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Abstract
Hybrid quantum–classical algorithms are a promising candidate for developing uses for NISQ
devices. In particular, parametrised quantum circuits (PQCs) paired with classical optimizers have
been used as a basis for quantum chemistry and quantum optimization problems. Tensor network
methods are being increasingly used as a classical machine learning tool, as well as a tool for
studying quantum systems. We introduce a circuit pre-training method based on matrix product
state machine learning methods, and demonstrate that it accelerates training of PQCs for both
supervised learning, energy minimization, and combinatorial optimization.

1. Introduction

Parametrised quantum circuits (PQCs) have been the focus of attempts to demonstrate quantum
computational advantage on NISQ devices, for problems of both scientific and commercial interest [1–3].
Typically these efforts involve parametrising a quantum circuit with a series of rotation angles, and using a
classical optimizer to find a set of angles which minimizes a given cost function. The quantum device is
used to estimate the cost function associated with a particular set of parameters, where it is assumed to be
hard to calculate the cost function classically. Algorithms based on these methods are often called hybrid
quantum–classical algorithms.

A major hurdle in developing useful hybrid algorithms is the problem of vanishing gradients. It has been
shown that the size of initial gradients decrease exponentially towards zero as the number of qubits and the
depth of the circuits increases, when parameters are randomly initialised [4]. Other circuit metrics have
been demonstrated to produce these so-called barren plateaus, such as ansatz expressibility [5], the
entanglement between hidden and visible nodes in the circuit [6, 7], and circuit noise [8].

The existence of the barren plateau has motivated attempts to improve PQC learning algorithms to
avoid training costs growing exponentially. These include developing gradient free algorithms [9, 10],
defining local cost functions as targets for learning algorithms [11], and initialisation schemes [12].

Here we introduce a novel initialisation scheme based on tensor network algorithms. Tensor network
based methods are the state of the art for numerical simulations of 1D and 2D spin systems [13], and also
for the simulation of quantum circuits [14]. Tensor networks have been used to solve optimization
problems such as portfolio optimization, and are found to be competitive with commercial solvers [15, 16].
Recently, tensor network based methods have also been used as the basis for machine learning algorithms.
Matrix product states (MPSs) have been trained as a classifier for several machine learning tasks [17, 18].
The 2D generalisation of MPS, projected entangled pair states, have also been used for image classification
[19]. Both tree tensor networks and MERA networks have also been used as image classifiers [20, 21].

This circuit is as good an approximation to the optimal solution as the MPS. The optimizer is then able
to vary all the parameters, including those in the gates initialised to the identity.

Previously classical tensor network techniques for finding ground states have been used to screen
entangling gates when variationally generating an ansatz during training [23]. In this work, we optimize
tensor networks as candidate ground states, as classifiers, and as solutions to combinatorial optimization
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Figure 1. Outline of the MPS initialisation procedure. (a) Classical training—a MPS is optimized as an approximate solution to
a given problem instance. The optimized MPS is put into canonical form, where the tensors are isometries from the space of
incoming arrows to the space of out going arrows. Any MPS can be put in this form, due to a gauge freedom in the MPS [22]. In
canonical form the tensors are equivalent to a unitary matrix acting on a fixed reference state. (b) Initialization—the trained
MPS is mapped exactly to a quantum circuit. Off diagonal gates are implicitly initialized to the identity.

problems. Using PQCs to find ground state and as classifiers has been previously demonstrated to suffer
from barren plateaus [12]. We use trained MPS to seed a PQC with an effective set of starting parameters,
before continuing to train the quantum circuit. By beginning training in a part of the parameter space that
is close to the target state, the number of steps to reach the desired minima can be reduced, potentially
mitigating impacts of small gradients. From here onwards this procedure will be known as MPS
pretraining.

2. MPS pretraining

MPS pretraining involves three steps:

(a) Train a tensor network

(b) Compile the tensor network into gates

(c) Initialise a circuit with these gates

Figure 1 outlines this procedure.

2.1. MPS optimization
Given a problem instance, such as a Hamiltonian or a labeled data set, and a cost function where the
minimum corresponds to the state of interest, the first step is to produce a MPS that minimizes the given
cost function. The bond dimension of a MPS, denoted χ, is a parameter that determines the complexity of
the MPS model. Higher bond dimension models tend to produce better results, at the cost of greater
training complexity. This training is done purely classically, and software exists both to efficiently contract
and optimize these states, for example we refer the reader to references [14, 24–26]. In the following we
discuss MPS algorithms, but the insights apply to other tensor network architectures.

There are a variety of algorithms that can be used to optimize MPS. To find the ground states of 1D
Hamiltonians the density matrix renormalization group (DMRG) algorithm is known to be very effective
[27]. Similar optimisation algorithms include imaginary-time time evolving block decimation (TEBD) and
time dependant variational principle (TDVP), both of which are used in this work [28, 29]. In reference
[17] a DMRG-inspired machine learning algorithm is introduced which we adapt for this work. Note that
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Figure 2. Initialising VQE with MPS. (a) Quantum circuit ansatz—the structure of the circuits used for these experiments.
Shown is a depth six circuit on four qubits. Each unitary, U, is decomposed into 15 rotation angles using the KAK
decomposition. The single qubit gates are made up of three independent rotations, Z followed by Y followed by Z. All the angles
in the circuit are independent. All optimization was performed using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm. (b) H2 optimisation—for all depths the circuits produced a good estimate for the ground state energy,
E − Emin < 1 × 10−8. The MPS initialised circuits required thousands of fewer function evaluations at each depth, and the
number of iterations is growing more slowly with depth than for the randomly initialised circuits. (c) Non-vanishing
gradients—for the tilted-field Ising model we find the variance of the MPS initialised gradients at initialisation do not decrease
exponentially with the circuit depth. This is in contrast to both random and identity initialization. We use λ = 1 and δ = 0.5.
(d) TFIM optimisation—at all depths tested the MPS initialisation converged after fewer iterations.

in principle gradient descent can always be performed directly on all the tensors in the tensor network. This
more closely reflects classical machine learning algorithms. However these quantum-inspired learning
algorithms tend to perform as well in practice, and often perform better for quantum-based problems such
as energy minimisation.

2.2. MPS compilation
Having trained a MPS to minimize a cost function, the next step is to represent the MPS as a set of rotation
angles in a PQC. As opposed to other classical machine learning methods, low bond dimension tensor
networks permit efficient representations on quantum circuits [30]. MPS have a gauge freedom which
means that any MPS can be brought into canonical form in which each tensor is an isometry [22]. These can
then easily be embedded in unitary matrices. Bond dimension 2 MPS can be expressed as a staircase of two
qubit unitary gates [30]. The rotation angles are extracted from these unitaries with some compilation
scheme. For two qubit unitaries we use Cartan’s decomposition, often referred to as the KAK
decomposition [31], which decomposes two qubit unitaries into four single qubit gates with three rotation
angles each, and three different two-qubit interaction gates. A circuit diagram of the KAK decomposition is
shown in figure 2(a). In practice any unitary factorization can be used. The KAK decomposition was used
in this work to simplify numerics. If necessary these gates can be further decomposed into hardware
efficient gates. Restricted gate sets can be used as compilation targets, and the rotation angles can be found
variationally [32].

Often brick wall circuits are used as ansatz for PQC research, being the most general way to parametrise
a quantum circuit limited to nearest neighbour interactions. To initialise a brick wall circuit with a
pretrained MPS, the gates on the diagonal of the brick wall must be initialised with the angles extracted in
the compilation of the MPS. All of the off-diagonal gates are initialised to the identity. This ensures that
before quantum training begins, the circuit represents exactly as good a candidate for the target state as the
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Figure 3. Max cut optimization. (a) Max cut graph—the six node max cut problem graph with the edge weights. The max cut
Hamiltonian is given as H =

∑
〈i,j〉 wij(1 − ZiZj), where wij is the weight along the edge connecting node i to node j. Each node is

encoded as a qubit. (b) Quantum circuit ansatz—for all circuits the diagonal unitaries were expressed fully using the KAK
decomposition [31], whereas off diagonal unitary matrices were made with combinations of Y rotations and controlled X
rotations. Circuits were optimized using gradient descent with decaying learning rate. (c) MPS pretraining results—compared to
randomly initialised circuits, of depth 6, 9, and 12, the circuits initialised with MPS-compiled angles converge with fewer
gradient steps, and converge to a better ground state estimate than the randomly initialised counterparts. In the MPS initialised
circuits there is almost no change in performance as depth increases, whereas increasing depth with randomly initialised
parameters slows down optimization.

MPS is after compilation is completed. The optimizer is then free to vary the angles of all of the gates. We
demonstrate that starting with this initialisation accelerates training, requires fewer gradient updates, and
avoids local minima.

3. Results

3.1. Finding ground states
We implement MPS pretraining for the purpose of finding ground states of electronic Hamiltonians, a
common benchmark in hybrid quantum classical algorithm research. We use imaginary time TDVP to
estimate the ground state of the electronic Hamiltonian of H2. The Hamiltonians are constructed using the
OpenFermion package [33]. The same is done for the transverse field Ising model (TFIM) which is a widely
studied Hamiltonian in condensed matter physics.

In all these cases imaginary time TDVP was used to construct a MPS approximation to the ground state,
and this MPS is used to initialise a quantum circuit. To demonstrate that even in cases where low bond
dimension MPS are not as effective, we run the TDVP algorithm for a shorter time, meaning a worse
approximation is used to initialise the circuits. These results are given in figure 2.

Not only do we see optimization terminating successfully in fewer iterations for all cases studied, we
look at the effect of MPS pre-training on the size of gradients at initialisation. Barren plateaus are identified
as an exponentially shrinking variance in the initial gradients of the cost function. Figure 2(c) shows that
when initialised with a pre-trained MPS, even one that has not fully converged, the variance of gradients do
not shrink exponentially with system size. This is in stark contrast to randomly selecting the initial
parameters. We see larger gradient variance compared to circuits variationally initialised to the identity
matrix, which still show decreasing variance with system size.

3.2. Combinatorial optimization
We test the initialisation scheme on the max cut optimisation problem which is often used as a benchmark
for quantum approximate optimization algorithm (QAOA) algorithms [34]. In the max cut problem a
graph, G(E, V), is provided along with weights, wij, on each edge. The task is to find a set of vertices, S, such
that the total weight of the edges connecting S to their complement is maximized. This is equivalent to
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Figure 4. Fashion MNIST results. (a) Quantum circuit ansatz—the circuit used in these classification experiments. U and W are
defined in the same way as in figure 3(a). The classifier ansatz is given by a brick wall circuit, and the data is introduced using Y
rotations, parametrised by angles �̃x. A single component of this vector, x̃i, is given by the projection of a single image onto the ith
principle component of the training dataset. A decision function is defined as the probability of measuring the all-zero bit string.
We use binary cross-entropy loss defined on the training dataset, X̃, as a target to optimize the decision boundary. The circuit
classifies the image with label 0 if f (�̃x) < 0.5 and 1 otherwise. Optimization is performed using the Adam optimizer. (b) Results
with MPS initialisation—the loss and binary accuracy on the training set during training is given as a function of the number of
epochs trained for. An epoch is defined as the number of batched gradient updates required such that the entire training set has
been processed once. In each case the number of qubits is the same as the depth. The MPS was trained for five epochs before
being compiled to a quantum circuit and training is continued. The MPS initialised circuits took no more than two epochs to
optimize, whereas the other initialisation schemes required four or more. As well as starting at a higher binary accuracy, the
binary accuracy of the MPS initialised circuits also increased faster during early epochs, indicating that the local loss landscape of
the MPS initialised circuits may be more easy to optimize over.

finding the ground state of the Hamiltonian,

H =
∑

〈i,j〉
wij(1 − ZiZj) (1)

where Z is the Pauli Z matrix.
We use imaginary time TEBD to find a bond dimension 2 approximation to the ground state for an

instance of the max cut problem on a graph with six vertices. In figure 3 we show the results of training
with this initialisation for depth 6, 9, and 12 circuits. Optimization was performed for an imaginary time of
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Figure 5. Gauge freedom and circuit depth. The decomposition of a centre-gauge MPS into a quantum circuit. This circuit has a
lower depth than left or right canonical MPS, used throughout this work. This may additionally mitigate the effect of vanishing
gradients. Tensors are isometries from the space of incoming arrows to the space of outgoing arrows. For bond dimension 2 there
exist low depth circuits that can exactly represent the central tensor, C [30]. For higher bond dimension MPS the central tensor
would need to be approximately compiled.

3 × 10−2, with a time step of 1 × 10−3. We only optimize the MPS for short periods of time because for
small problem instances low bond dimension MPS can often get close to the optimal answer. To more
closely match the performance on large problem instances which require quantum circuits that cannot be
easily simulated we do not fully optimize the MPS.

We compare training starting from MPS pretrained circuits to that starting from random initialisations
of the same ansatz. Instead of the standard QAOA scheme, we use a brick wall circuit made up of
independent two-qubit gates. These sorts of circuits have been explored for optimisation problems and their
performance is competitive with QAOA [35].

The MPS initialised circuits start off at a better energy than the random counterparts, which is to be
expected. However the initial steps from the MPS initialised states are noticeably larger than those taken
from randomly initialised circuits. These circuits reach a minimum with fewer gradient descent updates,
and reach better minima than the any of the randomly initialised states. In the random state there is a
notable decrease in performance between the depth 9 and depth 12 ansatz, where the depth 12 gets stuck in
a local minimum. No drop in performance is observed in the MPS initialised circuits.

3.3. Machine learning
Finally we pretrain quantum circuits to classify clothing labels using the Fashion MNIST dataset. The
images were compressed so small circuits could be used to classify each image. This compression is done
using principle component analysis on the training data set, and projecting the training images onto the
principle components. The set of training images is collected into a matrix, X. We compute the covariance
matrix of the training dataset, given by

Σ = XTX. (2)

Then we perform a singular value decomposition (SVD) on the matrix Σ

Σ = UΛU†. (3)

The principle components are identified as the columns of U. To compress an image so that an N qubit
circuit can be used to classify the image we take the N top principle components, {�u1,�u2, . . . ,�uN}, and take
the inner product between each image (reshaped into a vector) and the principle component. The input to
the ith qubit from the jth image in the training set is given by

x̃i,j = 〈�xj,�ui〉. (4)

Each projection was used as the input to a single qubit, so to use N qubits, we projected an image onto
the N most significant principle components. The individual x̃i values are used as rotation angles in
parametrised Y gates, figure 4(a). This method, as opposed to other compression methods, such as pooling,
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gives greater flexibility in the number of qubits that can be used. The circuits used here were trained as
binary classifiers. They were trained to distinguish between t-shirts and trousers. In figure 4(b) we show the
training set loss and accuracy at each epoch during training.

The MPS pretrained circuit is compared to both a random initialisation and an initialisation such that
the circuit evaluates to the identity matrix. Reference [12] suggests the identity initialisation increases the
size of initial gradients and is commonly used in quantum chemistry research. In this case all angles were
set to zero, as all gates used were parameterised rotations. For an ansatz with static gates, more care must be
taken so that the entire circuit evaluates to the identity.

The MPS initialised circuit has a lower loss and higher accuracy on the training set during training than
either the identity initialisation or the random initialisation.

4. Discussion

4.1. Comparison to other methods
Below we compare conceptually similar ideas which have been proposed to overcome barren plateaus and
accelerate the training of variational quantum circuits. This is not an exhaustive list but highlighting these
examples helps highlight the benefits of MPS pre-training.

4.1.1. Warm-start QAOA
The MPS initialisation method introduced here is one of many proposed methods to improve the training
of PQCs. This solution is very similar in methodology to the warm-start QAOA algorithm [36]. Relaxations
are applied to the optimization problem which make the problem efficiently solvable, and this is used to
initialise the QAOA algorithm. The relative merits of these two methods ultimately depends on the relative
effectiveness of relaxation methods and MPS based methods to approximate the optimal solution for
optimization problems. There is currently no way to concretely answer this question, but there have been
results demonstrating that tensor network based methods are competitive with state of the art commercial
solvers for optimization problems [15, 16].

4.1.2. Layer-wise learning
Another procedure that has shown promising results is layer wise learning [35, 37]. Layers in a quantum
circuit are trained one at a time, keeping all other layers fixed. Finally layers are grouped together and
trained simultaneously before training the entire circuit. The reasoning behind this method is very similar
to that proposed here, to initialise the entire circuit with an approximation to the optimal solution, but
instead of using MPS, the approximation is generated by sequential optimisation of layers in a PQC. Once
again the question remains as to whether the layer wise trained approximation is better than MPS based
approximations. Consider the fact that depth 1 or 2 nearest neighbour circuits, which are often considered
in layer wise training regimes, can be faithfully represented with a bond dimension 2 MPS, and in fact this
set of states is a restriction on the set of states that can be represented with a bond dimension 2 MPS. Layer
wise training could be reformulated as sequential training of finite correlation length MPS, with the bond
dimension of the restricted MPS growing with each trained layer. Seeing as the MPS initialisation scheme
that we have introduced requires no restriction on the set of accessible states it should be the case that
better initialisation states are accessible with the methods introduced here. It has been demonstrated that
layer-wise learning suffers from abrupt transitions in trainability [38]; there exist circuit ansatz and
cost functions where, below a threshold depth, piece wise training fails to minimize the cost
function.

It has not escaped our attention that insights from tensor network optimisation techniques could be
used to augment this initialisation method with a training scheme similar to layer wise learning. In the
DMRG algorithm, the bond dimension of the MPS is gradually increased. A similar approach with brick
wall circuits would involve sequentially training diagonals either side of the central diagonal. It remains to
be seen if this training scheme could be as effective as layer wise learning in training a circuit combined with
MPS pretraining.

4.1.3. Entanglement restriction
The authors of [7] note that the impacts of vanishing gradients can be mitigated by restricting
entanglement between hidden and visible qubits in a PQC. A qubit is visible if the output of that qubit is
used to calculate a cost function, and it is hidden if it is ignored. They propose a number of schemes,
including starting with no entanglement between hidden and visible nodes, having a fixed entanglement,
and learning circuits which have low entanglement. The quantum circuit MPS formalism used in this work
can easily be extended to the regime with hidden and visible qubits. In this case our initialisation scheme
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would resemble a fixed entanglement initialisation scheme, where the entanglement between the hidden
and visible nodes is fixed by the bond dimension of the tensor network. They additionally propose
including additional terms to the cost function, one to restrict entanglement growth between hidden and
visible nodes, and one to add Langevin noise which acts to mitigate the effect of vanishing gradients. Both
these schemes could be implementing on top of the initialisation scheme proposed here.

4.2. Alternative tensor network structures
There are many tensor network geometries that are used to represent states with properties that are not
effectively captured by MPS. Many of these have circuit counterparts which could be initialised in the same
way. For example MERA networks [39] have been proposed as a basis for quantum machine learning.

MPS have a freedom in the location of the orthogonality centre when put in canonical form. In all results
above, the MPS are put into left or right canonical form. The circuits to represent these states have a depth
at least as large as the number of qubits. However choosing a mixed canonical form actually reduces the
circuit depth needed to initialise the MPS, figure 5.

4.3. Consequences for tensor network simulations
It is interesting to note that the bond dimension of the MPS needed to represent the circuit increases as
training proceeds. Deep brick wall circuits represent a restricted class of high bond dimension tensor
networks. Ordinarily any variational calculations with these extremely large bond dimension tensor
networks would be impractical on quantum devices because of the difficulty in optimizing these circuits. To
simulate spin systems with high bond dimension tensor networks it would be possible to simulate up to the
classically feasible limit, translate the tensor network into circuits, and then seed a higher bond dimension
simulation with the classical tensor network as is done here. This could open up the possibility of very large
bond dimension tensor network simulations of spin systems on NISQ devices.
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