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Abstract. In 1940 Kramers demonstrated theoretically the influence of dissipation on the rate of 

the thermal escape of a Brownian particle from metastable state. He pointed out the nuclear fission 
process as a possible application of his results. In his derivation only the canonical ensemble and 
harmonical shapes of the potential were considered. We generalize the Kramers results for the case 
of the microcanonical ensemble which is more relevant for the fission process and derive the 
corrections to the original Kramers formulas accounting for the anharmonic character of the 
collective potential near its quasistationary and barrier points. The finite “distance” between the 
barrier and scission points is accounted for as well. We perform quantitative study of the agreement 
between the generalized and corrected Kramers fission rates and the exact dynamical 
quasistationary rates in the case of typical fission potentials. 
 25.70.Jj,25.70.-z 

 
1. Introduction 
Two remarkable papers had been published in the very same year of 1909. First, Hans 
Geiger and Ernest Marsden had performed the decisive experiments [1] that had lead 
Ernest Rutherford to the discovery of atomic nucleus [2]. Second, Jean Perrin reported his 
experiments [3] confirming the theory of Brownian motion developed by Albert Einstein 
[4]. At that time these two physical systems, atomic nucleus and Brownian Particle (BP), 
seemed to have nothing in common. Indeed their sizes are 9 orders of magnitude different, 
the BP moves under the constant influence of the surrounding media whereas the excited 
atomic nucleus is isolated at least between the rare acts of emission of neutrons etc. 
    The revolutionary idea to apply the laws of the Brownian motion to the nuclear fission 
process was put forward by Kramers 30 years later [5]. In 1940 he obtained the formulas 
for the quasistationary thermal decay rate of a metastable state. The idea is that the BP, 
due to thermal fluctuations of its linear momentum, escapes from a shallow potential well 
to a deeper one. The intensity of these fluctuations is proportional to the friction parameter 
according to the Einstein relation. Evidently Ref. [5] was the first work in which the BP 
has been regarded not only as the real object, but as the physical model as well. The model 
is described mathematically by either the stochastic Langevin equations or by the partial 
differential equations (the Fokker-Plank equation or the Smoluchowski equation (SE)). 
    One visualizes the classical Brownian motion as the random changes of the Descartes 
coordinates and conjugate momenta of a comparatively large ball experiencing numerous 
outside strikes of the much smaller balls. The latter provide the thermostat whose 
temperature does not change as the BP moves. This corresponds to the Canonical 
Ensemble (CE). 
    Similarly, one can imagine the nucleus as the elastic shell inside which many small 
particles are moving and impinging the shell [6]. In this case the deformation parameters of 
the nucleus (e.g. its length from pole to pole) and the conjugate momenta play part of the 
dynamical stochastic variables. The nucleonic degrees of freedom form a heat bath 
(intrinsic subsystem) which is characterized by a thermodynamical potential and the 
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temperature. The total excitation energy of the system, E , is shared between the intrinsic 
and collective subsystems: . It is  that defines the temperature T  and thus int collE E E= + intE
the intensity of the fluctuations. For the excited nucleus in course of fluctuations of its 
shape the ratio  can easily reach several percents. In our work we restrict int/collE E
ourselves with the case of strong dissipation. Thus  is dominated by the deformation collE
(coordinate) dependent potential energy ( )U q  and for the intrinsic excitation energy  intE

equation  seems to be good approximation. In this case the temperature ( )int ( )E q E U q= −
becomes of course the deformation-dependent quantity. This corresponds to the 
MicroCanonical Ensemble (MCE) approximation. 

The fission rate, although not an observable, is the principal characteristic of the fission 
process (see [7] for the relation between the fission rate and the observables). In [5] 
Kramers derived several formulas for the decay rate and indicated the nuclear fission 
process as one of the potential application of his results. One of the Kramers formulas is 
widely used in modern nuclear physics (see e.g. Eq.(1) of [8], Eq.(20) of [9], Eq.(11) of 
[10]). Alternative way is to calculate the quasistationary fission rate (QSFR) by means of 
solving on grids the SE. The latter approach is more accurate but very time consuming. The 
difference between the Kramers fission rates and the QSFR was shown to reach 
approximately 20% [11 – 13]. This discrepancy was addressed in [14, 15]. The 20% 
inaccuracy is comparable to the quantum [16], non-Markovian [17, 18] and 
multidimensional effects [19] discussed in literature. 
    The aim of the present study is to find a way for diminishing the discrepancy between the 
analytical and dynamical rates down to about 2%. This value is comparable with the 
statistical errors of the QSFR achievable during a reasonable time of computer modeling. 
    This is an ambitious program, therefore only the one-dimensional overdamped motion 
corresponding to the symmetric fission at zero angular momentum is considered. The 
deformation dependence of the friction η  and inertia  is ignored whereas for the m
temperature T  (see also [15]) this effect is accounted for. 

 
2. Analytical formulas for the fission rate 
The nucleus shape is characterized by the elongation over the diameter of the spherical 
nucleus, . Initially all the nuclei are assumed to be concentrated near the quasistationary 
point . Three typical nuclei are considered possessing significantly different 
fission barrier heigh
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    The SE with the coordinate-dependent diffusion coefficient reads 
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Here  is the probability density. The drift coefficient  reads for the cases of the ( , )g q t 1D
CE and the MCE respectively: 
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1
1 dUD

dqη
= − ⋅    (CE),     1

1 ( ) dS dTD T q
dq dqη

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
   (MCE).  (2) 

 
In the case of the CE the temperature T  is calculated using the Fermi-gas relation at the 
quasistationary point, ( ) /c cT T E U− a= =  and is supposed to be deformation-
independent. In the case of the MCE the temperature depends upon the coordinate: 

( ) ( ) /T q E U q a⎡ ⎤= −⎣ ⎦ . 

    Following Kramers we used the flux over population method in order to calculate the 
fission rate. In the case of the CE it results in 
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This relation is implicit in [5] and we call it the Integral Kramers Formula (IKF). The IKF 
for the case of the microcanonical ensemble includes the entropy ( )S q  and reads 
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Geometry used in the derivation of (3) and (4) is illustrated by Fig. 1. These equations are 
not used in practical modeling of fission at high excitation energy. Instead the following 
approximate formulas are applied 
 

2 2

 2 2

1 exp
2

b c
O T

cc b

U Ud U d UR
dq dq Tπη

⎛ ⎞⎛ ⎞ ⎛ ⎞ −
= ⎜⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
− ⎟ ,   (5) 

 

(
2 2

 2 2 exp
2

b
O E b c

c b

T d S d S )R S S
dq dqπη

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.  (6) 

 
    These zero-order formulas are obtained by extending the limits of integration ,  and 

to minus/plus infinity, and expanding the potential (entropy) in the integrands up to the 
quadratic terms in 

cq bq

aq

cy q−  and bx q− . 
    Extending the potential further up to the 4-th order terms and accounting for the finite 

value of  results in the first-order formula (aq
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Here ( ) 1II
c cb T U

−
=  and 

1II
b bb T U

−
=  are the small parameters of our approach. The 

second-order formula 2 TR , also obtained by us; is rather cumbersome and is not presented 
here. The first- and second-order formulas for the MCE are in the process of derivation. 

 
3. Dynamical modeling and representation of results 
All Kramers formulas are approximate. The exact fission rate, been based on the solution of 
Eq.(010) on grids, reads 
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The initial probability density is chosen to have a Gaussian shape with the variance 2

0σ  
centered at . According to the very concept of the quasistationary decay, cq  f aR  must reach 
a time-independent value DR , which should be independent of the initial conditions. Fig. 2 
proves that this is really the case in our modeling. 
 

 
Figure 1. Schematic deformation dependence of 
the potential (arbitrary units). The coordinates 
corresponding to the absorptive border ( ), the 
saddle point ( ) and the metastable state ( ) are 
shown by thin vertical lines. The height of the 
potential barrier, , is indicated by two thin 
horizontal lines.  

aq

bq cq

bcUΔ

 
Figure 2. The time dependence of the fission 
rates calculated according to Eq.(10) at three 
values of 2

0σ . The rates reach the same 
quasistationary value DR  irrespectively of the 
width of initial coordinate distribution. 

2 / II
eq c cT Uσ = . 
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The approximate rates of Eqs.(3 – 7) must be compared with the exact quasistationary rate 
DR . As the excitation energy E  changes, the rates cover several orders of magnitude, 

whereas the difference between them is expected to be about 10%. Therefore it is 
convenient to characterize the deviation of an approximate fission rate  iR  from DR  by 
means of the fractional difference ( )   /i i D DR R Rξ = − . 
 
4. Numerical fission rates versus the analytical ones 
In Fig. 3 six typical examples of the dependence of the fractional difference upon the 
controlling parameter are presented. These correspond to the three nuclei with the realistic 
barrier heights and the saddle and scission point locations. Note that in the case of the 
canonical ensemble (panels a-c) /bc cU Tε = Δ  whereas for the microcanonical ensemble 
(panels d-f) cS Sbε = − . In all cases the absolute values of the fractional deviations 
become smaller at larger values of ε  as it should be expected.  

Let us first focus on the CE. For all three cases, 0 TR  exceeds DR  by more than 2% in 
the wide range of ε  ( 3 10ε< < ) where good agreement might be expected. In particular, at 

3ε ≈  the fractional difference 0 Tξ  increases up to 10% (see panels a) and b)). It is 
interesting that for lighter nuclei (when ba a bq q qΔ = −  decreases) the agreement between 
the 0 TR  and DR  improves. We attribute this effect due to mutual compensation of two 
errors in 0 TR  caused by ignoring baqΔ  and the higher derivatives (see details in [20]). In 
panels a) and b) I Tξ , 1 Tξ  and 2 Tξ  are rather close to each other providing acceptable 
accuracy at 3ε > . This is due to large value of baqΔ . As baqΔ  becomes comparatively small 
(panel c)), 2 TR  agrees with DR  worse than I TR  and 1 TR  do. 

For a given nucleus behavior of Oξ  and Iξ  for the MCE and CE is very similar. However 
the fission rates calculated using the constant temperature (which is not the case in the 
nuclear fission problem) and the constant excitation energy (which is true for the excited 
nuclei) are very different (see Figs. 5, 7, 8 of Ref.[15] for details). 
5. Conclusions 
The accuracy of the Kramers formulas for fission rate of heated nuclei has been 
systematically studied earlier in Ref. [11, 14, 15]. It was found that the integral Kramers 
formulas (3, 4) agree with the corresponding long time limits of the dynamical modeling 
significantly better than the zero-order approximation formulas (5, 6). In the present work 
we have gone beyond the zero-order approximation for the case of the canonical ensemble 
and have derived the formulas accounting for the first- and second-order corrections. 

The accuracy of the analytical formulas was studied for the case of overdamping by 
comparing with the dynamical decay rate (QDR, DR ). The latter was obtained by solving 
numerically the Smoluchowski equation (1). The maximum error of the QDR is 2%. 

Our results indicate that taking into account the higher derivatives of the potential and 
the finite value of the distance between the barrier and scission points, , in baqΔ 1 TR  results 
to significantly better agreement with DR  comparing to the conventionally used  O TR : the 
differences between 1 TR  and DR  is within the accuracy of the dynamical modelling (2%) 
when the fission barrier height becomes approximately thrice as large as the temperature at 
the quasistationary point. Further expanding of the potential resulting in the 2 TR  does not 
improve the agreement. 
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Figure 3. Fractional deviations of the approximate rates from the exact ones versus controlling 
parameter ε . Upper row of panels: canonical ensemble ( /bc cU Tε = Δ ), lower row – 
microcanonical ensemble ( c bS Sε = − ). 1000 MeV zsη = ⋅ . 
 

The zero-order Kramers formulas O TR  (5) and EOR  (6) are not acceptable unless one 
agrees with the 10% error. In order to reduce the deviation from the dynamical QDR down 
to 2%, one should apply either the integral formulas (3) and (4) or the first-order formula 
(7). However, the latter is represented by a simple analytical formula in contrast to the 
former, which require calculating the double integrals numerically. 
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