 individual pixel columns within the interfering part

of the cloud using FFT (see Fig. 4.3).

7.3.1 Phase accumulation

In Fig. 7.7 , we show the histogram of the phase obtained from the measurements

at a few selected times during the phase imprinting stage. The double-well trap
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Figure 7.6: Typical matter-wave interference patterns observed after the recoupling
quench. Relatively long fringe separation is observed compared to the results in Chapters
5 and 6, because of the small separation of the wells. The horizontal dotted line indicates
the centre of mass of the cloud in vertical direction, and having the interference peak at
the line indicates zero relative phase between two clouds, 6 = 0.

was configured to be asymmetric with |A|/h = 1 kHz, with a high energy barrier
Ey/h ~ 5 kHz and well distance d 2 2pm such that the coupling J is negligible for
the duration of phase accumulation of a few ms. Each column of the bottom panel
in Fig. 7.7 corresponds to a single histogram (selected histograms are shown in
top panels); 120 datapoints contribute towards each histogram, which are obtained
from 6 images taken at each time. We observe the linear increase of phase at
a rate corresponding to the value of A/h, as expected from Eq. (7.1.8) with
J =0and U = 0.

7.3.2 Phase oscillation after recoupling

Once we have the desired phase difference 6, we introduce coupling between the
two 2D clouds and observe the dynamics. We transform the potential such that
the asymmetry A is eliminated and the energy barrier between the wells Fy/h is
reduced to 1 kHz. The separation of the wells is reduced to d = 1.5 pm to obtain a
large value of J. In Fig. 7.8, we plot the time evolution of the phases 6 following
the recoupling. We have chosen a phase accumulation time of 300 pis, corresponding

to an initial phase difference of 6(t = 0) ~ /2. The observed dynamics of ¢
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Figure 7.7: Time evolution of the relative phase # in a decoupled asymmetric double-well.
(Top) Histogram of observed relative phases at a few selected times after the splitting
and deformation of the double-well (see Fig. 7.5). Red dashed lines are Gaussian fits to
the distributions. (Bottom) The time evolution of the relative phase in a imbalanced
double-well. Each pixel column corresponds to a single histogram, obtained from images
taken at a given time. Red line is a guide to the eye.

show oscillations of around 1 ms period. We fitted the phase dynamics with a
sinusoidal, shown as the red line. The best-fit value of the oscillation frequency is
f =850(30) Hz. This value of f is on the same order as the value of 300 Hz obtained
from the GPE simulation for similar parameters and potential [105]. The large
deviation between these two values may arise because of the miscalibration of the
atom number; this work on Josephson oscillation was done before the atom number
measurement was properly calibrated using the method described in Section 3.5.4.
We also note that the slight difference of the confinements of the two wells in the
experiment was not taken into account in the GPE simulation.

We have further observed the phase dynamics with different trap configurations.
Different trap geometry can be achieved by changing the RF amplitude of the 7.2
MHz component, €275, which controls the barrier height between the wells. The
range of the values of Q74/h are 19.5, 20, 20.5, 21 and 21.25 kHz, which corresponds
to Ep/h = 1.2, 1, 0.8, 0.5 and 0.25 kHz and the double-well spatial separation
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Figure 7.8: The phase oscillation following the recoupling. (top) The time evolution of
the phase difference 6 following quench. 100 datapoints contribute to the histogram at
each time from 5 images. The red line is the sinusoidal fit. (bottom, left) Time evolution
of the fringe wavenumber, obtained by fitting the interference patterns with Eq. (4.2.4).
Black horizontal line and the shaded region denotes the mean and standard deviation
of k. (bottom, right) Histogram of the observed phase, integrated over whole duration
shown in top panel.

d=1.6, 1.5, 1.4, 1.2 and 0.9 pm. Higher E;/h (and larger d) leads to smaller
coupling strength .J, and we expect to observe a smaller phase oscillation frequencies.
Indeed, as we see in Fig. 7.9 bottom right panel, the observed oscillation frequencies

strongly depend on the value of Fj.

7.4 Conclusion and future plans

In conclusion, we have presented the experimental method used to achieve small
separations of the wells d ~ 1pm and observed the phase oscillation dynamics
following a recoupling quench. The high controllability of the MRF-dressed potential
allows a wide range of spatial well separation to be realised, resulting in a good
controllability of the coupling strength. Using the MRF-dressed potential, we have
prepared a phase-imbalanced pair of 2D superfluids and observed the oscillation of
the relative phase following a recoupling quench. The observed sinusoidal oscillation

of the relative phases and their frequencies are consistent with that of tunnel-
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Figure 7.9: Time evolution of the relative phase € in a coupled double-well for different
barrier energies and double-well separations, with E/h = 1.2, 1, 0.8, 0.5 and 0.25 kHz
from top left panel to middle bottom panel. Solid lines are the sinusoidal fit. The
corresponding well separations d are 1.6, 1.5, 1.4, 1.2 and 0.9 pm. Solid lines are the
sinusoidal fit and uncertainties of datapoints denote standard error from experimental
repeats. Bottom right panel shows the observed frequency from the sinusoidal fit against
the energy barrier Ep/h. Solid line is the fit to the frequency data with an exponential as
a guide to the eye. The value of the Fj is determined from the measured RF amplitudes,
based on the Floquet numerical simulation of the MRF-dressed potential [107].

coupled systems. However, our current experimental technique does not allow the
measurement of population imbalance between the two wells, which is required to
confirm the Josephson dynamics; see Section 7.4.1. Furthermore, the time range
that was observed is not enough to determine the long-time limit of the dynamics
and to investigate whether the dynamics damps, and if so, at what timescale. One
of the main limiting factors was the monopole oscillation of the cloud following the
splitting, which prevents the observation of clear interference patterns at long time
A straightforward way to overcome the limitations is the slow loading scheme as
used in Chapter 5 which was developed after the work reported in this chapter.

Further experimental investigation is required to fully understand the dynamics.

7.4.1 Population difference measurement

To fully explore the dynamical regime of the two-mode model, it is necessary to
observe the population difference n between the two wells. This is also essential

to precisely identify the initial state of the system. The intrinsic difficulty of
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measuring the population difference when there is tight 2D confinement of the
atoms arise because the atoms expand quickly during the timescale of less than
1 ms along the direction of the double-well. As such, it is not easy to count
the number of atoms separately. The small distance between the two wells is
comparable to the imaging resolution, so that in situ measurement of individual
wells is also difficult. A promising method for population counting is the well-
selective horizontal momentum kick, which can be implemented by an additional
RF field in the z direction. Alternatively, a non-destructive dispersive measurement
in a MRF-dressed potential can be used to continuously monitor the evolution

of atom number difference, see Appendix A.

7.4.2 Effect of in-plane phase fluctuations and the BKT
transition

The two-mode model was derived with the assumption that the two lowest energy
eigenstates are macroscopically occupied. The measurements reported in this
chapter used a low temperature of 20 nK (deep in the superfluid regime), but it is
possible to work at higher temperature while keeping the validity of the two-mode
approximation in the z direction (as well as satisfying the quasi-2D condition for
each double-well minima). The observation of clear phase oscillation serves as a
further confirmation of the coherence in 2D Bose gases, in a similar manner to
[144]. In bilayer 2D Bose gas, strong tunnel coupling modifies the phase diagram,
and may exhibit novel phases [75, 77]. We have observed strong density dips and
vortices in coupled 2D Bose gases, as shown in Fig. 7.10. The density fluctuations
after the TOF are associated with the spatial fluctuation in symmetric phases
[73], and provides alternative observable to understand the Josephson dynamics of
phase-fluctuating 2D gases. The presence of vortices in coupled bilayer 2D gases

and their interaction along the z direction is of theoretical interest [77].
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20 pm

Figure 7.10: Matter-wave interference patterns of coupled 2D gases showing density
dips and vortices. The images were taken with double-well separation of d = 1.5 nm,
where the two clouds are considered to be coupled. The left panel shows the image with
sharp density dips in the z direction (indicated by red arrows), and the right panel shows
an image with vortex (red dashed line). Both images were taken with the density slicing
method.
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8.1 Conclusion

This thesis describes experimental work to probe the properties of 2D Bose gases
in and out of equilibrium. Using the MRF-dressed potential, we create a highly
controllable double-well potential for 2D systems, and observe the matter-wave
interference. An essential technical aspect is the density slicing method, which allows
the direct computation of the phase correlation function. Using this technique, the
BKT transition was observed in equilibrium 2D Bose gases. The critical point was
identified by the sudden change in the functional form of the correlation function,
and we obtained the critical exponent 7. = 0.17(3) in a harmonically-trapped, finite-

size system. Our experimental technique allows the observation of a wide range of

144
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properties in 2D Bose gases across the critical point, such as local vortex density,
density-noise correlation, full counting statistics and the local algebraic exponent.

Based on the detailed understanding of the equilibrium system from extensive
experimental measurements, we investigated a non-equilibrium 2D system quenched
across the BKT critical point. The quench was performed by coherently splitting a
single 2D cloud into two daughter clouds, which suddenly brings the system from
superfluid to thermal phase. The subsequent relaxation exhibits two-step dynamics
involving the phonon excitations and vortex nucleation. The analysis of phonon
excitation dynamics using the algebraic exponent 7 suggests that the finite energy
associated with the nucleation of vortices slowed down the dynamics. We further
compared the observed dynamics with the real-time RG theory.

2D gases in a MRF-dressed double-well potential can be trapped with a narrow
spatial separation d ~ 1pm, where quantum tunneling between the two systems
are expected. We have achieved this by making a double-well potential with a
small frequency separation of the dressing RFs. The high controllability of the
MRF-dressed potential allows us to prepare two 2D Bose gases with an arbitrary
phase difference, with which a phase oscillation can be initiated by the recoupling
quench. The observed phase oscillation dynamics is consistent with that of a Bose
gas in a tunnel-coupled double-well, however further extensive measurements are
required to fully understand the behaviour.

The major improvements made to the experimental apparatus over the course
of the work reported in this thesis allowed stable operation of the tens of thousands
of sequences over the duration of weeks, without additional recalibrations. The
fluctuations of the RF field amplitudes were kept to the 0.1 % level, which was crucial
to gather very large data sets and hence observe effects that would otherwise by
obscured by statistical uncertainty. The stability and the reliability of the experiment
is illustrated by the fact that the majority of the final data presented in this thesis
was taken while the experiment was operated remotely from Tokyo for three months;

with only brief twice-a-week in situ adjustments of lasers during that period.
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8.2 Future experiments

The experimental and theoretical tools that have been developed during the work
for this thesis can be used for a variety of exciting future investigations. I conclude

this chapter by listing a few of these prospects.

8.2.1 Short-range physics

Currently, the sensitivity of the imaging limits our investigations to the superfluid
and crossover regime (and hence cannot access deep in thermal regime). The
detection capability of the imaging system sets the lowest density of the cloud that
can be imaged with sufficiently high signal-to-noise ratio, and with the density slicing
technique we only image a fraction of the total cloud so the observation of interference
patterns require a certain threshold 2D density. By improving the detection
capability such as with the improvement of imaging system, we could extend
the temperature range that can be probed, e.g. to include the vortex-dominated
phase. This may enable observation of the ‘superfluid jump’ [23] by the divergence of
7. The improved detection method would also allow for more detailed investigation
of short-range physics such as vortex pair correlations in a non-equilibrium system,

and would allow us to further map the phase diagram of 2D Bose gases.

8.2.2 Coupled bilayer XY model

The pair of 2D gases in a MRF-dressed potential can be coupled via quantum tun-
neling. The tunneling induces not only the dynamical effect as presented in Chapter
7; in equilibrium, the phase-locking effect [75, 77] can complete with the thermal
fluctuations leading to a novel phase transition which lies in a mized universality
class [77]. The investigation of such a system requires an alternative observable
such as the symmetric phase mode and direct vortex imaging, which is possible

with existing experimental capabilities and theoretical tools described in this thesis.
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8.2.3 Controlled tunneling and driven 2D Josephson junc-
tion

The MRF-dressed double-well potential allows individual control of each well on

a microsecond timescale by the modulation of RF amplitudes. This makes it an

unique platform to investigate dynamical control of Josephson dynamics which

can be applied to realise a quantum simulation of light-induced superconductivity,

as proposed theoretically in Ref. [142].

8.2.4 Arbitrary potentials

The DMD installed in this work for the selective imaging can also be used to shape
the laser light to form an arbitrary dipole potential on the atoms (using light that is
far detuned from the atomic resonance). The combination of MRF-dressed potential
and arbitrary optical potential allows a wide range of investigations. An example
is the uniform potential, which can be created by placing a repulsive ring-shaped
potential centred on the cloud in the dressed potential. An uniform system allows
precise comparison with theory, and a wide variety of novel dynamical phenomena
can be probed without being affected by the collective excitations intrinsic in the

harmonic trap, such as monopole and dipole mode.

8.2.5 Many-body localization

Most physical systems reach thermal equilibrium over time, losing their memory of
the initial state. It generally requires inherent symmetry of the Hamiltonian or lack
of interaction to avoid, or slow down, the thermalisation process. One intriguing
exception is systems subject to strong disorder, which retain local memory even in
the presence of interaction. The phenomenon is known as many-body localization
(MBL) and is the subject of active research [151-154]

Using the 2D double-well potential and an additional optical disorder potential,
we can study the MBL phase with our novel initial state preparation method
and detection scheme, namely the coherently split two-dimensional (2D) quantum

gas subject to disorder, probed using matter-wave interferometry. This method
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will allow the detailed observation of MBL phases in a continuous 2D system
as predicted theoretically [155]. The matter-wave interferometry method allows
detailed study of how the system retains its initial memory, such as through higher-
order correlations [30, 38]. The competition of quasi-order and the localisation
is also of great interest [155].

So far, detailed experimental studies of disordered quantum gases in 2D have
been difficult because the low percolation threshold results in classical trapping
even at low temperatures. Recently, in 2020, it was shown elsewhere that the
point-like disorder method is effective to probe Anderson localisation in 2D Bose
gases without being affected by classical trapping [115, 156]. This approach can be
directly applied to the investigation of MBL in 2D quantum gases thus providing

an excellent opportunity for future investigation.
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Here, we describe theoretical and preliminary experimental work towards the
realisation of non-destructive measurement of atoms in the MRF-dressed double-
well potential, as well as the realisation of conditional spin squeezing. In principle,
this approach can detect the atoms in each of the well independent of the spatial
separation of the wells and thus this method is not limited by the resolution
of any optical system, i.e. it is not diffraction limited. Utilising the complex
dynamics of internal states of atoms in the MRF-dressed potential, we show
that the dispersive monitoring of the spin constitutes non-destructive imaging
of the spatial atomic distribution in the MRF-dressed trap. We show preliminary
experimental results for this imaging technique, and propose a method using it

to produce conditionally number-squeezed states in a two-mode BEC. We note
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that the dispersive measurement of single-RF dressed atomic vapour was recently

reported elsewhere [157].

A.1 Position-dependent spin dynamics

We consider an atom in a hyperfine state F', trapped in a MRF-dressed potential.
The RF fields are linearly polarised AC magnetic fields with n different angular fre-

quencies w; and amplitudes B;. The Hamiltonian describing the dynamics of atoms is

]:fo _ wo(z)F’Z + griB

Zﬁ’ - e, B; sin (w;t), (A.1.1)

j=0
where wy is the angular Larmor frequency at position z. In the quadrupole magnetic
field B(r) = b(ve, + ye, — 2ze.); limiting the region of interest to = y = 0 and

z < 0 as in the experiment, the Larmor frequency can be expressed as
wo(2) = 2gFpupbz/h. (A.1.2)

The first term of Eq (A.1.1) makes the dynamics of spins position-dependent, with
resonances where 0;(z) = w; — wy(z) = 0. Figure A.1 shows numerically calculated,
spatially-dependent spectral power of time evolution of (F,(t)). The dressing RF
frequencies are 27x(3.57, 3.6, 3.63) MHz and b = 150 G/cm, resulting in the

separation of the wells d = 1.2 pm.

A.2 Dispersive measurement of spin dynamics

The position-dependent dynamics of spins shown in Fig. A.1 can be probed by
coupling the atomic spin to the polarisation modes of coherent light. Such coupling
is induced by circular or linear birefringence of the atomic medium [157-159],
Faraday or Voigt effect. We propose to probe the spin dynamics in a MRF-dressed
potential with Voigt effect, using far detuned light. In particular, this approach
determines the spatial distribution of the atoms in a double-well potential by
the spectrum of the signal. In Fig. A.2, we show the schematics of experimental

setup. A linearly polarised laser beam propagates along the direction of a static
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Figure A.1: (Top) Numerically calculated posititon-dependent power spectrum of
single-spin dynamics (F(t)). The dressing RFs are at frequencies (3.57, 3.6, 3.63) MHz
with field amplitudes (0.57, 0.71, 0.57) Gauss. The resonance condition for each frequency
component §;(z) = 0 are indicated by vertical dotted lines. (Bottom) The MRF-dressed
double-well potential.

magnetic field z, and detect the time-varying, polarisation-dependent phase shift
using polarimetry consisting of Wollaston prism and a balanced photodetector. The
probe beam is initially linearly polarised, and we monitor the time evolution of
power difference in circular polarisations; see below.

To describe the atom-light interaction, we now introduce the polarisability
Hamiltonian which describes the coupling of single spin and the polarisation of
optical modes. A comprehensive review of this topic can be found in Ref. [160].

In the following, we use Stokes operators to describe the photon flux of different

polarisations of light propagating along z:

G — ; (ala, +ala_),

S, = ; (ata_+ala,)= ; (ata. —afa,)

S, = ; (&T_&+ - &L&,) = ; (&+45d+45 - &—45&*45) :

3. = ; (atay —ala ), (A2.1)

where dl(di) are the creation (annihilation) operators for the right and left circular
polarisations, &245(6&45) is with the linear polarisation in 4+ 45 degrees between

z and y axes and a}, (d,,) along x and y axes.
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BPD Wollaston

Figure A.2: Experimental setup for the dispersive detection of MRF-dressed atoms.
Atoms are trapped at the bottom of double-well ’shell’ traps (green transparent half-
spheroids). We probe the distribution of atoms in the double-well by a polarised laser
beam frequency-locked far from resonance (red semi-transparent beam, propagating from
right to left). The time-dependent scattering of light into a different polarisation mode in
the atomic medium results in the modulation of the polarisation, which we monitor with
a polarimeter consisting of a quarter-waveplate (\/4), a Wollaston prism and a balanced
photodetector (BPD). The direction of gravity is the same direction as Bpc shown in the
figure.

For the interaction of atoms with an off-resonant light field at angular frequency
wr, the dipole Hamiltonian can be approximated into the polarisability form [160],

which can be decomposed into irreducible spherical tensor components a [160, 161]:

. LGl
Hyy = Z EC) E)
k=0,1,2 hA
20 . o
= g——81 +g—5.F,
9 S0l + 95
0D (A )
e {8.(F2 = F2) + 8,(FuF, + B, Fy) + 8o [3F2 — f(f + )i] /3},

(A.2.2)

where g = wr/(2¢9N,), €0 is the vacuum permittivity, A is the detuning of the
probe light from atomic transition and 1 is the identity operator in the atomic
subspace; a®) € R with k = 0,1, 2 for the scalar, vector and tensor polarisabilities.

Using the Eq. (A.2.2) and Eq. (A.1.1), we can study the time evolution of
coupled atom-light system. Assuming small values of a¥) (corresponding to large
frequency detuning of the laser) such that the dynamics of atomic spin is unaffected
by the interaction, we can first obtain the time evolution of atomic spins a , from

which we obtain the equation of motion for the Stokes operators. Using the
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initial probe light polarisation of S’y, we find the Stokes operators S”j (t) after time

evolution under Eq. (A.2.2) are [157]

A 2g 200 A
S.(t) = ) Sy Y FL(t) (A.2.3)

i

A

S,(t) =S, (A.2.4)

5.0 = 2008, (R0 - F0), (A25)

where the interaction time is assumed to be short enough such that the change
in the input polarisation S*y is negligible. The sum over indices i in Eq. (A.2.3)
and Eq. (A.2.5) are performed over all atoms in the trap. From Eq. (A.2.5)
and the definition of S, in Eq. (A.2.1), we see that the differential measurement
of photon flux in right- and left-handed circular polarisation gives the measure
of ¥, (ng(t) - Fil(t» Equivalently, the measurement of linear polarisation

components gives the measure of Ziﬁ’

7.14 MHz
7.17 MHz

72 MHz - 7.26 MHz
7.93 MHz .

<
o

-1 -0.5 0 0.5 1
position (pm)

Figure A.3: (Top) Position-dependent power spectrum of single-spin dynamics <Fz2(t) —
Fyz(t)), with dressing RF frequencies 27x(3.57, 3.6, 3.63) MHz and amplitudes (0.57,
0.71, 0.57) Gauss. (Bottom) the potential energy of dressed eigenstates we consider for
the calculation shown in the top figure.

To predict the measurement, in Fig. A.3 we show the numerically calculated
power spectrum of the single-spin dynamics (F2(t) — F2(t)) under Eq. (A.1.1). We
observe clear resonance structure in a similar manner to Fig. A.1, but the signal is at

twice the frequency of the dressing RF. From this result and Eq. (A.2.5), we find that
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the measurement of S, through the polarimeter at twice the dressing RF frequency
constitutes measurement of atoms at the RF resonance positions (equivalently, to
within a small offset, at the positions of each well). The position selectivity of this
process allows the in situ determination of population difference in a double-well
potential, independent of spatial separation of the wells. This is a significant
advantage over the optical imaging method, which is fundamentally limited by
the diffraction limit of the imaging setup which is on the order of micrometres
and usually worse due to imperfections of the experiments and refraction of probe

light in the dense atomic medium.

A.2.1 Backaction of the measurement

In quantum mechanics the measurement process affects the atomic dynamics. If
engineered correctly, backaction can be utilised to produce a correlated state
of atoms, such as spin squeezed states [162, 163]. However, in most cases, the
backaction results in dephasing of the atomic dynamics and the reduction of signals.

In this section, we describe one of the possible dephasing mechanisms caused by
the measurement process. For illustration purpose, we use the term proportional to
o in Eq. (A.2.2) as the interaction Hamiltonian H,,:. The initial state of the atomic
spin in Schrodinger picture is |¢,)o = |F, m), and the system of light can is described
by the product of coherent states in x and y polarised modes, |¢1)0 = |B2) ® |By)-
Since the flux of photons that passes through the cloud in a small timestep dt, the
atom-light interaction at a given time occurs only for a small fraction of the light

beam. As such, we expand the coherent states |3) in a Fock basis [164, 165],

Y1) > |02)]0y) + Bal12)]0y) + 5y[0z)|1y)- (A.2.6)

Furthermore, we expand the propagator to the second-order of the duration of

interaction a photon, dt.

H,dt H . dt  H2 dt?
! - >~1—1 b St (A2.7)

U =exp (— . o2
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From above results, we can explicitly compute the propagator for atoms U|¢y),

Ultpr) == [vn) + 7 Fo(B10.)[1y) + Byl 12)[0,)) + 7V EZ (Ba[12)10,) + 5,10,)[1)) ,
(A.2.8)
where v = gaM/(RA).

In the following, we express the time evolution of atomic states using density
matrix for atomic states p, = |¢,)(¢a| = |m)(m| and light fields p;, = |¢r){¢r].
The atomic state after the interaction can be calculated by applying propagator U
to atom-light state p, ® p; and taking the partial trace over the probe field Try:

palt + dt) =T, [Up, @ p U] = Z(n$l<my|UanT|n$) m) (A.2.9)
=pa + (B2 + B) (paFpa — {F2, pa}) (A.2.10)
=pa + 775 (paFpa — {F2, pa}) dt, (A.2.11)

where we defined the total photon flux S = (82 + (7)/dt in Eq (A.2.11).
We add the unitary evolution under Eq (A.1.1) to obtain the Lindblad mas-

ter equation [166]

palt + dt) = po — i[Ho, paldt + 7S (puFlpa — {F2, pa}) dt, (A.2.12)

We note that this is the ensemble-averaged result over realisations of measurement
results at the polarimeter, and numerical simulation of individual trajectory is
possible with the stochastic version of the master equation [166].

In Fig. A.4, we show the power spectrum of spin dynamics (F,(z)), numerically
calculated using Eq (A.2.12). The backaction causes the dephasing of the spin
dynamics and thus can contribute to a finite decay of the signal. This can be evaded

by directly applying the stroboscopic measurement technique in Ref. [159].

A.3 Preliminary experimental results

In this section, we present preliminary experimental results demonstrating the non-
destructive Voigt measurement method. We prepared 3 x 10° thermal 8"Rb atoms in

a three-RF dressed potentials, and probed the system using a linearly polarised light
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Scaled power spectrum

Figure A.4: Time evolution of the power spectum of (F,(z)) at the RF resonance
frequency, which linearly affect the non-destructive measurement signal strength. The
time evolution was numerically calculated using the master equation Eq. (A.2.12) and
plotted against the number of periods of the RF.

detuned from the atomic transition. The RF frequency components were (3.47, 3.6,
3.63) MHz with amplitudes (0.42, 1.81, 0.42) Gauss. This forms a three-RF single-
well potential, resulting in atoms localising around the 3.6 MHz magnetic resonance.
The probe beam was sent in the direction of static magnetic field, 246 MHz blue
detuned from F =1 — F’ = 2 transition. From the discussion above, we expect
to observe the effect from the a!® term, which measures °; (ﬁfz(t) — Fil(t)) We
plot the recorded signal in Fig. A.5 left panels.

We further analyse the signal using spectrogram, as shown in Fig. A.5 right.
As expected from Fig. A.3 and our choice of dressing frequencies, we observe the
signal at 7.17, 7.2 and 7.23 MHz. Since the atoms are localised around the 3.6 MHz
magnetic resonance, we did not observe strong peaks at 7.14 and 7.26 MHz.

We observe rapid decay of signals once the probe beam is applied; We found
that a significant fraction of atoms is repumped into F' = 2 state during the
measurement process. In a future experiment, much larger detuning from the

atomic transition is desired.

A.4 Conclusion and outlook

We have presented theoretical and experimental results towards the non-destructive

measurement of atomic distribution in a MRF-dressed potential. The experimental
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Figure A.5: (Top, left) The balanced photodetector output signal with probe beam
coupled to thermal atoms in MRF-dressed potential. The bottom panel shows the first
10 ps. Dressing RF combinations were (3.47, 3.6, 3.63) MHz and amplitudes (0.42, 1.81,
0.42) Gauss. (Right) Spectrogram of the signal plotted on the left. Clear peaks at 7.17,
7.2 and 7.23 MHz (indicated by black dotted lines) are observed.

result suggests the validity of the measurement setup, however significant improve-
ments are required to utilise this method for the non-destructive measurement

of BEC trapped in double-well potentials.

A.4.1 Spin squeezing in a double-well potential

The theoretical results in our recent preprint Ref. [143] show that the continuous
non-destructive measurement of the spatial two-mode BECs result in quantum
correlated states, such as spin squeezed state and macroscopic cat state. The
experimental technique presented in this Appendix is a way of directly implementing

the scheme described in Ref. [143].
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