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Abstract: Quantum entanglement is a fundamental characteristic of quantum mechanics, and under-

standing the robustness of entanglement across different mixed states is crucial for comprehending

the entanglement properties of general quantum states. In this paper, the robustness of entanglement

of Dicke–W and Greenberger–Horne–Zeilinger (GHZ) mixed states under different mixing ratios is

calculated using the entanglement witness method. The robustnesses of entanglement of Dicke–W

and GHZ mixed states are different when the probability ratio of Dicke to W is greater than 3
2 and less

than 3
2 . For the probability of Dicke and W states greater than or equal to 3

2 , we study the robustness

of entanglement of Dicke and GHZ mixed states and analyze and calculate their upper and lower

bounds. For the probability of Dicke and W states less than 3
2 , we take the equal probability ratio of

Dicke and W states as an example and calculate and analyze the upper and lower bounds of their

robustness of entanglement in detail.

Keywords: quantum entanglement; robustness of entanglement; Dicke state; W state; GHZ state

1. Introduction

In quantum information theory, quantum entanglement [1] plays a fundamental role
as a resource in quantum communication between two parties separated by macroscopic
distances [2]. A state is called separable if it can be written as the probability mixture of
product states [3]; otherwise, it is entangled. However, detecting entanglement remains an
NP-hard problem.

To address this challenge, considerable work has been conducted on developing
criteria for judging entanglement or separability. The most widely used is the positive
partial transpose (PPT) criterion [4,5] since it provides a complete characterization of en-
tanglement for two-qubit systems, and studies have shown that violating PPT conditions
can be used to quantify entanglement [6,7]. The computable cross norm or realignment
criterion (CCNR criterion) [8,9] is also a strong criterion that can be considered as a supple-
ment to the PPT criterion. Entanglement witnesses are Hermitian operators for detecting
entanglement [10–13] and are a necessary entanglement criterion in terms of directly mea-
surable observables. It is a very useful tool for the analysis of entanglement in experiments,
but it still cannot solve all entanglement problems because the construction of witnesses
is still difficult. The range criterion [14] is used for determining the separability of mixed
states based on the range of the density matrix. This criterion is generally used when the
PPT criterion fails. Compared with the PPT criterion, the range criterion has wider appli-
cability and can detect more quantum entanglement states. However, the range criterion
also has limitations and does not apply to situations where quantum states are disturbed
by noise.
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The theory of entanglement has been gradually improved and has become a core
theme of quantum information science. At the same time, the development of quantum
entanglement has also driven the development of many fields such as quantum dense
coding [15,16], quantum teleportation [17,18], entanglement purification [19], quantum
error correction [2,20], and quantum memory [21].

Entanglement in multipartite systems is a key resource for quantum information and
communication protocols [1,22]. In experiments, different multipartite entangled states
have been prepared [23–25]. Determining whether the state produced in the experiment
is a multipartite (partial) entangled state has become a highly relevant topic in quantum
information theory [26]. The Greenberger–Horne–Zeilinger (GHZ) state is also called the
maximally entangled state. Due to its maximum entanglement characteristics and mea-
surement accuracy approaching the Heisenberg limit [27], it has considerable application
prospects in the fields of quantum information, quantum communication, and precision
measurement. At the same time, due to the special properties of the GHZ state, it can be
used in multipartite secret sharing protocols. In addition, when the entangled GHZ state is
used as a resource, the photonic architecture of measurement-based quantum computing
becomes more efficient [28]. Chen et al. [29] proposed a road map for finding the separabil-
ity criteria of multipartite entangled states and derived a set of tripartite separability criteria
for the four-qubit GHZ diagonal states. The Dicke state [30], proposed by R.H. Dicke in
1954, is of great significance for studying the properties of multi-particle quantum entan-
glement and building multi-user quantum networks because its entanglement is robust
to particle loss and is attractive in practical applications such as multi-party quantum net-
works [31] and quantum metrology. The W state corresponds to the Dicke state |Dicke3,1⟩,
and therefore, examples of a Dicke state [6] and W states have already been prepared in
many experiments [32–34]. Chen et al. [35] demonstrated an entanglement criterion for
any four-qubit state which is necessary and sufficient for the generalized noisy four-qubit
Dicke states. Carvalho [36] showed that there is a clear scaling of the entanglement decay
rates for the GHZ and W states for various environments. Zhang [37] found that the scar
state encompasses both GHZ and W states, which provides the possibility of thermal-free
quantum information processing in finite-sized quantum spin clusters. Chen et al. [38]
showed that for a mixture of a four-qubit GHZ state with a Dicke state and white noise,
there exists a new Wootters formula. Therefore, the measurement and detection of the
robustness of entanglement of Dicke–W and GHZ mixed states is of great significance for
quantum information applications and the preparation of related quantum states.

In this paper, we give the numerical analysis and theoretical interpretation of the
robustness of entanglement of the full separability of Dicke–W and GHZ mixed states
under two different mixing ratios. By plotting the figure of the robustness of entanglement,
we find two different types of figures and then analyze the mixing ratio of the boundary
between the two types.

The paper is organized as follows: In Section 2, we introduce the concept of robustness
of entanglement and some concepts involved in the paper. Section 3 elaborates on the
numerical and theoretical analysis methods for the robustness of entanglement in the fully
separable case of Dicke–GHZ mixed states. Section 4 shows the results of the robustness of
entanglement for Dicke–W and GHZ when the mixing ratio of Dicke–W is 45◦ in the case
of full separability and also gives the results for the upper and lower bounds. Section 5
gives the boundary of the mixing ratio. Section 6 is the conclusions.

2. Preliminary

A multipartite state ρ is separable when it can be written as

ρ = ∑
i

piρ
A1
i ⊗ ρ

A2
i · · · ⊗ ρ

AN
i , (1)

where ρ
Aj

i is the state of Aj, and pi is the probability distribution.
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In our work, we explore the robustness of entanglement of Dicke–W and GHZ mixed
states in different ratios. The density matrix for a mixed state consisting of Dicke–W and
GHZ is given by

ρ = p1|GHZ4⟩⟨·|+ (1 − p1)[p2|Dicke4,2⟩⟨·|+ (1 − p2)|W4⟩⟨·|], (2)

where {p1, (1 − p1)p2, (1 − p1)(1 − p2)} denote the probability distributions, and we ab-
breviate |χ⟩⟨χ| = |χ⟩⟨·|. |GHZ4⟩ = 1√

2
(|0000⟩ + |1111⟩), |Dicke4,2⟩ = 1√

6
∑|k|=2|k⟩,

|W4⟩ = 1
2 ∑|k|=1|k⟩, with k ∈ {0, 1}⊗4 being a binary vector and |k| being the Hamming

weight of k. We denote tan Θ = p1
1−p1

and tan Φ = p2
1−p2

, and we call Φ the mixing angle of
Dicke and W states. We will omit the subscripts of GHZ, Dicke, and W for simplicity.

The definition of robustness is given by Lami et al. [39] for any state ρ and is expressed
as follows:

RF (ω) := inf
{

1 + λ

∣

∣

∣

∣

ω + λτ

1 + λ
∈ F , τ ∈ D(H)

}

, (3)

where τ ∈ D(H) are noise states defined on Hilbert space H, D(H) is the density matrix in
it, and the separable state set F is generally assumed to be convex and closed. Equation (3)
leads to the upper bound of the robustness of entanglement, and for any states ρ, ω ∈ D(H)
it holds that

RF (ρ) ≥
⟨ρ, ω⟩

supσ∈F ⟨σ, ω⟩ , (4)

where σ is a separable state and R represents the lower bound.
The minimum quantity of noise state 1 + λ is the upper bound of robustness, and the

free state reaches the optimum, denoted as σ. We let ρ̃ = ρ
1+λ , which can be expressed as

ρ̃ =
p1

1 + λ
|GHZ⟩⟨·|+ 1 − p1

1 + λ
[p2|Dicke⟩⟨·|+ (1 − p2)|W⟩⟨·|]. (5)

We denote g = p1
1+λ , d = 1−p1

1+λ p2 and w = 1−p1
1+λ (1 − p2). Then g, d, and w represent the

coefficients of |GHZ⟩ state, |Dicke⟩ state, and |W⟩ state in σ, respectively. For ease of
presentation, we use dw =

√
d2 + w2 as the figure’s horizontal axis. It can be seen that

g + dw√
p2

2+(1−p2)2
= 1

1+λ = 1
R and g

dw
= p1

1−p1
= tan Θ. Thus, the relationship between dw, g,

and R will be displayed in the figure shown later by Θ.

3. Robustness of Fully Separable Four-Qubit Dicke–GHZ Mixed States (Φ = 90◦)

In this section, Φ = 90◦, so the density matrix ρ1 in Equation (2) will be given by

ρ1 = p|GHZ⟩⟨GHZ|+ (1 − p)|Dicke⟩⟨Dicke|, (6)

where p and 1− p denote the probability distributions. A density matrix ρ can be expressed
using the 2 × 2 identity matrix σ0 and Pauli matrices σ1, σ2, and σ3 as follows:

ρ =
1
24

3

∑
i,j,j,l=0

Rijklσi ⊗ σj ⊗ σk ⊗ σl , (7)

where Rijkl = Tr(ρs)σi ⊗ σj ⊗ σk ⊗ σl . The mixed states ρ1 in Equation (6) can be expressed as

ρ1 =
1

16
[I I I I + R1 I I IZ + R2 I IZI + R3 IZI I + R4ZII I

+R5 IZZZp + R6(I IXXp + I IYYp) + R7(XXZZp

+YYZZp) + R8 IXXZp + M9 IYYZp + R10ZZZZ

+R11 I IZZp + R12XXYYp + R13XXXX + M14YYYY],

(8)
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where the subscript p denotes the summation over all permutations of Pauli matrices, and I,
X, Y, and Z denote the Pauli matrices σ0, σ1, σ2, and σ3, respectively. The characteristic
vector is expressed in the form of

R = (R1, R2, R3, R4, 4R5, 12R6, 12R7, 12R8, 12R9,R10, 6R11, 6R12, R13, R14)
T . (9)

For mixed states of Dicke and GHZ, the witness ω of Equation (4) can be expressed in terms
of the parameters Mi and the tensor product of Pauli matrices as follows:

ω = M0 I I I I + M̂′, (10)

and the trace-free matrix M̂′ can be expressed as

M̂′ =M1 I I IZ + M2 I IZI + M3 IZI I + M4ZII I + M5 IZZZp

+M6(I IXXp + I IYYp) + M7(XXZZp + YYZZp)

+M8 IXXZp + M9 IYYZp + M10ZZZZ + M11 I IZZp

+M12XXYYp + M13XXXX + M14YYYY,

(11)

where the subscript p denotes the summation over all permutations of Pauli matrices.
To find the maximum value of the denominator in Equation (4), we transform it into

finding the maximum of ⟨ψs|ω|ψs⟩ and |ψs⟩ = |ψ1⟩|ψ2⟩|ψ3⟩|ψ4⟩. The product state |ψk⟩ can
be expressed in the Bloch representation as |ψk⟩ = cos θk

2 |0⟩+ sin θk
2 eiϕk |1⟩, (k = 1, 2, 3, 4),

where θ is the polar angle, and ϕ is the azimuthal angle. The density matrix of ρk = |ψk⟩⟨ψk|
can be represented by Pauli matrices as

ρk =
1
2
(I + xkσ1 + ykσ2 + zkσ3), (12)

where xk = sin θk cos ϕk, yk = sin θk sin ϕk, zk = cos θk, (k = 1, 2, 3, 4). Tr(M̂|ψs⟩⟨ψs|) =
M0 + Λ, and Λ = Λ1 + Λ2x4 + Λ3y4 + Λ4z4, then

Λ = max
θ1θ2θ3 ϕ1 ϕ2 ϕ3

Λ1 +
√

Λ2
2 + Λ2

3 + Λ2
4, (13)

where Λi(i = 1, 2, 3, 4) is a function with variables Mj, xk, yk, zk. More details are given in
the Appendix A. The numerator of Equation (4) can be expressed as

⟨ρ, ω⟩ = M0 + M · R

cos Θ + sin Θ
. (14)

The denominator of Equation (4) can be expressed as

⟨σ, ω⟩ = M0 + Λ, (15)

where the vector M = (M1, . . . , M14). Given a Dicke–GHZ state ρ, we adjust the parameter
vector M to achieve the minimum value of L,

L =
M0 + Λ

M0(cos Θ + sin Θ) + M · R
. (16)

The robustness of entanglement of four-qubit Dicke–GHZ mixed states is described by the
curve in Figure 1.
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Figure 1. The robustness of entanglement for four-qubit Dicke–GHZ mixed states. The curve can be
divided into two parts, and each part consists of a lower bound and an upper bound. The angle be-
tween the horizontal axis of the coordinate and the dotted line is called Θ, and it satisfies tan Θ =

p
1−p .

Points A, B, and C divide the curve into two parts. Line AB corresponds to Θ ∈ [18.4349◦, 90◦], while

line BC corresponds to Θ ∈ [0◦, 18.4349◦]. The coordinates of points A, B, and C are
(

0, 1
2

)

,
(

3
8 , 1

8

)

,

and
(

3
8 , 0

)

, respectively.

3.1. Segment AB

For Dicke–GHZ mixed states at the GHZ state side, numerical calculation suggests

M1 = M2 = M3 = M4 = M5 = M8 = M9 = 0

M13 = M14.
(17)

By analyzing and calculating, we get the relationship among Mi:

M10 = 6(M6 − M11) + M13

M12 = M7 + M11 − M6.
(18)

and we find that when θ = 90◦ and ϕ = kπ
2 where k = 0, 1, 2, 3, the Λ of Equation (13) will

achieve the same maximum value:

Λ = 6M6 + M13. (19)

The M0 in Equation (15) can be expressed as

M0 = 6(−M7 − M11) + M13, (20)

and the rest of Equation (15) can be expressed as

M · R =M68 cos Θ + M7(−8 cos Θ) + M10(cos Θ + sin Θ)

+ M11(−2 cos Θ + 6 sin Θ) + M12(2 cos Θ − 6 sin Θ)

+ 2M13(cos Θ + sin Θ).

(21)
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Combining the analysis among parameters and Equation (16), we get L = 1
2(cos Θ+sin Θ)

.

Comparing Equation (4) and Equation (16), we can easily get L = 1
R(cos Θ+sin Θ)

, and by
converting it to the Descartes coordinate system, we get

g + d =
1
2

, (22)

where g = sin Θ
R(sin Θ+cos Θ)

and d = cos Θ
R(sin Θ+cos Θ)

. The criterion is shown in Figure 1, with
the blue line indicating Line AB and accounting well for the numerical necessary criterion
when Θ ∈ [Θ1, 90◦] with the angle Θ1 = tan−1 1

3 ≈ 18.4349◦.
Next, we will present the upper bound of this segment. A product state |ψs⟩ =

(c|0⟩+ seiϕ|1⟩)⊗4 can be represented as

|ψs⟩ =c4|0000⟩+ s4ei4ϕ|1111⟩
+ c3seiϕ(|0001⟩+ |0010⟩+ |0100⟩+ |1000⟩)
+ c2s2ei2ϕ(|0011⟩+ |0101⟩+ |0110⟩+ |1001⟩+ |1010⟩+ |1100⟩)
+ cs3ei3ϕ(|0111⟩+ |1011⟩+ |1101⟩+ |1110⟩),

(23)

where c = cos θ
2 , s = sin θ

2 . Let ϕ = kπ
2 ; we define the separable state σ = 1

4 ∑
3
k=0|ψs⟩⟨ψs|.

The separable state σ can be expressed as

σ =c8|0000⟩⟨0000|+ s8|1111⟩⟨1111|
+ c4s4(|0000⟩⟨1111|+ |1111⟩⟨0000|)
+ 4c6s2|W⟩⟨W|
+ 6c4s4|Dicke⟩⟨Dicke|
+ 4c2s6|W̄⟩⟨W̄|,

(24)

where |W̄⟩ = 1
2 (|0111⟩+ |1011⟩+ |1101⟩+ |1110⟩).

When Φ = 90◦, ρ is a Dicke–GHZ mixed state, θ = π
2 , ϕ = kπ

2 , k = 0, 1, 2, 3; thus, the
separable state σB for point B in Figure 1 can be expressed as

σB =
1
8
|GHZ⟩⟨GHZ|+ 3

8
|Dicke⟩⟨Dicke|+ 1

4
|W⟩⟨W|+ 1

4
|W̄⟩⟨W̄|. (25)

The point B is located at ( 3
8 , 1

8 ) with Θ = 18.4349◦. When Θ = 90◦, the separable state σA

of point A is

σA =
1
2
(|GHZ⟩⟨GHZ|+ |GHZ−⟩⟨GHZ−|), (26)

where |GHZ−⟩ = 1√
2
(|0000⟩ − |1111⟩). Any separable state σAB on segment AB can be

expressed as
σAB = pσA + (1 − p)σB, (27)

where p and 1− p denote the probability distributions. We have g = p
2 + 1−p

8 , d = 3
8 (1− p);

thus, the expression of segment AB can be represented as

g + d =
1
2

. (28)
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3.2. Segment BC

By analyzing and calculating, we get the relationship among Mi:

−M10 − 6M11 = M10 − 6(M6 + M7)

M12 =
1
3

M13.
(29)

and we find that when θ = 90◦ and ϕ = kπ
2 where k = 0, 1, 2, 3, the Λ of Equation (13) will

achieve the same maximum value:

Λ = 6M6 + M13. (30)

The M0 in Equation (15) can be expressed as

M0 = M10 − 6(M6 + M7), (31)

and the rest of Equation (15) is equal to that of Equation (21).
Combining the above analysis and conclusions, we get L = 3

8
1

cos Θ
. According to the

relationship between L and R, in the Descartes coordinate system, we can easily get

d =
3
8

, (32)

where d = cos Θ
R(sin Θ+cos Θ)

.

The criterion is shown in Figure 1, with the blue line representing Line BC and
accounting for the numerical necessary criterion well when Θ ∈ [0◦, Θ1] with the angle
Θ1 = tan−1 1

3 ≈ 18.4349◦.
Next, we will present the upper bound of this segment. As Θ gradually approaches 0◦,

the |Dicke⟩ state in σB is gradually classified as a noise state. The separable state for point
C can be represented as

σC =
3
8
|Dicke⟩⟨Dicke|+ 5

8
τ (33)

where τ is the noise state. Hence, the coordinate of point C can easily be obtained, which is
( 3

8 , 0). Segment BC can be expressed as

d =
3
8

. (34)

4. Robustness of Fully Separable Four-Qubit Dicke–W Mixed with GHZ (Φ = 56.31◦)

When ρ is a Dicke–W and GHZ mixed state, the component of the |W⟩ state in
Equation (24) should be taken into account. However, for Φ ∈ [56.31◦, 90◦], the only
difference from the result at Φ = 90◦ is that the abscissa is transformed from d to dw.
A schematic representation is depicted in Figure 2.

The reason for this is that when θ = π
2 , the ratio of the |Dicke⟩ to |W⟩ components is

6c4s4

4c6s2 = 3
2 , and arctan 3

2 = 56.31◦. The green point in Figure 2 located at (w, g, d) = ( 1
4 , 3

8 , 1
8 )

represents the unnormalized state ρ̃ = 1
8 |GHZ⟩⟨GHZ| + 3

8 |Dicke⟩⟨Dicke| + 1
4 |W⟩⟨W|.

Clearly, it is a part of the separable state σB in Equation (25). Thus, the robustness of
a state with Φ = 56.31◦ can easily be obtained. When Φ < 56.31◦, due to the insufficient
components of the |W⟩ state, θ begins to vary. We will show this case in the next section
with an example.
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Figure 2. The robustness of fully separable four-qubit Dicke–W and GHZ mixed states. The coordi-
nates of the green point in the figure are ( 1

4 , 3
8 , 1

8 ).

5. Robustness of Fully Separable Four-Qubit Dicke–W Mixed with GHZ (Φ = 45◦)

In this section, Φ = 45◦, so the density matrix ρ can be expressed as Equation (2).
In this case, the entanglement witness for four-qubit Dicke–W and GHZ mixed states is
represented using Pauli matrices in the following form:

ω =M1 I I I I + M2 I I IZp + M3 I IXXp + M4 I IYYp

+ M5 IXXZp + M6 IYYZp + M7 IZZZp + M8XXZZp

+ M9YYZZp + M10ZZZZ + M11 I IZZp + M12XXXX

+ M13XXYYp + M14YYYY,

(35)

where the subscript p denotes the summation over all permutations of Pauli matrices.
After analysis and calculation, we divide the robustness of the mixed state of four-

qubit Dicke–W mixed with GHZ at a 45° ratio into four segments, the specific contents of
which are shown in Table 1.

Table 1. Segmentation of the four-qubit Dicke–W and GHZ mixed states with a Dicke–W mixing
ratio of Φ = 45◦.

Segment Number Θ ω θ Line Type

Segment I [20.9576◦, 90◦] Type 1 0◦, 78.4630◦, π Straight line
Segment II [13.2627◦, 20.9576◦] Type 2 78.4630◦, π Curve
Segment III [5.9803◦, 13.2627◦] Type 3 78.4630◦, π Straight line
Segment IV [0◦, 5.9803◦] Type 4 78.4630◦ Straight line

The robustness of entanglement for four-qubit of Dicke–W and GHZ mixed states
with a 45◦ Dicke–W mixing ratio is shown in Figure 3.

In this section, we employ Φ = 45◦. The upper bound of the robustness is depicted in
Figure 3. Based on the characteristics of the figure, several points are labeled as A, B, C, D,
and E. To avoid misunderstanding, the points A, B, C, D, and E mentioned in this section
refer to the points in Figure 3 rather than the points in Figure 1 of Section 3. The analytical
solutions for each segment with the deductions are presented in the following text.
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Upper bound from Segment IV

Figure 3. Robustness of entanglement for four-qubit of Dicke–W and GHZ mixed states with a 45◦

Dicke–W ratio.

5.1. Segment I

In this segment, the entanglement witness matrix ω in Equation (4) can be divided
into three parts—ω1, ω2, and ω3—which are as follows:

ω = ω1 ⊕ ω2 ⊕ ω3, (36)

where ω1 represents the witness matrix in the corresponding subspace of the W state, ω2
represents the witness matrix in the corresponding subspace of the Dicke state, and ω3
represents the witness matrix in the corresponding subspace of the GHZ state. In the
subspace formed by |0001⟩, |0010⟩, |0100⟩, and |1000⟩, ω1 can be represented as

ω1 = bI4 + aD4, (37)

where a and b are positive parameters, I4 is a 4 × 4 identity matrix, and D4 is a 4 × 4 matrix
with all elements equal to one. In the subspace formed by |0011⟩, |0101⟩, |0110⟩, |1001⟩,
|1010⟩, and |1100⟩, ω2 can be represented as

ω2 = dI6 + eD6 + f G6, (38)

where d, e, and f are positive parameters, I6 is a 6 × 6 identity matrix, D6 is a 6 × 6 matrix
with all elements equal to one, and G6 is a 6 × 6 matrix and can be expressed as follows:

G6 = |0011⟩⟨1100|+ |0101⟩⟨1010|+ |0110⟩⟨1001|
+ |1001⟩⟨0110|+ |1010⟩⟨0101|+ |1100⟩⟨0011|.

(39)

In the subspace formed by |0000⟩ and |1111⟩, ω3 can be represented as

ω3 = hI2, (40)

where h is a positive parameter, and I2 is a 2 × 2 identity matrix.
After completing the construction of the density matrix, we can calculate and analyze

the lower bound of the robustness of entanglement through Equation (4). The denominator
in Equation (4) can be represented as

⟨ψ4|ω|ψ4⟩ = hc8 + hs8 + 6(d + 6e + f )c4s4 + 4(4b + a)c6s2, (41)
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where |ψ4⟩ = |ψ⟩⊗4, c = cos θ
2 , and s = sin θ

2 . According to the analytical calculation shown
in Table 1, we have determined that in this part, there are three θ that simultaneously cause
Equation (41) to reach the maximum value, one of which is θ = π, and the maximum is h.
Substituting the maximum value h into Equation (41), we can easily obtain

c8 + s8 +
6(d + 6e + f )c4s4 + 4(4b + a)c6s2

h
− 1 = 0. (42)

Apart from θ = 0 and θ = π, we substitute θ = 78.4630◦ into the formula and can easily
get the relationship between other parameters and h. The numerator in Equation (4) can be
expressed as

⟨ρ, ω⟩ = 1 − p1

2
[p2(d + 6e + f ) + (1 − p2)(4a + b)] + 2p1h. (43)

Combining Equation (4), Equation (43), and the relationship between h and the other
parameters derived from Equation (42), we can get the lower bound result of robustness of
entanglement in this segment:

2g +
19

9
√

2
dw = 1, (44)

where g = p1
R and dw = (1 − p1)

√
(p2

2+(1−p2)2)
R . Equation (44) is the expression of Segment

I of the lower bound of robustness for the Dicke–W and GHZ mixed states with a Dicke–W
mixing ratio of 45°.

Next, we will present the upper bound of this segment. When Φ = 45◦, the coefficients
of |W⟩ and |Dicke⟩ are equal; thus, we have 4c6s2 = 6c4s4, c2 = 3

5 , and s2 = 2
5 . Substituting

c and s back into Equation (24), σ can be expressed as

σ =
81
625

|0000⟩⟨0000|+ 16
625

|1111⟩⟨1111|

+
36

625
(|0000⟩⟨1111|+ |1111⟩⟨0000|)

+
216
625

(|W⟩⟨W|+ |Dicke⟩⟨Dicke|)

+
96

625
|W̄⟩⟨W̄|.

(45)

When θ = 0◦ or 180◦, σ1 = |0000⟩⟨0000| and σ2 = |1111⟩⟨1111| based on Equation (24).
Therefore, the component of |GHZ⟩ can be increased by adding σ1 and σ2 to σ in Equation (45).
Actually, it suffices to add σ2 in σ. The separable state σB for point B can be expressed as

σB =
625
690

(σ +
65

625
σ2)

=
39
230

|GHZ⟩⟨GHZ|+ 72
230

(|W⟩⟨W|+ |Dicke⟩⟨Dicke|)

+
32
230

|W̄⟩⟨W̄|+ 15
230

|GHZ−⟩⟨GHZ−|.

(46)

Point B is ( 72
230

√
2, 39

230 ) with Θ = 20.96◦. For Θ = 90◦, for example, ρ is a |GHZ⟩ pure state,
and point A is known to be (0, 1

2 ). Thus, segment AB can be expressed as

g = −19
√

2
36

dw +
1
2

. (47)
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5.2. Segment II

The entanglement witness matrix of this segment is similar to that of Segment I.
The difference is ω3, and it is represented as follows:

ω3 = u

[ 1
h 1
1 h

]

, (48)

where h and u are positive parameters. Similar to the process of Segment I, the denominator
in Equation (4) can be represented as

⟨ψ4|ω|ψ4⟩ =
u

h
c8 + 2uc4s4 + hus8 + 6(d + 6e + f )c4s4 + 4(4b + a)c6s2. (49)

According to the analytical calculation shown in Table 1, we have obtained that in this
part, there are two θ that simultaneously cause Equation (49) to reach the maximum value,
one of which is θ = π, and the maximum is hu. Substituting the maximum value hu into
Equation (49), we can easily obtain

1
h2 c8 + 2

1
h

c4s4 + s8 +
6(d + 6e + f )c4s4 + 4(4b + a)c6s2

hu
− 1 = 0. (50)

Apart from θ = π, we substitute θ = 78.4630◦ into the formula and can easily get the
relationship between other parameters and h. The numerator in Equation (4) can be
expressed as

⟨ρ, ω⟩ = 1 − p

2
[(d + 6e + f ) + (4a + b)] +

p

2
(

u

h
+ 2u + hu). (51)

According to the conditions for obtaining the maximum value, we get the relationship
between h and Θ as

h =

tan Θ√
2

− 1
6

− tan Θ√
2

+ 3
8

, (52)

where tan Θ = p
1√
2
(1−p)

. Substituting Equation (49), Equation (51), and the relationship

between parameters into Equation (4), we get the lower bound of the robustness of entan-
glement in this segment:

g =
sin Θ

R(sin Θ +
√

2 cos Θ)
=

2x

(x− 1
6 )

2

3
8−x

+ x + 203
72

, (53)

dw =

√
2 cos Θ

R(sin Θ +
√

2 cos Θ)
=

1
(x− 1

6 )
2

3
8−x

+ x + 203
72

, (54)

where x = 1√
2

tan Θ.

The upper bound of this segment is shown in Figure 3 with a blue line.

5.3. Segment III

The entanglement witness matrix of this segment is similar to that of Segment II.
The difference is ω3, and it is represented as follows:

ω3 = u

[

0 0
0 h

]

, (55)
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where h is a positive parameter. Similar to the process of Segment I, the denominator in
Equation (4) can be represented as

⟨ψ4|ω|ψ4⟩ = hs8 + 6(d + 6e + f )c4s4 + 4(4b + a)c6s2. (56)

According to the analytical calculation shown in Table 1, we have determined that in this
part, there are two θ that simultaneously cause Equation (56) to reach the maximum value,
one of which is θ = π, and the maximum is h. Substituting the maximum value h into
Equation (56), we can easily obtain

s8 +
6(d + 6e + f )c4s4 + 4(4b + a)c6s2

h
− 1 = 0. (57)

Apart from θ = π, we substitute θ = 78.4630◦ into the formula and can easily get the
relationship between other parameters and h, and it is expressed as follows:

16
625

+
1
h

216
625

(A + B)− 1 = 0, (58)

where A = d + 4e + f , and B = 4a + b. The numerator in Equation (4) can be expressed as

⟨ρ, ω⟩ = 1 − p1

2
[p2 A + (1 − p2)B] +

p1

2
h. (59)

Substituting Equation (56), Equation (59), and the relationship between parameters ana-
lyzed above into Equation (4), we get the lower bound result of the robustness of entangle-
ment in this segment:

203

72
√

2
dw +

1
2

g = 1. (60)

Next, we will present the upper bound of this segment. σD corresponding to point D
can be expressed as

σD =
216
625

(|W⟩⟨W|+ |Dicke⟩⟨Dicke|) + 32
625

|GHZ⟩⟨GHZ|+ 377
625

τ, (61)

where τ is the noise state.
The expression of the separable state σC contains a higher proportion of |GHZ⟩ than

σD. Based on Equation (45) and σD, we still have 20
625 of |0000⟩⟨1111|+ |1111⟩⟨0000| that

can be transformed into GHZ states. By adding 20
625 |1111⟩⟨1111| and normalizing, which is

give by σC = 1
1+p (σD + p|1111⟩⟨1111|), the expression of σC is obtained as follows:

σC =
24
215

|GHZ⟩⟨GHZ|+ 72
215

(|W⟩⟨W|+ |Dicke⟩⟨Dicke|)

+
32
215

|W̄⟩⟨W̄|+ 15
215

|0000⟩⟨0000|.
(62)

Therefore, the point C is ( 72
215

√
2, 24

215 )with Θ = 13.26◦. Similarly, σCD = (1 − p)σC + pσD,
the expression of segment CD can be represented as

g = −203
√

2
72

dw + 2. (63)

5.4. Segment IV

The entanglement witness matrix of this segment only has two parts: ω1 and ω2.
The denominator in Equation (4) can be represented as

⟨ψ4|ω|ψ4⟩ = 6(d + 6e + f )c4s4 + 4(4b + a)c6s2. (64)
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According to the analytical calculation shown in Table 1, we determine that in this part,
there is only one θ that causes Equation (64) to reach the maximum value, and we can
easily obtain

⟨σ, ω⟩ = 216
625

[(d + 6e + f ) + (4b + a)]. (65)

The numerator in Equation (4) can be expressed as

⟨ρ, ω⟩ = 1 − p1

2
[p2(d + 6e + f ) + (1 − p2)(4b + a)]. (66)

Combining the above analysis structures, we get the lower bound result of robustness of
entanglement in this segment:

dw =
216
625

√
2. (67)

Therefore, σE corresponding to point E can be expressed as

σE =
216
625

(|W⟩⟨W|+ |Dicke⟩⟨Dicke|) + 409
625

τ, (68)

where τ is the noise state. It is evident that w = d = 216
625 for segment DE, and g increases

from 0 to 32
625 as Θ increases. Therefore, D is ( 216

625

√
2, 32

625 ) with Θ = 5.98◦, and E is
( 216

625

√
2, 0) with Θ = 0◦. The separable state σDE for segment DE can be expressed as

σDE = (1 − p)σD + pσE, which can represent an arbitrary separable state on the segment
DE. By respectively transforming the variables p and (1 − p) into g and dw, the expression
for the upper bound is derived as follows:

dw =
216
625

√
2. (69)

6. Conclusions

In this paper, we propose a method to quantify the multipartite entangled states of
quantum resources. We quantify full separability for Dicke–W and GHZ mixed states
by analyzing the upper bound and the lower bound of the robustness of entanglement.
When Φ is 90◦, that is, in the case of Dicke and GHZ mixed states, we obtain the analytical
expression of the lower bound and upper bound, and the results show that the lower bound
coincides with the upper bound. When Φ is 45◦, that is, in the case of equal proportions of
Dicke and W states mixed with GHZ state, we obtain analytical solutions for the straight
segments and a tractable solution for the curved segment. Finally, we determine that the
bound of the Dicke–W mixing ratio is Φ = 56.31◦, which divides the curve of the robustness
of entanglement into two types.
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Appendix A

According to Equations (11) and (12), we get

Tr(M̂′|ψs⟩⟨ψs|)

= Tr
3

∑
ijkl=0

Mijklσi ⊗ σj ⊗ σk ⊗ σl · ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ4

=
3

∑
ijkl=0

Mijkl [Tr(ρ1σi)Tr(ρ2σj)Tr(ρ3σk)Tr(ρ4σl)]

= Λ1 + Λ2x4 + Λ3y4 + Λ4z4

≤ Λ1 +
√

Λ2
2 + Λ2

3 + Λ2
4,

(A1)

Λ1 =M2z3 + M3z2 + M4z1 + M5z1z2z3 + M6(x1x2 + x1x3 + x2x3

+y1y2 + y1y3 + y2y3) + M8(x1x2z3 + xAz2x3 + z1x2x3)

+ M9(y1y2z3 + y1z2y3 + z1y2y3) + M11(z1z2 + z1z3 + z2z3),

Λ2 =M6(x1 + x2 + x3) + M7(z1z2x3 + z1x2z3 + x1z2z3)

+ M8(x1z2 + x1z3 + x2z3 + z1x2 + z1x3 + z2x3)

+ M12(x1y2y3 + y1x2y3 + y1y2x3) + M13x1x2x3

Λ3 =M6(y1 + y2 + y3) + M7(z1z2y3 + z1y2z3 + y1z2z3)

+ M9(y1z2 + y1z3 + y2z3 + z1y2 + z1y3 + z2y3)

+ M12(x1x2y3 + x1y2x3 + y1x2x3) + M14y1y2y3,

Λ4 =M1 + M5(z1z2 + z1z3 + z2z3) + M7(z1x2x3 + x1z2x3

+x1x2z3 + z1y2y3 + y1z2y3 + y1y2z3) + M8(x1x2 + x1x3

+x2x3) + M9(y1y2 + y1y3 + y2y3) + M10z1z2z3

+ M11(z1 + z2 + z3).

(A2)

Thus, we get Equation (13).
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