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Abstract. Quantum wave equations for massless particles and arbitrary spin are derived
by factorizing the d’Alembertian operator. The procedure is extensively applied to the spin
one photon equation which is related to Maxwell’s equations via the proportionality of the
photon wavefunction Ψ to the sum E + iB of the electric and magnetic fields. Thus
Maxwell’s equations can be considered as the first quantized one-photon equation. The photon
wave equation is written in two forms, one with additional explicit subsidiary conditions
and second with the subsidiary conditions implicitly included in the main equation. The
second equation was obtained by factorizing the d’Alembertian with 4×4 matrix representation
of ”relativistic quaternions”. Furthermore, scalar Lagrangian formalism, consistent with
quantization requirements is developed using derived conserved current of probability and
normalization condition for the wavefunction. Lessons learned from the derivation of the photon
equation are used in the derivation of the spin two quantum equation, which we call the quantum
graviton. Quantum wave equation with implicit subsidiary conditions, which factorizes the
d’Alembertian with 8×8 matrix representation of relativistic quaternions, is derived. Scalar
Lagrangian is formulated and conserved probability current and wavefunction normalization
are found, both consistent with the definitions of quantum operators and their expectation
values. We are showing that the derived equations are the first quantized equations of the
photon and the graviton.
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1. Introduction
In the past, relativistic wave equations were successfully obtained by factorizing the Klein-
Gordon operator. The Dirac equation was derived from the relativistic condition on the Energy
E, mass m, and momentum p: (

E2 − c2p2 −m2c4
)
I(4)Ψ = 0, (1)

where I(4) is the 4×4 unit matrix and Ψ is a four component column (bispinor) wave function.
Eq. (1) was factorized into[

EI(4) +

(
mc2I(2) cp·σ
cp·σ −mc2I(2)

)][
EI(4) −

(
mc2I(2) cp · σ
cp·σ −mc2I(2)

)]
Ψ = 0, (2)

where I(2) is the 2 × 2 unit matrix and σ is the Pauli spin one-half vector matrix with the
components

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, I(2) =

(
1 0
0 1

)
. (3)
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For massless particles wave equations can be obtained by factorizing the zero mass wave operator.
The two component (massless) neutrino equation can be derived from the factorization(

E2 − c2p2
)
I(2)ψ =

[
EI(2) − cp·σ

] [
EI(2) + cp·σ

]
ψ = 0, (4)

where ψ is a two component spinor wavefunction.
In the past there were many attempts to describe Maxwell’s equation as the quantum photon

equation[1]. In this work our presentation is more complete and contains new elements. We
extend them to the derivation of the wave equation of the quantum graviton. Our starting point
is the factorization of the d’Alembertian. For spin one the factorization leads to the photon
wave function. We present different factorizations which lead to quantum photon equations. In
all of them, the somewhat mysterious substitution of the wave function Ψ = N (E + iB), leads
to Maxwell’s equations. Above E and B are the electric and magnetic fields respectively, and
N is a normalization constant (normalizable only for functions that fall off sufficiently rapidly).
Thus Maxwell’s equations are the one-photon quantum equations. We construct Lagrangians
for the photon equations and evaluate the energy-momentum tensors and probability currents,
which appear to be consistent with the definitions of quantum operators and their expectation
values. We extend our findings to derivations of other zero mass and arbitrary spin quantum
equations. We worked out the details of the zero mass spin two quantum equation which is
linked to the quantum graviton.

In Sec. 2 and Sec. 4 the photon wave equation is derived by factorizing the wave operator
(the d’Alembertian). From the photon equation Maxwell’s equations are derived in Sec. 3. In
Sec. 2 and Sec. 4 two procedures will be presented: one with subsidiary conditions, in the second
procedure the subsidiary conditions will be integrated into the usual form of Maxwell’s equations.
In Sec. 4 scalar Lagrangian was formulated and conserved probability current was found, both
consistent with the definitions of quantum operators and their expectation values. In Sec. 5
the photon Lagrangian was converted into a scalar Lagrangian for Maxwell’s equations. In Sec.
6 relativistic quaternions are introduced in order to work properly with the space-time metric.
The factorization of the d’Alembertian is achieved with matrix representations of the relativistic
quaternions. In Sections 7-8 a general method for deriving quantum equations for zero mass
particles and arbitrary spins is presented. In Sec. 9 we use this method to derive again Maxwell’s
equations, this time with spherical tensor formulation. In Sec. 10 the quantum graviton (spin 2)
wave equation (with explicit and implicit subsidiary conditions) are considered. The quantum
wave equation with implicit subsidiary conditions, which factorizes the d’Alembertian with 8×8
matrix representation of relativistic quaternions, is derived. Scalar Lagrangian is formulated
and conserved probability current was found, both consistent with the definitions of quantum
operators and their expectation values. In Sec. 11 the covariance of the equations is explained.
Sec. 12 contains our conclusions. In the following symbols with hat over them (like Ê) will
denote quantum operators.

2. The photon equation

We shall derive the photon equation from the following decomposition[2],(
Ê2

c2
− p̂2

)
I(3)=

(
Ê

c
I(3) + p̂·S

)(
Ê

c
I(3) − p̂·S

)
−

 p̂2x p̂xp̂y p̂xp̂z
p̂yp̂x p̂2y p̂yp̂z
p̂z p̂x p̂z p̂y p̂2z

 , (5)

where I(3) is a 3× 3 unit matrix, and S is a spin one vector matrix with components,
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Sx =

 0 0 0
0 0 −i
0 i 0

 , Sy =

 0 0 i
0 0 0
−i 0 0

 , Sz =

 0 −i 0
i 0 0
0 0 0

 , (6)

and with the properties,

[Sx, Sy] = iSz, [Sz, Sx] = iSy, [Sy, Sz] = iSx, S2 = 2I(3). (7)

The decomposition (5) can be verified directly by substitution. The matrix on the right hand
side of Eq. (5) can be rewritten as: p̂2x p̂xp̂y p̂xp̂z

p̂yp̂x p̂2y p̂yp̂z
p̂z p̂x p̂z p̂y p̂2z

 =

 p̂x
p̂y
p̂z

( p̂x p̂y p̂z
)
. (8)

From Eqs.(5-6, and 8) , the photon equation can be obtained,(
Ê2

c2
− p̂2

)
Ψ=

(
Ê

c
I(3) + p̂·S

)(
Ê

c
I(3) − p̂·S

)
Ψ−

 p̂x
p̂y
p̂z

 (p̂·Ψ) = 0, (9)

where Ψ is a 3 component (column) wave function. Eq.(9) will be satisfied if the two equations,(
Ê

c
I(3) − p̂·S

)
Ψ(+) = 0, (10)

p̂·Ψ(+) = 0, (11)

are simultaneously satisfied. A second possibility is to replace Eq. (9) with,(
Ê2

c2
− p̂2

)
Ψ=

(
Ê

c
I(3) − p̂·S

)(
Ê

c
I(3) + p̂·S

)
Ψ−

 p̂x
p̂y
p̂z

 (p̂·Ψ) = 0. (12)

Eq.(12) will be satisfied if the two equations,(
Ê

c
I(3) + p̂·S

)
Ψ(−) = 0, (13)

p̂·Ψ(−) = 0 (14)

are simultaneously satisfied. Above Ψ(+) and Ψ(−) refer to forward and backward helicities.

3. Maxwell’s equations

Maxwell’s equations will be derived from Eqs. (10) and (11). We will show below that if in Eqs.
(10) and (11) the quantum operator substitutions,

Ê =⇒ i~
∂

∂t
, p̂=⇒ −i~∇, (15)

and the wavefunction substitution

Ψ=N (E+iB) , (16)
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are made, as a result the Maxwell equations will be obtained. In Eq. (16) E and B are the

electric and magnetic fields respectively, and N is a constant, with units of
[(√

energy
)−1]

,

which will be determined later on (see Eq. (66)). Indeed, one can easily check from Eqs. (6)
and (15) that the following identity is satisfied,

(p̂·S) Ψ=~∇×Ψ. (17)

From Eqs. (10) , (11) , (15) and 17) we obtain,

i~
∂

∂t
Ψ =c~∇×Ψ =c (p̂·S) Ψ =HΨ, (18)

−i}∇ ·Ψ = 0, (19)

where H can be defined as the Hamiltonian operator. Although the definition of the energy
operator Ê in Eq. (15) is only formal, in practice it can be replaced by the Hamiltonian. The
definition of the Hamiltonian does not depend on the subsidiary conditions Eq. (19).

The constants } and N can be cancelled out in Eqs. (18), (19), and after replacing Ψ by Eq.
(16), the following equations are obtained,

∇× (E+iB) =
i

c

∂ (E+iB)

∂t
, (20)

∇ · (E+iB) =0. (21)

If in Eqs. (20) and (21) the electric and magnetic fields are real, the separation into the real
and imaginary parts will lead to the Maxwell equations (without sources),

∇×E= −1

c

∂B

∂t
, (22)

∇×B=
1

c

∂E

∂t
, (23)

∇ ·E = 0, (24)

∇ ·B = 0. (25)

One should note that the Plank constant } was cancelled out earlier, in Eqs. (18) and (19),
which explains its absence in the Maxwell equations. Here to be noted that from Eq. (15) and
Eq. (6),

Ê∗ = −Ê, p̂∗ = −p̂, S∗ = −S, (26)

and therefore, the complex conjugate of the photon equation Eq. (10) ,[(
Ê

c
I(3) − p̂·S

)
Ψ(+)

]∗
= −

(
Ê

c
I(3) + p̂·S

)(
Ψ(+)

)∗
= 0, (27)

where
(
Ψ(+)

)∗
satisfies Eq. (13) for backward helicity.
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4. The photon equation with an implicit subsidiary condition

Maxwell’s equations without sources are[3],

∂µF
µν = 0, ∂µF̃

µν = 0, ν = 0, 1, 2, 3, (28)

where the antisymmetric tensor Fµν and its dual F̃µν are defined via the electric and magnetic
fields E and B respectively as,

(Fµν) =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 , (29)

F̃µν =
1

2
εµναβFαβ =


0 −Bx −By −Bz
Bx 0 Ez −Ey
By −Ez 0 Ex
Bz Ey −Ex 0

 , (30)

where εµναβ is the totally antisymmetric tensor (ε0123 = 1, εµναβ = −εµναβ). The sum of the

Fµν and iF̃µν is the self-dual antisymmetric tensor, which depends only on the combination
Ψ = N (E+iB) ,

Fµν + iF̃µν =


0 −Ex − iBx −Ey − iBy −Ez − iBz

Ex + iBx 0 iEz −Bz By − iEy
Ey + iBy Bz − iEz 0 iEx −Bx
Ez + iBz iEy −By Bx − iEx 0

 , (31)

=
1

N


0 −Ψx −Ψy −Ψz

Ψx 0 iΨz −iΨy

Ψy −iΨz 0 iΨx

Ψz iΨy −iΨx 0

 =
1

N
(R1Ψx +R2Ψy +R3Ψz) , (32)

with,

R1 =


0 −1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0

 , R2 =


0 0 −1 0
0 0 0 −i
1 0 0 0
0 i 0 0

 ,

R3 =


0 0 0 −1
0 0 i 0
0 −i 0 0
1 0 0 0

 .

The self-dual Maxwell equations take the form,

N∂µ
(
Fµν + iF̃µν

)
= ∂µ (Rµνi Ψi) = Rµνi ∂µΨi = − (αµ)νi ∂µΨi = 0, (33)

where,
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α0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (34)

α1 =


0 −1 0 0
−1 0 0 0
0 0 0 −i
0 0 i 0

 , (35)

α2 =


0 0 −1 0
0 0 0 i
−1 0 0 0
0 −i 0 0

 , (36)

α3 =


0 0 0 −1
0 0 −i 0
0 i 0 0
−1 0 0 0

 (37)

and the Ψi is part of the the four component wave function,

Φ =


0

Ψx

Ψy

Ψz

 (38)

The free field photon equation becomes

i~ (αµ∂
µ) Φ =

(
Ê

c
a0 − p̂·α

)
Φ = 0. (39)

Compare this expression with our previous result of Eqs. (10) and (11). Note that the αi
(i = 1, 2, 3) matrices contain as submatrices the spin one matrices of Eq. (6). The subsidiary
condition p̂·Ψ = 0 is added to the first row and first column of the αi (i = 1, 2, 3) matrices, i.e.,

α1=


0 −1 0 0
−1
0
0

(Sx)

 , (40)

α2=


0 0 −1 0
0
−1
0

(Sy)

 , (41)

α3=


0 0 0 −1
0
0
−1

(Sz)

 . (42)
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Thus the αi (i = 1, 2, 3) matrices can be constructed from the photon equation with spin one
matrices and the subsidiary condition. In Eq. (39) only differential operators act on the wave
function Φ, they eliminate any constant in spacetime coordinates, therefore Φ can be replaced
by

Φ =


λ

Ψx

Ψy

Ψz

 , (43)

where λ is an arbitrary constant, independent of the space-time coordinates. The Hermitian
conjugate of Φ is,

ΦH =
(
λ∗ Ψ∗x Ψ∗y Ψ∗z

)
. (44)

With these new definitions one can define the Lagrangian density L,

L =
ΦH

2

(
Êa0 − cp̂·α

)
Φ− ΦT

2

(
Êa0 − cp̂·α∗

)
Φ∗, (45)

where ΦT is the transpose of Φ,

ΦT =
(
λ Ψx Ψy Ψz

)
. (46)

Using the definitions of Eqs. (40) , (42) and (6) one can reduce Eq. (45) to,

L

c
=

ΨH

2

(
Ê

c
I(3) − p̂·S

)
Ψ+λ∗ (p̂·Ψ)− ΨT

2

(
Ê

c
I(3) + p̂·S

)
Ψ∗−λ (p̂·Ψ∗) , (47)

where,

Ψ =

 Ψx

Ψy

Ψz

 . (48)

One can see in Eq. (47) that the constants λ and λ∗ play the role of Lagrangian multipliers.
By varying the Lagrangian L with respect to λ and λ∗ the subsidiary condition Eq. (11) and
its complex conjugate are recovered. By varying the Lagrangian L with respect to Ψ∗ Eq. (10)
is obtained. By varying L with respect to Ψ, Eq. (27) is recovered. The probability current is
evaluated in Appendix A, with the result,

∂t
(
ΨHΨ

)
+ c∇·

(
ΨHSΨ

)
= 0. (49)

Thus ΨHΨ is interpreted as the density of probability which should be normalized to unity (and
is a constant of motion), ∫ ∫ ∫

dxdydz
(
ΨHΨ

)
= 1, (50)

under the condition that the wavefunction vanishes properly at infinity. This is a realistic
condition if the wavefunction is a wave packet. In this case the wavefunctions form a base for
an Hilbert space. Please note that the constant in Eq. (43) does not appear in the equations
that determine the normalization, namely Eqs. (48),(49) and (50).

Having a Lagrangian, one can compute the corresponding energy-momentum tensor,
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Tµν =
∑
j

∂L

∂
(
∂uj
∂xµ

) ∂uj
∂xν
− Lδµν , (51)

where uj stand for the components of Ψ and Ψ∗. For T 00 we obtain,

T 00

c
=
T00
c

=
ΨH

2
(p̂·S) Ψ+

ΨT

2
(p̂·S) Ψ∗ =

ΨH

2

Ê

c
Ψ−ΨT

2

Ê

c
Ψ∗, (52)

and ∫ ∫ ∫
dxdydzT 00 =

1

2

∫ ∫ ∫
dxdydz

[
ΨHÊΨ−ΨT ÊΨ∗

]
. (53)

Applying the energy operator on Eq. (50) one obtains,

Ê

∫ ∫ ∫
dxdydz

(
ΨHΨ

)
=

∫ ∫ ∫
dxdydz

[
ΨHÊΨ + ΨT ÊΨ∗

]
= 0 (54)

Hence ∫ ∫ ∫
ΨT ÊΨ∗dxdydz = −

∫ ∫ ∫
ΨHÊΨdxdydz. (55)

Substituting Eq. (55) into Eq. (53) we finally obtain,∫ ∫ ∫
dxdydzT 00 =

∫ ∫ ∫
dxdydzΨHÊΨ =< Ê >, (56)

which is the expectation value of the energy operator. For the T 0k components we have,

T 0k

c
= −T0k

c
= ΨH p̂k

2
Ψ−ΨT p̂k

2
Ψ∗

= ΨH p̂k
2

Ψ +

(
ΨH p̂k

2
Ψ

)∗
= Re

(
ΨH p̂kΨ

)
, (57)

and ∫ ∫ ∫
dxdydz

T 0k

c
=

∫ ∫ ∫
dxdydzΨH (p̂k) Ψ =< p̂k >, k = 1, 2, 3, (58)

which are the expectation values of real momenta.
Let us prove that Ê is a self adjoint operator. Indeed, from Eq. (15) Ê∗ = −Ê, and using

Eq. (55) we obtain,∫ ∫ ∫
dxdydz

(
ÊΨ

)H
Ψ = −

∫ ∫ ∫
dxdydz

(
ÊΨH

)
Ψ (59)

= −
∫ ∫ ∫

dxdydzΨT ÊΨ∗ =

∫ ∫ ∫
dxdydzΨHÊΨ. (60)

In a similar way one can prove that the momentum operator p̂k (for real momenta) is self
adjoint, ∫ ∫ ∫

dxdydz (p̂kΨ)H Ψ = −
∫ ∫ ∫

dxdydz
(
p̂kΨ

H
)
Ψ
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= −
∫ ∫ ∫

dxdydzΨT p̂kΨ
∗ =

∫ ∫ ∫
dxdydzΨH p̂kΨ. (61)

Therefore Eq. (39), with the normalization condition Eq. (50), is the first quantized equation
of the photon.

5. Lagrangian for Maxwell’s equations without sources
One can write a Lagrangian for Maxwell’s equations simply by substituting Ψ = N (E + iB)
into the photon Lagrangian Eq. (47). One obtains,

L

cN
= −ET (p̂·S) E−BT (p̂·S) B + iET Ê

c
B− iBT Ê

c
E +

λ∗

2
p̂·Ψ− λ

2
p̂·Ψ∗ (62)

= −~
(

E· (∇×E) + B· (∇×B) +
1

c
E· (∂tB)− 1

c
B· (∂tE)

)

−~ (Im (λ)∇ ·E− Re (λ)∇ ·B) . (63)

The conserved probability current Eq. (49) takes the form,

∂t
(
ΨHΨ

)
+ c∇·

(
ΨHSΨ

)
= N 2

[
∂t
(
E2 + B2

)
+ 2c∇· (E×B)

]
= 0, (64)

which coincides with the Poynting theorem. The normalization coefficient N can be found from
the normalization requirement,∫ ∫ ∫

dxdydzΨHΨ = |N |2
∫ ∫ ∫

dxdydz
(
E2 + B2

)
= 1, (65)

hence,

|N |−2 =

∫ ∫ ∫
dxdydz

(
E2 + B2

)
. (66)

Thus the probability density for one photon is,

ΨHΨ =
E2 + B2∫ ∫ ∫

dxdydz (E2 + B2)
, (67)

and the normalized photon wavefunction is,

Ψ =
E + iB√∫ ∫ ∫
dxdydz (E2 + B2)

. (68)

6. Relativistic quaternions
The αµ matrices of the photon equation Eqs.(34-37) form a representation of what we will call
”relativistic quaternions”. They satisfy the following relations,

(α1)
2 = (α2)

2 = (α3)
2 = (α0)

2 = α0, (69)

α1α2 = iα3 (and cyclic permutation), (70)

αkαl = −αlαk, for k 6= l, k, l = 1, 2, 3. (71)
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The αµ matrices factorize the d’Alembertian, therefore also the relativistic quaternions will
factorize it. The relativistic quaternions are a particular case of complex quaternions. Let Q be
a quaternion, which traditionally is written as,

Q = c01 + c1i + c2j + c3k, (72)

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, kj = −jk, ijk = −1, (73)

where the cµ are real coefficients. Let us rewrite Eq. (72) as,

Q = c0q0 + c1q1 + c2q2 + c3q3, (74)

q0 ≡ 1, q1 ≡ i, q2 ≡ j, q3 ≡ k. (75)

The conjugate quaternion is defined as,

QC = c0q0 − c1q1 − c2q2 − c3q3. (76)

Using Eqs. (72-76) we obtain,

QCQ = q0

(
c20 + c21 + c22 + c23

)
. (77)

The quaternions are not suitable for factorizing the d’Alembertian. The factorization can be
done with complex quaternions, for which the coefficients cµ in Eq. (72) or Eq. (74) can be
complex. The relativistic quaternion with complex coefficients is defined as,

R = c0r0 + c1r1 + c2r2 + c3r3, (78)

r0 = q0 = 1, r1 = iq1, r2 = iq2, r3 = iq3, (79)

and its conjugate as,

RC = c0r0 − c1r1 − c2r2 − c3r3, (80)

The multiplication table of the rµ base (and its representations) is,

× r0 r1 r2 r3
r0 r0 r1 r2 r3
r1 r1 r0 ir3 −ir2
r2 r2 −ir3 r0 ir1
r3 r3 ir2 −ir1 r0

. (81)

and,

RCR = RRC = r0
(
c20 − c21 − c22 − c23

)
, (82)

which allows factorization of the d’Alembertian.
Another important advantage of the relativistic quaternions is that they have a representation

in terms of Pauli matrices Eq. (3),

Rσ = c0σ0 + c1σx + c2σy + c3σz, (83)
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i.e. Rσ is a second rank mixed spinor. In this way we have shown the connection between the
relativistic quaternions and spinors. Now we can rewrite the photon (and Maxwell’s) equations
Eq. (39) as spinor equation,(

Ê

c
σ0 − p̂xσx − p̂yσy − p̂zσz

)
(λσ0 + Ψxσx + Ψyσy + Ψzσz) = 0. (84)

In the section devoted to the quantum photon (spin 1) other representation of the relativistic
quaternion in terms of 4×4 matrices is given in Eqs. (124) and (125). Similarly, in the section
devoted to the quantum graviton (spin 2) other representation of the relativistic quaternion in
terms of 8×8 matrices is given in Eqs. (145) and (147).

The 4×4 matrices Eqs. (34), (37), (124) and (125), which are representations of the relativistic
quaternions, have eigenvalues -1 and 1 (twice). This is consistent with the condition of having
helicity in the forward and backward directions only. The above matrices contain implicitly the
subsidiary conditions, which is consistent with their role in suppressing the helicity components
in other than forward and backward directions. Other properties are:

det (αi) = det (βi) = 1, i = x, y, z, (85)

tr (αi) = tr (βi) = 0. (86)

The Pauli matrices σi have eigenvalues -1 and 1 and,

det (σi) = −1, tr (σi) = 0. (87)

Taking into account that the αi and βi have the same eigenvalues as the σi and the validity of
Eqs. (85-87), we can conclude that αi and βi are equivalent to the matrices

Σ
(4)
i =

(
σi

σi

)
, i = 0, x, y, z, (88)

In a similar way one can show that the 8×8 γi matrices of Eqs. (145) and (147) are equivalent
to the 8×8 matrices

Σ
(8)
i =


σi

σi
σi

σi

 . (89)

The above results can be generalized. Thus the relativistic quaternions have representations in
terms of 4s×4s matrices

Σ
(4s)
i =


σi

σi
. . .

σi

 . (90)

An example of the above representation can be obtained by replacing Eq. (84) with,

(
Ê

c
Σ
(4)
0 + p̂xΣ(4)

x + p̂yΣ
(4)
y + p̂zΣ

(4)
z

)
λ+ Ψz

Ψx + iΨy

Ψx − iΨy

λ−Ψz

 = 0, (91)
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or to use, 
λ+ Ψz

Ψx + iΨy

Ψx − iΨy

λ−Ψz

 =


λ+ Ψ0

−
√

2Ψ1√
2Ψ−1

λ−Ψ0

 . (92)

7. Dirac’s equations for massless particles of any spin
Dirac has derived equations for massless particles with spin s, which in the ordinary vector

notation[4] are,

{sp̂0 + Sxp̂x + Syp̂y + Sz p̂z}ψ = 0, (93)

{sp̂x + Sxp̂0 − iSyp̂z + iSz p̂y}ψ = 0, (94)

{sp̂y + Syp̂0 − iSz p̂x + iSxp̂z}ψ = 0, (95)

{sp̂z + Sz p̂0 − iSxp̂y + iSyp̂x}ψ = 0, (96)

where ψ a (2s+ 1) component wave function and Sn are the spin (2s+ 1) × (2s+ 1) matrices
which satisfy,

[Sx, Sy] = iSz, [Sz, Sx] = iSy, [Sy, Sz] = iSx, S2
x + S2

y + S2
z = s(s+ 1)I(s). (97)

Above the p̂n are the momenta, p̂0 = Ê/c, Ê the energy, and I(s) is a (2s+ 1) × (2s+ 1) unit
matrix. As we shall see below, for the case s = 1, Eq. (93) will lead to the Faraday and
Ampere-Maxwell laws. The Gauss laws can be derived from Eqs. (93-96) in a way which will be

described below. Eqs. (93-96) were analyzed extensively by Bacry[5], who derived them using

Wigner’s condition [6] on the Pauli-Lubanski vector Wµ for massless fields,

Wµ = sp̂µ, µ = x0, x, y, z. (98)

In the next section Eqs. (93-96) will be retrieved by factorizing the d’Alembertian.

8. Wave equations for massless particles of any spin
Using the metric convention g00 = −g11 = −g22 = −g33 = 1, we will employ a special form of

the Pauli-Lubanski vector operator Wµ suggested by H. Bacry[5] for massless particles,

Wµ =
−i
2
εµνρλSρλp̂ν , Sρλ =


0 Sx Sy Sz
−Sx 0 −iSz iSy
−Sy iSz 0 −iSx
−Sz −iSy iSx 0

 ≡ (S,iS), (99)

where Sρλ is the antysymmetric spin tensor, S is the spin vector matrix operator, s is the spin
of the particle with zero mass and the components of Wµ are (2s+ 1)× (2s+ 1) matrices. We

shall use the following relation[7],

WµW
µ = −s (s+ 1) p̂µp̂

µI(s), (100)

where I(s) is the (2s+ 1)× (2s+ 1) unit matrix. One can easily see that,
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(Wµ − sp̂µ) (Wµ + sp̂µ) = −s (2s+ 1) p̂µp̂
µI(s), (101)

or

(Wµ + sp̂µ) (Wµ − sp̂µ) = −s (2s+ 1) p̂µp̂
µI(s). (102)

Eq. (102) or Eq. (101) will be the basis for all our derivations. From Eq. (102) one can see
that if ψ, the wavefunction, which is a (2s+ 1) component spherical tensor operator of rank s
satisfies,

(Wµ + sp̂µ)ψ = 0, µ = 0, 1, 2, 3, (103)

also the basic one-particle requirement,

p̂µp̂
µI(s)ψ = 0, (104)

will be satisfied. Explicitly we have,

W 0 = W0 = −Sxp̂x − Syp̂y − Sz p̂z, (105)

−W 1 = Wx = −Sxp̂0 − iSyp̂z + iSz p̂y, (106)

−W 2 = Wy = −Syp̂0 − iSz p̂x + iSxp̂z, (107)

−W 3 = Wz = −Sz p̂0 − iSxp̂y + iSyp̂x. (108)

Eqs. (105) and (108) can be presented in a nonmanifestly covariant form[5] as,(
p̂·S−sp̂0

)
ψ = 0, (109)

(
Sp̂0 + iS×p̂− sp̂

)
ψ = 0, (110)

where p̂ the particle momentum and S is the spin vector matrix operator with the properties
given in Eq. (97). Dirac[4] has suggested to use Eq. (109) as the basic one and to substitute
from it sp̂0 = −p̂·S into Eqs. (110). In this way one obtains,(

1

s
S (p̂·S) + iS×p̂− sp̂

)
ψ = 0, (111)

which are subsidiary conditions on Eq. (109). But the three Eqs. (111) are not independent. If
one multiplies Eqs. (111) by S one finds,

S·
(

1

s
S (p̂·S) + iS×p̂− sp̂

)
= 0, (112)

and only one of the three Eqs. (111) is independent. According to our experience the simplest
one is the z-component equation,(

1

s
Sz (p̂·S) + i (Sxp̂y − Syp̂x)− sp̂z

)
ψ = 0. (113)
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Now we can collect our results and make the quantum transition substitutions,

p̂→ −i}∇, p̂0 → i}
∂

c∂t
, (114)

and obtain the final result, (
si}

∂

c∂t
+ i}S·∇

)
ψ = 0, (115)

with the subsidiary conditions,

−i}
[

1

s
Sz (S·∇) + i

(
Sx

∂

∂y
− Sy

∂

∂x

)
− s ∂

∂z

]
ψ = 0. (116)

In the equations we derived above, the wavefunctions are (2s+ 1) component spherical tensor
operators of rank s. In order to be consistent with the Cartesian representation, we will have to
work in terms of spherical tensors. A consistent formalism is worked out in Appendix D.

9. The photon equation revisited

We will present the photon equation in the angular momentum representation using the
formalism given by Eqs.(99-D.12) of Appendix D. The wavefunction and the spin matrices
are,

Ψ =

 Ψ1

Ψ0

Ψ−1

 , (117)

S̃x =
−1√

2

 0 1 0
1 0 1
0 1 0

 , S̃y =
i√
2

 0 −1 0
1 0 −1
0 1 0

 , S̃z =

 −1 0 0
0 0 0
0 0 1

 , (118)

I(3) =

 1 0 0
0 1 0
0 0 1

 ,

We have 4 equations for s = 1. The main equation,(
p̂·S̃−Ê

c
I(3)

)
Ψ = 0, (119)

and the subsidiary equations,(
S̃
(
p̂ · S̃

)
+ iS̃× p̂− p̂I(3)

)
Ψ = 0. (120)

The z- subsidiary condition is,[
S̃z

(
S̃xp̂x + S̃yp̂y + S̃z p̂z

)
+ iS̃xp̂y − iS̃yp̂x − p̂zI(3)

]
Ψ

=

 0 0 0
1
2

√
2p̂x − 1

2 i
√

2p̂y −p̂z −1
2

√
2p̂x − 1

2 i
√

2p̂y
0 0 0

 Ψ1

Ψ0

Ψ−1


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=

 0 0 0
p̂−1 −p̂0 p̂1
0 0 0

 Ψ1

Ψ0

Ψ−1

 = 0, (121)

which yields,

p̂−1Ψ1 − p̂0Ψ0 + p̂1Ψ−1 = −p̂xΨx − p̂yΨy − p̂zΨz = −p̂ ·Ψ= 0,

so that the subsidiary condition becomes,

p̂ ·Ψ= 0, (122)

as before in Eq. (11). The main equation and the subsidiary condition form the photon
equation in the angular momentum representation. In order to get an equation which include
the subsidiary condition implicitly, we proceed in a similar way to the derivation of Eqs.(40-43).
One introduces the wavefunction,

Φ =


λ

Ψ1

Ψ0

Ψ−1

 , (123)

where λ is an arbitrary constant, and complements the S̃x, S̃y, S̃z matrices to 4 × 4 matrices
βx, βy, βz,which include implicitly the subsidiary condition. The required matrices are,

βx =
−1√

2


0 −1 0 1
−1 0 1 0
0 1 0 1
1 0 1 0

 ; βy =
i√
2


0 −1 0 −1
1 0 −1 0
0 1 0 −1
1 0 1 0

 ; (124)

βz =


0 0 −1 0
0 −1 0 0
−1 0 0 0
0 0 0 1

 ; β0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (125)

One can check that these matrices provide a representation of the relativistic quaternions Eqs.
(69) - (79), and therefore factorize the d’Alembertian,(

β0∂0 + βx∂x + βy∂y + βz∂z
) (
β0∂0 − βx∂x − βy∂y − βz∂z

)

=
(
∂20 − ∂2x − ∂2y − ∂2z

)
β0. (126)

The (free) photon equation takes the form,(
Êβ0 − cp̂·β

)
Φ = 0, (127)

where Φ is given in Eq.(123). In a similar way to the derivation of the photon Lagrangian
Eq.(45) one can construct the Lagrangian L,

L =
ΦH

2

(
Êβ0 − cp̂·β

)
Φ− ΦT

2

(
Êβ0 − cp̂·β∗

)
Φ∗, (128)
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where ΦT is the transpose of Φ,

ΦT =
(
λ Ψ1 Ψ0 Ψ−1

)
, (129)

and ΦH is the Hermitian conjugate of Φ which, according to Appendix B, is,

ΦH =
(
λ∗ −Ψ∗−1 Ψ∗0 −Ψ∗1

)
. (130)

By varying the Lagrangian L with respect to the components of Φ∗, Eq.(127) is obtained. By
varying L with respect to the components of Φ, the equation with the opposite helicity,(

Êβ0 − cp̂·β∗
)

Φ∗ = 0, (131)

is obtained.

10. The quantum graviton

We now turn to a derivation of the graviton (spin 2) equation in the angular momentum
representation following the formalism of Eqs.(99-D.10). The wavefunction Ψ is,

< 2,m|Ψ >=


Ψ2

Ψ1

Ψ0

Ψ−1
Ψ−2

 , (132)

and the spin matrices are,

S̃x =



0 −1 0 0 0

−1 0 −
√

3
2 0 0

0 −
√

3
2 0 −

√
3
2 0

0 0 −
√

3
2 0 −1

0 0 0 −1 0


, (133)

S̃y = i



0 −1 0 0 0

1 0 −
√

3
2 0 0

0
√

3
2 0 −

√
3
2 0

0 0
√

3
2 0 −1

0 0 0 1 0


, (134)

S̃z =


−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

 , I(5) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (135)

We have 4 equations for s = 2, the main equation,(
p̂ · S̃−2

Ê

c
I(5)

)
Ψ = 0, (136)
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and the subsidiary conditions,(
1

2
S̃
(
p̂ · S̃

)
+ iS̃× p̂− 2p̂I(5)

)
Ψ = 0. (137)

The z- subsidiary condition is,[
Sz (Sxp̂x + Syp̂y + Sz p̂z) /2 + iSxp̂y − iSyp̂x − 2p̂zI

(5)
]

Ψ = KΨ = 0, (138)

where,

K =


0 0 0 0 0

3√
2
p̂−1 −3

2 p̂0
√

3p̂1 0 0

0
√

3p̂−1 −2p̂0
√

3p̂1 0

0 0
√

3p̂−1 −3
2 p̂0

3√
2
p̂1

0 0 0 0 0

 . (139)

The 3 subsidiary conditions are each valid up to a multiplicative constant. We will choose
the multiplicative constants so that the following decomposition is obtained,

−4p̂µp̂
µI(s)Ψ =

(
W0 − 2

Ê

c
I(5)

)(
W0 + 2

Ê

c
I(5)

)
Ψ + PHPΨ, (140)

where PH is the Hermitian conjugate of P . The normalized subsidiary condition will fulfil the
equation,

PΨ = 0, (141)

where,

P =


0 0 0 0 0√

6p̂−1 −
√

3p̂0 p̂1 0 0

0
√

3p̂−1 −2p̂0
√

3p̂1 0

0 0 p̂−1 −
√

3p̂0
√

6p̂1
0 0 0 0 0

 . (142)

In order to get an equation with the subsidiary conditions included in it implicitly, one has
to introduce an eight-component wavefunction,

Φ =



λ1
λ0
λ−1
Ψ2

Ψ1

Ψ0

Ψ−1
Ψ−2


, (143)

where λ1, λ0, λ−1 are arbitrary constants, and to complement the 5×5 S̃x, S̃y, S̃z matrices into
8×8 matrices γx, γy, γz, so that the first 3 raws and 3 columns generate the subsidiary conditions.
In addition we require that these matrices factorize the d’Alembertian. The required matrices
are:
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γx =
1

2



0 1√
2

0
√

3 0 − 1√
2

0 0

1√
2

0 1√
2

0
√

3
2 0 −

√
3
2 0

0 1√
2

0 0 0 1√
2

0 −
√

3√
3 0 0 0 −1 0 0 0

0
√

3
2 0 −1 0 −

√
3
2 0 0

− 1√
2

0 1√
2

0 −
√

3
2 0 −

√
3
2 0

0 −
√

3
2 0 0 0 −

√
3
2 0 −1

0 0 −
√

3 0 0 0 −1 0


, (144)

γy =
i

2



0 1√
2

0 −
√

3 0 − 1√
2

0 0

− 1√
2

0 1√
2

0 −
√

3
2 0 −

√
3
2 0

0 − 1√
2

0 0 0 − 1√
2

0 −
√

3√
3 0 0 0 −1 0 0 0

0
√

3
2 0 1 0 −

√
3
2 0 0

1√
2

0 1√
2

0
√

3
2 0 −

√
3
2 0

0
√

3
2 0 0 0

√
3
2 0 −1

0 0
√

3 0 0 0 1 0


, (145)

γz =
1

2



1 0 0 0 −
√

3 0 0 0
0 0 0 0 0 −2 0 0

0 0 −1 0 0 0 −
√

3 0
0 0 0 −2 0 0 0 0

−
√

3 0 0 0 −1 0 0 0
0 −2 0 0 0 0 0 0

0 0 −
√

3 0 0 0 1 0
0 0 0 0 0 0 0 2


, (146)

γ0 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (147)

One can check that the γ0γx, γy, γz, form a representation of the relativistic quaternion, and
therefore factorize the d’Alembertian, i.e.,

(
γ0∂0 + γx∂x + γy∂y + γz∂z

) (
γ0∂0 − γx∂x − γy∂y − γz∂z

)
(148)

=
(
∂20 − ∂2x − ∂2y − ∂2z

)
γ0.

With this in mind, the (free) quantum graviton equation takes the form,
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(
2Êγ0 − cp̂ · γ

)
Φ = 0, (149)

where Φ is given in Eq. (143). More details about the properties of the γx, γy, γz matrices can
be found in Appendix C. In a similar way to the derivation of the photon Lagrangian, Eq. (128),
one can construct also a Lagrangian for the quantum graviton,

L =
ΦH

2

(
2Êγ0 − cp̂·γ

)
Φ− ΦT

2

(
2Êγ0 − cp̂·γ∗

)
Φ∗, (150)

where ΦT is the transpose of Φ, and ΦH is the Hermitian conjugate of Φ which, according to
Appendix B, is,

ΦH =
(
λ∗−1 λ∗0 λ∗1 Ψ∗−2 −Ψ∗−1 Ψ∗0 −Ψ∗1 Ψ∗2

)
. (151)

By varying the Lagrangian L with respect to the components of Φ∗ Eq. (149) is obtained. By
varying L with respect to the components of Φ, the equation with the opposite helicity,(

2Êγ0 − cp̂·γ∗
)

Φ∗ = 0, (152)

is obtained. The probability current, evaluated in a similar way as in Appendix A, is,

∂t
(
ΨHΨ

)
+
c

2
∇·
(
ΨH S̃Ψ

)
= 0. (153)

Here ΨHΨ is interpreted as the density of probability which should be normalized to unity,∫ ∫ ∫
dxdydzΨHΨ = 1, (154)

under the condition that the wavefunction (as a wave packet) vanishes properly at infinity. The
constants in Eq. (143) do not appear in the equations that determine the normalization, namely
Eqs. (132),(153) and (154).Using the Lagrangian Eq. (150), the expectation values of the energy
and momenta are, ∫ ∫ ∫

dxdydzT 00 =

∫ ∫ ∫
dxdydzΨHÊΨ =< Ê >, (155)∫ ∫ ∫

dxdydzT 0k =

∫ ∫ ∫
dxdydzΨH (cp̂k) Ψ =< cp̂k >, k = 1, 2, 3, (156)

in agreement with the definitions of quantum operators. Therefore Eq. (149) with the
normalization condition Eq. (154) is the first quantized equation of the graviton.

11. Covariance of the equations
The quantum equations for massless particles of spin s were derived from the covariant equations
Eqs. (100-104) with the result (

sÊη0 − cp̂ · η
)

Φ = 0, (157)

where η0, η1, η2, η3 are 4s × 4s matrices representing the relativistic quaternions and Φ is a
4s component wave function with 2s − 1 zeros. Equations similar to Eq. (157) were analyzed

by Lomont[[8]] (including the problem of the zeros in the wave functions) and were shown to be

covariant. Moreover, as
(
sÊη0 − cp̂ · η

)
factorizes the d’Alembertian, each component of the

wave function satisfies the relativistic wave equation.
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As an example let us take Eq. (39) for s = 1, which was derived by combining two covariant
Maxwell equations Eq. (28), therefore it should be also covariant. The wave function Eq.
(38) has a zero component which results from the sum of two covariant equations, therefore
it will remain zero in any frame. The representation under which the wave function Eq. (38)
transforms is D(1/2,1/2) which has basis of spin 0 (one component) and spin 1 (3 components).
As the photon is of spin 1, the spin zero component has to be eliminated. This is the reason
of the zero component in Eq. (38) and it has to stay this way in all frames. The spin one
3 component wave function Eq. (18), Eq. (19) or Eq. (48) (proportional to E + iH) is also

covariant as was shown by Laporte and Uhlenbeck[[9]], the 3 components belong to a second
rank symmetric spinor.

Similar situation appears in handling the “graviton”. The 8 component wave function
transforms under D(3/2,1/2) which has basis of spin 1 (3 components) and spin 2 (5 components).
In order to eliminate the spin one contribution the wave function has to have 3 zeros.

12. Summary and conclusions
We have shown above, how the quantum photon equation and the resulting Maxwell’s equations
can be derived from first principles, similar to those which have been used to derive the Dirac
relativistic electron equation. We have worked out a general method of deriving quantum
equations for massless particles of any spin, based on the factorization of the d’Alembertian. We
have applied this procedure for the spin one (photon) and the spin two (graviton) in two ways,
in order to write free particle wave equations with explicit and implicit subsidiary conditions.
To this aim the factorization was achieved by using ”relativistic quaternions” and their matrix
representations (See Sec.6).

The unexplained substitution of the photon wavefunction Ψ in terms of the electric E and
the magnetic field B,

Ψ=N (E+iB) , (158)

leads to Maxwell’s equations. Thus Maxwell’s equations can be considered as the first quantized
one-photon quantum equation. This fact was not realized for a long time, because Maxwell’s
equations do not contain the Planck constant }. The Planck constant } and the normalization
constant N are cancelled out in Eqs. (18) and (19).

Maxwell’s equations were derived using different representations of relativistic quaternions,
i.e., in terms of α and β matrices, Eqs. (39) and (127), respectively. It was demonstrated that
these equations can be obtained from scalar Lagrangians and each one of them leads to Maxwell’s
equations. In addition a conserved probability current Eq. (49) was derived, which allowed
definition of the probability density and wavefunction normalization. The energy-momentum
tensors were calculated and found to be consistent with the quantum expectation values of the
energy and momentum operators.

The quantum graviton equation was derived first with explicit subsidiary conditions, Eqs.
(136) and (139). Rather than using the z subsidiary condition, Eqs. (137), we defined normalized
subsidiary conditions, Eqs. (141, 142), which allowed construction of a single quantum graviton
equation Eq. (149) in terms of 8×8 γ matrices Eqs. (144-147). The 8×8 γ matrices form
a representation of the relativistic quaternions and in this way allow the factorization of
the d’Alembertian. Moreover the subsidiary conditions are implicitly included in the new
equation. We have included in the 8-component wavefunction Eq. (143) 3 constant components
λ1, λ0, λ−1 which allowed us to construct a scalar Lagrangian from which all the equations can
be derived. A conserved probability current Eq. (153) was derived, which allowed to define the
probability density and wavefunction normalization. The energy-momentum tensor was found
to be consistent with the quantum expectation values of the energy and momentum operators.
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In this way we have shown that the quantum graviton equation Eq. (149) satisfies the basic
requirements of a quantum theory.

In summary, we have developed a formalism of quantum equations for massless particles of
arbitrary spin and applied it to spin one (photon) and spin two (graviton). The formalism allowed
us to formulate scalar Lagrangians, derive probability currents and wavefunction normalization
and to understand Maxwell’s equations as first quantized photon equation. The same procedures
were applied to the quantum graviton. It remains to understand the connection between the
quantum graviton and gravitation.

Appendix A. Conserved currents of probability
The photon equation Eq.(10) and Eq.(27), satisfies,(

Ê

c
I(3) − p̂·S

)
Ψ =0, (A.1)(

Ê

c
I(3) + p̂·S

)
Ψ∗ = 0. (A.2)

From Eqs.(A.1-A.2) we have,

ΨH

(
Ê

c
I(3) − p̂·S

)
Ψ + ΨT

(
Ê

c
I(3) + p̂·S

)
Ψ∗

=
Ê

c

(
ΨHΨ

)
−ΨH (p̂·S) Ψ + ΨT (p̂·S) Ψ∗. (A.3)

Let us show that,

ΨH (p̂·S) Ψ−ΨT (p̂·S) Ψ∗ = p̂·
(
ΨHSΨ

)
. (A.4)

Indeed,

ΨH (p̂·S) Ψ−ΨT (p̂·S) Ψ∗ =[
Ψ∗y (−ip̂xΨz) + Ψ∗z (ip̂xΨy) + Ψy (ip̂xΨ∗z) + Ψz

(
−ip̂xΨ∗y

)]
+ [Ψ∗x (ip̂yΨz) + Ψ∗z (−ip̂yΨx) + Ψx (−ip̂yΨ∗z) + Ψz (ip̂yΨ

∗
x)]

+
[
Ψ∗x (−ip̂zΨy) + Ψ∗y (ip̂zΨx) + Ψx

(
ip̂zΨ

∗
y

)
+ Ψy (−ip̂zΨ∗x + ip̂xΨ∗z)

]
= p̂x

[
i (Ψ∗zΨy)− i

(
Ψ∗yΨz

)]
+ p̂y [iΨ∗xΨz − iΨ∗zΨx] + p̂z

[
iΨ∗yΨx − iΨ∗xΨy

]
= p̂x

(
ΨHSxΨ

)
+ p̂y

(
ΨHSyΨ

)
+ p̂z

(
ΨHSzΨ

)
= p̂·

(
ΨHSΨ

)
.

Finally from Eq.(A.3) and Eq.(A.4) one obtains,

Ê

c

(
ΨHΨ

)
− p̂·

(
ΨHSΨ

)
= 0, (A.5)

or
∂t
(
ΨHΨ

)
+ c∇·

(
ΨHSΨ

)
= 0. (A.6)

Eq.(A.6) is the conserved current of probability and ΨHΨ is interpreted as the density of
probability which should be normalized to unity.
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Appendix B. Complex conjugation of spherical tensors
In this appendix we relate spherical tensors to Cartesian ones and evaluate the outcome of
complex conjugation of spherical tensors. For spherical vectors V(1) (tensors of rank 1) we have,

V(1)
m ≡

 V
(1)
1

V
(1)
0

V
(1)
−1

 =

 −
1√
2

(Vx + iVy)

Vz
1√
2

(Vx − iVy)

 , (B.1)

where Vx, Vy, Vz are the Cartesian components of the vector V,

Vi ≡

 Vx
Vy
Vz

 =


− 1√

2

(
V

(1)
1 − V (1)

−1

)
i√
2

(
V

(1)
1 + V

(1)
−1

)
Vz

 . (B.2)

Let us construct the spherical tensor V
C(1)
m out of the complex conjugates of Vi,

VC(1)
m ≡

 −
1√
2

(
V ∗x + iV ∗y

)
V ∗z

1√
2

(
V ∗x − iV ∗y

)
 . (B.3)

Taking the complex conjugate of Eq.(B.1) and the definition Eq.(B.3) one finds,(
V (1)
m

)∗
= (−1)m V

C(1)
−m , m = 1, 0,−1. (B.4)

The Hermitian conjugate of V(1) can be found from Eqs.(B.1-B.4),

(
V(1)
m

)H
≡

 V
(1)
1

V
(1)
0

V
(1)
−1


H

=
( (

V
(1)
1

)∗ (
V

(1)
0

)∗ (
V

(1)
−1

)∗ )
(B.5)

=
(
−V C(1)
−1 V

C(1)
0 −V C(1)

1

)
.

We also find that,

Re
(
V (1)
m

)
=

1

2

(
V (1)
m + (−1)m V

C(1)
−m

)
, (B.6)

Im
(
V (1)
m

)
=
−i
2

(
V (1)
m − (−1)m V

C(1)
−m

)
, m = 1, 0,−1. (B.7)

For tensors of rank 2 T
(2)
m the procedure is similar. Their relation to a traceless symmetric

Cartesian tensors ( S11 + S22 + S33 = 0) is,

T(2)
m ≡


T
(2)
2

T
(2)
1

T
(2)
0

T
(2)
−1
T
(2)
−2

 =



√
3
2 (S11 − S22 + 2iS12)

−
√

6 (S13 + iS23)
2S33 − S11 − S22 = −3 (S11 + S22)√

6 (S13 − iS23)√
3
2 (S11 − S22 − 2iS12)

 , (B.8)
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where Sij are the components of the corresponding traceless Cartesian tensor. The inverse
relations are,

S11 =
1√
24

(
T
(2)
2 + T

(2)
−2

)
− 1

6
T
(2)
0 ,

S22 = − 1√
24

(
T
(2)
2 + T

(2)
−2

)
− 1

6
T
(2)
0 ,

S12 = S21 = −i 1√
24

(
T
(2)
2 − T (2)

−2

)
,

S13 = S31 = − 1√
24

(
T
(2)
1 − T (2)

−1

)
,

S23 = S32 = i
1√
24

(
T
(2)
1 + T

(2)
−1

)
,

S33 = −S11 − S22 =
1

3
T
(2)
0 .

Let us construct the spherical tensor T
C(2)
m out of the complex conjugates of Sij ,

TC(2)
m ≡


T
C(2)
2

T
C(2)
1

T
C(2)
0

T
C(2)
−1
T
C(2)
−2

 =



√
3
2 (S∗11 − S∗22 + 2iS∗12)

−
√

6 (S∗13 + iS∗23)
2S∗33 − S∗11 − S∗22√

6 (S∗13 − iS∗23)√
3
2 (S∗11 − S∗22 − 2iS∗12)

 , (B.9)

Taking the complex conjugate of Eq.(B.8) and the definition Eq.(B.9) one finds,(
T (2)
m

)∗
= (−1)m T

C(2)
−m , m = 2, 1, 0,−1,−2. (B.10)

and,

Re
(
T (2)
m

)
=

1

2

(
T (2)
m + (−1)m T

C(2)
−m

)
, (B.11)

Im
(
T (2)
m

)
=
−i
2

(
T (2)
m − (−1)m T

C(2)
−m

)
, m = 2, 1, 0,−1,−2. (B.12)

The Hermitian conjugate of T
(2)
m can be found from Eqs.(B.8-B.10),

T
(2)
2

T
(2)
1

T
(2)
0

T
(2)
−1
T
(2)
−2



H

=
( (

T
(2)
2

)∗ (
T
(2)
1

)∗ (
T
(2)
0

)∗ (
T
(2)
−1

)∗ (
T
(2)
−2

)∗ )

=
(
TC−2

(2) −TC−1(2) TC0
(2) −TC1 (2) TC2

(2)
)
. (B.13)
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Appendix C. Properties of the γ matrices

The matrix P Eq. (142) can be presented as a scalar product of the matrices Πx,Πy,Πz, with
the vector p̂x, p̂y, p̂z,

P = p̂ ·Π, (C.1)

where,

Πx =


0 0 0 0 0√
3 0 − 1√

2
0 0

0
√

3
2 0 −

√
3
2 0

0 0 1√
2

0 −
√

3

0 0 0 0 0

 , (C.2)

Πy = i


0 0 0 0 0

−
√

3 0 − 1√
2

0 0

0 −
√

3
2 0 −

√
3
2 0

0 0 − 1√
2

0 −
√

3

0 0 0 0 0

 , (C.3)

Πz =


0 0 0 0 0

0 −
√

3 0 0 0
0 0 −2 0 0

0 0 0 −
√

3 0
0 0 0 0 0

 . (C.4)

The γx, γy, γz,matrices are constructed according to,

γk =
1

2



 −S̃(1)
k

  Πk


 ΠH

k


 S̃

(2)
k




, k = x, y, z (C.5)

where S̃
(2)
k are spin 2 matrices Eqs. (133), 135) and S̃

(1)
k are spin 1 matrices Eqs. (118).

Appendix D. Spherical tensor formalism

We follow the definition of the scalar product for irreducible spherical tensors of rank J. Let
Am ≡ 〈A|Jm), and Bm ≡ 〈B|Jm), −J ≤ m ≤ J, be such tensors, the scalar product is

defined[10] according to,

〈A|B〉 ≡ (A ·B) =
J∑

m=−J
〈A|Jm〉〈Jm|B〉 (D1)

=
J∑

m=−J
(−1)m 〈A|Jm〉〈B| −m,J〉 =

J∑
m=−J

(−1)mAmB−m, (D2)
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from which we infer that,∑
(−1)m |J,m >< J,−m| =

∑
(−1)m |J,−m >< J,m| = I(J), (D.1)

is the identity operator in the subspace of given J. Let us denote,

(−1)m |J,−m >= |J,−m̃ >, (D.2)

hence, ∑
|J,−m̃ >< J,m| = I(J). (D.3)

Within this formalism,

< J,−m̃2|(Wµ + sp̂µI(s))|Ψ > (D.4)

=
∑
m1

< J,−m̃2|(Wµ + sp̂µI(s))|J,−m̃1 >< J,m1|Ψ >= 0,

where < J,m1|Ψ > is a column vector. The matrix elements of the spin operators satisfy,

S̃m2,m1 =< J,−m̃2|Sx|J,−m̃1 >= − < J,m2|Sx|J,m1 >, i.e. S̃x = −Sx. (D.5)

In a similar way we obtain,

S̃y = Sy, and S̃z = −Sz. (D.6)

For practical calculations we introduce,

S+ = Sx + iSy, S− = Sx − iSy, Sx =
1

2
(S+ + S−) , Sy =

−i
2

(S+ − S−) , (D.7)

with their matrix elements given by,

〈s,m+ 1|S+
∣∣sm′〉 =

√
(s−m) (s+m+ 1)δmm′ , (D.8)

〈s,m− 1|S−
∣∣sm′〉 =

√
(s+m) (s−m+ 1)δmm′ , (D.9)

〈sm|Sz
∣∣sm′〉 = mδmm′ , −s ≤ m ≤ s. (D.10)

The momentum vector p̂ in this representation is,

< 1,m|p̂ >=

 p̂1
p̂0
p̂−1

 =

 −
1√
2

(p̂x + ip̂y)

p̂z
1√
2

(p̂x − ip̂y)

 . (D.11)

The inverse relation is,  p̂x
p̂y
p̂z

 =

 −
1√
2
p̂1 + 1√

2
p̂−1

i√
2
p̂1 + i√

2
p̂−1

p̂0

 . (D.12)
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