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Abstract
Crab crossings are designed to increase the luminosity of

accelerators by ensuring beam interactions are closer to a
head on collision. The scheme has been realized in KEKb
and will be implemented at the Electron Ion Collider (EIC)
at Brookhaven National Laboratory and the LHC High Lu-
minosity upgrade in CERN. It is then important to examine
how the crab cavity will affect beam dynamics at the EIC.
Methods such as Frequency Map Analysis (FMA) have been
shown to be helpful in examining the phase space of accel-
erators in order to find properties such as resonances and
the dynamic aperture. An alternative to such methods is an
iterative method based on square matrix method that has
been shown to reveal similar properties as FMA while re-
ducing the computational power needed [1]. This method
has been applied to the crab crossing scheme in order to find
and explain effects of the higher order mode of crab cavities
on the particle dynamics of the EIC.

THEORETICAL MODEL
The model used for this study was a 4-D system looking

at the transverse and longitudinal components of the crab
cavity (CC) crossing. The lattice consists of two crab cavities
placed a phase of 𝜋/2 apart from one another on either side
of the interaction point (IP). A simple nonlinear lattice in
the longitudinal direction and a linear transverse lattice were
used for the rest of the accelerator. It is assumed that there
are minimal longitudinal effects from the lattice between
the two crab cavities. The crab cavities provide a sinusoidal
kick to a proton beam as well as a quadrupole and sextupole
kick of the following form [2]:

Δ𝑝𝑥 =
− tan 𝜃𝑐 sin (𝑘𝑐𝑧)

𝑘𝑐
√
𝛽cc𝛽IP

+ 𝑏2𝑥 sin (𝑘𝑐𝑧) + 𝑏3𝑥
2 sin (𝑘𝑐𝑧) .

(1)

To preserve the symplectic nature of the cavity, a longi-
tudinal kick is also imparted on the beam of the following
form:

Δ𝑝𝑧 =
−𝑥 tan 𝜃𝑐 cos (𝑘𝑐𝑧)√

𝛽cc𝛽IP
+ 𝑏2𝑘𝑐

2
𝑥2 cos (𝑘𝑐𝑧) (2)

+𝑏3𝑘𝑐
3

𝑥3 cos (𝑘𝑐𝑧) .
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where 𝜃𝑐 is the half crossing angle, 𝑘𝑐 = 2𝜋 𝑓𝑐/𝑐 is the
wave number of the crab cavity, and 𝑏2, 𝑏3 are the integrated
quadrupole and sextupole strengths respectively.

The parameters of the model are given in Table 1. Note
that the sextupole strength is unrealistically high. This is due
to the rest of the transverse lattice being linear and therefore
a larger value was needed in order to see its effects. The rest
of the lattice has the following form longitudinally

𝑧′ = 𝑧 − 2𝜋ℎ𝑐𝜂𝛽𝑠
𝑓rf

𝑝′𝑧 , (3)

where

𝑝′𝑧 = 𝑝𝑧 +
𝑒𝑉rf

𝐸𝛽2
𝑠

(sin 𝜙 − sin 𝜙𝑠) , (4)

𝜂 is the slip factor, 𝜙 is the longitudinal phase, and 𝛽𝑠 is the
ratio of the longitudinal velocity and the speed of light.

Table 1: Parameters of Crab Cavity (CC) Model

Parameter Symbol Value
Half crossing angle 𝜃𝑐 25 [mrad]
CC wave number 𝑘𝑐
Transverse Beta Function 𝛽cc 1300 [m]
at CC
Transverse Beta Function 𝛽IP 90 [cm]
at IP
Transverse Position RMS 𝜎𝑥 120 [𝜇m]
Longitudinal Position RMS 𝜎𝑧 7 [cm]
Longitudinal Momentum 𝜎𝑝𝑧 6.6 × 10−4

Deviation RMS
Integrated Quadrupole 𝑏2 0 [1/m]
Strength
Integrated Sextupole 𝑏3 500,000 [1/m2]
Stregnth
Synchronous Phase 𝜙𝑠 0
Beam Energy 𝐸 275 [GeV]
RF Voltage 𝑉rf 15.8 [MV]
RF Frequency 𝑓rf 591 [MHz]
Harmonic Number ℎ 7560
Momentum Compaction 𝛼𝑐 1.5 × 10−3

Factor
Linear Tunes 𝜈𝑥/𝜈𝑧 0.310 / 0.015
(Transverse / Longitudinal)
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(a)

(b)
Figure 1: Frequency map (a) and tune map (b) of the crab
cavity crossing at the EIC using the parameters in Table 1.

RESULTS
The details of the iteration method are described thor-

oughly in another conference paper [1]. But briefly here, the
iteration method aims to find a diffeomorphism that trans-
forms the phase space coordinates to a space where each
iteration is a pure rotation of an angle equal to the tune of
the particle. It does this by solving Eqs. 5 and 6 in frequency
space iteratively. Since the left hand side of Eqs. 5 and 6 are
the differences of ℎ/𝑔, the first Fourier component should
vanish, so we choose our tunes on the right hand side to
ensure this. The tunes are used to calculate the higher order
Fourier components of ℎ/𝑔. Finally, the initial conditions
are used to get the first Fourier component of ℎ and 𝑔 and
the process is repeated with the updated values:

ℎ (𝑛+1) (𝛼 + 𝜌
(𝑛+1)
𝑥 , 𝛽 + 𝜌

(𝑛+1)
𝑧 ) − ℎ (𝑛+1) (𝛼, 𝛽) =

𝜂𝑥 (𝜌 (𝑛+1)
𝑥 , 𝛼, 𝛽, ℎ (𝑛) (𝛼, 𝛽), 𝑔 (𝑛) (𝛼, 𝛽)) (5)

𝑔 (𝑛+1) (𝛼 + 𝜌
(𝑛+1)
𝑥 , 𝛽 + 𝜌

(𝑛+1)
𝑧 ) − 𝑔 (𝑛+1) (𝛼, 𝛽) =

𝜂𝑧 (𝜌 (𝑛+1)
𝑧 , 𝛼, 𝛽, ℎ (𝑛) (𝛼, 𝛽), 𝑔 (𝑛) (𝛼, 𝛽)) , (6)

where the (𝑛) in the superscript denotes iteration number,
not turn number, and ℎ and 𝑔 are defined by the following

𝜃𝑥 = 𝛼 + ℎ (𝛼, 𝛽) (7)

(a)

(b)

Figure 2: Convergence map (a) and tune map (b) of the crab
cavity crossing at the EIC using the parameters in Table 1.

𝜃𝑧 = 𝛽 + 𝑔 (𝛼, 𝛽) , (8)

and
𝜃 𝑗 = −𝑖 log 𝑧 𝑗 , (9)

where 𝑗 is either the longitudinal or transverse dimension
and 𝑧 in Eq. 9 refers to eigenvectors of the linear map.

Figure 1(a) shows frequency map analysis using 75,000
turns and NAFF [3] to calculate the tunes of the parameters
in Table 1. We can compare this to the same parameters and
initial conditions but using the iteration method in Fig. 2(a).
The color bar on this map shows the base 10 log of the
minimum error that the method converges to, the error being
| |X𝑛+1 − X𝑛 | | where 𝑛 is the iteration number and X is the
phase space vector.

We can see when we plot the same points in tune space in
Fig. 2(b), that the higher errors correspond to the resonance
lines of 3𝑄𝑥+𝑚𝑄𝑧 = 1, where𝑚 = 5, 6, 7 which correspond
to an 8th, 9th, and 10th order resonance respectively. The
8th order resonance corresponds to the points on the corners
of the map in 𝑥, 𝑧 space. The next lines in from those corners
correspond to the 9th order resonance line. Finally, the lines
near 𝑥 = 0 correspond to the 10th order resonance lines.

This 𝑚 = 7 line also appears when we turn off the sex-
tupole as shown in Fig. 5. This is because with no sextupole,
the iteration method only shows a tune shift in the 𝑄𝑧 which
still crosses the 3𝑄𝑥+7𝑄𝑧 = 1 resonance line. This suggests
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Figure 3: Area where we see an increase in the longitudinal
tunes compared to the linear tune from Fig. 2.

that the crab cavity with a sextupole will result in an increase
in horizontal tunes that then encounter the 8th and 9th order
resonances described before.

Figure 3 shows the points where we see an increase in
the longitudinal tunes. This further shows how the crab
cavity causes the tune shifts to be dependent on the particles
transverse and longitudinal positions.

We can also gather more information by removing the
time dependency. Figure 4 shows the convergence map when
there is no time dependency, i.e. just a normal sextupole
instead of a crab cavity with time dependent sextupole. This
removes the coupling between the transverse and longitu-
dinal coordinates. However we still see some small traces
of the resonances which we do not expect due to the lack
of coupling. FMA does not show any coupling either. This
would suggest that this 𝑚 = 7 resonance is most likely a nu-
merical effect from the iteration method. More specifically,
this could be that during one of the iterations the predicted
tunes land very close to this resonance. This would cause
the corresponding Fourier component to explode as being
close to a resonance gives a near zero denominator when
we update it. I would also think this is why we see the
lines in Fig. 5. But this wouldn’t necessarily discount their
appearance in Fig. 2 as the color scales are different.

Figure 1(a) shows instability near the corners where we
see the 𝑚 = 5, 6 resonances in Fig. 2(a). This could mean
that the instabilities we see in the frequency map are caused
by the resonance lines that are more clearly shown in the
convergence map. Since resonances appear more clearly in
the convergence maps, the iteration method could be useful
for finding resonances that FMA does not show as clearly.

The shape of the tune space in Fig. 4(b) shows that the
increase in the longitudinal tunes, as well as the curved
horizontal and longitudinal tune boundary we see on the
right in Fig. 1(b), are due to the coupling caused by the
crab cavity. The crab cavity also seems to strengthen the
resonances discussed previously.

(a)

(b)
Figure 4: Convergence map (a) and tune map (b) with a time
independent sextupole and no crab cavity.

Figure 5: Convergence map using the parameters in table 1
but with no sextupole (𝑏3 = 0).

CONCLUSION

The iterative method has proven to be able to analyze
the crab cavity crossing at the Electron Ion Collider. It has
identified similar tune shifts as FMA such as the increase
in longitudinal tune caused by the crab cavity. It has also
identified resonances encountered due to tune shifts caused
by the crab cavity and its time dependent sextupole. Some
of these resonances seem to coincide with areas where FMA
shows instability. Future work to analyze the full 6-D phase
with this method is being conducted.
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