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Summed Series Involving 1F2 Hypergeometric Functions

Jack C. Straton

Department of Physics, Portland State University, Portland, OR 97207-0751, USA; straton@pdx.edu

Abstract: Summation of infinite series has played a significant role in a broad range of problems

in the physical sciences and is of interest in a purely mathematical context. In a prior paper, we

found that the Fourier–Legendre series of a Bessel function of the first kind JN(kx) and modified

Bessel functions of the first kind IN(kx) lead to an infinite set of series involving 1F2 hypergeometric

functions (extracted therefrom) that could be summed, having values that are inverse powers of the

eight primes 1/
(

2i3j5k7l11m13n17o19p
)

multiplying powers of the coefficient k, for the first 22 terms

in each series. The present paper shows how to generate additional, doubly infinite summed series

involving 1F2 hypergeometric functions from Chebyshev polynomial expansions of Bessel functions,

and trebly infinite sets of summed series involving 1F2 hypergeometric functions from Gegenbauer

polynomial expansions of Bessel functions. That the parameters in these new cases can be varied at

will significantly expands the landscape of applications for which they could provide a solution.

Keywords: Bessel functions; Fourier–Legendre series; Laplace series; Chebyshev polynomial expansions;

Gegenbauer polynomial expansions; computational methods; Jacobi expansions; hypergeometric series

summation

MSC: 33C10; 42C10; 41A10; 41A50; 33F10; 65D20; 68W30; 33C45

1. Introduction

The summing of infinite series has played a key part in a broad range of problems
in the physical sciences, from self-energy diagrams [1–3] to polarization [4]. See [5] for
an excellent review of the summation of divergent asymptotic expansions. In particular,
Mera et al. [6,7] and Pedersen et al. [8] use hypergeometric functions to sum series in
perturbation theory.

In the present paper, we focus on summing trebly infinite sets of series involving 1F2

hypergeometric functions. Historical antecedents of similar work include Chaundy [9],
who expressed products of 0F1 functions as infinite sums of 2F1 functions, products of 1F1

functions and products of 2F0 functions as infinite sums of 3F2 functions, and products
of 2F1 functions as infinite sums of 4F3 functions. Additional combinations are found in
Burchnall and Chaundy [10], Henrici [11], Gasper [12], and Jain and Verma [13].

Slater expressed generalized Whittaker functions [14] ( pFp functions having p ≥ 1) as
sums of other generalized Whittaker functions, and a few other pFq functions. Additional
forms of the latter are found in [15–21].

Of course, the Appell functions of the first through fourth kinds are defined [22] as
infinite sums over 2F1 functions, while some Meijer G-functions [23] and certain Kampé de
Fériet’s functions may be expressed [24] as infinite sums over pFq functions.

The final stop in this historical sketch is the expression of pFq functions as finite sums
of other pFq functions [25] that act as recurrence relations [26].

In a prior paper [27], I refined Keating’s [28] derivation of the coefficient set of the
Fourier–Legendre series for the Bessel function JN(kx) to be

JN(kx) =
∞

∑
L=0

aLN(k)PL(x) (1)
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where

aLN(k) =
√

π(2L + 1)2−L−1iL−N ∑
∞
M=0

(

(− 1
4 )

M
kL+2M

)

2L+2M+1(M!Γ(L+M+ 3
2 ))

×
(

1 + (−1)L+2M+N
)

( L+2M
1
2 (L+2M−N))

=
√

π2−2L−2(2L+1)kLiL−N

Γ( 1
2 (2L+3))

(

1 + (−1)L+N
)

( L
L−N

2
)

× 2F3

(

L
2 + 1

2 , L
2 + 1; L + 3

2 , L
2 − N

2 + 1, L
2 + N

2 + 1;− k2

4

)

=
√

π 2−2L−2(2L + 1)kLiL−N
(

1 + (−1)L+N
)

Γ(L + 1)

× 2 F̃3

(

L
2 + 1

2 , L
2 + 1; L + 3

2 , L
2 − N

2 + 1, L
2 + N

2 + 1;− k2

4

)

, (2)

of which the final two steps were new in the prior work [27]. I included the final form
using regularized hypergeometric functions [29]

2F3(a1, a2; b1, b2, b3; z) = Γ(b1)Γ(b2)Γ(b3) 2 F̃3(a1, a2; b1, b2, b3; z) (3)

and canceled the Γ(bi) with gamma functions in the denominators of the prefactors. This
cancellation allows one to avoid infinities that arise whenever N > 1 is an integer larger
than L, and of the same parity, which would otherwise result in indeterminacies in a
computation when one tries to use the conventional form of the hypergeometric function.

After a further review of the literature, I found that Keating’s result (the first line above)
and my prior work (the second line above) are implicitly subsumed within Jet Wimp’s 1962
Jacobi expansion [30] of the Anger–Weber function (his equations (2.10) and (2.11)) since
Legendre polynomials are a subset of Jacobi polynomials, and the Bessel function JN(kx)
is a special case of the Anger–Weber function Jν(kx) when ν is an integer. Wimp does not
mention the calculational difficulties that were resolved through the third form above.

For the special cases of N = 0, 1, the order of the hypergeometric functions is reduced
since the parameters are a2 = b3 and a1 = b2, respectively, giving

aL0(k) =
√

πiL2−2L−2(2L+1)kL

Γ( 1
2 (2L+3))

(

1 + (−1)L
)

(L
L
2
)

× 1F2

(

L
2 + 1

2 ; L
2 + 1, L + 3

2 ;− k2

4

)

=
√

πiL2−2L−2(2L + 1)kLΓ
(

L
2 + 1

)

(

1 + (−1)L
)

(L
L
2
)

× 1 F̃2

(

L
2 + 1

2 ; L
2 + 1, L + 3

2 ;− k2

4

)

, (4)

and

aL1(k) =
√

πiL−12−2L−2(2L+1)kL

Γ( 1
2 (2L+3))

(

1 + (−1)L+1
)

( L
L−1

2
)

× 1F2

(

L
2 + 1; L

2 + 3
2 , L + 3

2 ;− k2

4

)

= iL−12−L−2(2L + 1)kLΓ
(

L
2 + 1

)

(

1 + (−1)L+1
)

× 1 F̃2

(

L
2 + 1; L

2 + 3
2 , L + 3

2 ;− k2

4

)

. (5)

In each special case, the first form involving a hypergeometric function has no numerical inde-
terminacies, but I include the regularized hypergeometric function version for completeness.

The first 22 terms in the Fourier–Legendre series for J0(kx) (1) are given in
Appendix A, with k = 1, as is an updated polynomial approximation created by expanding
the Legendre polynomials into their constituent terms and gathering like powers. Since
each Legendre polynomial in (A1) contributes to the constant term in both (A2) and (A3),
their sum is
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0.919730410089760239314421194080620× (1)

−0.157942058625851887573713967144364× 1
2

(

3x2 − 1
)

x→0

+0.00343840094460110923299688787207292× 1
8

(

35x4 − 30x2 + 3
)

x→0

−0.0000291972184882872969366059098612566× 1
16

(

231x6 − 315x4 + 105x2 − 5
)

x→0

+ · · · = 1 (6)

rather than some other number close to 1. This may formalized in a theorem for these
summed series:

Theorem 1. For integer h and for any values of k,

∞

∑
L=0

√
πiL2−2L−2

(

1 + (−1)L
)

(2L + 1)(L
L
2
)

Γ
(

1
2 (2L + 3)

) 1F2

(

L

2
+

1

2
;

L

2
+ 1, L +

3

2
;− k2

4

)

kL

×







iL2−L/2(L − 1)!!
(

L
2 + 1

2

)

h

(

− L
2

)

h

h! L
2 !
(

1
2

)

h







=
(−1)h2−2h

h!Γ(h + 1)
k2h , (7)

within which h = 0 gives (6).

A researcher seeking to sum a series like this is likely to have the various factors
expressed in alternative ways. For instance, the expression

(

1 + (−1)L
)

in the first factor of
this equation restricts the sum to even values of L, which is sometimes indicated instead
as ∑

∞
L=0

(2) . . . . This restriction also means that the double factorial in the next line can

be alternatively expressed as (L − 1)!! =
2L/2Γ( L

2 +
1
2 )√

π
. The binomial (L

L
2
) can alternatively

be expressed as a ratio of gamma functions,
Γ(L+1)

Γ( L
2 +1)

2 , as can the Pochhammer symbols

(a)h = Γ(a+h)
Γ(a)

. In Equation (26) of the previous paper [27], the term in curly brackets was

given as










2−L(2L
L )

(

1
2 − L

2

)

L
2 −h

(

− L
2

)

L
2 −h

(

L
2 − h

)

!
(

1
2 − L

)

L
2 −h











(8)

because it used an alternative conversion of Legendre polynomials into 2F1 hypergeometric
functions [31] (p. 1044 No. 8911.1) [32] (p. 468 No. 7.3.1.206).

This was proved in the prior work for general h by extracting specific powers of x
from the Legendre polynomials, most easily by converting them into 2F1 hypergeometric
functions [31] (p. 1044 No. 8911.2) [32] (p. 466 No. 7.3.1.182) and thence into a finite sum
over ratios of Pochhammer symbols. For h = 1, the P2(x) through P42(x) terms add to give
−1/4, the coefficient of x2 term in both (A2) and (A3) if k = 1.

Including k ̸= 1 poses no problem in (7) despite its appearance as the argument

of the 1F2

(

L
2 + 1

2 ; L
2 + 1, L + 3

2 ;− k2

4

)

function, as well as the existence of a kL factor in

the argument of the sum. It ends up contributing a very clean factor of k2h to the right-
hand side of (7). I, thus, summed an infinite set of infinite sums of 1F2 hypergeometric
functions, though I numerically verified only those with 0 ≤ h ≤ 42 (I had to take the upper
limit on the number of terms in the series ≥h + 74 in order to obtain a percent difference
between left- and right-hand sides that was ≤10−33, because the first h terms in the series
do not contribute. For h = 0, an upper limit on the number of terms in the series ≥h + 44
was sufficient).
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I likewise summed an infinite set of infinite sums of 1F2 hypergeometric functions
derived from the Fourier–Legendre series for J1(kx) (1):

Theorem 2. For integer h and for any values of k,

∞

∑
L=1

√
πiL−1

(

1 + (−1)L+1
)

(2L + 1)2−3L−2( L
L−1

2
)(2L

L )(−1)−h+ L
2 − 1

2

Γ
(

1
2 (2L + 3)

)(

−h + L
2 − 1

2

)

!
kL

× 1F2

(

L

2
+ 1;

L

2
+

3

2
, L +

3

2
;− k2

4

)







(

1
2 − L

2

)

L−1
2 −h

(

− L
2

)

L−1
2 −h

(

1
2 − L

)

L−1
2 −h







=
(−1)h2−2h−1

h!Γ(h + 2)
k2h+1 . (9)

The question naturally arises as to whether one can derive such a summed infinite
series based on other polynomial expansions. In the following, one may answer in the
affirmative for both Chebyshev and Gegenbauer polynomial expansions of Bessel functions.

2. Summed Series Involving 1F2 Hypergeometric Functions from Chebyshev
Polynomial Expansions of Bessel Functions

We wish to prove the following theorem for the summed series derived from Cheby-
shev polynomial expansions of the J0(kx) Bessel function:

Theorem 3. For integer h and for any values of k,

∞

∑
L=0

(−1)L2−2L
(

1
2 − L

)

L−h
(−L)L−h

L!Γ(L + 1)(L − h)!(1 − 2L)L−h
1F2

(

L +
1

2
; L + 1, 2L + 1;− k2

4

)

k2L

=
(−1)h2−2h

h!Γ(h + 1)
k2h . (10)

Proof of Theorem 3. Wimp also applied his Jacobi expansion [30] to find Chebyshev poly-
nomial expansions of Bessel functions, since [31] (p. 1060 No. 8.962.3)

P
(− 1

2 ,− 1
2 )

2n (z) =

(

1
2

)

2n

(2n)!
T2n(z) . (11)

Unlike the section above, the following expansion (his Equations. (3.6) and (3.7))
applies to non-integer indices as well:

Jν(kx) = (kx)ν
∞

∑
L=0

CLν(k)T2L(x) . − 1 ≤ x ≤ 1 (12)

Since what one is expanding in Chebyshev polynomials is the function Jν(kx)(kx)−ν,
the coefficients can only be given by the orthogonality of the Chebyshev polynomials if we
include the full function in the defining integral,

CLν(k) =
(2 − δL0)

2

2

π

∫ 1

−1

(

Jν(kx)(kx)−ν
) 1√

1 − x2
T2L(x) dx , (13)

which Wimp finds to be

CLν(k) =
(−1)Lk2L2−4L−ν(2 − δL0)

L!Γ(L + ν + 1) 1F2

(

L + 1
2 ; L + ν + 1, 2L + 1;− k2

4

)

. (14)
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The first 22 terms in the Chebyshev polynomial expansion of J0(kx) (12), with k = 1
and 8, are given in Appendix A.2.

Since the constant term of every Chebyshev polynomial has magnitude one, and
alternating sign, the sum of these times the coefficients—a2r in Clenshaw’s convention in
which sums having a single prime indicate that the term with suffix zero is to be halved—
is simply

∑ ′(−1)La2r = 1 . (15)

Clenshaw has, thus, given the first of the summation rules we wish to derive.
The general-h proof follows that of the prior paper. In order to sum the infinite set of

infinite sums of 1F2 hypergeometric functions derived from the Fourier–Legendre series
expansion of Bessel functions (7) and (9), we extracted specific powers of x by converting
Legendre polynomials into 2F1 hypergeometric functions [32] (p. 468 No. 7.3.1.206). The
equivalent conversion for Chebyshev polynomials is

T2L(x) = 22L−1x2L
2F1

(

1

2
− L,−L; 1 − 2L;

1

x2

)

[1 + δL0] . (16)

Note that in the above, I have augmented [32] (p. 468 No. 7.3.1.207) and [33] with the
factor [1 + δL0] that allows the conversion to be extended downward from their restriction:
L > 0. When multiplied by the equivalent factor in Wimp’s Chebyshev expansion (14),
one obtains (2 − δL0)[1 + δL0] ≡ 2 for all L. This is a strong argument for using the “sums
should simply be sums” convention over Clenshaw’s for the present analytical work.

The final step in the proof is to convert each 2F1 hypergeometric function into a finite
sum over ratios of Pochhammer symbols times inverse powers of x. (Let us use m for the
summation index). One finds that, of the finite sum in (16) for a given L, the only term that
contributes a power x2h is

22L−1x2L
L−h

∑
m=L−h

x−2m
(

1
2 − L

)

m
(−L)m

m!(1 − 2L)m
[1 + δL0] , (17)

which may be more compactly written as

22L−1x2L−2(L−h)

(

1
2 − L

)

L−h
(−L)L−h

(L − h)!(1 − 2L)L−h
[1 + δL0] . (18)

Noting that multiplying the factor (2 − δL0)from (14) by the above [1 + δL0] gives
another factor of 2 for all L, which completes the proof of (10).

To numerically verify the lowest 43 summed series for k → 8, one has to take the upper
limit on the number of terms in the series ≥h + 18 in order to obtain a percent difference
between left- and right-hand sides that is ≤10−33, because the first h terms in the series
do not contribute. For k → 5, this reduces somewhat to ≥h + 15. For h = 0, one needs
24 terms and 20 terms, respectively.

The first 22 terms in the Chebyshev polynomial expansion of J1(kx) (12), with k = 1
and 8, are given in Appendix A.2. The consequent summed series associated with the
power x2h+1 in the Chebyshev expansion (12) is given in the following theorem:

Theorem 4. For integer h and for any values of k,

∞

∑
L=1

(−1)L2−2L−1
(

1
2 − L

)

L−h
(−L)L−h

L!Γ(L + 2)(L − h)!(1 − 2L)L−h
k2L+1

1F2

(

L +
1

2
; L + 2, 2L + 1;− k2

4

)

=
(−1)h2−2h−1

h!Γ(h + 2)
k2h+1 . (19)
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Proof of Theorem 4. What changes in the proof as we move from ν = 0 → 1 is contained
in the three factors

2−4L−ν

Γ(L + ν + 1) 1F2

(

L +
1

2
; L + ν + 1, 2L + 1;− k2

4

)∣

∣

∣

∣

ν→1

(20)

in the coefficient CLν(k) of the defining series (12), while nothing does in the Chebyshev
polynomial that multiplies it. Thus, nothing changes in the transformations (16)–(18) except
that we now associate (17) and (18) with a power x2h multiplied by (kx)ν. Indeed, we have
not only proved Theorem 4, but also its extension to a series associated with the power
x2h+ν in the general-ν case:

Theorem 5. For integer h and for any values of k and ν,

∞

∑
L=1

(−1)L2−2L−ν
(

1
2 − L

)

L−h
(−L)L−h

L!(L − h)!(1 − 2L)L−hΓ(L + ν + 1)
k2L+ν

1F2

(

L +
1

2
; 2L + 1, L + ν + 1;− k2

4

)

=
(−1)h2−2h−1

h!Γ(h + 2)
k2h+1 . (21)

To verify the lowest 43 summed series for k → 8, one generally has to take the upper
limit on the number of terms in the series ≥h + 20 in order to obtain a percent difference
between left- and right-hand sides that is ≤10−33, because the first h terms in the series
do not contribute. For k → 5, this reduces somewhat to ≥h + 16. For h = 0, one needs
23 terms and 20 terms, respectively.

For large indices, such as ν = 17, for instance, with h = 5, k = 8, the two sides of (21)
sides diverge after 45 digits: −1.335586213327781269795862205505422996145960793 × 10−7.
For small values of ν, however, neither side gives an accuracy beyond the 13th post-decimal
place in the computer algebra program Mathematica 7 despite a command to do so, giving
−68.7857424612620 for h = 5, k = 8, and ν = 0.17. Complex values of ν likewise gave
only 14 decimal placers in Mathematica, such as 1.15092097688009 + 1.83846320788943i for
h = 5, k = 8, and ν = 17 + 30.3i. Mathematica 13 likewise gives this more limited, but still
excellent, accuracy.

In the prior paper [27], we noted that because the modified Bessel functions of the
first kind IN(kx) are related to the ordinary Bessel functions by the relation [31] (p. 961
No. 8.406.3),

In(z) = i−n Jn(iz) , (22)

one merely needs to multiply by i−n and set k = i in (2) to obtain the I0(x) Fourier–Legendre
series. Furthermore, one sees that I0 expressed in powers of x is simply the J0 version
with all of the negative signs reversed. This is not true of (1) because the arguments of the
Legendre polynomials do not undergo x → ix since they derive from the definition of the
Fourier–Legendre series (1). The k-dependence is entirely within the coefficients aLN(k).

Therefore, the I0 Legendre series expansion leads to no new set of summed series since
these would simply be (7) with k = iκ. This is also the case for a Chebyshev expansion.
Clenshaw [34] confirms this for h = 0 on pp. 34–35.

3. Summed Series Involving 1F2 Hypergeometric Functions from Gegenbauer
Polynomial Expansions of Bessel Functions

We wish to prove the following theorem for summed series derived from Gegenbauer
polynomial expansions of the J0(kx) Bessel function:

Theorem 6. For integer h and for any values of k and λ,
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∞

∑
L=0

(−2)2L(−L)h

(

λ + 1
2

)

2L
(L + λ)h

√
πh!

(

1
2

)

h

(

L + 1
2

)

1
2

(L + λ)(2λ)2L(2L + 2λ)2LB(λ, L + 1)
k2L

1F2

(

L +
1

2
; L + 1, 2L + λ + 1;− k2

4

)

=
(−1)h2−2hk2h

h!Γ(h + 1)
. (23)

Proof of Theorem 6. Although he does not explicitly do so, one may use Wimp’s Jacobi ex-
pansion [30] to find Gegenbauer polynomial expansions of Bessel functions, since [31] (p. 1061
No. 8.962.4)

P
(λ− 1

2 ,λ− 1
2 )

2n (z) =

(

λ + 1
2

)

2n
Cλ

2n(z)

(2λ)2n
. (24)

Like those in the second section, the following expansion applies to both integer and
non-integer indices:

Jν(kx) = (kx)ν
∞

∑
L=0

bLν(k)C
λ
2L(x) , −1 ≤ x ≤ 1 (25)

where the coefficients are given by the orthogonality of the Chebyshev polynomials,

bLν(k) =
22λ−1(2L)!(2L + λ)Γ(λ)2

πΓ(2L + 2λ)

∫ 1

−1

(

Jν(kx)(kx)−ν
)(

1 − x2
)− 1

2+λ
Cλ

2L(x) dx , (26)

as

bLν(k) =
(−1)La2L22L−ν

(

λ + 1
2

)

2L√
π(2λ)2L(2L + 2λ)2L

(

L + 1
2

)

ν+ 1
2

1F2

(

L + 1
2 ; 2L + λ + 1, L + ν + 1;− a2

4

)

. (27)

The first 22 terms in the Gegenbauer polynomial expansion of J0(kx) (25) are given
in Appendix A.3, with k = 1 and arbitrarily taking λ = 1

4 . One could, of course, test the

technique using any value of λ, but since Tν(z) =
1
2 νC0

ν(z) and Pν(z) = C
1
2
ν (z), the choice

λ = 1
4 seemed like the next most interesting value.
To extract the powers, we use the conversion for Gegenbauer polynomials that is

equivalent to (16), which is [31] (GR5 p. 1051 No. 8.932.2)

Cλ
2L(x) =

(−1)L

(L + λ)B(λ, L + 1) 2F1

(

−L, L + λ;
1

2
; x2

)

. (28)

The final step in the proof is to convert each 2F1 hypergeometric function into a
finite sum over ratios of Pochhammer symbols times powers of x. (Let us use m for the
summation index). We find that, of the finite sum in (28) for a given L, the only term that
contributes a power x2h is

(−1)L

(L + λ)B(λ, L + 1)

h

∑
m=h

x2m(−L)m(L + λ)m

m!
(

1
2

)

m

, (29)

which may be more compactly written as

(−1)L

(L + λ)B(λ, L + 1)

x2h(−L)h(L + λ)h

h!
(

1
2

)

h

, (30)
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which completes the proof of (23).

To verify the lowest 43 summed series for k → 8, one generally has to take the upper
limit on the number of terms in the series ≥h + 20 in order to obtain a percent difference
between left- and right-hand sides that is ≤10−33, because the first h terms in the series
do not contribute. For k → 5, this reduces somewhat to ≥h + 16. For h = 0, one needs
23 terms and 20 terms, respectively.

This theorem has an identical right-hand side as for the Legendre (7) and Cheby-
shev (10) versions, and it holds for every value of λ. That is, we have just summed an
infinite set of infinite sets of infinite series involving 1F2 hypergeometric functions. To see
how this plays out in practice, consider two extreme values, λ = 2±20. For h = 1 (associated
with x2) and λ = 2−20, the first eight terms sum as

0
−0.234776027081720679198861338236978

−0.0149856953860168611951004494702182

−0.000236617512932378657466894715711978

−1.653516950294282858347187372908306 × 10−6 .

−6.486087810927263603219843086719685 × 10−9

−1.62636408715893081661576487444697 × 10−11

−2.82986734360173162046207736379133 × 10−14 − · · ·
= −0.24999999999999996

(31)

For λ = 220, the second term is almost sufficient by itself:

0
−0.249999955296648756645694568085746

−4.470334680250094078684477109090418 × 10−8

−4.44085305583632491122417076683932 × 10−14

−3.08808728006191746252089269280760 × 10−22 .

−1.65656014384509551797626946530621 × 10−29

−7.24073285415562941500526940820453 × 10−37

−2.67164795422661275973040680548870 × 10−44 − · · ·
= 0.250000000000000000000000000000000

(32)

The final theorem we wish to prove is for series associated with the power x2h+ν

derived from the Gegenbauer polynomial expansion of Jν(kx), the general ν case, which
may be written as follows:

Theorem 7. For integer h and for any values of k, λ, and ν,

∞

∑
L=0

(−1)2L22L−ν(−L)h

(

λ + 1
2

)

2L
(L + λ)h

√
πh!

(

1
2

)

h
(L + λ)(2λ)2L(2L + 2λ)2L

(

L + 1
2

)

ν+ 1
2

B(λ, L + 1)
k2L+ν

× 1F2

(

L +
1

2
; 2L + λ + 1, L + ν + 1;− k2

4

)

=
(−1)h2−2h−νk2h+ν

h!Γ(h + ν + 1)
. (33)
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Proof of Theorem 7. One may build the general case by examining what must be done to
sum the series associated with the power x2h+1 derived from the Gegenbauer polynomial
expansion of J1(kx), whose 22-term Gegenbauer polynomial expansion we display in
Appendix A.3, with k = 1 and again arbitrarily taking λ = 1

4 .
What changes in the proof as we move from ν = 0 → 1 is contained in the three factors

22L−ν

(

L + 1
2

)

ν+ 1
2

1F2

(

L +
1

2
; 2L + λ + 1, L + ν + 1;− k2

4

)∣

∣

∣

∣

ν→1

(34)

in the coefficient bLν(k) of the defining series (25), while nothing does in the Gegenbauer
polynomial that multiplies it. Thus, nothing changes in the transformations (28)–(30) except
that we now associate (29) and (30) with a power x2h multiplied by (kx)ν. This completes
the proof of the summed series associated with the power x2h+ν in the general-ν case.

To verify the lowest 43 summed series for k → 8, one generally has to take the upper
limit on the number of terms in the series ≥h + 20 in order to obtain a percent difference
between left- and right-hand sides that is ≤10−33, because the first h terms in the series
do not contribute. For k → 5, this reduces somewhat to ≥h + 16. For h = 0, one needs
23 terms and 20 terms, respectively.

The summed series derived from the Gegenbauer polynomial expansions of Jν(x) may
be found for any value of ν, not just integer values, given that it is derived from Wimp’s
Jacobi expansion [30]. Thus, we have just summed an infinite set of infinite sets of doubly
infinite series involving 1F2 hypergeometric functions since the expression holds for every
value of λ and holds for every value of ν.

Since Tν(z) =
1
2 νC0

ν(z), by setting λ = 0 in (33) one may obtain a modest variation on
the form given in (21), since we here use a 2F1 hypergeometric function whose argument is
x2 in (33) and used a 2F1 hypergeometric function whose argument is x−2 to prove (21).

An extension of the Legendre sets (7) and (9) to larger integer values of ν is not obvious,

but one can obtain such a form directly from (33) since Pν(z) = C
1
2
ν (z), which applies even

for non-integer values of ν.

4. Conclusions

I have shown how to sum doubly infinite sets of infinite series involving 1F2 hypergeo-
metric functions, derived from Chebyshev polynomial expansions of Bessel functions of the
first kind Jν(kx), and the trebly infinite sets of infinite series involving 1F2 hypergeometric
functions from the Gegenbauer polynomial expansions of Jν(kx). The utility of any one
of these summed series for future researchers is, of course, not guaranteed, but given the
relative paucity of infinite series whose values are known (e.g., 24 pages in Gradshteyn
and Ryzhik compared to their 900 pages of known integrals), one hopes that adding such
multiply-infinite sets of infinite series of 1F2 functions whose values are now known will
be of use to some.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

In this Appendix, we display series expansions that could be used to provide computer
programs with 33-digit accuracy, matching the IEEE extended precision in some compilers.
These high-accuracy results are given here because they could needlessly distract the reader
from the main point of the paper: summing infinite series. They are here to satisfy the
interest of readers wishing to verify some detail in the main body of the paper and also
because of their intrinsic interest.
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Because of this focus, we will note only a few papers of interest in the vast field
of computational research. Khajah and Ortiz [35] provide tables of somewhat higher
accuracy (10−89) for some elementary functions like the exponential function. Vujevic
and Modrić [36] give highly accurate algorithms for the computation of complex-valued
Bessel functions, as do Georgieva and Hofreither [37]. Yuste and Abad [38] give an iterative
method to obtain approximations to Bessel functions Jp(x) while Karatsuba [39] focuses on
both increased accuracy and large arguments. Kislenkov [40] gives grid-oriented algorithms
for computing modified Bessel functions, as does Takekawa [41] for parallel processing.
For other sorts of functions, one finds a thorough review of recent work in approximation
theory in Rao, Ayman-Mursaleen, and Aslan [42].

Appendix A.1. Legendre Series for J0(kx)

The first 22 terms in the Fourier–Legendre series for J0(kx) (1), with k = 1, were given
in a prior paper [27]

J0(x) ∼= 0.9197304100897602393144211940806200P0(x)

− 0.1579420586258518875737139671443637P2(x)

+ 0.003438400944601109232996887872072915P4(x)

− 0.00002919721848828729693660590986125663P6(x)

+ 1.317356952447780977655616563143280 × 10−7 P8(x)

− 3.684500844208203027173771096058866 × 10−10 P10(x)

+ 7.011830032993845928208803328211457 × 10−13 P12(x)

− 9.665964369858912263671995372753346 × 10−16 P14(x)

+ 1.009636276824546446525342170924936 × 10−18 P16(x)

− 8.266656955927637858991972584174117 × 10−22 P18(x)

+ 5.448244867762758725890082837839430 × 10−25 P20(x)

− 2.952527182137354751675774606663400 × 10−28 P22(x)

+ 1.338856158858534469080898670096200 × 10−31 P24(x)

− 5.154913186088512926193234837816582 × 10−35 P26(x)

+ 1.706231577038503450138564028467634 × 10−38 P28(x)

− 4.906893556427796857473097979568289 × 10−42 P30(x)

+ 1.237489200717479383020539576221293 × 10−45 P32(x)

− 2.759056237537871868604555688548364 × 10−49 P34(x)

+ 5.477382207172712629199714648396409 × 10−53 P36(x)

− 9.744200345578852550688946057050674 × 10−57 P38(x)

+ 1.562280711659504489828025148995770 × 10−60 P40(x)

− 2.269056283827394368836057470594599 × 10−64 P42(x) . (A1)

In Equation (15) of the prior work [27], the last line above mistakenly had the wrong
power, −2.269056283827394368836057470594599 × 10−60 P42(x), though the Fortran code
in the appendix was correct: -2.269056283827394368836057470594599 e-64 P(42 , x ). Since
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all calculations in the prior work used the correct power—with the error only appearing
after the editor requested a formatting change in the equation—this correction had no
impact on any results in that paper.

That paper also expanded the Legendre polynomials into their constituent terms and
gathered like powers in (A1) to give an updated polynomial approximation,

J0(x) ∼= 1.000000000000000000000000000000000000 x0

− 0.2500000000000000000000000000000000000 x2

+ 0.01562500000000000000000000000000000000 x4

− 0.0004340277777777777777777777777777777778 x6

+ 6.781684027777777777777777777777777778 × 10−6 x8

− 6.781684027777777777777777777777777778 × 10−8 x10

+ 4.709502797067901234567901234567901235 × 10−10 x12

− 2.402807549524439405391786344167296548 × 10−12 x14

+ 9.385966990329841427311665406903502142 × 10−15 x16

− 2.896903392077111551639402903365278439 × 10−17 x18

+ 7.242258480192778879098507258413196097 × 10−20 x20

− 1.496334396734045222954237036862230599 × 10−22 x22

+ 2.597802772107717400962217077885817011 × 10−25 x24

− 3.842903509035084912666001594505646466 × 10−28 x26

+ 4.901662639075363409012757135849038860 × 10−31 x28

− 5.446291821194848232236396817610043178 × 10−34 x30

+ 5.318644356635593976793356267197307791 × 10−37 x32

− 4.600903422695150498956190542558224733 × 10−40 x34

+ 3.550079801462307483762492702591222788 × 10−43 x36

− 2.458504017633176927813360597362342651 × 10−46 x38

+ 1.5365650110207355798833503733514641567 × 10−49 x40

− 8.7106860035189091830121903251216788929 × 10−53 x42

∼= 1 − x2

22
+

x4

26
− x6

2832
+

x8

21432
− x10

2163252
+

x12

2203452
− x14

222345272
+

x16

230345272

− x18

232385272
+

x20

236385472
− x22

238385472112
+

x24

2443105472112
− x26

2463105472112132

+
x28

2503105474112132
− x30

2523125674112132
+

x32

2623125674112132

− x34

2643125674112132172
+

x36

2683165674112132172
− x38

2703165674112132172192

+
x40

2763165874112132172192
− x42

2783185876112132172192
. (A2)
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The latter form is simply an inverse prime version of the first 22 terms of the well-
known series representation [31] (p. 970 No. 8.440)

Jν(x) =
∞

∑
k=0

(−1)k
(

x
2

)2k+ν

k!Γ(k + ν + 1)
. (A3)

(There is a fascinating analog to this result arising from studies of the Bessel difference
equation [43]).

Appendix A.2. Chebyshev Series for J0(kx) and J1(kx)

The first 22 terms in the Chebyshev polynomial expansions of J0(kx) (12), with
k = 1, are

J0(x) ∼= 0.8807255791026085285666716907449594 T0(x)

− 0.1173880111683243194062454639255572 T2(x)

+ 0.001873212503719194837870878203929524 T4(x)

− 0.00001314542297029262107182993119503582 T6(x)

+ 5.167242966801437053171032359951600 × 10−8 T8(x)

− 1.297218234854703963093975334759865 × 10−10 T10(x)

+ 2.258840234607001930320227243984034 × 10−13 T12(x)

− 2.887621352768057764464058481597816 × 10−16 T14(x)

+ 2.824848256251380023621233536051211 × 10−19 T16(x)

− 2.182699061309088513825726048290021 × 10−22 T18(x)

+ 1.365739183823366078819378297317202 × 10−25 T20(x)

− 7.061125701699520180896051661348297 × 10−29 T22(x)

+ 3.067182727248138051740188483703613 × 10−32 T24(x)

− 1.135092833714987500414966932525964 × 10−35 T26(x)

+ 3.621712251769489873248477093327996 × 10−39 T28(x)

− 1.006555480914216913705134524512148 × 10−42 T30(x)

+ 2.458540787185135207907001122952213 × 10−46 T32(x)

− 5.319086471776732419423425079488687 × 10−50 T34(x)

+ 1.026433533066142649943339190916424 × 10−53 T36(x)

− 1.777651158721406916387585852076982 × 10−57 T38(x)

+ 2.778406892667094352173643013096289 × 10−61 T40(x)

− 3.938717221679009654181092747102998 × 10−65 T42(x) − 1 ≤ x ≤ 1 . (A4)

At the upper limit of applicability, x = 1, this gives 33-digit accuracy, J0(1) =
0.765197686557966551449717526102663 (Even at x = 8, this gives a result accurate to
14 digits, J0(8) = 0.171650807137554).

If one follows Clenshaw’s [34] (p. 30) lead and instead takes k = 8, one obtains
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J0(x) ∼= 0.3154559429497802391275502330199159/2 T0(x/8)

− 0.008723442352852221290793322469895429 T2(x/8)

+ 0.2651786132033368098670778235911043 T4(x/8)

− 0.3700949938726497790334193036836753 T6(x/8)

+ 0.1580671023320972612777155496720475 T8(x/8)

− 0.03489376941140888516317328987958171 T10(x/8)

+ 0.004819180069467604496778380314312767 T12(x/8)

− 0.0004606261662062750475036418408154116 T14(x/8)

+ 0.00003246032882100508080625560924485746 T16(x/8)

− 1.761946907762150749459765966407618 × 10−6 T18(x/8)

+ 7.608163592418781866973786230699492 × 10−8 T20(x/8)

− 2.679253530557672898335371633826306 × 10−9 T22(x/8)

+ 7.848696314479464416529503905101749 × 10−11 T24(x/8)

− 1.943834686737016570620688424557753 × 10−12 T26(x/8)

+ 4.125320595634373932612618412757652 × 10−14 T28(x/8)

− 7.588508125447546337619860819329317 × 10−16 T30(x/8)

+ 1.221851587396141103441861977201729 × 10−17 T32(x/8)

− 1.736789607700236768293730242713393 × 10−19 T34(x/8)

+ 2.195793203319560353679493897698779 × 10−21 T36(x/8)

− 2.485566419364292266537947175258836 × 10−23 T38(x/8)

+ 2.534024606818972691102585769070259 × 10−25 T40(x/8)

− 2.339085627055744706712023052059754 × 10−28 T42(x/8) − 8 ≤ x ≤ 8 . (A5)

where the bolding indicates the digits he displays (I have included an extra digit in some
places to allow for appropriate rounding to his displayed digit). Clenshaw follows the
usual convention (noted on his p. 7) for sums having a single prime to indicate that the
term with suffix zero is to be halved (and if the prime is doubled, the highest term in the
sum is also halved), as indicated in the first line of (A5). This factor-of-two difference
arises from the normalization of the orthogonality relation for Chebyshev polynomials [31]
(p. 1057 No. 8.949.9):

∫ 1

−1
Tn(x)Tm(x)

1√
1 − x2

=











0

π/2

π

m ̸= n

m = n ̸= 0

m = n = 0

. (A6)
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Since I am comparing Chebyshev expansions with both Legendre and Gegenbauer
expansions, whose orthogonality relations [31] (p. 1043 No. 8.904 and p. 1054 No. 8.939.8,
respectively) have no such third branch, all derivations are made much more straight-
forward if one adopts the perhaps iconoclastic notion that sums should simply be sums
and displays the first line of (A5) as 0.1577279714748901195637751165099580 T0(x/8). Tu-
makov [44] also follows this convention.

At the upper limit of applicability, x = 8, (A5) gives 27-digit accuracy, J0(8) =
0.171650807137553906090869408.

The first 22 terms in the J1(x) Chebyshev expansion (12) with k = 1 are

J1(x) ∼= 0.4697097923433853441348972113538690xT0(x)

− 0.02997305358809894507094444118401190xT2(x)

+ 0.0003154953401761330198307113032804328xT4(x)

− 1.653528591827665010389921139509211 × 10−6 xT6(x)

+ 5.188889110114106792954599573058750 × 10−9 xT8(x)

− 1.084245120515337519078432469943857 × 10−11 xT10(x)

+ 1.617069529094057869823401928778476 × 10−14 xT12(x)

− 1.807903976592524723392831520195131 × 10−17 xT14(x)

+ 1.571543945521723529179083698815771 × 10−20 xT16(x)

− 1.092591641508275242057122355553840 × 10−23 xT18(x)

+ 6.213791797992245609440469557453575 × 10−27 xT20(x)

− 2.944495823790016197177000782247634 × 10−30 xT22(x)

+ 1.180496667850251944095467073781979 × 10−33 xT24(x)

− 4.056318036675064198378921654189439 × 10−37 xT26(x)

+ 1.207866649436639014639549760562102 × 10−40 xT28(x)

− 3.146932355403406273096620834992699 × 10−44 xT30(x)

+ 7.233957871819338833114752440681911 × 10−48 xP32(x)

− 1.478064332069756593976138661523809 × 10−51 xT34(x)

+ 2.702029827426988943325772959142285 × 10−55 xT36(x)

− 4.445451117805773022660415901032200 × 10−59 xT38(x)

+ 6.617045043041664246398527226007578 × 10−63 xT40(x)

− 8.953842205918258708007813804592169 × 10−67 xT42(x) − 1 ≤ x ≤ 1 . (A7)

At the upper limit of applicability, x = 1, this gives 33-digit accuracy, J1(1) =
0.440050585744933515959682203718915 (Even at x = 8, this gives a result accurate to
16 digits, J1(8) = 0.2346363468539146).

If one follows Clenshaw’s [34] (p. 31) lead and instead takes k = 8, one obtains
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J1(x) ∼= 1.296717541210529841673374221959245/2
x

8
T0(

x

8
)

− 1.191801160541216872507032741866674
x

8
T2(

x

8
)

+ 1.287994098857677620382580899489350
x

8
T4(

x

8
)

− 0.6614439341345432527728770946844658
x

8
T6(

x

8
)

+ 0.1777091172397282832823229884383241
x

8
T(

x

8
)

− 0.02917552480615420766201489599627591
x

8
T10(

x

8
)

+ 0.003240270182683857466456539040415511
x

8
T12(

x

8
)

− 0.0002604443893485806813446141103993105
x

8
T14(

x

8
)

+ 0.0000158870192399321339310461547076296
x

8
T16(

x

8
)

− 7.617587805400348945692364404508548 × 10−7 x

8
T18(

x

8
)

+ 2.949707007277718590826100996112190 × 10−8 x

8
T20(

x

8
)

− 9.424212981567078718578173809056009 × 10−10 x

8
T22(

x

8
)

+ 2.528123664278402657192198903253796 × 10−11 x

8
T24(

x

8
)

− 5.777404191721418742769122933910453 × 10−13 x

8
T26(

x

8
)

+ 1.138571520281115385303951328717824 × 10−14 x

8
T28(

x

8
)

− 1.955357833295237111457156049739834 × 10−16 x

8
T30(

x

8
)

+ 2.953014639834346609722058184262545 × 10−18 x

8
P32(

x

8
)

− 3.952934614113459501768862170679755 × 10−20 x

8
T34(

x

8
)

+ 4.723067439441036227167716497766825 × 10−22 x

8
T36(

x

8
)

− 5.068481382508651457731548219527637 × 10−24 x

8
T38(

x

8
)

+ 4.912426488809207456168647750374833 × 10−26 x

8
T40(

x

8
)

− 4.321688707060755263766813871186111 × 10−28 x

8
T42(

x

8
) − 8 ≤ x ≤ 8 . (A8)

where the bolding indicates the digits he displays (I have included an extra digit in some
places to allow for appropriate rounding to his displayed digit). If one takes the iconoclastic
route of not following his convention (noted on his p. 7) for sums having a single prime
to indicate that the term with suffix zero is to be halved, the first line above would be
0.6483587706052649208366871109796227 x

8 T0(
x
8 ).

At the upper limit of applicability, x = 8, (A8) gives 29-digit accuracy, J1(8) =
0.23463634685391462438127665159.

Appendix A.3. Gegenbauer Series for J0(kx) and J1(kx)

The first 22 terms in the Gegenbauer polynomial expansions of J0(kx) (1), with k = 1
and arbitrarily taking λ = 1

4 , are
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J0(x) ∼= 0.904078771191585521024227636544096 C
1
4
0 (x)

− 0.377480902332903752477356198652003 C
1
4
2 (x)

+ 0.00985645918454006348253321451683292 C
1
4
4 (x)

− 0.0000929144245327682841642709978007872 C
1
4
6 (x)

+ 4.51192238929050409752370668969243 × 10−7 C
1
4
8 (x)

− 1.33557953986611692879627373122257 × 10−9 C
1
4
10(x)

+ 2.66185765952711910618049951726347 × 10−12 C
1
4
12(x)

− 3.81525698311458688534308130184138 × 10−15 C
1
4
14(x)

+ 4.12174698882181605290995488668659 × 10−18 C
1
4
16(x)

− 3.47649878544013257006577318271996 × 10−21 C
1
4
18(x)

+ 2.35284611436757064520926642520417 × 10−24 C
1
4
20(x)

− 1.30601535036874068380434807654702 × 10−27 C
1
4
22(x)

+ 6.05330821302322601332159315076677 × 10−31 C
1
4
24(x)

− 2.37803900637432785965238868426667 × 10−34 C
1
4
26(x)

+ 8.01904904818064037541914772609834 × 10−38 C
1
4
28(x)

− 2.34648500711595153019299896447757 × 10−41 C
1
4
30(x)

+ 6.01437661018790357782076353076573 × 10−45 C
1
4
32(x)

− 1.36150461807454631533129344677808 × 10−48 C
1
4
34(x)

+ 2.74196263898788782515776484348033 × 10−52 C
1
4
36(x)

− 4.94454559738665023143625856030709 × 10−56 C
1
4
38(x)

+ 8.03022232133135996468784524426669 × 10−60 C
1
4
40(x)

− 1.18066972928855334355199708640780 × 10−63 C
1
4
42(x) − 1 ≤ x ≤ 1 . (A9)

At the upper limit of applicability, x = 1, this gives 33-digit accuracy, J0(1) =
0.765197686557966551449717526102663 (Even at x = 8, this gives a result accurate to
15 digits, 0.171650807137554). The convergence is not any faster than for the Chebyshev ver-
sion (A5), so there is no strong motivation for programmers to switch to this representation
of Bessel functions from the well-established computer codes for Chebyshev expansions.
One obtains a different representation that has similar accuracy with 22 terms if one takes
λ = 4, but Figure A1 shows that the convergence is slower until about twelve terms are
included.
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Figure A1. One divided by the logarithm of the absolute value of the error in the Gegenbauer

expansion (A9) of J0(kx) with k = 1 and λ = 1
4 (solid line) when successively more terms are

added. One sees little difference in convergence from the Chebyshev version (A4) (dotted line). The

Gegenbauer expansion (A5) of J0(kx) with λ = 4 (dashed line), on the other hand, displays somewhat

slower convergence if one includes a dozen terms or fewer.

There is, however, interesting research into the utility of Gegenbauer expansions in an an-
alytical context. To note just three examples, Bezubik, Dàbrowska, and Strasburger [45] derive
an expansion of plane waves eir(ξ|η) into an infinite series over im(α + m)Jα+m(r)Cα

m((ξ|η)),
and Elgindy and Smith-Miles [46] develop a numerical quadrature based on a truncated
Gegenbauer expansion series. A third example is Jens Keiner’s method [47] of converting
from one expansion in Cα

j (x) to another expansion in Cb
j (x). However, neither the relative

numerical utility of Gegenbauer expansions, nor expansions in an analytical context will be
explored further in this paper since it focuses instead on summing additional infinite series
involving 1F2 hypergeometric functions.

Turning now to Gegenbauer polynomial expansions of J1(kx) (1), with k = 1 and
arbitrarily taking λ = 1

4 , the first 22 terms are
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J1(x) ∼= 0.475683429275416807386224265471041 x C
1
4
0 (x)

− 0.0962237678006581825132637018597388 x C
1
4
2 (x)

+ 0.00165923280553475766418121861007493 x C
1
4
04(x)

− 0.0000116849150281699572948996291216163 x C
1
4
6 (x)

+ 4.5303088506394388853845501270703 × 10−8x C
1
4
8 (x)

− 1.11623410748844105451625882776928 × 10−10x C
1
4
10(x)

+ 1.90550296957009549791418728733899 × 10−13x C
1
4
12(x)

− 2.38861692204435794092836019335553 × 10−16x C
1
4
14(x)

+ 2.29299953783708159991903279787185 × 10−19x C
1
4
16(x)

− 1.74020202094491142079186625047494 × 10−22x C
1
4
18(x)

+ 1.07047764587989141691542634270970 × 10−25x C
1
4
20(x)

− 5.44604885209780265146726077614161 × 10−29x C
1
4
22(x)

+ 2.32978017343783698464445765163641 × 10−32x C
1
4
24(x)

− 8.49800957174229357388497217989335 × 10−36x C
1
4
26(x)

+ 2.67439765035844790866837011922870 × 10−39x C
1
4
28(x)

− 7.33611068017397602824622074628328 × 10−43x C
1
4
30(x)

+ 1.76965188025225356497750305500631 × 10−46x C
1
4
32(x)

− 3.78333047168286059388389868568285 × 10−50x C
1
4
34(x)

+ 7.21804990626747371147788669564168 × 10−54x C
1
4
36(x)

− 1.23650210830378663827086788837057 × 10−57x C
1
4
38(x)

+ 1.91247206300887832512635377246951 × 10−61x C
1
4
40(x)

− 2.68399957497958828507307548313041 × 10−65x C
1
4
42(x) − 1 ≤ x ≤ 1 . (A10)

At the upper limit of applicability, x = 1, this gives 33-digit accuracy, J1(1) =
0.440050585744933515959682203718915 (Even at x = 8, this gives a result accurate to
16 digits, J1(8) = 0.2346363468539146). One obtains a different representation with similar
accuracy if one takes λ = 4 and 22 terms. The convergence is not any faster for either than
for the Chebyshev version (A5), so there is no strong motivation for programmers to switch
to this representation of Bessel functions.
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