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Abstract: We review the semi-inclusive hadroproduction of a neutral hidden-flavor tetraquark with

light and heavy quark flavor at the HL-LHC, accompanied by another heavy hadron or a light-

flavored jet. We make use of the novel TQHL1.0 determinations of leading-twist fragmentation

functions to describe the formation mechanism of a tetraquark state within the next-to-leading order

perturbative QCD. This framework builds on the basis of a spin physics-inspired model, taken as

a proxy for the lowest-scale input of the constituent heavy-quark fragmentation channel. Then,

all parton-to-tetraquark fragmentation functions are consistently obtained via the above-threshold

DGLAP evolution in a variable-flavor number scheme. We provide predictions for a series of differ-

ential distributions calculated by the hands of the JETHAD method, well-adapted to NLL/NLO+

hybrid-factorization studies, where the resummation of next-to-leading energy logarithms and be-

yond is included in the collinear picture. We provide corroborating evidence that high-energy

observables sensitive to semi-inclusive tetraquark emissions at the HL-LHC exhibit a fair stability

under radiative corrections, as well as MHOU studies. Our analysis constitutes a prime contact point

between QCD resummations and the exotic matter.

Keywords: exotic matter; QCD resummation; HL-LHC phenomenology; heavy–light tetraquarks;

hidden flavor

1. Hors d’œuvre

The study of heavy-quark flavored objects in high-energy hadron collisions is crucial
for shedding light on the core nature of fundamental interactions. These processes serve
as gold-plated channels for probing the underlying dynamics of particle physics. Heavy
quarks, due to their large masses, act as sentinels for potential imprints of new physics,
as they could interact with beyond-the-Standard-Model (BSM) particles. On the other hand,
their masses fall within a regime where perturbative quantum chromodynamics (QCD)
calculations are feasible, thus enabling precision studies of strong interactions.

QCD, the theory of the strong force, is a cornerstone of the Standard Model (SM)
of particle physics. It is based on the non-Abelian SU(Nc) gauge group, with Nc = 3
representing the number of colors [1–4]. Quarks, which come in six flavors along with their
antiquarks, constitute the building blocks of hadrons. In the QCD framework, quarks are
described by fermionic fields belonging to the fundamental triplet representation of SU(3).
Gluons, the force carriers of the strong interaction, are massless spin-1 bosons that mediate
interactions between quarks. In the QCD Lagrangian, gluons are represented by bosonic
fields belonging to the adjoint octet representation of SU(3).

While QCD stands as one of the fundamental pillars of the SM, it also serves as
a fertile ground for probing BSM physics. Several potential portals to BSM extensions
within the realm of QCD have been proposed. Among others, they include axions, which
were originally postulated to address the strong charge-parity (CP) problem [5–8], non-
Abelian dark gauge forces [9,10], quarkyonic matter [11–13], and higher-dimensional QCD
operators incorporated into the Lagrangian [14–17]. This wealth of possibilities provides
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us with rich opportunities for exploring the frontiers of particle physics and searching for
long-awaited signs of physics beyond the SM.

Within the QCD domain, a key role is played by hadrons whose lowest Fock state
contains two or more heavy quarks. Mesons composed of a heavy quark (Q) and its
antiquark (Q̄) are known as (heavy) quarkonia. The origins of quarkonium studies trace
back to the so-called “Quarkonium November Revolution”. Indeed, in November 1974,
a groundbreaking discovery was made: a new vector meson, with a mass around 3.1 GeV
and carrying photon quantum numbers, was observed independently by two research
groups. This meson was named J/ψ, after the two institutions where it was discovered:
the Stanford Linear Accelerator Center (SLAC) led by B. Richter [18], and the Brookhaven
National Laboratory (BNL) led by S. Ting [19]. Shortly after these announcements, the dis-
covery of the J/ψ was confirmed by the Frascati ADONE experiment, under the direction
of G. Bellettini [20]. This landmark heralded the beginning of quarkonium studies and
provided crucial insights into the nature of the strong force and the underlying quark
structure of hadrons.

Though quarkonium mesons fall into the class of ordinary hadrons, QCD color neutral-
ity allows for the formation of bound states with more intricate valence-parton configu-
rations, leading to the emergence of exotic hadrons. These exotic particles have quantum
numbers that cannot be explained by conventional quark-antiquark or three-quark con-
figurations. Instead, they are composed of unique combinations of quarks, antiquarks,
and gluons. Understanding the inner structure of these exotic hadrons has been the focus of
intense research in the field of exotic spectroscopy. Exotic hadrons can be classified into two
main categories: those composed of active gluons, such as quark–gluon hybrids [21–23]
(see also Refs. [24–28]) and glueballs [29–37], and those composed of multiple quarks, such
as tetraquarks and pentaquarks [2,38–40].

The observation of the first exotic hadron, the X(3872), occurred in 2003 in the Belle
experiment [41], and subsequent experiments confirmed its existence. Its discovery marked
the beginning of the so-called “Second Quarkonium Revolution”, or “Exotic Revolution”.
The X(3872) is a hidden-charm particle, believed to be composed of charm and anticharm
quarks [42–44]. The first exotic state with open-charm flavor, the X(2900) particle, was ob-
served for the first time in 2021 at LHCb [45]. Although the X(3872) has quantum numbers
that are not exotic, its decay properties violate isospin conservation, suggesting that its
inner structure may involve more complex dynamics beyond traditional quarkonium states.
Various theoretical models have been proposed to describe the X(3872), including a loosely
bound meson molecule [46–64], a compact diquark system [65–78], or a hadroquarkonium
configuration consisting of a quarkonium core and an orbiting light meson [79–86].

Quite recently, a high-energy description of the single hadroproduction of fully
charmed tetraquarks was proposed [87,88]. The production rates of the X(3872) at large
transverse momenta, as measured by experiments at the LHC, provide valuable insights
into its production mechanisms. These measurements can help to constrain theoretical
models and favor production mechanisms inherent in high-energy QCD, such as the
fragmentation of a single parton into the observed particle.

In this review we address the associated hadroproduction, at LHC and its high-
luminosity upgrade (HL-LHC), of a forward heavy–light tetraquark and a backward singly
heavy-flavored hadron or a light jet. The two outgoing particles possess high transverse
momenta and a large mutual separation in rapidity. On the one hand, the presence of
moderate parton longitudinal-momentum fractions allows for a reliable description using
collinear parton distribution functions (PDFs). On the other hand, large rapidity intervals
in the final state lead to significant exchanges of transverse momenta in the t-channel.

Therefore, a high-energy factorization treatment, accounting for energy logarithms
due to t-channel gluon emissions, becomes necessary. With the aim of providing an
accurate high-energy QCD description of our reactions in these kinematic ranges, we rely
upon the JETHAD method [89–91] to implement the NLL/NLO+ hybrid-factorization
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formalism [89–95], in which the resummation of next-to-leading energy logarithms and
beyond is consistently included in the collinear picture.

Then, the last required ingredient is the choice of a reliable mechanism depicting the
formation of our heavy–light tetraquark states in the kinematic regimes of interest. From a
collinear-factorization viewpoint, the transverse momenta at which final-state particles are
tagged make the use of a variable-flavor number scheme (VFNS) approach [96,97] valid.

To this extent, we will make use of a novel set of collinear fragmentation functions
(FFs), named TQHL1.0, suited to the VFNS fragmentation of XQqQ̄q̄ tetraquarks [98]. They
were obtained by performing a next-to-leading Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution of an initial-scale input for the constituent heavy-quark fragmenta-
tion channel, obtained within the spin physics-inspired Suzuki–Nejad–Amiri–Ji (SNAJ)
model [99–102].

For the sake of completeness, we mention that other hybrid-factorization formalisms,
closely related to our NLL/NLO+ framework and tailored for single forward detections,
exist. These include the approaches proposed in Refs. [103–109], which offer valuable
insights and can complement our approach in understanding high-energy QCD processes.

On the other hand, analyses on small-x resummed inclusive or differential distri-
butions for Higgs and heavy-flavor hadroproduction have been conducted using the
HELL method [110,111]. The HELL method relies on the Altarelli–Ball–Forte (ABF)
approach [112–118], which combines collinear factorization with small-x resummation,
along with high-energy factorization theorems [119–126]. These analyses offer complemen-
tary perspectives and contribute to a more comprehensive understanding of high-energy
QCD phenomena.

The outline of this review reads as follows. In Section 2, we introduce the NLL/NLO(+)

hybrid collinear and high-energy factorization, and in Section 3 we provide technical details
on our strategy to describe tetraquark collinear fragmentation. Results and conclusions are
presented in Sections 4 and 5, respectively.

2. Theoretical Setup

This section is for a digression on recent phenomenological progresses of high-energy
resummation in QCD (see Section 2.1). Then, it gives a formal description of the observables
matter of our analysis, as cast within the hybrid factorization (see Section 2.2).

2.1. High-Energy QCD Phenomenology: An Incomplete Summary

Providing accurate predictions for high-energy observables relies upon the ability
to disentangle long-distance from short-distance dynamics in hadron scatterings. This
allows us to factorize nonperturbative dynamics from perturbative calculations via the
well-established collinear framework [127,128].

However, specific kinematic regions pose challenges due to the emergence of large
logarithms. These logarithmic corrections grow with the order of the perturbative ex-
pansion, thus offsetting the smallness of the QCD running coupling and hampering the
convergence of perturbative series. In such scenarios, the standard collinear factorization
must be enhanced via the incorporation of all-order resummations.

In the semi-hard regime of QCD [129] (see Refs. [130–132] for advances in phenomenol-
ogy), characterized by a stringent energy scale hierarchy

√
s ≫ Q ≫ ΛQCD, large loga-

rithms of the form ln s/Q2 enter perturbative series with a power increasing with the order,
thus calling for a resummation treatment.

The Balitsky–Fadin–Kuraev–Lipatov (BFKL) formalism [133–136] proves to be the
most adequate tool for high-energy resummation. More in particular, BFKL allows us
to resum all contributions proportional to (αs ln s)n, the so-called leading logarithmic
(LL) approximation, as well as the ones going to αs(αs ln s)n, namely the next-to-leading
logarithmic (NLL) approximation.

According to BFKL, a given scattering amplitude factorizes as a convolution between
a universal Green’s function and two singly off-shell, transverse-momentum-dependent
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emission functions (also known as impact factors) describing the emission of a forward
particle from the fragments of the corresponding parent hadron. Using the BFKL jargon,
these coefficients are also known as forward-production impact factors. The Green’s
function is governed by an integral evolution equation, whose kernel is known at the next-
to-leading order (NLO) perturbative accuracy [137–143] (see Refs. [144–149] for ongoing
efforts in calculating higher-order corrections).

The predictive capability of the high-energy resummation from BFKL at NLL is
constrained by the availability of off-shell emission functions computed within NLO. They
include: (a) colliding-parton (quarks and gluons) impact factors [150,151], which are needed
to calculate (b) forward-jet [152–157] and (c) forward light hadron [158] emission functions.
Additionally, we mention: (d) the virtual photon to light vector meson [159], (e) light-by-
light impact factors [160–165], and (f) the emission function for the production of a forward
Higgs boson in the infinite top-mass limit [166,167] (see also Refs. [168,169]).

Staying at leading order (LO), we include Drell–Yan pairs [170,171], heavy-quark
pairs [172–174], and forward J/ψ emitted at low transverse momentum [175] (see also
Refs. [176–178]).

Gold-plated phenomenological channels to probe high-energy QCD dynamics at
hadron colliders essentially fall into the following classes: Mueller–Navelet
dijets [92,155,157,179–192], dihadron production [193–197] and multi-jet tags [198–210],
hadron plus jet [89,211–215], Higgs plus jet [93,216–219], heavy–light dijet systems [94,220],
and heavy-hadron [95,172–175,221–229] emissions.

Remarkably, detections of single forward particles are excellent probe channels for
the proton’s content at low-x through the BFKL Unintegrated Gluon Distribution (UGD),
whose energy evolution is ruled by the BFKL Green’s function. We mention light vector-
meson leptoproduction at HERA [230–238] and the Electron–Ion Collider (EIC) [239–243],
exclusive quarkonium photoproduction [244–247], and the inclusive detection of Drell–Yan
dilepton systems [171,248–250] or bottomed jets [251–253].

The information on the gluon content at small-x provided by the BFKL UGD turned out
to be decisive in improving the description of small-x resummed collinear PDFs [254–256].
Additionally, it connects with model studies of low-x improved, twist-two gluon transverse-
momentum-dependent (TMD) distributions [257–267]. Analyses presented in Refs. [268,269]
provide insights into the relationship between TMD and low-x dynamics. Studies in
Refs. [270,271] delve into the exploration of the connection between the UGD and color-
dipole cross sections.

A striking challenge connected to the BFKL description of Mueller–Navelet rapidity
distributions and azimuthal angle correlations arises from the impact of NLL contributions.
These NLL terms, while of the same order as the pure LL case, exhibit an opposite sign.
This leads to strong instabilities within the resummed series, particularly when studies on
missing higher-order uncertainties (MHOUs) via variations of energy scales around their
natural values are made.

Consequently, Mueller–Navelet observables tend to assume unphysical values, es-
pecially as the rapidity separation between jets becomes sufficiently large. Likewise,
azimuthal correlations display anomalous behaviors at both small and large rapidity dis-
tances. Various approaches have been explored to address this issue. Notably, the Brodsky–
Lepage–Mackenzie (BLM) prescription [272–275], specifically designed for semi-hard pro-
cesses [184], provides a partial mitigation of these instabilities in azimuthal correlations,
leading to a moderate improvement in agreement with experimental data.

However, the efficacy of BLM is limited, particularly in the case of light dihadron
or hadron plus jet semi-hard distributions. The primary reason for this limitation is that
the optimal renormalization scale values recommended by BLM are significantly higher
than the natural scales of the underlying processes [89,130,211]. Consequently, in these
scenarios, total cross sections suffer from a substantial reduction in statistics.

Compelling indications of a reached stabilization of the high-energy resummation un-
der higher-order corrections and scale variations have been recently observed in the context
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of semi-hard reactions featuring final states sensitive to Higgs boson detections [93,276–282].
A clear signature of this stabilizing trend came out for the first time from studies on the
semi-inclusive emissions of Λc hyperons [221] or singly bottomed hadrons [222] at the
LHC. In particular, it was highlighted that the stabilizing effect is directly connected with
the distinctive pattern exhibited by VFNS collinear FFs governing the production of these
singly heavy-flavored particles at high transverse momentum.

Subsequent analyses on vector quarkonia [91,95], charmed B mesons [226,229], and
heavy–light tetraquarks [98] clarified that this remarkable property, known as natural
stability of the high-energy resummation in QCD [224], emerges as an intrinsic feature
inherently associated with final states sensitive to heavy flavor.

2.2. Hybrid Factorization Studies at NLL/NLO and Beyond

We investigate the two classes of processes represented in Figure 1

p(Pa) + p(Pb) → XQqQ̄q̄(κ1, y1) +X +HQ(κ2, y2),

p(Pa) + p(Pb) → XQqQ̄q̄(κ1, y1) +X + jet(κ2, y2),
(1)

where a heavy–light tetraquark (Xcuc̄ū, Xcsc̄s̄, Xbub̄ū, or Xbsb̄s̄) is emitted in association with
a singly heavy-flavored hadron (Hc or Hb) or a light jet, O = {Hc,Hb, jet}. The final-state
particles possess large transverse momenta, |κ1,2| ≫ ΛQCD, and their rapidity separation is
∆Y ≡ y1 − y2.

Pa

xa

HQ

Pb

xb

XQqQ̄q̄

Pa

xa

jet

Pb

xb

XQQ̄qq̄

Figure 1. Pictorial representation of the tetraquark + hadron (left) and tetraquark + jet (right) semi-

inclusive hadroproduction within the hybrid collinear and high-energy factorization (figures realized

with JaxoDraw 2.0 [283]). Red blobs depict collinear FFs. The off-shell hard factor, part of the hadron

(jet) emission function, is represented by green (violet) ovals. Tetraquark (Q-hadron) emissions are

portrayed by orange (firebrick) arrows. The large blue blob at the center of each diagram represents

the BFKL Green’s function.

As for a Hc hadron, we refer to inclusive states consisting in the sum of fragmentation
channels to single-charmed D±, D0, and D∗± mesons, and also Λ±

c hyperons. Analogously,
a Hb particle stands as a combination of noncharmed B mesons and Λ0

b baryons [222].
The undetected gluon radiation is inclusively indicated as X . Large observed transverse
momenta and large rapidity distances are needed for dealing with semi-hard final-state
configurations. Furthermore, transverse-momentum ranges have to be large enough to
confirm the validity of the VFNS collinear fragmentation to be the dominant mechanism
for the production of heavy hadrons.
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Incoming protons’ four-momenta can decompose as Sudakov vectors satisfying P2
a =

P2
b = 0 and 2(Pa · Pb) = s. In this way, κ1 and κ2 can be cast as

κ1,2 = x1,2Pa,b −
κ 2

1,2⊥
x1,2s

Pb,a + κ1,2⊥ , κ
2
1,2 ≡ −κ2

1,2⊥ . (2)

A final-state object’s longitudinal fractions, x1,2, depend on rapidities, as y1,2 = ± 1
2 ln

x2
1,2s

κ
2
1,2

.

Thus, one has dy1,2 = ±dx1,2
x1,2

and ∆Y ≡ y1 − y2 = ln x1x2s
|κ1||κ2| .

The LO cross section of our reactions (Equation (1)) in pure collinear QCD would
take the form of a one-dimensional convolution among protons’ PDFs, hadrons’ FFs,
and partonic hard factors. In the double hadron channel (left panel of Figure 1), one writes

dσLO
[p + p → XQqQ̄q̄ + HQ ]

dx1dx2d2
κ1d2

κ2
= ∑

a,b

∫ 1

0
dxa

∫ 1

0
dxb fa(xa, µF) fb(xb, µF)

×
∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
DX

a

(

x1

z1
, µF

)

DH
b

(

x2

z2
, µF

)

dσ̂a,b

dxadxbdz1dz2d2
κ1d2

κ2
,

(3)

where (a, b) indices run over quarks, antiquarks, and the gluon, fa,b are proton PDFs, DX
a,b

(

DH
a,b

)

denote heavy–light tetraquark (singly heavy-flavored hadron) FFs, xa,b stand for the
longitudinal fractions of the struck partons, z1,2 are the longitudinal fractions of outgoing
partons, and dσ̂a,b are partonic-subprocess cross sections.

Analogously, in the tetraquark plus jet channel (right panel of Figure 1) we have

dσLO
[p + p → XQqQ̄q̄ + jet]

dx1dx2d2
κ1d2

κ2
= ∑

a,b

∫ 1

0
dxa

∫ 1

0
dxb fa(xa, µF) fb(xb, µF)

×
∫ 1

x1

dz

z
DX

a

( x1

z

) dσ̂a,b

dx1dx2dz d2
κ1d2

κ2
.

(4)

On the contrary, deriving the formula for the high-energy resummed cross section
within our hybrid factorization requires a two-step process. First, we employ the high-
energy factorization, as prescribed by BFKL. Then, we enhance the description by incorpo-
rating collinear components, PDFs, and FFs. To this extent, we express the differential cross
section as a Fourier sum of azimuthal-angle coefficients

dσNLL/NLO+

dy1dy2dκ1dκ2dφ1dφ2
=

1

(2π)2

[

CNLL/NLO+

0 + 2
∞

∑
n=1

cos(n(Φ − π)) CNLL/NLO+

n

]

, (5)

with φ1,2 the observed azimuthal angles and Φ ≡ φ1 − φ2. Azimuthal coefficients are
calculated within the BFKL formalism and they encode the LL and NLL resummation of
high-energy logarithms. We rely upon the MS renormalization scheme [284] to write (see
Ref. [155] for details)

CNLL/NLO+

n =
∫ 2π

0
dφ1

∫ 2π

0
dφ2 cos(n(Φ − π))

dσNLL/NLO+

dy1dy2 d|κ1|d|κ2|dφ1dφ2

=
e∆Y

s

∫ +∞

−∞
dν e∆Yᾱs(µR)χ

NLO(n,ν)

× α2
s (µR)

{

FNLO
1 (n, ν, |κ1|, x1)[FNLO

2 (n, ν, |κ2|, x2)]
∗

+ ᾱ2
s (µR)∆Y

β0

4Nc
χ(n, ν) f (ν)

}

,

(6)
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where ᾱs(µR) ≡ αs(µR)Nc/π with Nc the color number, and β0 = 11Nc/3 − 2n f /3 is the
first coefficient of the QCD β-function with n f the flavor number. We select a two-loop
running coupling with initial condition αs(MZ) = 0.11707 and a dynamic n f . The BFKL
kernel at the exponent of Equation (6) reads

χNLO(n, ν) = χ(n, ν) + ᾱsχ̂(n, ν) , (7)

with

χ(n, ν) = −2γE − 2 Re

{

ψ

(

1 + n

2
+ iν

)}

(8)

being the LO BFKL eigenvalues, γE the Euler–Mascheroni constant, and ψ(z) ≡ Γ′(z)/Γ(z)
the logarithmic derivative of the Gamma function. The χ̂(n, ν) function in Equation (7) is
the NLO kernel correction

χ̂(n, ν) = χ̄(n, ν) +
β0

8Nc
χ(n, ν)

(

−χ(n, ν) + 10/3 + 2 ln
µ2

R

µ2
C

)

, (9)

with µC ≡ √
m1⊥m2⊥, where m(1,2)⊥ are the observed-particle transverse masses. Masses

or our heavy–light tetraquark are set to mX = 2(mq + mQ), with Mq (mQ) being the mass
of the light (heavy) constituent quark. The transverse mass of the light-flavored jet merely
coincides with its transverse momentum, |κJ |. The characteristic χ̄(n, ν) function was
obtained in Ref. [285]

χ̄(n, ν) = −1

4

{

π2 − 4

3
χ(n, ν)− 6ζ(3)− d2χ

dν2
+ 2 ϕ(n, ν) + 2 ϕ(n,−ν) (10)

+
π2 sinh(πν)

2 ν cosh2(πν)

[(

3 +

(

1 +
n f

N3
c

)

11 + 12ν2

16(1 + ν2)

)

δn0 −
(

1 +
n f

N3
c

)

1 + 4ν2

32(1 + ν2)
δn2

]

}

,

with

ϕ(n, ν) = −
∫ 1

0
dx

x−1/2+iν+n/2

1 + x

{

1

2

(

ψ′
(

n + 1

2

)

− ζ(2)

)

+ Li2(x) + Li2(−x) (11)

+ ln x

[

ψ(n + 1)− ψ(1) + ln(1 + x) +
∞

∑
k=1

(−x)k

k + n

]

+
∞

∑
k=1

xk

(k + n)2

[

1 − (−1)k
]

}

=
∞

∑
k=0

(−1)k+1

k + (n + 1)/2 + iν

{

ψ′(k + n + 1)− ψ′(k + 1)

+ (−1)k+1
[

βψ(k + n + 1) + βψ(k + 1)
]

− ψ(k + n + 1)− ψ(k + 1)

k + (n + 1)/2 + iν

}

,

where

βψ(z) =
1

4

[

ψ′
(

z + 1

2

)

− ψ′
( z

2

)

]

, (12)

and

Li2(x) =
∫ x

0
dω

ln(1 − ω)

ω
. (13)

The singly off-shell emissions functions

FNLO
1,2 (n, ν, |κ1,2|, x1,2) = F1,2(n, ν, |κ1,2|, x1,2) + αs(µR) F̂1,2(n, ν, |κ1,2|, x1,2) (14)

The LO expressions for these functions depicting the production of a forward hadron and a
forward jet, respectively, read as
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Fh(n, ν, |κh|, xh) = 2

√

CF

CA
|κh|2iν−1

∫ 1

xh

dz

z

(

z

xh

)2iν−1

×
[

CA

CF
fg(z)Dh

g

( xh

z

)

+ ∑
a=q,q̄

fa(z)Dh
a

( xh

z

)

] (15)

and

FJ(n, ν, |κJ |, xJ) = 2

√

CF

CA
|κJ |2iν−1

[

CA

CF
fg(xJ) + ∑

b=q,q̄

fb(xJ)

]

, (16)

with CF ≡ (N2
c − 1)/(2Nc) and CA ≡ Nc the usual Casimir QCD factors. The f (ν) function

is related to a logarithmic derivative of LO emission functions

f (ν) =
i

2

d

dν
ln

(F1

F ∗
2

)

+ ln(|κ1||κ2|) . (17)

In Equation (6), the remaining components are the NLO emission-function correc-
tions, denoted as F̂1,2. The forward-hadron NLO term is determined under what was
calculated in Ref. [158] and its expression is provided in Appendix A of this review. As
for the forward-jet NLO term, our choice follows Refs. [156,158]. To ease numerical anal-
yses, we employ a jet selection function (we remind the reader that the most popular jet-
reconstruction functions fall into two major classes (see Refs. [286,287] and Refs. therein):
cone-type and sequential-clustering algorithms (such as the well-known (anti-)κ⊥ selection
function [288,289])) calculated within the small-cone algorithm (SCA) [290,291] in its cone-
type version [157] and with the jet cone radius set to R = 0.5. The analytic expression for
this emission function is given in Appendix B.

A proper way for a phenomenological comparison between our hybrid factorization
and pure fixed-order results would necessitate a numerical framework tailored for com-
puting NLO distribution two-particle reactions in hadron collisions. According to our
knowledge, such technology is currently unavailable. For the sake of comparison with
reference fixed-order predictions, we truncate the expansion of azimuthal coefficients of
Equation (6) up to the O(α3

s ) levels. This gives us an effective high-energy fixed-order
(HE-NLO+) expression, which captures the leading-power asymptotic signal present in a
pure NLO calculation and, at the same time, disregards terms proportional to inverse pow-
ers of the partonic center-of-mass energy. The MS expressions for the azimuthal coefficients
at HE-NLO+ reads

CHE-NLO+

n =
e∆Y

s

∫ +∞

−∞
dν α2

s (µR) [1 + ᾱs(µR)∆Yχ(n, ν)]

× FNLO
1 (n, ν, |κ1|, x1) [FNLO

2 (n, ν, |κ2|, x2)]
∗ ,

(18)

with the exponentiated kernel expanded and truncated at O(αs). Moreover, we present
predictions at a pure LL order, given by

CLL/LO
n =

e∆Y

s

∫ +∞

−∞
dν e∆Yᾱs(µR)χ(n,ν) α2

s (µR)F1(n, ν, |κ1|, x1)[F2(n, ν, |κ2|, x2)]
∗ . (19)

Equations (6)–(19) tell us the way our hybrid factorization is constructed. According
to BFKL, the hadronic cross section is high-energy factorized as a transverse-momentum
convolution between the Green’s function and the two off-shell emission functions. These
impact factors embody collinear PDFs and FFs. The NLL/NLO+ label emphasizes the
complete resummation of energy logarithms at NLL accuracy by means of perturbative
ingredients calculated at NLO. The ‘+’ superscript in Equation (6) highlights the fact
that some next-to-NLL contributions, resulting from the cross product of the two NLO
impact-factor corrections, are also accounted for.
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Renormalization (µR) and factorization (µF) scales are set to the natural energies
suggested by process kinematics. Thus, we have µR = µF = µN = m1⊥ + m2⊥. As for
collinear PDFs, we make use of the NNPDF4.0 NLO set [292,293], as implemented in the
LHAPDF v6.5.4 interface [294]. Such PDFs were extracted by means of global fits and
through the so-called replica method, originally derived in Ref. [295] in the context of
neural network techniques and now widely employed in multi-dimensional analyses of the
proton structure [296–301] (see Ref. [302] for a quantitative study on ambiguities emerging
from correlations among different PDF sets). All calculations presented in this review are
performed in the MS renormalization scheme [284].

3. Heavy-Flavor Fragmentation: From Heavy–Light Hadrons to Tetraquarks

In this section, we present our strategy to depict inclusive emissions’ heavy-flavored
hadrons via VFNS collinear fragmentation. Section 3.1 is for a digression on the emergence
of the natural stability [224]. Features of the novel TQHL1.0 FF determinations for the
heavy–light tetraquark state are discussed in detail in Section 3.2.

3.1. Rise and Discovery of the Natural Stability

The direct link between the dynamics governing DGLAP-evolving VFNS FFs and
the stabilization pattern of the hybrid factorization was initially uncovered via studies of
semi-hard emissions of singly heavy-flavored hadrons, including D mesons [303–311], Λc

hyperons [304,312,313], and b-flavored (Hb) hadrons [314–321].
A surprising and unexpected stabilizing trend under MHOU studies came out in ob-

servables sensitive to the forward semi-inclusive emission of Λc [90,221,223], D∗± [225,227],
and Hb [90,222] particles. It was then confirmed by analyses of vector quarkonia and
charmed B mesons produced via the single-parton (leading-twist) fragmentation mecha-
nism relying upon an initial-scale input [322–330]. Contextually, novel determinations of

DGLAP-evolving FFs for vector quarkonia and B
(∗)
c mesons were obtained in Refs. [95,228]

and [226], respectively. A weaker, but still present, stabilization trend also rises when
s-flavored, cascade Ξ−/Ξ̄+ baryons are detected [215].

The main outcome of Refs. [95,221,222,224,226] was a clear indication that the gluon
collinear FF channel has a crucial role in our NLL hybrid factorization framework. Its
energy dependence is responsible for the stability of the high-energy logarithmic series in
our observables. Specifically, in the kinematic sectors of interest, where 10−4 ≲ x ≲ 10−2,
the gluon PDF dominates over all (anti)quark channels. Since the gluon FF is convoluted
diagonally with the gluon PDF in the LO hadron impact factor (see Equation (15)), its
behavior is significantly amplified. This characteristic persists even at NLO [222], when the
(qg) and (gq) nondiagonal channels are active (see Appendix A).

While the QCD running coupling decreases with µR, and this affects both the Green’s
function and the impact factors, it is well known that the gluon PDF grows with µF. When
the latter is convoluted in the emission function with a gluon FF that also increases with µF,
as it happens for heavy-flavored hadrons, these two effects counteract each other. The net
result is a stabilizing trend of heavy-hadron distributions under MHOU studies. The more
pronounced the growth with µF of the gluon FF is, the clearer the stabilization pattern
becomes. This is the reason why distributions sensitive to singly bottom-flavored states are
generally more stable charm-sensitive ones [222]. In contrast, when the gluon FF decreases
with µF, as observed for lighter hadron species [215,221,229], no stabilization under MHOU
is evident. This hampers any possibility of conducting precision studies of high-energy
distributions at natural energy scales [89].

The manifestation of natural stability in the presence of both singly heavy-flavored
hadrons or quarkonia clearly highlights that this remarkable property is an intrinsic charac-
teristic of heavy-flavor emissions. It becomes apparent whenever a heavy-hadron species is
detected and it does not depend on the basis assumptions made to build corresponding
collinear FFs.



Symmetry 2024, 16, 550 10 of 39

3.2. The TQHL1.0 FF Determinations

Here we present our TQHL1.0 functions. They are VFNS, DGLAP-evolved collinear
FFs describing the direct inclusive production of a S-wave XQqQ̄q̄ tetraquark state within
the single-parton, leading-twist fragmentation mechanism. We essentially follow a two-
step strategy. First, we define the initial energy scale input for our FFs. Then, we obtain
phenomenology-ready FF determinations released as LHAPDF grids.

Our approach to construct a tetraquark FF set begins with the calculation of the
(Q → XQqQ̄q̄) S-wave collinear function, as carried out in Ref. [100] (see Figure 2). This
computation relies on the spin-dependent Suzuki model [99,101], which accounts for
transverse-momentum dependence. The collinear limit is obtained by neglecting the
relative motion of constituent quarks inside the tetraquark [102,331,332].

Q

Q

Q̄

Q̄

q

q̄
XQqQ̄q̄

Figure 2. Leading diagram for the fragmentation of a heavy quark, Q, into a XQqQ̄q̄ tetraquark. The

orange blob portrays the nonperturbative hadronization of the (QqQ̄q̄) system into the bound state.

The diagram was made using JaxoDraw 2.0 [283].

The treatment of initial scale input for tetraquark fragmentation follows a similar
factorization scheme as that for quarkonia in nonrelativistic QCD (NRQCD) [333–339].
There, a constituent (QQ̄) pair is produced perturbatively, after which tetraquark formation
occurs via nonperturbative long-distance matrix elements.

In our formulation, a four-quark (QqQ̄q) system is first emitted through perturba-
tive splittings. Subsequently, its production amplitude is convoluted with a bound-state
wave function that encapsulates the nonperturbative dynamics of tetraquark formation,
according to the Suzuki model.

Starting from the heavy-quark input in Figure 2, taken at the initial scale of Q0 = mQ +
mX, we generate our DGLAP-evolved set of collinear FFs for S-wave XQqQ̄q̄ tetraquarks.

The given Q0 value is nothing but the minimum required energy to produce the (QqQ̄q̄) sys-
tem in a color-singlet configuration. Several tools, such as QCD-PEGASUS [340], HOPPET [341],
QCDNUM [342], APFEL(++) [343–345], and EKO [346], come as public tools suited to numer-
ically solve the DGLAP equations. Contrariwise to collinear PDFs, whose evolution is
space-like, FF DGLAP evolution is time-like [347,348]. In this work, we make use of APFEL++
and we set the evolution accuracy at NLO.

Light partons and nonconstituent heavy-quark channels are obtained through the DGLAP
evolution. Thus, for each XQqQ̄q̄ species, we obtain a phenomenology-ready FF determination
in LHAPDF format, named TetraQuarks with Heavy and Light flavors (TQHL1.0) functions.

It could be argued that our methodology overlooks the initial-scale contribution of light
partons and nonconstituent heavy quarks, which are only generated through evolution
at scales µF > Q0. However, as highlighted in Ref. [100], these channels are deemed
negligible at the initial scale, Q0. This observation holds true for vector-quarkonium FFs as
well, as discussed in Ref. [95].

The panels in Figure 3 show the dependence on µF of the four TQHL1.0 collinear
FF sets describing XQqQ̄q̄ tetraquark formation at momentum fraction z = 0.5, which

roughly represent its average value, ⟨z⟩. As expected, the constituent heavy-quark FF
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channel heavily prevails over gluon and nonconstituent heavy-quark ones. The other light-
quark channels are not shown, since they are almost negligible. Remarkably, the gluon FF
smoothly increases with energy. This supports the statement that natural stability is encoded
also in the XQqQ̄q̄ fragmentation mechanism.
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Figure 3. Dependence on µF of the four TQHL1.0 collinear FF sets describing XQqQ̄q̄ tetraquark

formation at z ≃ ⟨z⟩ = 0.5.

4. Exotic Tetraquarks at the HL-LHC with JETHAD

All the predictions given in this review were obtained by making use of JETHAD,
a hybrid and multimodular interface that combines both PYTHON- and FORTRAN-based
modules. JETHAD is designed for the computation, management, and processing of
physical distributions defined within various formalisms [89–91]. In particular, numeric
calculations of differential distributions were carried out via some of the FORTRAN 2008
modular routines within JETHAD, whereas the native PYTHON 3.0 analyzer served as a
reference tool for final elaborations.

Section 4.1 provides an overview of the key features of the current version of JETHAD
technology (v0.5.1), which is not yet public. Further details on our error analysis are
outlined in Section 4.2. Information regarding final-state kinematic cuts enforced can be
found in Section 4.3. Numeric results and discussions on rapidity interval and transverse
momentum rates are presented in Sections 4.4 and 4.5, respectively.

4.1. The JETHAD v0.5.1 Multimodular Interface

The beginning of the JETHAD project traces back to late 2017, driven by the need for
accurate predictions of semi-hard hadron [193,195] and jet [186,188,211] sensitive final states
at the LHC. Phenomenological studies of such reactions, proposed as probe channels for the
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high-energy resummation in QCD, necessitated the establishment of a reference numeric
technology devoted to the computation and analysis of high-energy related distributions.

JETHAD v0.2.7 was the first named version and it played a key role in providing us
with a pioneering BFKL-versus-DGLAP analysis in the context of semi-inclusive hadron-
plus-jet emissions at the LHC [89]. Subsequent versions introduced new features, such
as selecting forward heavy-quark pair observables (v0.3.0 [174]), enabling studies on
Higgs emissions and transverse-momentum distributions (v0.4.2 [93]), and integrating
the PYTHON analyzer with the FORTRAN core supermodule (v0.4.3 [94]).

Advancements went on with the possibility to conduct analyses on heavy-flavored
hadrons via VFNS FFs at NLO (v0.4.4 [221]). The ΔΥναμις (DYNAMIS) work package,
dedicated to the forward Drell–Yan dilepton reaction [250], became part of JETHAD in
v0.4.5. The integration with the Leptonic-Exclusive-Amplitudes (LEXA) modular code
allowed JETHAD to explore the proton content at low-x through small-x TMD densities in
v0.4.6 [239].

Version v0.4.7 [95] introduced quarkonium-sensitive reactions from NRQCD leading-
twist fragmentation. The latest features in v0.5.0 [91] and v0.5.1 [229] encompass an
enhanced system for MHOU-related studies, an expanded list of observables with a focus
on singly and doubly differential transverse-momentum production rates [192,215,229],
and support for matching procedures with collinear factorization [277–280,282].

From the fundamental core to service modules and routines, JETHAD has been de-
signed to dynamically achieve high levels of computational performance. The multidimen-
sional integrators within JETHAD leverage extensive parallel computing to actively choose
the most suitable integration algorithm based on the shape of the integrand.

Any reaction analyzable with JETHAD can be dynamically selected through an in-
tuitive, structure-based smart-management interface. Physical final-state particles are
represented by object prototypes within this interface, where particle objects encapsulate all
pertinent information about their physical counterparts, ranging from mass and charge to
kinematic ranges and rapidity tags. These particle objects are initially loaded from a master
database using a dedicated particle generation routine, and custom particle generation is
also supported. Then, these objects are cloned into a final-state vector and injected from the
integrand routine into the corresponding, process-specific module by a dedicated controller.

The flexibility in generating the physical final states is accompanied by a range of
options for selecting the initial state. A unique particle-ascendancy structure attribute enables
JETHAD to rapidly learn whether a object is hadroproduced, electroproduced, photo-
produced, etc. This dynamic feature ensures that only relevant modules are initialized,
optimizing computing-time efficiency.

JETHAD is structured as an object-based interface that is entirely independent of the
specific reaction under investigation. While originally inspired by high-energy QCD and
TMD factorization phenomenology, the code’s design allows for easy encoding of different
approaches by simply implementing novel, dedicated (super)modules. These can be
straightforwardly linked to the core structure of the code by means of a natively equipped
point-to-routine system, making JETHAD a versatile, particle-physics oriented environment.

Having in mind providing the Scientific Community with a standard computation tech-
nology tailored for the management of diverse processes (described by distinct formalisms),
we envision releasing the first public version of JETHAD in the medium-term future.

4.2. Error Analysis

A commonly employed methodology for gauging the impact of MHOUs involves
evaluating the sensitivity of our observables to variations of the renormalization scale and
the factorization one around their natural values.

It is widely recognized that MHOUs strongly contribute to the overall uncertainty [90].
To assess their weight, we vary µR and µF simultaneously around µN/2 and 2µN , with the
Cµ parameter in the figures of Sections 4.4 and 4.5 given as Cµ ≡ µF/µN = µR/µN .
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Another potential source of uncertainty lies in proton PDFs. Recent analyses on
high-energy production rates indicate that choosing different PDF parametrizations and
members within the same set has a minimal effect [89,90,211,222]. Thus, our observables
will be calculated by considering just the central member of the NNPDF4.0 parametrization.

Additional uncertainties may arise from a collinear improvement of the NLO kernel, in-
volving the inclusion of renormalization-group (RG) terms to make the BFKL equation com-
patible with the DGLAP one in the collinear limit, or from changes in the renormalization
scheme [349–355]. The impact of collinear-improvement techniques on semi-hard rapidity
differential rates is found to be contained within error bands produced by MHOUs [90].

Then, the MS [284] to MOM [356,357] renormalization-scheme transition was esti-
mated in Ref. [90] and leads to systematically higher MOM results for rapidity distribu-
tions. However, these results remain within the MHOU bands. We note, however, that a
proper MOM analysis should be based on MOM-evolved PDFs and FFs, which are not
currently available.

To derive uncertainty bands for our distributions, we combine MHOUs with the
numerical errors generated by multidimensional integration (see Section 4.3). The latter is
consistently maintained below 1% thanks to the JETHAD integrators.

4.3. Final-State Kinematic Cuts

The first observable matter of our investigation is the rapidity interval rate, also
known as ∆Y-distribution. It is given by the C0 azimuthal coefficient, defined in Section 2.2,
integrated over transverse momenta and rapidities of the two outgoing particles, while
their rapidity distance, ∆Y, is kept fixed. We write

dσ(∆Y, s)

d∆Y
=
∫ |κ1|max

|κ1|min
d|κ1|

∫ |κ2|max

|κ2|min
d|κ2|

∫ min (ymax
1 , ymax

2 +∆Y)

max (ymin
1 , ymin

2 +∆Y)
dy1 C [accuracy]

0 (|κ1|, |κ2|, y1, y2, s)
∣

∣

∣

∆Y ≡ y1−y2

, (20)

the ‘[accuracy]’ superscript of C0 inclusively denoting NLL/NLO+, HE-NLO+, or LL/LO.
The δ(∆Y − y1 + y2) function enforces the fixed-∆Y condition and thus removes one of
the two rapidity integrations: y2 in our case. The transverse momentum of the forward
hadron (always a tetraquark) lies in the range 30 < |κ1|/GeV < 120, whereas the one of
the backward object (a singly heavy-flavored hadron or a light-flavored jet) stays in the
range 50 < |κ1|/GeV < 120.

These tailoring cuts allow the VFNS-based fragmentation approach to be valid, since
energy scales are higher than thresholds for the DGLAP evolution of heavy quarks. Further-
more, asymmetric transverse-momentum windows permit us to better disengage the pure
resummation dynamics from the fixed-order background [89,186,187]. They also suppress
large Sudakov logarithms arising from (quasi) back-to-back emissions, which are systemati-
cally missed by BFKL [358–363]. Finally, they dampen instabilities encoded in higher-order
contributions [364,365] and drastically reduce energy-momentum-conservation breaking
effects [366].

Rapidity configurations are the typical ones of current LHC studies. In particular,
hadrons are tagged only in the barrel calorimeter [367], say |y1,2| < 2.4, while jets can be
also detected by an endcap detector [368], say |y2| < 4.7.

The second observable considered is the |κ1|-rate given by the C0 coefficient, integrated
over rapidities while ∆Y is kept fixed, and integrated over |κ2| but not over |κ1|

dσ(|κ1|, ∆Y, s)

d|κ1|d∆Y
=
∫ |κ1|max

|κ1|min
d|κ1|

∫ min (ymax
1 , ymax

2 +∆Y)

max (ymin
1 , ymin

2 +∆Y)
dy1 C [accuracy]

0 (|κ1|, |κ2|, y1, y2, s)
∣

∣

∣

∆Y ≡ y1−y2

. (21)

The last distribution considered is the (|κ1| = |κ2|)-rate, namely the C0 coefficient,
integrated over rapidities while ∆Y is kept fixed, differential in |κ1| and |κ2|, but with the
|κ1| = |κ2| constraint enforced

dσ(|κ1| = |κ2|, ∆Y, s)

d|κ1|d|κ2|d∆Y
=
∫ min (ymax

1 , ymax
2 +∆Y)

max (ymin
1 , ymin

2 +∆Y)
dy1 C [accuracy]

0 (|κ1|, |κ2| ≡ |κ1|, y1, y2, s)
∣

∣

∣

∆Y ≡ y1−y2

. (22)



Symmetry 2024, 16, 550 14 of 39

Both the (|κ1|- and the (|κ1| = |κ2|)-rate rapidities stay in the same range that the
∆Y-distribution it tailored on, while the nonintegrated transverse momenta span from
10 to 120 GeV. To study configurations that align well with prospective HL-LHC data, we
average our predictions on transverse-momentum bins set at a constant width of 10 GeV.
Then, ∆Y will be integrated in a characteristic forward bin, say 3 < ∆Y < 4.5 for the
tetraquark-plus-hadron case, and 4 < ∆Y < 6 for the tetraquark-plus-jet one.

4.4. Rapidity Interval Rates

In this section, we present predictions for the rapidity interval distribution for our
reference processes (see Figure 1). The main analysis depicted in Figures 4 and 5 entails an
examination of the observable across a wide spectrum. It is achieved through a progres-
sive variation of factorization and renormalization scales, which spans a broad window,
regulated by the parameter Cµ introduced in Section 4.2 and ranging from 1 to 30. This
approach expands upon the conventional MHOU scan, which typically operates within the
range 1/2 < Cµ < 2.
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Figure 4. NLL/NLO+ versus HE-NLO+ ∆Y-rates for Xcqc̄q̄ +HQ (upper) and Xcqc̄q̄ + jet (lower)

reactions at 14 TeV LHC. An extended study of MHOUs in the range 1 < Cµ < 30 is illustrated.
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Figure 5. NLL/NLO+ versus HE-NLO+ ∆Y-rates for Xbqb̄q̄ +HQ (upper) and Xbqb̄q̄ + jet (lower)

reactions at 14 TeV LHC. An extended study of MHOUs in the range 1 < Cµ < 30 is illustrated.

Left (right) plots of Figure 4 contain NLL/NLO+ results for Xcuc̄ū (Xcsc̄s̄) produc-
tion channels, whereas left (right) plots of Figure 5 embody predictions for Xbub̄ū (Xbsb̄s̄)
corresponding ones. In all cases, upper (lower) plots are for tetraquark-plus-hadron
(tetraquark-plus-jet) reactions. Ancillary panels below the primary ones display normal-
ized distributions, obtained by dividing each distribution by its central value computed at
Cµ = 1.

The general outcome from all eight examined final states is a minimal sensitivity to vari-
ations in Cµ across the entire range of ∆Y values explored in our analysis. This observation
underscores the significant stabilizing mechanism embedded within our TQHL1.0 functions.

Results of Figure 6 are for rapidity interval distributions with a standard MHOU
analysis in the range range 1/2 < Cµ < 2. The overall decreasing pattern with ∆Y of our
∆Y-rates results from the interplay of two contrasting tendencies: while BFKL partonic
cross sections increase with ∆Y and subsequently with energy, their convolution with
collinear PDFs and FFs in the impact factors markedly restrains this escalation. Ancillary
panels below primary plots in Figure 6 underscore the stabilizing power of our TQHL1.0
FFs, with the NLL/NLO+ uncertainty bands consistently staying within the LL/LO ones
for all channels.
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Figure 6. NLL/NLO+ versus HE-NLO+ ∆Y-rates for XQqQ̄q̄ +HQ (upper) and XQqQ̄q̄ + jet (lower)

reactions at 14 TeV LHC. Uncertainty bands are for the combined effect of MHOUs and errors on

numeric integrations.

We mention a pertinent aspect that extends the topic beyond the scope of this review,
but still deserves a discussion. We refer to the influence of multi-parton interactions (MPIs)
on differential distributions as the final-state rapidity distance ∆Y increases. Particularly
noteworthy is the effect of the double-parton scattering (DPS). A recent analysis quantifies
DPS corrections to Mueller–Navelet jets, potentially impacting ∆Y-distributions at high
center-of-mass energies and moderate transverse momenta [185].

Concerning quarkonia, studies of final states, such as double J/ψ [369,370], J/ψ plus
Υ [370], J/ψ plus electroweak-boson [371,372], and triple J/ψ [373,374], have indicated
the presence of potentially large DPS contributions. Thus, the search for MPI signatures
also in tetraquark-sensitive final states represents an important and promising avenue for
future research.

4.5. Transverse Momentum Rates

The first transverse-momentum distribution matter of our investigation is the |κ1|-rate.
This observable serves as a common basis for exploring potential links between our hybrid
factorization and alternative formalisms. By varying |⃗κ1| within a wide range, we can delve
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into a broad kinematic domain, where alternative resummation techniques may become
pertinent and necessary.

In scenarios where transverse momenta are high or widely separated, the magni-
tude of DGLAP-like logarithms and threshold contaminations increases, rendering a pure
high-energy approach inadequate [375–392]. Additionally, in the very-low transverse-
momentum regime, enhanced |⃗κ1|-logarithms, which are not accounted for by BFKL,
become significant. Moreover, effects like diffusion patterns grow to a point where they
impede the convergence of high-energy resummation [393–395].

In these kinematic corners, an all-order transverse-momentum (TM) resummation is
necessary [396–403]. TM-resummed distributions have been explored extensively in various
processes, including photon [404–407], Higgs [408], and W-boson pair production, as well as
in final states involving bosons and jets. Recent studies have provided third-order fiducial
predictions for Drell–Yan and Higgs emissions, incorporating TM resummation [409–415].
Furthermore, when the transverse momenta of detected particles result in nearly back-to-
back configurations, Sudakov-type logarithms emerge, requiring additional resummation
techniques [358–361,416].

The left panels of Figure 7 carry information about |κ1|-rates for tetraquark-plus-
hadron (upper) and tetraquark-plus-jet (right) channels with their within NLL/NLO+ and
HE-NLO+ accuracies. Here, for the sake of brevity, we consider just the Xcsc̄s̄ and Xbub̄ū
channels, namely the ones complementary to our first study presented in Ref. [98]. Overall,
we observe a falloff with increasing |κ1| across the distributions. Notably, the results remain
remarkably stable MHOU studies, with error bands generally confined within a 30% width,
except for the initial and final two bins.

In the tetraquark-plus-hadron scenario, the NLL-resummed distribution initially ap-
pears smaller than its fixed-order counterpart in the first bin, subsequently reaching a
comparable magnitude and exhibiting a slight upward trend with |κ1|. Conversely, in the
case of hadron-plus-jet events, the resummation leads to a visible rise with |κ1|, reaching
up to a 50% increase. However, larger uncertainties in the final two bins indicate a loss
of stability for BFKL due to threshold contaminations. Notably, these uncertainties are
less pronounced when detecting a bottomed tetraquark, aligning with recent findings
suggesting that VFNS FFs for bottom-flavored hadrons offer greater stabilizing effects
compared with their charm-flavored counterparts [222].

On the other hand, the initial bin may be susceptible to instabilities arising from energy
scales nearing thresholds for DGLAP evolution dictated by heavy-quark masses. This could
explain the downturn observed in the Xbub̄ū NLL cross section with respect to the Xcsc̄s̄

one in the left upper plot, which could potentially stem from instabilities associated with
values of µF approaching the bottom mass.

The final observable under investigation is a doubly differential distribution in both
|κ1| and |κ2|. As the separation between the two transverse momenta increases, additional
kinematic regions adjacent to the BFKL regime become accessible (as observed in recent
analyses on Hb hadrons [222] and Ξ baryons [215]). A joint resummation of transverse-
momentum logarithms for two-particle distributions was initially achieved in the context of
Higgs-plus-jet hadroproduction [417] through the RADISH momentum-space method [413].
Here we make use of a complementary configuration by setting |κ1| ≡ |κ2| and spanning
them from 10 to 120 GeV, while maintaining the same rapidity bins as before. This choice
allows us to examine in deep the strict BFKL regime, thus easing a precise determination of
the impact of higher-order corrections.

In the right plots of Figure 7, we present NLL/NLO+ distributions for both the
tetraquark-plus-hadron (upper) and hadron-plus-jet (lower) channel, juxtaposed with their
LL/LO limits. To provide further insight, we magnify the NLL to LL ratio in ancillary
plots. With the exception of the initial bin, where Xbub̄ū cross sections are affected by
instabilities due to their proximity to thresholds, NLL corrections in the upper plot exhibit
a moderate increase with transverse momentum, plateauing at around +30%. Conversely,
NLL corrections in the lower plot consistently augment LL results by approximately +30%
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across the entire spectrum. This dichotomy arises from the positive sign of NLO hadron
impact-factor corrections owing to large values of the (gg) channel [195], while NLO jet
corrections are generally negative [181,183,186,192].
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Figure 7. NLL/NLO+ transverse momentum rates for XQqQ̄q̄ +HQ (upper) and XQqQ̄q̄ + jet (lower)

reactions at 14 TeV LHC. Uncertainty bands are for the combined effect of MHOUs and errors on

numeric integrations.

5. Final Remarks

We made use of the hybrid high-energy and collinear factorization framework at
NLL/NLO+ to conduct a comprehensive study of the inclusive hadroproduction of four
different species of exotic heavy–light tetraquark at high energies. We described the forma-
tion of tetraquark states by means of the single-parton collinear-fragmentation mechanism
at leading twist, which holds validity in the large transverse-momentum regime pertinent
to our analysis.

To this end, we developed first tetraquark collinear NLO FF sets, named TQHL1.0

functions. They were constructed by DGLAP-evolving a SNAJ-inspired model input for
the heavy-quark channel [99–102]. The interconnection between high-energy resummation
and the fragmentation mechanism played a crucial role in our analysis.
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Notably, we observed that the distinct behavior of the gluon-to-tetraquark fragmen-
tation channel acts as a robust stabilizer of the hybrid factorization scheme under NLL
corrections and scale variations. This enabled us to achieve a remarkable level of accu-
racy in describing our observables at the natural scales provided by kinematics. Natural
stability, revealed as a general property across various heavy-flavored species considered
thus far, including single heavy-flavored hadrons [90,221,222,227], vector quarkonia [91,95],
and charmed B mesons [226,229], was now found also in the case of XQqQ̄q̄ states as well.

As for future tetraquark studies within high-energy QCD, a step forward would
come out from investigations on single-forward tetraquark detections within our hybrid-
factorization formalism. These channels would give us direct access to the small-x proton
UGD, as current knowledge is very qualitative and is mainly based on models.

Once a more precise description of the UGD becomes available, it will enable a direct
comparison with upcoming data collected at the HL-LHC. We mainly refer to semi-inclusive
final states sensitive to the single-inclusive production of tetraquark states in central rapidity
regions covered by ATLAS or CMS barrels, say |y1| ≲ 2.4, or in forward regions at LHCb,
say 2 ≲ y1 ≲ 4.5. Accessing a wider range of transverse momentum will also permit us
to probe kinematic sectors where different formation mechanisms for our tetraquark are
supposed to be at work, and possibly establish a data-driven hierarchy among them.

Further advancements would also rely upon linking our program with NLO inves-
tigations of single-forward or nearly back-to-back semi-inclusive emissions within the
framework of gluon saturation (see, for instance, Refs. [418–430] and references therein).
In these analyses, the influence of soft-gluon radiation on angular asymmetries in dijet or
dihadron production was addressed (see Refs. [362,363,431–434]).

NLO saturation allows us to access the (un)polarized gluon content of protons and
nucleons at small-x [435–440]. Authors of Refs. [441–445] explore heavy-hadron emissions
in proton–proton and proton–nucleus collisions by incorporating small-x effects. Future
investigations will explore the intersection between our approach to tetraquark production
via the NLL/NLO+ hybrid factorization and higher-order calculations for NLO saturation
in exclusive emissions of heavy particles [446,447].

A milestone in deepening our understanding of tetraquark fragmentation will rely
upon comparing predictions from our TQHL1.0 FFs with ones based on functions extracted
from global data. Along this direction, artificial intelligence techniques already adapted to
address the collinear fragmentation of lighter hadron species [448–455] will be an asset.

As a prospect, we plan to extend to explore heavy–light tetraquark production through
other resummations, as well as by using different inputs for the initial-scale fragmenta-
tion and through exclusive reactions. Promising avenues to be investigated via the frag-
mentation approximation include emissions of fully charmed tetraquarks [456–459] and
pentaquarks [460–462].

A window of novel opportunities will come via forthcoming advancements in X(3872)
spectroscopy at electron-hadron facilities [463–465]. Until recently, the X(3872) was the sole
exotic state observed in prompt proton collisions. However, the discovery of fully charmed
structures [466] and the Tcc [467,468] brought novelty to the exotic-physics panorama.
Extending our fragmentation approach to these states should be feasible and could offer
valuable insights. Additionally, it could be applied to investigate the Zc(3900), which has
not yet been observed promptly [469].

While further analyses are required from both the theoretical and phenomenological
perspectives, we believe that the present study can contribute to open new windows of dis-
covery. This gives us an intriguing opportunity to gain deeper insights into the true nature
of exotic matter, which can be explored at the HL-LHC and at future colliders [470–497].
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Abbreviations

ABF Altarelli–Ball–Forte

BFKL Balitsky–Fadin–Kuraev–Lipatov

BLM Brodsky–Lepage–Mackenzie

BSM Beyond-the-Standard-Model

CP Charge-parity

DGLAP Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

DPS Double-parton scattering

FFs Fragmentation functions

LL Leading logarithmic

LO Leading order

MHOUs Missing higher-order uncertainties

MPIs Multi-parton interactions

NLL Next-to-leading logarithmic

NLO Next-to-leading order

NRQCD Nonrelativistic QCD

PDFs Parton distribution functions

QCD Quantum chromodynamics

SCA Small-cone algorithm

SM Standard Model

SNAJ Suzuki–Nejad–Amiri–Ji

TMD Transverse-momentum-dependent

VFNS Variable-flavor number scheme

Appendix A. NLO Correction for the Heavy-Hadron Singly Off-Shell Emission Function

The analytic expression for the NLO correction to the forward heavy-hadron singly
off-shell emission function reads [158]
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with the Cij partonic coefficients being
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η̄

η
I1

]

,

and

Cqq(x, η) = Pqq(η)
(

1 + η−2γ
)

ln

(

|κh|2x2η2

µ2
Fx2

h

)

− β0

2
ln

(

|κh|2x2η2

µ2
Rx2

h

)

(A5)

+ δ(1 − η)

[

CA ln

(

s0 x2
h

|κh|2 x2

)

χ(n, γ) + CA

(

85

18
+

π2

2

)

− 5

9
n f − 8 CF

+
CA

2

(

ψ′
(

1 + γ +
n

2

)

− ψ′
(n

2
− γ

)

− χ2(n, γ)
)

]

+ CF η̄ (1 + η−2γ)

+
(

1 + η2
)

[

CA(1 + η−2γ)
χ(n, γ)

2(1 − η)+
+
(

CA − 2 CF(1 + η−2γ)
) ln η

1 − η

]

+

(

CF −
CA

2

)

(

1 + η2
)

[

2(1 + η−2γ)

(

ln(1 − η)

1 − η

)

+

+
η̄

η2
I2

]

,

The s0 scale is a BFKL-typical energy-normalization parameter, usually set to s0 = µC.
Furthermore, one has η̄ ≡ 1 − η and γ ≡ − 1

2 + iν. The LO DGLAP Pij(η) splitting
functions read

Pgq(z) = CF
1 + (1 − z)2

z
, (A6)

Pqg(z) = TR

[

z2 + (1 − z)2
]

,

Pqq(z) = CF

(

1 + z2

1 − z

)

+
= CF

[

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

,

Pgg(z) = 2CA

[

1

(1 − z)+
+

1

z
− 2 + z(1 − z)

]

+

(

11

6
CA −

n f

3

)

δ(1 − z) ,
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while the I2,1,3 functions are

I2 =
η2

η̄2

[

η

(

2F1(1, 1 + γ − n
2 , 2 + γ − n

2 , η)
n
2 − γ − 1

− 2F1(1, 1 + γ + n
2 , 2 + γ + n

2 , η)
n
2 + γ + 1

)

(A7)

+η−2γ

(

2F1(1,−γ − n
2 , 1 − γ − n

2 , η)
n
2 + γ

− 2F1(1,−γ + n
2 , 1 − γ + n

2 , η)
n
2 − γ

)

+
(

1 + η−2γ
)

(χ(n, γ)− 2 ln η̄) + 2 ln η
]

,

I1 =
η̄

2η
I2 +

η

η̄

[

ln η +
1 − η−2γ

2
(χ(n, γ)− 2 ln η̄)

]

, (A8)

and

I3 =
η̄

2η
I2 −

η

η̄

[

ln η +
1 − η−2γ

2
(χ(n, γ)− 2 ln η̄)

]

. (A9)

Moreover, 2F1 stands for the Gauss hypergeometric function.
The plus prescription in Equations (A2) and (A5) is given by

∫ 1

ζ
dx

f (x)

(1 − x)+
=
∫ 1

ζ
dx

f (x)− f (1)

(1 − x)
−
∫ ζ

0
dx

f (1)

(1 − x)
, (A10)

where f (x) represents a regular-behaved generic function at x = 1.

Appendix B. NLO Correction for the Light-Jet Singly Off-Shell Emission Function

The analytic expression for the NLO correction to the forward light-jet singly off-shell
emission function within the small-cone algorithm reads [155,157]

F̂J(n, ν, |κJ |, xJ) =
1

π

√

CF

CA

(

|κJ |2
)iν−1/2

∫ 1

xJ

dη

η
η−ᾱs(µR)χ(n,ν) (A11)

×
{

∑
i=q,q̄

fi

(

xJ

η

)

[

(

Pqq(η) +
CA

CF
Pgq(η)

)

ln
|κJ |2
µ2

F

− 2η−2γ ln
R

max(η, η̄)

{

Pqq(η) + Pgq(η)
}

− β0

2
ln

|κJ |2
µ2

R

δ(1 − η)

+ CAδ(1 − η)

[

χ(n, γ) ln
s0

|κJ |2
+

85

18

+
π2

2
+

1

2

(

ψ′
(

1 + γ +
n

2

)

− ψ′
(n

2
− γ

)

− χ2(n, γ)
)

]

+ (1 + η2)

{

CA

[

(1 + η−2γ) χ(n, γ)

2(1 − η)+
− η−2γ

(

ln(1 − η)

1 − η

)

+

]

+

(

CF −
CA

2

)[

η̄

η2
I2 −

2 ln η

1 − η
+ 2

(

ln(1 − η)

1 − η

)

+

]}

+ δ(1 − η)

(

CF

(

3 ln 2 − π2

3
− 9

2

)

−
5n f

9

)

+ CAη + CF η̄

+
1 + η̄2

η

(

CA
η̄

η
I1 + 2CA ln

η̄

η
+ CFη−2γ(χ(n, γ)− 2 ln η̄)

)]

+ fg

(

xJ

η

)

CA

CF

[

(

Pgg(η) + 2 n f
CF

CA
Pqg(η)

)

ln
|κJ |2
µ2

F
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− 2η−2γ ln
R

max(η, η̄)

(

Pgg(η) + 2 n f Pqg(η)
)

− β0

2
ln

|κJ |2
4µ2

R

δ(1 − η)

+ CAδ(1 − η)

(

χ(n, γ) ln
s0

|κJ |2
+

1

12
+

π2

6

+
1

2

[

ψ′
(

1 + γ +
n

2

)

− ψ′
(n

2
− γ

)

− χ2(n, γ)
]

)

+ 2CA(1 − η−2γ)

((

1

η
− 2 + ηη̄

)

ln η̄ +
ln(1 − η)

1 − η

)

+CA

[

1

η
+

1

(1 − η)+
− 2 + ηη̄

](

(1 + η−2γ)χ(n, γ)− 2 ln η +
η̄2

η2
I2

)

+ n f

[

2ηη̄
CF

CA
+ (η2 + η̄2)

(

CF

CA
χ(n, γ) +

η̄

η
I3

)

− 1

12
δ(1 − η)

]]}

,

with R denoting the jet-cone radius.
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