

Article

Summed Series Involving ${}_1F_2$ Hypergeometric Functions

Jack C. Straton

Article

Summed Series Involving ${}_1F_2$ Hypergeometric Functions

Jack C. Straton

Department of Physics, Portland State University, Portland, OR 97207-0751, USA; straton@pdx.edu

Abstract: Summation of infinite series has played a significant role in a broad range of problems in the physical sciences and is of interest in a purely mathematical context. In a prior paper, we found that the Fourier–Legendre series of a Bessel function of the first kind $J_N(kx)$ and modified Bessel functions of the first kind $I_N(kx)$ lead to an infinite set of series involving ${}_1F_2$ hypergeometric functions (extracted therefrom) that could be summed, having values that are inverse powers of the eight primes $1/\left(2^i 3^j 5^k 7^l 11^m 13^n 17^o 19^p\right)$ multiplying powers of the coefficient k , for the first 22 terms in each series. The present paper shows how to generate additional, doubly infinite summed series involving ${}_1F_2$ hypergeometric functions from Chebyshev polynomial expansions of Bessel functions, and trebly infinite sets of summed series involving ${}_1F_2$ hypergeometric functions from Gegenbauer polynomial expansions of Bessel functions. That the parameters in these new cases can be varied at will significantly expands the landscape of applications for which they could provide a solution.

Keywords: Bessel functions; Fourier–Legendre series; Laplace series; Chebyshev polynomial expansions; Gegenbauer polynomial expansions; computational methods; Jacobi expansions; hypergeometric series summation

MSC: 33C10; 42C10; 41A10; 41A50; 33F10; 65D20; 68W30; 33C45

Citation: Straton, J.C. Summed Series Involving ${}_1F_2$ Hypergeometric Functions. *Mathematics* **2024**, *12*, 4016. <https://doi.org/10.3390/math12244016>

Academic Editor: Francesco Aldo Costabile

Received: 16 November 2024

Revised: 18 December 2024

Accepted: 19 December 2024

Published: 21 December 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

The summing of infinite series has played a key part in a broad range of problems in the physical sciences, from self-energy diagrams [1–3] to polarization [4]. See [5] for an excellent review of the summation of divergent asymptotic expansions. In particular, Mera et al. [6,7] and Pedersen et al. [8] use hypergeometric functions to sum series in perturbation theory.

In the present paper, we focus on summing trebly infinite sets of series involving ${}_1F_2$ hypergeometric functions. Historical antecedents of similar work include Chaundy [9], who expressed products of ${}_0F_1$ functions as infinite sums of ${}_2F_1$ functions, products of ${}_1F_1$ functions and products of ${}_2F_0$ functions as infinite sums of ${}_3F_2$ functions, and products of ${}_2F_1$ functions as infinite sums of ${}_4F_3$ functions. Additional combinations are found in Burchnall and Chaundy [10], Henrici [11], Gasper [12], and Jain and Verma [13].

Slater expressed generalized Whittaker functions [14] (${}_pF_p$ functions having $p \geq 1$) as sums of other generalized Whittaker functions, and a few other ${}_pF_q$ functions. Additional forms of the latter are found in [15–21].

Of course, the Appell functions of the first through fourth kinds are defined [22] as infinite sums over ${}_2F_1$ functions, while some Meijer G-functions [23] and certain Kampé de Fériet's functions may be expressed [24] as infinite sums over ${}_pF_q$ functions.

The final stop in this historical sketch is the expression of ${}_pF_q$ functions as finite sums of other ${}_pF_q$ functions [25] that act as recurrence relations [26].

In a prior paper [27], I refined Keating's [28] derivation of the coefficient set of the Fourier–Legendre series for the Bessel function $J_N(kx)$ to be

$$J_N(kx) = \sum_{L=0}^{\infty} a_{LN}(k) P_L(x) \quad (1)$$

where

$$\begin{aligned}
 a_{LN}(k) &= \sqrt{\pi}(2L+1)2^{-L-1}i^{L-N} \sum_{M=0}^{\infty} \frac{\left(\left(-\frac{1}{4}\right)^M k^{L+2M}\right)}{2^{L+2M+1} (M!\Gamma(L+M+\frac{3}{2}))} \\
 &\times (1+(-1)^{L+2M+N}) \left(\frac{L+2M}{\frac{1}{2}(L+2M-N)}\right) \\
 &= \frac{\sqrt{\pi}2^{-2L-2}(2L+1)k^L i^{L-N}}{\Gamma(\frac{1}{2}(2L+3))} (1+(-1)^{L+N}) \left(\frac{L}{\frac{1}{2}N}\right) , \\
 &\times {}_2F_3\left(\frac{L}{2}+\frac{1}{2}, \frac{L}{2}+1; L+\frac{3}{2}, \frac{L}{2}-\frac{N}{2}+1, \frac{L}{2}+\frac{N}{2}+1; -\frac{k^2}{4}\right) \\
 &= \sqrt{\pi}2^{-2L-2}(2L+1)k^L i^{L-N} (1+(-1)^{L+N})\Gamma(L+1) \\
 &\times {}_2\tilde{F}_3\left(\frac{L}{2}+\frac{1}{2}, \frac{L}{2}+1; L+\frac{3}{2}, \frac{L}{2}-\frac{N}{2}+1, \frac{L}{2}+\frac{N}{2}+1; -\frac{k^2}{4}\right)
 \end{aligned} \tag{2}$$

of which the final two steps were new in the prior work [27]. I included the final form using regularized hypergeometric functions [29]

$${}_2F_3(a_1, a_2; b_1, b_2, b_3; z) = \Gamma(b_1)\Gamma(b_2)\Gamma(b_3) {}_2\tilde{F}_3(a_1, a_2; b_1, b_2, b_3; z) \tag{3}$$

and canceled the $\Gamma(b_i)$ with gamma functions in the denominators of the prefactors. This cancellation allows one to avoid infinities that arise whenever $N > 1$ is an integer larger than L , and of the same parity, which would otherwise result in indeterminacies in a computation when one tries to use the conventional form of the hypergeometric function.

After a further review of the literature, I found that Keating's result (the first line above) and my prior work (the second line above) are implicitly subsumed within Jet Wimp's 1962 Jacobi expansion [30] of the Anger–Weber function (his equations (2.10) and (2.11)) since Legendre polynomials are a subset of Jacobi polynomials, and the Bessel function $J_N(kx)$ is a special case of the Anger–Weber function $J_\nu(kx)$ when ν is an integer. Wimp does not mention the calculational difficulties that were resolved through the third form above.

For the special cases of $N = 0, 1$, the order of the hypergeometric functions is reduced since the parameters are $a_2 = b_3$ and $a_1 = b_2$, respectively, giving

$$\begin{aligned}
 a_{L0}(k) &= \frac{\sqrt{\pi}i^L 2^{-2L-2}(2L+1)k^L}{\Gamma(\frac{1}{2}(2L+3))} (1+(-1)^L) \left(\frac{L}{2}\right) \\
 &\times {}_1F_2\left(\frac{L}{2}+\frac{1}{2}; \frac{L}{2}+1, L+\frac{3}{2}; -\frac{k^2}{4}\right) \\
 &= \sqrt{\pi}i^L 2^{-2L-2}(2L+1)k^L \Gamma\left(\frac{L}{2}+1\right) (1+(-1)^L) \left(\frac{L}{2}\right) \\
 &\times {}_1\tilde{F}_2\left(\frac{L}{2}+\frac{1}{2}; \frac{L}{2}+1, L+\frac{3}{2}; -\frac{k^2}{4}\right)
 \end{aligned} \tag{4}$$

and

$$\begin{aligned}
 a_{L1}(k) &= \frac{\sqrt{\pi}i^{L-1} 2^{-2L-2}(2L+1)k^L}{\Gamma(\frac{1}{2}(2L+3))} (1+(-1)^{L+1}) \left(\frac{L-1}{2}\right) \\
 &\times {}_1F_2\left(\frac{L}{2}+1; \frac{L}{2}+\frac{3}{2}, L+\frac{3}{2}; -\frac{k^2}{4}\right) \\
 &= i^{L-1} 2^{-L-2}(2L+1)k^L \Gamma\left(\frac{L}{2}+1\right) (1+(-1)^{L+1}) \\
 &\times {}_1\tilde{F}_2\left(\frac{L}{2}+1; \frac{L}{2}+\frac{3}{2}, L+\frac{3}{2}; -\frac{k^2}{4}\right)
 \end{aligned} \tag{5}$$

In each special case, the first form involving a hypergeometric function has no numerical indeterminacies, but I include the regularized hypergeometric function version for completeness.

The first 22 terms in the Fourier–Legendre series for $J_0(kx)$ (1) are given in Appendix A, with $k = 1$, as is an updated polynomial approximation created by expanding the Legendre polynomials into their constituent terms and gathering like powers. Since each Legendre polynomial in (A1) contributes to the constant term in both (A2) and (A3), their sum is

$$\begin{aligned}
& 0.919730410089760239314421194080620 \times & (1) \\
& -0.157942058625851887573713967144364 \times & \frac{1}{2}(3x^2 - 1)_{x \rightarrow 0} \\
& +0.00343840094460110923299688787207292 \times & \frac{1}{8}(35x^4 - 30x^2 + 3)_{x \rightarrow 0} \\
& -0.0000291972184882872969366059098612566 \times & \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)_{x \rightarrow 0} \\
& + \dots & = 1
\end{aligned} \tag{6}$$

rather than some other number close to 1. This may formalized in a theorem for these summed series:

Theorem 1. For integer h and for any values of k ,

$$\begin{aligned}
& \sum_{L=0}^{\infty} \frac{\sqrt{\pi} i^L 2^{-2L-2} (1 + (-1)^L) (2L+1) \left(\frac{L}{2}\right)}{\Gamma\left(\frac{1}{2}(2L+3)\right)} {}_1F_2\left(\frac{L}{2} + \frac{1}{2}; \frac{L}{2} + 1, L + \frac{3}{2}; -\frac{k^2}{4}\right) k^L \\
& \times \left\{ \frac{i^L 2^{-L/2} (L-1)!! \left(\frac{L}{2} + \frac{1}{2}\right)_h \left(-\frac{L}{2}\right)_h}{h! \frac{L}{2}! \left(\frac{1}{2}\right)_h} \right\} = \frac{(-1)^h 2^{-2h}}{h! \Gamma(h+1)} k^{2h},
\end{aligned} \tag{7}$$

within which $h = 0$ gives (6).

A researcher seeking to sum a series like this is likely to have the various factors expressed in alternative ways. For instance, the expression $(1 + (-1)^L)$ in the first factor of this equation restricts the sum to even values of L , which is sometimes indicated instead as $\sum_{L=0}^{\infty} {}^{(2)} \dots$. This restriction also means that the double factorial in the next line can be alternatively expressed as $(L-1)!! = \frac{2^{L/2} \Gamma(\frac{L}{2} + \frac{1}{2})}{\sqrt{\pi}}$. The binomial $\left(\frac{L}{2}\right)$ can alternatively be expressed as a ratio of gamma functions, $\frac{\Gamma(L+1)}{\Gamma(\frac{L}{2}+1)^2}$, as can the Pochhammer symbols $(a)_h = \frac{\Gamma(a+h)}{\Gamma(a)}$. In Equation (26) of the previous paper [27], the term in curly brackets was given as

$$\left\{ \frac{2^{-L} (2L) \left(\frac{1}{2} - \frac{L}{2}\right)_{\frac{L}{2}-h} \left(-\frac{L}{2}\right)_{\frac{L}{2}-h}}{\left(\frac{L}{2} - h\right)! \left(\frac{1}{2} - L\right)_{\frac{L}{2}-h}} \right\} \tag{8}$$

because it used an alternative conversion of Legendre polynomials into ${}_2F_1$ hypergeometric functions [31] (p. 1044 No. 8911.1) [32] (p. 468 No. 7.3.1.206).

This was proved in the prior work for general h by extracting specific powers of x from the Legendre polynomials, most easily by converting them into ${}_2F_1$ hypergeometric functions [31] (p. 1044 No. 8911.2) [32] (p. 466 No. 7.3.1.182) and thence into a finite sum over ratios of Pochhammer symbols. For $h = 1$, the $P_2(x)$ through $P_{42}(x)$ terms add to give $-1/4$, the coefficient of x^2 term in both (A2) and (A3) if $k = 1$.

Including $k \neq 1$ poses no problem in (7) despite its appearance as the argument of the ${}_1F_2\left(\frac{L}{2} + \frac{1}{2}; \frac{L}{2} + 1, L + \frac{3}{2}; -\frac{k^2}{4}\right)$ function, as well as the existence of a k^L factor in the argument of the sum. It ends up contributing a very clean factor of k^{2h} to the right-hand side of (7). I, thus, summed an infinite set of infinite sums of ${}_1F_2$ hypergeometric functions, though I numerically verified only those with $0 \leq h \leq 42$ (I had to take the upper limit on the number of terms in the series $\geq h + 74$ in order to obtain a percent difference between left- and right-hand sides that was $\leq 10^{-33}$, because the first h terms in the series do not contribute. For $h = 0$, an upper limit on the number of terms in the series $\geq h + 44$ was sufficient).

I likewise summed an infinite set of infinite sums of ${}_1F_2$ hypergeometric functions derived from the Fourier–Legendre series for $J_1(kx)$ (1):

Theorem 2. For integer h and for any values of k ,

$$\begin{aligned} & \sum_{L=1}^{\infty} \frac{\sqrt{\pi} i^{L-1} (1 + (-1)^{L+1}) (2L+1) 2^{-3L-2} \left(\frac{L}{2}\right) \binom{2L}{L} (-1)^{-h+\frac{L}{2}-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}(2L+3)\right) \left(-h + \frac{L}{2} - \frac{1}{2}\right)!} k^L \\ & \quad \times {}_1F_2\left(\frac{L}{2} + 1; \frac{L}{2} + \frac{3}{2}, L + \frac{3}{2}; -\frac{k^2}{4}\right) \left[\frac{\left(\frac{1}{2} - \frac{L}{2}\right)_{\frac{L-1}{2}-h} \left(-\frac{L}{2}\right)_{\frac{L-1}{2}-h}}{\left(\frac{1}{2} - L\right)_{\frac{L-1}{2}-h}} \right] \\ & = \frac{(-1)^h 2^{-2h-1}}{h! \Gamma(h+2)} k^{2h+1}. \end{aligned} \quad (9)$$

The question naturally arises as to whether one can derive such a summed infinite series based on other polynomial expansions. In the following, one may answer in the affirmative for both Chebyshev and Gegenbauer polynomial expansions of Bessel functions.

2. Summed Series Involving ${}_1F_2$ Hypergeometric Functions from Chebyshev Polynomial Expansions of Bessel Functions

We wish to prove the following theorem for the summed series derived from Chebyshev polynomial expansions of the $J_0(kx)$ Bessel function:

Theorem 3. For integer h and for any values of k ,

$$\begin{aligned} & \sum_{L=0}^{\infty} \frac{(-1)^L 2^{-2L} \left(\frac{1}{2} - L\right)_{L-h} (-L)_{L-h}}{L! \Gamma(L+1) (L-h)! (1-2L)_{L-h}} {}_1F_2\left(L + \frac{1}{2}; L+1, 2L+1; -\frac{k^2}{4}\right) k^{2L} \\ & = \frac{(-1)^h 2^{-2h}}{h! \Gamma(h+1)} k^{2h}. \end{aligned} \quad (10)$$

Proof of Theorem 3. Wimp also applied his Jacobi expansion [30] to find Chebyshev polynomial expansions of Bessel functions, since [31] (p. 1060 No. 8.962.3)

$$P_{2n}^{\left(-\frac{1}{2}, -\frac{1}{2}\right)}(z) = \frac{\left(\frac{1}{2}\right)_{2n}}{(2n)!} T_{2n}(z). \quad (11)$$

Unlike the section above, the following expansion (his Equations. (3.6) and (3.7)) applies to non-integer indices as well:

$$J_\nu(kx) = (kx)^\nu \sum_{L=0}^{\infty} C_{L\nu}(k) T_{2L}(x). \quad -1 \leq x \leq 1 \quad (12)$$

Since what one is expanding in Chebyshev polynomials is the function $J_\nu(kx)(kx)^{-\nu}$, the coefficients can only be given by the orthogonality of the Chebyshev polynomials if we include the full function in the defining integral,

$$C_{L\nu}(k) = \frac{(2 - \delta_{L0})}{2} \frac{2}{\pi} \int_{-1}^1 \left(J_\nu(kx)(kx)^{-\nu} \right) \frac{1}{\sqrt{1-x^2}} T_{2L}(x) dx, \quad (13)$$

which Wimp finds to be

$$C_{L\nu}(k) = \frac{(-1)^L k^{2L} 2^{-4L-\nu} (2 - \delta_{L0})}{L! \Gamma(L+\nu+1)} {}_1F_2\left(L + \frac{1}{2}; L+\nu+1, 2L+1; -\frac{k^2}{4}\right). \quad (14)$$

The first 22 terms in the Chebyshev polynomial expansion of $J_0(kx)$ (12), with $k = 1$ and 8, are given in Appendix A.2.

Since the constant term of every Chebyshev polynomial has magnitude one, and alternating sign, the sum of these times the coefficients— a_{2r} in Clenshaw's convention in which sums having a single prime indicate that the term with suffix zero is to be halved—is simply

$$\sum' (-1)^L a_{2r} = 1. \quad (15)$$

Clenshaw has, thus, given the first of the summation rules we wish to derive.

The general- h proof follows that of the prior paper. In order to sum the infinite set of infinite sums of ${}_1F_2$ hypergeometric functions derived from the Fourier–Legendre series expansion of Bessel functions (7) and (9), we extracted specific powers of x by converting Legendre polynomials into ${}_2F_1$ hypergeometric functions [32] (p. 468 No. 7.3.1.206). The equivalent conversion for Chebyshev polynomials is

$$T_{2L}(x) = 2^{2L-1} x^{2L} {}_2F_1\left(\frac{1}{2} - L, -L; 1 - 2L; \frac{1}{x^2}\right) [1 + \delta_{L0}]. \quad (16)$$

Note that in the above, I have augmented [32] (p. 468 No. 7.3.1.207) and [33] with the factor $[1 + \delta_{L0}]$ that allows the conversion to be extended downward from their restriction: $L > 0$. When multiplied by the equivalent factor in Wimp's Chebyshev expansion (14), one obtains $(2 - \delta_{L0})[1 + \delta_{L0}] \equiv 2$ for all L . This is a strong argument for using the “sums should simply be sums” convention over Clenshaw's for the present analytical work.

The final step in the proof is to convert each ${}_2F_1$ hypergeometric function into a finite sum over ratios of Pochhammer symbols times inverse powers of x . (Let us use m for the summation index). One finds that, of the finite sum in (16) for a given L , the only term that contributes a power x^{2h} is

$$2^{2L-1} x^{2L} \sum_{m=L-h}^{L-h} \frac{x^{-2m} \left(\frac{1}{2} - L\right)_m (-L)_m}{m!(1-2L)_m} [1 + \delta_{L0}], \quad (17)$$

which may be more compactly written as

$$2^{2L-1} x^{2L-2(L-h)} \frac{\left(\frac{1}{2} - L\right)_{L-h} (-L)_{L-h}}{(L-h)!(1-2L)_{L-h}} [1 + \delta_{L0}]. \quad (18)$$

Noting that multiplying the factor $(2 - \delta_{L0})$ from (14) by the above $[1 + \delta_{L0}]$ gives another factor of 2 for all L , which completes the proof of (10). \square

To numerically verify the lowest 43 summed series for $k \rightarrow 8$, one has to take the upper limit on the number of terms in the series $\geq h + 18$ in order to obtain a percent difference between left- and right-hand sides that is $\leq 10^{-33}$, because the first h terms in the series do not contribute. For $k \rightarrow 5$, this reduces somewhat to $\geq h + 15$. For $h = 0$, one needs 24 terms and 20 terms, respectively.

The first 22 terms in the Chebyshev polynomial expansion of $J_1(kx)$ (12), with $k = 1$ and 8, are given in Appendix A.2. The consequent summed series associated with the power x^{2h+1} in the Chebyshev expansion (12) is given in the following theorem:

Theorem 4. For integer h and for any values of k ,

$$\begin{aligned} & \sum_{L=1}^{\infty} \frac{(-1)^L 2^{-2L-1} \left(\frac{1}{2} - L\right)_{L-h} (-L)_{L-h}}{L! \Gamma(L+2) (L-h)! (1-2L)_{L-h}} k^{2L+1} {}_1F_2\left(L + \frac{1}{2}; L+2, 2L+1; -\frac{k^2}{4}\right) \\ &= \frac{(-1)^h 2^{-2h-1}}{h! \Gamma(h+2)} k^{2h+1}. \end{aligned} \quad (19)$$

Proof of Theorem 4. What changes in the proof as we move from $\nu = 0 \rightarrow 1$ is contained in the three factors

$$\frac{2^{-4L-\nu}}{\Gamma(L+\nu+1)} {}_1F_2\left(L+\frac{1}{2}; L+\nu+1, 2L+1; -\frac{k^2}{4}\right) \Big|_{\nu \rightarrow 1} \quad (20)$$

in the coefficient $C_{L\nu}(k)$ of the defining series (12), while nothing does in the Chebyshev polynomial that multiplies it. Thus, nothing changes in the transformations (16)–(18) except that we now associate (17) and (18) with a power x^{2h} multiplied by $(kx)^\nu$. Indeed, we have not only proved Theorem 4, but also its extension to a series associated with the power $x^{2h+\nu}$ in the general- ν case: \square

Theorem 5. For integer h and for any values of k and ν ,

$$\begin{aligned} \sum_{L=1}^{\infty} \frac{(-1)^L 2^{-2L-\nu} \left(\frac{1}{2} - L\right)_{L-h} (-L)_{L-h}}{L!(L-h)!(1-2L)_{L-h} \Gamma(L+\nu+1)} k^{2L+\nu} {}_1F_2\left(L+\frac{1}{2}; 2L+1, L+\nu+1; -\frac{k^2}{4}\right) \\ = \frac{(-1)^h 2^{-2h-1}}{h! \Gamma(h+2)} k^{2h+1}. \end{aligned} \quad (21)$$

To verify the lowest 43 summed series for $k \rightarrow 8$, one generally has to take the upper limit on the number of terms in the series $\geq h+20$ in order to obtain a percent difference between left- and right-hand sides that is $\leq 10^{-33}$, because the first h terms in the series do not contribute. For $k \rightarrow 5$, this reduces somewhat to $\geq h+16$. For $h=0$, one needs 23 terms and 20 terms, respectively.

For large indices, such as $\nu = 17$, for instance, with $h = 5, k = 8$, the two sides of (21) sides diverge after 45 digits: $-1.335586213327781269795862205505422996145960793 \times 10^{-7}$. For small values of ν , however, neither side gives an accuracy beyond the 13th post-decimal place in the computer algebra program Mathematica 7 despite a command to do so, giving -68.7857424612620 for $h = 5, k = 8$, and $\nu = 0.17$. Complex values of ν likewise gave only 14 decimal places in Mathematica, such as $1.15092097688009 + 1.83846320788943i$ for $h = 5, k = 8$, and $\nu = 17 + 30.3i$. Mathematica 13 likewise gives this more limited, but still excellent, accuracy.

In the prior paper [27], we noted that because the modified Bessel functions of the first kind $I_N(kx)$ are related to the ordinary Bessel functions by the relation [31] (p. 961 No. 8.406.3),

$$I_n(z) = i^{-n} J_n(iz), \quad (22)$$

one merely needs to multiply by i^{-n} and set $k = i$ in (2) to obtain the $I_0(x)$ Fourier-Legendre series. Furthermore, one sees that I_0 expressed in powers of x is simply the J_0 version with all of the negative signs reversed. This is not true of (1) because the arguments of the Legendre polynomials do not undergo $x \rightarrow ix$ since they derive from the definition of the Fourier-Legendre series (1). The k -dependence is entirely within the coefficients $a_{LN}(k)$.

Therefore, the I_0 Legendre series expansion leads to no new set of summed series since these would simply be (7) with $k = ik$. This is also the case for a Chebyshev expansion. Clenshaw [34] confirms this for $h = 0$ on pp. 34–35.

3. Summed Series Involving ${}_1F_2$ Hypergeometric Functions from Gegenbauer Polynomial Expansions of Bessel Functions

We wish to prove the following theorem for summed series derived from Gegenbauer polynomial expansions of the $J_0(kx)$ Bessel function:

Theorem 6. For integer h and for any values of k and λ ,

$$\sum_{L=0}^{\infty} \frac{(-2)^{2L}(-L)_h \left(\lambda + \frac{1}{2}\right)_{2L} (L+\lambda)_h}{\sqrt{\pi} h! \left(\frac{1}{2}\right)_h \left(L + \frac{1}{2}\right)_{\frac{1}{2}} (L+\lambda) (2\lambda)_{2L} (2L+2\lambda)_{2L} B(\lambda, L+1)} k^{2L} {}_1F_2 \left(L + \frac{1}{2}; L+1, 2L+\lambda+1; -\frac{k^2}{4} \right) \\ = \frac{(-1)^h 2^{-2h} k^{2h}}{h! \Gamma(h+1)} . \quad (23)$$

Proof of Theorem 6. Although he does not explicitly do so, one may use Wimp's Jacobi expansion [30] to find Gegenbauer polynomial expansions of Bessel functions, since [31] (p. 1061 No. 8.962.4)

$$P_{2n}^{(\lambda - \frac{1}{2}, \lambda - \frac{1}{2})}(z) = \frac{\left(\lambda + \frac{1}{2}\right)_{2n} C_{2n}^{\lambda}(z)}{(2\lambda)_{2n}} . \quad (24)$$

Like those in the second section, the following expansion applies to both integer and non-integer indices:

$$J_{\nu}(kx) = (kx)^{\nu} \sum_{L=0}^{\infty} b_{L\nu}(k) C_{2L}^{\lambda}(x), \quad -1 \leq x \leq 1 \quad (25)$$

where the coefficients are given by the orthogonality of the Chebyshev polynomials,

$$b_{L\nu}(k) = \frac{2^{2\lambda-1} (2L)! (2L+\lambda) \Gamma(\lambda)^2}{\pi \Gamma(2L+2\lambda)} \int_{-1}^1 \left(J_{\nu}(kx) (kx)^{-\nu} \right) \left(1-x^2 \right)^{-\frac{1}{2}+\lambda} C_{2L}^{\lambda}(x) dx , \quad (26)$$

as

$$b_{L\nu}(k) = \frac{(-1)^L a^{2L} 2^{2L-\nu} \left(\lambda + \frac{1}{2}\right)_{2L}}{\sqrt{\pi} (2\lambda)_{2L} (2L+2\lambda)_{2L} \left(L + \frac{1}{2}\right)_{\nu+\frac{1}{2}}} {}_1F_2 \left(L + \frac{1}{2}; 2L+\lambda+1, L+\nu+1; -\frac{a^2}{4} \right) . \quad (27)$$

The first 22 terms in the Gegenbauer polynomial expansion of $J_0(kx)$ (25) are given in Appendix A.3, with $k = 1$ and arbitrarily taking $\lambda = \frac{1}{4}$. One could, of course, test the technique using any value of λ , but since $T_{\nu}(z) = \frac{1}{2} \nu C_{\nu}^0(z)$ and $P_{\nu}(z) = C_{\nu}^{\frac{1}{2}}(z)$, the choice $\lambda = \frac{1}{4}$ seemed like the next most interesting value.

To extract the powers, we use the conversion for Gegenbauer polynomials that is equivalent to (16), which is [31] (GR5 p. 1051 No. 8.932.2)

$$C_{2L}^{\lambda}(x) = \frac{(-1)^L}{(L+\lambda) B(\lambda, L+1)} {}_2F_1 \left(-L, L+\lambda; \frac{1}{2}; x^2 \right) . \quad (28)$$

The final step in the proof is to convert each ${}_2F_1$ hypergeometric function into a finite sum over ratios of Pochhammer symbols times powers of x . (Let us use m for the summation index). We find that, of the finite sum in (28) for a given L , the only term that contributes a power x^{2h} is

$$\frac{(-1)^L}{(L+\lambda) B(\lambda, L+1)} \sum_{m=h}^L \frac{x^{2m} (-L)_m (L+\lambda)_m}{m! \left(\frac{1}{2}\right)_m} , \quad (29)$$

which may be more compactly written as

$$\frac{(-1)^L}{(L+\lambda) B(\lambda, L+1)} \frac{x^{2h} (-L)_h (L+\lambda)_h}{h! \left(\frac{1}{2}\right)_h} , \quad (30)$$

which completes the proof of (23). \square

To verify the lowest 43 summed series for $k \rightarrow 8$, one generally has to take the upper limit on the number of terms in the series $\geq h + 20$ in order to obtain a percent difference between left- and right-hand sides that is $\leq 10^{-33}$, because the first h terms in the series do not contribute. For $k \rightarrow 5$, this reduces somewhat to $\geq h + 16$. For $h = 0$, one needs 23 terms and 20 terms, respectively.

This theorem has an identical right-hand side as for the Legendre (7) and Chebyshev (10) versions, and it holds for every value of λ . That is, we have just summed an infinite set of infinite sets of infinite series involving ${}_1F_2$ hypergeometric functions. To see how this plays out in practice, consider two extreme values, $\lambda = 2^{\pm 20}$. For $h = 1$ (associated with x^2) and $\lambda = 2^{-20}$, the first eight terms sum as

$$\begin{aligned}
& 0 \\
& -0.234776027081720679198861338236978 \\
& -0.0149856953860168611951004494702182 \\
& -0.000236617512932378657466894715711978 \\
& -1.653516950294282858347187372908306 \times 10^{-6} . \\
& -6.486087810927263603219843086719685 \times 10^{-9} \\
& -1.62636408715893081661576487444697 \times 10^{-11} \\
& -2.82986734360173162046207736379133 \times 10^{-14} - \dots \\
& = -0.24999999999999996
\end{aligned} \tag{31}$$

For $\lambda = 2^{20}$, the second term is almost sufficient by itself:

The final theorem we wish to prove is for series associated with the power $x^{2h+\nu}$ derived from the Gegenbauer polynomial expansion of $J_\nu(kx)$, the general ν case, which may be written as follows:

Theorem 7. For integer h and for any values of k , λ , and v ,

$$\begin{aligned}
& \sum_{L=0}^{\infty} \frac{(-1)^{2L} 2^{2L-\nu} (-L)_h \left(\lambda + \frac{1}{2}\right)_{2L} (L+\lambda)_h}{\sqrt{\pi} h! \left(\frac{1}{2}\right)_h (L+\lambda) (2\lambda)_{2L} (2L+2\lambda)_{2L} \left(L + \frac{1}{2}\right)_{\nu+\frac{1}{2}} B(\lambda, L+1)} k^{2L+\nu} \\
& \times {}_1F_2\left(L + \frac{1}{2}; 2L + \lambda + 1, L + \nu + 1; -\frac{k^2}{4}\right) \\
& = \frac{(-1)^h 2^{-2h-\nu} k^{2h+\nu}}{h! \Gamma(h+\nu+1)}.
\end{aligned} \tag{33}$$

Proof of Theorem 7. One may build the general case by examining what must be done to sum the series associated with the power x^{2h+1} derived from the Gegenbauer polynomial expansion of $J_1(kx)$, whose 22-term Gegenbauer polynomial expansion we display in Appendix A.3, with $k = 1$ and again arbitrarily taking $\lambda = \frac{1}{4}$.

What changes in the proof as we move from $\nu = 0 \rightarrow 1$ is contained in the three factors

$$\frac{2^{2L-\nu}}{\left(L + \frac{1}{2}\right)_{\nu+\frac{1}{2}}} {}_1F_2\left(L + \frac{1}{2}; 2L + \lambda + 1, L + \nu + 1; -\frac{k^2}{4}\right) \Big|_{\nu \rightarrow 1} \quad (34)$$

in the coefficient $b_{L\nu}(k)$ of the defining series (25), while nothing does in the Gegenbauer polynomial that multiplies it. Thus, nothing changes in the transformations (28)–(30) except that we now associate (29) and (30) with a power x^{2h} multiplied by $(kx)^\nu$. This completes the proof of the summed series associated with the power $x^{2h+\nu}$ in the general- ν case. \square

To verify the lowest 43 summed series for $k \rightarrow 8$, one generally has to take the upper limit on the number of terms in the series $\geq h + 20$ in order to obtain a percent difference between left- and right-hand sides that is $\leq 10^{-33}$, because the first h terms in the series do not contribute. For $k \rightarrow 5$, this reduces somewhat to $\geq h + 16$. For $h = 0$, one needs 23 terms and 20 terms, respectively.

The summed series derived from the Gegenbauer polynomial expansions of $J_\nu(x)$ may be found for any value of ν , not just integer values, given that it is derived from Wimp's Jacobi expansion [30]. Thus, we have just summed an infinite set of infinite sets of doubly infinite series involving ${}_1F_2$ hypergeometric functions since the expression holds for every value of λ and holds for every value of ν .

Since $T_\nu(z) = \frac{1}{2}\nu C_\nu^0(z)$, by setting $\lambda = 0$ in (33) one may obtain a modest variation on the form given in (21), since we here use a ${}_2F_1$ hypergeometric function whose argument is x^2 in (33) and used a ${}_2F_1$ hypergeometric function whose argument is x^{-2} to prove (21).

An extension of the Legendre sets (7) and (9) to larger integer values of ν is not obvious, but one can obtain such a form directly from (33) since $P_\nu(z) = C_\nu^{\frac{1}{2}}(z)$, which applies even for non-integer values of ν .

4. Conclusions

I have shown how to sum doubly infinite sets of infinite series involving ${}_1F_2$ hypergeometric functions, derived from Chebyshev polynomial expansions of Bessel functions of the first kind $J_\nu(kx)$, and the trebly infinite sets of infinite series involving ${}_1F_2$ hypergeometric functions from the Gegenbauer polynomial expansions of $J_\nu(kx)$. The utility of any one of these summed series for future researchers is, of course, not guaranteed, but given the relative paucity of infinite series whose values are known (e.g., 24 pages in Gradshteyn and Ryzhik compared to their 900 pages of known integrals), one hopes that adding such multiply-infinite sets of infinite series of ${}_1F_2$ functions whose values are now known will be of use to some.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

In this Appendix, we display series expansions that could be used to provide computer programs with 33-digit accuracy, matching the IEEE extended precision in some compilers. These high-accuracy results are given here because they could needlessly distract the reader from the main point of the paper: summing infinite series. They are here to satisfy the interest of readers wishing to verify some detail in the main body of the paper and also because of their intrinsic interest.

Because of this focus, we will note only a few papers of interest in the vast field of computational research. Khajah and Ortiz [35] provide tables of somewhat higher accuracy (10^{-89}) for some elementary functions like the exponential function. Vujević and Modrić [36] give highly accurate algorithms for the computation of complex-valued Bessel functions, as do Georgieva and Hofreither [37]. Yuste and Abad [38] give an iterative method to obtain approximations to Bessel functions $J_p(x)$ while Karatsuba [39] focuses on both increased accuracy and large arguments. Kislenkov [40] gives grid-oriented algorithms for computing modified Bessel functions, as does Takekawa [41] for parallel processing. For other sorts of functions, one finds a thorough review of recent work in approximation theory in Rao, Ayman-Mursaleen, and Aslan [42].

Appendix A.1. Legendre Series for $J_0(kx)$

The first 22 terms in the Fourier–Legendre series for $J_0(kx)$ (1), with $k = 1$, were given in a prior paper [27]

$$\begin{aligned}
 J_0(x) \cong & 0.9197304100897602393144211940806200P_0(x) \\
 & - 0.1579420586258518875737139671443637P_2(x) \\
 & + 0.003438400944601109232996887872072915P_4(x) \\
 & - 0.00002919721848828729693660590986125663P_6(x) \\
 & + 1.317356952447780977655616563143280 \times 10^{-7} P_8(x) \\
 & - 3.684500844208203027173771096058866 \times 10^{-10} P_{10}(x) \\
 & + 7.011830032993845928208803328211457 \times 10^{-13} P_{12}(x) \\
 & - 9.665964369858912263671995372753346 \times 10^{-16} P_{14}(x) \\
 & + 1.009636276824546446525342170924936 \times 10^{-18} P_{16}(x) \\
 & - 8.266656955927637858991972584174117 \times 10^{-22} P_{18}(x) \\
 & + 5.448244867762758725890082837839430 \times 10^{-25} P_{20}(x) \\
 & - 2.952527182137354751675774606663400 \times 10^{-28} P_{22}(x) \\
 & + 1.338856158858534469080898670096200 \times 10^{-31} P_{24}(x) \\
 & - 5.154913186088512926193234837816582 \times 10^{-35} P_{26}(x) \\
 & + 1.706231577038503450138564028467634 \times 10^{-38} P_{28}(x) \\
 & - 4.906893556427796857473097979568289 \times 10^{-42} P_{30}(x) \\
 & + 1.237489200717479383020539576221293 \times 10^{-45} P_{32}(x) \\
 & - 2.759056237537871868604555688548364 \times 10^{-49} P_{34}(x) \\
 & + 5.477382207172712629199714648396409 \times 10^{-53} P_{36}(x) \\
 & - 9.744200345578852550688946057050674 \times 10^{-57} P_{38}(x) \\
 & + 1.562280711659504489828025148995770 \times 10^{-60} P_{40}(x) \\
 & - 2.269056283827394368836057470594599 \times 10^{-64} P_{42}(x). \tag{A1}
 \end{aligned}$$

In Equation (15) of the prior work [27], the last line above mistakenly had the wrong power, $-2.269056283827394368836057470594599 \times 10^{-60} P_{42}(x)$, though the Fortran code in the appendix was correct: $-2.269056283827394368836057470594599 \text{ e-64 P(42, x)}$. Since

all calculations in the prior work used the correct power—with the error only appearing after the editor requested a formatting change in the equation—this correction had no impact on any results in that paper.

That paper also expanded the Legendre polynomials into their constituent terms and gathered like powers in (A1) to give an updated polynomial approximation,

The latter form is simply an inverse prime version of the first 22 terms of the well-known series representation [31] (p. 970 No. 8.440)

$$J_\nu(x) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{2k+\nu}}{k! \Gamma(k+\nu+1)}. \quad (\text{A3})$$

(There is a fascinating analog to this result arising from studies of the Bessel difference equation [43]).

Appendix A.2. Chebyshev Series for $J_0(kx)$ and $J_1(kx)$

The first 22 terms in the Chebyshev polynomial expansions of $J_0(kx)$ (12), with $k = 1$, are

$$\begin{aligned} J_0(x) \cong & 0.8807255791026085285666716907449594 T_0(x) \\ & - 0.1173880111683243194062454639255572 T_2(x) \\ & + 0.001873212503719194837870878203929524 T_4(x) \\ & - 0.00001314542297029262107182993119503582 T_6(x) \\ & + 5.167242966801437053171032359951600 \times 10^{-8} T_8(x) \\ & - 1.297218234854703963093975334759865 \times 10^{-10} T_{10}(x) \\ & + 2.258840234607001930320227243984034 \times 10^{-13} T_{12}(x) \\ & - 2.887621352768057764464058481597816 \times 10^{-16} T_{14}(x) \\ & + 2.824848256251380023621233536051211 \times 10^{-19} T_{16}(x) \\ & - 2.182699061309088513825726048290021 \times 10^{-22} T_{18}(x) \\ & + 1.365739183823366078819378297317202 \times 10^{-25} T_{20}(x) \\ & - 7.061125701699520180896051661348297 \times 10^{-29} T_{22}(x) \\ & + 3.067182727248138051740188483703613 \times 10^{-32} T_{24}(x) \\ & - 1.135092833714987500414966932525964 \times 10^{-35} T_{26}(x) \\ & + 3.621712251769489873248477093327996 \times 10^{-39} T_{28}(x) \\ & - 1.006555480914216913705134524512148 \times 10^{-42} T_{30}(x) \\ & + 2.458540787185135207907001122952213 \times 10^{-46} T_{32}(x) \\ & - 5.319086471776732419423425079488687 \times 10^{-50} T_{34}(x) \\ & + 1.026433533066142649943339190916424 \times 10^{-53} T_{36}(x) \\ & - 1.777651158721406916387585852076982 \times 10^{-57} T_{38}(x) \\ & + 2.778406892667094352173643013096289 \times 10^{-61} T_{40}(x) \\ & - 3.938717221679009654181092747102998 \times 10^{-65} T_{42}(x) \quad -1 \leq x \leq 1. \end{aligned} \quad (\text{A4})$$

At the upper limit of applicability, $x = 1$, this gives 33-digit accuracy, $J_0(1) = 0.765197686557966551449717526102663$ (Even at $x = 8$, this gives a result accurate to 14 digits, $J_0(8) = 0.171650807137554$).

If one follows Clenshaw's [34] (p. 30) lead and instead takes $k = 8$, one obtains

$$\begin{aligned}
J_0(x) \cong & \mathbf{0.3154559429497802391275502330199159/2} T_0(x/8) \\
& - \mathbf{0.008723442352852221290793322469895429} T_2(x/8) \\
& + \mathbf{0.2651786132033368098670778235911043} T_4(x/8) \\
& - \mathbf{0.3700949938726497790334193036836753} T_6(x/8) \\
& + \mathbf{0.1580671023320972612777155496720475} T_8(x/8) \\
& - \mathbf{0.03489376941140888516317328987958171} T_{10}(x/8) \\
& + \mathbf{0.004819180069467604496778380314312767} T_{12}(x/8) \\
& - \mathbf{0.0004606261662062750475036418408154116} T_{14}(x/8) \\
& + \mathbf{0.00003246032882100508080625560924485746} T_{16}(x/8) \\
& - \mathbf{1.761946907762150749459765966407618} \times 10^{-6} T_{18}(x/8) \\
& + \mathbf{7.608163592418781866973786230699492} \times 10^{-8} T_{20}(x/8) \\
& - \mathbf{2.679253530557672898335371633826306} \times 10^{-9} T_{22}(x/8) \\
& + \mathbf{7.848696314479464416529503905101749} \times 10^{-11} T_{24}(x/8) \\
& - \mathbf{1.943834686737016570620688424557753} \times 10^{-12} T_{26}(x/8) \\
& + \mathbf{4.125320595634373932612618412757652} \times 10^{-14} T_{28}(x/8) \\
& - \mathbf{7.588508125447546337619860819329317} \times 10^{-16} T_{30}(x/8) \\
& + \mathbf{1.221851587396141103441861977201729} \times 10^{-17} T_{32}(x/8) \\
& - \mathbf{1.736789607700236768293730242713393} \times 10^{-19} T_{34}(x/8) \\
& + \mathbf{2.195793203319560353679493897698779} \times 10^{-21} T_{36}(x/8) \\
& - \mathbf{2.485566419364292266537947175258836} \times 10^{-23} T_{38}(x/8) \\
& + \mathbf{2.534024606818972691102585769070259} \times 10^{-25} T_{40}(x/8) \\
& - \mathbf{2.339085627055744706712023052059754} \times 10^{-28} T_{42}(x/8) \quad -8 \leq x \leq 8. \tag{A5}
\end{aligned}$$

where the bolding indicates the digits he displays (I have included an extra digit in some places to allow for appropriate rounding to his displayed digit). Clenshaw follows the usual convention (noted on his p. 7) for sums having a single prime to indicate that the term with suffix zero is to be halved (and if the prime is doubled, the highest term in the sum is also halved), as indicated in the first line of (A5). This factor-of-two difference arises from the normalization of the orthogonality relation for Chebyshev polynomials [31] (p. 1057 No. 8.949.9):

$$\int_{-1}^1 T_n(x) T_m(x) \frac{1}{\sqrt{1-x^2}} = \begin{cases} 0 & m \neq n \\ \pi/2 & m = n \neq 0 \\ \pi & m = n = 0 \end{cases}. \tag{A6}$$

Since I am comparing Chebyshev expansions with both Legendre and Gegenbauer expansions, whose orthogonality relations [31] (p. 1043 No. 8.904 and p. 1054 No. 8.939.8, respectively) have no such third branch, all derivations are made much more straightforward if one adopts the perhaps iconoclastic notion that sums should simply be sums and displays the first line of (A5) as $0.1577279714748901195637751165099580 T_0(x/8)$. Tumakov [44] also follows this convention.

At the upper limit of applicability, $x = 8$, (A5) gives 27-digit accuracy, $J_0(8) = 0.171650807137553906090869408$.

The first 22 terms in the $J_1(x)$ Chebyshev expansion (12) with $k = 1$ are

$$\begin{aligned}
 J_1(x) \cong & 0.4697097923433853441348972113538690xT_0(x) \\
 & - 0.0299730535880989450709444118401190xT_2(x) \\
 & + 0.0003154953401761330198307113032804328xT_4(x) \\
 & - 1.653528591827665010389921139509211 \times 10^{-6} xT_6(x) \\
 & + 5.188889110114106792954599573058750 \times 10^{-9} xT_8(x) \\
 & - 1.084245120515337519078432469943857 \times 10^{-11} xT_{10}(x) \\
 & + 1.617069529094057869823401928778476 \times 10^{-14} xT_{12}(x) \\
 & - 1.807903976592524723392831520195131 \times 10^{-17} xT_{14}(x) \\
 & + 1.571543945521723529179083698815771 \times 10^{-20} xT_{16}(x) \\
 & - 1.092591641508275242057122355553840 \times 10^{-23} xT_{18}(x) \\
 & + 6.213791797992245609440469557453575 \times 10^{-27} xT_{20}(x) \\
 & - 2.944495823790016197177000782247634 \times 10^{-30} xT_{22}(x) \\
 & + 1.180496667850251944095467073781979 \times 10^{-33} xT_{24}(x) \\
 & - 4.056318036675064198378921654189439 \times 10^{-37} xT_{26}(x) \\
 & + 1.207866649436639014639549760562102 \times 10^{-40} xT_{28}(x) \\
 & - 3.146932355403406273096620834992699 \times 10^{-44} xT_{30}(x) \\
 & + 7.233957871819338833114752440681911 \times 10^{-48} xP_{32}(x) \\
 & - 1.478064332069756593976138661523809 \times 10^{-51} xT_{34}(x) \\
 & + 2.702029827426988943325772959142285 \times 10^{-55} xT_{36}(x) \\
 & - 4.445451117805773022660415901032200 \times 10^{-59} xT_{38}(x) \\
 & + 6.617045043041664246398527226007578 \times 10^{-63} xT_{40}(x) \\
 & - 8.953842205918258708007813804592169 \times 10^{-67} xT_{42}(x) \quad - 1 \leq x \leq 1 . \tag{A7}
 \end{aligned}$$

At the upper limit of applicability, $x = 1$, this gives 33-digit accuracy, $J_1(1) = 0.440050585744933515959682203718915$ (Even at $x = 8$, this gives a result accurate to 16 digits, $J_1(8) = 0.2346363468539146$).

If one follows Clenshaw's [34] (p. 31) lead and instead takes $k = 8$, one obtains

$$\begin{aligned}
J_1(x) \cong & \mathbf{1.296717541210529841673374221959245} / 2 \frac{x}{8} T_0\left(\frac{x}{8}\right) \\
& - \mathbf{1.191801160541216872507032741866674} \frac{x}{8} T_2\left(\frac{x}{8}\right) \\
& + \mathbf{1.287994098857677620382580899489350} \frac{x}{8} T_4\left(\frac{x}{8}\right) \\
& - \mathbf{0.6614439341345432527728770946844658} \frac{x}{8} T_6\left(\frac{x}{8}\right) \\
& + \mathbf{0.1777091172397282832823229884383241} \frac{x}{8} T\left(\frac{x}{8}\right) \\
& - \mathbf{0.02917552480615420766201489599627591} \frac{x}{8} T_{10}\left(\frac{x}{8}\right) \\
& + \mathbf{0.003240270182683857466456539040415511} \frac{x}{8} T_{12}\left(\frac{x}{8}\right) \\
& - \mathbf{0.0002604443893485806813446141103993105} \frac{x}{8} T_{14}\left(\frac{x}{8}\right) \\
& + \mathbf{0.0000158870192399321339310461547076296} \frac{x}{8} T_{16}\left(\frac{x}{8}\right) \\
& - \mathbf{7.617587805400348945692364404508548} \times 10^{-7} \frac{x}{8} T_{18}\left(\frac{x}{8}\right) \\
& + \mathbf{2.949707007277718590826100996112190} \times 10^{-8} \frac{x}{8} T_{20}\left(\frac{x}{8}\right) \\
& - \mathbf{9.424212981567078718578173809056009} \times 10^{-10} \frac{x}{8} T_{22}\left(\frac{x}{8}\right) \\
& + \mathbf{2.528123664278402657192198903253796} \times 10^{-11} \frac{x}{8} T_{24}\left(\frac{x}{8}\right) \\
& - \mathbf{5.777404191721418742769122933910453} \times 10^{-13} \frac{x}{8} T_{26}\left(\frac{x}{8}\right) \\
& + \mathbf{1.138571520281115385303951328717824} \times 10^{-14} \frac{x}{8} T_{28}\left(\frac{x}{8}\right) \\
& - \mathbf{1.955357833295237111457156049739834} \times 10^{-16} \frac{x}{8} T_{30}\left(\frac{x}{8}\right) \\
& + \mathbf{2.953014639834346609722058184262545} \times 10^{-18} \frac{x}{8} P_{32}\left(\frac{x}{8}\right) \\
& - \mathbf{3.952934614113459501768862170679755} \times 10^{-20} \frac{x}{8} T_{34}\left(\frac{x}{8}\right) \\
& + \mathbf{4.723067439441036227167716497766825} \times 10^{-22} \frac{x}{8} T_{36}\left(\frac{x}{8}\right) \\
& - \mathbf{5.068481382508651457731548219527637} \times 10^{-24} \frac{x}{8} T_{38}\left(\frac{x}{8}\right) \\
& + \mathbf{4.912426488809207456168647750374833} \times 10^{-26} \frac{x}{8} T_{40}\left(\frac{x}{8}\right) \\
& - \mathbf{4.321688707060755263766813871186111} \times 10^{-28} \frac{x}{8} T_{42}\left(\frac{x}{8}\right) \quad -8 \leq x \leq 8. \tag{A8}
\end{aligned}$$

where the bolding indicates the digits he displays (I have included an extra digit in some places to allow for appropriate rounding to his displayed digit). If one takes the iconoclastic route of not following his convention (noted on his p. 7) for sums having a single prime to indicate that the term with suffix zero is to be halved, the first line above would be $0.6483587706052649208366871109796227 \frac{x}{8} T_0\left(\frac{x}{8}\right)$.

At the upper limit of applicability, $x = 8$, (A8) gives 29-digit accuracy, $J_1(8) = 0.23463634685391462438127665159$.

Appendix A.3. Gegenbauer Series for $J_0(kx)$ and $J_1(kx)$

The first 22 terms in the Gegenbauer polynomial expansions of $J_0(kx)$ (1), with $k = 1$ and arbitrarily taking $\lambda = \frac{1}{4}$, are

$$\begin{aligned}
J_0(x) \cong & 0.904078771191585521024227636544096 C_0^{\frac{1}{4}}(x) \\
& - 0.377480902332903752477356198652003 C_2^{\frac{1}{4}}(x) \\
& + 0.00985645918454006348253321451683292 C_4^{\frac{1}{4}}(x) \\
& - 0.0000929144245327682841642709978007872 C_6^{\frac{1}{4}}(x) \\
& + 4.51192238929050409752370668969243 \times 10^{-7} C_8^{\frac{1}{4}}(x) \\
& - 1.33557953986611692879627373122257 \times 10^{-9} C_{10}^{\frac{1}{4}}(x) \\
& + 2.66185765952711910618049951726347 \times 10^{-12} C_{12}^{\frac{1}{4}}(x) \\
& - 3.81525698311458688534308130184138 \times 10^{-15} C_{14}^{\frac{1}{4}}(x) \\
& + 4.12174698882181605290995488668659 \times 10^{-18} C_{16}^{\frac{1}{4}}(x) \\
& - 3.47649878544013257006577318271996 \times 10^{-21} C_{18}^{\frac{1}{4}}(x) \\
& + 2.35284611436757064520926642520417 \times 10^{-24} C_{20}^{\frac{1}{4}}(x) \\
& - 1.30601535036874068380434807654702 \times 10^{-27} C_{22}^{\frac{1}{4}}(x) \\
& + 6.05330821302322601332159315076677 \times 10^{-31} C_{24}^{\frac{1}{4}}(x) \\
& - 2.37803900637432785965238868426667 \times 10^{-34} C_{26}^{\frac{1}{4}}(x) \\
& + 8.01904904818064037541914772609834 \times 10^{-38} C_{28}^{\frac{1}{4}}(x) \\
& - 2.34648500711595153019299896447757 \times 10^{-41} C_{30}^{\frac{1}{4}}(x) \\
& + 6.01437661018790357782076353076573 \times 10^{-45} C_{32}^{\frac{1}{4}}(x) \\
& - 1.36150461807454631533129344677808 \times 10^{-48} C_{34}^{\frac{1}{4}}(x) \\
& + 2.74196263898788782515776484348033 \times 10^{-52} C_{36}^{\frac{1}{4}}(x) \\
& - 4.94454559738665023143625856030709 \times 10^{-56} C_{38}^{\frac{1}{4}}(x) \\
& + 8.03022232133135996468784524426669 \times 10^{-60} C_{40}^{\frac{1}{4}}(x) \\
& - 1.18066972928855334355199708640780 \times 10^{-63} C_{42}^{\frac{1}{4}}(x) \quad -1 \leq x \leq 1. \tag{A9}
\end{aligned}$$

At the upper limit of applicability, $x = 1$, this gives 33-digit accuracy, $J_0(1) = 0.765197686557966551449717526102663$ (Even at $x = 8$, this gives a result accurate to 15 digits, 0.171650807137554). The convergence is not any faster than for the Chebyshev version (A5), so there is no strong motivation for programmers to switch to this representation of Bessel functions from the well-established computer codes for Chebyshev expansions. One obtains a different representation that has similar accuracy with 22 terms if one takes $\lambda = 4$, but Figure A1 shows that the convergence is slower until about twelve terms are included.

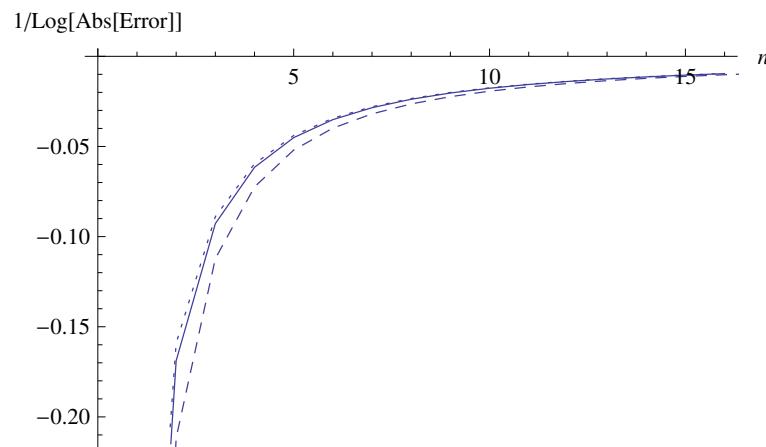


Figure A1. One divided by the logarithm of the absolute value of the error in the Gegenbauer expansion (A9) of $J_0(kx)$ with $k = 1$ and $\lambda = \frac{1}{4}$ (solid line) when successively more terms are added. One sees little difference in convergence from the Chebyshev version (A4) (dotted line). The Gegenbauer expansion (A5) of $J_0(kx)$ with $\lambda = 4$ (dashed line), on the other hand, displays somewhat slower convergence if one includes a dozen terms or fewer.

There is, however, interesting research into the utility of Gegenbauer expansions in an analytical context. To note just three examples, Bezubik, Dąbrowska, and Strasburger [45] derive an expansion of plane waves $e^{ir(\xi|\eta)}$ into an infinite series over $i^m(\alpha + m)J_{\alpha+m}(r)C_m^\alpha((\xi|\eta))$, and Elgindy and Smith-Miles [46] develop a numerical quadrature based on a truncated Gegenbauer expansion series. A third example is Jens Keiner's method [47] of converting from one expansion in $C_j^\alpha(x)$ to another expansion in $C_j^b(x)$. However, neither the relative numerical utility of Gegenbauer expansions, nor expansions in an analytical context will be explored further in this paper since it focuses instead on summing additional infinite series involving ${}_1F_2$ hypergeometric functions.

Turning now to Gegenbauer polynomial expansions of $J_1(kx)$ (1), with $k = 1$ and arbitrarily taking $\lambda = \frac{1}{4}$, the first 22 terms are

$$\begin{aligned}
J_1(x) \simeq & 0.475683429275416807386224265471041 x C_0^{\frac{1}{4}}(x) \\
& - 0.0962237678006581825132637018597388 x C_2^{\frac{1}{4}}(x) \\
& + 0.00165923280553475766418121861007493 x C_{04}^{\frac{1}{4}}(x) \\
& - 0.0000116849150281699572948996291216163 x C_6^{\frac{1}{4}}(x) \\
& + 4.5303088506394388853845501270703 \times 10^{-8} x C_8^{\frac{1}{4}}(x) \\
& - 1.11623410748844105451625882776928 \times 10^{-10} x C_{10}^{\frac{1}{4}}(x) \\
& + 1.90550296957009549791418728733899 \times 10^{-13} x C_{12}^{\frac{1}{4}}(x) \\
& - 2.38861692204435794092836019335553 \times 10^{-16} x C_{14}^{\frac{1}{4}}(x) \\
& + 2.29299953783708159991903279787185 \times 10^{-19} x C_{16}^{\frac{1}{4}}(x) \\
& - 1.74020202094491142079186625047494 \times 10^{-22} x C_{18}^{\frac{1}{4}}(x) \\
& + 1.07047764587989141691542634270970 \times 10^{-25} x C_{20}^{\frac{1}{4}}(x) \\
& - 5.44604885209780265146726077614161 \times 10^{-29} x C_{22}^{\frac{1}{4}}(x) \\
& + 2.32978017343783698464445765163641 \times 10^{-32} x C_{24}^{\frac{1}{4}}(x) \\
& - 8.49800957174229357388497217989335 \times 10^{-36} x C_{26}^{\frac{1}{4}}(x) \\
& + 2.67439765035844790866837011922870 \times 10^{-39} x C_{28}^{\frac{1}{4}}(x) \\
& - 7.33611068017397602824622074628328 \times 10^{-43} x C_{30}^{\frac{1}{4}}(x) \\
& + 1.76965188025225356497750305500631 \times 10^{-46} x C_{32}^{\frac{1}{4}}(x) \\
& - 3.78333047168286059388389868568285 \times 10^{-50} x C_{34}^{\frac{1}{4}}(x) \\
& + 7.21804990626747371147788669564168 \times 10^{-54} x C_{36}^{\frac{1}{4}}(x) \\
& - 1.23650210830378663827086788837057 \times 10^{-57} x C_{38}^{\frac{1}{4}}(x) \\
& + 1.91247206300887832512635377246951 \times 10^{-61} x C_{40}^{\frac{1}{4}}(x) \\
& - 2.68399957497958828507307548313041 \times 10^{-65} x C_{42}^{\frac{1}{4}}(x) \quad -1 \leq x \leq 1. \tag{A10}
\end{aligned}$$

At the upper limit of applicability, $x = 1$, this gives 33-digit accuracy, $J_1(1) = 0.440050585744933515959682203718915$ (Even at $x = 8$, this gives a result accurate to 16 digits, $J_1(8) = 0.2346363468539146$). One obtains a different representation with similar accuracy if one takes $\lambda = 4$ and 22 terms. The convergence is not any faster for either than for the Chebyshev version (A5), so there is no strong motivation for programmers to switch to this representation of Bessel functions.

References

1. Bjorken, J.D.; Drell, S. *Relativistic Quantum Fields*; McGraw-Hill: New York, NY, USA, 1965; p. 286.
2. Dickhoff, W.H.; Barbieri, C. Self-consistent Green's function method for nuclei and nuclear matter. *Prog. Part. Nucl. Phys.* **2004**, *52*, 377–496. [[CrossRef](#)]
3. Duine, R.A.; Stoof, H.T.C. Microscopic many-body theory of atomic Bose gases near a Feshbach. *J. Opt. Quantum Semiclass. Opt.* **2003**, *5*, S212. [[CrossRef](#)]
4. Dalgarno, A.; Lewis, J.T. The exact calculation of long-range forces between atoms by perturbation theory. *Proc. R. Soc. Lond. Ser. A* **1955**, *233*, 70. [[CrossRef](#)]

5. Alvarez, G.; Silverstone, H.J. A new method to sum divergent power series: Educated match. *J. Phys. Commun.* **2017**, *1*, 025005. [[CrossRef](#)]
6. Mera, H.; Pedersen, T.G.; Nikolić, B. Nonperturbative Quantum Physics from Low-Order Perturbation Theory. *Phys. Rev. Lett.* **2015**, *115*, 143001. [[CrossRef](#)] [[PubMed](#)]
7. Mera, H.; Pedersen, T.G.; Nikolić, B.K. Hypergeometric resummation of self-consistent sunset diagrams for steady-state electron-boson quantum many-body systems out of equilibrium. *Phys. Rev. B* **2016**, *94*, 165429. [[CrossRef](#)]
8. Pedersen, T.G.; Mera, H.; Nikolić, B.K. Stark effect in low-dimensional hydrogen. *Phys. Rev. A* **2016**, *93*, 013409. [[CrossRef](#)]
9. Chaundy, T.W. An Extension of Hypergeometric Functions (I). *Q. J. Math. Oxf. Ser.* **1942**, *13*, 159–171. [[CrossRef](#)]
10. Burchnall, J.L.; Chaundy, T.W. The Hypergeometric Identities of Cayley, Orr, And Bailey. *Proc. Lond. Math. Soc.* **1948**, *50*, 56–74. [[CrossRef](#)]
11. Henrici, P. On Certain Series Expansions Involving Whittaker Functions and Jacobi Polynomials. *Pac. J. Math.* **1955**, *5*, 725–744. [[CrossRef](#)]
12. Gasper, G.; Rahman, M. Product Formulas of Watson, Bailey and Bateman Types and Positivity of the Poisson Kernel for Q-Racah Polynomials. *SIAM J. Math. Anal.* **1984**, *15*, 768–798. [[CrossRef](#)]
13. Jain, V.K.; Verma, A. A q-analogue of Watson’s product formula and its applications. *Indian J. Pure Appl. Math.* **1997**, *28*, 237–255.
14. Slater, L.J. Expansions of Generalized Whittaker Functions. *Math. Proc. Camb. Philos. Soc.* **1954**, *50*, 628–631. [[CrossRef](#)]
15. Shah, M. On generalizations of some results and their applications. *Collect. Math.* **1973**, *24*, 249–265.
16. Verma, A.; Jain, V.K. Some Transformations of Basic Hypergeometric Functions, Part I. *SIAM J. Math. Anal.* **1981**, *12*, 943–956. [[CrossRef](#)]
17. Luke, Y.L. *The Special Functions and Their Approximations*; Academic Press: New York, NY, USA, 1969; Volume 2, p. 45 No. 9.4.1.4.
18. Bühring, W. Transformation Formulas for Terminating Saalschützian Hypergeometric Series of Unit Argument. *J. Appl. Math. Stoch. Anal.* **1995**, *8*, 189–194. [[CrossRef](#)]
19. Miller, A.R. A class of generalized hypergeometric summations. *J. Comput. Appl. Math.* **1997**, *87*, 79–85. [[CrossRef](#)]
20. López, J.L.; Pagolaa, P.; Sinusía, E.P. New series expansions of the 3F2 function. *J. Math. Anal. Appl.* **2015**, *421*, 982–995. [[CrossRef](#)]
21. Awad, M.; Koepf, W.; Mohammed, A.O.; Rakha, M.A.; Rathie, A.K. A Study of Extensions of Classical Summation Theorems for the Series 3F2 and 4F3 with Applications. *Results Math.* **2021**, *76*, 65. [[CrossRef](#)]
22. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. *The H-Function Theory and Applications*; Springer: New York, NY, USA, 2010; p. 205. [[CrossRef](#)]
23. Luke, Y.L. *The Special Functions and Their Approximations*; Academic Press: New York, NY, USA, 1969; Volume 1, pp. 230–231 No. 6.5.1–4.
24. Ragab, F.M. *Expansions of Kampé de Fériet’s Double Hypergeometric Function of Higher Order*; Contract No.: Da-11-022-Ord-2059, MRC Technical Summary Report #589 September 1965; Mathematics Research Center, United States Army the University of Wisconsin: Madison, WI, USA, 1965; pp. 5–10.
25. Miller, A.R. On the Mellin transform of products of Bessel and generalized hypergeometric functions. *J. Comput. Appl. Math.* **1995**, *8*, 271–286. [[CrossRef](#)]
26. Cuchta, T. The Chebyshev Difference Equation. *Mathematics* **2020**, *8*, 74. [[CrossRef](#)]
27. Stratton, J.C. The Fourier–Legendre Series of Bessel Functions of the First Kind and the Summed Series Involving ${}_1F_2$ Hypergeometric Functions that Arise from them. *Axioms* **2024**, *13*, 134. [[CrossRef](#)]
28. Keating, C.M. Using Strong Laser Fields to Produce Antihydrogen Ions, appendix D. Ph.D. Dissertation, Portland State University, Portland, OR, USA, 2018. Available online: https://pdxscholar.library.pdx.edu/open_access_etds/4519/ (accessed on 6 February 2024).
29. Available online: <http://functions.wolfram.com/07.26.26.0001.01> (accessed on 6 February 2024).
30. Wimp, J. Polynomial Expansions of Bessel Functions and Some Associated Functions. *Math. Comp.* **1962**, *16*, 446–458. [[CrossRef](#)]
31. Gradshteyn, I.S.; Ryzhik, I.M. *Table of Integrals, Series, and Products*, 5th ed.; Academic: New York, NY, USA, 1994.
32. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. *Integrals and Series*; Gorden and Breach: New York, NY, USA, 1986; Volume 3.
33. Available online: <http://functions.wolfram.com/07.23.03.0191.01> (accessed on 6 February 2024).
34. Clenshaw, C.W. Mathematical Tables. In *Chebyshev Series for Mathematical Functions*; Department of Scientific and Industrial Research, Her Majesty’s Stationery Office: London, UK, 1962; Volume 5.
35. Khajah, H.; Ortiz, E. Ultra-high precision computations. *Comput. Math. Appl.* **1994**, *27*, 41–57. [[CrossRef](#)]
36. Vujević, S.; Modrić, T. A Highly Accurate Algorithm For Computation of Complex-Valued Bessel, Neumann and Hankel Functions of Integer Order. *Facta Univ. Ser. Electron. Energetics* **2024**, *37*, 517–529. [[CrossRef](#)]
37. Georgieva, I.; Hofreither, C. Computation of polynomial and rational approximations in complex domains by the τ -method. *Numer. Algorithms* **2024**. [[CrossRef](#)]
38. Yuste, S.B.; Abad, E. On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems. *J. Phys. A Math. Theor.* **2011**, *44*, 075203. [[CrossRef](#)]
39. Karatsuba, E.A. Calculation of Bessel Functions via the Summation of Series. *Numer. Anal. Appl.* **2019**, *12*, 372–387. [[CrossRef](#)]
40. Kislenkov, V.V. Grid-oriented computation: Modified Bessel functions $J_\nu(z)$ and $K_\nu(z)$. *Program. Comput. Softw.* **2003**, *29*, 88–93. [[CrossRef](#)]

41. Takekawa, T. Fast parallel calculation of modified Bessel function of the second kind and its derivatives. *SoftwareX* **2022**, *17*, 100923. [[CrossRef](#)]
42. Rao, N.; Ayman-Mursaleen, M.; Aslan, R. A note on a general sequence of λ -Szász Kantorovich type operators. *Comput. Appl. Math.* **2024**, *43*, 428. [[CrossRef](#)]
43. Bohner, M.; Cuchta, T. The Bessel Difference Equation. *Proc. Am. Math. Soc.* **2017**, *145*, 1567–1580. [[CrossRef](#)]
44. Tumakov, D.N. The Faster Methods for Computing Bessel Functions of the First Kind of an Integer Order with Application to Graphic Processors. *Lobachevskii J. Math.* **2019**, *40*, 1725–1738. [[CrossRef](#)]
45. Bezuglik, A.; Dąbrowska, A.; Strasburger, A. A new derivation of the plane wave expansion into spherical harmonics and related Fourier transforms. *J. Nonlinear Math. Phys.* **2004**, *11* (Suppl. S1), 167–173. [[CrossRef](#)]
46. Elgindy, K.T.; Smith-Miles, K.A. Optimal Gegenbauer quadrature over arbitrary integration nodes. *J. Comput. Appl. Math.* **2013**, *242*, 82–106. [[CrossRef](#)]
47. Keiner, J. Computing With Expansions In Gegenbauer Polynomials. *SIAM J. Sci. Comput.* **2009**, *31*, 2151–2171. [[CrossRef](#)]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.