7th Biennial Conf. on Classical and Quantum Relativistic Dynamics of Particles and Fields IOP Publishing
Journal of Physics: Conference Series 330 (2011) 012010 doi:10.1088/1742-6596/330/1/012010

Maxwell’s equations, quantum physics and the

quantum graviton

Alexander Gersten and Amnon Moalem
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract. Quantum wave equations for massless particles and arbitrary spin are derived
by factorizing the d’Alembertian operator. The procedure is extensively applied to the spin
one photon equation which is related to Maxwell’s equations via the proportionality of the
photon wavefunction ¥ to the sum E + iB of the electric and magnetic fields. Thus
Maxwell’s equations can be considered as the first quantized one-photon equation. The photon
wave equation is written in two forms, one with additional explicit subsidiary conditions
and second with the subsidiary conditions implicitly included in the main equation. The
second equation was obtained by factorizing the d’Alembertian with 4x4 matrix representation
of "relativistic quaternions”. Furthermore, scalar Lagrangian formalism, consistent with
quantization requirements is developed using derived conserved current of probability and
normalization condition for the wavefunction. Lessons learned from the derivation of the photon
equation are used in the derivation of the spin two quantum equation, which we call the quantum
graviton. Quantum wave equation with implicit subsidiary conditions, which factorizes the
d’Alembertian with 8x8 matrix representation of relativistic quaternions, is derived. Scalar
Lagrangian is formulated and conserved probability current and wavefunction normalization
are found, both consistent with the definitions of quantum operators and their expectation
values. We are showing that the derived equations are the first quantized equations of the
photon and the graviton.
Key words: Maxwell’s equations, one photon quantum equation, quantum graviton

1. Introduction
In the past, relativistic wave equations were successfully obtained by factorizing the Klein-
Gordon operator. The Dirac equation was derived from the relativistic condition on the Energy
FE, mass m, and momentum p:

(B% — p? — m2c) 1W¥ = 0, (1)

where I® is the 4 x 4 unit matrix and ¥ is a four component column (bispinor) wave function.
Eq. (1) was factorized into

27(2) . 27(2) '
@y (melT o (@ _ ( me cp-o _
[EI +< cpo —mc*® >] [EI ( cpo —mctI® )] v =0, (2)

where 1 is the 2 x 2 unit matrix and o is the Pauli spin one-half vector matrix with the
components

(01 (0 —i (1 0 @ (10
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For massless particles wave equations can be obtained by factorizing the zero mass wave operator.
The two component (massless) neutrino equation can be derived from the factorization

(B2 — ¢2p?) 1@y = [EI@) - cp-a} [EI@) n cp-a] b =0, (4)

where 9 is a two component spinor wavefunction.

In the past there were many attempts to describe Maxwell’s equation as the quantum photon
equation[l]. In this work our presentation is more complete and contains new elements. We
extend them to the derivation of the wave equation of the quantum graviton. Our starting point
is the factorization of the d’Alembertian. For spin one the factorization leads to the photon
wave function. We present different factorizations which lead to quantum photon equations. In
all of them, the somewhat mysterious substitution of the wave function ¥ = N (E + iB), leads
to Maxwell’s equations. Above E and B are the electric and magnetic fields respectively, and
N is a normalization constant (normalizable only for functions that fall off sufficiently rapidly).
Thus Maxwell’s equations are the one-photon quantum equations. We construct Lagrangians
for the photon equations and evaluate the energy-momentum tensors and probability currents,
which appear to be consistent with the definitions of quantum operators and their expectation
values. We extend our findings to derivations of other zero mass and arbitrary spin quantum
equations. We worked out the details of the zero mass spin two quantum equation which is
linked to the quantum graviton.

In Sec. 2 and Sec. 4 the photon wave equation is derived by factorizing the wave operator
(the d’Alembertian). From the photon equation Maxwell’s equations are derived in Sec. 3. In
Sec. 2 and Sec. 4 two procedures will be presented: one with subsidiary conditions, in the second
procedure the subsidiary conditions will be integrated into the usual form of Maxwell’s equations.
In Sec. 4 scalar Lagrangian was formulated and conserved probability current was found, both
consistent with the definitions of quantum operators and their expectation values. In Sec. 5
the photon Lagrangian was converted into a scalar Lagrangian for Maxwell’s equations. In Sec.
6 relativistic quaternions are introduced in order to work properly with the space-time metric.
The factorization of the d’Alembertian is achieved with matrix representations of the relativistic
quaternions. In Sections 7-8 a general method for deriving quantum equations for zero mass
particles and arbitrary spins is presented. In Sec. 9 we use this method to derive again Maxwell’s
equations, this time with spherical tensor formulation. In Sec. 10 the quantum graviton (spin 2)
wave equation (with explicit and implicit subsidiary conditions) are considered. The quantum
wave equation with implicit subsidiary conditions, which factorizes the d’Alembertian with 8x8
matrix representation of relativistic quaternions, is derived. Scalar Lagrangian is formulated
and conserved probability current was found, both consistent with the definitions of quantum
operators and their expectation values. In Sec. 11 the covariance of the equations is explained.
Sec. 12 contains our conclusions. In the following symbols with hat over them (like E) will
denote quantum operators.

2. The photon equation

We shall derive the photon equation from the following decomposition[2],
E2 A E A E A Apai p:lipy sz]i)z
(CQ - 2) 1®= (cI(S) + P‘S> (61(3) - P'S> — | PyPx APZA pggz ) (5)
bzPx DPzPy P

where I®) is a 3 x 3 unit matrix, and S is a spin one vector matrix with components,
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0 0 O 0 0 ¢ 0 —2 O

S, = 0 0 —2 , Sy = 0o 0 0], S = i 0 0 , (6)
0 2 O - 0 0 0 0 O

and with the properties,

[Sz, Sy =iS., [Sz, 8. =iS,, [Sy,S.] =iS,, S%=21¥). (7)

The decomposition (5) can be verified directly by substitution. The matrix on the right hand
side of Eq. (5) can be rewritten as:

P2 ﬁngy DD Dz
Pybe Dy Dyb | =1 By | (D By P ). (8)
pebz DDy D2 p-

From Egs.(5-6, and 8) , the photon equation can be obtained,

(CQ - P2> v= (Cf(g) + P'S> <CI(3) - P'S> v Dy (b-¥) =0, )
Dz

where ¥ is a 3 component (column) wave function. Eq.(9) will be satisfied if the two equations,

s

<fl(3) - f>-s> v =0, (10)

pe =0, (11)

are simultaneously satisfied. A second possibility is to replace Eq. (9) with,

E* E . E ) Pr \
<02 — p2> U= (cI(S) - p-S> <CI(3) + p'S> v by (D) =0. (12)
Pz

Eq.(12) will be satisfied if the two equations,

<E1(3) + p.s) () =, (13)

pe) =0 (14)
are simultaneously satisfied. Above ¥(t) and ¥(-) refer to forward and backward helicities.
3. Maxwell’s equations

Maxwell’s equations will be derived from Egs. (10) and (11). We will show below that if in Egs.
(10) and (11) the quantum operator substitutions,

« 0
E— ih@’ p— —ihV, (15)

and the wavefunction substitution

=N (E+iB), (16)
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are made, as a result the Maxwell equations will be obtained. In Eq. (16) E and B are the
electric and magnetic fields respectively, and A is a constant, with units of [(,/energy)_l},

which will be determined later on (see Eq. (66)). Indeed, one can easily check from Eqs. (6)
and (15) that the following identity is satisfied,

(D'S) ¥=hV x ¥. (17)

From Egs. (10) , (11) , (15) and 17) we obtain,
mgt\p —chV x © =c (p-S) ¥ =H P, (18)
kY W =0, (19)

where H can be defined as the Hamiltonian operator. Although the definition of the energy
operator E in Eq. (15) is only formal, in practice it can be replaced by the Hamiltonian. The
definition of the Hamiltonian does not depend on the subsidiary conditions Eq. (19).

The constants A and N can be cancelled out in Egs. (18), (19), and after replacing ¥ by Eq.
(16), the following equations are obtained,

V % (E+iB) —imEng), (20)
V - (E+iB) =0. (21)

If in Egs. (20) and (21) the electric and magnetic fields are real, the separation into the real
and imaginary parts will lead to the Maxwell equations (without sources),

10B
VxB= (22)
10E
B=-— 2
V x i (23)
V-E =0, (24)
V- -B=0. (25)

One should note that the Plank constant # was cancelled out earlier, in Eqgs. (18) and (19),
which explains its absence in the Maxwell equations. Here to be noted that from Eq. (15) and

Eq. (6),

E*=—E, p*=-p, S*=-8, (26)
and therefore, the complex conjugate of the photon equation Eq. (10) ,

(fm) _ p.s> \Il<+>] = (fl(?’) + f)-S> (\If”))* =0, (27)

where (\IIH))* satisfies Eq. (13) for backward helicity.
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4. The photon equation with an implicit subsidiary condition
Maxwell’s equations without sources are[3],

OuF"™ =0, 9,F" =0, v=0,1,23, (28)

where the antisymmetric tensor F#” and its dual F** are defined via the electric and magnetic
fields E and B respectively as,

0O -E, —-E, —E,
E 0 -B, B
pwy T z Y
GOE - A (29)
E., -B, B, 0
0 -B, -By —B.
- 1 B 0 E, -FE
wy .~ pvaf — x z Y
= %€ Fop = B, -E. 0 B, , (30)
B, E, —-E, 0
where €8 is the totally antisymmetric tensor (912 =1, eof = —€wap)- The sum of the

F and iF™ is the self-dual antisymmetric tensor, which depends only on the combination
v =N (E+iB),

0 -E, -iB, —-E,—iBy, —FE,—iB,
= E,+iB 0 iFE, — B B, —iE
122 nwy T T z z y y
FUiET =\ g i, B.-iE. 0 iE,— By |’ (381
E.+iB, iE,—B, By—iE, 0
o -v, -v, -V,
1 v, 0 v, —iv, | 1
N \ij i, 0 i, = N (Rl\I/;B + RQ\I/y + Rg\I/Z) R (32)
v, v, —iv, 0
with,
0 -1 0 0 00 -1 0
1 0 0 O 00 0 —i
B=lo 0 o | ™10 0 o |
0 0 —i 0 0« 0 O
0 0 0 -1
0 0 4 0
Bs=149 i 0 o
1 0 0 O
The self-dual Maxwell equations take the form,
Ny (F™ 4 iF) = 8, (RIVW) = R0,0; = — ()" 9,0, = 0, (33)

where,
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1 0 0 O
01 00
“=1lo0010 | (34)
0 0 01
0O -1 0 O
-1 0 0 0
=1 0 o0 o0 —i |’ (35)
0 0 ¢ O
0 0 -1 0
0 0 0 =
0O —¢ 0 O
O 0 o0 -1
0 0 — O
=1 0 i 0 o0 (37)
-1 0 O 0

and the W; is part of the the four component wave function,

0
— \le
o = v, (38)
v,
The free field photon equation becomes
ih(a,0") @ = (cao - p-a) o =0. (39)

Compare this expression with our previous result of Egs. (10) and (11). Note that the «;
(1 = 1,2,3) matrices contain as submatrices the spin one matrices of Eq. (6). The subsidiary
condition p-¥ = 0 is added to the first row and first column of the a; (i = 1,2, 3) matrices, i.e.,

0 -1 0 0
-1
a1= 0 (S:v) ) (40)
0
0 0 -1 0
0
Q2= 1 (Sy) ) (41)
0
0 0 0 -1
0
3= 0 (Sz) (42)
—1
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Thus the «; (i = 1,2,3) matrices can be constructed from the photon equation with spin one
matrices and the subsidiary condition. In Eq. (39) only differential operators act on the wave
function ®, they eliminate any constant in spacetime coordinates, therefore ® can be replaced
by

A
— ‘Ijx
(I) - \Ily ) <43)
v,
where A is an arbitrary constant, independent of the space-time coordinates. The Hermitian
conjugate of @ is,
O = (X Wp W Ur). (44)
With these new definitions one can define the Lagrangian density L,
<I>H T

. P -
L = 7 <an — Cf)Ol) b — 7 (Ea,o — Cf)a*> (I)*, (45)

where ®7 is the transpose of ®,

T=(A U, U, T, ), (46)
Using the definitions of Eqs. (40) , (42) and (6) one can reduce Eq. (45) to,
L wi(E v (B
= <I<3> — p-S) TN\ (pT) — — <1<3> + p-s) T\ (p-UF), (47)
c 2 c 2 c
where,
v,
v=| v, |. (48)
v,

One can see in Eq. (47) that the constants A and \* play the role of Lagrangian multipliers.
By varying the Lagrangian L with respect to A and A* the subsidiary condition Eq. (11) and
its complex conjugate are recovered. By varying the Lagrangian L with respect to ¥* Eq. (10)
is obtained. By varying L with respect to ¥, Eq. (27) is recovered. The probability current is
evaluated in Appendix A, with the result,

O (B + V- (TST) =0. (49)

Thus W W is interpreted as the density of probability which should be normalized to unity (and

is a constant of motion),
/ / / drdydz (T7®) =1, (50)

under the condition that the wavefunction vanishes properly at infinity. This is a realistic
condition if the wavefunction is a wave packet. In this case the wavefunctions form a base for
an Hilbert space. Please note that the constant in Eq. (43) does not appear in the equations
that determine the normalization, namely Eqgs. (48),(49) and (50).

Having a Lagrangian, one can compute the corresponding energy-momentum tensor,
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OL  Ou;
T = Z a(Tj)aTcy — Lo, (51)
J ozp
where u; stand for the components of ¥ and ¥*. For T we obtain,
T  Tye wH 2 vl p el E
=== (PS)Y+— (p:S) P = ——\I’———‘I’* 2
. . 5 (0:S) ¥+——(p-S) 5 5 (52)

and

/ / / drdyd=T" = / / / dxdydz \IIHE\II \IJTE\IJ*} (53)

Applying the energy operator on Eq. (50) one obtains,

E / / / drdydz (U1 @) = / / / dzdydz [\pHqu+quE\p*] —0 (54)
/ / / T Ew* drdydz = — / / / U EWdzdydz. (55)

Substituting Eq. (55) into Eq. (53) we finally obtain,

/ / / dredydzT" = / / / dedydz 9" E® =< E >, (56)

which is the expectation value of the energy operator. For the T°% components we have,

Hence

T T h h
L _ 10k _ gHPkg TPk g
c c 2 2
— \IJH%’“\D n <\11Hp2’“111> = Re (¥ p, ) , (57)

and

TOk
///dxdydz = ///dmdydz\IlH (Pr) ¥ =<pr >, k=123, (58)
c

which are the expectation values of real momenta. X R
Let us prove that E is a self adjoint operator. Indeed, from Eq. (15) E* = —F, and using
Eq. (55) we obtain,

/ / / dzdydz (E\II)H\II - / / / drdydz (E\IIH) v (59)
- / / / dedyd- 9T EO* = / / / drdyd>" E¥. (60)

In a similar way one can prove that the momentum operator py (for real momenta) is self

adjoint,
///dxdydz (P @) @ = —///dmdydz (pr o) ®
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= —///dmdydz\IlTﬁk\Il* :///dxdydz\IlHﬁk\Il. (61)

Therefore Eq. (39), with the normalization condition Eq. (50), is the first quantized equation
of the photon.

5. Lagrangian for Maxwell’s equations without sources
One can write a Lagrangian for Maxwell’s equations simply by substituting ¥ = N (E + iB)
into the photon Lagrangian Eq. (47). One obtains,

L E E_ X A
— =-ETHpS)E-BT (p-S)B+iE'=B—iB'=E+ ——p-¥ — Zp-¥* 2
Y (P-S) (pS)B+iE'—B —iB" —E+ —-p 5P (62)

1 1
=—h (E (VXE)+B-(VxB)+ EE' (0:B) — EB- ((‘)tE)>
—hA(Im(\)V-E—-Re(\)V-B). (63)
The conserved probability current Eq. (49) takes the form,

O (BW) + V- (B7SW) = N? [9, (E* + B?) +2cV- (E x B)] =0, (64)

which coincides with the Poynting theorem. The normalization coefficient N can be found from
the normalization requirement,

dzdydz®T @ = |N|? drdydz (E* + B?) =1, (65)
1] 1]

V|2 = / / / dzdydz (E* + B?). (66)

Thus the probability density for one photon is,

hence,

E? + B?
THY = 67
[ [ [ dzdydz (E? 4+ B2)’ (67)
and the normalized photon wavefunction is,
E+/B
+1 (68)

o= .
VI [ dwdydz (B2 + B2)

6. Relativistic quaternions
The o, matrices of the photon equation Eqs.(34-37) form a representation of what we will call
"relativistic quaternions”. They satisfy the following relations,

(@1)” = (a2)? = (a3)* = (@0)* = @, (69)
ajae =ia3  (and cyclic permutation), (70)

apoy = —aqay, for k#£1, kl=1,2,3. (71)
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The «, matrices factorize the d’Alembertian, therefore also the relativistic quaternions will
factorize it. The relativistic quaternions are a particular case of complex quaternions. Let Q be
a quaternion, which traditionally is written as,

Q = ol + i + cof + c3k, (72)

2= =k*=-1, ij=-ji, ik=-ki, kj=-jk, ijk=-1, (73)

where the ¢, are real coefficients. Let us rewrite Eq. (72) as,

Q = coqo + c1q1 + 292 + 393, (74)

qo = 17 q1 = i7 q2 Eja qs = k. (75)

The conjugate quaternion is defined as,

QY = coqo — c1a1 — c2q2 — €303, (76)
Using Eqs. (72-76) we obtain,

Q°Q = qq (c% +E A+ cg) ) (77)

The quaternions are not suitable for factorizing the d’Alembertian. The factorization can be
done with complex quaternions, for which the coefficients ¢, in Eq. (72) or Eq. (74) can be
complex. The relativistic quaternion with complex coefficients is defined as,

R = coro + c1r1 + corg + c3r3, (78)
ro=dqo=1, r;=iqi, Trz2=1qz, r3=/iqs, (79)

and its conjugate as,
RC = Corg — C1I'] — CaTr9 — C3Ir'3, (80)

The multiplication table of the r, base (and its representations) is,

X o | I'1 ro rs
o | Yo | T1 r2 r3
ri || r1 | ro irs —iry | (81)
| 4] o —iI‘3 ro ’iI‘l
r3 Ir3 iI‘Q *7;1‘1 Iro
and,
RYR = RRY = rg (cf—ci—c5—c3), (82)

which allows factorization of the d’Alembertian.
Another important advantage of the relativistic quaternions is that they have a representation
in terms of Pauli matrices Eq. (3),

Rs = coog + 10, + caoy + c307, (83)

10
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i.e. Ry is a second rank mixed spinor. In this way we have shown the connection between the
relativistic quaternions and spinors. Now we can rewrite the photon (and Maxwell’s) equations
Eq. (39) as spinor equation,

(ftfo — PeOy — PyOy — ﬁzo-z> (Aop+¥,0,+¥0,+¥.0,)=0. (84)

In the section devoted to the quantum photon (spin 1) other representation of the relativistic
quaternion in terms of 4x4 matrices is given in Egs. (124) and (125). Similarly, in the section
devoted to the quantum graviton (spin 2) other representation of the relativistic quaternion in
terms of 8x8 matrices is given in Eqgs. (145) and (147).

The 4x4 matrices Egs. (34), (37), (124) and (125), which are representations of the relativistic
quaternions, have eigenvalues -1 and 1 (twice). This is consistent with the condition of having
helicity in the forward and backward directions only. The above matrices contain implicitly the
subsidiary conditions, which is consistent with their role in suppressing the helicity components
in other than forward and backward directions. Other properties are:

det (a;) =det (8;) =1, i=uzy,z, (85)

tr (o) =tr(5;) =0. (86)

The Pauli matrices o; have eigenvalues -1 and 1 and,

det (0;) = =1, tr(oy) =0. (87)

Taking into account that the «; and 3; have the same eigenvalues as the o; and the validity of
Egs. (85-87), we can conclude that a; and 3; are equivalent to the matrices

Y = < . ) i=0,2,9,7 (88)

In a similar way one can show that the 8x8 7, matrices of Eqs. (145) and (147) are equivalent
to the 8x8 matrices

n® = i . (89)

0
ok
The above results can be generalized. Thus the relativistic quaternions have representations in
terms of 4sx4s matrices

oF)
An example of the above representation can be obtained by replacing Eq. (84) with,

) A+ U,

E _w . . ) U, + ¥

(cEé "+ 550 + 5,5 + .2 v i | =0 (91)
A—VU,

11
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or to use,
W, +il, | | —V20 (92)
\Ilm - Z\Ily \/i‘l’_l ’
A — \Ijz A — \IJO

7. Dirac’s equations for massless particles of any spin
Dirac has derived equations for massless particles with spin s, which in the ordinary vector
notation4 are,

{spo + Supsx + Syby + S2p-} Y = 0, (93)
{sPo + SaPo — iSyp- +iS2py}t b =0, (94)
{spy + Sypo — 1S:px +iSzp.} b =0, (95)
{sp- + Szpo — iSzPy + iSypa} b =0, (96)

where 1 a (2s + 1) component wave function and S,, are the spin (254 1) x (2s + 1) matrices
which satisfy,

[Sa, Syl =Sz, [S2,Sa) =08y, [y, Sa] =iSs, SE+S24+82=s(s+1)I®.  (97)

Above the p,, are the momenta, py = E/c, F the energy, and 1) is a (2s4+1) x (25 4+ 1) unit
matrix. As we shall see below, for the case s = 1, Eq. (93) will lead to the Faraday and
Ampere-Maxwell laws. The Gauss laws can be derived from Eqs. (93-96) in a way which will be

9]

described below. Egs. (93-96) were analyzed extensively by Bacryl®!, who derived them using

Wigner’s condition 6] on the Pauli-Lubanski vector W* for massless fields,

WH=sp!, u=uwx,mx,y,z. (98)

In the next section Eqgs. (93-96) will be retrieved by factorizing the d’Alembertian.

8. Wave equations for massless particles of any spin
Using the metric convention g,, = —g11 = —g22 = —g33 = 1, we will employ a special form of

the Pauli-Lubanski vector operator W# suggested by H. Bacry[5] for massless particles,

0 S S5 S
~S, 0 —iS, iS,
-8, iS. 0  —iS,
-8, —iS, i8S, 0

where S, is the antysymmetric spin tensor, S is the spin vector matrix operator, s is the spin
of the particle with zero mass and the components of W# are (2s + 1) x (2s 4+ 1) matrices. We

WH — %Zé_uyp)\sp/\ﬁyj Sp/\ — = (S,’LS), (99)

shall use the following relationm,

W, WH = —s (s +1) ppI, (100)

where 1(*) is the (25 4 1) x (25 + 1) unit matrix. One can easily see that,

12
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(W, — sp) (WH + sp) = —s (25 + 1) pp T, (101)
or
(Wi + spp) (WH — sp*) = —s (25 + 1) pup'T*). (102)

Eq. (102) or Eq. (101) will be the basis for all our derivations. From Eq. (102) one can see
that if ¢, the wavefunction, which is a (2s + 1) component spherical tensor operator of rank s
satisfies,

(WF+sp)p =0, pu=0,1,2,3, (103)

also the basic one-particle requirement,

Pupt Ty = 0, (104)
will be satisfied. Explicitly we have,
WO = Wy = —Supr — Sypy — S:p=, (105)
~W' =W, = —Sypo — iSyp. + iS:Py, (106)
—W? =W, = —Sypo — iS:py + iSups, (107)
—W? =W, = —S.po — iSupy + iSyPa- (108)

Egs. (105) and (108) can be presented in a nonmanifestly covariant form[5] as,
(p-S—sp’) ¥ =0, (109)

(Sp° +iSxp — sp) ¥ =0, (110)

where p the particle momentum and S is the spin vector matrix operator with the properties
given in Eq. (97). Dirac[4] has suggested to use Eq. (109) as the basic one and to substitute
from it sp = —P-S into Eqs. (110). In this way one obtains,

S

<1S(f)-S)+iS><f)—sf)>z/J:O, (111)

which are subsidiary conditions on Eq. (109). But the three Egs. (111) are not independent. If
one multiplies Egs. (111) by S one finds,

1
S <s (B-S) +iSxp — sf)) =0, (112)
S

and only one of the three Egs. (111) is independent. According to our experience the simplest
one is the z-component equation,

<2Sz (D:S) +1 (Smﬁy - Syﬁm) - 3ﬁz> P =0. (113)
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Now we can collect our results and make the quantum transition substitutions,

0
p— —ih 0 — ih— 114
p— —ihiV, P =il (114)
and obtain the final result,
siﬁi +iAS-V |y =0 (115)
cot -
with the subsidiary conditions,
1 0 0 0
—ih | -8, (S- i (Sy— — Sy— | —s—| ¥ =0. 11

i LS (SV)—I—Z(S By Sy6x> saz]w 0 (116)

In the equations we derived above, the wavefunctions are (2s + 1) component spherical tensor
operators of rank s. In order to be consistent with the Cartesian representation, we will have to
work in terms of spherical tensors. A consistent formalism is worked out in Appendix D.

9. The photon equation revisited

We will present the photon equation in the angular momentum representation using the
formalism given by Eqs.(99-D.12) of Appendix D. The wavefunction and the spin matrices
are,

vy
v = Uy , (117)
vy
. 1 (010 y ; 0 -1 0 3 -1 0 0
Sey=—74 101 |,S=—7|1 0 —-1/],8 = 0 0 0], (118)
V2 010 V2 0 1 0 0 01
1 00
®=1o010],
0 01
We have 4 equations for s = 1. The main equation,
- E
(ﬁ-S—I(3)> T =0, (119)
c
and the subsidiary equations,
(S (p - é) +iSxp— pI<3>) v =0 (120)

The z- subsidiary condition is,

(5. (8o + Syby + Sab= ) + iy — iSybe — 51D W

0 0 0 vy
= %\/iﬁx - %Z\/Eﬁy —D _%\/515:1: - %Z\/ﬁﬁy Yo
0 0 0 vy
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0 0 0 Uy

=| pP1 —Do D1 ¥y | =0, (121)
0 0 0 v_4

which yields,
P-1V1 —poVWo +P1¥_1 = —p Ve — ¥y —p. ¥, = —p-¥=0,
so that the subsidiary condition becomes,

p-¥=0, (122)

as before in Eq. (11). The main equation and the subsidiary condition form the photon
equation in the angular momentum representation. In order to get an equation which include
the subsidiary condition implicitly, we proceed in a similar way to the derivation of Eqs.(40-43).
One introduces the wavefunction,

v | (123)

where A is an arbitrary constant, and complements the Sx,gy, S, matrices to 4 x 4 matrices
Bz By, B,which include implicitly the subsidiary condition. The required matrices are,

0 -1 01 0 -1 0 -1
-1 -1 0 10 i |1 0 -1 0
ﬁm_\ﬁ 0 1 01 ’ﬂy_ﬁ 0o 1 0 -1 |’ (124)
1 0 10 1 0 1 0
0 0 —10 1000
0 -1 0 0 0100
B 10 0 o |["PTloo1o0 (125)
0 0 0 1 0001

One can check that these matrices provide a representation of the relativistic quaternions Egs.
(69) - (79), and therefore factorize the d’Alembertian,

(800 + 8,0z + B0y + B.0:) (Bydo — 8,0z — B0y — 5.0:)

(@) o (126)
The (free) photon equation takes the form,

(Eﬁo - cf)-,B) & =0, (127)

where ® is given in Eq.(123). In a similar way to the derivation of the photon Lagrangian
Eq.(45) one can construct the Lagrangian L,

oH /. o7
L= <Eﬁ0 —cf)ﬂ) o —

4 — (B8y - cpp*) @ (128)
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where ®7' is the transpose of ®,

T =(A Uy ¥y ¥4 ), (129)

and ®¥ is the Hermitian conjugate of ® which, according to Appendix B, is,

O = (A —wr, Wy -7 ). (130)

By varying the Lagrangian L with respect to the components of ®*, Eq.(127) is obtained. By
varying L with respect to the components of ®, the equation with the opposite helicity,

<Eﬁ0 - cf)-ﬁ*) * =0, (131)

is obtained.

10. The quantum graviton

We now turn to a derivation of the graviton (spin 2) equation in the angular momentum
representation following the formalism of Eqgs.(99-D.10). The wavefunction W is,

<2m®>=| ¥ |, (132)

and the spin matrices are,

0 -1 0 0
-0 /8o
g _ 3 3
S= 0 /8 o /8 o (133)
0 0 —/3 o0 -1
0 0 0 -1 0
0 -1 0 0
Y
Sy=i| 0 \/g 0 —\/g 0 |, (134)
0 0 50 -1
0 0 0 10
-2 0 000 10000
i 0 -1 00 0 01000
S,= o 0o oo0o0 [, 1®=[00100 (135)
0 0 010 00010
0 0 0 0 2 0000 1
We have 4 equations for s = 2, the main equation,
(f) : S—2E1<5>> U =0, (136)
C
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and the subsidiary conditions,

1=~ - -
<QS (f) : s) +iSxp— 2;31(5)) U =0. (137)
The z- subsidiary condition is,
S (Seba + Syby + S=p-) /2 + iSupy — iSype — 2ﬁz1<5>] U=KU =0, (138)
where,
0 0 0 0 0
%111 —3po V3P 0 0
K= 0 V31 —2p0 V3pr 0 : (139)
0 0 V3p_1 —3po %ﬁl
0 0 0 0 0

The 3 subsidiary conditions are each valid up to a multiplicative constant. We will choose
the multiplicative constants so that the following decomposition is obtained,

N

E E
—4p, IOV = (Wo — 2.7(5)) (Wg + 21(5>> U+ PHPY, (140)
C C

where PH is the Hermitian conjugate of P. The normalized subsidiary condition will fulfil the
equation,

P =0, (141)
where,
0 0 0 0 0
V6p_1 —V3po B 0 0
pP= 0 V3p_1 —2po V3p1 0 : (142)
0 0 P11 —V3po V6p1
0 0 0 0 0

In order to get an equation with the subsidiary conditions included in it implicitly, one has
to introduce an eight-component wavefunction,

(143)

where A1, Ag, A\_1 are arbitrary constants, and to complement the 5x5 Sy, S’y, S, matrices into
8x 8 matrices 7,7y, 7., S0 that the first 3 raws and 3 columns generate the subsidiary conditions.
In addition we require that these matrices factorize the d’Alembertian. The required matrices
are:
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0 % 0 V3 0 —% 0 0
1 1 3 3
NG 0 5 0 3 0 —y2 0
0 % 0 0 0 % 0 -3
1 v3 o0 o 0 -1 0 0 0
TTel 0 8 0 1 0 8 0 0 | (144)
1 1 3 3
-5 0 5 0 —¢; 0 —¢; 0
0 —y/2 0 0 0 —/3 0 ~1
0 0 —v3 0 0 0 -1 0
0 % 0 —vV3 0 —% 0 0
1 1 3 3
~% 0 5 0 /3 0 /3 0
0 -9 0 0 0 - 3
;1 v3 0 0 o0 ~1 0 0
=9 o 50 1 0 —/3 ’ (145)
1 1 3 3
7 0 5 0 J; 0 —y2 o0
0 50 0 0 50 -1
0 0 3 0 0 0 1 0
1 0 0 0 —v3 0 0 0
0 0 0 0 0 -2 0 0
0 0 -1 0 0 0 —v3 0
1 0 0 0 -2 0 0 0 0
_ 1 14
251 -v3 0 0 0 -1 o0 o0 o0 (146)
0 -2 0 0 0 0 0 0
0 0 —v3 0 0 0 1 0
0 0 0 0 0 0 0o 2
10000000
01000000
001000UO00
00010000
=1 00001000 (147)
0000O0T1UO00
000O0O0O0T10
00 0O0O0GO0TO0 1

One can check that the v¢v,,7,,7,, form a representation of the relativistic quaternion, and
therefore factorize the d’Alembertian, i.e.,

(7000 + V202 + 70y +7.02) (Y090 — 7202 — 7,0y — 7.0-) (148)
= (05— 92— 0; — 92) 0.

With this in mind, the (free) quantum graviton equation takes the form,
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(zE% —cp- 7) & =0, (149)

where @ is given in Eq. (143). More details about the properties of the v, Yy, 7> Matrices can
be found in Appendix C. In a similar way to the derivation of the photon Lagrangian, Eq. (128),
one can construct also a Lagrangian for the quantum graviton,

(DH T

P
L=— 5 (QE*yO—cp’y)(I)—T(QE'yO—cp'y)CI) (150)

where ®7 is the transpose of ®, and ®¥ is the Hermitian conjugate of ® which, according to
Appendix B, is,
O = (N N A} Ur, —Ur, W U 0. (151)

By varying the Lagrangian L with respect to the components of ®* Eq. (149) is obtained. By
varying L with respect to the components of ®, the equation with the opposite helicity,

(ZE% - cf)-'y*) =0, (152)

is obtained. The probability current, evaluated in a similar way as in Appendix A, is,
o, (T ®) + gv (\IJHQ\II) = 0. (153)

Here WH W is interpreted as the density of probability which should be normalized to unity,

/ / / dzdydz @& =1, (154)

under the condition that the wavefunction (as a wave packet) vanishes properly at infinity. The
constants in Eq. (143) do not appear in the equations that determine the normalization, namely
Egs. (132),(153) and (154).Using the Lagrangian Eq. (150), the expectation values of the energy

and momenta are,
/ / / dedydzT% = / / / dedydz @7 E® =< F >, (155)
///dxdydzTOk = ///dxdydz\IlH (cpp) O =< cpp, >, k=1,2,3, (156)

in agreement with the definitions of quantum operators. Therefore Eq. (149) with the
normalization condition Eq. (154) is the first quantized equation of the graviton.

11. Covariance of the equations
The quantum equations for massless particles of spin s were derived from the covariant equations
Egs. (100-104) with the result

(sEnO —p- n) ® =0, (157)

where 19, 171,92, M3 are 4s x 4s matrices representing the relativistic quaternions and & is a
4s component wave function with 2s — 1 zeros. Equations similar to Eq. (157) were analyzed

by Lomont!8l! (including the problem of the zeros in the wave functions) and were shown to be
covariant. Moreover, as sEnO —cp- n) factorizes the d’Alembertian, each component of the

wave function satisfies the relativistic wave equation.
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As an example let us take Eq. (39) for s = 1, which was derived by combining two covariant
Maxwell equations Eq. (28), therefore it should be also covariant. The wave function Eq.
(38) has a zero component which results from the sum of two covariant equations, therefore
it will remain zero in any frame. The representation under which the wave function Eq. (38)
transforms is D(1/%1/2) which has basis of spin 0 (one component) and spin 1 (3 components).
As the photon is of spin 1, the spin zero component has to be eliminated. This is the reason
of the zero component in Eq. (38) and it has to stay this way in all frames. The spin one
3 component wave function Eq. (18), Eq. (19) or Eq. (48) (proportional to E + iH) is also

covariant as was shown by Laporte and Uhlenbeck[[g}], the 3 components belong to a second
rank symmetric spinor.

Similar situation appears in handling the “graviton”. The 8 component wave function
transforms under D3/21/2) which has basis of spin 1 (3 components) and spin 2 (5 components).
In order to eliminate the spin one contribution the wave function has to have 3 zeros.

12. Summary and conclusions
We have shown above, how the quantum photon equation and the resulting Maxwell’s equations
can be derived from first principles, similar to those which have been used to derive the Dirac
relativistic electron equation. We have worked out a general method of deriving quantum
equations for massless particles of any spin, based on the factorization of the d’Alembertian. We
have applied this procedure for the spin one (photon) and the spin two (graviton) in two ways,
in order to write free particle wave equations with explicit and implicit subsidiary conditions.
To this aim the factorization was achieved by using ”relativistic quaternions” and their matrix
representations (See Sec.6).

The unexplained substitution of the photon wavefunction ¥ in terms of the electric E and
the magnetic field B,

T=N (E+iB), (158)

leads to Maxwell’s equations. Thus Maxwell’s equations can be considered as the first quantized
one-photon quantum equation. This fact was not realized for a long time, because Maxwell’s
equations do not contain the Planck constant A. The Planck constant # and the normalization
constant A are cancelled out in Egs. (18) and (19).

Maxwell’s equations were derived using different representations of relativistic quaternions,
i.e., in terms of o and  matrices, Egs. (39) and (127), respectively. It was demonstrated that
these equations can be obtained from scalar Lagrangians and each one of them leads to Maxwell’s
equations. In addition a conserved probability current Eq. (49) was derived, which allowed
definition of the probability density and wavefunction normalization. The energy-momentum
tensors were calculated and found to be consistent with the quantum expectation values of the
energy and momentum operators.

The quantum graviton equation was derived first with explicit subsidiary conditions, Egs.
(136) and (139). Rather than using the z subsidiary condition, Eqs. (137), we defined normalized
subsidiary conditions, Eqs. (141, 142), which allowed construction of a single quantum graviton
equation Eq. (149) in terms of 8x8 ~ matrices Eqs. (144-147). The 8x8 ~ matrices form
a representation of the relativistic quaternions and in this way allow the factorization of
the d’Alembertian. Moreover the subsidiary conditions are implicitly included in the new
equation. We have included in the 8-component wavefunction Eq. (143) 3 constant components
A1, Ag, A_1 which allowed us to construct a scalar Lagrangian from which all the equations can
be derived. A conserved probability current Eq. (153) was derived, which allowed to define the
probability density and wavefunction normalization. The energy-momentum tensor was found
to be consistent with the quantum expectation values of the energy and momentum operators.
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In this way we have shown that the quantum graviton equation Eq. (149) satisfies the basic
requirements of a quantum theory.

In summary, we have developed a formalism of quantum equations for massless particles of
arbitrary spin and applied it to spin one (photon) and spin two (graviton). The formalism allowed
us to formulate scalar Lagrangians, derive probability currents and wavefunction normalization
and to understand Maxwell’s equations as first quantized photon equation. The same procedures
were applied to the quantum graviton. It remains to understand the connection between the
quantum graviton and gravitation.

Appendix A. Conserved currents of probability
The photon equation Eq.(10) and Eq.(27), satisfies,

<E1<3> - f>-s> U =0, (A1)

C

(Eﬂ?’) + ps) Tt = 0. (A.2)
C

From Egs.(A.1-A.2) we have,

E E
wi <CI(3) - p.s) v+ wl (CI(3) + 13-S> o

E
== (THw) — ¥ (p-S) ¥ + ¥ (p-S) T*. (A.3)

Let us show that,
v (pS) ¥ — ¥ (p-S) T =p- (THST). (A.4)

Indeed,
W (58) W — 97 (pS) ¥ =

(U (—ipaP2) + VS (ipeVy) + Uy (ipe V) + V. (—ipe V)]
+ [V (ipy V) + W7 (—ipy We) + Vo (—ipy V) + V. (ip, V3)]
+ [ V5 (—ip=Ty) + U5 (ip. Vo) + W, (P2 V) + Wy (—ip U + ip. V)]
= o [ (UEy) — i (U30.)] + py [(UET, — iUET,] + p, [(05 T, — iULT, ]

= po (078, W) +p, (PFS,®) +p, (¥S,¥) = p- (¥/sW).
Finally from Eq.(A.3) and Eq.(A.4) one obtains,

N

%(\IIH\II) —p- (THSW) =0, (A.5)
" 0, (T W) 4 cv- (THS¥) = 0. (A.6)

Eq.(A.6) is the conserved current of probability and WH W is interpreted as the density of
probability which should be normalized to unity.
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Appendix B. Complex conjugation of spherical tensors

In this appendix we relate spherical tensors to Cartesian ones and evaluate the outcome of
complex conjugation of spherical tensors. For spherical vectors V(1) (tensors of rank 1) we have,

v — 5 (Vo +V)
v = |y | = V. ’
V_(ll) % (Va —iVy)

where V,V,,V, are the Cartesian components of the vector V,

V2

Ve
vi=|l v, |=| (v, O
Vy V2 (Vl + Vfl )
‘ V.

s (v v )

(1)

Let us construct the spherical tensor VSL out of the complex conjugates of V,

<V(1)>* = (1) v =1,0,-1.

The Hermitian conjugate of V(Y can be found from Egs.(B.1-B.4),

H
@

)= o | (o) ey )

0
v
We also find that,

Im (V<1>) _ <v<1> ()™ VC(1)> . m=1,0,—1.

m —m

(2)

(B.1)

(B.2)

(B.3)

(B.4)

(B.6)

(B.7)

For tensors of rank 2 Ty,” the procedure is similar. Their relation to a traceless symmetric

Cartesian tensors ( Si; + Sz + S33 = 0) is,

Tg? /3 (511 — S +2i512)
Tl( ) —/6 (813 + iS23)
T = TO(Q) = | 2833 —S11— S22 =-3(5S11+52) |,
Tg V6 (S13 — S93)
7@ \/%(511 — S22 — 2iS12)
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where S;; are the components of the corresponding traceless Cartesian tensor. The inverse
relations are,

1 1
s$u=—= (1 +179) - =17,

V24 6
S
Sio = So1 = _Z-\/lﬂ (T2(2> N Tg)) 7
Sis = S31 = _\/;4 (T - 1),

o .1 2) | (2
523—532—Zm(T1 +T_1),

1
S33 = =511 — Sag = §T0(2)‘

()

Let us construct the spherical tensor Tg out of the complex conjugates of S;;,

C(2 * * - Qi
T2CE2; \/%(Sn — 835 + 2iS7,)
' V6 (i +i53,)
O = | 77% | = 2553 — Sty — 55 : (B.9)
TP V6 (St —iS35)
o V3 (81— 85, - 2i87,)
Taking the complex conjugate of Eq.(B.8) and the definition Eq.(B.9) one finds,
(T,(,%’))* —(—)"T® pm=21,0,-1,-2. (B.10)
and,
1 m C
Re (Tm?)) - (T},f) +(~1) T_,E?) , (B.11)
@) = = (1) _ (_qym €O _ 1
Im (Tm ) 5 (Tm (—1)ym e ) . m=21,0,—1,-2. (B.12)
The Hermitian conjugate of T2 can be found from Egs.(B.8-B.10),
H
7
el
1 * * * * *
2 2 2 2 2
I EICO ORI,
e
-1
7%
= (T%® —10@ 7@ _T0@ TL@ ), (B.13)
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Appendix C. Properties of the v matrices

The matrix P Eq. (142) can be presented as a scalar product of the matrices I, II,, II., with
the vector pg, py, p-,

P=p- 1II, (C.1)
where,
0 0 0 0 0
1
V3 0 -5 0 0
L= 0 8 o —/i o [ (C.2)
1
0 0 S 0 -3
0 0 0 0 0
0 0 0 0 0
1
V3 0 -5 0 0
1
0 0 -5 0 -3
0 0 0 0 0
0 O 0 0 O
0 —v3 0 0 0
m=f0 0 -2 0 0 (C.4)
0 0 0 =30
0 O 0 0 O
The v,,7,,7,,matrices are constructed according to,
—5( 1Ty
1
Yk = 5 ) k= z, Y,z (C5)
&(2
1/ 52

where S’,(f) are spin 2 matrices Egs. (133), 135) and g,gl) are spin 1 matrices Egs. (118).

Appendix D. Spherical tensor formalism

We follow the definition of the scalar product for irreducible spherical tensors of rank J. Let
Ay = (AlJm), and B, = (B|Jm), —J < m < J, be such tensors, the scalar product is
defined(10] according to,

J
(AIB) = (A-B)= > (AlJm)(Jm|B) (D1)
m=—J
J J
= Y CO)™AmBl=m ) = Y (<) AnB o, (D2)
m=—J m=—J
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from which we infer that,
S (=D Im>< J—m| = (1) |J,—m >< Jym| =1V,
is the identity operator in the subspace of given J. Let us denote,
(=)™ |, —m >=|J,—m >,
hence,
> 1 =i >< Jm| =1,

Within this formalism,

< J, =g (WH 4 spt 1)) |0 >

= < T, —ia|(WH A+ sp T )|, —ring >< J,mq [U >=0,

mi

(D.2)

(D.3)

(D.4)

where < J,mi|¥ > is a column vector. The matrix elements of the spin operators satisfy,

SmQ,ml =< J, —m2|5x‘J, —my >=— < J, m2|5x]J,m1 >, i.e. Sy = —S5.

In a similar way we obtain,
S'y =Sy, and S, =-5,.
For practical calculations we introduce,

7

Sy =8y +iS,, S_ =8, —iS,, S, == (Sy +5_), Sy:_7 (Sy —S_),

DN | =

with their matrix elements given by,

(s,m+ 1] S [sm') = /(s = m) (5 + m + D

(s,m—1|S_ ‘sm'> =V(s+m)(s—m~+ 1),

(sm| S, |5m’> =mimm/, —S<m<s.

The momentum vector p in this representation is,

R 1 ~ N
D1 G (Pz + Zpy)
<Imlp>=1| po |= J
b-1 % (ﬁx - Zﬁy)
The inverse relation is,
. 1 1
Pz — el T aP-1
Py ﬁﬁl + ﬁﬁﬂ
pZ ﬁo
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