
Physics Letters B 816 (2021) 136273
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Large-c conformal (n ≤ 6)-point blocks with superlight weights and 

holographic Steiner trees

Mikhail Pavlov

I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky ave. 53, 119991 Moscow, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 February 2021
Received in revised form 27 March 2021
Accepted 31 March 2021
Available online 6 April 2021
Editor: N. Lambert

In this note we study CFT2 Virasoro conformal blocks with heavy operators in the large-c limit in the 
context of AdS3/CFT2 correspondence. We compute the lengths of the holographic Steiner trees dual 
to the 5-point and 6-point conformal blocks using the superlight approximation when one or more 
dimensions are much less than the others. These results are generalized for N-point holographic Steiner 
trees dual to (N + 1)-point conformal blocks with superlight weights.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Holographic Steiner trees on the Poincare disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1. The Steiner problem on the Poincare disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Examples of Steiner trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. N = 4 and N = 5 non-ideal trees in the superlight approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Large-c conformal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1. Large-c conformal blocks and monodromy method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Examples of conformal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1. Introduction

The study of the AdS/CFT correspondence [1,2] provides many new ideas and fruitful observations related to computations in QFT. In 
the case of AdS3/CFT2 correspondence it is essential to consider the large-c limit which corresponds to the weak gravitational coupling in 
the bulk according to Brown-Henneaux formula [3]. One of the most elaborated issues is the correspondence between Virasoro conformal 
blocks with heavy operators in the large-c limit and probe particles propagating in the AdS3 background with conical defects originally 
obtained for lower-point blocks [4–10].1 The large-c n-point conformal blocks were studied in [17,19–21]. However, exact expressions for 
large-c conformal blocks are still unknown.

In this work, we continue to study large-c conformal blocks as holographic Steiner trees on the Poincare disk [22]. We consider 
holographic Steiner trees with N = 4 and N = 5 endpoints in the superlight approximation where one or more weights are much less 
than the others. Their lengths are calculated by making use of the hyperbolic trigonometry relations. On the boundary, such Steiner trees 
are dual to the large-c conformal blocks with superlight operators [8]. Also, we find the lengths of (2M + 1) holographic Steiner trees in 
the superlight approximation corresponding to the (2M + 2)-point large-c conformal blocks with superlight operators.

E-mail address: pavlov@lpi.ru.
1 Other recent related research focuses on p-adic AdS/CFT correspondence [11–13], entanglement entropy [14,15] and OTOC computations [16–18].
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Fig. 1. N = 6 Steiner tree. FT points are indicated by black points, different colors correspond to different weights, the angles are given by formula (2.5). The outer hexagon 
is shown in dashed lines.

The paper is organized as follows. In Section 2 we study the Steiner tree problem on the Poincare disk and calculate the lengths of the 
holographic Steiner trees with N = 4 and N = 5 endpoints in the superlight approximation. Section 3 applies the monodromy method to 
calculate the large-c conformal blocks in the heavy-light approximation extended further by the superlight approximation. Here, we show 
the holographic correspondence relation between large-c conformal blocks and the lengths of the Steiner trees obtained in Section 2.2. 
Concluding Section 4 summarizes our results.

2. Holographic Steiner trees on the Poincare disk

In the context of AdS3/CFT2 correspondence the Poincare disk with an angle deficit arises as a constant-time slice of AdS3 space [6,8]. 
In this section we focus on the Steiner tree problem on the Poincare disk2 for the special class of trees called holographic [22]. We use 
hyperbolic trigonometry to calculate particular holographic Steiner trees with N = 3, 4, 5 endpoints and then generalize these results to 
N-point Steiner trees.

2.1. The Steiner problem on the Poincare disk

The Poincare disk. Let Dα denote the Poincare disk with the angle deficit which is parametrized by α ∈ (0, 1]. In complex coordinates 
(z, ̄z) it is defined as Dα = {|z| < 1, arg(z) ∈ [0, 2πα)} and the boundary is a part of the circle ∂Dα = {|z| = 1, arg(z) ∈ [0, 2πα)}. After 
reparameterization arg(z) → α arg(z) we obtain the Poincare disk model D. In what follows we do all calculations on the Poincare disk 
and then recover parameter α. The length of a geodesic segment between two points z1 and z2 is given by

LD(z1, z2) = log
1 + u

1 − u
, u = |z1 − z2|

|1 − z̄1z2| . (2.1)

The regularized length (see e.g. appendix A in [22] for details) of the geodesic connecting two boundary endpoints zi = exp[iwi] and z j =
exp[iw j] takes the form

Lε
D(wi, w j) = aij − 2 logε , aij ≡ log

[
4 sin2 wij

]
, wij ≡ wi − w j

2
, (2.2)

where the regulator ε → 0+. The regularized length of the geodesic connecting the bulk point z = r exp[iϕ] and the boundary point 
zi = exp[iwi] is given by

Lε
D(wi, r,ϕ) = b − logε , b ≡ log

2
(
r2 − 2r cos(ϕ − wi) + 1

)
1 − r2

. (2.3)

We denote by LD the finite part of the regularized length on the Poincare disk which is obtained by discarding the ε-dependent terms in 
(2.2) and (2.3).

Steiner trees. Given N points (outer vertices) belonging to D or ∂D we consider a connected tree G N with N outer edges attached to 
outer vertices and N −3 inner edges. The outer and inner edges are connected to each other at N −2 trivalent inner vertices. The weighted 
length of G N reads

LN
D =

∑
{outer edges}

εi Li +
∑

{inner edges}
ε̃ j L̃ j , (2.4)

where εi and ε̃ j are weights of outer and inner edges, respectively. The Steiner problem is to find positions of inner vertices for given tree 
and weights such that the weighted length (2.4) is minimal.3 In this case the inner vertices are called Fermat–Torricelli (FT) points and 
G N is called the Steiner tree (see Fig. 1). Also, for further purposes one can consider a hyperbolic N-gon with corners at the outer vertices 
of the Steiner tree (outer polygon). One can show that the angles between edges with weights εa, εb, εc intersecting at FT point are given 

2 The Euclidean Steiner tree problem in context of QFT is considered in [23].
3 For more detailed analysis, see [24–26].
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by

cosγac = −ε2
c − ε2

b + ε2
a

2εaεc
, cosγbc = −ε2

c + ε2
b − ε2

a

2εcεb
, cosγab = ε2

c − ε2
b − ε2

a

2εaεb
, (2.5)

supplemented by the triangle inequalities

εa + εb ≥ εc , εa + εc ≥ εb , εb + εc ≥ εa . (2.6)

The relations (2.5) and (2.6) follow from the requirement that the Steiner tree has a minimal length and fix the positions of the FT points.
In what follows we focus on two types of Steiner trees [22]: 1) N boundary endpoints, 2) N − 1 boundary endpoints and one endpoint 

in the center of D. We will refer to them as ideal and non-ideal holographic Steiner trees,4 respectively.

Superlight approximation. Suppose now that one of the three weights in (2.5) is much less than the other two, which are assumed to be 
equal,

εc � εa = εb : γab = π , γac = γbc = π/2 . (2.7)

We see that two edges of the vertex merge into a single geodesic segment while the third edge stretches in a perpendicular direction. 
Then, the case of three arbitrary weights can be regarded as a perturbation of this configuration in the small parameter εc .

Hyperbolic trigonometry. The lengths of the edges of the Steiner tree in (2.4) are determined by the coordinates of the FT points. For N = 3
Steiner trees the coordinates of the FT point can be calculated explicitly but for case N ≥ 4 the analysis becomes much more complicated. 
However, the lengths of the edges of Steiner trees can be found using hyperbolic trigonometry. For example, N = 3 Steiner trees cut the 
outer triangle into three triangles and the edges of the trees can be considered as the sides of the hyperbolic triangles. Here we provide 
the hyperbolic trigonometry relations that will be useful in calculating the edge lengths of holographic Steiner trees.

Given a hyperbolic triangle with sides A, B, C and interior angles α, β, γ opposite to A, B, C the first and second cosine theorem, and 
the sine theorem read as

cosh A = cosh B cosh C − sinh B sinh C cosα ,

cosh C sinα sinβ = cosγ + cosα cosβ ,

sinh A

sinα
= sinh B

sinβ
= sinh C

sinγ
.

(2.8)

When one of the vertices is on the boundary (β = 0), the first cosine law can be cast into the form

exp[A] = exp[C](cosh B − sinh B cosα) +O(ε) , (2.9)

where A and C denote the regularized lengths of sides connected to the vertex. For two vertices on the boundary (β = γ = 0) the 
regularized lengths A, B, C are related as

A = B + C + 2 log sin
α

2
+O(ε) . (2.10)

2.2. Examples of Steiner trees

In this section, the lengths of N = 3 ideal and non-ideal Steiner trees and N = 4 ideal Steiner tree are found for arbitrary weights. On 
the other hand, N = 4, 5 non-ideal trees are considered in the superlight approximation. We generalize this approach to higher N and 
consider a particular example of the N-point non-ideal Steiner tree.

N = 3 trees. Let us consider N = 3 ideal Steiner tree with three boundary endpoints wi and outer edges of lengths Xi , i = 1, 2, 3 (see (a) 
Fig. 2). Since the Steiner tree splits the outer triangle into three triangles with two vertices on the boundary we apply (2.10) to each of 
them and find

a12 = X1 + X2 + 2 log sin
γ12

2
,

a23 = X3 + X2 + 2 log sin
γ23

2
,

a13 = X3 + X1 + 2 log sin
γ13

2
,

(2.11)

where aij and γi j are given by (2.2) and (2.5). Solving this system of linear equations we find the weighted length defined by (2.4) as

L(3)

D (wi |εi) = (ε1 + ε2 − ε3) log sin w21 + (ε1 + ε3 − ε2) log sin w31 + (ε3 + ε2 − ε1) log sin w32 + C , (2.12)

where

4 These trees are characterized by a certain topology and on the boundary side turn out to be dual to the s-channel classical conformal blocks. Other block/tree topologies 
were studied in [19,20].
3
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w1 w2

w1
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Fig. 2. (a) N = 3 ideal tree, (b) N = 3 non-ideal tree. The outer triangles are depicted in dashed lines, different colors correspond to different weights.

C = 2
(

log sin
γ12

2
+ log sin

γ23

2
+ log sin

γ13

2

)
. (2.13)

A similar analysis in the case of non-ideal N = 3 tree (see (b) Fig. 2) is a bit more complicated. Let Y and Z be the lengths of outer 
edges of weights ε1,2 and X be the length of the radial line of weight ε3. The outer triangle has a vertex in the center of D and two 
boundary vertices w1,2. In this case, the outer triangle is cut by the Steiner tree into two triangles with one boundary vertex and one 
triangle with two boundary vertices. Again, using (2.9) and (2.10) we find

2 = exp[Y ](cosh X − sinh X cosγ13) ,

2 = exp[Z ](cosh X − sinh X cosγ23) ,

a12 = Y + Z + 2 log sin
γ12

2
.

(2.14)

The weighted length of the N = 3 non-ideal tree is found to be5

L(3)

D (w21|εi) = ε3

2

⎡
⎢⎣Arcth

⎡
⎢⎣ cos w21√

1 − β2 sin2 w12

⎤
⎥⎦ + γ log sin w21

⎤
⎥⎦

−ε3β

2
log

(
β cos w21 +

√
1 − β2 sin2 w21

)
+ C̃ ,

(2.15)

where

γ = ε1 + ε2

ε3
, β = ε1 − ε2

ε3
, (2.16)

and C̃ is given by

C̃ = ε3

2

(
log

γ − 1

(γ + 1)(1 − β2)
+ γ log

γ 2 − β2

(γ 2 − 1)(1 − β2)
+ β log

γ + β

(1 − β2)(γ − β)

)
. (2.17)

Ideal N = 4 tree. Here we consider an N = 4 ideal tree with two FT points (see (a) Fig. 3). This Steiner tree has four outer edges with 
weights εi , i = 1, ..., 4 and one inner edge with weight ε̃ connecting two FT points.6 The minimum length condition here is encoded by 
six angles αk (three at each of the FT points) given by (2.5).

Let A, B, C, D denote the regularized lengths of outer edges and R be the length of the inner edge. Consider an auxiliary triangle 
whose vertices are two boundary endpoints w1 and w2 and the FT point (see (b) Fig. 3). Here, K1 and K2 are the regularized lengths 
of the sides attached to the boundary points w1 and w2 and λ and λ′ are the angles between R and K1 and K2, respectively. Using the 
relations (2.9) and (2.10) one finds

exp[K1] = (cosh R − sinh R cosα1)exp[A] , exp[K2] = (cosh R − sinh R cosα2)exp[B] ,

A + B + 2 log sin
α3

2
= a12 .

(2.18)

Since K1,2 together with the edges C, D cut the outer tetragon into three triangles, one has

5 Originally, this length was obtained in the context of the wordline approach [6]. For the analysis in the context of Steiner trees see [22].
6 The particular case of the tree with weights ε1 = ε2 and ε3 = ε4 was studied in [27].
4
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w2
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Fig. 3. (a) N = 4 ideal tree with five independent weights depicted in different colors and outer tetragon in dashed lines. (b) The auxiliary triangle (in black lines) dissecting 
the outer tetragon.

exp[K1 D](1 − cos(α4 − λ)) = a23 , exp[K2C](1 − cos(α5 − λ′)) = a14 ,

exp[A] = exp[K1](cosh R − sinh R cosλ) , exp[B] = exp[K2](cosh R − sinh R cosλ′) ,

C + D + 2 log sin
α3

2
= a34 .

(2.19)

Eliminating K1,2 and λ, λ′ from equations (2.18) and (2.19) we obtain

R = log

⎡
⎢⎣

√
γ1 − 1

γ1 + 1

√
γ2 − 1

γ2 + 1

(
1 + 2U − β1β2 + √

(β1 − β2)2 + 4U (U + 1 − β1β2)
)

√
(1 − β2

1 )(1 − β2
2 )

⎤
⎥⎦ , (2.20)

where

U ≡ exp[1

2
(a23 + a14 − a34 − a12)] = sin w41 sin w32

sin w43 sin w21
,

γ1 = ε1 + ε2

ε̃
, γ2 = ε3 + ε4

ε̃
, β1 = ε1 − ε2

ε̃
, β2 = ε3 − ε4

ε̃
.

(2.21)

The lengths of the outer edges can be found from (2.18) and (2.19) together with

exp[K2 D](1 − cos(α4 + λ′)) = a24 , exp[K1C](1 − cos(α5 + λ)) = a13 . (2.22)

Finally, the weighted length (2.4) takes the form

L(4)

D (wi |εi, ε̃) = ε̃ (γ2 log sin w43 + γ1 log sin w21 + R)−

ε̃(β1 + β2)

2
log

(
2 − β2

1 − β2
2 + 2U (1 + β1β2) − (β1 + β2)

√
(β1 − β2)2 + 4U (U + 1 − β2β1)

sin w42(sin w31)−1(1 + U )

)
+

ε̃(β2 − β1)

2
log

(
2U (β1β2 − 1) − (β1 − β2)

2 + (β2 − β1)
√

(β1 − β2)2 + 4U (U + 1 − β2β1)

(sin w41)−1 sin w32 U

)
,

(2.23)

where we dropped the weight-dependent constants. In the case β1 = β2 = 0, which corresponds to equal dimensions ε1 = ε2 and ε3 = ε4, 
the length is given by

L(4)

D (wi |ε1, ε3, ε̃) = 2ε1 log sin w43 + 2ε3 log sin w21 + 2ε̃ log(
√

1 + U + √
U ) . (2.24)

2.3. N = 4 and N = 5 non-ideal trees in the superlight approximation

The lengths of N ≥ 4 non-ideal Steiner trees with arbitrary weights are unknown. However, the N = 4 non-ideal tree can be considered 
as a perturbation of the N = 3 non-ideal tree with respect to one of outer weights [8]. In this section we calculate N = 4 and N = 5
non-ideal trees in the superlight approximation by perturbing N = 3 ideal tree and disconnected N = 4 trees.
5
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w1

w3

w2

w1

w3

w2

w1

w2

ws
1

ws
2

Fig. 4. Disconnected N = 4 tree (a) and N = 4 non-ideal tree (b). The green line in (b) carries the superlight weight ε̃1, the non-deformed tree is shown in red lines. (c) shows 
an auxiliary bridge tree associated with the N = 4 non-ideal tree.

w1

w2

w3

w1

w2

w3

w1

w2

w3

Fig. 5. (a) N = 3 ideal tree, (b) N = 4 non-ideal tree with the superlight weight ε̃2. The green line represents a perpendicular to the inner edge. (c) An auxiliary Steiner tree 
shown in black lines, the outer triangle shown in dashed lines.

Non-ideal N = 4 tree from disconnected N = 4 tree. Let us consider a N = 4 non-ideal tree as a perturbation of a disconnected N = 4 tree 
(see (a) and (b) Fig. 4). The resulting N = 4 non-ideal tree has one inner edge with the weight ε̃1 � ε1,3 and two pairs of outer edges: 
the first one with weights ε1 = ε2 is a geodesic connecting w1 and w2 according to (2.7), and the second one is a radial line with weight 
ε3 = ε̃2. However, the radial length is a weight-dependent constant so that it can be omitted.

The N = 4 non-ideal tree without the radial line can be obtained by cutting an auxiliary N = 4 ideal tree as shown on (c) of Fig. 4. 
Such an auxiliary tree has four outer edges with weights ε1 and the outer vertices of the tree are located at points (w1, w2, ws

2, w
s
1), 

where ws
2 = w1 + 2w3 − w2 and ws

1 = 2w3 + w1 are identified by reflecting endpoints w1 and w2 relative to the radius connecting the 
center of D and the endpoint w3. Using (2.24) we find that the length of the N = 4 non-ideal tree takes the form

L(4)

D (wi |ε1, ε̃1) = 2ε1 log sin w21 + ε̃1 log(

√
1 + Ũ +

√
Ũ ) , Ũ = sin(w3 − w2) sin w3

sin2 w2 − w1

2

. (2.25)

Non-ideal N = 4 tree from ideal N = 3 tree. Another example of a N = 4 non-ideal tree is obtained by adding an outer edge with superlight 
weight ε̃2 to the N = 3 ideal tree (see (b) Fig. 5). According to (2.18) the outer edge (denoted by K ) is the perpendicular to the third edge 
of the N = 3 ideal tree.

Let us consider an auxiliary triangle with two boundary vertices and a third vertex in the center of D (see (c) Fig. 5). An auxiliary 
Steiner tree of the triangle consists of edges X1, X2 of the N = 3 ideal tree and the edge A stretched to the center of D. To simplify the 
calculations here we assume ε1 = ε2. Using the trigonometric relations (2.8) and (2.9) we find

exp[X1](cosh A − sinh A cos(γ13 + α)) = 2 , exp[X2](cosh A − sinh A cos(γ13 − α)) = 2 ,

sinh K sinα = sinh A ,

(2.26)

where α is the angle between edges X3 and A. Solving equations (2.26) in the variable K we obtain

sinh K =
sin

2w3 − w2 − w1

2

sin
w3 − w1

2
sin

w3 − w2

2

. (2.27)

Then, the length of the non-ideal N = 4 tree takes the form

L(4)

D (wi |ε1, ε3, ε̃2) = L(3)

D (wi |ε1, ε1, ε3) + ε̃2 Arcsinh
sin

2w3 − w2 − w1

2

sin
w3 − w1 sin

w3 − w2
, (2.28)
2 2

6
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w1

w2

w4

w3

Fig. 6. N = 5 non-ideal tree. The unperturbed N = 4 tree is shown in red. The green lines represent the inner edge of the tree and the radial line with superlight weights ε̃1

and ε̃3, respectively.

w1

w2

w3

w4

w5
w6

.
.

.

w2M−1

w2M

Fig. 7. N = 2M + 1 non-ideal Steiner tree in the superlight approximation. Red lines correspond to connecting outer vertices w2i−1 and w2i . The inner edges with weights ε̃ j

and the radial line with the weight εr are shown in green.

where L(3)

D (wi |ε1, ε1, ε3) is given by (2.12).

Non-ideal N = 5 tree from N = 4 disconnected tree. Here, we consider a N = 5 non-ideal tree with two superlight weights ε̃1, ̃ε3, see Fig. 6. 
The unperturbed N = 4 disconnected tree is given by two geodesics with weights ε1, ε3 connecting pairs w1, w2 and w3, w4, respectively. 
In the superlight approximation the length of the tree is given by the sum of the length of the N = 4 ideal tree and the length of the 
radial line. The length of the radial line given by the first term in (2.15) under the condition ε̃3 � ε1,3 is equal to

L(r)
D (w43) = ε̃3 log cot

w43

2
. (2.29)

The length of the bridge line with weight ε̃1 � ε1,3 stretched between the geodesics is given by the last terms in formula (2.24) as

L(b)

D (wi) = ε̃1 log(
√

1 + U + √
U ) U = sin w41 sin w32

sin w43 sin w21
. (2.30)

In this case, the lengths (2.29) and (2.30) are determined only by coordinates wi and do not depend on the structure of the unperturbed 
tree, i.e. weights ε1,3. Finally, the weighted length of the N = 5 non-ideal tree takes the form

L(5)

D (wi |ε1, ε3, ε̃1, ε̃3) = 2ε1 log sin w21 + 2ε3 log sin w43 + ε̃1 log(
√

1 + U + √
U ) + ε̃3 log cot

w43

2
. (2.31)

Multi-point trees. The superlight approximation allows one to calculate the length of a multi-point non-ideal Steiner tree with N = 2M +1, 
M = 3, 4, 5, ... outer vertices. The tree is a perturbation of a disconnected N = 2M Steiner tree consisting of M geodesics with weights εi , 
i = 1, ..., N which connect the points w2i−1, w2i . The inner bridge lines with superlight weights ε̃ j , j = 1, ..., N − 1 are connected to the 
geodesics at FT points and the last outer edge connected to the center of D carries the weight εr (see Fig. 7).

Since the lengths of the radial and bridge lines for the tree are given by (2.29) and (2.30), then the weighted length of the N = 2M + 1
non-ideal tree takes the form

L(2M+1)

D (wi|ε, ε̃) = L(2M)

D (wi |ε) + 2
M−1∑
i=1

ε̃ j log
(√

U2i+1 + 1 + √
U2i+1

)
+ εr log cot

w2M−1,2M

2
, (2.32)

where
7
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z1 , ε1

z2 , ε2 zn−2 , εn−2· · · · · ·

zn, εn

zn−1 , εh

ε̃1 ε̃n−3ε̃n−4· · · · · ·

Fig. 8. The n-point perturbative conformal block with two background operators depicted by bold black lines.

L(2M)

D (wi |ε) = 2
M∑

i=1

εi log sin w2i−1,2i , U2i−1 = sin w2i+1,2i sin w2i+2,2i−1

sin w2i,2i−1 sin w2i+2,2i+1
. (2.33)

Note that this analysis can be generalized to other cases of non-ideal Steiner trees in the superlight approximation. For example, one can 
consider a disconnected M = 3N tree consisting of N ideal Steiner trees with three boundary endpoints as an unperturbed tree. However, 
the example is more complicated from a computational point of view.

3. Large-c conformal blocks

Here, we discuss the n-point large-c conformal blocks with heavy operators in the heavy-light approximation. To this end, we use the 
monodromy method [4,5,9,19,21,28] to demonstrate the holographic correspondence relation (3.7) for particular examples of 5-point and 
6-point blocks with superlight operators. This analysis is generalized to the (2M + 2)-point conformal block.

3.1. Large-c conformal blocks and monodromy method

Consider primary operators Oi(zi, ̄zi), i = 1, ..., n at fixed points (z, ̄z) = {(z1, ̄z1), ..., (zn, ̄zn)}. Let Fn(z|�i, �̃p, c) be the corresponding 
holomorphic conformal block which depends on conformal dimensions �i and exchange dimensions �̃p , p = 1, ..., n − 3 and the central 
charge c [29]. Assuming that in the limit c → ∞ dimensions � and �̃ are proportional to the central charge one can check perturbatively 
up to a sufficiently high order that the conformal block takes the exponential form [30]7

Fn(z|�̃p,�i, c) = exp
[ c

6
fn(z|εi, ε̃p)

]
+ O

(
1

c

)
, εi ≡ 6�i

c
, ε̃p ≡ 6�̃p

c
, (3.1)

where f (z|εi, ̃εp) is a large-c block, εi, ̃εp are classical dimensions which are finite in the large-c limit. In what follows, we work within 
the heavy-light approximation [5–7,21,22] when two external operators with εn = εn−1 = εh are assumed to be heavier than the other 
external and exchange operators8 (see Fig. 8)

εi, ε̃p � εh , i = 1, ...,n − 2 , p = 1, ...,n − 3 . (3.2)

Monodromy method and heavy-light approximation. This method is discussed in details in [5,6] for 4-point conformal blocks and generalized 
to n-point blocks in [4,8,19,21]. Below we summarize the main steps.

Let �(y|z) be an auxiliary n + 1-point conformal block with one degenerate operator V (1,2) inserted in the point (y, ȳ) and n primary 
operators Oi . In the large-c limit the auxiliary block is factored into a product of the form

�(y|z)
∣∣∣
c→∞ = ψ(y|z)exp

[ c

6
fn(z|εi, ε̃p)

]
, (3.3)

where ψ(y|z) is a semiclassical contribution of the operator V (1,2) . On the other hand, the auxiliary block satisfies the BPZ equation which 
is reduced to the Fuchsian-type equation with n singular regular points[

d2

dy2
+ T (y|z)

]
ψ(y|z) = 0 ,

T (y|z) =
n∑

j=1

ε j

(y − z j)
2

+ c j

y − z j
, c j = ∂ fn(z|εi, ε̃p)

∂z j
,

(3.4)

where gradients c j are accessory parameters. In the first order in the heavy-light approximation it leads to the monodromy equations [21]

I(n|k)
+− I(n|k)

−+ +
(

I(n|k)
++

)2 = −4π2ε̃2
k , k = 1, ... ,n − 3 , (3.5)

where

7 Conformal blocks beyond these limits limit are considered in [31,32]. For recent study of the block exponentiation see [33].
8 The case of three or more heavy operators is considered in [27,34].
8



M. Pavlov Physics Letters B 816 (2021) 136273
I(n|k)
+− = 2π i

α

⎡
⎣(

αε1 +
n−2∑
j=2

X j −
k+1∑
j=2

(1 − z j)
α(X j − ε jα)

⎤
⎦ , α = √

1 − 4εh ,

I(n|k)
−+ = I(n|k)

+−
∣∣
α→−α

, I(n|k)
++ = 2π i

α

n−2∑
j=k+2

X j , X j = c j(1 − z j) − ε j . (3.6)

These are n − 3 quadratic equations which can be explicitly solved for lower-point conformal blocks. More specifically, one can find 
accessory parameters for the 4-point block [6] and 5, 6-identity blocks [22], because the system (3.5) reduces to quadratic equations for 
each parameter. We will discuss an example of such a 6-point identity block generalizing the one found in [22].9

Holographic correspondence relation. The duality between large-c conformal blocks and Steiner trees on the Poincare disk is given by the 
holographic correspondence relation

fn(zk|εk, ε̃p) = −L(n−1)

D (αwk|εk, ε̃p) + i
n−2∑
k=1

εk wk , wk = i log(1 − zk) , (3.7)

where L(n−1)

D (αwk|εk, ̃εp) is the weighted length of the Steiner tree corresponding to the n-point block with weights εk, ̃εp that are equal 
to the classical dimensions of the block. Note that the length L(n−1)

D (αwk|εk, ̃εp) depends on the rescaled coordinates αwk due to the fact 
that α is the angle deficit of the Poincare disk (see Section 2.1).

3.2. Examples of conformal blocks

In this section we calculate 5-point and 6-point large-c conformal blocks dual to the lengths of Steiner trees computed in Section 2.2. 
By virtue of (3.7) the relations (2.6) define the fusion rules for such blocks. We use the following variables

P j = (1 − z j)
α , j = 2, ...,n − 3 , (3.8)

and set w1 = 0 in the lengths of Steiner trees due to the condition P1 = 1.

5-Point non-identity blocks with superlight operators. Here we suppose that one of the exchange operator dimensions ε̃1 or ε̃2 is superlight: 
ε̃1,2 � ε1,2,3.10 The first example corresponds to ε̃1 � ε1,2,3. The weighted length of the dual Steiner tree is given by (2.25) and from the 
fusion rules (2.6) we get ε1 = ε2 and ε̃2 = ε3. Then, using the holographic correspondence relation (3.7) we find

f5(z|ε1, ε3, ε̃1) = ε1(−1 + α) log P 1/α
2 − (ε3 + αε̃1) log P 1/α

3

−(2ε1 + ε̃1) log[1 − P2] + ε̃1 log[P2 − P 2
3 −

√
(1 − P 2

3)(P 2
2 − P 2

3)] .

(3.9)

The accessory parameters corresponding to the conformal block (3.9) must satisfy monodromy equations (3.5)(
I(5|1)
++

)2 + I(5|1)
+− I(5|1)

−+ = −4π2ε̃2
1 , I(5|2)

+− I(5|2)
−+ = −4π2ε2

3 . (3.10)

A few comments are in order. Since the block (3.9) is linear in ε̃1 we consider equations (3.10) up to the second order in ε̃1 inclusively. 
After direct substitution of the accessory parameters corresponding to the conformal block (3.9), the first equation is satisfied exactly but 
the left-hand side of the second equation contains the term which is proportional to ε̃2

1 .11 In what follow we will refer to a semi-linear
order (in superlight dimensions) as a situation in which the monodromy equations with superlight dimensions in right-hand sides are 
satisfied exactly and remaining ones are satisfied in the first order in superlight dimensions. In addition, the analysis of equations (3.10)
only in the first order in ε̃1 gives one nontrivial equation for two accessory parameters and the second one becomes trivial.

Next we consider the case ε̃2 � ε1,2,3. The block is dual to the Steiner tree of the length (2.28) so that we assume ε1 = ε2. The fusion 
rules (2.6) require ε̃1 = ε3. According to (3.7) the conformal block has the form

f5(z|ε1, ε3, ε̃2) = ε1(−1 + α)
(

log P 1/α
2 + log P 1/α

3

)
− ε3 (log[1 − P3] + log[P2 − P3])

−(2ε1 − ε3) log[1 − P2] + ε̃2Arcsinh

[
−i(P2 − P 2

3)

(1 − P3)(P2 − P3)

]
,

(3.11)

and, substituting the accessory parameters associated with the conformal block into the monodromy equations (3.5), we find(
I(5|1)
++

)2 + I(5|1)
+− I(5|1)

−+ = −4π2ε2
3 , I(5|2)

+− I(5|2)
−+ = −4π2ε̃2

2 . (3.12)

As in the previous case the monodromy equations are satisfied in the semi-linear order in ε̃2.

9 For a general 5-point block, the accessory parameters are the roots of fourth-degree equations and the explicit form of such a conformal block is unknown. In the case 
n > 6, the solution of the system (3.5) can only be written for special factorized blocks. In further one can consider the choice of special values of the classical dimensions 
and insertion points of operators as a possible way to simplify such a system for multi-point blocks.
10 For the analysis of other approximations used to calculate 5-point large-c block see [35,36].
11 This term will be canceled when considering the higher order corrections to the block (3.9).
9
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6-Point identity block with light operators. Let us consider the 6-point identity block with ε̃3 = 0 and denote ε̃ = ε̃1. According to the fusion 
rules (2.6) it follows that ε̃2 = ε4. The length of the corresponding Steiner tree is given by (2.23) and according to (3.7) the conformal 
block takes the form

f6(z|εi, ε̃) = ε2(α − 1) log P 1/α
2 + ε3(α − 1) log P 1/α

3 + ε4(α − 1) log P 1/α
4

− ε̃

2

(
β1 log P2 − β2 log P3 + β2 log P4 − β+ log

P2 − P4

1 − P3
− β− log

P2 − P3

1 − P4

)

−ε̃

(
γ2 log[P3 − P4] + γ1 log[1 − P2] + log

[
1 + 2U − β2β1 +

√
β2− + 4U 2 + 4 (1 − β1β2) U

])

+ ε̃β+
2

log

(
2 − β2

1 − β2
2 + 2U (1 + β1β2) − β+

√
β2− + 4U (U + 1 − β2β1)

)
1 + U

+ ε̃β−
2

log

(
U

(
2U (β1β2 − 1) − β2− + β−

√
β2− + 4U (U + 1 − β2β1)

))
,

U = (1 − P4)(P2 − P3)

(1 − P2)(P3 − P4)
, β± = β1 ± β2 .

(3.13)

The monodromy equations (3.5) for the conformal block (3.13) take the form(
I(6|1)
++

)2 + I(6|1)
+− I(6|1)

−+ = −4π2ε̃2 ,
(

I(6|2)
++

)2 + I(6|2)
+− I(6|2)

−+ = −4π2ε2
4 ,

I(6|3)
+− I(6|3)

−+ = 0 ,

(3.14)

and one can explicitly show that the corresponding accessory parameters satisfy these equations without using superlight approximation.

6-Point non-identity block with superlight operators. Here we discuss the case of non-identity 6-point block with ε1 = ε2 and ε3 = ε4. The 
fusion rules (2.6) constrain the dimensions as ε̃2 = ε3. There are two superlight exchange operators with dimensions ε̃1,3 � ε1,3. Using 
holographic correspondence relation (3.7) and the length of the corresponding Steiner tree (2.31) we find that the conformal block takes 
the form

f6(z|ε1, ε3, ε̃1, ε̃3) = (−1 + α)
(
ε1 log P 1/α

2 + ε3 log P 1/α
3 + ε3 log P 1/α

4

)
+ ε̃3 log

√
P3 − √

P4√
P3 + √

P4

−2ε1 log[1 − P2] − 2ε3 log[P3 − P4] − 2ε̃1 log

(√
(1 − P3)(P2 − P4)

(1 − P2)(P3 − P4)
+

√
(1 − P4)(P2 − P3)

(1 − P2)(P3 − P4)

)
.

(3.15)

After substituting the corresponding accessory parameters into the monodromy equations(
I(6|1)
++

)2 + I(6|1)
+− I(5|1)

−+ = −4π2ε̃2
1 ,

(
I(6|2)
++

)2 + I(6|2)
+− I(6|2)

−+ = −4π2ε2
3 ,

I(6|3)
+− I(6|3)

−+ = −4π2ε̃2
3 ,

(3.16)

we find that they are satisfied up to the semi-linear order in ε̃1,3.

(2M + 2)-point conformal block with superlight operators. The foregoing analysis can be generalized to (2M + 2)-point conformal block dual 
to the multi-point Steiner tree (2.32) (see Fig. 7 and 9). It has M exchange superlight operators with weights ε̃ j , j = 1, ...., M . The fusion 
rules are

ε2i−1 = ε2i = ε̃2i−1 , i = 1, ..., M . (3.17)

According to (3.7) and (2.32) the block function takes the form

f2M+2(z|εi, ε̃ j) =
2M∑
i=1

f2(z|εi) +
M−1∑
j=1

f̃2(z|ε̃ j) + ε̃n−3 log

√
Pn−3 − √

Pn−2√
Pn−3 + √

Pn−2
, (3.18)

where

f2(z|εi) = (−1 + α)ε2i−1

(
log P 1/α

2i−1 + log P 1/α
2i

)
− 2ε2i−1 log[P2i−1 − P2i] ,

f̃2(z|ε̃ j) = −2ε̃ j log

(√
(P2 j−1 − P2 j+1)(P2 j − P2 j+2)

(P2 j−1 − P2 j)(P2 j+1 − P2 j+2)
+

√
1 + (P2 j−1 − P2 j+1)(P2 j − P2 j+2)

(P2 j−1 − P2 j)(P2 j+1 − P2 j+2)

)
.

(3.19)
10
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ε1

ε1 ε3 εn−3· · · · · · · · · · · · · · ·

εh

εh

ε̃1
ε3 ε̃n−3

εn−3· · · · · · · · · · · · · · ·

Fig. 9. (2M + 2)-point large-c conformal block with M superlight operators depicted by green lines.

It can be explicitly shown that this block satisfies the monodromy equations (3.5) in the semi-linear order in the dimensions of superlight 
operators ε̃ j .

4. Conclusion

In this paper we explicitly computed the weighted lengths of the N = 4, 5, 6 Steiner trees on the Poincare disk and demonstrated 
that they calculate the dual CFT2 large-c conformal blocks. On the boundary side, the superlight approximation corresponds to superlight 
operators. Our results along with previously known are shown in the table below. HL and SL denote the heavy-light and the superlight 
approximations, respectively.

N Steiner tree with N endpoints N + 1-point conformal block Approximation

2 Ideal tree, Ref. [5] Ref. [5] HL

3 Ideal tree, Ref. [22] Ref. [22] HL

3 Non-ideal tree, Refs. [6,8,22] Refs. [6,8,22] HL

4 Simplest ideal tree, Ref. [22] Ref. [22] HL

4 General ideal tree, eq. (2.23) eq. (3.13) HL

4 Non-ideal tree, Refs. [8,10,35] Refs. [8,10,35] HL+SL

4 Non-ideal tree, eq. (2.25) eq. (3.9) HL+SL

4 Non-ideal tree, eq. (2.28) eq. (3.11) HL+SL

5 Non-ideal tree, eq. (2.31) eq. (3.15) HL+SL

N Non-ideal tree, Ref. [19] Ref. [19] HL+SL

N Various disconnected trees, Ref. [22] Ref. [22] HL

N = 2M + 1 Non-ideal tree, eq. (2.32) eq. (3.18) HL+SL

One can analyze N-point Steiner trees as deformations of other unperturbed tree configurations. Also it would be interesting to com-
pute the lengths of Steiner trees in the second and next orders in the superlight approximation.
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