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Abstract
We introduce the topologically twisted index for four-dimensionalN = 1 gauge the-
ories quantized on AdS2 × S1. We compute the index by applying supersymmetric
localization to partition functions of vector and chiral multiplets on AdS2 × T 2, with
and without a boundary: in both instances we classify normalizability and boundary
conditions for gauge, matter and ghost fields. The index is twisted as the dynamical
fields are coupled to a R-symmetry background 1-formwith non-trivial exterior deriva-
tive and proportional to the spin connection. After regularization, the index is written
in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic
blocks, and crucially depends on the R-charge.
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1 Introduction and summary

Supersymmetric field theories in both flat and curved spaces have been extensively
studied over the years, serving as a crucial arena for advancing our theoretical under-
standing of quantum field theory (QFT), especially in the regime of strong interactions
[1–3]. While the complete information of a QFT is contained in its generating func-
tional of correlation functions, exact computations of this functional in interacting
theories remain challenging. Nevertheless, the technique of supersymmetric localiza-
tion [4] has proven to be an extremely ductile tool, enabling exact non-perturbative
computations of specific generating functionals and other observables in a large class
of supersymmetric field theories defined on curved manifolds. In particular, localiza-
tion techniques have been employed to study supersymmetric field theories on compact
Riemannian manifolds, where a class of BPS observables can be precisely evaluated
by reducing functional integrals to Gaussian integrals around a supersymmetric locus.
Several such computations have been performed in various dimensions and for diverse
topologies, leading to precious results [5–21], see also [22] and references therein.

Building on this success, this paper shifts attention toward studying supersymmetric
gauge theories on non-compact hyperbolic manifolds, focusing on AdS2 × T 2, where
by AdSd we indicate d-dimensional Anti-de Sitter space with Euclidean signature.
Gauge theories in AdS have been investigated in connection with monodromy defects
[23], black-hole entropy [24, 25], chiral algebras [26] and holomorphic blocks [27, 28].
Moreover, the isometry group of AdSd being the (global) conformal group in (d − 1)-
dimensions, QFT in AdS can be studied via conformal bootstrap [29, 30]. Applying
supersymmetric localization to QFTs on non-compact manifolds is also interesting
from a technical viewpoint as it requires the study of the behavior at infinity of the
degrees of freedom contributing to the path integral. This is necessary to make sure
that not only the final result for the partition function is convergent and well-defined,
but also supersymmetry is preserved. Alternatively, one can consider a boundary at
a specific distance from the origin of AdS and explore the interplay between super-
symmetry, boundary conditions and boundary degrees of freedom [31–39]. Partition
functions of supersymmetric gauge theories on boundaries were also given intriguing
interpretations in terms of enumerative-geometry and representation theory [40, 41].

In this paper, we present a detailed calculation of partition functions for N = 1
supersymmetric gauge theories defined on AdS2 × T 2. This manifold manifests itself
as the near-horizon geometry of magnetic black strings obtained in five-dimensional
gaugedN = 2 supergravity [42–44]. The construction of supersymmetric theories in
a fixed background geometry involves taking a suitable limit of new minimal super-
gravity, leading to background fields coupled to a supersymmetric gauge theory with
an R-symmetry, incorporating ordinary vector and chiral multiplets [45–47]. We turn
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on a non-trivial R-symmetry background field equal to half the spin connection, which
is the usual setup corresponding to the topological twist, preserving on AdS2 × T 2

two Killing spinors of opposite chirality and R-charge. The metric we use on the
four-manifold is refined by parameters that in the partition function combine into two
complex moduli: one is a fugacity p = e2π iτ for momentum on T 2, with τ being the
torusmodular parameter, while the other is a fugacity q probing angularmomentum on
AdS2. Such fugacities allow for linking partition functions of supersymmetric gauge
theories on AdS2×T 2 to flavoredWitten indices for theories quantized on AdS2× S1,
namely

IAdS2×T 2 = TrH
[
(−1)Fe−2πH]

= TrH
[
(−1)Fe−2π iϕiQi q−J pP

]
, (1.1)

whereH is the Hilbert space of BPS states on AdS2 × S1, whereas the operatorH is
the Hamiltonian,F is the fermionic number, J is the angular momentum on AdS2, P
is the translation operator along S1, while ϕi andQi are the chemical potential and the
charge operator for the i-th flavor symmetry,1 respectively. Technically, supersymmet-
ric localization provides the plethystic exponential of the single-letter index (1.1). For
instance, the topologically twisted index on the four-dimensional hyperbolic manifold
AdS2 × T 2 of supersymmetric quantum chromodynamics (SQCD) with gauge group
G = SU (2) and flavors NF = 3 is given by the following contour integral over the
Cartan torus of G involving a ratio of elliptic Gamma functions:

Z =
∫

C
dγG

∏6
i=1 �e

(
e
2π i

(
q(i)
R γR+q(i)

F γF

)
e2π iγG ; q, p

)
�e

(
e
2π i

(
q(i)
R γR+q(i)

F γF

)
e−2π iγG ; q, p

)

�e
(
e4π iγG ; q, p

)
�e

(
e−4π iγG ; q, p

) ,

(1.2)

where γG , γF and γR , respectively, are gauge, flavor and R-symmetry fugacities. The
contour of integrationC should be fixed via the Jeffrey–Kirwan prescription [48] or by
inspecting the analyticity properties of the integral [27]. A non-trivial test of the correct
choice of the integration contour is the matching of partition functions corresponding
to theories related by non-perturbative dualities.

In the presence of boundaries, two dual sets of boundary conditions do not break
supersymmetry: either Dirichlet conditions, requiring the vanishing of fields at the
boundary; or Robin conditions, requiring the vanishing of derivatives of fields at the
boundary. In fact, derivatives are linear combinations of partial derivatives in directions
that can be parallel and normal to the boundary, hence Robin conditions effectively
are generalized Neumann conditions. A boundary then allows for constructing many
different theories by just combining multiplets satisfying a priori different sets of
supersymmetric boundary conditions. For example, (1.2) is the twisted index of a
gauge theory where Robin boundary conditions were imposed on the vector multi-
plet and Dirichlet boundary conditions were imposed upon the chiral multiplet. An
intriguing feature peculiar to the presence of boundaries is how boundary degrees of

1 Although the R-symmetry does not commute with the supercharges, the corresponding fugacity ϕR
appears in the index as all other flavor fugacities ϕi . Gauge fugacities appear as flavor fugacities that are
integrated over.
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freedom induce a flip of boundary conditions [34, 49]: for instance, suitably coupling
a lower-dimensional matter multiplet to a four-dimensional chiral multiplet fulfilling
Dirichlet boundary conditions effectively yields a chiral multiplet with Robin bound-
ary conditions. At the level of the partition function, such a flip of boundary conditions
is realized thanks to the multiplication properties of the special function appearing in
the 1-loop determinants whose integral defines the index:

ZCM
1-L |R = ZCM

1-L |DZCM
1-L |∂ , ZCM

1-L |∂ = e2π i�
CM
∂ /θ0

(
e2π iqiγi ; q

)
, (1.3)

where θ0(z, q) = (z, q)∞(q/z; q)∞, with (z; q)∞ = ∏
j≥0

(
1 − zq j

)
being the

indefinite q-Pochhammer symbol, ZCM
1-L |D,R are the four-dimensional chiral-multiplet

1-loop determinants of fluctuations satisfying Dirichlet and Robin boundary condi-
tions, respectively, while ZCM

1-L |∂ is the 1-loop determinant of the three-dimensional
boundary multiplet.

In summary, generalizing localization techniques to the case of non-compact man-
ifolds naturally opens up new avenues for exploration. Compelling future directions
include a careful study of the phase factors�CM

D,R and�VM
D,R appearing after regulariza-

tion of the 1-loop determinants for chiral and vector multiplets, as such phases encode
important scheme-independent information about anomalies, vacuum energy and cen-
tral charges of the corresponding gauge theory in hyperbolic spacetime [14, 50–53].
Furthermore, it would be very interesting to analyze the large-N limit ofN = 4 super-
symmetric Yang–Mills theory with gauge group SU (N ) on AdS2 × T 2 as such limit
should connect to the configurations of BPS black strings found in [42, 43], similar
to those detected in the topologically twisted index on the compact manifold S2 × T 2

[54–57]. In particular, the constraint

γR − ω

2
+ αx

τ

2
= αy

2
, αx , αy ∈ Z , (1.4)

which we derive in the main text, should also appear in the dual gravity theory with
γR , ω being related to the electrostatic potential and the angular velocity of the
supergravity solution, respectively. Besides, it would be very intriguing to investi-
gate non-perturbative dualities for gauge theories on AdS2×T 2; especially in relation
of boundary degrees of freedom, which are known to be affected by such transfor-
mations in a non-trivial way [58]. Eventually, possible generalizations of this paper
comprehend the inclusion of BPS defects, vortices or orbifold structures [59–63] on
AdS2 × T 2, as all these objects yield further refinements of the index [64].

Outline. In Sect. 2, we set up the background geometry by introducing the chosen
metric and frame on AdS2 × T 2. We then find its rigid supersymmetric completion
by solving the conformal Killing-spinor equation on AdS2 × T 2 endowed with a
background field for theU (1)R R-symmetry that is proportional to the spin connection
and encodes the topological twist. Thus, we show that such conformal Killing spinors
also solve the Killing-spinor equation with a suitable choice of background fields
descending from new minimal supergravity. Hence, we study periodicities and global
smoothness of Killing spinors on topologically twisted AdS2×T 2. In Sect. 3, we write
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down the supersymmetric multiplets involved in our analysis, their supersymmetry
variations in component fields and Lagrangians. Then, we rewrite the supersymmetry
transformations in cohomological form by introducing a new set of fields that makes
manifest the fundamental degrees of freedom contributing to the partition function.
Moreover, we show how supersymmetric boundary conditions emerge from either
supersymmetry-exact deformations of the Lagrangian or the equations of motion.
In Sect. 4, we calculate the path integral of topologically twisted gauge theories on
AdS2×T 2 bymeans of supersymmetric localization.We first solve the BPS equations
for vector and chiral multiplets, thus obtaining the supersymmetric locus over which
dynamical fields fluctuate. Then, we calculate the contribution to the partition function
of such fluctuations, giving rise to a non-trivial 1-loop determinant expressed as an
infinite product that can be regularized in terms of special functions. We explicitly
display the various possibilities corresponding to different choices of either boundary
or normalizability conditions imposed on supersymmetric fluctuations.

2 Supersymmetric background

We choose the following line element on AdS2 × T 2:

ds2 = L2dθ2 + L2 sinh2 θ(dϕ + �3dx + �4dy)
2 + L2β2

[
(dx + τ1dy)

2 + τ 22 dy
2
]

,

(2.1)

where the four-dimensional metric gμν can be read off from the usual relation ds2 =
gμνdxμdxν , with xμ = (θ, ϕ, x, y). In particular, θ ∈ [0,+∞) and ϕ ∈ [0, 2π) are
coordinates on AdS2, while x, y ∈ [0, 2π) are coordinates on T 2. The parameter L
has dimension of length and encodes the radius of AdS2 appearing, e.g., in the Ricci
scalar RAdS2 = −2/L2. The dimensionless parameters τ1, τ2 ∈ R, respectively, are
real and imaginary part of themodular parameter τ = τ1+iτ2 of the torus T 2, whereas
�3,�4 ∈ R introduce in the partition function of the theory a fugacity ω = τ�3−�4
for the angular momentum on AdS2, as in [16, 54]. Finally, β ∈ R parametrizes the
scale of T 2 with respect to the radius of AdS2. We shall also consider a boundary
at θ = θ0 > 0 to explore the interplay between boundary conditions and boundary
degrees of freedom.

We adopt the orthonormal frame

e1 = Ldθ , e2 = L sinh θ(dϕ + �3dx + �4dy) ,

e3 = Lβ(dx + τ1dy) , e4 = Lβτ2dy , (2.2)

satisfying, e.g., gμν = δabeaμe
b
ν and δab = gμνeaμe

b
ν . In the frame (2.2), the non-trivial

components of the spin connection read

ω12 = −ω21 = − cosh θ(dϕ + �3dx + �4dy) . (2.3)

123



   39 Page 6 of 24 D. Iannotti, A. Pittelli

On AdS2 × T 2, the conformal Killing-spinor equations,

(
∇μ − iAC

μ

)
ζ + 1

4
σμσ̃ ν

(
∇ν − iAC

ν

)
ζ = 0 ,

(
∇μ + iAC

μ

)
ζ̃ + 1

4
σ̃μσ ν

(
∇ν + iAC

ν

)
ζ̃ = 0 , (2.4)

is solved by

ζα = √
k0 e

i
2 (αϕϕ+αx x+αy y)

(
1
0

)

α

, ζ̃ α̇ = √
k0 e

− i
2 (αϕϕ+αx x+αy y)

(
0
1

)α̇

, (2.5)

where k0 ∈ C is a normalization constant and α2,3,4 ∈ R parametrize non-trivial
phases of ζ, ζ̃ along the three circles inside AdS2 × T 2, while AC is the background
field

AC = 1

2

(
ω12 + αϕdϕ + αxdx + αydy

)
. (2.6)

Moreover, the spinors (2.5) fulfill the Killing-spinor equations

(∇μ − iAμ

)
ζ + iVμζ + iV νσμνζ = 0 ,(∇μ + iAμ

)̃
ζ − iVμζ̃ − iV ν σ̃μν ζ̃ = 0 , (2.7)

with background fields

V = Lβκ(dx + τdy) ,

A = AC + 3

2
V , (2.8)

where κ is an arbitrary constant and the 1-forms AC and A are smooth onAdS2 if αϕ =
1. Thus, the ζ and ζ̃ reported in (2.5) are Killing spinors of R-charge±1, respectively.
As the field strength F (R) of the R-symmetry field is non-trivial and satisfies F (R) =
dA = (1/2)dω12, the Killing spinors ζ and ζ̃ describe a supersymmetric AdS2 × T 2

background with a topological twist on AdS2, analogous to those investigated in the
case of compact manifolds, e.g., in four [54] and three [16] dimensions. On a compact
two-dimensional manifoldM2, the direct link between F (R) and dω12 characterizing
the topological twist implies that the R-symmetry flux equals the Euler characteristic
of M2, up to a sign. On a two-dimensional manifold with boundary B2, the R-
symmetry flux fR is proportional to the line integral of A along the one-dimensional
boundary ∂B2. Indeed, applying Stokes’ theorem to the smooth R-symmetry field
A(0) = A|αϕ=1 gives

fR = 1

2π

∫

B2

F (R) = 1

2π

∫

B2

dA(0) = 1

2π

∮

S10

A(0) = 1

2
(1 − cosh θ0) , (2.9)
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with B2 being AdS2 with a boundary at θ = θ0 and S10 = ∂B2 being the circle in
AdS2 at θ = θ0. As observed in [24], on AdS2 fluxes are not quantized, as opposed
to what happens, e.g., on the two-sphere, where the single-valuedness of transition
functions between different patches requires all fluxes to take integer values.

Imposing either periodicity or anti-periodicity of the Killing spinors ζ, ζ̃ along the
torus circles parametrized by x and y yields

αx , αy ∈ Z . (2.10)

Furthermore, smoothness of the R-symmetry field A requires αϕ = 1, implying the
anti-periodicity of the Killing spinors along the shrinking circle in AdS2 parametrized
by ϕ. The Killing spinors reported in (2.5) are manifestly smooth in every point of
the four-manifold apart from the origin as ζ, ζ̃ are written in the frame (2.2), which
is singular at θ = 0 due to ϕ being undefined at the origin. Smoothness at θ = 0 can
be examined by first rotating (2.2) into a frame that is non-singular at the origin via a
local Lorentz transformation �ab,

δeaμ = −�abe
b
μ , �ab =

(
0 ϕ

−ϕ 0

)a

b
, (2.11)

which in turn induces the following rotation upon ζ, ζ̃ :

ζ ′ = L−1ζ = √
k0 e

i
2 [(αϕ−1)ϕ+αx x+αy y]

(
1
0

)
,

ζ̃ ′ = L̃−1ζ̃ = √
k0 e

− i
2 [(αϕ−1)ϕ+αx x+αy y]

(
0
1

)
, (2.12)

where

L = exp

(
−1

2
�abσ

ab
)

, L̃ = exp

(
−1

2
�abσ̃

ab
)

, (2.13)

encode the action of local Lorentz transformations upon left- and right-handed spinors,
respectively. The spinors ζ ′, ζ̃ ′ are independent of the coordinate ϕ if and only if
αϕ = 1, which is then the value making the Killing spinors smooth on the whole
four-manifold.

3 Supersymmetry and cohomology

3.1 Vector multiplet

A vector multiplet enjoyingN = 1 supersymmetry consists of a 1-form aμ encoding
the gauge field, two complex spinors λ, λ̃ of opposite chirality parametrizing the
gauginos and a 0-form D corresponding to an auxiliary field ensuring off-shell closure
of the supersymmetry algebra. Thefields

(
aμ, λ, λ̃, D

)
have R-charges (0,+1,−1, 0),
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transform in the adjoint representation of the gauge group G. The vector-multiplet
supersymmetry variations with respect to ζ, ζ̃ read

δaμ = ĩζ σ̃μλ + iζσμλ̃ ,

δλ = fμνσ
μνζ + iDζ ,

δ̃λ = fμνσ̃
μν ζ̃ − iDζ̃ ,

δD = ζ̃ σ̃ μ

(
Dμλ + 3i

2
Vμλ

)
− ζσμ

(
Dμλ̃ − 3i

2
Vμλ̃

)
, (3.1)

where f is the field strength of the gauge field a with components fμν = ∂μaν −
∂νaμ − iqG

[
aμ, aν

]
. The constant qG is the gauge charge appearing in the covariant

derivative

Dμ = ∇μ − iqR Aμ − iqGaμ ◦RG , (3.2)

where ◦RG represents the action upon a field � in the representation RG of the
gauge group G. The bosonic fields aμ and D of the vector multiplet satisfy the reality
conditions

a†μ = aμ , D† = −D , (3.3)

whereas there is no need to impose reality conditions upon the vector-multiplet
fermionic fields λ, λ̃. The supersymmetry transformations (3.1) can be rewritten in
cohomological form as follows:

δa = � , δ� = 2i
(LK + G�G

)
a ,

δ�G = 0 ,

δ� = � , δ� = 2i
(LK + G�G

)
� , (3.4)

where we introduced the Grassmann-even 0-forms �G,� as well as the Grassmann-
odd 0-form � and 1-form �μ given by

�G = ιK a , � = D − 2iYμỸ ν fμν ,

�μ = ĩζ σ̃μλ + iζσμλ̃ , � = ζ †λ

2i|ζ |2 − ζ̃ †̃λ

2i|̃ζ |2 ,

λα = i
(
� − ιK̃�

)
ζα + i

ιY�

|ζ |2 ζ †
α , λ̃α̇ = −i

(
� + ιK̃�

)̃
ζ α̇ − i

ιỸ�

|̃ζ |2 ζ̃ †α̇ , (3.5)

with

Kμ = ζσμζ̃ , Yμ = ζσμζ̃ †

2|̃ζ |2 , Ỹμ = −ζ †σμζ̃

2|ζ |2 , K̃μ = ζ̃ †σμζ̃ †

4|ζ |2 |̃ζ |2 ,

(3.6)
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being the Killing-spinor bilinears defined in [54]. The norms |ζ |2 and |̃ζ |2 descend
from the complex conjugates of the Killing spinors, which are

ζ †α = (ζα)∗ =
√
k0∗ e− i

2 (αϕϕ+αx x+αy y)
(
1
0

)α

, |ζ |2 = |k0| ,

ζ̃
†
α̇ =

(
ζ̃ α̇

)∗ =
√
k0∗ e

i
2 (αϕϕ+αx x+αy y)

(
0
1

)

α̇

, |̃ζ |2 = |k0| , (3.7)

providing in turn the reality conditions on Killing-spinor bilinears:

K ∗
μ = 4|ζ |2 |̃ζ |2 K̃μ , Y ∗

μ = |ζ |2
|̃ζ |2 Ỹ

μ . (3.8)

In particular, the Killing-spinor equations (2.7) imply that Kμ, which in our setup
reads

Kμ∂μ = ik0
Lβτ2

(
ω∂ϕ − τ∂x + ∂y

)
, (3.9)

is a Killing vector:

∇μKν = iεμνλρK
λV ρ → ∇(μKν) = 0 . (3.10)

Moreover, the explicit expression for the vector Yμ is

Yμ∂μ = − 1

2L
ei(αϕϕ+αx x+αy y)

(
∂θ + i

sinh θ
∂ϕ

)
. (3.11)

In (3.4), the supersymmetry variation δ manifests itself as an equivariant differential
fulfilling

δ2 = 2i
(LK + G�G

)
, (3.12)

where the Lie derivative LK generates a spacetime isometry of the manifold while

G�Ga = −da�G = −d�G + iqG[a,�G ] ,

G�G X = −iqG�G ◦RG X , X 
= a , (3.13)

represent the action of gauge transformations upon fields. In the case of weakly gauged
theories with background vector multiplets, (3.13) is interpreted as the action of the
flavor group G ≡ GF .

The vector-multiplet Lagrangian,

LVM = 1

4
fμν f

μν − 1

2
D2 + i

2
λσμDμλ̃ + i

2
λ̃σ̃ μDμλ − 3

2
Vμλ̃σ̃ μλ , (3.14)
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is δ-exact up to boundary terms,

LVM = δVVM + i

2
∇μ

[
Ỹμ(λλ) − Yμ

(̃
λ̃λ

)]
,

= δVVM + i∇μ

[
Ỹμ

(
� − ιK̃�

)
ιY� − Yμ

(
� + ιK̃�

)
ιỸ�

]
, (3.15)

with deformation term

VVM = 1

4|ζ |2 (δλα)†λα + 1

4|̃ζ |2
(
δ̃λα̇

)†
λ̃α̇ ,

= 1

2
(δ�)†� + 1

2

(
ιK̃ δ�

)†
ιK̃� + 1

4|ζ |4 (ιY δ�)†ιY� + 1

4|̃ζ |4
(
ιỸ δ�

)†
ιỸ� .

(3.16)

In the absence of boundaries, the total derivative in (3.15) is irrelevant and the corre-
sponding action SVM is δ-exact and then manifestly supersymmetric. In the presence
of boundaries, the total-derivative terms in (3.15) drop out if the following dual sets
of supersymmetric boundary conditions are imposed:

Robin : ιY a|∂ = ιỸ a|∂ = ιY�|∂ = ιỸ�|∂ = 0 ,

Dirichlet : ιK a|∂ = ιK̃ a|∂ = �∂ = ιK̃�|∂ = 0 , (3.17)

together with the vanishing of the corresponding supersymmetry variations. Espe-
cially, Dirichlet conditions only affect the components of the gauge field aμ that are
parallel to the boundary, whereas Robin conditions mix with each other components
that are either parallel or orthogonal to the boundary. After including Faddeev–Popov
ghosts c, c̃ and their supersymmetric completion, as, e.g., in [4, 32], the BRST-
improved supersymmetry variation (δ + δBRST)aμ = (

�μ + Dμc
)
implies

Robin : LỸ c|∂ = LY c|∂ = LỸ c̃|∂ = LY c̃|∂ = 0 ,

Dirichlet : c|∂ = c̃|∂ = 0 . (3.18)

3.2 Chiral multiplet

N = 1 chiral multiplets in a representation RG of the gauge group G contain a 0-
form φ, a left-handed spinor ψ and a 0-form F , where the latter is a non-dynamical
field that, in analogy with D, allows the closure of the supersymmetry algebra on the
chiral multiplet without using the equations of motion. The fields (φ,ψ, F), whose R-
charges are (r , r − 1, r − 2), are related to each other by the following supersymmetry
variations:
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δφ = √
2ζψ ,

δψ = √
2Fζ + i

√
2
(
σμζ̃

)
Dμφ ,

δF = i
√
2̃ζ σ̃μ

(
Dμψ − i

2
Vμψ

)
− 2i

(̃
ζ λ̃

)
φ . (3.19)

The bosonic fields φ and F of the chiral multiplet fulfill the reality conditions

φ† = φ , F† = −F̃ , (3.20)

where φ̃ and F̃ , together with the right-handed spinor ψ̃ , form an anti-chiral multi-
plet2 in the conjugate representationRG of the gauge group G. Their supersymmetry
transformation reads

δφ̃ = √
2̃ζ ψ̃ ,

δψ̃ = √
2F̃ ζ̃ + i

√
2
(
σ̃ μζ

)
Dμφ̃ ,

δ F̃ = i
√
2̃ζσμ

(
Dμψ̃ + i

2
Vμψ̃

)
+ 2iφ̃(ζλ) . (3.21)

If we define cohomological fields corresponding to the Grassmann-odd 0-forms B,C
and the Grassmann-even 0-form �

B = ζ †ψ√
2|ζ |2 , C = √

2ζψ ,

ψ = √
2Bζ − Cζ †

√
2|ζ |2 , � = F − 2iLỸφ , (3.22)

where

Lv = vμDμ , v ∈ {
K , K̃ ,Y , Ỹ

}
, (3.23)

is the covariant Lie derivative along the vector v, the relations (3.19) can be written in
cohomological form:

δXi = X ′
i , δX ′

i = 2i
(LK − iqR�R + G�G

)
Xi , (3.24)

with i = 1, 2, where X1 = φ, X2 = B, X ′
1 = C and X ′

2 = �. The supersymmetry
variation of the auxiliary field F in cohomological form is

δF = 2i
(
LK B + LỸC − iιỸ�φ

)
. (3.25)

2 In Euclidean, spacetime imposing reality conditions upon fermionic fields is not necessary.
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The structure of (3.24) implies that the supersymmetry variation δ behaves as an
equivariant differential also on chiral-multiplet fields, where �R is the R-symmetry
counterpart of the 0-form �G ,

�R = ιK A = ik0
2Lβτ2

(
ωαϕ − ταx + αy

)
. (3.26)

More generally, δ2 acts upon a field X of R-charge qR , flavor charge qF and gauge
charge qG as

δ2X = 2iLK X = 2i
(LK + G�R + G�F + G�G

)
X , (3.27)

where

G�R X = −iqR�R X , �R = ιK A = ik0
2Lβτ2

(
ωαϕ − ταx + αy

)
, (3.28)

while G�F formally acts as in (3.13) with respect to the flavor group GF . The object
�R did not appear in (3.4) as the fields (a,�,�G , �,�) are R-symmetry neutral.
The supersymmetry variations (3.21) can be recast in the form reported in (3.24) by
defining

B̃ = ζ̃ †ψ̃√
2|̃ζ |2 , C̃ = √

2̃ζ ψ̃ ,

ψ̃ = √
2B̃ζ̃ − C̃ ζ̃ †

√
2|̃ζ |2 , �̃ = F̃ + 2iLY φ̃ , (3.29)

and choosing X1 = φ̃, X2 = B̃, X ′
1 = C̃ as well as X ′

2 = �̃. In cohomological form,
the supersymmetry variation of the auxiliary field F̃ reads

δ F̃ = 2i
(
LK B̃ − LY C̃ − iφ̃ιY�

)
. (3.30)

The chiral-multiplet Lagrangian,

LCM = Dμφ̃Dμφ + iVμ
[(
Dμφ̃

)
φ − φ̃Dμφ

] + (r/4)φ̃
(
R + 6V 2 + D

)
φ − F̃ F

+ iψ̃σ̃ μDμψ + (
Vμ/2

)
ψ̃σ̃μψ + i

√
2
(
φ̃λψ − ψ̃λ̃φ

)
, (3.31)

which in cohomological fields reads

LCM = 4LK φ̃L K̃φ + 4LY φ̃LỸφ − (
�̃ − 2iLY φ̃

)(
� + 2iLỸφ

)

+ 2i
(
κφ̃LKφ + B̃LK B + B̃LỸ C − C̃ LY B + C̃ L K̃ C

) − κC̃C

+ qG
[
C̃ιK̃�φ − 2φ̃ιY�B + 2B̃ιỸ�φ + C̃�φ + φ̃

(
� − 2iιK̃ LK a

)
φ − φ̃

(
� − ιK̃�

)
C

]
,

(3.32)
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is δ-exact with respect to the deformation term VCM given by

LCM = δVCM , VCM = −2iB̃LỸφ − 2iC̃ L K̃φ − F̃ B + qG φ̃
(
� − ιK̃�

)
φ − κφ̃C .

(3.33)

Consequently,

δLCM = 2iLK VCM = 2i∇μ

(
KμVCM

)
. (3.34)

In the absence of boundaries, the supersymmetry variation of LCM being a total
derivative readily implies that the variation of the corresponding action SCM is zero.
Moreover, since K θ = 0, in the presence of a boundary at θ = θ0 the Lagrangian of
the chiral multiplet is supersymmetric for any choice of boundary conditions, where
the latter can be obtained by imposing the vanishing of the boundary terms generated
by the equations of motion for to the bulk Lagrangian:

δeomLCM = (bulk) + 4∇μ

[
Yμδeomφ̃LỸφ + 4Ỹμ

(
LY φ̃

)
δeomφ

]

+ 2i∇μ

(
Ỹμ B̃δeomC − YμC̃δeomB

)
, (3.35)

where the bulk terms vanish on the solution of the equations of motion. The boundary
terms descending from the equations of motion cancel out if the following dual sets
of supersymmetric boundary conditions are imposed:

Dirichlet : φ∂ = φ̃∂ = C∂ = C̃∂ = 0 ,

Robin : B∂ = B̃∂ = (
LỸφ

)
∂

= (
LY φ̃

)
∂

= 0 . (3.36)

4 Supersymmetric localization

We now compute the partition function of gauge theories coupled to matter via super-
symmetric localization [4]. We focus on Abelian gauge theories as the generalization
to the non-Abelian case is straightforward. We start by deriving the supersymmetric
locus solving the BPS equations; then, we will compute the 1-loop determinant of the
fluctuations over the BPS locus.

4.1 BPS locus

The vector-multiplet BPS equations are

λ = δλ = λ̃ = δ̃λ = 0 , (4.1)

which in cohomological form read

(LK + G�G

)
a = 0 , D − 2iYμỸ ν fμν = 0 . (4.2)
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We employ the following ansatz:

a = [
aϕ(θ) + bϕ

]
dϕ + [ax (θ) + bx ]dx + [

ay(θ) + by
]
dy , (4.3)

where we set to zero the pure-gauge component ax (θ), while aϕ, ax , ay are complex
functions and the flat connections bϕ, bx , by are complex constants, a priori. The gauge
field above is smooth on AdS2 if bϕ = −aϕ(0). By plugging the ansatz (4.3) into the
BPS equations (4.2), we obtain the complex BPS locus for the vector multiplet:

[
ωaϕ(θ) − τax (θ) + ay(θ)

]
BPS = a0 = constant ,

D|BPS = L−2 sinh−1 (θ)a′
ϕ(θ) , (4.4)

implying that the BPS value of the gauge fugacity �G is manifestly constant,

�G |BPS = ik0
Lβτ2

(
a0 + ωbϕ − τbx + by

)
. (4.5)

Imposing the reality conditions reported in (3.3) yields the real BPS locus

aϕ(θ)|BPS = aϕ = constant ,

ax (θ)|BPS = ax = constant ,

ay(θ)|BPS = ay = constant ,

D|BPS = 0 ,

Re(ω)aϕ − τ1ax + ay = Re(a0) ,

Im(ω)aϕ − τ2ax = Im(a0) . (4.6)

Using (4.6) for a smooth connection on AdS2 gives bϕ = −aϕ and

�G |BPS = ik0
Lβτ2

[
ay + by − τ(ax + bx )

]
. (4.7)

In the presence of a boundary at θ = θ0, there are two possibilities: if Dirichlet
conditions are imposed, then �G |BPS has to vanish at the boundary. Since �G |BPS
is constant, Dirichlet conditions require �G |BPS = 0 everywhere. Instead, Robin
boundary conditions do not impose any constraint on �G = ιK a, which hence stays
non-trivial.

The BPS equations for the chiral multiplet read

ψ = δψ = ψ̃ = δψ̃ = 0 , (4.8)
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which in cohomological form are

(LK − iqR�R − iqG�G)φ = 0 ,

(LK + iqR�R + iqG�G)φ̃ = 0 ,

F = 2iLỸφ ,

F̃ = − 2iLY φ̃ , (4.9)

with φ = φ(θ, ϕ, x, y) and φ̃ = φ̃(θ, ϕ, x, y) being periodic in ϕ, x, y. For generic
values of �R,�G , the trivial locus

φ = φ̃ = F = F̃ = 0 , (4.10)

is the only solution to (4.9, regardless of the presence of a boundary at θ = θ0. In
particular, the value of fields reported in (4.10) trivializes the classical contribution to
the partition function given, e.g., by superpotential terms.

4.2 One-loop determinant

The 1-loop determinant of supersymmetric fluctuations over the BPS locus for a chiral
multiplet is

ZCM
1-L = detKerLY δ2

detKerLỸ
δ2

, (4.11)

with the kernel of the differential operator LY = YμDμ being spanned by functions
Bmϕ,mx ,my labeled by integers corresponding to the Fourier modes around the circles
parametrized by ϕ, x, y:

KerLY : Bmϕ,mx ,my = eimϕϕ+imx x+imy y B(0)
mϕ,mx ,my

(θ) , mϕ,mx ,my ∈ Z .

(4.12)

The behavior of the modes Bmϕ,mx ,my at the origin of AdS2 is

lim
θ→0

B(0)
mϕ,mx ,my

(θ) ∼ θmϕ , (4.13)

meaning that Bmϕ,mx ,my is non-singular at θ = 0 if mϕ ∈ N. The modes Bmϕ,mx ,my

satisfy the eigenvalue equation δ2Bmϕ,mx ,my = λB Bmϕ,mx ,my , where

λB = 2ik0
Lβτ2

[
−ωmϕ + τmx − my + qG

(
a0 + by − τbx − ωaϕ

) + r − 2

2

(
ω − ταx + αy

)]
,

(4.14)
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is the eigenvalue contributing to the numerator of ZCM
1-L . Analogously, the kernel of

the differential operator LỸ = ỸμDμ is spanned by functions φnϕ,nx ,ny ,

KerLỸ : φnϕ,nx ,ny = einϕϕ+inx x+iny yφ(0)
nϕ,nx ,ny (θ) , nϕ, nx , ny ∈ Z , (4.15)

whose behavior near the origin of AdS2 is

lim
θ→0

φ(0)
nϕ,nx ,ny (θ) ∼ θ−nϕ , (4.16)

implying that φnϕ,nx ,ny is non-singular at θ = 0 if
(−nϕ

) = �ϕ ∈ N. The modes
φnϕ,nx ,ny are eigenfunctions of the operator δ2 with eigenvalue

λφ = 2ik0
Lβτ2

[
ω�ϕ + τnx − ny + qG

(
a0 + by − τbx − ωaϕ

) + r

2

(
ω − ταx + αy

)]
,

(4.17)

which contributes to the denominator of ZCM
1-L . In both λB and λφ the R-charges

qφ
R = r , qB

R = (r − 2) as well as the gauge charge qG , respectively, multiply the same
quantities γR and γG , where

γR = 1

2

(
ω − ταx + αy

)
,

γG = a0 − ωaϕ − τbx + by . (4.18)

Especially, the first line in (4.18) can be interpreted as a constraint on the chemical
potentials γR, ω, τ , as in the case of gauge theories on S3 × S1 dual to AdS5 black
holes [18].

In the presence of boundaries, we have two possible 1-loop determinants: on the one
hand, ifwe imposeDirichlet conditions, themodesφnϕ,nx ,ny have to satisfy a first-order
homogeneous differential equationwith boundary conditionφnϕ,nx ,ny |∂ = 0, implying
φnϕ,nx ,ny = 0. Therefore, Dirichlet conditions kill the modes φnϕ,nx ,ny contributing to
the denominator of ZCM

1-L , leaving the modes Bmϕ,mx ,my unaffected. The result is

ZCM
1-L |D =

∏
mϕ∈N

∏
mx ,my∈Z

[
ωmϕ − τmx + my − qGγG − (r − 2)γR

]
, (4.19)

which can be regularized by means of (A.4), yielding

ZCM
1-L |D = e2π i�

CM
D /�e

(
e2π i(2γR−qiγi ); q, p

)
,

�CM
D = 1

24τω
(1 + τ − 2(2γR − qiγi ) + ω)

× [
2(2γR − qiγi )((2γR − qiγi ) − ω − 1) + ω + τ(1 − 2(2γR − qiγi ) + ω)

]
,

(4.20)
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with qiγi = (rγR + qGγG). On the other hand, if we impose Robin conditions, the
modes Bmϕ,mx ,my have to satisfy a first-order homogeneous differential equation with
boundary condition Bmϕ,mx ,my |∂ = 0, which sets Bmϕ,mx ,my = 0 everywhere. As
a consequence, Robin conditions trivialize the modes Bmϕ,mx ,my contributing to the
numerator of the chiral-multiplet 1-loop determinant and leave the modes φnϕ,nx ,ny
untouched because LỸφnϕ,nx ,ny = 0 on the whole four-manifold by definition. Thus,

ZCM
1-L |R =

∏
�ϕ∈N

∏
nx ,ny∈Z

[
ω�ϕ + τnx − ny + qGγG + rγR

]−1
, (4.21)

whose regularized form provided by (A.4) reads

ZCM
1-L |R = e2π i�

CM
R �e

(
e2π iqiγi ; q, p

)
,

�CM
R = − 1

24τω
(1 + τ − 2qiγi + ω)

[
2qiγi (qiγi − ω − 1) + ω + τ(1 − 2qiγi + ω)

]
. (4.22)

Dual 1-loop determinants are mapped to each other by multiplication of 1-loop deter-
minants corresponding to boundary multiplets:

ZCM
1-L |R = ZCM

1-L |DZCM
1-L |∂ , ZCM

1-L |∂ = e2π i�
CM
∂ /θ0

(
e2π iqiγi ; q

)
,

ZCM
1-L |D = ZCM

1-L |R ZFM
1-L |∂ , ZFM

1-L |∂ = e−2π i�CM
∂ θ0

(
e2π iqiγi ; q

)
, (4.23)

with the boundary phase being given by

�CM
∂ = − 1

12ω

[
1 + 6qiγi

(
q jγ j − 1 − ω

) + ω(3 + ω)
] = �CM

R − �CM
D . (4.24)

We utilized the superscripts CM and FM to indicate that the expressions ZCM
1-L |∂ and

ZFM
1-L |∂ can be interpreted as partition functions of two-dimensional chiral and Fermi

multiplets. The dependence on the variable q signals that thesemultiplets live on a two-
dimensional torus characterized by the modular parameter ω. A similar observation
was made in prior studies such as [34, 49], wherein a comprehensive examination of
such boundary multiplets was conducted.

Eventually, in the absence of boundaries, we require that both φnϕ,nx ,ny and
Bmϕ,mx ,my are square integrable on AdS2 × T 2 according to the integral measure

∫

AdS2×T 2

√
det g |�|2 . (4.25)

By inspection, the behavior of the modes Bmϕ,mx ,my at infinity is

lim
θ→+∞ B(0)

mϕ,mx ,my
(θ) ∼ eθ(r−2)/2 , (4.26)
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and taking into account that

lim
θ→+∞

√
det g ∼ eθ , (4.27)

as well as that the modes are finite near the origin at θ ∼ 0, normalizability of
Bmϕ,mx ,my requires

r < 1 . (4.28)

Analogously, the behavior of the modes φnϕ,nx ,ny at infinity is

lim
θ→+∞ φ(0)

nϕ,nx ,ny (θ) ∼ e−θ r/2 , (4.29)

and normalizability of φnϕ,nx ,ny imposes

r > 1 . (4.30)

In summary,

ZCM
1-L |r<1 = ZCM

1-L |D , ZCM
1-L |r>1 = ZCM

1-L |R , (4.31)

and ZCM
1-L |r=1 = 1 as there are no normalizable modes for r = 1.

Similarly to what happens in three dimensions [32], the 1-loop determinant for a
non-Abelian vector multiplet enjoying N = 1 supersymmetry is

ZVM
1-L =

√ (
det� δ2

)(
detc δ2

)(
detc̃ δ2

)
(
detιK̃ a δ2

)(
detιY a δ2

)(
detιỸ a δ2

) , (4.32)

where �, c and c̃ contribute as modes Bmϕ,mx ,my , in the adjoint representation of the
gauge group G, with R-charge r = 2, while ιỸ a, ιK̃ a and ιY a contribute as modes
φnϕ,nx ,ny in the adjoint of G with R-charges (2, 0,−2), respectively. Nonetheless, if
Dirichlet conditions upon vector multiplet modes are imposed, only ιỸ a, ιY a survive
and after simplifications we find

ZVM
1-L |D = 1

detιYA δ2
=

(
detφδ2

)−1

r=2
=

(
ZCM
1-L |R

)
r=2

, (4.33)

where the product over roots of the adjoint representation of G is understood. On
the other hand, Robin conditions kill ιỸ a, ιY a, leaving the other modes invariant;
therefore, after a few other simplifications,

ZVM
1-L |R = detcδ

2 =
(
detBδ2

)
r=2

=
(
ZCM
1-L |D

)
r=2

. (4.34)
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Instead, in the absence of boundaries, all modes appearing in (4.32) do contribute,
a priori. In fact, various contributions drop out, giving at the end of the day

ZVM
1-L = detc δ2

detιY a δ2
=

(
ZCM
1-L

)
r=2

=
(
ZCM
1-L |R

)
r=2

, (4.35)

where the last equality holds if we restrict to normalizable modes only, as in (4.31).

4.3 The Seiberg dual of SU(2) SQCD

As an application, we calculate the partition function of SQCD with gauge group
SU (2) and three flavors NF . The degrees of freedom of SU (2) SQCD with NF = 3
can be encoded by a vector multiplet in the adjoint and six chiral multiplets �(i)

with i = 1, . . . 6 in the fundamental representation of the symplectic group USp(2),
respectively, whereas i is an index corresponding to the fundamental of the flavor
symmetry SU (6) = SU (2NF ). The partition function of this gauge theory, according
to Seiberg dualities [65, 66], should be related to the partition function of a Wess–
Zumino model of chiral multiplets characterizing fifteen mesons. Such a duality was
used, e.g., in [16] to test the four-dimensional uplift of the topologically twisted index
in three dimensions.

The first check is ensuring that the theory is not plagued by anomalies affecting
the gauge symmetry. Such anomalies make the partition function multivalued under
large gauge transformations shifting the gauge fugacity γG by an integer number. The
building blocks ZCM

1-L and ZVM
1-L consist of elliptic gamma functions and the phase

factors �CM
R,L and �VM

R,L . As elliptic gamma functions are single valued under integer
shifts of γG , we just need to inspect the phases. Indeed, by consideringRobin boundary
conditions for the vector multiplet and Dirichlet boundary conditions for the chiral
multiplets, the total phase factor � does not depend on γG , ensuring the absence of
gauge anomalies. Therefore, up to normalizations independent of γG , the partition
function of SU (2) SQCD with NF = 3 flavors is given by the contour integral (1.2)
with R-symmetry and flavor charges satisfying

6∑
i=1

q(i)
R = 2 ,

6∑
i=1

q(i)
F = 0 . (4.36)

In particular, we used the same minimal coupling with respect to the flavor symme-
try employed in [16]. We can compactify the notation by introducing the following
complex variables w and zi :

w = e2π iγG , zi = e2π i q
(i)
F γF ,

6∏
i=1

zi = pq , (4.37)

where the product of the collective flavor fugacities zi is related to the refinement
parameters p and q thanks to the constraint (1.4). The integral yielding Z then reads
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Z =
∫

C ′
dw

2π iw

∏6
i=1 �e(ziw; q, p)�e

(
ziw−1; q, p

)

�e
(
w2; q, p

)
�e

(
w−2; q, p

) . (4.38)

In the case in which the contourC ′ is the unit circle, namelyC ′ = {w ∈ C : |w| = 1},
the integral above represents the elliptic extension of the binomial theorem, providing
the result [67]

Z = 2

(q; q)∞(p; p)∞
5∏

i=1

6∏
j=i+1

�e
(
zi z j ; q, p

)
, (4.39)

which, up to an overall constant independent of the flavor fugacities, is the partition
function of the aforementioned Wess–Zumino model of fifteen chiral multiplets with
Dirichlet boundary conditions, as expected from Seiberg dualities. Especially, writing
down the charges q(i)

R and q(i)
F as components of the row vectors

q(i)
R = (1, 1, 0, 0, 0, 0)i , q(i)

F = (−2,−2, 1, 1, 1, 1)i , (4.40)

yields

Z ′ = �e

(
e2π i(2γR−4γF ); q, p

)
�e

(
e2π i(γR−γF ); q, p

)8
�e

(
e4π iγF ; q, p

)6
, (4.41)

which is a result formally analogous to that obtained in [16].

A Regularization of infinite products

In the main text, we found that 1-loop determinants of supersymmetric multiplets on
AdS2 × T 2 are triple infinite products of the form

Q(b0|a0, c0)∞ =
∏
�∈N

∏
n1,n2∈Z

(a0n1 + n2 + c0� + b0) , (A.1)

with a0, b0 and c0 being complex constants. The product above can be regularized by
rewriting the products over Z as double products over N and using multiple Zeta and
Gamma functions [68]:
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Qs1,s2 (b|a12, c)∞ =
∏
�∈N

∏
n1,n2∈N

(a12n1 + n2 + c� + b)(−a12n1 + n2 + 1 − c� − b)

× [−a12(n1 + 1) + n2 + c� + b][a12(n1 + 1) + n2 + 1 − c� − b] ,

= 1

�3(b|c, a12, 1)�3(1 − b| − c, −a12, 1)�3(b − a12|c, −a12, 1)�3(1 − b + a12| − c, a12, 1)
,

= eiπ [ζ3(0,b|c,a12,1)+ζ3(0,1−b+a12|−c,a12,1)]

×
(
e2π ib; e2π ic, e2π ia12

)
∞

(
e2π i(a12−b); e−2π ic, e2π ia12

)
∞ ,

= eiπ [ζ3(0,b|c,a12,1)+ζ3(0,1−b+a12|−c,a12,1)]

(
e2π ib; e2π ic, e2π ia12)∞(

e2π i(a12+c−b); e2π ic, e2π ia12 )∞
,

= eiπ [ζ3(0,b|c,a12,1)+ζ3(0,1−b+a12|−c,a12,1)]/�e

(
e2π ib; e2π ic, e2π ia12

)
, (A.2)

where

�e(z, q1, q2) = (q1q2/z; q1; q2)∞
(z; q1; q2)∞

, (A.3)

is the elliptic Gamma function. Altogether,

∏
�∈N

∏
n1,n2∈Z

1

a0n1 + n2 + c0� + b0
→ e2π i�(3)(a12,b,c)�e

(
e2π ib; e2π ic, e2π ia12

)
,

�(3)(a12, b, c) = − 1

24a12c
(1 + a12 − 2b + c)[2b(b − c − 1) + c + a12(1 − 2b + c)] .

(A.4)
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