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Abstract. In 1940 Kramers demonstrated theoretically the influence of dissipation on the rate of
the thermal escape of a Brownian particle from metastable state. He pointed out the nuclear fission
process as a possible application of his results. In his derivation only the canonical ensemble and
harmonical shapes of the potential were considered. We generalize the Kramers results for the case
of the microcanonical ensemble which is more relevant for the fission process and derive the
corrections to the original Kramers formulas accounting for the anharmonic character of the
collective potential near its quasistationary and barrier points. The finite “distance” between the
barrier and scission points is accounted for as well. We perform quantitative study of the agreement
between the generalized and corrected Kramers fission rates and the exact dynamical
quasistationary rates in the case of typical fission potentials.
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1. Introduction

Two remarkable papers had been published in the very same year of 1909. First, Hans
Geiger and Ernest Marsden had performed the decisive experiments [1] that had lead
Ernest Rutherford to the discovery of atomic nucleus [2]. Second, Jean Perrin reported his
experiments [3] confirming the theory of Brownian motion developed by Albert Einstein
[4]. At that time these two physical systems, atomic nucleus and Brownian Particle (BP),
seemed to have nothing in common. Indeed their sizes are 9 orders of magnitude different,
the BP moves under the constant influence of the surrounding media whereas the excited
atomic nucleus is isolated at least between the rare acts of emission of neutrons etc.

The revolutionary idea to apply the laws of the Brownian motion to the nuclear fission
process was put forward by Kramers 30 years later [5]. In 1940 he obtained the formulas
for the quasistationary thermal decay rate of a metastable state. The idea is that the BP,
due to thermal fluctuations of its linear momentum, escapes from a shallow potential well
to a deeper one. The intensity of these fluctuations is proportional to the friction parameter
according to the Einstein relation. Evidently Ref. [5] was the first work in which the BP
has been regarded not only as the real object, but as the physical model as well. The model
is described mathematically by either the stochastic Langevin equations or by the partial
differential equations (the Fokker-Plank equation or the Smoluchowski equation (SE)).

One visualizes the classical Brownian motion as the random changes of the Descartes
coordinates and conjugate momenta of a comparatively large ball experiencing numerous
outside strikes of the much smaller balls. The latter provide the thermostat whose
temperature does not change as the BP moves. This corresponds to the Canonical
Ensemble (CE).

Similarly, one can imagine the nucleus as the elastic shell inside which many small
particles are moving and impinging the shell [6]. In this case the deformation parameters of
the nucleus (e.g. its length from pole to pole) and the conjugate momenta play part of the
dynamical stochastic variables. The nucleonic degrees of freedom form a heat bath
(intrinsic subsystem) which is characterized by a thermodynamical potential and the
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temperature. The total excitation energy of the system, E, is shared between the intrinsic
and collective subsystems: E=E, +E_, . Itis E, that defines the temperature T and thus

coll
the intensity of the fluctuations. For the excited nucleus in course of fluctuations of its

shape the ratio E_,/E,, can easily reach several percents. In our work we restrict

ourselves with the case of strong dissipation. Thus E_, is dominated by the deformation
(coordinate) dependent potential energy U (q) and for the intrinsic excitation energy E.

equation E (q) =E-U(qQ) seems to be good approximation. In this case the temperature

nt
becomes of course the deformation-dependent quantity. This corresponds to the
MicroCanonical Ensemble (MCE) approximation.

The fission rate, although not an observable, is the principal characteristic of the fission
process (see [7] for the relation between the fission rate and the observables). In [5]
Kramers derived several formulas for the decay rate and indicated the nuclear fission
process as one of the potential application of his results. One of the Kramers formulas is
widely used in modern nuclear physics (see e.g. Eq.(1) of [8], Eq.(20) of [9], Eq.(11) of
[10]). Alternative way is to calculate the quasistationary fission rate (QSFR) by means of
solving on grids the SE. The latter approach is more accurate but very time consuming. The
difference between the Kramers fission rates and the QSFR was shown to reach
approximately 20% [11 — 13]. This discrepancy was addressed in [14, 15]. The 20%
inaccuracy is comparable to the quantum [16], non-Markovian [17, 18] and
multidimensional effects [19] discussed in literature.

The aim of the present study is to find a way for diminishing the discrepancy between the
analytical and dynamical rates down to about 2%. This value is comparable with the
statistical errors of the QSFR achievable during a reasonable time of computer modeling.

This is an ambitious program, therefore only the one-dimensional overdamped motion
corresponding to the symmetric fission at zero angular momentum is considered. The
deformation dependence of the friction 7 and inertia m 1is ignored whereas for the

temperature T (see also [15]) this effect is accounted for.

2. Analytical formulas for the fission rate
The nucleus shape is characterized by the elongation over the diameter of the spherical
nucleus, ¢. Initially all the nuclei are assumed to be concentrated near the quasistationary

point ¢, =1.00. Three typical nuclei are considered possessing significantly different
fission barrier height B, and barrier point locations ¢,: & Th (B, =5.46 MeV,
q,=1.60), &'Po (B,=11.07MeV, q,=1.78) and °'Hg (B, =1623MeV,
g, =1.90).The scission point coordinate is ¢, =2.14.

The SE with the coordinate-dependent diffusion coefficient reads

oy 0 o> (gT
S o2 (Dg)+—| 2| 1
ot Gq( 1g)+80|2[77] @

Here g(q,t) is the probability density. The drift coefficient D, reads for the cases of the
CE and the MCE respectively:
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D =-—— (CE), D =—{T(Q)—+—} (MCE). (2)
7 dq ] dq dq

In the case of the CE the temperature T is calculated using the Fermi-gas relation at the
quasistationary point, T =T, = (E —UC)/ a and is supposed to be deformation-

independent. In the case of the MCE the temperature depends upon the coordinate:

T(q):,/[E—u(q)]/a.

Following Kramers we used the flux over population method in order to calculate the
fission rate. In the case of the CE it results in

R, = {?1 exp [-@}dyj{ exp {@}dx}l . 3)

This relation is implicit in [5] and we call it the Integral Kramers Formula (IKF). The IKF
for the case of the microcanonical ensemble includes the entropy S (q) and reads

Rie :{UI(WE_;—T’;}/)]WTO exp[S(x)] dx}_ . (4)

Geometry used in the derivation of (3) and (4) is illustrated by Fig. 1. These equations are
not used in practical modeling of fission at high excitation energy. Instead the following

approximate formulas are applied
d’u d’U U, -u
q ).\aq ), ¢

1
R._ =
]
o _ T (es)(as
O E 272_77 dqz . dq2 .

These zero-order formulas are obtained by extending the limits of integration ¢, ¢, and

exp(S, - S, ). (6)

g, to minus/plus infinity, and expanding the potential (entropy) in the integrands up to the
quadratic terms in y—(Q_ and X—@, .

Extending the potential further up to the 4-th order terms and accounting for the finite
value of q, results in the first-order formula (U'= d U )

:d_q'
-1
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Here b, :T(U;' )_1 and b, =T‘Ut:' ‘71 are the small parameters of our approach. The

second-order formula R, ;, also obtained by us; is rather cumbersome and is not presented
here. The first- and second-order formulas for the MCE are in the process of derivation.

3. Dynamical modeling and representation of results
All Kramers formulas are approximate. The exact fission rate, been based on the solution of

Eq.(010) on grids, reads

Rf a(t) { D (qa)g (qa9 +_|:D g(qa’t)]}{j g(X t)dX} . (10)

The initial probability density is chosen to have a Gaussian shape with the variance o
centered at (.. According to the very concept of the quasistationary decay, R, , must reach
a time-independent value R, , which should be independent of the initial conditions. Fig. 2

proves that this is really the case in our modeling.
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Figure 1. Schematic deformation dependence of Figure 2. The time dependence of the fission
the potential (arbitrary units). The coordinates TIates calculatezd according to Eq.(10) at three
corresponding to the absorptive border (g, ), the Vvalues of oy. The rates reach the same

saddle point (g, ) and the metastable state (g, ) are quasistationary value R, irrespectively of the
shown by thin vertical lines. The height of the width of initial coordinate distribution.
potential barrier, AU, is indicated by two thin o, =T, /U,

horizontal lines.
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The approximate rates of Eqgs.(3 — 7) must be compared with the exact quasistationary rate
R, . As the excitation energy E changes, the rates cover several orders of magnitude,
whereas the difference between them is expected to be about 10%. Therefore it is
convenient to characterize the deviation of an approximate fission rate R, from R, by

means of the fractional difference &; =(R; —R,)/R,.

4. Numerical fission rates versus the analytical ones

In Fig. 3 six typical examples of the dependence of the fractional difference upon the
controlling parameter are presented. These correspond to the three nuclei with the realistic
barrier heights and the saddle and scission point locations. Note that in the case of the
canonical ensemble (panels a-c) &£ =AU, /T, whereas for the microcanonical ensemble

(panels d-f) ¢=S,-S,. In all cases the absolute values of the fractional deviations

become smaller at larger values of ¢ as it should be expected.
Let us first focus on the CE. For all three cases, R,; exceeds R, by more than 2% in

the wide range of ¢ (3 <& <10) where good agreement might be expected. In particular, at
¢ ~3 the fractional difference & ; increases up to 10% (see panels a) and b)). It is
interesting that for lighter nuclei (when Ag,, =0, —q, decreases) the agreement between
the R,; and R, improves. We attribute this effect due to mutual compensation of two
errors in R, ; caused by ignoring Aq,, and the higher derivatives (see details in [20]). In
panels a) and b) &, &, and &, are rather close to each other providing acceptable
accuracy at ¢ >3. This is due to large value of Aq,,. As Ag,, becomes comparatively small
(panel ¢)), R,; agrees with R, worse than R, ; and R, ; do.

For a given nucleus behavior of &, and &, for the MCE and CE is very similar. However

the fission rates calculated using the constant temperature (which is not the case in the
nuclear fission problem) and the constant excitation energy (which is true for the excited
nuclei) are very different (see Figs. 5, 7, 8 of Ref.[15] for details).
5. Conclusions
The accuracy of the Kramers formulas for fission rate of heated nuclei has been
systematically studied earlier in Ref. [11, 14, 15]. It was found that the integral Kramers
formulas (3, 4) agree with the corresponding long time limits of the dynamical modeling
significantly better than the zero-order approximation formulas (5, 6). In the present work
we have gone beyond the zero-order approximation for the case of the canonical ensemble
and have derived the formulas accounting for the first- and second-order corrections.

The accuracy of the analytical formulas was studied for the case of overdamping by
comparing with the dynamical decay rate (QDR, R, ). The latter was obtained by solving

numerically the Smoluchowski equation (1). The maximum error of the QDR is 2%.
Our results indicate that taking into account the higher derivatives of the potential and
the finite value of the distance between the barrier and scission points, Aq,,, in R ; results

to significantly better agreement with R, comparing to the conventionally used R, : the
differences between R ; and R, is within the accuracy of the dynamical modelling (2%)

when the fission barrier height becomes approximately thrice as large as the temperature at
the quasistationary point. Further expanding of the potential resulting in the R,; does not

improve the agreement.
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Figure 3. Fractional deviations of the approximate rates from the exact ones versus controlling
parameter ¢. Upper row of panels: canonical ensemble (&=AU_ /T ), lower row -

microcanonical ensemble (¢ =S, —S,). 7 =1000 MeV - zs.

The zero-order Kramers formulas R, ; (5) and R, (6) are not acceptable unless one

agrees with the 10% error. In order to reduce the deviation from the dynamical QDR down
to 2%, one should apply either the integral formulas (3) and (4) or the first-order formula
(7). However, the latter is represented by a simple analytical formula in contrast to the
former, which require calculating the double integrals numerically.
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