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Abstract: Summation of infinite series has played a significant role in a broad range of problems
in the physical sciences and is of interest in a purely mathematical context. In a prior paper, we
found that the Fourier-Legendre series of a Bessel function of the first kind Jy(kx) and modified
Bessel functions of the first kind Iy (kx) lead to an infinite set of series involving 1F, hypergeometric
functions (extracted therefrom) that could be summed, having values that are inverse powers of the
eight primes 1/ (2i3j 5711113170197 ) multiplying powers of the coefficient k, for the first 22 terms
in each series. The present paper shows how to generate additional, doubly infinite summed series
involving 1 F, hypergeometric functions from Chebyshev polynomial expansions of Bessel functions,
and trebly infinite sets of summed series involving 1 F, hypergeometric functions from Gegenbauer
polynomial expansions of Bessel functions. That the parameters in these new cases can be varied at
will significantly expands the landscape of applications for which they could provide a solution.

Keywords: Bessel functions; Fourier-Legendre series; Laplace series; Chebyshev polynomial expansions;
Gegenbauer polynomial expansions; computational methods; Jacobi expansions; hypergeometric series
summation

MSC: 33C10; 42C10; 41A10; 41A50; 33F10; 65D20; 68W30; 33C45

1. Introduction

The summing of infinite series has played a key part in a broad range of problems
in the physical sciences, from self-energy diagrams [1-3] to polarization [4]. See [5] for
an excellent review of the summation of divergent asymptotic expansions. In particular,
Mera et al. [6,7] and Pedersen et al. [8] use hypergeometric functions to sum series in
perturbation theory.

In the present paper, we focus on summing trebly infinite sets of series involving 1F,
hypergeometric functions. Historical antecedents of similar work include Chaundy [9],
who expressed products of oF; functions as infinite sums of ,F; functions, products of 1F;
functions and products of F, functions as infinite sums of 3F, functions, and products
of »F; functions as infinite sums of 4F3 functions. Additional combinations are found in
Burchnall and Chaundy [10], Henrici [11], Gasper [12], and Jain and Verma [13].

Slater expressed generalized Whittaker functions [14] (, F, functions having p > 1) as
sums of other generalized Whittaker functions, and a few other ,F, functions. Additional
forms of the latter are found in [15-21].

Of course, the Appell functions of the first through fourth kinds are defined [22] as
infinite sums over ,F; functions, while some Meijer G-functions [23] and certain Kampé de
Fériet’s functions may be expressed [24] as infinite sums over ,F; functions.

The final stop in this historical sketch is the expression of ,F; functions as finite sums
of other ,F; functions [25] that act as recurrence relations [26].

In a prior paper [27], I refined Keating’s [28] derivation of the coefficient set of the
Fourier-Legendre series for the Bessel function [y (kx) to be

In(ke) = Y apn (k) PL(x) M
L=0
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where
L-1,L-N <( i) kHZM)
an(k) = Vm(2L+1)27 YM=0 57z MIT(L1313))
L+2

% (1+(_1)L+2M+N)(%(L+-;M N))
o \/EZ*ZL*Z(ZL-H)kLiL*N L+N\/ L
- T(1(2L+3)) 1+ (D) (50) , )
x 2F3(2+2,2+1L+77——+1,§+ +1——)
=  ym2 222+ kLN (1 4+ (— 1)L+N)r(L+1)
x oB(+bLE+uL+3E-¥+1E+E+1-8)

of which the final two steps were new in the prior work [27]. I included the final form
using regularized hypergeometric functions [29]

2F3(a1,a2; by, b2, b3; z) = T(by )T (b2)T (b3) 2F3(a1, a2; b1, by, b3; 2) 3)

and canceled the I'(};) with gamma functions in the denominators of the prefactors. This
cancellation allows one to avoid infinities that arise whenever N > 1 is an integer larger
than L, and of the same parity, which would otherwise result in indeterminacies in a
computation when one tries to use the conventional form of the hypergeometric function.

After a further review of the literature, I found that Keating’s result (the first line above)
and my prior work (the second line above) are implicitly subsumed within Jet Wimp’s 1962
Jacobi expansion [30] of the Anger-Weber function (his equations (2.10) and (2.11)) since
Legendre polynomials are a subset of Jacobi polynomials, and the Bessel function ]y (kx)
is a special case of the Anger-Weber function J, (kx) when v is an integer. Wimp does not
mention the calculational difficulties that were resolved through the third form above.

For the special cases of N = 0, 1, the order of the hypergeometric functions is reduced
since the parameters are a4, = b3 and a; = by, respectively, giving

_ V/mil2=2L=2 (o1 1)KL L L
ao(k) = r(1(L+3)) (14 (=1)")( %
X ]F2(2+2/2+1 L+2r_%) (4)
. Ly’
= VA2t 2L+ DT (§+ )(1+( Dh) ()
x B(5+h5+10+3-8)
and Vit ~1272L-2 (o1 4 1)kE L+1y( L
ap(k) = r(3(2L+3)) (1+( ) )(%)

X 1F2(2 +1,%+2,L+* _%) (5)
= jl-ip-L- 2(2L+1)kLr(§+1)(1+(—1)“1)
« B(5+15+3L+3-5)

In each special case, the first form involving a hypergeometric function has no numerical inde-
terminacies, but I include the regularized hypergeometric function version for completeness.

The first 22 terms in the Fourier-Legendre series for Jo(kx) (1) are given in
Appendix A, with k = 1, as is an updated polynomial approximation created by expanding
the Legendre polynomials into their constituent terms and gathering like powers. Since
each Legendre polynomial in (A1) contributes to the constant term in both (A2) and (A3),
their sum is
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0.919730410089760239314421194080620 x (1)
—0.157942058625851887573713967144364 x 13x2-1),_,
+0.00343840094460110923299688787207292 1(35x% — 302 +3)_,
—0.0000291972184882872969366059098612566 x 1k (231x® — 315x* + 10522 —5) |
+ e = 1 (6)

rather than some other number close to 1. This may formalized in a theorem for these
summed series:

Theorem 1. For integer h and for any values of k,

o Vil 2 (14 ()Y L+)(E) L 1L 3. K
=1 2<+;+1,L+;—)kL
= r(3eL+3) 2 22 2 4
(P e
>< p—
' 7
h!%!(%>h hT(h+1)

within which h = 0 gives (6).

A researcher seeking to sum a series like this is likely to have the various factors
expressed in alternative ways. For instance, the expression (1 + (—1)!) in the first factor of
this equation restricts the sum to even values of L, which is sometimes indicated instead

as Y2, @) .... This restriction also means that the double factorial in the next line can
oL/2p(L 1
be alternatively expressed as (L — 1)!! = % The binomial (i) can alternatively
2

be expressed as a ratio of gamma functions, rli(LL :11))2, as can the Pochhammer symbols
7
(a), = r(r“(j;f ) In Equation (26) of the previous paper [27], the term in curly brackets was

~L2ly(1 _ L L
200 (? B 7)%—}1(_7)%—}:
L 1
(511,
because it used an alternative conversion of Legendre polynomials into ;F; hypergeometric
functions [31] (p. 1044 No. 8911.1) [32] (p. 468 No. 7.3.1.206).

This was proved in the prior work for general & by extracting specific powers of x
from the Legendre polynomials, most easily by converting them into F; hypergeometric
functions [31] (p. 1044 No. 8911.2) [32] (p. 466 No. 7.3.1.182) and thence into a finite sum
over ratios of Pochhammer symbols. For i = 1, the P,(x) through Py, (x) terms add to give

—1/4, the coefficient of x> term in both (A2) and (A3) if k = 1.
Including k # 1 poses no problem in (7) despite its appearance as the argument

given as

(8)

of the 15, (% + % ; % +1,L+ % ; —’2—2) function, as well as the existence of a kL factor in

the argument of the sum. It ends up contributing a very clean factor of k" to the right-
hand side of (7). I, thus, summed an infinite set of infinite sums of 1F, hypergeometric
functions, though I numerically verified only those with 0 < i < 42 (I had to take the upper
limit on the number of terms in the series >h + 74 in order to obtain a percent difference
between left- and right-hand sides that was <1033, because the first / terms in the series
do not contribute. For & = 0, an upper limit on the number of terms in the series >h + 44
was sufficient).
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I likewise summed an infinite set of infinite sums of 1 F, hypergeometric functions
derived from the Fourier-Legendre series for J; (kx) (1):

Theorem 2. For integer h and for any values of k,

N~

oo /(14 ()P 2L+ 1)27302( L) (B (1)
D : i
= r(eL+3))(-n+5-14)

(-9
x B(Lanlid e EY |
2\ Ty Ty

(-Dh2=2-1

WL (1 +2)

©)

The question naturally arises as to whether one can derive such a summed infinite
series based on other polynomial expansions. In the following, one may answer in the
affirmative for both Chebyshev and Gegenbauer polynomial expansions of Bessel functions.

2. Summed Series Involving 1F, Hypergeometric Functions from Chebyshev
Polynomial Expansions of Bessel Functions

We wish to prove the following theorem for the summed series derived from Cheby-
shev polynomial expansions of the Jy(kx) Bessel function:

Theorem 3. For integer h and for any values of k,

o (-1 (1-L) (L)

1 K2
L—h . LAY YIS
LIT(L+1)(L —h)!(1—2L);_, 15 <L+ 2,L+1,2L+1, 1 )k

L=0

(—1)h2=2" ),
e (10)

Proof of Theorem 3. Wimp also applied his Jacobi expansion [30] to find Chebyshev poly-
nomial expansions of Bessel functions, since [31] (p. 1060 No. 8.962.3)

)
Py 7 (z) = (2n)2;1T2n(z). (11)

Unlike the section above, the following expansion (his Equations. (3.6) and (3.7))
applies to non-integer indices as well:

]V(kx) = (kx)v i CLV(k)TZL(X) . —1<x<1 (12)
L=0

Since what one is expanding in Chebyshev polynomials is the function J, (kx) (kx) ™",
the coefficients can only be given by the orthogonality of the Chebyshev polynomials if we
include the full function in the defining integral,

Cuafl) = B2 [ () 1))

7T

1
V1 —x?

TzL(x) dx P (13)

which Wimp finds to be

_ (_1)Lk2L274L7V(2_5L0) 1. L2
CLV(k) - L'F(L+1/—|—1) 1F2(L+§/L+V+1/2L+1,—I) . (14)
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The first 22 terms in the Chebyshev polynomial expansion of Jo(kx) (12), with k =1
and 8, are given in Appendix A.2.

Since the constant term of every Chebyshev polynomial has magnitude one, and
alternating sign, the sum of these times the coefficients—ajy, in Clenshaw’s convention in
which sums having a single prime indicate that the term with suffix zero is to be halved—
is simply

Y (1) ay =1. (15)

Clenshaw has, thus, given the first of the summation rules we wish to derive.

The general-h proof follows that of the prior paper. In order to sum the infinite set of
infinite sums of ;1 F, hypergeometric functions derived from the Fourier-Legendre series
expansion of Bessel functions (7) and (9), we extracted specific powers of x by converting
Legendre polynomials into »F; hypergeometric functions [32] (p. 468 No. 7.3.1.206). The
equivalent conversion for Chebyshev polynomials is

1 1
TZL(x) = 22L_1X2L ZFl (2 - L, 7L; 1- 2L; xz) [1 + 5L0] . (16)

Note that in the above,  have augmented [32] (p. 468 No. 7.3.1.207) and [33] with the
factor [1 + J1¢] that allows the conversion to be extended downward from their restriction:
L > 0. When multiplied by the equivalent factor in Wimp’s Chebyshev expansion (14),
one obtains (2 — d1¢)[1 + d19] = 2 for all L. This is a strong argument for using the “sums
should simply be sums” convention over Clenshaw’s for the present analytical work.

The final step in the proof is to convert each ,F; hypergeometric function into a finite
sum over ratios of Pochhammer symbols times inverse powers of x. (Let us use m for the
summation index). One finds that, of the finite sum in (16) for a given L, the only term that
contributes a power x?" is

Lp x2m (% - L)m(—L)m

22l 12t 1+ 610, 17
m:ZL;_h m!(1—2L), [+ 1o} 17
which may be more compactly written as
1
2 L) (=L
2
92L—1,2L-2(L—h) ( )L—h [1+dr0] - (18)

(L=m!(1=2L)

Noting that multiplying the factor (2 — dr)from (14) by the above [1 + d1] gives
another factor of 2 for all L, which completes the proof of (10). O

To numerically verify the lowest 43 summed series for k — 8, one has to take the upper
limit on the number of terms in the series >k + 18 in order to obtain a percent difference
between left- and right-hand sides that is <1033, because the first & terms in the series
do not contribute. For k — 5, this reduces somewhat to >h + 15. For h = 0, one needs
24 terms and 20 terms, respectively.

The first 22 terms in the Chebyshev polynomial expansion of J; (kx) (12), with k =1
and 8, are given in Appendix A.2. The consequent summed series associated with the
power x?*1 in the Chebyshev expansion (12) is given in the following theorem:

Theorem 4. For integer h and for any values of k,

x (71)L2_2L_1(% - L) (=L)r-n 1 2
L—h 2L+1 1, Kk
LT 2)(L— ) —20), " 1F2<L+2,L+2,2L+1, 4)

L=1

(D221
CES (19
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Proof of Theorem 4. What changes in the proof as we move from v = 0 — 1 is contained
in the three factors

274L7V

2
)1F2<L+;;L+v+1,2L+1;—k) (20)

T(L+v+1 4

v—1

in the coefficient Cp, (k) of the defining series (12), while nothing does in the Chebyshev
polynomial that multiplies it. Thus, nothing changes in the transformations (16)—(18) except
that we now associate (17) and (18) with a power ¥ multiplied by (kx)". Indeed, we have
not only proved Theorem 4, but also its extension to a series associated with the power
x?'*V in the general-v case: [J

Theorem 5. For integer h and for any values of k and v,

o (D2 (I-L) (<L) . @
L—h 2L+v . .

R (L4 =20+ L, L4 v+ 1 -

L OL—ma-2D rlivens ! 2( ekt vt 4)

(=1)h2=271 oy
T (1 + 2)

(21)

To verify the lowest 43 summed series for k — 8, one generally has to take the upper
limit on the number of terms in the series >h + 20 in order to obtain a percent difference
between left- and right-hand sides that is <1033, because the first & terms in the series
do not contribute. For k — 5, this reduces somewhat to >h + 16. For h = 0, one needs
23 terms and 20 terms, respectively.

For large indices, such as v = 17, for instance, with 1 = 5, k = §, the two sides of (21)
sides diverge after 45 digits: —1.335586213327781269795862205505422996145960793 x 10~7.
For small values of v, however, neither side gives an accuracy beyond the 13th post-decimal
place in the computer algebra program Mathematica 7 despite a command to do so, giving
—68.7857424612620 for h = 5, k = 8, and v = 0.17. Complex values of v likewise gave
only 14 decimal placers in Mathematica, such as 1.15092097688009 + 1.83846320788943: for
h =5,k =8,and v = 17 + 30.3i. Mathematica 13 likewise gives this more limited, but still
excellent, accuracy.

In the prior paper [27], we noted that because the modified Bessel functions of the
first kind Iy (kx) are related to the ordinary Bessel functions by the relation [31] (p. 961
No. 8.406.3),

In(z) =i "], (iz), (22)

one merely needs to multiply by i =" and set k = i in (2) to obtain the Iy (x) Fourier-Legendre
series. Furthermore, one sees that Iy expressed in powers of x is simply the Jy version
with all of the negative signs reversed. This is not true of (1) because the arguments of the
Legendre polynomials do not undergo x — ix since they derive from the definition of the
Fourier-Legendre series (1). The k-dependence is entirely within the coefficients arn (k).

Therefore, the Iy Legendre series expansion leads to no new set of summed series since
these would simply be (7) with k = ix. This is also the case for a Chebyshev expansion.
Clenshaw [34] confirms this for & = 0 on pp. 34-35.

3. Summed Series Involving 1F, Hypergeometric Functions from Gegenbauer
Polynomial Expansions of Bessel Functions

We wish to prove the following theorem for summed series derived from Gegenbauer
polynomial expansions of the Jo(kx) Bessel function:

Theorem 6. For integer h and for any values of k and A,
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o (=22 (L)(A+3),, (L+A) N ! @
Y . . 2L k 1F2<L+2;L+1,2L+/\+1;—4)
= \/Eh!(j)h<L+i)%(L+/\)(2A)2L(2L+22\)2LB(/\,L—|—1)
__1\hn—2h}2h
_ (=127 )

T TRT(h+1)

va(k)

Proof of Theorem 6. Although he does not explicitly do so, one may use Wimp’s Jacobi ex-
pansion [30] to find Gegenbauer polynomial expansions of Bessel functions, since [31] (p. 1061
No. 8.962.4)

(A1), @)
(2A)2n

Like those in the second section, the following expansion applies to both integer and
non-integer indices:

(24)

2n

Ju(kx) = (kx)¥ i b, (K)Ch (x), —1<x<1 (25)
L=0

where the coefficients are given by the orthogonality of the Chebyshev polynomials,

_ 22 12L) (2L + A)T(A)?
bry(k) = nT (2L + 2A)

/_11 (]V(kx)(kx)ﬂ’) (1 — xz) 7%+AC2AL(x) dx, (26)

as

(—1)La2lo2l—v ()\ + %>

VT (2A)o1 (2L + 201 (L + %)V 1

oL B(L+32L+A+1,L+v+1-F) 27)

2

The first 22 terms in the Gegenbauer polynomial expansion of Jy(kx) (25) are given
in Appendix A.3, with k = 1 and arbitrarily taking A = %. One could, of course, test the

technique using any value of A, but since T, (z) = JvC)(z) and P, (z) = CV% (2), the choice
A= 411 seemed like the next most interesting value.

To extract the powers, we use the conversion for Gegenbauer polynomials that is
equivalent to (16), which is [31] (GR5 p. 1051 No. 8.932.2)

(-D*
(L+A)B(A,L+1)

1
Cop(x) = 2 <—L, L+A; 2;x2> . (28)
The final step in the proof is to convert each ;F; hypergeometric function into a
finite sum over ratios of Pochhammer symbols times powers of x. (Let us use m for the
summation index). We find that, of the finite sum in (28) for a given L, the only term that

contributes a power x? is
_1\L h 2m(__
(=1) y X (=L)m(L+A)m ) 29)
(L+A)B(AL+1) &= m!(%)
m
which may be more compactly written as
-1t (—L)(L
(1) M (=L)p(L +A)n (30)

CFVBALED w(}) '
h
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which completes the proof of (23). O

To verify the lowest 43 summed series for k — 8, one generally has to take the upper
limit on the number of terms in the series >k + 20 in order to obtain a percent difference
between left- and right-hand sides that is <1033, because the first & terms in the series
do not contribute. For k — 5, this reduces somewhat to >h + 16. For h = 0, one needs
23 terms and 20 terms, respectively.

This theorem has an identical right-hand side as for the Legendre (7) and Cheby-
shev (10) versions, and it holds for every value of A. That is, we have just summed an
infinite set of infinite sets of infinite series involving 1F, hypergeometric functions. To see
how this plays out in practice, consider two extreme values, A = 2¥2Y. For h = 1 (associated
with x2) and A = 272, the first eight terms sum as

—0.23477602708172(?679198861338236978
—0.0149856953860168611951004494702182
—0.000236617512932378657466894715711978
—1.653516950294282858347187372908306 x 107° . (31)
—6.486087810927263603219843086719685 x 10~?
—1.62636408715893081661576487444697 x 10~ 11
—2.82986734360173162046207736379133 x 10714 — . ..
= —0.24999999999999996
For A = 2%, the second term is almost sufficient by itself:
0
—0.249999955296648756645694568085746
—4.470334680250094078684477109090418 x 10~8
—4.44085305583632491122417076683932 x 10~ 14
—3.08808728006191746252089269280760 x 1022 . (32)
—1.65656014384509551797626946530621 x 10~2°
—7.24073285415562941500526940820453 x 1037
—2.67164795422661275973040680548870 x 1044 — . ..
= 0.250000000000000000000000000000000

The final theorem we wish to prove is for series associated with the power x?'+¥
derived from the Gegenbauer polynomial expansion of J, (kx), the general v case, which
may be written as follows:

Theorem 7. For integer h and for any values of k, A, and v,

(~1)222r (—L)y (A+ F) (L+A),

kZL-H/
=0 NG (%)h(L +2) @A) (2L +2A)r (L + %)m B(A,L+1)
2

1 k>
X 1F2(L+2;2L+/\+1,L+1/+1;—4)
(_1)h272h7vk2h+v

B T UEES 33
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Proof of Theorem 7. One may build the general case by examining what must be done to
sum the series associated with the power x?*1 derived from the Gegenbauer polynomial
expansion of J;(kx), whose 22-term Gegenbauer polynomial expansion we display in
Appendix A.3, with k = 1 and again arbitrarily taking A = 411'

What changes in the proof as we move from v = 0 — 1 is contained in the three factors

22L—1/ 1 k2

——1b(L+ 2L+ A+, L+v+1;——
1 2 4

(L+1) .,

vty

in the coefficient by, (k) of the defining series (25), while nothing does in the Gegenbauer
polynomial that multiplies it. Thus, nothing changes in the transformations (28)—(30) except
that we now associate (29) and (30) with a power x?" multiplied by (kx)". This completes
the proof of the summed series associated with the power x?*" in the general-v case. [

(34)

v—1

To verify the lowest 43 summed series for k — 8, one generally has to take the upper
limit on the number of terms in the series >/ + 20 in order to obtain a percent difference
between left- and right-hand sides that is <1033, because the first i terms in the series
do not contribute. For k — 5, this reduces somewhat to >h + 16. For h = 0, one needs
23 terms and 20 terms, respectively.

The summed series derived from the Gegenbauer polynomial expansions of ], (x) may
be found for any value of v, not just integer values, given that it is derived from Wimp’s
Jacobi expansion [30]. Thus, we have just summed an infinite set of infinite sets of doubly
infinite series involving 1 F, hypergeometric functions since the expression holds for every
value of A and holds for every value of v.

Since T (z) = $vCY(z), by setting A = 0 in (33) one may obtain a modest variation on
the form given in (21), since we here use a »F; hypergeometric function whose argument is
x? in (33) and used a »F; hypergeometric function whose argument is x 2 to prove (21).

An extension of the Legendre sets (7) and (9) to larger integer values of v is not obvious,

1
but one can obtain such a form directly from (33) since P, (z) = C? (z), which applies even
for non-integer values of v.

4. Conclusions

I have shown how to sum doubly infinite sets of infinite series involving 1F, hypergeo-
metric functions, derived from Chebyshev polynomial expansions of Bessel functions of the
first kind J, (kx), and the trebly infinite sets of infinite series involving 1 F, hypergeometric
functions from the Gegenbauer polynomial expansions of [, (kx). The utility of any one
of these summed series for future researchers is, of course, not guaranteed, but given the
relative paucity of infinite series whose values are known (e.g., 24 pages in Gradshteyn
and Ryzhik compared to their 900 pages of known integrals), one hopes that adding such
multiply-infinite sets of infinite series of |F, functions whose values are now known will
be of use to some.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

In this Appendix, we display series expansions that could be used to provide computer
programs with 33-digit accuracy, matching the IEEE extended precision in some compilers.
These high-accuracy results are given here because they could needlessly distract the reader
from the main point of the paper: summing infinite series. They are here to satisfy the
interest of readers wishing to verify some detail in the main body of the paper and also
because of their intrinsic interest.
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Because of this focus, we will note only a few papers of interest in the vast field
of computational research. Khajah and Ortiz [35] provide tables of somewhat higher
accuracy (10~%) for some elementary functions like the exponential function. Vujevic
and Modri¢ [36] give highly accurate algorithms for the computation of complex-valued
Bessel functions, as do Georgieva and Hofreither [37]. Yuste and Abad [38] give an iterative
method to obtain approximations to Bessel functions J,(x) while Karatsuba [39] focuses on
both increased accuracy and large arguments. Kislenkov [40] gives grid-oriented algorithms
for computing modified Bessel functions, as does Takekawa [41] for parallel processing.
For other sorts of functions, one finds a thorough review of recent work in approximation
theory in Rao, Ayman-Mursaleen, and Aslan [42].

Appendix A.1. Legendre Series for Jo(kx)

The first 22 terms in the Fourier-Legendre series for Jo(kx) (1), with k = 1, were given
in a prior paper [27]

Jo(x) = 0.9197304100897602393144211940806200P (x)
—  0.1579420586258518875737139671443637P; (x)
+ 0.003438400944601109232996887872072915P, (x)
— 0.00002919721848828729693660590986125663 P (x)
+  1.317356952447780977655616563143280 x 10~ Py(x)
—  3.684500844208203027173771096058866 x 1010 Pyo(x
+  7.011830032993845928208803328211457 x 10~ '3 Py, (x
—  9.665964369858912263671995372753346 x 1010 Pp4(x
+  1.009636276824546446525342170924936 x 10718 Pj¢(x
—  8.266656955927637858991972584174117 x 1022 Pyg(x
+  5.448244867762758725890082837839430 x 102° Pyy(x
—  2.952527182137354751675774606663400 x 1028 Py (x
+  1.338856158858534469080898670096200 x 10731 Py (x

(x)
(x)
(x)
(x)
(x)
(x)
(x)
(x)
—  5.154913186088512926193234837816582 x 107 Pys(x)
4+ 1.706231577038503450138564028467634 x 10738 Pyg(x)
—  4.906893556427796857473097979568289 x 10™*? Py (x)
4+ 1.237489200717479383020539576221293 x 10~* P3(x)
—  2.759056237537871868604555688548364 x 10™%° Pyy(x)
+  5.477382207172712629199714648396409 x 10723 P3¢ (x)
—  9.744200345578852550688946057050674 x 10~ Psg(x)
4+ 1.562280711659504489828025148995770 x 10~ Pyy(x)

(x)

—  2.269056283827394368836057470594599 x 10%* Py (x) . (A1)

In Equation (15) of the prior work [27], the last line above mistakenly had the wrong
power, —2.269056283827394368836057470594599 x 10~% Py, (x), though the Fortran code
in the appendix was correct: -2.269056283827394368836057470594599 e-64 P(42 , x ). Since
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Jo(x)

1

1

all calculations in the prior work used the correct power—with the error only appearing
after the editor requested a formatting change in the equation—this correction had no

impact on any results in that paper.

That paper also expanded the Legendre polynomials into their constituent terms and

gathered like powers in (A1) to give an updated polynomial approximation,

1.000000000000000000000000000000000000 x°
0.2500000000000000000000000000000000000 x>
0.01562500000000000000000000000000000000 x*

0.0004340277777777777777777777777777777778 x°

6.781684027777777777777777777777777778 x 1076 x8

6.781684027777777777777777777777777778 x 108 x10
4.709502797067901234567901234567901235 x 1010 x12
2.402807549524439405391786344167296548 x 1012 x14
9.385966990329841427311665406903502142 x 101> x1©
2.896903392077111551639402903365278439 x 1017 x18
7.242258480192778879098507258413196097 x 1020 x2°
1.496334396734045222954237036862230599 x 10~22 x?2
2.597802772107717400962217077885817011 x 102> x4
3.842903509035084912666001594505646466 x 1028 x2
4.901662639075363409012757135849038860 x 103! x?8
5.446291821194848232236396817610043178 x 10~3* x>
5.318644356635593976793356267197307791 x 10~ x2
4.600903422695150498956190542558224733 x 10740 x3*
3.550079801462307483762492702591222788 x 1043 x30
2.458504017633176927813360597362342651 x 1046 x8
1.5365650110207355798833503733514641567 x 1047 x40

8.7106860035189091830121903251216788929 x 1023 x*2

2 6 8 10 12 14 16

2 xt
T2 8

18 20

x x
21432 163252

X X X
220 34 52 o 222 34 52 72 + 230 34 52 72
26

1 + +

X X X22 JC24 X

232385272 + 236385472 o 238385472112 + 2443105472112 o 2463105472112132

X28 xSO 32
2503105474112132 ~ 2523125674112132

34 36

X

+ 2623125674112132

X 38

2643125674112132172
40

X X
2683165674112132172  2703165674112132172192
42

+

X X
2763165874112132172192  2783185876112132172192

(A2)
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Jo(x)

1%

The latter form is simply an inverse prime version of the first 22 terms of the well-
known series representation [31] (p. 970 No. 8.440)

( 1)k(%)2k+v

Ju(x) = l;) Mkt v 1) (A3)

(There is a fascinating analog to this result arising from studies of the Bessel difference
equation [43]).

Appendix A.2. Chebyshev Series for Jo(kx) and J1(kx)

The first 22 terms in the Chebyshev polynomial expansions of Jo(kx) (12), with
k=1, are

0.8807255791026085285666716907449594 Ty (x )
0.1173880111683243194062454639255572 T» (x )
0.001873212503719194837870878203929524 T} (x)
0.00001314542297029262107182993119503582 T (x)
5.167242966801437053171032359951600 x 10~ Tg(x)
1.297218234854703963093975334759865 x 1010 Tyo(x
2.258840234607001930320227243984034 x 1012 Ty, (x
2.887621352768057764464058481597816 x 10716 Ty, (x
2.824848256251380023621233536051211 x 101 Ty6(x
2.182699061309088513825726048290021 x 10722 Tig(x
1.365739183823366078819378297317202 x 102> Too(x
7.061125701699520180896051661348297 x 10~2° Ty (x
3.067182727248138051740188483703613 x 1032 Thy(x

(x)
(x)
(x)
(x)
(x)
(x)
(x)
(x)
1.135092833714987500414966932525964 x 1073 Thg(x)
3.621712251769489873248477093327996 x 10~ Tog(x)
1.006555480914216913705134524512148 x 1042 T3y (x)
2.458540787185135207907001122952213 x 1046 Ty (x)
5.319086471776732419423425079488687 x 1070 Ty (x)
1.026433533066142649943339190916424 x 107> Ts4(x)
1.777651158721406916387585852076982 x 10~ Tsg(x)
2.778406892667094352173643013096289 x 10701 Tyo(x)

(x)

3.938717221679009654181092747102998 x 10~% Typ(x) —1<x<1. (A4)
At the upper limit of applicability, x = 1, this gives 33-digit accuracy, Jo(1) =
0.765197686557966551449717526102663 (Even at x = 8, this gives a result accurate to
14 digits, Jo(8) = 0.171650807137554).
If one follows Clenshaw’s [34] (p. 30) lead and instead takes k = 8, one obtains
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Jo(x)

1%

0.3154559429497802391275502330199159 /2 T (x/8)
0.008723442352852221290793322469895429 T> (x /8)
0.2651786132033368098670778235911043 Ty(x/8)
0.3700949938726497790334193036836753 Ty(x/8)
0.1580671023320972612777155496720475 Tg(x/8)
0.03489376941140888516317328987958171 Ty (x/8)
0.004819180069467604496778380314312767 Ty (x/8)
0.0004606261662062750475036418408154116 Ty4(x/8)
0.00003246032882100508080625560924485746 Tig(x/8)
1.761946907762150749459765966407618 x 10~° Tyg(x/8)
7.608163592418781866973786230699492 x 1078 Ty (x/8)
2.679253530557672898335371633826306 x 107 Thy(x/8)
7.848696314479464416529503905101749 x 101! Toy(x/8)
1.943834686737016570620688424557753 x 1012 Tye(x/8)
4.125320595634373932612618412757652 x 101 Tag(x/8)
7.588508125447546337619860819329317 x 10716 T3y (x/8)
1.221851587396141103441861977201729 x 10~ T3y (x/8)
1.736789607700236768293730242713393 x 107 Ta4(x/8
2.195793203319560353679493897698779 x 102! Tz6(x/8

(x/8)
(x/8)
2.485566419364292266537947175258836 x 1072 Tzg(x/8)
2.534024606818972691102585769070259 x 1072 Tyg(x/8)

(x/8)

2.339085627055744706712023052059754 x 1028 Typ(x/8) —8<x<8. (A5)
where the bolding indicates the digits he displays (I have included an extra digit in some
places to allow for appropriate rounding to his displayed digit). Clenshaw follows the
usual convention (noted on his p. 7) for sums having a single prime to indicate that the
term with suffix zero is to be halved (and if the prime is doubled, the highest term in the
sum is also halved), as indicated in the first line of (A5). This factor-of-two difference
arises from the normalization of the orthogonality relation for Chebyshev polynomials [31]
(p. 1057 No. 8.949.9):

. 0 m#£n

/71 Tn(x)Tm(x)ﬁ: /2 m=n#0 . (A6)

T m=n=20
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Ji(x)

1

Since I am comparing Chebyshev expansions with both Legendre and Gegenbauer
expansions, whose orthogonality relations [31] (p. 1043 No. 8.904 and p. 1054 No. 8.939.8,
respectively) have no such third branch, all derivations are made much more straight-
forward if one adopts the perhaps iconoclastic notion that sums should simply be sums
and displays the first line of (A5) as 0.1577279714748901195637751165099580 Ty(x/8). Tu-
makov [44] also follows this convention.

At the upper limit of applicability, x = 8, (A5) gives 27-digit accuracy, J(8) =
0.171650807137553906090869408.

The first 22 terms in the J; (x) Chebyshev expansion (12) with k = 1 are

0.4697097923433853441348972113538690x T (x)
0.02997305358809894507094444118401190x T (x)
0.0003154953401761330198307113032804328x Ty (x)
1.653528591827665010389921139509211 x 106 xT¢(x)
5.188889110114106792954599573058750 x 107 xTg(x)
1.084245120515337519078432469943857 x 1011 x Ty (x
1.617069529094057869823401928778476 x 1014 x Ty, (x
1.807903976592524723392831520195131 x 10717 xTy4(x
1.571543945521723529179083698815771 x 1020 xTy4(x
1.092591641508275242057122355553840 x 10723 xTig(x
6.213791797992245609440469557453575 x 1027 xToo(x
2.944495823790016197177000782247634 x 10730 xToy (x
1.180496667850251944095467073781979 x 10733 xToy(x

(x)
(x)
(x)
(x)
(x)
(x)
(x)
(x)
4.056318036675064198378921654189439 x 10~ xTpe(x)
1.207866649436639014639549760562102 x 1040 xTog(x)
3.146932355403406273096620834992699 x 10~** xT3(x)
7.233957871819338833114752440681911 x 10~48 xPs) (x)
1.478064332069756593976138661523809 x 107! xTay(x)
2.702029827426988943325772959142285 x 10> xTs4(x)
4.445451117805773022660415901032200 x 10~ xT3g(x)
6.617045043041664246398527226007578 x 1073 xTyo(x)

(x)

8.953842205918258708007813804592169 x 107%7 xTyp(x) —1<x<1. (A7)
At the upper limit of applicability, x = 1, this gives 33-digit accuracy, J;(1) =
0.440050585744933515959682203718915 (Even at x = 8, this gives a result accurate to
16 digits, J;(8) = 0.2346363468539146).
If one follows Clenshaw’s [34] (p. 31) lead and instead takes k = 8, one obtains
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J1(x)

1%

1.296717541210529841673374221959245/2E Ty

)

®| &R

(
1.191801160541216872507032741866674— TZ(%)
1.287994098857677620382580899489350— T4(%)
0. 6614439341345432527728770946844658 Te (x)
§>
0.02917552480615420766201489599627591 — Tlo(%)

0.1777091172397282832823229884383241 — T(

0.003240270182683857466456539040415511ngz(g)

0.0002604443893485806813446141 103993105%7"14(

| R | R

0.0000158870192399321339310461547076296gT16( )

7.617587805400348945692364404508548 x 107 = 8 “Tg(

~— ~—

2.949707007277718590826100996112190 x 10~ 8 X 8 =T

9.424212981567078718578173809056009 x 1010 * gTzz

2.528123664278402657192198903253796 x 1011 %TM

~—~ o~~~
~— ~—

5.777404191721418742769122933910453 x 10_13 3 =T

| R ®| R 0| R 0| R

~—

1.138571520281115385303951328717824 x 10~ 14 % b

oo
—

1.955357833295237111457156049739834 x 1010 %T 20

2.953014639834346609722058184262545 x 1018 g 3

]
)

o)
—~ —~ —~ —~ —~ —~ —

N
0| R 00| R 00| R O R W] R O R w| R

3.952934614113459501768862170679755 x 1020 ng

4.723067439441036227167716497766825 x 1022 gT3

o]

—_ —  — ~—

5.068481382508651457731548219527637 x 10~ 2* ng,

~—

o

4.912426488809207456168647750374833 x 102 §T4

4.321688707060755263766813871186111 x 1028 gﬂz —8<x<8. (A8)

~—

where the bolding indicates the digits he displays (I have included an extra digit in some
places to allow for appropriate rounding to his displayed digit). If one takes the iconoclastic
route of not following his convention (noted on his p. 7) for sums having a single prime
to indicate that the term with suffix zero is to be halved, the first line above would be
0.6483587706052649208366871109796227 5 Ty ().

At the upper limit of applicability, x = 8, (A8) gives 29-digit accuracy, [1(8) =
0.23463634685391462438127665159.

Appendix A.3. Gegenbauer Series for Jo(kx) and ] (kx)

The first 22 terms in the Gegenbauer polynomial expansions of Jy(kx) (1), with k =1
and arbitrarily taking A = %, are
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I

(x9o4o78771191585521024227636544096<:§(x)
(1377480902332903752477356198652003<:§(x)
(x00985645918454006348253321451683292(:f(x)
(10000929144245327682841642709978007872<:§(x)
4.51192238929050409752370668969243 x 10~/ cé(x)
1.33557953986611692879627373122257 x 107 cﬁx x)
266185765952711910618049951726347><10—12cq3(x)
3.81525698311458688534308130184138 x 10~ 15(:@(x)
4.12174698882181605290995488668659 x 1018 Cfﬁ(x)
3.47649878544013257006577318271996 x 10~ 21cgg(x)
2.35284611436757064520926642520417 x 10~ 24cg%(x)
1.30601535036874068380434807654702 x 10~% cga(x)
6.05330821302322601332159315076677 x 10~ 31<;g(x)
2.37803900637432785965238868426667 x 10~ 34c5%(x)
8.01904904818064037541914772609834 x 1038 cg;(x)
2.34648500711595153019299896447757 x 10~ 41(:§Kx)
6.01437661018790357782076353076573 x 10~ 45(;§(x)
1.36150461807454631533129344677808 x 1048 cg4(x)
2.74196263898788782515776484348033 x 10_52(2%(x)
4.94454559738665023143625856030709 x 10~°° c4 2 (x)
8.03022232133135996468784524426669 x 10~ éocgb(x)
(x)

1.18066972928855334355199708640780 x 1063 szz X

—1<x<1. (A9)

At the upper limit of applicability, x = 1, this gives 33-digit accuracy, Jo(1) =

0.765197686557966551449717526102663 (Even at x =

8, this gives a result accurate to

15 digits, 0.171650807137554). The convergence is not any faster than for the Chebyshev ver-
sion (Ab), so there is no strong motivation for programmers to switch to this representation
of Bessel functions from the well-established computer codes for Chebyshev expansions.
One obtains a different representation that has similar accuracy with 22 terms if one takes
A = 4, but Figure Al shows that the convergence is slower until about twelve terms are

included.
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1/Log[Abs|Error]]

-0.05

-0.10

-0.15

-0.20

Figure Al. One divided by the logarithm of the absolute value of the error in the Gegenbauer
expansion (A9) of Jo(kx) withk = 1 and A = % (solid line) when successively more terms are
added. One sees little difference in convergence from the Chebyshev version (A4) (dotted line). The
Gegenbauer expansion (A5) of Jo(kx) with A = 4 (dashed line), on the other hand, displays somewhat
slower convergence if one includes a dozen terms or fewer.

There is, however, interesting research into the utility of Gegenbauer expansions in an an-
alytical context. To note just three examples, Bezubik, Dabrowska, and Strasburger [45] derive
an expansion of plane waves ¢"€/7) into an infinite series over i" (a + 1) Jutm (r)C% ((€]7)),
and Elgindy and Smith-Miles [46] develop a numerical quadrature based on a truncated
Gegenbauer expansion series. A third example is Jens Keiner’s method [47] of converting
from one expansion in C}" (x) to another expansion in C]l-’ (x). However, neither the relative
numerical utility of Gegenbauer expansions, nor expansions in an analytical context will be
explored further in this paper since it focuses instead on summing additional infinite series
involving 1F, hypergeometric functions.

Turning now to Gegenbauer polynomial expansions of J; (kx) (1), with k = 1 and
arbitrarily taking A = 1, the first 22 terms are
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1
0.475683429275416807386224265471041 x C; (x)

~
—
—
=
~—
12

— 0.0962237678006581825132637018597388 x Czi (x)

+ 0.00165923280553475766418121861007493 x C§4(x)
— 0.0000116849150281699572948996291216163 x Cé (x)
4+ 4.5303088506394388853845501270703 x 10 8x Cé (x
—  1.11623410748844105451625882776928 x 10~ 10x

(=)

4+ 1.90550296957009549791418728733899 x 10~ 3x

N

—  2.38861692204435794092836019335553 x 10~ 10x

~

4+ 2.29299953783708159991903279787185 x 10~ %x

o)}

—  1.74020202094491142079186625047494 x 10~ %x

(e}

+  1.07047764587989141691542634270970 x 10~ x

(=)

—  5.44604885209780265146726077614161 x 10~ *°x

N

4+ 2.32978017343783698464445765163641 x 1032 x

—  8.49800957174229357388497217989335 x 10 30x

=)

+  2.67439765035844790866837011922870 x 10~ x

(e5)

—  7.33611068017397602824622074628328 x 10~ *x

S

4+ 1.76965188025225356497750305500631 x 1040 x

N

—  3.78333047168286059388389868568285 x 10~ 'x

h g

g
o~ o~ o~ o~~~ A~~~ T~~~ e~ T~~~ ~—

+  7.21804990626747371147788669564168 x 10 >*x

(o)

—  1.23650210830378663827086788837057 x 10~ x

O O O 0O 0O O O O O O O O O 0O O 0O
[e ¢}

= e Qe @i W s W W opge N s N isje Nsje N D e =2 2 = =g =ge

+  1.91247206300887832512635377246951 x 10~ %' x

(=)

—  2.68399957497958828507307548313041 x 10~%®x Cl,(x) —1<x<1. (A10)

At the upper limit of applicability, x = 1, this gives 33-digit accuracy, J1(1) =
0.440050585744933515959682203718915 (Even at x = 8, this gives a result accurate to
16 digits, J1(8) = 0.2346363468539146). One obtains a different representation with similar
accuracy if one takes A = 4 and 22 terms. The convergence is not any faster for either than
for the Chebyshev version (A5), so there is no strong motivation for programmers to switch
to this representation of Bessel functions.
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