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Abstract: We investigate the thermodynamics of non-relativistic and relativistic ideal

gases on the spacetime with noncommutative fuzzy geometry. We first find that the heat

capacities of the non-relativistic ideal boson and fermion on the fuzzy two-sphere have

different values, contrast to that on the commutative geometry. We calculate the “sta-

tistical interparticle potential” therein and interprete this property as a result that the

non-commutativity of the fuzzy sphere has an inclination to enhance the statistical “at-

traction (repulsion) interparticle potential” between boson (fermion). We also see that at

high temperature the heat capacity approaches to zero. We next evaluate the heat ca-

pacities of the non-relativistic ideal boson and fermion on the product of the 1+D (with

D=2,3) Minkowski spacetime by a fuzzy two-sphere and see that the fermion capacity

could be a decreasing function of temperature in high-temperature limit, contrast to that

always being an increasing function on the commutative geometry. Also, the boson and

fermion heat capacities both approach to that on the 1+D Minkowski spacetime in high-

temperature limit. We discuss these results and mention that the properties may be traced

to the mechanism of “thermal reduction of the fuzzy space”. We also investigate the same

problems in the relativistic system with free Klein-Gordon field and Dirac field and find

the similar properties.
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1 Introduction

Physics on the noncommutative spacetime had been received a great deal of attention [1–

8]. Historically, it is a hope that the deformed geometry in the small spacetime would

be possible to cure the quantum-field divergences, especially in the gravity theory. The

renovation of the interesting in noncommutative field theories is that it have proved to arise

naturally in the string/M theories [3, 4]. In the noncommutative geometric approach [5]

to the unification of all fundamental interactions, including gravity, the space-time is the

product of an ordinary Riemannian manifold M by a finite noncommutative space F. The

need for F is to avoid the fermion doubling problem [5]. An advantage of this approach

over the traditional grand unification approach is that the reduction to the Standard Model
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1+2D flat spacetime + fuzzy sphere 1+2D flat spacetime

C ≈ k n0

(

1 + J
4

48(mR2kT )2

)

± O(n2
0) C ≈ k n0 −

k

36(kT )2
n2

0

1+3D flat spacetime + fuzzy sphere 1+3D flat spacetime

C ≈ 3
2

k

(

n0 + J4

72(mR2kT )2

)

n0 ± O(n2
0) C ≈ 3

2
k n0 ∓ k n2

0
3
√

π

4(mkT )3

Table 1. The high-temperature heat capacities of non-relativistic ideal boson and fermion on the

Minkowski spacetime + fuzzy two-sphere and that on the flat Minkowski spacetime.

gauge group is not due to plethora of Higgs fields, but is naturally obtained from the order

one condition, which is one of the axioms of noncommutative geometry [5].

Motivated by the physical interesting of noncommutative spacetime we will in this

paper study the thermodynamics of ideal gas on the spacetime which is the product of a

1+D Minkowski manifold by a noncommutative fuzzy geometry. Note that the noncom-

mutative fuzzy sphere can appear naturally in the string/M theory [6, 7]. It is known to

correspond to the sphere D2-branes in string theory with background linear B-field [8].

Also, in the presence of constant RR three-form potential, the D0-branes can expand into

a noncommutative fuzzy sphere configuration [9].

In section II we first review the mathematical property of fuzzy sphere [10, 11]. Then,

to get some feelings about the thermal property on the fuzzy geometry we first evaluate

the heat capacity of the non-relativistic ideal boson and fermion on the fuzzy two-sphere.

We see that they have different values, contrast to that on the commutative geometry [12].

In section III we calculate the “statistical interparticle potential” [13] and see that the non-

commutativity of the fuzzy sphere has an inclination to enhance the statistical “attraction

(repulsion) interparticle potential” between boson (fermion). This statistical property may

be used to explain why the ideal boson and fermion on the fuzzy two-sphere have different

value of heat capacity.

In section IV we evaluate the heat capacities of the non-relativistic ideal boson and

fermion on the product of 1 + D Minkowski spacetime by a fuzzy two-sphere, with D=2,3.

We find that the heat capacities therein approach to those on the 1+D Minkowski space-

time in the high-temperature limit. Also, the boson and fermion heat capacities become

decreasing function of temperature in high-temperature limit, contrast to the property that

fermion heat capacity is always an increasing function on the 1+D commutative geometry.

Note that in the 1+2 commutative spacetime the boson and fermion have same heat capac-

ity value which is an increasing function of temperature. The calculations are performed

in section 4 and summarized in table 1. We discuss these results and mention that the

properties may be traced to the mechanism of “thermal reduction of the fuzzy space”.

In section V we present a simple toy model to see such an interesting property. In

section VI we investigate the relativistic system and evaluate the heat capacity of the free

Klein-Gordon and Dirac field on the product of 1 + 2 Minkowski spacetime by a fuzzy

two-sphere. We also find that the heat capacity therein approaches to that on the 1+ 2

Minkowski spacetime in high-temperature limit. Last section is devoted to a discussion.
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Note that the properties of Casimir effect and effective potential on the noncommutative

fuzzy space had been studied by us in [14].

2 Thermodynamics of non-relativistic gas on fuzzy two-sphere

The noncommutative fuzzy two-sphere geometry is described by a finite dimensional algebra

generated by 3 matrices Xi which satisfies the commutator [10]

[Xa,Xa] = i
R

√

J(J + 1)
ǫabcXc, a, b, c = 1, 2, 3 and 2J ∈ N. (2.1)

in which Xa are (2J + 1) × (2J + 1) matrices proportional to the (2J + 1)-dimensional

represent of the generators J of SU(2) algebra. It is known that in the limit J → ∞ at

fixed R we get the ordinary sphere with radius R. The non-relativistic free particle with

mass m on the fuzzy sphere has the spectrum [10]

Eℓ =
ℓ(ℓ + 1)

2mR2
, ℓ = 0 · · · J, (2.2)

with degeneracy 2ℓ + 1, which will be used in the following calculations.

2.1 Classical statistics of non-relativistic gas

To proceed, let us first investigate the classical statistics in which the partition function is

defined by

Z =

J
∑

ℓ=0

(2ℓ + 1)e−
ℓ(ℓ+1)

2mR2kT . (2.3)

Using the Euler-Maclaurin summation formula [15]

a
∑

n=b

f(n) =

∫ b

a
dxf(x) +

1

2
[f(a) + f(b)] +

1

12
[f ′(a) − f ′(b)] + · · ·. (2.4)

the partition function in the high temperature has an approximation value

Z ≈ 2mR2kT

[

1 − e−
J(J+1)

2mR2kT

]

+ (J +
2

3
)e−

J(J+1)

2mR2kT + · · ·. (2.5)

The associated mean energy E and heat capacity C are

E(T ) = −∂ℓnZ

∂β
≈ J(J + 1)

4mR2
− J2(J + 1)2

48m2R4

1

kT
. (2.6a)

C(T ) =
∂E

∂T
≈ J2(J + 1)2

48m2R4

1

kT 2
. (2.6b)

The asymptotic value of energy E(T → ∞) is just the algebra mean value of (2.2) calcu-

lated by
∑J

ℓ=0(2ℓ + 1)Eℓ
∑J

ℓ=0(2ℓ + 1)
=

J(J + 1)

4mR2
= E(T → ∞). (2.7)

– 3 –
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Figure 1. The energy of ideal boson and fermion on the noncommutative fuzzy sphere.

This is a finite value as the maximum energy of a particle has a finite value EJ , in which J

is a finite value. The finite asymptotic value E(∞) implies that the heat capacity becomes

zero asymptotically.

Note that we could not use the approximation result (2.6) to find the quantity in the

ordinary sphere by taking the limit of J → ∞. This is because that the approximation

adopted in there is suitable only under the condition J(J+1)
2mR2kT

≪ 1. This property will be

found in the following section.

2.2 Non-relativistic ideal boson and fermion

The thermodynamics of ideal boson and fermion could be calculated from the following

two relations

N =
∑

p

1

z−1eβǫ ± 1
; E =

∑

p

ǫ

z−1eβǫ ± 1
, (2.8)

where z is fugacity of the ideal gas, which is related to the chemical potential µ through

the formula z ≡ exp(µ/kT ) [12]. Using the spectrum (2.2) the numerical results of the

energy for ideal boson and fermion are plotted in figure 1.

Figure 1 shows that the heat capacities of the ideal boson and fermion on the fuzzy two-

sphere have different values, contrast to that on the commutative geometry. Also, as the gas

have a finite maximum energy the associated heat capacity becomes zero asymptotically.

2.2.1 High-temperature expansion

To see the above property we can perform the high-temperature expansion (i.e. J(J+1)
2mR2 ≪

kT ) to (2.8) with a help of Euler-Maclaurin summation formula (2.4). The results are

N ≈ z

[

2mkTR2

(

1 − e−
J(J+1)

2mR2kT

)

+

(

J +
2

3

)

e−
J(J+1)

2mR2kT +
1

3

]

∓z2

[

mkTR2

(

1 − e−
J(J+1)

mR2kT

)

+

(

J +
2

3

)

e−
J(J+1)

mR2kT +
1

3

]

+ O(z3). (2.9)

E ≈ 1

2mR2

[

z

(

(2mR2kT )2
(

1 − e−
J(J+1)

2mR2kT

)

− 2mkTR2J(J + 1)e−
J(J+1)

2mR2kT

)

∓z2

(

(mR2kT )2
(

1−e−
J(J+1)

mR2kT

)

−mkTR2J(J+1)e−
J(J+1)

mR2kT

)]

+O(z3). (2.10)
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In the case of 1 ≪ J(J + 1) ≪ 2mR2kT we can use (2.9) to express the fugacity z as a

function of N . After substituting this relation into (2.10) we find that the relation between

the energy density and number density becomes

ε ≈
(

J2

4mR2
− J4

24mR2

1

2mR2kT

)

n0 ±
J2

6m

1

2mR2kT
n2

0, (2.11)

which shows a different behavior between the heat capacity of the ideal boson and fermion

on the fuzzy two-sphere. Note that, as the boson and fermion gas have a finite maxi-

mum energy the associated heat capacity becomes zero asymptotically. Above equation is

consistent with (2.6a) when J ≫ 1.

2.2.2 Low-temperature expansion

In the low temperature the fugacity does not approach to zero and we need to adopt another

approach. For the case of fermion gas we can first use the Euler-Maclaurin summation

formula (2.4) to express the particle number as

N =

J
∑

ℓ=0

2ℓ + 1

z−1e−
J(J+1)

2mR2kT + 1
≈ 2mR2

β

(

−ℓn(1 + ze−
J(J+1)

2mR2kT ) + ℓn(1 + z)

)

+
1

2

1

1 + z−1
+

1

2

2J + 1

1 + z−1e
J(J+1)

2mR2kT

. (2.12)

In the low temperature the fugacity become infinite and above relation can be approxi-

mated as

N ≈ 2mR2

β

(

−ze−
J(J+1)

2mR2kT + ℓnz

)

+
1

2

(

1 − z−1
)

+
1

2
(2J + 1) ze−

J(J+1)

2mR2kT , (2.13)

which implies that

z ≈ e
N

2mR2kT − Je
−J(J+1)

2mR2kT . (2.14)

Note that substituting above result into the last term in (2.13) we see that

ze−
J(J+1)

2mR2kT ≈ e
N−J(J+1)

2mR2kT − Je
−2J(J+1)

2mR2kT → 0, (2.15)

at low temperature, as the total particle number N shall be less then the total acceptable

state Nmax ≡ ∑J
ℓ=0 2ℓ + 1. Thus the low temperature expansion in (2.13) is a consis-

tent method.

Next, we also use the Euler-Maclaurin summation formula (2.4) to express the particle

energy as

E=

J
∑

ℓ=0

2ℓ + 1

z−1e−
J(J+1)

2mR2kT +1

ℓ(ℓ+1)

2mR2
≈ 2mR2(kT )2

(

−Li2(−z−1e
J(J+1)

2mR2kT )+Li2(−z−1)

)

(2.16)

−kTℓn(1+z−1e
J(J+1)

2mR2kT )+
1

2mR2

(

J4

2
+

J3

1+z−1e
J(J+1)

2mR2kT

)

,

– 5 –
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in which Li2(∓y) is the polylogarithm function which has a series expansion formula [15]

Li2(y) =

∞
∑

k=1

y2

k2
. (2.17)

In the low temperature, as the fugacity z → ∞ the term Li2(−z−1) in (2.17) could be

expressed a series expansion. However, as z−1e
J(J+1)

2mR2kT → ∞ (as explained in (2.15)) we

have to use the “inversion formula” [15]

Li2(y) + Li2(y
−1) = −π2

6
− 1

2
(ℓn (−y))2 , (2.18)

to make a series expansion about another polylogarithm function in (2.16). After a lengthy

algebra evaluations we find that the energy density becomes

E

4πR2
=

1

2m

(

n2
0

2
+

π2

6
(kT )2

)

+ O(e−J2/R2kT ), (2.19)

in which n0 is the particle number density. Above result is just the relation in the commu-

tative system with small correction O(e−J2/R2kT ).

Note that at zero temperature the particle will filled from the state ℓ = 0 to ℓ = J . In

the case of J ≫ 1 the total particle number and associated energy are

N =
J
∑

ℓ=0

≈ J2, E =
J
∑

ℓ=0

ℓ(ℓ + 1)

2m
≈ 1

2m

J4

2
, ⇒ E =

1

2m

N2

2
(2.20)

which precisely give the leading term in (2.19).

Let us present the physical interpretation about these thermal properties to conclude

this section.

1. At high energy, as the system has a maximum value in the spectrum EJ = J(J+1)
2mR2

the system therefore has a finite limiting energy as shown in (2.6a) and (2.11). This

implies that the heat capacity becomes zero asymptotically.

2. At low temperature, as the particles are at low energy level they does not feel the

constraint property of ℓ ≤ J , the system will behave as that on the commutative

space, as shown in (2.19).

3. It is well known that, in comparison with the normal statistical behavior, bosons

exhibit a larger tendency of bunching together, i.e., a positive statistical correlation.

In contrast, fermions exhibit a negative statistical correlation. Uhlenbeck [13] inter-

preted this property by the “statistical interparticle potential”. In our model, particle

on the fuzzy sphere will be constrained between the state with quantum number ℓ = 0

and ℓ = J . Therefore the fermion will feel more statistic repulsive effect and the bo-

son will feel more statistic attractive effect, as shown in the next section. The extra

statistical effect, which is induced by the fuzzy property, will render the the heat

capacities of the ideal boson and fermion on the fuzzy two-sphere to have different

values, contrast to that on the commutative geometry, as shown in (2.11).

– 6 –
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3 Statistical interparticle potential

We now following the Uhlenbeck [12, 13] to evaluate the “statistical interparticle potential”

for the non-relativistic ideal boson and fermion on the fuzzy two-sphere.

Define the one particle matrix element of the Boltzmann factor by

Fij = 〈Xi|e−βH |Xj〉, (3.1)

then the matrix element of the Boltzmann factor for a system of two identical particles can

be written as

〈X1,X2|e−βH |X1,X2〉 = F11F22 ± F12F21, (3.2)

where the plus (minus) sign is adopted for the boson (fermion) system. For a translation

symmetry system F11 = F22 and F12 = F21 and density matrix element becomes [12]

〈X1,X2|ρ̃|X1,X2〉 =
1

V 2

[

1 ± F 2
12

F 2
11

]

, (3.3)

in which we define the density matrix by ρ̃ ≡ e−βH

Tr e−βH
[12] and V is the system volume.

The “statistical interparticle potential” U is defined to be such that the Boltzmann factor

exp(−βv) is precisely equal to the correlation factor (bracket term) in the above equa-

tion, i.e.,

U = −kTℓn

[

1 ± F 2
12

F 2
11

]

. (3.4)

Now, as the particle wave function on the fuzzy sphere is spherical harmonics

Y m
ℓ (θ, φ) [10] with ℓ ≤ J , we find that

F11 = Tr〈X1|e−βH |X1〉 =
∑

p

〈X1|p〉〈p|e−βH |p〉〈p|X1〉

=
∑

ℓ

∑

m1

∑

m2

∫

dφdθ sin θY ∗m1
ℓ (θ, φ)Y m2

ℓ (θ, φ) e−
ℓ(ℓ+1)

2mR2kT =
J
∑

ℓ=0

(2ℓ+1)ℓ e−
ℓ(ℓ+1)

2mR2kT. (3.5)

F12 = 〈X1|e−βH |X2〉 =
∑

p

〈X1|p〉〈p|e−βH |p〉〈p|X2〉

=
∑

ℓ

∑

m1

∑

m2

Y ∗m1
ℓ (θ1, φ1)Y

m2
ℓ (θ2, φ2) e−

ℓ(ℓ+1)

2mR2kT . (3.6)

Substituting (3.5) and (3.6) into (3.4) the “statistical interparticle potential” is plotted

in figure 2. The dashed line represents that with J = 5 while solid line is that with J = 12.

Above results show that the fuzzy of sphere with finite value of J will enhance the

negative statistical correlation between fermion and enhances the positive statistical corre-

lation between bosons. Thus the thermal property of the boson and fermion gas on fuzzy

sphere will have different heat capacity, contrast to that on the commutative geometry.

– 7 –
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Figure 2. “Statistical interparticle potential” U(R) on the fuzzy geometry. Dashed lines represents

that with J = 5 while solid line is that with J = 12.

4 Thermodynamics of non-relativistic gas on 1+D Minkowski spacetime

with Extra Fuzzy Sphere

We now investigate the thermodynamics of boson and fermion on 1+D Minkowski space-

time with extra fuzzy sphere. We will see that at high temperature the thermodynamics

of ideal gas will behave as that on the 1+D Minkowski spacetime without the extra fuzzy

sphere. This “mechanism of thermal reduction of fuzzy geometry” will qualitatively modify

the heat capacity of the gas.

4.1 Thermodynamics on 1 + 2 Minkowski spacetime with Extra Fuzzy Sphere

In the high-temperature limit (i.e. J(J+1)
2mR2 ≪ kT ) the thermodynamics of ideal boson and

fermion on the 1+2 Minkowski spacetime with extra fuzzy sphere could be studied from

the following analysis.

N =
2πS

h2

J
∑

ℓ=0

(2ℓ+1)

∫

dp p
1

z−1e
ℓ(ℓ+1)

2mR2kT
+ p2

2mkT ±1
≈z

[

2πS

h2

∫

dp p e
−p2

2mkT

] J
∑

ℓ=0

(2ℓ+1)e
−ℓ(ℓ+1)

2mR2kT

∓z2

[

2πS

h2

∫

dp p e
−p2

mkT

] J
∑

ℓ=0

(2ℓ + 1)e
−ℓ(ℓ+1)

mkT ≈ 2πS

h2
2mkT

[

z · W1 ∓ z2 · W2
]

. (4.1)

E =
2πS

h2

J
∑

ℓ=0

(2ℓ + 1)

∫

dp p
p2

2m + ℓ(ℓ+1)
2mR2

z−1e
ℓ(ℓ+1)

2mR2kT
+ p2

2mkT ± 1
≈ 2πS

h2

[

2mkT (z · W1 ∓ z2 · W2)

+(2mkT )2(z · W3 ∓ z2 · W4)
]

, (4.2)

in which S is the area of Minkowski space and we have defined

W1 ≡ 2mkTR2

(

1 − e
−J(J+1)

2mR2kT

)

+ (J + 2/3) e
−J(J+1)

2mR2kT + 1/3. (4.3)

W2 ≡ mkTR2

(

1 − e
−J(J+1)

mR2kT

)

+ (J + 2/3) e
−J(J+1)

mR2kT + 1/3. (4.4)

– 8 –
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W3 ≡ (2mkTR2)2
(

1 − e
−J(J+1)

2mR2kT

)

− 2mkTR2J (J + 1) e
−J(J+1)

2mR2kT . (4.5)

W4 ≡ (mkTR2)2
(

1 − e
−J(J+1)

mR2kT

)

− mkTR2J (J + 1) e
−J(J+1)

mR2kT . (4.6)

Using (4.1) we can express the fugacity z as a function of N . After substituting this relation

into (4.2) we can find the energy. The associated heat capacity is

C ≈ k n0

(

1 +
J4

48(mR2kT )2

)

± O(n2
0), (gas on 1 + 2 flat space + fuzzy sphere), (4.7)

in which n0 is the particle number density. Above result shows that the heat capacity is a

decreasing function of temperature. Note that in the 1+2 commutative spacetime the heat

capacity of boson and fermion has a same value

C ≈ k n0 −
k

36(kT )2
n2

0, (gas on 1 + 2 flat space), (4.8)

which is an increasing function of temperature.

Above result may be interpreted as following. At low temperature, as the particles

are at low energy level they does not feel the constraint property of ℓ ≤ J the system

will behave as that on the 1+2+2 commutative space. However, at high temperature, as

the system has a maximum value in the spectrum ℓ ≤ J the heat capacity of the system

therefore behave as that on the 1+2 commutative space asymptotically. This “mechanism

of thermal reduction of fuzzy geometry” will render the heat capacity of boson and fermion

to be a decreasing function at high temperature.

4.2 Thermodynamics on 1+3 Minkowski spacetime with Extra Fuzzy Sphere

The high-temperature thermodynamics of ideal boson and fermion on the 1+3 Minkowski

spacetime with extra fuzzy sphere could be studied from the following analysis.

N =
4πV

h3

J
∑

ℓ=0

(2ℓ+1)

∫

dp p2 1

z−1e
ℓ(ℓ+1)

2mR2kT
+ p2

2mkT ±1
≈z

[

4πV

h3

∫

dp p2e
−p2

2mkT

] J
∑

ℓ=0

(2ℓ+1)e
−ℓ(ℓ+1)

2mR2kT

∓z2

[

4πV

h3

∫

dp p2e
−p2

mkT

] J
∑

ℓ=0

(2ℓ+1)e
−ℓ(ℓ+1)

mR2kT =
4πV

h3

√
π(2mkT )3/2

4

[

z · W1∓z2 · W2
]

. (4.9)

E =
4πV

h3

J
∑

ℓ=0

(2ℓ + 1)

∫

dp p2
p2

2m + ℓ(ℓ+1)
2mR2

z−1e
ℓ(ℓ+1)

2mR2kT
+ p2

2mkT ± 1

≈ 4πV

h3

[

3
√

π(2mkT )5/2

8
(z · W1 ∓ z2 · W2) +

√
π(2mkT )3/2

4
(z · W3 ∓ z2 · W4)

]

,(4.10)

in which V is the volume of Minkowski space. W1, W2, W3 and W4 are defined in (4.3)-

(4.6). Now, using (4.9) we can express the fugacity z as a function of N . After substituting

this relation into (4.10) we can find the energy. The associated heat capacity is

C ≈ 3

2
k

(

n0 +
J4

72(mR2kT )2

)

n0 ± O(n2
0), (gas on 1 + 3 flat space + fuzzy sphere),

(4.11)
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in which n0 is the particle number density. Above result shows that the heat capacity is a

decreasing function of temperature. Note that in the 1+3 commutative spacetime the heat

capacity of boson and fermion has a same value

C ≈ 3

2
k n0 ∓ k n2

0

3
√

π

4(mkT )3
, (gas on 1 + 3 flat space), (4.12)

which shows that the heat capacity of boson is a decreasing function of temperature while

that of fermion is an increasing function [12].

The physical interpretation is the same as that in previous subsection. Thus the

“mechanism of thermal reduction of the extra fuzzy space” could render a particle to

behave as that on lower commutative space, and it will have less heat capacity. The heat

capacity, therefore will be a decreasing function at high temperature. Note that in the 1+3

commutative space the boson has Bone-Einstein condensation, thus it has a very large heat

capacity at transition temperature Tc. Therefore, increasing the temperature beyond the

Tc it will be a decreasing function.

More precisely, at low temperature the system does not feel the finite value property

of J and the particle will have the thermal property like as that on the commutative

1+3+2 commutative spacetime. In this case the heat capacity is an increasing function of

temperature. However, at high temperature the quantum level of extra fuzzy space is all

occupied and the particle will behave as that on lower space. Thus it will have less heat

capacity. This “mechanism of thermal reduction of the extra fuzzy space” could lead the

heat capacity to be a decreasing function of temperature and the heat capacity has a “peak

value” near the temperature of “ thermal reduction”. The interesting property could be

seen in the following toy model.

5 A toy model

For example, let us consider a simplest toy model of classical particle which has spectrum

E = a · n + b · ℓ, 0 ≤ n ≤ ∞, 0 ≤ ℓ ≤ J. (5.1)

The mode with quantum number 0 ≤ n ≤ ∞ is used to describe a simple harmonic

oscillator and the mode with finite quantum number 0 ≤ ℓ ≤ J is used to simulate that on

the fuzzy geometry. In this model the partition function and the heat capacity could be

evaluated exactly. We plot the heat capacity in figure 3.

We have explicity seen that if J 6= 0 then there is a peak in the system capacity. The

associated heat capacity at low temperature is

C ≈ 1

kT 2

[

a2e−a/kT + b2e−b/kT
]

, low temperature, (5.2)

in which the quantum modes n and ℓ contribute the similar behavior in heat capacity, which

is an increasing function at low temperature. On the other hand, at high temperature the

associated heat capacity becomes

C ≈ k +
1

12kT 2

[

b2J(J + 2) − a2
]

, high temperature. (5.3)
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T

C

J=100

J=0

Figure 3. The heat capacity of the model with spectrum (5.1) when a=b=1.

We see that the quantum mode n contributes heat capacity value k− a2

12kT 2 , which is an in-

creasing function, and quantum mode ℓ contributes heat capacity value 1
12kT 2

[

b2J(J + 2)
]

,

which is a decreasing function at high temperature. Therefore, in the case of large J

with relation b2J(J + 2) > a2 the model will show a “peak value” in heat capacity, as

shown in figure 3.

6 Thermodynamics of relativistic gas on fuzzy spacetime

We now turn to the problems with relativistic gas. The Klein-Gordon field equation on

the product of Minkowski spacetime (with coordinate ~x) by a fuzzy two-sphere (with

coordinate Ji) is
[

∂2
t − ~∇2

~x − J2
1 − J2

2 − J2
3

]

Φ + m2Φ = 0. (6.1)

Expanding the scalar field as a product of plane wave e−ip·x and spherical harmonic

function Y ℓ
m(θ, φ) then we see that the spectrum of scalar field is [10]

E2
ℓ = ~p 2 +

ℓ(ℓ + 1)

R2
+ m2, ℓ = 0 · · · J, (6.2)

with degeneracy 2ℓ + 1. The Dirac field has a similar relation. Note that the finite value

of quantum number ℓ characterizes the fuzzy property of the fuzzy sphere. We will in

following analyze the system will massless field for simplicity.

6.1 Thermodynamics of relativistic gas on fuzzy two-sphere

6.1.1 Classical statistics of relativistic gas

Let us first investigate the classical statistics for the relativistic gas on fuzzy two-sphere.

In this case the partition function is defined by

Z =

J
∑

ℓ=0

(2ℓ + 1)e−
√

ℓ(ℓ+1)/R2

kT . (6.3)
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Using the Euler-Maclaurin summation formula in (2.4) the partition function in the high

temperature (i.e.
√

J(J + 1)/R2 ≪ kT ) has an approximation value

Z ≈ 2R2(kT )2

[

1 −
(

1 +

√
J

RkT

)

e−
√

ℓ(ℓ+1)/R2

kT

]

+
1

2

[

1 + (1 + 2J) e−
√

ℓ(ℓ+1)/R2

kT

]

+ · · ·. (6.4)

The associated mean energy E and heat capacity C are

E(T ) = −∂ℓnZ

∂β
≈ J

2R
− J2

4R2

1

kT
. (6.5a)

C(T ) =
∂E

∂T
≈ J2

4R2

1

kT 2
. (6.5b)

The asymptotic value of energy E(T → ∞) is just the algebra mean value of (6.2)

calculated by
∑J

ℓ=0(2ℓ + 1)Eℓ
∑J

ℓ=0(2ℓ + 1)
=

J

2R
= E(T → ∞). (6.6)

This is a finite value as the maximum energy of a particle has a finite value EJ , in which J

is a finite value. The finite asymptotic value E(∞) implies that the heat capacity becomes

zero asymptotically, as that in the non-relativistic system analyzed in section II.

6.1.2 Relativistic ideal boson and fermion

The thermodynamics of relativistic ideal boson and fermion field could be studied from

the standard analysis [12] and we can perform the calculation from the (2.8). Using the

spectrum (6.2) and with a help of Euler-Maclaurin summation formula (2.4) the results in

high temperature are

N ≈ z

[

3J−
(

2J3/2

3RkT
+

√

J(J+1)(1+2J)

2RkT

)]

∓z2

[

3J+

(

4J3/2

3RkT
+

√

J(J+1)(1+2J)

RkT

)]

, (6.7)

E ≈ z

[(

2J3/2

3R
+

√

J(J + 1)(1 + 2J)

2R

)

+

(

J2

2R2kT
− J(J + 1)(1 + 2J)

2R2kT

)

]

∓z

[(

2J3/2

3R
+

√

J(J + 1)(1 + 2J)

2R

)

+

(

J2

R2kT
− J(J + 1)(1 + 2J)

R2kT

)

]

. (6.8)

We can use (6.7) to express the fugacity z as a function of N . After substituting this

relation into (6.8) we find that the relation between the energy density ε and number

density n0 becomes

ε ≈ k

(

J

2R
− J2

8R2kT

)

n0 ±
J

16R2kT
k n2

0, (6.9)

which shows a different behavior between the heat capacity of the ideal boson and fermion.

Note that, as the boson and fermion gases have a finite maximum energy the associated

heat capacity becomes zero asymptotically as that in the non-relativistic system which are

analyzed in section II. Above equation is consistent with (6.6).
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6.2 Thermodynamics of relativistic gas on 1+2 Minkowski spacetime with

Extra Fuzzy Sphere

To proceed, let us first remark that in order to have the analytic result we will investigate

the system of massless free field on the 1+2 Minkowski spacetime with Extra Fuzzy Sphere.

Note that, as the property we attempt to see is shown at high temperature, in which the

quantum field will become asymptotic free and mass of the field is irrelevant. Also, the

property we find will be shown in 1+3 Minkowski spacetime, after numerical analysis.

Then, the thermodynamics of quantum Klein-Gordon field and Dirac field on the

Kaluza-Klein spacetime of “1+2 + fuzzy sphere” could be studied from the standard anal-

ysis [12]. The total particle number N and energy E could therefore be evaluated from the

two relations in (2.8). Using the spectrum (6.2) we find the following expressions in the

high-temperature approximation (i.e.
√

J(J+1)
R2 ≪ kT )

N ≡ 2πS

h2

J
∑

ℓ=0

(2ℓ + 1)

∫

dp p
1

z−1e
β

q

p2+ ℓ(ℓ+1)

R2 ± 1

≈ 2πS

h2

[

z
J
∑

ℓ=0

(2ℓ+1)

∫

dp p e
−β

q

p2+ ℓ(ℓ+1)

R2 ∓z2
J
∑

ℓ=0

(2ℓ+1)

∫

dp p e
−2β

q

p2+ ℓ(ℓ+1)

R2

]

≈ 2πS

h2



z

J
∑

ℓ=0

(2ℓ + 1)
e
−β

q

ℓ(ℓ+1)

R2

β2

(

1 + β

√

ℓ(ℓ + 1)

R2

)

∓z2
J
∑

ℓ=0

(2ℓ + 1)
e
−2β

q

ℓ(ℓ+1)

R2

4β2

(

1 + 2β

√

ℓ(ℓ + 1)

R2

)



 . (6.10)

E ≡ 2πS

h2

J
∑

ℓ=0

(2ℓ + 1)

∫

dp p

√

p2 + ℓ(ℓ+1)
R2

z−1e
β

q

p2+
ℓ(ℓ+1)

R2 ± 1

≈ 2πS

h2

[

z

J
∑

ℓ=0

(2ℓ + 1)

∫

dp p

√

p2 +
ℓ(ℓ + 1)

R2
e
−β

q

p2+
ℓ(ℓ+1)

R2

∓z2
J
∑

ℓ=0

(2ℓ + 1)

∫

dp p

√

p2 +
ℓ(ℓ + 1)

R2
e
−2β

q

p2+ ℓ(ℓ+1)

R2

]

≈ 2πS

h2



z

J
∑

ℓ=0

(2ℓ + 1)
e
−β

q

ℓ(ℓ+1)

R2

β3R2

(

β2ℓ(ℓ + 1) + 2

(

1 +

√

ℓ(ℓ + 1)

R2

)

R2

)

∓z2
J
∑

ℓ=0

(2ℓ+1)
e
−2β

q

ℓ(ℓ+1)

R2

8β3R2

(

4β2ℓ(ℓ+1)+2

(

1+

√

ℓ(ℓ+1)

R2

)

R2

)



 , (6.11)

in which S is the area of Minkowski space. Using the Euler-Maclaurin formula in (2.4) to
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perform the summation in above the total particle number becomes

N ≈ 2πS

h2

[

z

(

6R2(kT )4 − 2J2(kT )2e
−J(J+1)

RkT +
1

2
(kT )2

)

∓z2

(

6R2(kT/2)4 − 2J2(kT/2)2e
−J(J+1)

R2kT/2 +
1

2
(kT/2)2

)]

, (6.12)

and the total energy becomes

E ≈ 2πS

h2

[

z
(

24R2(kT )5 − 10J2(kT )3e
−J(J+1)

RkT + (kT )3
)

∓z2

(

24R2(kT/2)5 − 10J2(kT/2)3e
−J(J+1)
RkT/2 + (kT/2)3

)]

, (6.13)

Using (6.12) we can express the fugacity z as a function of N . After substituting this

relation into (6.13) we can find the energy and the associated heat capacity at high

temperature becomes

C ≈ k

(

2 +
J2

2R2

1

(kT )2

)

n0 ± k

(

1

16
+

13

192

J2

R2

1

(kT )2

)

n2
0, (6.14)

in which n0 is the particle number density. Above result shows that the heat capacity of

fermion is a decreasing function of temperature, in high-temperature limit, contrast to that

always being an increasing function on the commutative geometry [12]. Above property

also shows in 1+3 Minkowski spacetime with extra fuzzy sphere, after numerical analysis.

According to the equipartition theorem [12] the particle on the 1+2 Minkowski space-

time will have two degrees of freedom. As each degree of freedom of the relativistic particle

will contribute the heat capacity k n0 in high-temperature limit. Result in (6.14) tells us

that the relativistic particle in 1+2 Minkowski spacetime with extra fuzzy sphere behaves

as that on 1+2 Minkowski spacetime in high-temperature limit. This shows explicity the

“mechanism of thermal reduction of the fuzzy space”.

7 Discussion

In this paper we have studied the thermodynamics of ideal gas on the spacetime with extra

fuzzy geometry. We first evaluate the heat capacities of the non-relativistic ideal boson

and fermion on the fuzzy two-sphere. We see that they have different values, contrast to

that on the commutative geometry [12]. We have calculated the “statistical interparticle

potential” [13] and see that the noncommutativity of the fuzzy sphere has an inclination

to enhance the statistical “attraction (repulsion) interparticle potential” between boson

(fermion). This statistical property may be used to explain why the ideal boson and

fermion on the fuzzy two-sphere have different value of heat capacity. We also see that, at

high temperature the heat capacity approaches to zero as the all quantum levels on fuzzy

two-sphere are occupied.

We next evaluate the heat capacity of the non-relativistic ideal boson and fermion on

the product of 1+D (with D=2,3) Minkowski spacetime by a fuzzy two-sphere and see that

the heat capacity is a decreasing function of temperature in high-temperature limit. We
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argue that at high temperature the quantum level of extra fuzzy space is all occupied and

the particle will behave as that on the a reduced space of 1+D Minkowski spacetime . This

“mechanism of thermal reduction of the fuzzy space” could lead the heat capacity of boson

and fermion to be a decreasing function of temperature.

We finally investigate the relativistic system and evaluate the heat capacity of the free

scalar and Dirac field on the product of 1 + 2 Minkowski spacetime by a fuzzy two-sphere.

We also find the similar properties in the relativistic system.
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