
c© 2019 by Suraj Shankaranarayana Hegde. All rights reserved.



TOPOLOGICAL PHASES, NON-EQUILIBRIUM DYNAMICS AND PARALLELS OF
BLACK HOLE PHENOMENA IN CONDENSED MATTER

BY

SURAJ SHANKARANARAYANA HEGDE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Taylor Hughes, Chair
Associate Professor Smitha Vishveshwara, Director of Research
Professor Dale Van Harlingen
Assistant Professor Tom Faulkner



Abstract

This dissertation deals with two broad topics - Majorana modes in Kitaev chain and parallels of black hole

phenomena in the quantum Hall effect. Majorana modes in topological superconductors are of fundamental

importance as realizations of real solutions to the Dirac equation and for their anyonic exchange statistics.

They are realised as zero energy edge modes in one-dimensional topological superconductors, modeled by

the Kitaev chain Hamiltonian. Here an extensive study is made on the wavefunction features of these

Majorana modes. It is shown that the Majorana wavefunction has two distinct features- a decaying envelope

and underlying oscillations. The latter becomes important when one considers the coupling between the

Majorana modes in a finite-sized chain. The coupled Majorana modes form a non-local Dirac fermionic state

which determines the ground state fermion parity. The dependance of the fermion parity on the parameters

of the system is purely determined by the oscillatory part of the Majorana wavefunctions. Using transfer

matrix method, one can uncover a new boundary in the phase diagram, termed as ‘circle of oscillations’,

across which the oscillations in the wavefunction and the ground-state fermionic parity cease to exist. This

is closely related to the circle that appears in the context of transverse field XY spin chain, within which

the spin-spin correlations have oscillations. For a finite sized system, the circle is further split into mutliple

ellipses called ‘parity sectors’. The parity oscillations have a scaling behaviour i.e oscillations for different

superconducting gaps can be scaled to collapse to a single plot. Making use of results from random matrix

theory for class D systems, one can also predict the robustness of certain features of fermion parity switches in

the presence of disorder and comment on the critical properties of the MBS wavefunctions and level crossings

near zero energy. These results could provide directions for making measurements on zero-bias conductance

oscillations and the parameter range of operations for robust parity switches in realistic disordered system.

On the front of non-equilibrium dynamics, the effect of Majorana modes on the dynamical evolution of the

ground state under time variation of a Hamiltonian parameter is studied. The key result is the failure of

the ground state to evolve into opposite parity sectors under the dynamical tuning of the system within

the topological phase. This dramatic lack of adiabaticity is termed as parity blocking. A real-space time-

dependent formalism is also developed using Pfaffian correlations, where simple momentum space methods
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fail. This formalism can be used for calculating the non-equilibrium quantities, such as adiabatic fidelity

and the residual energy in a system with open boundaries. The consideration of Majorana modes in non-

equilibrium dynamics lead to deviation from Kibble-Zurek physics and non-analyticities in adiabatic fidelity

even within the topological phase.

The second part of the thesis deals with uncovering structural parallels of black hole phenomena such as

the Hawking-Unruh effect and quasinormal modes in quantum Hall systems. The Hawking-Unruh effect is

the emergence of a thermal state when a vacuum of a quantum field theory on a given spacetime is restricted

to a submanifold bounded by an event horizon. The thermal state manifests as Hawking radiation in the

context of a black hole spacetime with an event horizon. The Unruh effect is a simpler example where a

family of accelerating observers in Minkowski spacetime are confined by the lightcone structure and the

Minkowski vacuum looks as a thermal state to them. The key element in understanding the Hawking-Unruh

effect is the Rindler Hamiltonian or the boost. The boost acts as the generator of time translation for the

quantum states in the Rindler wedge giving rise to thermality. In this thesis it is shown that due to an

exact isomorphism between the Lorentz algebra in Minkowksi spacetime and the algebra of area preserving

transformations in the lowest Landau level of quantum hall effect, an applied saddle potential acts as an

equivalent to the Rindler Hamiltonian giving rise to a parallel of Hawking-Unurh effect. In the lowest Landau

level, the saddle potential is reduced to the problem of scattering off an inverted harmonic oscillator(IHO)

and the tunneling probability assumes the form of a thermal distribution. The IHO also has scattering

resonances which are poles of the scattering matrix in the complex energy plane. The scattering resonances

are states with time-decaying behavior and have purely incoming/outgoing probability current. These states

are identified as quasinormal modes analogous to those occurring the scattering off an effective potential in

black hole spacetimes. The quasinormal decay is an unexplored effect in quantum Hall systems and provides a

new class of time-dependent probe of quantum Hall physics. The parallels between the relativistic symmetry

generators and the potentials applied in the lowest Landau level also open up an avenue for studying Lorentz

Kinematics and symplectic phase space dynamics in the lowest Landau level. These parallels open up new

avenues of exploration in the quantum Hall effect.
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Chapter 1

Introduction

In his famous 1972 article “More is different” [4], P. W. Anderson highlighted the importance of scales and

complexity when dealing with conglomerates of large number of particles. It was an important critique

of the fatal reductionist view of science that there exist a set of ‘fundamental laws’ of physics acting at a

certain scale. These laws determine the dynamics of ‘the fundamental constituents’ and the knowledge of

these fundamental laws would allow us to explain all the other phenomena in the world. Addressing this,

Anderson pointed out that ” The main fallacy in this kind of thinking is that the reductionist hypothesis does

not by any means imply a “constructionist” one: The ability to reduce everything to simple fundamental

laws does not imply the ability to start from these laws and reconstruct the universe...”. Then he proceeds

to show how the paradigm of ‘broken symmetries’ makes it clear the breakdown of constructionist converse

of reductionism. The developments in condensed matter physics over the past few decades have shown the

importance of studying every phenomena on the level of complexity of its own scale, be it nano-, micro-, meso-

or cosmological. The description and understanding of the physics at each of these different scales comes with

its own paradigm of formalism and their explanations need not be in terms of some kind of ‘fundamental

constituents’. If we take the theory of superconductivity, for example, while there is the BCS(Bardeen-

Cooper-Schrieffer) theory at the level of electrons and cooper pairs as a mean field description, there is the

Landau-Ginzburg theory capturing the physics at a different scale and covering different aspects in terms of

an effective field. One could even go to the level of interacting electrons and through renormalisation group

arguments show the emergence of the BCS pairing. At the same time, one could start by not worrying about

how the superconductivity arises and explore its mesoscopic manifestations. The physics of superconducting

Josephson junctions, for example, offers its own rich set of phenomena. Such mesoscopic manifestations are

also much closer to experimental measurements. Thus, one comes to appreciate the rich domains of study

over different scales. The challenge is always to understand the interpolations between the different scales.

One of the surprising things recurring over the past few decades in condensed matter physics is the occur-

rence of phenomena at ‘condensed matter scales’, that resemble in form and structure to exotic phenomena

predicted originally in the context of high energy physics. This includes the Dirac equation in topologi-
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cal phases followed by Majorana and Weyl fermionic description of certain aspects in those systems. Dirac

monopoles, Skyrmions, axionic fields, holography are some more of such examples. These emerge as effective

description at some scale of macroscopic, condensed matter materials. These condensed matter realisations

are no longer seen as toy models of pure academic interest but are accessible to experiments and can be

pushed to the limits of even having technological applications.

This thesis, presents the study of two such topics : Majorana modes and Black hole phenomena in

condensed matter systems. Majorana modes have received immense attention due to their fundamental

importance of being their own anti-particles and exhibiting non-Abelian exchange statistics [5, 6]. They

have been experimentally realised in semi-conductor-superconductor heterostructures[7, 8] and are leading

candidates in proposals to realise topological quantum computation[9]. This thesis presents a study of their

wavefunction physics and non-equilibrium dynamics in a one-dimensional lattice model called the Kitaev

chain, where Majorana modes are realised as edge states. The second part of the thesis demonstrates the

emergence of sphenomena in the quantum Hall effect that are structurally parallel to those occurring in

black holes. Black holes, a crowning consequence of general relativity, have been enigmatic since their

original prediction. They are also among the simplest objects in the universe, characterized by just three

parameters - mass, charge and angular momentum [10, 11]. These characteristic signatures of black holes

manifest in gravitational waves [12], decay rates of quasinormal modes [13, 14] and Hawking radiation[15].

While black holes occur at astrophysical scales, at the mesoscopic scale we have the quantum Hall effect. In

two dimensions, robust properties of electronic wavefunctions allow for a gapped phase having a precisely

quantized Hall conductance[16, 17]. These quantum Hall systems host anyonic excitations, protected chiral

edge states, and a universal thermal Hall conductance, and offer a promising route to topological quantum

computing [18, 9]. Quantum systems in fact offer a multitude of ways to probe relativistic phenomena, from

mimicking curved spacetimes [19] to investigating dynamic geometric backgrounds [20, 21, 22, 23, 24]. In

this thesis, we show that signature features of black holes, and scattering in quantum Hall systems can be

remarkably unified by a mapping to single particle physics in the presence of an inverted harmonic oscillator

(IHO) potential. The IHO model exhibits potential scattering and temporally decaying modes, features

that have made the model invaluable in a broad variety of contexts since the birth of quantum mechanics

[25, 26, 27]. From its infancy, phenomena such as particle decay [28] and metastability [29] have been

analyzed using the IHO. In developments across the decades, the IHO has played key roles in the context of

chaos theory[30, 31, 32], decoherence [33, 34, 35] and quantum optics [36] . In modern high energy physics

and cosmology, it has provided a basis for understanding 2D string theory, tachyon decay[37, 38, 39, 40]

and even inflation in the early universe[41]. Thus, through its powerful simplicity, the IHO serves as an
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archetype for phenomena in numerous realms, much like the more familiar simple harmonic oscillator. In

this thesis, we shall focus more on the structural parallels of black hole phenomena occurring IHO realised

in quantum Hall systems.

The organization of the thesis is as follows: Chapter 2 starts with an introduction to topological phases

and Majorana modes in condensed matter systems. Then it presents work on effect of disorder and potential

landscapes on the Majorana wavefunctions and the associated ground state fermion parity. This is based

on the work published in Ref.[42] Chapter 3 presents the effect of Majorana modes on the non-equilibrium

dynamics of topological superconductors based on work done in Ref.[43]. Chapter 4 deals with parallels of

black hole phenomena in quantum Hall effect. First the basics of black hole physics and the quantum Hall

effect are presented and then parallels to Hawking-Unruh effect and quasinormal modes are drawn based on

symmetry arguments and physics of scattering off an inverted harmonic oscillator. Part of it is presented

in Ref.[44] and parts of it are from my own individual study. Finally in chapter 5, a primer is presented

on the inverted harmonic oscillator, a simple quantum mechanical model that shows many important and

fundamental properties of scattering.
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Chapter 2

Majorana wavefunction physics in
topological supercondutors

2.1 Topological phases

Characterization of a particular physical phenomenon based on minimal set of quantities and laws has been

the project of most theories of physics. When we consider macroscopic conglomerates of atoms, molecules

or electrons under specific physical conditions such as temperature, pressure and applied fields, despite the

numerous and very significant differences in the details of how they occur in nature, we still see very specific

classes or ‘phases’ of common behavior such as metals, insulators etc.These phases are characterized by

minimal set of quantities such as conductivity, magnetisation etc. One can classify the different phases

based on the symmetries of the system and whether the states of the system break those symmetries or not.

Such phases are characterized by an ‘order parameter’ that has a finite expectation value in the lowest energy

state or the ground state of the system. The order parameter can have a characteristic change as the system

changes from one phase to the other and the transition occurs at a specific value of the parameter(such as

temperature) called the ‘critical point’.

Another paradigm for classifying different phases of matter is based on topological characteristics.

Broadly speaking, topological characteristics are insensitive to the details and are only dependent on the

connectivity of the manifold in question. Distinction in topological characteristics is based on certain num-

bers called ‘topological invariants’ which characterize the specific topology of the manifold. A very easy

and rough (and famous )illustration of topological characterstics is that of a torus and a sphere. These two

shapes are topological distinct as the torus has a hole and the sphere does not and the two shapes cannot

be deformed into another smoothly. In the context of condensed matter, the topological invariants appear

in experimentally measured quantities such as the conductance. For example, in the quantum Hall effect,

the Hall conductance is quantized in terms of a topological invariant [45, 18]. The topology in this case

is the topology associated with the electronic wavefunctions of a gapped system. The importance of these

topological characterstics is that they are very robust aginst perturbations. For example, the robustness of

quantization of Hall conductance allows one to determine the fine structure constant to an extremely high
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precision. We shall make the notion of these topological invariants very precise and derive an example in

the following sections. Here, we will be specifically focusing on a type of phases classified based on topology

called the symmetry protected topological phases(SPTs). The properties of an SPT are [46] i) Presence of a

gap in the bulk spectrum and ii) the boundary are gapless, must spontaneously break the symmetry in the

system. A fundamental characteristic of SPTs is that the (d-1) dimensional boundary of a d-dimensional

SPT cannot exist in isolation as a purely (d-1) dimensional object. The different classes of topological char-

acterstics that could occur for non-interacting fermions are completely classified based on the SCT (Chiral,

Charge conjugation and Time reversal) symmetry operations on the system. The topological phase and

its characteristics are preserved as long as the symmetries corresponding to it are not broken. Thus, the

name ‘symmetry protected topological phases’. These are to be distinguished from phases with ‘Intrinsic

topological order’ which need not have any symmetries, have fractonalisation of quasiparticles in the bulk

and have long range entanglement properties [46].

To understand how this classification works consider a simple second quantised Hamiltonian of the form:

H =
∑
A,B

ψ†AHABψB (2.1)

where the fermion creation and annihilation operators satisfying the commutation relations {ψA, ψ†B} = δA,B

and HA,B is an N ×N matrix (One can similarly obtain a matrix for a superconducting system in the space

of (ψ,ψ†), called the Nambu space). Since we are looking for topological features of the Hamiltonian, the

features of the classification cannot change by adding perturbation terms that do not close the gap in the

system. The properties must be robust if one breaks translational symmetry in the system by adding an

on-site disorder term for exmaple. In general, one does not include such unitarily realised symmetries in

the classification. The ‘symmetries’ we consider here are the ones anti-unitarily realised, such as the time-

reversal symmetry, charge conjugation symmetry and sub-lattice symmetry [46]. The condition for time

reversal symmetry of the Hamiltonian is given by:

T : U†TH
∗UT = +H (2.2)

The condition for charge conjugation/ particle-hole symmetry is given by

C : U†CH
∗UC = −H (2.3)
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Figure 2.1: The periodic table for the different topological phases of non-interacting fermions. This is
known as the ‘Altland-Zirnbauer’ classification. The columns TRS, PHS and SLS stand for time-reversal
symmetry, particle-hole symmetry and sub-lattice symmetry respectively. Based on how these anti-unitarily
realized symmetries act on the second quantized Hamiltonian, there are only ten different classes indicated
by letters A,AI,AII... The names ‘Wigner-Dyson’, ‘Chiral’ and ‘BdG’ correspond to different ensembles
these Hamiltonian matrices belong to. On the right, is the table of topological invariants predicted for each
of these classes in different dimensions . These invariants are indicators of the presence of edge modes in the
corresponding topological phases.

. There is another operation

S = T .C (2.4)

This is a unitarily realised symmetry but does not commute with the Hamiltonian. From these, we will see

that there are only 10 ways a system can respond to these symmetries. Let us first consider the time-reversal

symmetry. The given Hamiltonian i) Is not time-reversal invariant which we will indicate as T = 0, ii)Is

time reversal invariant and the operator T squares to one. Let us denote this by T = 1. iii) Is time reversal

invariant but the operator T squares to -1. This is denoted as T = −1. This gives us 3 cases. One has similar

3 cases for the charge conjugation operator C with C = 0,+1,−1. That counts 3×3 cases. The behaviour of

the Hamiltonian under S is uniquely fixed by the behaviour of T , C in 8 out of 9 cases. When T = 0, C = 0,

S = 0, 1 is possible. This yields (3 × 3 − 1) + 2 = 10 cases. This gives an exhaustive classification of the

phases as given in Fig.2.1. Once this classification is done one can obtain the topological invariants in a

given dimension as shown in the Fig.2.1 [46]. The table also shows the different physical systems which

belong to some of these classes. Thus, remarkably one obtains a ‘periodic table’ for the classification of

different topological phases of non-interacting fermions purely based on the action of the symmetries and

the dimension, without any other details. This proves to be an extremely strong method in predicting the

topological features of a given system.

As mentioned, one of the characteristic features of these topological phases is the existence of a gapless

boundary. Instead of a boundary one could also consider a topological defect such as a vortex. If the system

has particle-hole symmetry, the gapless boundaries or vortices can harbor zero-energy modes and these zero-

6



energy modes have interesting properties. The value of the topological invariants indicates the presence of

such zero modes. Let us consider a very specific system in which the time reversal symmetry is broken at

the defect or the boundary but the particle-hole symmetry is preserved. This corresponds to a system of

‘Class D. From the table in Fig.2.1, the one-dimensional system with point like boundaries has an invariant

Z2, which allows zero-modes at the boundary as the topological invariant is non-zero. This is realised in a

one-dimensional p-wave superconductor and the edge mode is a Majorana fermionic mode [47], which will

be the object of our interest in the following chapters. One can also see from other examples in the table

that invariant can be zero indicating the absence of boundary modes.

The Majorana fermions were first discovered theoretically as solutions to the Dirac equation. The Dirac

equation in general plays an important role in the study of topological phases and it emerges in some cases

as an effective description of the gapless modes at the boundaries of the the SPTs. In the next section we

shall study the Dirac equation and consider a simple example in condensed matter model where it appears.

As we shall see the edge modes in topological phases are obtained as solutions to the Dirac equation.

2.1.1 Dirac equation in lower dimensional condensed matter systems

Dirac in his 1930 paper [48] set out to find a relativistic formulation of quantum mechanics, which would

would also include the spin angular momentum in its articulation. The starting point was the Schrödinger

equation for describing the time-evolution of the quantum mechanical state:

HΨ = i
∂

∂t
Ψ (2.5)

This evolution is linear in time and Lorentz co-variance requires that the form of the Hamiltonian be linear

in the momentum. Also, the energy-momentum relation should satisfy E2 = p2 + m2, where p is the

momentum, m is the mass and reminding that the convention of c = 1 is adopted.The Dirac equation is a

manifestly Lorentz co-variant equation satisfying those condition and the Hamiltonian equation is written

as

(Γµpµ −m)Ψ = (iΓµ∂µ −m)Ψ = 0 (2.6)

where pµ = (i∂t, ~p) (pµ = (i∂t,−~p)). Γµ are the Dirac matrices and they obey the algebra (known as Clifford

algebra)

{Γµ,Γν} = ΓµΓν + ΓνΓµ = 2ηµν (2.7)
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The ηµν is the metric of the Minkowski space. The Dirac gamma matrices are of the form:

Γ0 =

I2 0

0 −I2

 Γk =

 0 σk

−σk 0

 k = 1, 2, 3 (2.8)

Here σk are the Pauli matrices:

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (2.9)

The Dirac gamma matrices are 4 dimensional matrices with complex numbers. As a result the solutions

of the Dirac equation Ψ are 4-component complex fields, two of them with positive energy
√
p2 +m2 and

the other two representing particles with negative energy −
√
p2 +m2. The latter are interpreted as ‘anti-

particles’ of electrons a.k.a ‘positrons’ with positive charge. The double-multiplicity of the each of those

solutions arise from the fact that the field represent spin-1/2 fermions.

Dirac equation in condensed matter: In the above discussion, the Dirac equation in 3 + 1 dimensional

Minkowski spacetime was considered. The form of the Dirac equation in lower dimensions becomes highly

relevant in condensed matter systems especially in the context of topological phases [49, 50]. It appears as

an effective Hamiltonian in the low energy limit of these systems. One can show this from some general

considerations[51]. The many-body Hamiltonian of a electron system would be of the general form H =

H0 + Hint, where H0 is the one-body kinetic energy part of the electrons and Hint is the many-body

interaction part. For electrons moving in a periodic potential, one has the band spectrum En(k) and

wavefunctions |φn,k〉 ,where n is the band index and k is the crystalline momentum. Consider two adjacent

energy bands En+(k) and En−(k) whose difference is much smaller than their separation from the rest of

the bands. The effective Hamiltonian for the two bands , without many-body effects, is then given by

Heff =
∑
k

ψ†kH(k)ψ(k) H(k) =

〈uk|H0 |uk〉 〈uk|H0 |vk〉

〈vk|H0 |uk〉 〈vk|H0 |vk〉

 (2.10)

This can be expanded in terms of the Pauli matrices as

H(k) = f(k)12 +

3∑
j=1

~g(k).~σ (2.11)

The spectrum is then given by E± = f(k)±
√∑3

j=1g
2(k). Suppose there exists a point k0 in the Brillouin
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zone where the two bands touch if for all j, gj(k0) = 0. Near these points the Hamiltonian can be linearised

to the form of Dirac equation :

H(k) = Ek0
+ ~~v0.(~k − ~k0)I2 +

3∑
j=1

~~vj .(~k − ~k0)σj (2.12)

This band-crossing can be achieved in two dimensions the presence of special symmetries in the system

and by fine-tuning the parameters. The Pauli matrices could also generally correspond to other degrees of

freedom such particle-hole or spin, as in the case of a topological superconductor.

In the presence of time-reversal and space-inversion symmetry, there is a double degeneracy of the energy

bands corresponding to spin degeneracy. For every solution φk(r), there is a Kramer doublet iσ2φ∗(−r). The

two nearby bands are now given by u1k(r) |↑〉+u2k(r) |↓〉 , −u∗1k(r) |↓〉+u∗2k(−r) |↑〉 and v1k(r) |↑〉+v2k(r) |↓〉

, −v∗1k(r) |↓〉+ v∗2k(−r) |↑〉. The effective four-dimensional Hamiltonian is now given by

H(k) = f(k)14 +

5∑
j=1

gi(k)Γi (2.13)

where the Gamma matrices are given by Γ1 = τ3 ⊗ 1, Γ2 = τ1 ⊗ 1, Γ3 = τ2 ⊗ σ3 and Γ4 = τ2 ⊗ σ1 and

Γ5 = τ2 ⊗ σ2. Here the τ Pauli matrices act in the (u, v) space and σ Pauli matrices act in the (↑, ↓) space.

With additional symmetry constraints, the band crossing can happen in this case along one-dimensional

curves in 3 dimensions and at points in 2 dimensions. Around such a band crossing the effective Hamiltonian

can be linearised again to the form of Dirac equation. As noticed above, going from 3 + 1- dimensions to

lower dimensions, the γµpµ term change to σµpµ in the simplest case. This is related to change in the

representation theory of the Lorentz group between the 3 + 1 and 2 + 1 dimensions.

A specific example where the above mentioned features of topological phases such as topological invariant,

edge modes and the Dirac equation can be shown is a simple system called the Su-Schrieffer-Heeger(SSH)

model. Its a one dimensional tight-binding model of a fermions on a lattice :

H =

N−1∑
i=1

(t+ δt)c†AicBi + (t− δt)c†Ai+1cBi + h.c (2.14)

where A,B are the two sublattice labels, δt is the dimerisation parameter. The dimerisation parameter is

indicative of the coupling between neighboring sites that alternates along the chain and provides an energy

scale, which manifests as a gap in the energy spectrum.

In the basis of sublattice degrees of freedom Ψ = (cA(k), cB(k))T , the Fourier transformed Hamiltonian
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is given by:

H =
∑

Ψ†H(k)Ψ(k) H(k) = ~d(k).~σ (2.15)

Here,

dx(k) = (t+ δt) + (t− δt) cos k, dy(k) = (t− δ) sin k, dz(k) = 0. (2.16)

For small dimerisation parameter δt and focusing on the low energy states around k ∼ π+q and q → −i∂x,

the Dirac Hamiltonian is obtained:

H = −ivFσ1∂1 +m(x)σ2, (2.17)

where vF = t and m = 2δt. Now if the spatial profile of m is that of a soliton (e.g a step function)

m(−∞) > 0,m(−∞) > 0, there is a bound state at the domain wall of the two different dimerisation at

zero energy. This zero-energy state is topologically protected and is related to the topological phase of the

system. The wavefunction of this zero mode is given by :

ψ0(x) = exp

(
−
∫ x

0

m(x′)dx′
)1

0

 (2.18)

This is a fermionic Dirac mode and is the simplest example for the occurrence of edge modes in topological

phases.

Figure 2.2: Two distinct phases of the Su-Schrieffer-Heeger model. For t1 > t2, the system is in a topological
phase with an edge state as shown in the left. The vector ~d traces a full loop in the Brillouin zone leading
to a topological invariant ν = 1. For t1 < t2, one gets a trivial phase with no edge states and no winding in
the Brillouin zone.

Topological invariant as a winding number– The term ~d(~k) can be considered as a vector defined over

the Brillouin zone. As the wavevector goes k : 0→ 2π it forms a loop in the Brillouin zone and ~d also forms

a closed path in the dx, dy plane. For an insulating phase with a gap, the closed math avoids ~d = 0 as the
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Hamiltonian is not gapless. Since dz = 0, the closed path forms a directed loop in the dx, dy plane as shown

in Fig.(2.2) and can be associated with a ‘winding number’ . The winding number is then defined for a unit

vector ~̃d as

ν =
1

2π

∫ (
~̃d× d

dk
~̃d

)
dk (2.19)

To calculate the topological invariant, introduce h(k) = dx(k)− idy(k) and using ln(h) = ln(|h|eiarg(h)), we

get

ν =
1

2πi

∫ π

−π
dk

d

dk
ln(h(k)) (2.20)

Now one can obtain the topological invariants for different regimes of parameters t1 = t+ δt, t2 = t− δt:

t2 > t1 : ν = 1 (2.21)

t1 > t2 : ν = 0 (2.22)

Now, we shall proceed to study a special form of solution to Dirac equation called the Majorana fermion

and its avatar in the condensed matter setting called the Majorana bound state(MBS).

2.2 Majorana modes

2.2.1 General features

Majorana modes have become a topic of importance in condensed matter physics and high energy physics [6].

Their fundamental importance stems from their manifestation of a symmetry in the Dirac equation, which

is the product of a beautiful confluence of Lorentz co-variance(special relativity) and quantum mechanics.

Majorana fermions arise as ‘real’ solutions to the Dirac equation in that they are their own anti-particles. The

emergence of Majorana quasiparticles in condensed matter physics is interesting in its own right and have

additional fundamental significance that they have anyonic statistics in that setting. These Majorana modes

occur in the topological phases of quantum matter as bounds states in vortices or at gapless boundaries..

Their properties as anyons allow their use in realising topological quantum computation. In this section,

Majorana fermions are defined first in the simplest notion relevant for further discussions in the setting of

condensed matter physics. Then, they are shown as solutions to the Dirac equation, as it appeared in the

historical context.

Majorana fermions are defined as particles which are their own anti-particles. To understand what this

means start with the notion of ‘particle’ that is represented by a creation operator ψ̂†a acting on a ‘vacuum’
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state |Ω〉. Here the sub-script ‘a’ represents any of the degrees of freedom such as momentum, spin or

charge. Then the annihilation operator ψ̂a represents an ‘anti-particle’ on the state |Ω〉. One could think

of |Ω〉 as a many-body electron state, such as filled Fermi-sea and particle corresponds to the excitation

over the Fermi-sea and the anti-particle corresponds to the ‘hole’ created by removing an electron from the

Fermi-sea. These obey the canonical anti-commutation algebra corresponding to fermions. Now, consider

the canonical transformation on these operators,

ψ̂a =
γ̂a1 + iγ̂a2

2
; ψ̂†A =

γ̂a1 − iγ̂a2

2
(2.23)

. The transformation preserves the algebra:

{γ̂aα, γ̂bβ} = δabδα,β ; γ̂†aα = γ̂aα (2.24)

One can see from above that the operators γ̂aα obey the fermionic commutation relations and are identical

to their own anti-particles. These are the Majorana fermions. In principle, the decomposition as shown

above could be done in any condensed matter system with electrons, but the Majorana operators cannot be

isolated as individual particles and are always part of the regular electrons. As will be seen in a later section,

one can indeed obtain isolated Majorana modes as zero-energy, edge modes in topological superconductors.

2.2.2 Majorana’s solution of Dirac’s equation

Now, Majorana fermions are derived as solutions to the Dirac equation. In fact the notion of an ‘anti-

particle’ is a natural outcome of Dirac’s formulation. Majorana was seeking a theory which is symmetric

with respect to the charge degree of freedom i.e a Dirac-like theory for neutral particles. Let us actually

follow Majorana’s formulation as presented in his original paper [52] as parts of it come close to resemble a

tight binding Hamiltonian found in Kitaev’s work. Majorana starts with the Lagrangian of a system with

Hermitian(real) variables: qis:

L = i
∑
r,s

(Arsqr q̇s +Brsqrqs) (2.25)

Here A,B are real and Ars = Asr, Brs = −Bsr and det|A| 6= 0. Upon varying the Lagrangian and setting

to zero, one obtains the Hamiltonian

H = −i
∑
r,s

Brsqrqs (2.26)
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assuming the anticommutation relations

qrqs + qsqr = constant δrs (2.27)

The equation of motion of such a Hamiltonian would give a Schrödinger like equation for real anti-commuting

variables. Now Majorana, considers the Dirac equation and writes Ψ = U + iV , where U, V are real and

chooses the following representation for the gamma matrices:

γ̃0 =

 0 σ2

σ2 0

 γ̃1 =

iσ3 0

0 iσ3

 γ̃2 =

 0 −σ2

σ2 0

 γ̃3 =

−iσ1 0

0 −iσ1

 (2.28)

Each of them individually follow Dirac’s equation:

(iγ̃µ∂µ −m)U = 0 (2.29)

and an identical one for V . Now Majorana argues that such an equation can be derived from a quantiza-

tion procedure outlined above for anti-commuting, real and continuous variables U, V . One starts with a

Lagrangian quadratic in U or V similar to Eq. 2.25 and obtains the above real-Dirac equation. From this

he concludes : “It is remarkable, however, that the part of the formalism which refers to U (or V) can be

considered, in itself, as the theoretical descriptions of some material system, in conformity with the gen-

eral methods of quantum mechanics....constitute the simplest theoretical representation of neutral particles.’.

Thus Majorana showed the possibility of anti-commuting fields being their own anti-particles. These real

fields are termed today as “ Majorana fermions”.

2.2.3 Majorana zero modes in superconductors and anyonic statistics

Now we shall turn to the physical setting of superconductors which provide a platform for emergence of

Majorana quasiparticles. The mere change in representation as shown in Eq. 2.23 is manifest physically in the

superconductors where quasiparticles occur as coherent superposition of particles and holes. A typical BCS

(‘s-wave’ order parameter) superconducting phase is formed by (i) Cooper-pairing of electrons of opposite

spins and momenta and (ii)condensation of the Cooper pairs to a ground state. Now, exciting an electron

from one of these pairs would leave a ‘hole’ in the condensate and leads to a ‘Bogoliubov quasiparticle’ which

is superposition of the electron and a hole:

γk = uck↑ + vc†−k↓, (2.30)
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very much similar to the requirement in Eq. 2.23 except for the spin structure. However an equal superposi-

tion of particle and holes of same spin species would form a Majorana particle, which is its own antiparticle.

Cooper pairing of electrons with same spins can occur if the ‘Cooper pair wavefunction’ or the corresponding

order parameter has an odd parity part. This is satisfied in a p-wave or a px + ipy superconductor. Such

system can be shown to host Majorana zero-modes .

To see this one starts with a mean-field description of a ‘spin-less’ superconductor in terms of the

Bogoliubov-deGennes Hamiltonian written in the Nambu basis (ck, c
†
−k) :

H =
∑
k

(
c†k c−k

)
HBdG(k)

 ck

c†−k

 , (2.31)

where HBdG is the Bogoliubov-deGennes Hamiltonian

HBdG(k) =

h0(k) ∆(k)

∆†(k) −hT0 (k)

 (2.32)

Here ∆ is the superconducting order parameter and h0 is the kinetic part of the Hamiltonian. The Bogoliubov

quasi-particles are of the form γk = ukck + vkc
†
−k. The eigenvalue equations will be:

h0 ∆

∆† −hT0


u
v

 = E

u
v

 (2.33)

The Hamiltonian has an anti-unitary particle-hole symmetry C

CHBdG(k)C−1 = −HBdG(k) (2.34)

The symmetry transformation is of the form C = τxK, where τx is the Pauli matrix in the Nambu basis and

K is the complex conjugation. The transformation acts on the energy eigenstates as CΨE = Ψ−E which

implies for the Bogoliubov quasiparticles

γ†E = γ−E (2.35)

At zero-energy this would satisfy the Majorana condition γ†0 = γ0 thus forming an isolated Majorana quasi-

particle.

Non-Abelian braiding statistics: The Majorana zero modes are of importance not only for their funda-

mental Majorana nature but also due to their exchange statistics. In the case of exchanging two fermions
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or bosons, the wavefunction describing the two particles gets an overall sign of ±1: ψ(r1, r2)→ eiθψ(r2, r1),

where θ = 0, π for bosons and fermions respectively. In the case of anyons, the phase θ can take any value

between 0 and π. The angle ‘θ’ is called the exchange angle of that anyon. As we shall see below, in the case

of Majorana modes the angle can be matrix-value and the order of exchange matters , as result of which the

MBS are called ‘non-Abelian anyons’.

The simplest instance of non-Abelian exchange involves four MBSs, say denoted by γ1, γ2, γ3, γ4. As

mentioned already, these Majorana modes in a condensed matter setting occur as isolated zero energy modes

trapped in a vortex or at the edge of a topological superconductor. In principle, these isolated modes can

be transported to braid their trajectories and study the exchange statistics. The details of how they are

realized does not matter for this discussion as the exchange statistics is their inherent nature. ,As shown in

Eq.2.23, a Dirac fermion can be split into two Majorana fermions. Given a pair of Majorana fermions, one

can also define a Dirac state. Given four Majorana operators, we can construct 2 Dirac states. As a specific

choice, consider cA = (γ1 + iγ2)/2 ,cB = (γ3 + iγ4)/2. The Dirac states ci have an occupation number given

by Ni = c†i ci, which is equal to 1 if occupied and 0 is empty. These Dirac operators act on the ground state

that contains the Majorana modes: c†i |0〉 = |1〉. In the presence of four zero energy MBS, the ground state

is then degenerate and has the following possibilities:

|NA, NB〉 : |0, 0〉 , |1, 1〉 , |1, 0〉 , |0, 1〉 (2.36)

where NA, NB denote the occupation of the electronic states. For N pairs of MBSs, the ground state is 2N fold

degenerate. Ni determines the fermion parity of the ground state, which will become our central aspect of

study in later sections. The occupation of all the parity states decides the net fermionic parity of the ground

of the system. Thus unlike conventional superconducting ground state, which is always a superposition of

states having an even number of electrons in form of Cooper pairs, a topological superconductor can have

states with net fermion parity either even or odd, depending on the occupation of the modes created by

combining the Majoranas .

The simplest braiding operation is an exchange in the positions of the two MBSs. How does this ex-

change in the position space affect the space of ground states? It can be shown that [53] the exchange

of two Majoranas γi,γj is represented in the ground state manifold as a unitary rotation in the space

{|0, 0〉 , |1, 1〉 , |1, 0〉 , |0, 1〉} given by

Uij = exp(±iπγiγj/4). (2.37)
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For example, if one starts with a state |0, 0〉, then exchanging γ2, γ3 results in

U23 |0, 0〉 = (|0, 0〉 − i |1, 1〉)/
√

2 (2.38)

In principle, one can track such rotations by measuring the fermion occupation i.e the fermion parity of the

electronic states in the ground-state manifold. The order of consecutive exchanges matter as the unitary

operations do not commute: U12U23 6= U23U12. Thus the name non-Abelian rotation. Now that we have

studied the salient aspects of MBS, we shall commence a detailed study of the Kitaev’s model Hamiltonian

for realizing MBS in one dimension.

2.3 The Kitaev chain

The model and phase diagram–

In this section we will consider the simplest and paradigmatic model for topological supercoductor in

one-dimension, the Kitaev chain. This was proposed by Kitaev in 2000 [47]. As seen in the section on the

Dirac equation, Majorana’s original paper already had a Hamiltonian of discrete, real ‘Majorana’ variables.

The mathematical form of the Kitaev chain as a quadratic, fermionic Hamiltonian on a lattice appeared in

the works of Lieb, Schulz and Mattis [54] and [55] . This was in the context of spin chain physics, where the

spin variables are converted to fermionic operators through a non-local transformation. Kitaev’s insight was

in the identification of this Hamiltonian as a model for a topological p-wave superconductor and occurrence

of an isolated Majorana zero modes at the edge in the topological phase of the model. Historically, this

was set in the context of previous works which discovered Majorana modes as quasiparticles in fractional

quantum Hall phases [56].Kitaev’s further insight was the possible use of the MBS for topological quantum

computation.

Figure 2.3: Kitaev chain - A lattice model of fermions in one-dimension, with hopping parameter w, Super-
conducting gap ∆ and onsite chemical potential µ.

This lattice model consists of non-interacting spinless fermions on each site having nearest neighbor

tunneling of strength w, nearest neighbor superconducting pairing of strength ∆, and an on-site chemical
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potential µn (Fig. 2.3).Its associated Hamiltonian takes the form

H =

N−1∑
n=1

(−wc†n+1cn + ∆c†n+1c
†
n + h.c)−

N∑
n=1

µn(c†ncn − 1/2), (2.39)

where h.c. denotes Hermitian conjugate. Here, the c†n and cn operators represent the creation and annihila-

tion of electrons on site n, respectively. They obey the fermionic commutation relations {cm, cn} = 0 and

{cm, c†n} = δmn. In the thermodynamic limit (infinite wire) or for a closed chain, one can transform the

Hamiltonian into Fourier space, and the single particle energy spectrum takes the form

Ek = ±
√

(2w cos k + µ)2 + 4∆2 sin2 k. (2.40)

The system exhibits multiples phases as shown in the Fig. ??. The spectrum has a finite superconducting

gap in all the phases except at the ‘critical lines’ µ/2w = 1 and ∆ = 0(represented as dark lines in the figure).

The gap vanishes as one crosses one of the ‘critical lines’ and reopens upon entering another phase. The

study of isolated Majorana modes become transparent if the Hamiltonian is transformed to the Majorana

basis. Let us introduce 2N Majorana fermion operators ân and b̂n, namely, ân = cn+c†n and b̂n = i(c†n−cn).

The Majorana operators satisfy the relations â†n = ân, b̂†n = b̂n and {ân, âm} = {b̂n, b̂m} = 2δmn. In terms

of the Majorana operators, the Hamiltonian is given by

HM = − i
2

N−1∑
n=1

[
(w −∆)ânb̂n+1 − (w + ∆)b̂nân+1

]

−
N∑
n=1

iµn
2
ânb̂n. (2.41)

Now let us look at the different phases of this model. The phases I and II are topologically non-trivial

and, in the thermodynamic limit, have zero energy Majorana modes bound to the ends of the wire, whereas

such modes are absent in the topologically trivial phases III and IV. These Majorana modes have finite

support at the ends and decay rapidly into the bulk with a decay length proportional to the reciprocal of the

bulk gap. One can understand the existence of the Majorana end modes by considering the extreme limit

of w = ∆ and µ = 0. The Hamiltonian reduces to H = iw
∑
n bnan+1. The Majorana operators a1 and

bN are not paired with any other operators in the system and therefore do not appear in the Hamiltonian.

These isolated modes correspond to the zero energy eigenvectors localized at the ends. The existence of

these modes is robust even away from this extreme limit and they only disappear with the closing of the
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bulk gap.

The ground state of the system in the topological phase is thus doubly degenerate and has two zero

energy eigenvalues corresponding to the Majorana modes. These Majorana modes can be combined to form

two complex Dirac fermion states, which can be either empty or occupied. Hence, each of the degenerate

ground states has a specific fermion parity and the system can be characterized by a related Z2-valued

topological invariant.

Class D: The existence of the zero-energy modes is in fact a manifestation of the symmetry and the

topology of the system. As described in one of the previous sections, the anti-unitary symmetries completely

classify topological phases that can occur in gapped non-interacting fermionic systems and also provide the

topological invariant in different dimensions. In the present case of a spin-less superconductor, there is the

particle-hole symmetry as described above but no time-reversal symmetry. This identifies the system in class

D and in one dimension, such a system is characterized by a Z2 topological invariant. One can calculate the

invariant as a winding number from the Dirac form of the Hamiltonian in k-space [5]. This invariant also

counts the number of zero modes in the topological defects such as vortices or the edges of the system.

Dirac equation and the edge mode: Finally let us see the emergence of the Dirac equation in the Ki-

taev Hamiltonian and show that the zero energy solution corresponds to the Majorana mode. By Fourier

transforming the Hamiltonian in Eq. 2.39,

HBdG =
1

2

∑
p

Ψ†k

−2w cos k − µ 2i|∆| sin k

−2i|∆| sin k 2w cos k + µ

Ψk (2.42)

where Ψk = (ckc
†
−k)T is the Nambu-spinor. When this is expanded near k ≈ 0 and k → i∂x one obtains

HBdG(k) = |∆|(i∂x)σ1 − µσ3. (2.43)

This is the Dirac Hamiltonian. To obtain the Majorana modes, consider the solitonic profile of the chemical

potential- µ(x): µ(−∞) < 0 and µ(+∞) > 0. The zero energy solution of the BdG Hamiltonian is

γM = N

∫
dx
eiπ/4√

2
exp

(
− 1

|∆|

∫ ∞
0

µ(x′)dx′
)

(c(x)− ic†(x)), (2.44)

where N is the normalization. Thus we have seen that the Kitaev chain Hamiltonian is a simple lattice

realization of a one-dimensional topological superconductor and harbors Majorana modes at the edges.
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2.4 Mapping between the Kitaev chain and the transverse field

XY-spin chain

As mentioned before, one of the first instances when the fermionic Kitaev chain Hamiltonian appeared was

in the study of the one-dimensional quantum spin chain [54, 55]. The Hamiltonian for the XY-spin chain in

the presence of a transverse field is given by

H = −
N−1∑
n=1

(Jxσ
x
n+1σ

x
n + Jyσ

y
n+1σ

y
n)− h

N∑
n=1

σzn (2.45)

where σxn, σ
y
n, σ

z
n are quantum spins located at the nth site in a one-dimensional lattice. The co-efficients

Jx, Jy, Jz are the coupling between the neighboring spins. The spins obey the commutation relations

[σa, σb] = 2iεabcσc. The Jordan-Wigner transformation expresses these spins in terms of the fermions

through a non-local transformation:

σzn = 2c†ncn − 1, (2.46)

σ−n =
1

2
(σxn − iσyn) = cn exp iπ

n−1∑
j

c†jcj (2.47)

σ+
n =

1

2
(σxn + iσyn) = c†n exp iπ

n−1∑
j

c†jcj (2.48)

where cn obey the fermionic commutation {cm, c†n} = δmn, {cm, cn} = 0. The spin chain Hamiltonian is then

transformed to :

H =

N−1∑
n=1

[−(Jx + Jy)(c†ncn + 1 + h.c) + (Jx − Jy)(c†nc
†
n+1 + h.c)] (2.49)

− (−1)Nf [−(Jx + Jy)(c†Nc1 + h.c) + (Jx − Jy)(c†1c
†
N + h.c)]−

N∑
n=1

(2c†ncn − 1) (2.50)

This is of the form 2.39 with identification w = Jx+Jy, ∆ = Jx−Jy and µ = −2h. The Majorana operators

are rleated to the spins through the transformation an =
∏n−1
j=1 σ

z
jσ

x
n, bn =

∏n−1
j=1 σ

z
jσ

y
n for 2 ≤ n ≤ N ,

a1 = σx1 and b1 = σy1 . The phase diagram Fig. 2.4 also depicts the phases of the spin chain, where phases I

and II are the ferromagnetic phases and phases III and IV are the paramagnetic phases [57]. This mapping

between the two systems, even though non-local, helps in transferring insights between the two systems.

This will be explicitly explored in the context of the Majorana wave function physics in the Kitaev chain.
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2.5 Majorana wave function physics

Now that certain key features of Majorana modes, Kitaev chain and experimental realisations are reviewed

we shall go to an indepth study of the various features of the Majorana wavefunction. The following sections

are based on my original work presented in the paper [43].

2.5.1 Majorana transfer matrix and Lyapunov Exponent

The classification of topological phases, presented in the beginning of the chapter, characterized different

phases through topological invariants and the invariants predict the existence of edge modes at the boundary

to another topological phase or a vacuum. The formalism is also intricately connected to localisation physics

of wavefunctions [46] for different ensembles of Hamiltonians. Specifically, the localization physics of the

boundary modes are characterized by the topological phases. Here we shall explicitly study this aspect in

the context of MBS in the Kitaev chains. Here we use the transfer matrix method to study the localization,

delocalisation and oscillations of the Majorana wave functions.

The transfer matrix method is designed to study the manner in which wave functions propagate through

the length of a system. It thus offers a natural means of probing localization aspects of Majorana end modes

and the topological characteristics of the Kitaev chain. In [57, 58], the Majorana transfer matrix formalism

has been employed for determining the topological invariants and charting the phase diagram of the Kitaev

chain in the presence of different potential landscapes [57, 58] .

Here we briefly recapitulate this Majorana transfer matrix technique and the associated Lyapunov ex-

ponent description. Given the Majorana Hamiltonian of Eq.2.41, we first obtain the zero energy Heisenberg

equation of motion [ân, HM ] = 0 for the Majorana operators ân. Using this, we obtain the equation for

Majorana wave functions an as :

(w + ∆)an+1 + (w −∆)an−1 + µan = 0. (2.51)

(Note that the ‘a’ without a hat is the Majorana wave function and not the operator itself.) For 2 ≤ n ≤ N−1,

the modes at different sites are thus related by the transfer matrix:

 an+1

an

 = An

 an

an−1

 ,

where An =

 − µn
w+∆ −w−∆

w+∆

1 0

 . (2.52)
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The transfer matrix for bn modes have an identical structure except with a change in the sign in ∆. From

this point on, w = 1 unless specified . We only consider ∆ positive. Our results for the negative half of the

phase diagram are the same except that the roles of a and b are switched. The full chain transfer matrix

is given by an ordered product of all the transfer matrices from the first site to the last: A =
∏
nAn. The

eigenvalues of the full transfer matrix, λ±, determine features of the Majorana mode wavefunctions, such

as oscillation and decay. The eigenvalues can be used to construct a topological invariant which determines

whether or not the system is in the topological phase based on Majorana wavefunction normalizability [57].

Specifically, if the number of eigenvalues within the unit circle of a complex plane is even, then the system

is in a topologically non-trivial phase.

A useful quantity to extract from transfer matrices is the Lyapunov exponent (LE), which in most cases

relates to the inverse localization length of the corresponding wave function. For the purpose of analyzing

a Majorana bound state at one end of the Kitaev chain, consider the Lyapunov exponent for a semi-infinite

system having a boundary at one end, defined as

γ(µ,∆) = lim
N→∞

1

N
ln[|λ|] (2.53)

The largest of the two eigenvalues λ± is taken for the definition. In the topological phase the LE is always

negative and a topological phase transition occurs when it crosses zero to become positive. This can be

understood from the fact that the topological phase has the Majorana mode exponentially localised at

the edge as was shown in Eq. 2.44 for the continuous case .Thus starting from one edge the Majorana

wavefunction decays into the bulk. This is captured with a negative LE of the transfer matrix. On crossing

the critical point the Majorana mode delocalises and the LE goes to zero. Thus the loci of points of zero

LE give the phase boundary [57]. Here, the LE is considered not only as a probe of this topological phase

transition but also to investigate detailed features of the Majorana wave function.

Mapping to a nnon-superconducting system– In obtaining the LE for a generic potential landscape, the

Majorana transfer matrix could be mapped to that of the transfer matrix of a normal system without a

superconducting gap. The map proves powerful in that knowledge of normal state wavefunction properties

immediately leads to those of the topological superconducting chain. This map is achieved through the

following similarity transformation on the transfer matrix in Eq.[ 2.52] [58], defined for 0 < ∆ < 1:

An =
√
l∆SÃnS

−1 (2.54)

where S = diag(l
1/4
∆ , 1/l

1/4
∆ ) and l∆ = 1−∆

1+∆ . The matrix Ãn is the transfer matrix for a normal tight-binding
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model in the absence of a superconducting gap (Note that w = 1 compared to Eq.2.52). Its on-site chemical

potential terms are rescaled by the transformation µn → µn/
√

1−∆2 . Explicitly, the full chain transfer

matrix is given by

A(µn,∆) =

(
1−∆

1 + ∆

)N/2
SÃ(µn/

√
1−∆2,∆ = 0)S−1 (2.55)

This map allows the Lyapunov exponent to be written as a sum of two components, γ(µ,∆) = γS + γN ,

one that depends purely on the superconducting gap γS(∆) and the other corresponding to the underlying

normal tight-binding model γN (µ/
√

1−∆2). Such a splitting of the Lyapunov exponent was already hinted

in Ref. [59] and the mapping to the normal system in the context of scattering matrices in Ref.[60]

In the following sections, the Majorana transfer matrix, the Lyapunov exponent and the mapping to a

normal system will be used to study the oscillations in Majorana wave functions and associated fermion

parity switches in both uniform and disordered chains.

2.5.2 Majorana wave functions and oscillations

The generic transfer matrix given in Eq. 2.52 directly provides information on the Majorana end mode

decay profile and oscillatory behavior. Given this matrix for a single slice of the chain, the full-chain transfer

matrix is given by A =
∏
nAn. The eigenvalue equation for the transfer matrix is given by

λ2 + Tr(A)λ+ det(A) = 0 (2.56)

Given that det(An) = (1−∆
1+∆ ), det(A) =

∏N
n det(An) = ( 1−∆

1+∆ )N . Thus, the two eigenvalues of the full

transfer matrix take the form

λ± =
TrA

2
±

√(
TrA

2

)2

−
(

1−∆

1 + ∆

)N
= e±iβ

(
1−∆

1 + ∆

)N/2
. (2.57)

Here, the phase β can only be real or imaginary depending on the value of TrA given its structure,

β = tan−1

(√( 1−∆
1+∆ )N − (TrA

2 )2

Tr(A)
2

)
. (2.58)

This phase β, which is a function of µ,∆ and N plays an important role in determining the nature of the

Majorana wave function.

One can see that if β is real, the eigenvalues are complex and the wave functions have an oscillatory

component in addition to the exponentially decaying envelope ( 1−∆
1+∆ )N/2. When β becomes purely imaginary,
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then the eigenvalues are purely real, corresponding to over damped wave functions. The specific conditions

for the phase β to change from real to imaginary depends on the specific potential landscape. In general,

the phase β alone tracks the response to different potential landscapes, while the scaling factor ( 1−∆
1+∆ )N/2 is

responsible for the localization of the Majorana mode irrespective of the potential µn.

Now, using the similarity transformation Eq.2.55, it can be seen that this phase factor is completely

determined by a simple underlying tight-binding problem that lacks a superconducting gap. The transformed

transfer matrix for a single µn can be easily seen to be a simple tight-binding model as follows:

Ãn =

 − µn√
1−∆2

−1

1 0

 . (2.59)

The Heisenberg equation for the wave function ãn corresponding to the above transfer matrix equation is

explicitly of the normal tight-binding form:

(ãn+1 + ãn−1) +
µn√

1−∆2
ãn = 0. (2.60)

Since the similarity transformation S is purely a function of ∆ and does not depend on the individual

µn, the full chain transfer matrices respect the relationship

∏
n

An = (
√
l∆)NS(

∏
n

Ãn(µn/
√

1−∆2))S−1 (2.61)

Since the similarity transformation preserves the trace, the full chain transfer matrix traces are related as

Tr(A) = (
√
l∆)NTr(Ã) (2.62)

where Ã is the full chain transfer matrix for the underlying normal tight-binding model. Using this identity

in the expression for β in Eq.2.58, one obtains

β = tan−1

(√
1− (TrÃ

2 )2

Tr(Ã)
2

)
(2.63)

Thus the phase factor β of the Majorana transfer matrix is solely determined by an underlying normal

tight-binding model without a superconducting gap, but with a scaled on-site chemical potential µn/
√

1−∆2.

Therefore, oscillations of the Majorana wave function and the behavior in a specific potential landscape are

completely determined by properties of the underlying normal state chain.
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It is precisely these oscillations in Majorana zero modes which determine the degeneracy-splitting of the

ground state in a finite sized Kitaev chain and associated fermion parity switches. Further they also have

direct bearing on the oscillations in the spin-spin correlation functions of transverse field XY spin chain, to

which there is an exact mapping from the Kitaev chain. The fact that these oscillations can be obtained from

a simple tight-binding model easily enables one to extend the study to disorder, periodic and quasi-periodic

potential landscapes.

Further, the division of Majorana wave function into the two features of oscillations and decay manifests

as an additivity in the Lyapunov exponent (LE). Invoking the definition of the LE in Eq. 2.53, γ(µ,∆) =

limN→∞ ln[|λ|]/N and referring back to the expression for the eigenvalues in Eq. 2.57, consider the two cases

of purely real and purely imaginary β:

(i) When β is real, |λ±| = ( 1−∆
1+∆ )N/2. Therefore, the LE is only given by γS = − 1

2 ln( 1+∆
1−∆ ). γS is termed

as the ‘superconducting’ component of the LE. In this case the LE is always negative assuming a finite,

positive superconducting gap. This implies that the system is in the topological phase. Moreover, β gives

rise to an oscillatory piece in the Majorana wave function.

For a small superconducting gap, on expanding in terms of small ∆, it can be seen that γS ∼ −∆. In the

continuum limit, the wave function of the Majorana mode has an exponentially decaying envelope e−x/ξ,

where ξ ∼ 1/∆ is the superconducting coherence length, which characterizes the localization of the Majorana

mode deep in the topological phase. Thus the superconducting component of the LE corresponds to the

localization of the Majorana mode at the edge, protected by the superconducting gap. These localization

features are immune to any perturbations that do not close the gap.

(ii) When β is purely imaginary, the phase factor eiβ is real. As a result, the LE contains two terms.

Since |λ±| = e∓|β|( 1−∆
1+∆ )N/2, the LE is given by (considering only the largest eigenvalue):

γ = lim
N→∞

1

N
ln|exp(iβ(µ,∆, N))| − 1

2
ln(

1 + ∆

1−∆
)

= lim
N→∞

1

N
β(µ,∆, N)− 1

2
ln(

1 + ∆

1−∆
) (2.64)

= γN + γS (2.65)

The LE is thus a sum of two components γN + γS , where γN is the ‘normal component’ and γS is the

‘superconducting component’ discussed in case i) above and in Ref.[58]. The ‘normal component’ takes the

form γN = limN→∞
1
N ln|exp(iβ(µ,∆, N))|; it corresponds to the LE of a one-dimensional normal tight-

binding model having a general potential landscape represented by a scaled on-site chemical potential [59].

To be specific, the tight-binding problem considered now contains onsite terms µn, which are scaled by a

24



factor involving ∆ , thus giving a LE of the form γN (µn/
√

1−∆2, 0, N) [58]. For a given ∆ and number of

lattices sites, N , in the Kitaev chain, we thus need only solve the underlying normal tight-binding problem.

While the ‘superconducting’ component is always present in the LE in the presence of a gap, the ‘normal

component’ depends on the specific potential landscape under consideration. In the context of disorder, this

enables one to use known results from the vast literature of Anderson localization to readily comment on

the features of Majorana modes in Kitaev chain.

2.5.3 New feature in the phase diagram: Circle of oscillations

In the case of a homogeneous wire in which the the on-site chemical potential takes on the same value on

each site, we can exactly analyze features of the previous sub-section concerning Majorana wave function

decay and oscillations. As discussed below, the exact wave function can be obtained by solving the difference

equation Eq.2.51 by using the Z-transform method, which is an equivalent of Laplace transform for functions

of discrete variables. For the homogeneous case, the equation of motion is a second order difference equation

having constant co-efficients :

(1 + ∆)an+1 + (1−∆)an−1 + µan = 0. (2.66)

The solution to the above equation proceeds by introducing a power series

A(z) =

∞∑
n=0

z−nan ≡ Z[an], (2.67)

where z is a complex variable. The function A(z) = Z[an] is called the Z-transform of an. Taking the Z-

transform of the above difference equation and using properties such as : Z{an−1} = z−1A(z), Z{an+1} =

zA(z)− za0,(a0 is a constant determined by boundary conditions) one can obtain a closed form expression

for the Z-transform A(z), given by:

A(z) =
a0z

2

z2 + µ
1−∆z + 1+∆

1−∆

(2.68)

This Z-transform has a unique inverse, which is the exact solution to the difference equation. Thus the

obtained wave function is of the form

an = a0C
n

[
cos(βn) +

1

tanβ
sin(βn)

]
. (2.69)
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Here, the constant C = ( 1−∆
1+∆ )1/2 explicitly reflects the superconducting component and β = arctan

√
4−4∆2−µ2

µ

the phase in Eq.2.58. Thus, as shown in the phase diagram of Fig. 2.5, the phase β takes on real values only

within the circular regime µ2 < 4(1−∆2). We call this regime the circle of oscillations (COO); the reality

condition on the phase β renders the Majorana wavefunctions oscillatory. Outside this regime, the oscillating

terms of Eq.2.69 become hyperbolic and the modes, instead of oscillating, become overdamped[43, 61].

This circle of oscillations (COO) has also long been identified in the context of the transverse-field XY

spin chain, to which the Kitaev chain can be exactly mapped using the Jordan-Wigner transformation. This

circle, termed as the disorder circle, separates the regime of oscillations in spin-spin correlation functions

from the regime of no oscillations[62]. Exactly on the circular locus, the ground state becomes separable

and can be expressed as a direct product state [63, 64]. As a result, certain entanglement measures, such as

the global geometric entanglement, vanish on this locus [65]. Another measure, the ‘entanglement range’,

diverges and reflects a change in the pattern of entanglement across this circle [66]. There are similar

oscillations in the entanglement spectrum within the circle [67]. These aspects in spin chains might have

some bearing on the features of Majorana modes. In fact, some aspects of Majorana physics can be used

to obtain results in spin chains very easily, which otherwise involve cumbersome calculations, as already

pointed out in Ref.[57].

An understanding of the nature of the wave functions oscillations can be obtained using the underlying

tight-binding problem resulting from the similarity transformation of Eq.2.55. For the homogeneous case,

the equation of motion for the underlying normal model takes the form

(ãn+1 + ãn−1) +
µ√

1−∆2
ãn = 0 (2.70)

Here ãn is the wave function describing the Majorana mode under the envelope coming form the gap ∆

. Solutions to this equation have the plane-wave form ãn = Dne
±ikn. Simplifying the equation, we get

2w cos k + µ√
1−∆2

= 0 . This relationship imposes the condition that the modes oscillate/propagate only in

the region

µ√
1−∆2

< 2 (2.71)

If the above condition is not satisfied, the solutions lie outside the band of propagating modes and are

purely decaying. Now recasting the above condition, we obtain the relationship : µ2/4 + ∆2 = 1, which is

precisely the equation for the circle of oscillations(COO). Thus, mapping the original Majorana problem to

an underlying tight-binding problem, we obtain a picture of the mechanism responsible for oscillations in

Majorana modes and how these oscillations immediately vanish outside the circle.
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Figure 2.4: The phase diagram of the one-dimensional Kitaev Hamiltonian for the Majorana wire. Phases I
and II are topologically non-trivial and have Majorana end modes, whereas phases III and IV are topologically
trivial. The thick lines µ = ±2w and ∆ = 0 are the quantum critical lines where the bulk gap vanishes.

(a)

Figure 2.5: The topological phase diagram for the uniform Kitaev chain as a function of superconducting gap
∆/w and chemical potential µ/2w. The focus here is the circle of oscillations (COO) [µ2/4w2 + ∆2/w2 = 1]
within each topological phase marking the boundary across which the nature of Majorana wave functions
changes. Within the circle, the wave function has oscillations under the decaying envelope whereas they are
absent outside the circle.
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Figure 2.6: The homogeneous Kitaev chain Lyapunov exponent(LE), γ as a function of chemical potential
for fixed superconducting gap (∆ = 0.6). The LE is a sum of a normal and a superconducting component
γ = γN + γS . It is a constant within the circle of oscillations as γN = 0 and γS is constant for fixed ∆. On
crossing the circle, γN becomes a non-zero increasing function of µ and ultimately cancels γS , resulting in a
zero LE, at the topological phase transition at µ = 2.

This change in the nature of Majorana oscillations is also tracked by the two components of the Lyapunov

exponent. As discussed in the previous subsection, when β is real i.e everywhere within COO , γN = ln(1) = 0

and the localization of the Majorana mode is only due to the superconducting component γ = γS =

1
2 ln( 1−∆

1+∆ ). If ∆ is kept constant, then the LE and thus the localization length are also constant, independent

of the chemical potential µ as shown in Fig.2.6. Hence, in this region, the Majorana wave function shows

an oscillation having an associated wave vector kβ and a decay length ξS given by

kβ = β = arctan

√
4− 4∆2 − µ2

µ
, (2.72)

ξS = 1/γS = 2/ln(
1−∆

1 + ∆
),

respectively. Outside the circle, as discussed earlier, the oscillations disappear and β becomes imaginary.

Consequently, γN becomes a non-zero positive number and provides a second localization length. The

Majorana wave function thus decays over a length scale given by

(γS + γN )−1 = ξ. (2.73)

This expression remains valid within the topological phase; upon encountering the phase boundary

between the topological and non-topological phase, the decay length diverges.

Topological phase transition. — The fate of the Majorana wave function upon encountering the phase
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boundary can be studied, for instance, by fixing ∆ and increasing µ, as shown in the diagram of Fig.2.6. If

we start deep within topological phase, γN starts off as zero within the circle, becomes non-zero outside and

increases until it becomes equal to γS . This happens exactly at the topological phase transition µ = 2, thus

resulting in a vanishing of the total LE, indicating complete delocalization of the Majorana mode.

Since γS is always non-zero, such delocalization in a generic potential landscape is possible only through

its cancellation with γN . Thus the condition for a topological phase transition in general for any potential

landscape obeys: |γS | = |γN |.

This concludes the section on properties of Lyapunov exponent and Majorana wave functions in a general

potential landscape. We shall apply the results here to disordered Kitaev chain in a later section. Now we

turn to discussion of ground state Fermion parity in finite sized systems where the Majorana modes at the

two ends couple to each other.

2.6 Ground state fermion parity in Kitaev chain

2.6.1 Fermion parity switches and mid-gap states in finite-size wires

In the thermodynamic limit, the Kitaev chain in the topological phase has a doubly degenerate ground state.

The two zero energy Majorana end modes corresponding to the degeneracy can be combined to form a non-

local Dirac fermionic state. This non-local electronic state can either be occupied or unoccupied and this in

turn determines the fermion parity of the entire many body ground state. Thus the double degeneracy also

corresponds to degeneracy in fermion parity.

For finite-sized systems, the degeneracy undergoes an exponentially small splitting J due to the overlap

of the Majorana wavefunctions. The associated parity states form an energy pair ±J closest to zero energy.

Now the fermion parity of the ground state is determined by the fermion parity of the lowest of these two

states. Explicitly, for two Majorana end modes depicted by ΓR,L, the effective tunnel-coupled Hamiltonian

is given by [47]

Heff = iJΓRΓL/2 = J(ñ− 1/2). (2.74)

Here ñ = C̃†C̃ and C̃ = (ΓL − ΓR)/2 is the non-local Dirac fermionic mode obtained from the linear

combination of Majorana end modes. The occupation ñ = 0, 1 determines the ground-state parity of the

system. In earlier sections, we discussed the regime in which the Majorana wavefunctions is endowed with an

oscillatory component. Consequently, the tunneling amplitude of the two end Majorana modes too becomes

an oscillatory function of the parameters of the system, crossing zero at specific points in parameter space.
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Thus varying the parameters can lead to level crossings of these states and corresponding fermion parity

switches. As explored in several recent works, these parity switches leave definitive signatures in various

macroscopic phenomena such as the fractional Josephson effect, non-equilibrium quench dynamics and charge

fluctuations in these systems[68, 69, 43, 70, 71, 72, 73, 74, 75]. Given the possibility of using Majorana modes

as a tool for topological quantum computation, the Z2 fermion parity has also drawn interest as a possible

way of implementation of topological qubits [76, 77, 78]. There have also been proposals for detecting parity

effects of the Majorana zero modes in Josephson junctions using microwave spectroscopy [79, 80].

An interesting feature of the uniform Kitaev chain is that the number of parity crossings as a function of

parameters increases linearly with the system size [43]. As a result, while the splitting between parity states

varies exponentially, the ground state parity shows frequent parity switches in realistic systems and can have

important effects. Here, we study these switches in depth for uniform as well as disordered systems.

The tunnel coupling between the Majorana modes at the ends is a good approximation for the splitting

of the degenerate states and explaining the parity crossings. Below, we use the transfer matrix technique

outlined in the previous sections to go beyond the approximation and obtain the precise points where the

level crossings occur.

2.6.2 Pfaffian measure of fermion parity

The method of calculating the ground state fermion parity that we use in this work was formulated in Ref. [47]

by A. Kitaev and is as follows. Consider the Majorana Hamiltonian of Eq. (2.41) and the transformation

B that reduces the Hamiltonian to the canonical form, i.e., D = BTHMB. Here D is an anti-symmetric

matrix having non-zero matrix elements only along the first off-diagonal entries. It can be shown that the

ground state parity of the system is related to the unitary properties of B. Specifically, the parity of the

system is given by

P(H)=sgn[det(B)]. (2.75)

As a simple illustration of this expression for parity, its application to a two-site system is as follows.

The Hamiltonian of Eq. 2.41 in the Majorana basis [a1, b1, a2, b2] for a two-site system is given by



0 −iµ/2 0 i(−1 + ∆)/2

iµ/2 0 i(1 + ∆)/2 0

0 −i(1 + ∆)/2 0 −iµ/2

−i(−1 + ∆)/2 0 iµ/2 0


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In general, the Pfaffian of a matrix A is defined as (Pf(A))2 = det(A). The pfaffian of a 4 × 4 matrix is

given by

Pf



0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0


= af − be+ dc (2.76)

Therefore, Pfaffian for the above Hamiltonian is

Pf(H) = −µ
2

4
+

1−∆2

4
(2.77)

Thus, the Pfaffian changes its sign at µ2

4 = 1−∆2

4 . This is for the specific case of N = 2 and this result can

be verified by explicitly diagonalizing the Hamiltonian and obtaining the matrix B. The general condition

for the points where the Pfaffian changes sign for a Hamiltonian of N sites is given in the next subsection.

2.6.3 Majorana transfer matrix and parity crossings

Here we describe how the Majorana transfer matrix can be used to track the occurrence of zero energy

crossings. In Sec.2.5.1 we presented the form of the Majorana transfer matrix corresponding to zero energy

solutions confined to the ends of a wire. For finite sized systems, due to the hybridization of these two

modes, in general, a zero energy solution does not exist and the corresponding transfer matrices couple the

degrees of freedom associated with the two modes. For each transfer matrix to correspond to a strict zero

energy solution, it must satisfy certain conditions imposed through the boundary conditions for Majoranas

to be end bound states. These boundary conditions are as follows.

In previous sections, we showed that the set of individual transfer matrices Ãn in Eq. 2.59 corresponds

to that of the normal tight-binding problem, which carried all necessary information on the corresponding

zero energy Majorana wave function in the presence of a finite superconducting gap ∆. As the most general

finite size situation applicable for any potential landscape, consider the transfer matrix relating the wave

function at the first site to the wave function at the last site - ãN+1

ãN

 =

 Ã11 Ã12

Ã21 Ã22


 ã1

ã0

 , (2.78)

The full-chain transfer matrix is given by Ã =
∏
n Ãn. For the corresponding decoupled Majorana mode

to exist, we demand that its wavefunction naturally be confined to the length of the wire. To impose this
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boundary condition, we may introduce two fictitious sites at 0 and N + 1[81]. As the condition for the

existence of the mode, we then have

ãN+1 = ã0 = 0 (2.79)

The transfer matrix gives the equations

ãN+1 = Ã11ã1 + Ã12ã0. (2.80)

The boundary conditions now gives a strict condition on the elements of the transfer matrix, namely

Ã11 = 0. (2.81)

Thus for any finite-sized chain, the general condition for the existence of a zero energy solution is Ã11 = 0.

For the case of a homogeneous chain, below we can explicitly illustrate how this condition is satisfied.

2.6.4 Parity sectors in the Kitaev chain phase diagram

The degeneracy splitting, level crossing and fermion parity switches can be tracked exactly in the case of a

uniform chain. The points at which the split-levels cross, thus restoring degeneracy even at finite size, form

ellipses within the COO of the phase diagram (Fig.2.7). As we will show below, the elliptical boundaries

can be derived by enforcing this degeneracy condition on the transfer matrix of Eq.2.52 to yield

∆2 +
µ2sec2(πp/(N + 1))

4
= 1, (2.82)

where p = 1, 2...N/2 for even N and p = 1, 2...(N − 1)/2 for odd N. These ellipses divide the circle into

different parity sectors. Consistent with Fig. 2.7, for fixed ∆, parity crossings occur at chemical potential

values satisfying

µswitch = 2
√

1−∆2 cos

(
πp

N + 1

)
. (2.83)

Larger values of p correspond to lower values of chemical potential. As each crossing is accompanied by a

fermion parity switch, the adjacent areas across the elliptic boundaries are sectors of opposite parity. Thus

for any given system size N, there are a number of parity sectors within the COO in the phase diagram.

Even vs Odd number of sites. — It is important to note the difference in the features of the parity sectors

for even and odd number of sites. For even number of sites, there is a symmetry in the parity sectors across

the line µ = 0, whereas it is anti-symmetric for odd number of sites. This feature has a significant effect on
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(a)

(b)

Figure 2.7: Ground state parity for a uniform finite length Kitaev chain within the topological phase in
the phase diagram of Fig.2.5. Within the circle bounding the region where Majorana bound state wave
function exhibit oscillations, alternating parity sectors are demarcated by ellipses. The parity of the sectors
are indicated by ±, for even and odd parities respectively. These parity sectors depend on the length of
the chain. For chains of odd length (N=11)(fig.(a)) the sectors are anti-symmetric across µ = 0 and are
symmetric for chains of even length (N=10)(fig.(b)). Outside the circle, the Majorana modes are over
damped with no oscillations.
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parity switches in the disordered case, as discussed later on.

Majorana transfer matrix and parity switches. — Here we show the manner in which the Majorana

transfer matrix offers an effective means of tracking the fermion parity switches. Consider the version of the

individual transfer matrix of Eq.2.59 that is applicable to the homogeneous case. The chemical potential µ

is the same on each site and the associated transfer matrix takes the form

Ãn =

 − µ√
1−∆2

−1

1 0

 (2.84)

Its eigenvalues are given by λ± = e±iα where α = tan−1

(√
4(1−∆2)−µ2

µ

)
. Using Eq. 2.82 and as elaborated

in Ref. [43], we have the condition on α for the zero-energy crossings

α =
πp

N + 1
(2.85)

p = 1, 2...N/2 for even N and p = 1, 2...(N−1)/2 for N odd. The full-chain transfer matrix can be calculated

exactly using Chebyshev’s identity for uni-modular matrices [82] to yield

 − µ√
1−∆2

−1

1 0


N

=

 − µ√
1−∆2

UN−1 − UN−2 UN−1

UN−1 −UN−2

 (2.86)

where UN = sin(α(N + 1))/ sinα. Now the condition for the existence of an edge state reads

[ÃN ]11 = − µn√
1−∆2

UN−1 − UN−2 = UN = 0 (2.87)

Here we have used the identity 2 cosαUN−1−UN−2 = UN . Therefore the condition for zero-energy crossings

becomes

sin(α(N + 1))/ sinα = 0 (2.88)

which is in fact satisfied precisely when α = pπ/(N + 1).

From the above, we find that at each level crossing, [ÃN ]11 tends to 0± depending on p being an even/odd

value. Figure 2.8 shows the numerical results for parity switches and the sign of [ÃN ]11 identically track

each other, confirming our arguments.
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Figure 2.8: Plots which show the comparison between the fermion parity in a uniform Kitaev chain, calculated
using Eq.2.75, and the matrix element Ã11 of the zero-energy Majorana transfer matrix whose vanishing
value reflects the existence of a zero-energy state. The matrix element is calculated both analytically using
Eq.2.86 and numerically for a uniform chain. One can see that the parity switches coincide exactly with the
matrix element going to zero. Here N = 21,∆ = 0.6

2.6.5 Scaling in parity switches for different superconducting gaps

Parity switches as a function of the chemical potential in the homogeneous chain exhibit an interesting

scaling behavior. These parity switches are found only within the COO of the topological phase in which

the Majorana wave functions are oscillatory. Within this regime, if we consider the parity switches for the

chains with same length but different values superconducting gaps, the variation of the chemical potential in

each case can be scaled to collapse all switches to a single curve. One can understand the collapse as follows:

start with a system having a zero superconducting gap and obtain the switches in parity as function of µ.

Using this, one can reproduce the parity switches at any value of finite gap ∆ by scaling µ by a ∆-dependent

factor, which as seen in Eq.2.60, is
√

1−∆2.

Fig.[2.9] shows the collapse of the scaled parity oscillations at different superconducting gaps for the

homogeneous case. The collapse of all the plots appropriate for different values of the superconducting gap

∆i is expressed as

P (H[µ,∆ = 0, L]) = P (H[µ
√

1−∆2
i ,∆i, L]) (2.89)

This scaling within the COO of the topological phase can be understood from the previous arguments on the

origin of the oscillations from an underlying tight-binding model in the absence of a gap. The oscillations

of Majorana wave functions are given by the solutions of the equation Eq. 2.70, which is the Heisenberg

equation of motion for the normal system having the scaled chemical potential. For ∆ = 0, the scaling factor
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Figure 2.9: Fermion parity switches are concurrent in wires of differing superconducting gap ∆ as a function
of the scaled chemical potential µ′ = µ

√
1−∆2. This is shown here for the uniform Kitaev chain of length

N = 20, where parity is calculated using Eq.[2.75]. The thick red plot is for ∆ = 0. The other plots (scaled
away from unity for proper visibility) are for finite superconducting gaps.

√
1−∆2 is 1 and the wave function oscillations are functions of only µ. For finite gap ∆, the wave function

oscillations are functions of a scaled down chemical potential µ/
√

1−∆2. Therefore, the resulting parity

oscillations for the gapless case can be visualized to be ‘stretched out’ along the axis of µ, when compared to

the case of finite gap. To map the parity oscillations in the gapped case to the gapless case,we need to scale

up µ to µ
√

1−∆2 in the gapped Hamiltonian, such that it cancels the scaling factor of µ in the underlying

gapless, normal tight-binding model. This is shown in Eq.[ 2.89].

In fact, this scaling can be obtained as function of length of the chain too. Such a ‘universal scaling’ has

been reported in the context of entanglement spectrum of the transverse field XY spin chain [64]. As we

have seen this spin chain has an exact mapping to the Kitaev chain. From the correspondence between the

spin chain entanglement spectrum and edge spectrum in topological superconductors[83],it is natural that

there be a mapping between the entanglement oscillations in the spin chain and parity oscillations in the

Kitaev chain.

We now turn to the consideration of disordered landscape in the Kitaev chain and its effect on the wave

functions and parity switches.

2.7 Effect of Disorder in Kitaev chain

Disordered Kitaev chains have formed the topic of active research for over a decade for several reasons[59,

84, 85, 86, 87, 60, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 74, 102]. Belonging to the

symmetry classes D and BDI (depending on whether they respect time reversal symmetry breaking or

not), these systems exhibit behavior that starkly deviates from that of their normal counterparts. One of
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the highlighting features is the presence of a delocalization-localization transition as a function of disorder

strength[59, 84, 85, 103]. This transition also corresponds to the transition between the topological phase

and non-topological phase, as shown in Ref.[58]. In contrast to Anderson localization physics of normal

systems in one-dimension, the critical point in fact forms a mobility edge separating two localized phases.

The mobility edge itself possesses a zero energy multifractal state that extends through the bulk of the entire

system and offers a route for the Majorana end modes in the topological phase to permeate and disappear

into the bulk upon entering the non-topological phase[59, 85].

2.7.1 Wave functions in the disordered Kitaev chain

Here, building upon known salient features of disordered Kitaev wires, we focus on finite sized systems and

the behavior of the zero-energy degeneracy splitting, associated Majorana wave function physics, and parity

switches. We now consider the situation in which the on-site chemical potential, µn, in the Kitaev chain

described by the Hamiltonian in Eq. 2.41 exhibits spatial variations. As with normal Anderson localized

systems, these variations would reflect a disordered potential landscape. Therefore, the values µn satisfy

a typical random distribution, for instance, a Lorentzian, Gaussian or box distribution of an energy scale

width W . We use the ‘box disorder’ for numerical studies, where the values of the chemical potential µn is

taken from a uniform distribution of width W. Such a distribution with zero mean is given by

µn =

[
− W

2
,
W

2

]
(2.90)

Additional localization due to disorder.— The addition of Lyapunov exponents in Eq.2.65 allows us to

immediately deduce the effect of disorder in µn on the nature of the Majorana wave function. The disordered

Majorana wave function decays over a length scale given by

ξdis = (γS + γN )−1. (2.91)

The part γS is not affected directly due to the variation of µ and is equal to − 1
2 ln( 1+∆

1−∆ ). As long as there is a

finite superconducting gap, there is always a corresponding localization scale for the Majorana mode. As for

the contribution from γN , this stems from the underlying normal tight-binding model having a scaled on-site

disorder potential µn/
√

1−∆2, in other words, a scaled Anderson model in one-dimension. In contrast to

the uniform chain, the phase factor β in Eq. 2.57 is always imaginary and thus there never exists a region in

the phase diagram where γN = 0. This observation is consistent with the absence of translational invariance

and associated band oscillations and hinges on the well known statement that all states in the Anderson

37



model are localized in dimensions less than two [104]. The behavior of γN is thus dictated by the localization

scale of the disordered wave function at zero energy (with respect to the Fermi energy) in the Anderson

localization problem and can be studied by invoking the exhaustive literature on the Anderson problem.

As a simple example, consider the case of ‘Lorentzian disorder’ of strength W in which the values of

µn are taken from a probability distribution of the form P (µ;W ) = 1
π

W
µ2+W 2 . The value of the Lyapunov

exponent for such a distribution, assuming the scaled chemical potential configuration appropriate for the

Kitaev chain, is given by the form originally derived by Thouless [105]:

γN

(
W√

1−∆2
, 0

)
= ln

(
W

2
√

1−∆2
+

√
1 +

W 2

4(1−∆2)

)
(2.92)

Thus, the normal component of the Lyapunov exponent is a non-zero function of the disorder strength char-

acterized by W and increases as the disorder strength is increased as well as when the superconducting gap

becomes comparable to the nearest neighbor hopping. The function γN (W ) for other disorder distributions

can be similarly extracted from the existing literature.

Oscillations.— While band oscillations are washed out, the wave function of the underlying Anderson

problem can still have short range oscillations under the decaying envelope, but these are qualitatively

different from the band oscillations in the uniform case. Local variations of the Majorana wave functions,

an, are governed by Heisenberg equations of motion, Eq.2.60.

As emphasized throughout, this equation exactly corresponds to the Heisenberg equation of motion for the

Anderson problem. Solutions of the corresponding wavefunction have been avidly studied in past literature.

The localized wavefunction typically exhibits random oscillations on the scale of the lattice spacing. They

are heavily dependent on the disorder configuration and have large sample-to-sample fluctuations. They

are known to have correlations on the scale of the mean free path and obey statistics independent of the

decaying envelope [106, 107].

Thus, disorder qualitatively changes the nature of Majorana wave function in that it i) imposes an extra

localization scale in addition to the localization due to the superconducting gap and ii) changes the nature of

underlying oscillations Fig.2.10.

This as we shall see has consequences on the finite-size splitting of ground state degeneracy and fermion-

parity switches.

Critical properties of Majorana wave function. — Turning to the critical point separating the topological

and non-topological phases, as discussed in previous sections, at this point, the Majorana decay length
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Figure 2.10: A schematic of the Majorana wave function in (a) the uniform case within the oscillatory
regime and (b) the disorder case. (a) Within the parameter regime containing the circle of oscillations (see
text), in addition to a decaying envelope having an associated Lyapunov exponent γs, stemming purely from
the superconducting order, band oscillations are present. (b) For the disordered case, band oscillations are
replaced by random oscillations and a second decaying scale associated with a Lyapunov exponent γN , both
stemming from the underlying Anderson localization setup of a non-superconducting normal wire having
the same disorder configuration.

diverges. Equivalently, the Lyapunov exponent vanishes and thus, from Eq. 2.91, we have the relationship

γS + γN = 0. (2.93)

For the specific case of Lorentzian disorder discussed above, this condition enables us to identify the critical

point to be Wc = 2∆[[102]]. At this point, in going between the topological and non-topological states, the

Majorana end modes completely extend into the bulk, in contrast to typical Anderson localization physics,

and then vanish upon crossing the critical point.

Several insights on critical behavior in disordered Kitaev chains can be extracted by studying properties

of the extensively studied spin-1/2 random transverse field Ising chain [108]. It has been shown in a previous

section that the Kitaev chain can be exactly mapped to a close relative, the transverse field XY spin

chain [54]. This XY model has two kinds of critical lines, an Ising type (ferro- to paramagnetic) and an

anisotropic type (change in direction of magnetization). This transition from the ferro- to the paramagnetic

phase corresponds to the the topological phase transition in the Kitaev chain of spinless fermions and is

thus of interest in this context. The disordered Kitaev chain corresponds to the XY spin chain in the

random transverse field and, in a particular limit (∆ = 1), to the random field Ising model(RFIM), the

critical properties of which are well known [108, 109, 110]. The ferro- to paramagnetic transition in this

case belongs to the universality class of infinite disorder fixed point. One of the key features of the phase
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transition in RFIM[109, 108] is the existence of two characteristic divergent length scales having different

values of critical exponent ν, where, as a function of distance to criticality, ∆, each length scale diverges as

ξ ∼ ∆−ν . One length scale, ξmean, characterizes the decay of average Green’s function Cav(r) ∼ e−r/ξav , and

diverges as νav = 2. The second, the typical localization length,ξtyp, reflects the most probable correlation

length. It can be extracted from the single particle density-of-states and diverges with an exponent νtyp = 1.

As pointed out in Ref. [86], the Lyapunov exponent of the transfer matrix at zero energy corresponding

to the random matrix ensemble of Class D corresponds to the ‘typical’ value of the correlation length.

We expect the Lyapunov exponent of the Majorana transfer matrix to reflect the same properties and the

correlation length, which in this case is the decay length of the Majorana, to have a critical exponent of

ν = 1. In other words, the Lyapunov exponent corresponding to the Majorana transfer matrix vanishes near

the topological phase transition to the trivial phase linearly as a function of distance to criticality. Further

studies on the critical exponent of the ’mean‘ correlation length in the context of physics of Majorana modes

are in order.

Topological phase transition: Relating to result by Brouwer et al. — In addition to the observations made

above, one can relate to the results obtained in Ref. [90] on the disorder driven topological phase transition.

In this work, a condition is derived for the critical disorder strength for transition into non-topological

phase as : 2l = ξ, where l is the mean free path in the disorder configuration and ξ is the superconducting

coherence length. This can be seen from our condition of cancellation of the components of LE at the

transition : |γS | = |γN |. We have already identified γS ∼ 1/ξ ∼ ∆. In order to relate to the result of [90],

let us recall that γN is the inverse localization length of the underlying Anderson problem. As known from

previous literature Ref.[111], the localization length is equal to the twice the mean free path: γN = 1/(2l).

Thus our condition translates to : 1/ξ = 1/(2l), which is precisely result of Ref. [90], obtained through

calculations involving Langevin dynamics.

So far we have considered only semi-infinite wires to study the Majorana wave functions. In the next

sections we consider finite sized wires to study fermion parity effects in the presence of disorder

2.7.2 Fermion parity switches and low-energy states in finite-sized disordered

wires

Evolution of the density-of-states (d.o.s.). — A striking feature of the disordered Kitaev chain is the presence

of a large gapless regime around the phase transition. As a function of disorder strength, low disorder smears

the d.o.s near the gap edges, filling in some previously forbidden states. Increasing the disorder results in

a proliferation of low energy localized bulk states, followed by a divergent d.o.s about zero energy. This
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Figure 2.11: Density-of-states plots for a disordered Kitaev chain (∆ = 0.6) as a function of distance from
the Fermi energy for a single disorder configuration of box disorder 2.90. (a) For weak disorder (W < 8),
there is a well-defined superconducting gap in the density-of-states. (b) As the disorder strength is increased,
the gap is filled due to the proliferation of low-energy bulk states.(c) At a critical disorder strength, there is
‘singularity’ in the density-of-states. The behavior beyond the critical point resembles that of (b).

gapless region around the disorder critical point is called the Griffiths phase. Further increase in disorder

results in a divergent d.o.s that respects universal dependence on energy ε of the form ε−1|ε|−3 at the critical

point, corresponding to the Dyson singularity[59, 86]. Still further, the system enters the non-topological

gapless phase. Several investigations on the distribution of these mid-gap states have explored scaling of

density-of-states in Griffiths phases, transport properties and topological phase transitions in the context of

disordered Majorana wires. [59, 87, 60, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 74, 102]. Here,

as a simple illustration, in Fig. 2.11, we show the evolution of the d.o.s for a single sample as a function

of increasing disorder strength using exact numerical diagonalization. While detailed features cannot be

resolved through our methods, the evolution clearly demonstrates the trends described above.

Behavior of low-energy mid-gap states and Majorana physics. — Reflecting the behavior of the d.o.s,

at very low disorder, the only low energy states correspond to the Majorana end modes. In finite sized
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wires, these states hybridize and exhibit a zero-energy splitting. Upon increasing disorder, while low-energy

bulk states proliferate into the gap, the lowest energy states in the topological phase still correspond to

robust Majorana modes (typically hybridized). Extensive applications of random matrix theory (RMT) for

class D in previous work [[98, 74] and references therein] show that the spacing between energy levels of the

disordered Kitaev chain (class D) respect the probability distribution of energy levels given by [112]]

P (E)dE =
∏
i<j

|E2
i − E2

j |β
∏
k

|Ek|αe−E
2
k/v

2

dEk (2.94)

Class D : α = 0 β = 2

Here v is the variance of the distribution. The exponent β, which measures level correlations between

energy states that are not particle-hole symmetric, is non-zero. Thus, for any two such energy states, level

repulsion ensures that the probability of the two energy levels crossing goes to zero, avoiding any crossings.

For two states with energies ±E, however, since α = 0, the level crossing is allowed.

In Fig.2.12, we show the evolution of the behavior of the lowest three particle-hole symmetric energy

pairs as a function of disorder. As described above, for low disorder, only two energy levels corresponding

to Majorana modes can be seen close to zero energy. As the disorder strength is increased, other levels

converge towards zero energy in close succession. Disorder causes fluctuations in the energy level spacing.

For a significant portion of the topological phase, the scale of energy level splitting is very different for

the Majorana modes compared to the next higher energy levels. As in the uniform case, the splitting of

the Majorana modes as a function of system size is expected to be exponentially small while that of the

other states is expected to be algebraic [90]. It can be seen that beyond the critical disorder strength for

the topological phase to exist, the lowest energy modes now lose their Majorana character and their level

splitting is comparable to that of the other modes.

Focusing on the energy level splitting of the Majorana modes, the behavior of the disordered Majorana

wave function discussed in Sec.2.7.1 ought to dictate the splitting. We saw that three components characterize

the wave functions: i) the gap-protected robust envelope, whose localization is determined by the magnitude

of the superconducting gap ii) a second decaying envelope due to disorder, whose localization is determined

from the underlying Anderson problem (see Eq.2.91) iii) and the sub-envelope random oscillations dictated by

the same Anderson problem. The first two determine the average scale of energy splitting of the degenerate

zero-energy states in a finite size wire. The crossing of these states is determined by the third aspect; in the

next subsection, we study these crossings in detail and their direct connection with fermion parity switches.
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Figure 2.12: (a)Variation of a set of lowest energy levels (first 3 states) of the Kitaev chain as a function of
disorder strength for box disorder 2.90 and other parameters fixed to ∆ = 0.6, N = 30. For small disorder
width, the Majorana states are well separated from the bulk by a superconducting gap. As the disorder is
increased there is a proliferation of the bulk states into the gap.(b) Zoomed in view of the two Majorana
states split due to finite size. Their scale is exponentially suppressed compared to the bulk states. These
states cross zero energy as the disorder width is varied, inducing a fermion parity switch in the ground state.
(c) Griffiths phase: At strong disorder, there is an accumulation of a large number of bulk states near zero
energy. Level crossings between these states are forbidden due to level statistics of Class D (level repulsion).
Nearing the critical disorder strength, the magnitude of the energy states due to Majorana splitting become
comparable to the bulk states.
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Scaling of degeneracy-split states

In Ref. [90], it was shown using a scattering matrix approach that the energy level splitting of coupled

Majorana end states in a finite sized wire is exponentially small compared to bulk states in the weak

disorder limit. Due to large fluctuations, the energies of these mid-gap states themselves do not follow a

simple probability distribution. But as is common with random systems, the logarithm of these energies

obeys a normal distribution. A central result of Ref. [90] is that for a continuum model of the p-wave

superconducting wire, the average of this quantity has the form

〈ln(ε0,max/2∆)〉 = −L[1/ξ − 1/(2l)], (2.95)

where ε0 is the Majorana end state energy in a finite sized wire,∆ is as usual the magnitude of the super-

conducting gap, ξ is the superconducting coherence length and l is the mean free path of the corresponding

disorder configuration.

These results can be understood in the light of our discussion on Majorana transfer matrices. As de-

scribed before, the degeneracy-split end modes have energies proportional to the overlap of the Majorana

wavefunctions. In a finite sized wire of length L, for two end modes having a decaying envelope of localiza-

tion length 1/γ, this overlap is proportional to ε0 ∼ eγxeγ(L−x) = eγL. Here, γ is the Lyapunov exponent

and is a negative quantity in the topological phase. As shown in Eq. 2.65, γL = (γS + γN )L consists of a

superconducting and normal piece. Now, as is commonly invoked in treatments of localization physics and

random systems, given the multiplicative nature of transfer matrices, the Lyapunov exponent corresponding

to the transfer matrix is in general self-averaging. Thus, we expect ln(ε0) to have an average value of Lγ;

this result is reminiscent of Eq.2.95 where ξ is the length scale associated with superconductivity and l with

normal localization properties.

2.7.3 Parity switches - qualitative discussion and numerical results

In Sec.2.6, we outlined how a pair of zero energy Majorana modes form a Dirac fermion state that can

be occupied or unoccupied, corresponding to two states of opposite parity. We then showed the manner

in which end Majorana modes hybridize in a finite sized uniform chain, giving rise to an energy splitting

and an associated unique ground state parity. We charted out the points in phase space where zero energy

crossings take place, corresponding to ground state parity switches, and mapped the regions of odd and even

parity in the topological phase diagram. Turning to disordered systems, in the previous section, we gave a

detailed description of the behavior of low energy states and discussed the distribution of energies associated
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with zero energy splittings. Here, we focus on the vanishing of this splitting and show that this occurrence

directly corresponds to a ground state parity switch. We also show the manner in which our study of the

uniform system informs the ground state parity distribution map for the disordered case.

Zero-energy crossings and parity switches. — Following the discussion on mid-gap states in the previous

section, first off, we see that zero-energy level crossings are infact possible as a function of system parameters,

such as chemical potential and disorder strength. The RMT result of Eq.2.95 further corroborates that

particle-hole symmetric states can undergo zero-energy crossings but other pairs of adjacent states cannot

do so due to level repulsion. This suggests that the only states under-going zero-energy crossing are the ones

associated with Majorana physics. In other words, zero-energy crossing are concurrent with fermion parity

switches. We now demonstrate this explicitly.

In Sec.2.7.1, we saw that the Majorana wavefunction in the disordered case has a decaying enveloping as

well as oscillations that are completely dictated by the underlying normal Anderson tight-binding model. In

the previous section, we saw that the decaying envelope is directly related to the scale of the average zero-

energy splitting and is always finite for a finite length wire. However, the oscillations directly contribute to the

fluctuations and, in particular, to the vanishing of the splitting. In principle, just as the correlation between

two decaying envelopes gives the average scale for zero-energy splitting, analytic studies of correlations

between the oscillations[107] ought to give precise information on the locations where the splitting vanishes.

Here, we resort to the numerical methods that we employed in previous sections. Specifically, we use the

normal system transfer matrix condition for the existence of a zero energy state given by Eq.2.81, Ã11 = 0.

Here, Ã11 is the appropriate matrix element of the full transfer matrix, Ã and the condition dictates that

the amplitude of the associated wave function vanish outside the length of the wire.

In Fig.2.13, we plot the matrix element Ã11 as well as the ground state parity for a finite sized disordered

wire as a function of disorder strength. Here, we use the Pfaffian measure of Eq. 2.75 for determining the

parity. The points of vanishing Ã11 correspond to points which host a generic zero-energy state. Note that

this state also has a zero energy partner, whose transfer matrix can be derived from the initial transfer matrix

by replacing ∆ with −∆. While the magnitude of Ã11 is unimportant for parity switch physics, its increase

with disorder strength reflects the increase of the increase of the average energy splitting. Most prominently,

we see that the vanishing of Ã11 is concurrent with the switching of ground state parity. Thus zero energy

crossings correspond to the presence of two decoupled Majorana modes and associated degenerate parity

states.

In summary, the underlying normal Anderson model dictates zero-energy crossings in the disordered

superconducting wire. These zero-energy crossings are exclusively associated with Majorana mode physics
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Figure 2.13: Comparison between the fermion parity in a disordered Kitaev chain and the transfer matrix
element Ã11 as a function of disorder strength(box disorder). The vanishing of the matrix element reflects
the existence of a zero-energy Majorana state and can be seen here to coincide with parity switches as with
the uniform case of Fig.2.8. Here N = 40,∆ = 0.6

and correspond to the points when the system encounters a parity degeneracy in the process of undergoing a

ground state parity switch.

Tracking parity switches in the topological phase diagram. — In obtaining a map of the regions where

parity switches occur in the disordered Kitaev chain, we find that our studies from previous sections of the

parity distributions in the uniform system serves as a guide. The precise points in parameter space where

the switch occurs depend on the particular realization of disorder and are thus random. However, the parity

switch phase diagram for the pure case in Fig. 2.7 identifies the broad regimes in which parity switches

can or cannot occur. In essence, for a fixed value of the the superconducting gap, anywhere in the uniform

chain phase diagram, windows in chemical potential where no parity switch occurs determine the width that

the disorder distribution can span in the disordered case before a parity switch occurs. As we explicitly

demonstrate, those observations allows us to chart out regimes where parity switches occur or not in the

disordered wire.

We first analyze parity switch behavior in chains having an even number of lattice sites. Figure 2.14.a

shows numerical results for typical parity switching behavior as a function of disorder strength W . In all

numerical simulations, the values of µn are chosen randomly from a box distribution or a ‘window’, centered

at a mean < µn > value and having a width W . The parity is calculated again using the Pfaffian expression

given by Eq. 2.75.

One can see from Fig.2.14.(a) that for the case of an even number of sites no parity switches occur up

to a specific disorder window width. Beyond this width, switches start occurring in rapid succession and
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Figure 2.14: (a) Parity switches in a wire of an even number of lattice sites, N = 10, as a function of disorder
width for box disorder. Here, ∆ = 0.6. Since parity is an even function of chemical potential for even N ,
the initial disorder window lies within a fixed parity as indicated in the uniform chain phase diagram in (b).
As the disorder window is increased beyond a length-dependent value µpswitch of Eq. 2.96 (dotted line) to
include opposite parity sectors, parity switches begin to occur.

follow a random pattern that depends on the specific realization of disorder. As the disorder window width

increases and includes opposite parity sectors, number of parity switches increase from being sparse to very

dense.

A qualitative picture for the parity switches can be obtained by invoking the properties of the uniform

chain phase diagram. As shown in Fig.2.14.(b) and discussed in previous sections, for a fixed wire length,

the uniform chain ground state parity changes in a characteristic manner as a function of chemical potential.

The chemical potential values at which these parity crossing happen are given by

µpswitch = 2
√

1−∆2 cos

(
πp

N + 1

)
, (2.96)

where p takes integer values from 1 to N/2 for even N . The first crossing occurs for p = N/2 and the width

of the central parity sector is 2µ
N/2
switch. Thus, any value of chemical potential lying within this window is

associated with the same parity. Upon introducing disorder such that the site-dependent chemical potential

lies within this width, we would expect no changes in the overall ground state parity. Beyond this width,

however, chemical potentials associated with the opposite parity become included in the on-site distribution,

allowing for the possibility of a global ground state parity switch. The probability of such a switch increases

with increasing disorder window width as it allows a higher chance of on-site chemical potentials being

associated with opposite parity. This qualitative picture is consistent with the behavior of parity switches in

Fig. 2.14.b. We now show that it accounts for our numerical findings with regards to parity switch behavior

as a function of system size, average chemical potential off-set, and odd versus even number of lattice sites.
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Figure 2.15: Possibility of no parity switches in the disordered Kitaev chain.(a) Two possible disorder
distributions centered around finite chemical potential are shown in which parity switches are not expected
- I. Double box disorder in two disjoint sectors of the same parity and II. Box disorder outside the circle of
oscillations. (b) In both cases, the plot of parity as a function of disorder strength indeed shows the absence
of parity switches.

The occurrence of parity switches highly depends on the system size, N . As can be seen in Eq. 2.96, as

N increases, the chemical potential value at which the first parity switch occurs in the uniform case, µ
N/2
switch,

becomes smaller. Thus, in the disordered case, for a wire of longer length, we expect parity switches to

commence for smaller disorder window width. We indeed find this to be true.

Chemical potential off-set and absence of parity switches. — As with the case above of disorder centered

around zero chemical potential, here we analyze parity switches in the presence of a chemical potential

off-set where the mean < µn > 6= 0. Once again, the uniform chain parity regimes inform the behavior of

the disordered wire. One of the most striking features to emerge is that if the chemical potential off-set

and disorder window width are chosen to lie within a region of the uniform chain phase diagram where no

parity switches occur, then the disordered wire too shows no ground state parity switch. Specifically, from

Eq. 2.96, we see that the chemical potential span of any given parity sector in the uniform wire is given by

∆µp = 2 sin

(
π(p+ 1/2)

N + 1

)
sin

(
π

N + 1

)

This sector width shrinks with increasing N . Also for a given size N , this width decreases as one progresses

from zero chemical potential to the boundary of the circle of oscillation (COO), i.e. as p→ 1. Furthermore,

outside the COO, no parity switches occur. These features provide bounds for the values of chemical potential

off-set and disorder window width in which no parity crossings occur.
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Figure 2.16: Parity switches in a wire of odd length (N = 11,∆ = 0.6) as a function of disorder strength for
box disorder. (a) Given the antisymmetry in parity sectors across µ = 0 for the uniform case, the slightest
change in disorder strength is expected to produce a parity switch. This is confirmed in (b), which shows a
profusion of random parity switches as a function of disorder strengths starting from the smallest amount
of disorder.

In Fig.2.15, we explicitly verify the observations made above. As one example, we consider a double

box disorder distribution where two disorder windows are centered around two values of chemical potential

such that both windows lie within the same parity sectors in the uniform chain phase diagram. As a second

example, we place the disorder window outside the COO, thus expecting no parity switches. Indeed, in

both situations parity switches are not observed. While the double box disorder seems unrealistic, the case

of taking the window outside the circle might be possible to realize experimentally. One can study the

‘Ising-limit’ ∆ = 1, which is tangential to the circle. In this case taking < µn >= 0, the parity switches

as a function of width again depends on the number of sites being even or odd. This explicitly shows that

there are cases where one need not have any parity switches even in the presence of disorder and when they

are present, the behavior completely depends crucially on the features of the parity sectors of the uniform

Kitaev chain.

Dependence on even versus odd N . — A noteworthy difference arises in the behavior of parity switches

between chains of even and odd number of lattices sites, once again stemming from the structure of the

uniform wire ground state parity distribution. The key difference is that the distribution of parity switches

is symmetric as a function of chemical potential for the even site case but anti-symmetric for the odd site

case. Explicitly, the values of chemical potential for when parity crossing occur are given by Eq. 2.96 for

an even number of sites. While the same holds for the odd site case (with values of p ranging from 1 to

(N − 1)/2), a parity switch also occurs at µ = 0. Thus, in the presence of disorder, in contrast to the even

site case shown in Fig. 2.14, even the narrowest disorder window centered around zero chemical potential
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gives rise to parity switches. This behavior is corroborated in Fig. 2.16.

Thus, we have presented a qualitative study of ground state parity in finite sized disordered Kitaev

chains. Salient features are that the uniform Kitaev chain serves to inform parity switches in disordered

chains. The transfer matrix, as with the uniform case, tracks zero energy crossings and shows that they

are consistent with parity switches, thus attributing all such crossings with Majorana mode physics. For

the disordered case, the underlying normal state Anderson problem determines oscillations of the Majorana

wavefunctions and associated parity switches. Finite length analyses of the uniform wire have direct bearing

on parity switching behavior for the disordered case. Windows in chemical potential that contain fixed parity

sectors in the uniform case provide bounds for disorder distribution widths that respect no parity switching.

Specifically, this observation results in the characteristic parity switching behavior for even and odd length

chains shown in Fig.2.14 and Fig.2.16 as well as regimes in the phase diagram where no parity switching

takes place, as shown in Fig.2.15.

2.8 Semiconductor nanowire-superconductor heterostructures

There have been experimental proposals on various platforms and a lot of experimental progress in realizing

Majorana modes in condensed matter systems. Extensive reviews have been written on this topic- [5, 6, 113]

to mention a few. Latest progress in experiments has been summarised in [1]. One of the key challenges

in realizing a model such as the Kitaev chain is in obtaining p-wave superconductivity. Naturally occurring

materials that exhibit p-wave pairing superconductivity are very rare. Apart from that getting long-range

order in one-dimension is another challenge. Experimental proposals have capitalized on three important in-

gredients to overcome these challenges: superconducting proximity effects, time-reversal symemtry breaking

and spin-orbit coupling [5]. Numerous platforms have been proposed to host the Majorana modes and do

operations on them. These include such as semi-conductor nanowire heterostructures[7, 8],topological insula-

tor nanowire [114], Superconductor-Topological insulator (S-TI-S) Josephson junctions [115, 116], Magnetic

adatomsNadj-Perge14, quantum dots and cold atoms to name a few. Here the details of the semiconductor

nanowire junction platform is presented.

The seminal proposals in [7] and [8] have made use of experimentally accessible ingredients such as one

dimensional wires with high spin-orbit coupling, conventional s-wave superconductor and a high magnetic

field.

The basic set-up of such a superconductor-semiconductor nanowire heterostructure can be modeled using
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Figure 2.17: (a)Basic set-up for realizing Majorana modes in heterostructure consisting of a semi-conductor
nanowire with proximity induced superconductivity and a magnetic field. (b) The colored curves indicate the
band structure of the spin-orbit coupled wire. When the magnetic field is applied a gap is opened breaking
the time-reversal symmetry. When the chemical potential is set to be within the gap, the induced pairing
projected to the lowest band is p-wave. (c) The phase diagram of the model in the plane of h(the magnetic
field) and µ(the chemical potential), both scaled with respect to the induced gap ∆. (d) IN the topological
phase the Majorana modes are localized at the edges of the wire.

the following Hamiltonian:

H =

∫
dxψ†

(
− ∂2

x

2m
− µ− iασy∂x + hσz

)
ψ +

∫
dx∆(ψ↑ψ↓ + h.c) (2.97)

Here µ is the chemical potential, α is the strength of the spin-orbit coupling and h is the Zeeman energy

from the magnetic field. The superconducting term wuth ∆ models the proximity induced superconductivity.

Fig.(2.17) shows the schematic of the various ingredients. The spin orbit coupling splits the spin states as

indicated by red and blue parabolas in the Fig.(2.17). THe appled magnetic field split the degeneracy in these

spin states by lifting the crossing between the parabolas at k = 0 as shown in Fig.(2.17 (b)) . When the Fermi

level lies withing the field induced gap, the system is effective spinless. Turning on weak superconductivity

then effectively gives an effective p-wave pairing. The condition for obtaining a topological phase is then

given to be [5] : h >
√

∆2 + µ2. The Majorana modes are then trapped at the edges of the wire which

form a boundary between the topological phase of the wire and the vacuum.The table in the figure shows

the typical experimental values of the parameters.

Zero bias tunneling conductance – Tunneling conductance is one of the measurements in which signatures

of Majorana modes can be found. In the absence of a zero mode, the conductance from the resonant tunneling

vanishes usually. The presence of a Majorana mode produces a conductance of 2e2/h at zero-bias. Tunneling

spectroscopy also provides a method to meaure the local density of states and track it across the topological

phase transition. Soon after the theoretical proposals the emergence of zero-bias peak was observed in InAs

nanowires [117, 118, 119, 120]. The complication with these measurements were that there were large number

of midgap states due to disorder and was challenging to separate the contributions of Majorana mode from
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Figure 2.18: Comparision of the properties of the materials used in the nanowire heterostructure plat-
forms.(Adapted from [1])

those. Later experiments with InSb nanowires have shown lesser midgap states and have been able to isolate

the zerobias peak contribution from the Majorana modes[121, 122, 123].

4π-periodic Josephson effect– A electrical supercurrent can flow between two superconductors with a

superconducting phase difference and in the absence of an applied voltage. This is related to the Josephson

effect.The presence of Majorana modes in the superconductors leaves a signature in the current-phase rela-

tionship. The supercurrent is given by IJ = (2e/~)dE/dφ where E is the energy of the Josephson junction

and φ is the phase difference between the superconductors. In conventional superconductors, only cooper

pairs can tunnel whereas pairs of Majorana modes allow single electrons to tunnel. This leads to doubling of

the periodicity of the Josephson energy leading to the relation E ∝ cos(φ/2). If the superconductors enclose

a magnetic flux, then the supercurrent IJ has a flux dependence. In the presence of Majorana modes, this

flux dependence changes from 2π to 4π periodicity. This is known as the 4π− periodic Josephson effect and

was reported to be measured in [124, 125].

There have been other experimental proposals and measurements using different techniques such as

couling to a superconducting island with finite charging energy [126] and Coulomb blockaded islands coupled

to leads[127].

2.9 Superconductor-Topological Insulator-Superconductor

Josephson junctions

This section presents work done with collaboration with the experiment group of Prof. Dale Van Harlingen

at Urbana [128].

As an viable alternative to nanowire systems in which the MBS are physically bound to the end or edges of

1D or 2D structures, here we consider a platform consisting of multiply-connected hybrid superconductor (S)
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Figure 2.19: Nucleation of Majorana fermion modes in S-TI-S structures: (a) Lateral S-TI-S Josephson
junction in a magnetic field with MFs at the location of Josephson vortices, (b) trijunction in zero magnetic
field with a single MF in the center induced by appropriate adjustment of the phases on the electrodes, and
(c) trijunction in a magnetic field with MFs

- topological insulator (TI) networks for realizing MFs whose locations can be controllably moved, providing

additional functionality for braiding and hybridization that perform non-Abelian operations. In fact the

earliest experimental proposals for realising MBS involved the S-TI-S Josephson junctions where MBS are

trapped in the vortices or phase slips.

S-TI-S Josephson junctions offer an attractive platform for MBS manipulations for the following reasons:

(1) MFs in this system are zero-energy Andreev bound states enabled by the spin-momentum locking of

topological surface states in the TI and stabilized by the phase of the Josephson coupling; (2) in contrast to

other systems such as semiconductor nanowires, nucleation of the MFs does not require a large magnetic field,

enabling phase-sensitive measurements; (3) magnetic fields instead play a different role by localizing MFs at

Josephson vortex cores, which allows us to move the MFs by moving the vortices, easily done in controlled

ways by applying currents, voltages, or phase differences; (4) the MFs can be created in a controlled way in

uniform junction regions and are not subject interface issues, unlike with nanowires in which the MFs exist

at interface between topological and non-topological regions; and (5) junction networks are easily scalable

to create quantum circuits and and surface codes for performing universal quantum computing in networks

of Josephson junctions have already been proposed [129, 130, 131].

Here we begin our extensive treatment of the proposed S-TI-S architecture by describing a single extended

Josephson junction, nucleation of MBSs and the effects of their coupling.
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2.9.1 Effective model of low-energy junction modes

The basic element for the junction geometries studied here is as shown in Fig. 2.19. The full-fledged hybrid

structure would comprise of a topological insulator slab having two superconducting islands deposited on its

upper surface. We assume here that the slab is much thicker than coherence length of the proximity-induced

superconductivity within it. We restrict ourselves to a well-established effective model that focuses on the

low-energy states found along the junction interfaces .

Let us consider a S-TI-S system, similar to the one described in Ref.[116] having a line junction of width

L along y-axis as shown in the Fig. 2.19 a. The superconducting gap varies as : ∆(x) = ∆eiφ(y) for x > d/2

and ∆(x) = ∆e−iφ(y) for x < −d/2. A magnetic field pierces through this junction with flux ΦB . The flux

leads to a spatial variation of the superconducting phase difference along the junction to vary as

φ(y) = πy/lB , (2.98)

where lB = LΦ0/ΦB . Here Φ0 = h/(2e) is the flux quantum appropriate for paired superconductivity.

It can be shown [116] that under these circumstances, there exists a pair of dispersive Majorana modes,

γR/L counter-propagating along the junction. The desired MBSs are particular localized states composed of

these modes. Their low-energy effective Hamiltonian has the form

H = i~vM (γL∂yγL − γR∂yγR) + i∆ cos(φ(y)/2)γLγR. (2.99)

Here vM = v[cos(µW~v ) + (∆
µ ) sin(µW~v )] ∆2

(µ2+∆2) , where v is the velocity corresponding to the edge state of

the TI and µ is the chemical potential . For a S-TI-S junction of Al−Bi2Se3 −Al the estimated values are

v = 105ms−1,∆ = 150µeV ,µ = 10meV [115, 116].

The form of Eq. 2.99 respects the Dirac equation for massive particle, where the gap function ∆ cos(φ(y)/2)

represents a spatially varying mass function. For a linear variation of the flux-dependent φ(y), the gap func-

tion too can be linearized around regions where φ(y) crosses an odd integer multiple of π. In this case, there

exists a zero-energy eigenstate that shows exponential decay away from the crossing point. This eigenstate

has the appropriate linear combination of γR and γL such that they are real functions, making them the

desired Majorana bound states (MBSs). As the magnetic field piercing through the junction is increased,

the number of zeros of the gap function increases, thus capturing more number of Majorana modes in the

junction. A new Majorana mode appears with the incremental change of the net flux by one quantum, thus

confining one Majorana bound state per one Josephson vortex.
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A few comments are in order here with regards to several simplifying assumptions made in this model.

Here we assume the width d to be small. The profile for the phase variation will in general be altered in

realistic situations having thicker width. For example, one could consider a extended Josephson junction

in which the gap function shows a tanh-like spatial variation yielding a Josephson soliton . Here too,

respecting the generic change of sign in the gap function, it can be shown that there exists a Majorana

bound state[132]. Another issue is that the system requires that the MBSs appear in pairs. In Ref. [116],

the full three-dimensional nature of the system is taken into account and it is assumed that the partner of

a single MBS is at the bottom surface of the TI. For this to hold, the induced superconducting penetration

length within the TI ought to be much greater than its thickness. Here, we consider the opposite limit. We

thus expect that for an isolated MBS in the junction, there exists a partner, perhaps extended, along the

periphery of the superconducting islands. We now turn to a detailed analysis of the MBS within the context

of our model employing numerical simulations.

Here we analyze the situation in which the applied flux is strong enough to generate multiple vortices

and MBSs. In particular, we study the case of four MBSs present along the junction; such a situation is

the minimum necessary for quantum information protocols. Through numerical simulation of the model

presented in the sub-section above, we show the explicit realization of these MBS states, their mid-gap

spectral properties, and the manner in which these features can be controlled by altering the local phase

profile.

We first consider the instance where the phase variation in Eq. 2.99 varies linearly and increases from

−πN/2 to πN/2 as the coordinate along the junction, y, spans the junction from −L/2 to L/2 and N is the

number of flux quanta. This situation encompasses four half-flux quanta within the junction, which ought

to lead to four MBS. We explicitly ascertain this MBS distribution and related features by numerically

diagonalizing the Hamiltonian in Eq. 2.99; Fig. 2.20 shows the numerical results.

For this case of two flux quanta piercing the junction, Figure 2.20 (a) shows the variation of the gap

function along the junction. Correspondingly, Fig.2.20(b) shows the energy spectrum. Most energy states

lie outside a gap region centered around zero energy. As expected, four states however are mid-gap states

effectively at zero energy. Our analyses also show that with increasing flux, the formation of new MBSs

occurs through select states lying outside the gap entering the gap region and nucleating towards zero energy.

Plotting the eigenstates of the corresponding wavefunctions in Fig. 2.20(c) indeed shows them to be isolated,

evenly spaced, bound states localized along the junction at the zeroes of the gap function. Each of the bound

states shows exponential decay in isolation. Moreover, the eigenfunction is completely real, making it of the
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(a) (b)

(c)

Figure 2.20: (a) The application of a magnetic field leads to variation of the phase difference along the
Josephson junction and the gap function. The gap function, plotted as a function of distance along the
junction, goes to zero when the SC phase difference crosses multiples of π. (b) The spectrum of Andreev
bound states(in units of ~v) obtained from the diagonalisation of model Hamiltonian Eq. 2.99 for the given
gap function profile. The mid gap state correspond to the Majorana zero modes. (c) shows the wavefunction
profile of the Majorana modes localised at the zero crossing of gap.

Majorana form. The MBS wavefunction at a distance δy away from its center respects the form

γ(y) ≈ ξ(x)e−|δy|/λM . (2.100)

Here, the decay length is characterized by λM =
√

~vM lB/∆.

The MBSs are effectively isolated when their separation is significantly greater than their decay length.

However, when brought closer, a pair of MBSs becomes coupled due to the overlap in their wavefunctions

[47]. This coupling between the neighboring MBSs, say γa and γb separated by distance Lab, leads to an

effective Hamiltonian of the tunneling form

Hab ≈ itabγaγb, tab ≈ e−Lab/λM (2.101)

This is due to the overlap of the wavefunctions of the two Majoranas in the junction across the distance Lab

. This coupling results in a tunnel splitting between the degenerate zero energy states associated with the

MBS pair.
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Figure 2.21: The phase profile with and without change in the local SC phase is shown in (a). The slope of
the phase is change in a small region between the Majorana modes. This results in a displacement of one of
the Majorana modes as shown in (b). There is a corresponding shift in the energy of MBS as shown in the
inset of (a)

The proposed S-TI-S architecture here hinges on the ability to move and couple MBS pairs. Our proposed

schemes for such manipulation primarily involve changing the local phase variation. As an example, consider

the case of two MBSs initially far apart, as shown in Fig.2.21. Now, changing the local phase more rapidly

between the two MBSs, as shown in Fig.2.21.a, decreases their separation, as shown in Fig.2.21.b. The inset

in Fig.2.21.a shows that the MBSs have come close enough to result in a numerically discernible tunnel

splitting.

Such controlled MBS mobility and tunable coupling are essential ingredients in braiding schemes consid-

ered here. These schemes require the four-MBS configuration. Generalizing Eq. 2.101, the tunnel coupled

effective Hamiltonian takes the form

H = it12γ1γ2 + it23γ2γ3 + it34γ3γ4 (2.102)

We will see that this Hamiltonian can be used to demonstrate an effective braiding by tuning one of the

couplings. In the case of semi-conductor wire heterostructures, the values of t12 ,t23,t34 range around 0.5-30

µeV [133, 134] . For S-TI-S junctions of order of 1µm length and MBS separate by 0.1µm, the strength of

coupling between them would be of the order of 10−1µeV

The primary building blocks for non-Abelian rotations and braiding within the Josephson junction ar-

chitecture are contained in Fig. 2.19 . The elements forming the basis of these non-Abelian rotation are

the MBSs localized at Josephson vortices. Here we briefly outline the underlying principles, discussing the

relevant Hilbert space, operations, and the physical manifestations associated with these rotations.
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2.9.2 Braiding through physical motion of the MBSs

The simplest instance of braiding through involves four MBSs, say denoted by γ1, γ2, γ3, γ4. Any pair of

MBSs forms a Dirac (electronic) state that can be occupied or not. As a specific choice, consider cA =

(γ1 + iγ2)/2 ,cB = (γ3 + iγ4)/2. In the absence of coupling between the MBSs, the degenerate ground state

manifold is spanned by

|NA, NB〉 : |0, 0〉 , |1, 1〉 , |1, 0〉 , |0, 1〉 (2.103)

where NA, NB denote the occupation of the electronic states. For N pairs of MBSs, the ground state is

2N fold degenerate. The occupation of all such parity states decides the net fermionic parity of the ground

of the system. Thus unlike conventional superconducting ground state, which is always a superposition of

states having an even number of electrons in form of Cooper pairs, a topological superconductor can have

states with net fermion parity to be either even or odd.

The simplest braiding operation is an exchange in the positions of the two MBSs. How does this exchange

in the position space affect the space of ground state? It can be shown that [53] the exchange of two Majoranas

γi,γj is represented in the ground state manifold as a unitary rotation in the space {|0, 0〉 , |1, 1〉 , |1, 0〉 , |0, 1〉}

given by

Uij = exp(±iπγiγj/4). (2.104)

For example, if we start with a state |0, 0〉, then exchanging γ2, γ3 results in

U23 |0, 0〉 = (|0, 0〉 − i |1, 1〉)/
√

2 (2.105)

In principle, one can track such rotations by measuring the fermion occupation i.e the fermion parity of the

electronic states in the ground-state manifold. The order of consecutive exchanges matter as the unitary

operations do not commute: U12U23 6= U23U12. Thus the name non-Abelian rotation.

2.9.3 Effective braiding through tuning MBS coupling

A key feature of the topological qubit formed by the electron parity state is its non-locality. It is shared by

to MBS states confined to vortices that can be very far apart. We have seen the manner in which physical

exchange results in non-Abelian rotations in the Hilbert space of these parity states. An alternate method

for performing non-Abelian rotations without physical exchange involves tuning the coupling between an

MBS pair.

As a specific example, consider four MBSs (γ1, γ1′ , γ2, γ2′), this time with their vortex cores aligned along
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a junction, as in Fig.2.19.a . The effective low energy Hamiltonian of this system, is given by

H12 = it1γ1γ1′ + it12γ1′γ2 + it2γ2γ2′ . (2.106)

Here, MBSs γ1,1′ are coupled with strength t1, MBSs γ2,2′ with strength t2, and γ1′ and γ2 with t12. Now let

us denote the non-local electronic states by Γ1 = (γ1 + iγ1′)/
√

2 and Γ2 = (γ2 + iγ2′)/
√

2. The occupation of

these modes is given by N1 = Γ†1Γ1 and N2 = Γ†2Γ2. As with the exchange braiding case, the Hilbert space of

the system is given by the occupation of these 2 states |N1, N2〉 : |0, 0〉 , |1, 1〉 , |1, 0〉 , |0, 1〉. The Hamiltonian

in this Hilbert space is then block diagonal. We focus only on even parity block corresponding to |0, 0〉 , |1, 1〉;

the odd parity block is decoupled and contains analogous physics. In the reduced two-component basis of

even parity states, the tunnel coupled Hamiltonian of Eq.2.106 takes the form

He12 =

 t1 + t2 t12

t12 −(t1 + t2)

 (2.107)

Treating the two states of the Hilbert space |0, 0〉 , |1, 1〉 as the ”spin-up” and ”spin-down” eigenstates of

Pauli matrix σz respectively, we can cast the Hamiltonian in terms of Pauli matrices as:

He12 = (t1 + t2)σz + t12σx (2.108)

Preparing the system in an initial state, say ”spin up” |0, 0〉 and then changing the t12 (”a transverse

field”) would result in the rotation of the state in the spin basis. Effectively, changing the coupling in two

Majorana modes would induce non-local parity correlations. It has been explicitly shown that these rotations

are equivalent to braiding operations we discussed in the previous section [133] .

Specific sequences of such effective braiding would involve preparing the system in a prescribed initial

state in the degenerate Hilbert space, bringing a pair of MBSs to break the degeneracy via coupling, and

time evolving the initial state in a manner prescribed by Eq. 2.106. The time scale for varying the cou-

pling is set by the maximum degeneracy splitting; compared to actual braiding, which involves the robust

topological operation of exchange, this time scale dependence poses a limitation. Nevertheless, given enough

experimental control and knowledge of tuning parameters, qubit operations can be made viable through this

procedure.
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2.10 Summary and conclusion

To summarize the analysis of the Majorana wavefunctions and fermion parity switches in the finite-sized

Kitaev chain, employing the Majorana transfer matrix and studying its properties enabled us to resolve the

effect of any general potential landscape on the Majorana wavefunction. The wavefunctions are characterized

by decay and oscillations where we found that the latter stems purely from the underlying normal tight-

binding model. In the uniform system, these oscillations correspond to band oscillations which, when

analyzed as a function of parameter space, allowed us to identify a circular regime in the topological phase

in which Majorana wavefunctions oscillate. In the disordered case, the underlying normal tight-binding

model is the Anderson model. Thus the underlying oscillations are random oscillations stemming from

the Anderson problem and there are large fluctuations between different disorder realizations. Any further

investigation on the oscillations and the resulting parity flips can thus bank on the vast literature on disorder

and Anderson localization.

The disordered one-dimensional p-wave superconducting wire has been studied extensively in the past

for its rich localization and Majorana physics. In spite of the random nature of the parity switches in

the presence of disorder, the parity sectors of the uniform Kitaev chain can still dictate various qualitative

features of switches in the disordered case. One of the striking observations is the presence of regimes

in which no parity switching takes place for a range of disorder strengths. These features can have strong

bearing on realistic protocols for topological quantum computation, where the operations are through ground

state parity manipulations.

There are various features to be explored concerning Majorana wavefunction features and parity switches.

With regards to disorder, several aspects can potentially be studied by invoking known results from the

literature on disordered spin chains. One challenge with characterizing topological features in the presence

of disorder, just as with non-topological features, is that certain quantities of interest might show large

sample-to-sample fluctuations and appropriate quantities need to be identified for disorder averaging. For

example, in the case of Anderson localization, the conductance itself has large fluctuations whereas the

logarithmic conductance shows a Gaussian distribution in certain limits. Specifically, seeking a quantity for

cleanly characterizing parity switches is in order; related studies in the context of Josephson junctions have

been performed using random matrix theory [74, 135].

Having a precise handle of the parity landscape in Majorana wires is one of the key requirements for several

topological quantum computational considerations. As an example, as shown in Refs.[136, 137, 138, 134, 133],

one method of performing non-Abelian rotations in the degenerate Majorana ground state manifold is

through tuning the coupling between Majorana modes. This method has formed the basis of various quantum
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computational protocols [139, 134, 129, 77, 136, 137, 140]. Thus the detailed knowledge presented here on

the degeneracy points in the topological phase diagram, parity switches in a finite length wire, and their

behavior in the presence of disorder are all of relevance in this context.
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Chapter 3

Non-equilibrium dynamics and
topological phases

3.1 Introduction

This chapter focuses on non-equilibrium quench dynamics of the Kitaev chain and the signature of Majorana

modes on the dynamics. Non-equilibrium dynamics in quantum many body systems have certain unique

features compared to those in classical systems. These unique features are related to the existence of

a ground state, a gap in the spectrum separating the ground state from other states and the unitary

evolution of the Hamiltonian. There are seversal systems which do not possess a gap and yet have many

interesting properties. While the thermal fluctuations lead to very interesting critical behaviour and phase

transitions which change the nature of ground state of the system, considerations of quantum fluctuations

at zero temperature lead to quantum phase transitions with accompanying critical behaviour [141]. One

can tune a parameter of the Hamiltonian of a quantum many body system at zero temperature, such as

chemical potential or a magnetic field, to take the system to a point in the parameter space where quantum

fluctuations take over and completely rearrange the ground state configuration. At the quantum critical

point, where the phase transition occurs, the energy gap that separate the ground state from excited states

goes to zero. Therefore, an associated time scale near the quantum critical point diverges. Now, if we

imagine the scenario of dynamically tuning a parameter of the Hamiltonian so that it crosses the critical

point, the divergence of time scale does not allow the system to relax and leads to excitations above the

ground state. One of the interesting outcomes of this is that the non-equilibrium excitations show universal

behavior called ‘Kibble-Zurek scaling’ [142, 143], which informs us about the equilibrium critical points.

Such scaling can be observed across ’classical’ thermal phase transitions as well.

Bringing in topological phases into picture, we have seen that the ground states of topological phases

have non-trivial features. One such feature is the existence of gapless states at the boundaries such as the

Majorana zero modes. In this chapter we will study the signature of these Majorana modes on the non-

equilibrium dynamics of the Kitaev chain. The ground state fermion parity plays a crucial role in these

studies. For a closed periodic system, there is a lack of adiabaticity in the evolution of the ground state in
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moving across a critical point. For an open system, there is a non-trivial lack of adiabaticity emerging even

far form a critical point and within a topological phase, which is a signature of the Majorana modes. We

have termed this lack of adiabaticity as ‘parity blocking [43]’ and shall be described in detail below.

In the following, we will first review the key aspects of dynamics across quantum critical points, specifi-

cally studying the transverse field Ising chain and derive the Kibble-Zurek scaling. Then we will study the

non-equilibrium dynamics of the Kitaev chain focusing on the fermion parity effects and the phenomenon of

parity blocking. The sections on parity blocking are based on my original work with collaborators, presented

in the paper [43].

3.2 Quantum critical points: transverse field Ising chain

The characteristic features of quantum phase transitions are the critical behaviour of the gap and other

correlation functions near the critical point. The critical behaviour entails power law scaling of these quan-

tities and the exponents in the power law are independent of the details and only depend on the symmetries

and the dimension of the system. Therefore they are called ‘universal critical exponents’. For example, the

Ising model has a specific set of critical exponents, but it could be used to model systems as distinct as

magnets and polymers. We shall see how these critical exponents are of importance even for non-equilibrium

behaviour. As mentioned above, the quantum phase transitions are driven by a non-thermal parameter of

the Hamiltonian near zero temperature. The point in the parameter space where the phase transitions occur

is called the quantum critical point(QCP), at which the ground state energy of the system is a non-analytic

function of the parameter. At the QCP, the gap ∆ between the ground state and the first excited state

vanishes as a power law function of a parameter g [141, 144]:

∆ ∝ |g − gc|νz (3.1)

Here ν and z are the critical exponents and gc is the critical point. In a continuous phase transition, there is

a characteristic length scale ξ associated with the exponential decay of the correlations in the ground state.

As the critical point is approached, this length diverges with the critical exponent:

ξ ∝ |g − gc|−ν (3.2)

One can associate a time scale with the vanishing of the energy gap in the system. This time scale ξτ
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also diverges near the critical point as

ξτ ∼ ∆−1 ∝ |g − gc|−νz (3.3)

Therefore the correlation length scale and the time scale are related by:

ξτ ∝ ξz (3.4)

Here z is called the dynamical critical exponent.

Therefore, the space and time behaviour is intricately connected with each other in quantum phase

transitions.We shall see that this also leads to interesting consequences for non-equilibrium excitations when

the system is driven through the critical point.

The prototypical example of a quantum mechanical model exhibiting quantum phase transitions is the

transverse field XY spin chain presented in the previous chapter. We shall deduce some of the critical

exponents of this model. The Hamiltonian of this spin chain is given by:

H = −
N−1∑
n=1

[Jxσ
x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1]−

N∑
n=1

hσzn (3.5)

Here we will assume periodic boundary conditions σN+1 = σ1. As shown in the previous chapter this can

be mapped to the Kitaev chain through a Jordan-Wigner transformation:

H =

N−1∑
n=1

[−(Jx + Jy)(c†ncn + 1 + h.c) + (Jx − Jy)(c†nc
†
n+1 + h.c)] (3.6)

− (−1)Nf [−(Jx + Jy)(c†Nc1 + h.c) + (Jx − Jy)(c†1c
†
N + h.c)]−

N∑
n=1

(2c†ncn − 1) (3.7)

Fourier transforming to k-space: ck =
∑N
n=1 cne

−ikn/
√
N , we obtain the Hamiltonian:

H =
∑
k>0

(
c†k c−k

)
Hk

 ck

c†−k

 (3.8)

Hk = 2

−(Jx + Jy) cos(k)− h i(Jx − Jy) sin k

−i(Jx − Jy) sin k (Jx + Jy) cos k + h

 (3.9)

64



Here k : [0, π]. The Hamiltonian can be diagonalized using the Bogoliubov transformation

 d†k

d†−k

 =

 sin θkck i cos θkc
†
−k

sin θkc−k −i cos θkc
†
k

 (3.10)

The angle θk is defined as tan 2θk = − (Jx−Jy) sin k
(Jx+Jy) cos k+h . The Hamiltonian is then diagonal and the spectrum

is given:

ωk = 2[h2 + J2
x + J2

y + 2h(Jx + Jy) cos k + 2JxJy cos(2k)] (3.11)

The points at which the spectrum vanishes in the k-space are : 0, π, k0 = arccos(−j(Jx + Jy)/(4JxJy)).

The gap closing points in the parameter space are then:i)Jx + Jy = −h,ii)Jx + Jy = h, iii)Jx = Jy and

|h/Jx| ≤ 2. At these points the gap vanishes linearly ωk ∼ k . Therefore, the dynamical critical exponent

of the transverse field Ising chain is given by z = 1. Since νz = 1, the critical exponent ν = 1. We shall see

that these critical exponents appear in the non-equilibrium behaviour.

3.2.1 Dynamics across quantum critical points: Kibble-Zurek mechanism

In a quantum many body system that is driven, the relaxation time scale diverges at the critical point

as the gap goes to zero. The driving of the Hamiltonian has its own time scale . If the relaxation time

scale is smaller than the time scale of the driving, the evolution is adiabatic and the system remains in the

ground state. But near the quantum critical point, the relaxation time start growing as a power law faster

than the driving of the system. This leads to breakdown of adiabaticity and there will be non-equilibrium

excitations over the ground state. The density of the non-equilibrium defects obey a scaling law know as the

Kibble-Zurek scaling, which is derived as follows [145, 146, 144]: Suppose, a parameter of the Hamiltonian

g is varied to cross the critical point gc as λ = g − gc = t/τ . The critical point occurs at t = 0. Let t̂ be the

time at which the adiabaticity breaksdown in the driven system. Then |λ/λ̇|t̂ = t̂ = ξτ |t̂. The relaxation

time diverges as ξτ ∼ |g − gc|−νz. Therefore,

t̂ ∼ τνz/(νz+1) (3.12)

For a slow variation of the Hamiltonian i.e. large τ , one can focus on the low-energy modes as the higher

energy modes follow adiabatic evolution. Assuming that the domain of defects are of the size ξ ∼ ξ
1/z
τ , the
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density of defects in d dimensions is given by

n ∼ 1

ξd
∼ τ−dν/(νz+1) (3.13)

Thus the density of non-equilibrium defects produced by driving the system across a critical point obeys

universal scaling with the exponents given by the equilibrium point . This is called the Kibble-Zurek scaling.

This was first proposed in the context continuous symmetry breaking phase transitions in early universe by

Kibble [147] and was later extended to condensed matter systems by Zurek [143]. It was also extended to

QCPs of quantum phase transitions.

Now we’ll proceed to study the non-equilibrium dynamics of the Kitaev chain. The presence of Majorana

modes in the topological phase have a non-trivial effect when the system is driven in a linear way even within

the topological phase. It shows a breakdown of adiabaticity very different than the Kibble-Zurek mechanism.

3.3 Fermion parity effects in non-equilibrium dynamics

As we saw in the previous chapter, the Kitaev chain is one of the paradigmatic systems exhibiting topological

phases and also has quantum critical points as phase boundaries between topologically non-trivial and trivial

phases. Within the topological phase, considerations of fermion parity of the ground state give rise to more

detailed features in the phase diagram such as the circle of oscillations and the fermion parity sectors for a

finite chain. He we will study the dynamical tuning of parameters across the quantum critical point as well

as the fermion parity sectors and see how they lead to drastic effect in the dynamics.

3.3.1 Topological blocking

Before studying a open system with Majorana modes at the edges, let us consider a system with closed

boundary conditions. The non-trivial effects of ground state fermion parity was shown to lead to something

called ‘topological blocking’ [2]. To understand this recall the factor of (−1)Nf appearing in the fermionized

version of the transverse Ising chain in Eq.(3.7). Here Nf is total fermion number in the chain. So the

factor Tz = (−1)Nf is the parity of the total fermion number in the chain and it also encodes the boundary

conditions in the system. Tz = −1 gives the periodic sector and has odd number of fermions and Tz = +1

gives the anti-periodic sector and has even number of Fermions. When the system has closed boundary

conditions, the degeneracy in the ground state can change the overall fermion parity. In the anti-periodic

sector with even number of fermions the allowed momenta are given by k = 2π
N (n+1/2), n ∈ [−N/2, N/2−1].

66



(a)

Figure 3.1: Schematic showing topological blocking across the quantum critical point in a transverse field
Ising chain. The ferromagnetic phase has double degeneracy in the ground state. The degenerate states are
labeled by the fermion parity(indicated by lines of different colors). In paramagnetic phase,the ground state
is unique and always lies in the even parity sector. Therefore, the odd parity sector in the ferromagnetic
phase is blocked from evolving into the lowest energy state on crossing the critical point.(Figure adapted
from [2])

This does not include the values of 0, π. The ground state is given by

|GS〉 =
∏

Nk/πodd

(cos θk + i sin θkc
†
kc
†
−k) |0〉 (3.14)

In the periodic sector with odd number of fermions, the allowed momenta are given by k = 2π
n , n ∈

[−N/2, N/2 − 1]. These include the values of momenta 0, π. The ferromagnetic phase J > h, cos θ0 =

0, sin θ0 = 1 and cos θπ = 1, sin θπ = 0. Thus the k = 0 zero mode c†0 contributes to the fermion number and

the parity of the ground state can be even:

|GS〉odd = c†0
∏

Nk/πeven

(cos θk + i sin θkc
†
kc
†
−k) |0〉 (3.15)

For very large N, the the odd and even fermion parity state are degenerate. In the paramagnetic case h > J ,

the odd fermion parity sector has a k = 0 state with cos θ0 = 1, sin θ0 = 0. The ground state would have these

modes unoccupied. Therefore, the odd fermion parity sector is not in the ground state in the paramagnetic

phase. The ground state always lies in an even parity sector.Therefore, the the ferromagnetic case has a

double degeneracy in the ground state with the degenerate states labelled by even and odd fermion parity.

The paramagnetic phase always has ground state in the even parity sector and the odd parity sectors in the

excited states. Thus one gets a scenario as shown in Fig.(3.1).

Now considering dynamically varying the parameters of the system across the critical point one gets a

scenario as shown in Fig.(3.1). As the Hamiltonian evolution of an initial ground state preserves fermion
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parity, if one starts with a odd fermion parity ground state in the ferromagnetic phase and the system is

taken across the critical point, it is blocked from being in the ground state as one enters the paramagnetic

phase. Thus in the adiabatic limit,only the even sectoral state in the ferromagnetic phase flows into the

lowest energy state in the paramagnetic phase. The lack of adiabaticity in the evolution of one of the sectors

on crossing the critical point is termed as ‘topological blocking’. Though the discussion was on the transverse

field Ising chain, the arguments were made in the fermionic basis, which corresponds to the Kitaev chain

with appropriate boundary conditions. There instead of ferromagnetic and paramagnetic phases, one has

topological trivial phases. Opening the boundary conditions in the Kitaev chain leads to Majorana modes

localised at the edges of the chain in the topological phase. This gives rise to non-trivial effects in the

dynamical evolution with the topological phase itself.

3.4 Non-equilibrium dynamics in Majorana wires with open

boundary conditions and parity blocking.

Now we consider a finite-sized Kitaev chain and study the effect of fermion parity in its non-equilibrium

dynamics. We specifically consider a linear variation with time of the chemical potential of the system so as

to go across the critical line µ = 2w,

µ(t) = (2− µi)t/τ + µi. (3.16)

Here µi is the initial chemical potential at t = 0 and 1/τ is the quench rate. Due to the finite rate of variation

of µ, the system cannot remain exactly in its ground state and will exhibit non-equilibrium behavior. Namely,

excitations (or defects) will be produced in the ground state; this lead to an excess energy of the system

and may also lead to a ground state which is in a different topological sector than the initial ground state.

These effects can be characterized by the following quantities.

• Defect density: The number of defects produced in the ground state configuration, which is given by

the sum over all the excitations.

• Adiabatic Fidelity O(t): This is the inner product of the instantaneous ground state |ψins(t)〉 of the

time-dependent Hamiltonian with the time evolved initial ground state |Ψ(t)〉,

O(t) = |〈Ψ(t) |ψins(t)〉 |. (3.17)

• Residual energy Eres: This is the energy in excess of the instantaneous ground state of the system.
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We will define this as the dimensionless quantity

Eres = [〈Ψ(t)|H(t)|Ψ(t)〉 − EG(t)]/|EG(t)|, (3.18)

where EG is the energy of the ground state at time t.

3.4.1 Real space formalism for studying quenching dynamics for open

boundary conditions

In the limit of very large system size or with periodic boundary conditions, one can Fourier transform the

Hamiltonian to momentum space. The form of the Hamiltonian is very simple as seen in a previous section.

Therefore, doing calculations in k-space one can obtain expressions for the defect density, adiabatic fidelity

and residual energy. In the limit of long time t, all these quantities have a universal power law scaling as a

function of the quench rate which is related to the post-quench excitations. This is the well studied Kibble-

Zurek scaling [148, 149, 144, 147, 142, 143, 150, 151, 152, 153, 154, 146, 155, 156, 157, 158, 159, 160, 161,

162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 57, 176, 177, 178, 179, 180, 181, 182, 183].

Given the quench rate 1/τ , the defect density and residual energy scale as 1/
√
τ and the adiabatic fidelity

scales as exp(c/
√
τ) in this one-dimensional Majorana wire[2].

For the Majorana wire with open boundary conditions, while it has been found that the single particle

bulk states still obey the Kibble-Zurek scaling for the defect density, the quench for an initial state with a

Majorana end mode has been found to be non-universal and dependent on the topological features of the

system [173]. The end states are not robust with respect to the quench and they delocalize to merge with

the bulk states. This leads to a scaling of the defect density as τ0 (i.e., independent of the quenching rate),

which is very different from the Kibble-Zurek scaling.

Here we will study the quenching dynamics in the above mentioned quantities for an open Majorana

wire. We will mainly focus on the many-body states rather than the single particle states and the parity

switching mechanism, which comes about in the topological phase due to the coupling between the Majorana

end modes.

In comparison to the translationally invariant systems with periodic boundary conditions , a challenge

encountered in these finite-sized systems with open boundary conditions is that one cannot exploit the

momentum basis. In principle, we are faced with the full-fledged 2N -dimensional Hilbert space associated

with fermions on a N -site lattice associated with the Fock space formed by fermion occupancy on each site.

Here, a dynamic many-body technique to reduce the problem to a numerically tractable form is developed
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using the Heisenberg picture so that the crux of the information on the time evolution is given by the relation

between fermionic creation/annihilation operators at different times and using an analog of Wicks theorem

for Majorana operators. The computation then reduces to dealing with time-dependent 2N × 2N matrices.

Let us start with a general time-dependent Hamiltonian which is quadratic in Majorana operators aj

(j = 1, 2, · · · , 2N),

H = i

2N∑
i,j=1

aiMij(t)aj . (3.19)

Here M(t) is a real antisymmetric matrix; its elements will be functions of w, ∆ and µ for the Majorana

wire Hamiltonian

H = − i
2

N−1∑
n=1

[
(w −∆)a2n−1a2n+2 − (w + ∆)a2na2n+1

]
− iµ

2

N∑
n=1

a2n−1a2n.

This can be converted to the canonical form

H = 4

N∑
j=1

λj(t)b
†
j(t)bj(t), (3.20)

up to a constant, by a time-dependent transformation B(t),

b̄(t) = B(t)ā. (3.21)

Here b̄(t) is a (2N)-component vector b̄ = (b1, b2, · · · , bN , b†1, · · · , b
†
N )T and so is ā = (a1, a2, · · · , a2N )T . The

(2N)-dimensional matrix B(t) comprises of the eigenvectors of H(t) and it belongs to the group U(2N) with

det(B) = ±1. The eigenvalues of the Hamiltonian are ±λj .

Adiabatic fidelity calculation: As defined in a previous section the adiabatic fidelity is given by

O(t) = |〈ψins(t) |Ψ(t)〉 |. The corresponding annihilation operators of these many-body states satisfy the

relations bj(t) |ψins(t)〉 = 0 and βj(t) |Ψ(t)〉 = 0, where |Ψ(t)〉 = S(t, 0)Ψ(0) and β̄(t) = B(0)S(t, 0)ā. Here

S(t, 0) = T exp(−4
∫ t

0
M(t′)dt′) is the evolution operator, with T denoting time ordering. The two sets of

annihilation operators are related by

β̄(t) = B(0)S(t, 0)[B(t)]−1b̄(t) = G(t)b̄(t). (3.22)

The key idea underlying the calculation in real space is to express the quantities of interest to us in terms

of objects which can be calculated numerically in a simple way. Given the form of the initial Hamiltonian

H(0) and the time-dependent H(t), we can see that the quantities B(0), B(t), S(t, 0) and G(t) can be easily
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computed. Given these and the annihilation operators for the ground states, the calculation of the adiabatic

fidelity reduces to a computation of the determinant of an antisymmetric matrix A given by

Ajk = 〈ψins(t)| β̄j(t)β̄k(t) |ψins(t)〉 for j < k,

= −〈ψins(t)| β̄k(t)β̄j(t) |ψins(t)〉 for j > k,

= 0 for j = k.

We now directly state an important result, deferring the detailed derivation to Appendix A. The adiabatic

fidelity defined in Eq. (3.17) is given by

O(t) = |det(A)|1/4. (3.23)

Given this relation and the Hamiltonian H(t), we can numerically calculate the adiabatic fidelity as a function

of time for a system with open boundary conditions. This can naturally be extended to periodic/antiperiodic

boundary conditions as well.

Residual energy calculation: Another quantity of interest, the residual energy, defined in Eq. (3.18),

measures the excess energy contained in the time-evolved quench dependent state compared to the instan-

taneous ground state energy. This quantity can also be calculated with the real space formalism developed

in this section. Following the same strategy as for the adiabatic fidelity, the final expression can simply be

expressed in terms of the matrix G(t),

Eres = [4

N∑
j,k

λjG
−1
N+j,k(t)G−1

j,k+N (t)]/|EG(t)|. (3.24)

The details of the derivation are given in Appendix .

We now present the results that we obtain for an open Majorana wire with N sites with the Hamiltonian

given in Eq. (3.20), where µ varies linearly in time as shown in Eq. (3.16). Given the specific form of H(t)

in Eq. (3.20), where µ varies linearly in time as shown in Eq. (3.16), one can numerically calculate all the

quantities B(0), B(t) in Eq. (3.21), S(t, 0), G(t) in Eq. (3.22) and finally the adiabatic fidelity O(t) in Eq.

(3.23) and the residual energy ERes in Eq. (3.24). For a fixed ∆ and N , the parity changes sign as we sweep

across the topological phase by varying µ. The initial parity of the system is set by the value of µi and the

number of sites N . As we will see below, the choice of µi can have drastic consequences, especially for an

odd number of sites.
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3.4.2 Adiabatic fidelity and Parity blocking
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(a) Adiabatic fidelity for N = 34.
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Figure 3.2: (Color online) Numerical results for the (a) adiabatic fidelity O(t) and (b) parity of the in-
stantaneous ground state for an even number of sites. The times at which the parity switches its sign are
exactly the points where parity blocking occurs, resulting in the adiabatic fidelity plummeting down to zero.
Depending on the parameters chosen, the parity after crossing the quantum critical point changes from the
initial ground state parity thereby leading to parity blocking for the entire topologically trivial region.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(tc=2)

A
di

ab
at

ic
 F

id
el

ity

(a) Adiabatic fidelity for N = 17 with µi 6= 0.
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(b) Parity for N = 17 with µi 6= 0.

Figure 3.3: Numerical results for (a) adiabatic fidelity O(t) and (b)parity of the instantaneous ground state
for an odd number of sites. In this case the system has the same parity as the initial ground state on crossing
the quantum critical point (Figure (b)) and therefore has a non-vanishing overlap with it.

Figures 3.2 and 3.3 show the numerical results for the adiabatic fidelity O(t) along with the parity

of the instantaneous ground state for an open chain with an even and odd number of sites, respectively.

The case of the initial value µi = 0 for an odd number of sites will be discussed later. We can see from

Figs. 3.2 and 3.3 that for both even and odd number of sites, the system starts in a particular fermion

parity sector, and as it moves within the topological phase the instantaneous ground state switches parity
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Figure 3.4: Numerical results for quenching with µi > 2
√

1−∆2. i.e outside the domain of oscillations
as shown in the phase diagram. Here the nature of Majorana wave functions at the edges are purely
decaying and their coupling would not have any oscillations, which would result in the ground state parity
not switching as one sweeps through the parameter space.

regularly. On crossing the critical point it can either have opposite parity from the initial state or the same

parity, depending on the initial parity sector. On the other hand, as we are dealing with parity conserved

systems, the state which is time evolved from the initial ground state continues to have the same fermion

parity. Thus the overlap of the time evolved state with the instantaneous ground state plunges to zero at

times when the instantaneous parity becomes opposite to the initial parity. We call these parity oscillations,

which occur for an open Majorana wire, as the parity blocking effect. The initial ground state is blocked

from having any non-zero overlap with the instantaneous ground state for certain values of µ. Finally, on

crossing the quantum critical point it becomes zero at all times if the parity is flipped from the initial ground

state; this is also a manifestation of parity blocking. Hence, in Fig. 3.2, the case of an even number of sites,

the parities of the initial and final ground states are the opposite and the system shows parity blocking for

the entire topologically trivial phase, while in Fig. 3.3, the parities are matched and there is some residual

overlap in the trivial phase.

Domain with no parity blocking: The parity oscillations do not occur throughout the parameter

space corresponding to the topological phase. Namely, there are no oscillations if µ2 > 4(w2 − ∆2). This

implies that there ought to be no parity blocking in the adiabatic fidelity. We indeed see this in the numerical

results shown in Fig. 3.4.

Fermion parity degeneracy for an odd number of sites: For an open chain with an odd number

of sites, and for states which belong to the odd fermion sector, the µi = 0 point is special in that it has two

degenerate ground states. To see this, let us define an operator

C = iN(N−1)/2 a1a4a5a8 · · · , (3.25)
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(a) Partial blocking in adiabatic fi-
delity for different N .
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(b) No energy splitting at t = 0.
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(c) Usual parity switching of the in-
stantaneous ground state.

Figure 3.5: Numerical results for quenching with µi = 0 for the odd sector. This is the special case where
the initial state is in a superposition of the odd and even parity states.Thus the time evolved states will not
be completely ‘parity blocked’ but the amplitude of adiabatic fidelity will be reduced. As we go to smaller N
the splitting is exponentially enhanced and one can clearly see the effect of it in ‘skewing’ the superposition
towards the state which contributes to the ground state.

where the last term on the right hand side is given by a2N−1 if N is odd and a2N if N is even. We note

that C is both Hermitian and unitary, so that C2 = I. Recalling that fn = (1/2)(a2n−1 + ia2n) and

f†n = (1/2)(a2n−1 − ia2n), we find that C generates the particle-hole transformation

CfnC = (−1)n+N−1 f†n,

Cf†nC = (−1)n+N−1 fn. (3.26)

This is a symmetry of the Hamiltonian if µ = 0. We now note that the parity and charge-conjugation

operators P and C satisfy PC = (−1)NCP . Thus P and C anticommute if the number of sites N is odd.

Since P and C both commute with H if µ = 0, every energy of a system with an odd number of sites will

have a two-fold degeneracy with the two eigenstates having opposite fermion parities. (This can be shown

as follows. If |ψ+ > is an eigenstate of H and P with eigenvalues E and +1 respectively, the relations

PC = −CP and HC = CH imply that |ψ− >= C|ψ+ > is an eigenstate of H and P with eigenvalues E

and −1 respectively).

Therefore, starting from µi = 0 means starting with parity states whose degeneracy is not split. The

time evolution of an arbitrarily chosen ground state would therefore be that of a linear combination of both

parity states. Even though the parity of the instantaneous ground state would keep switching as one sweeps

through the topological phase, the overlap would be finite as the time evolved state will be in a superposition

of both parities. But the value of the adiabatic fidelity will be smaller than in the parity blocked case as the

amplitude is split between the two superposed states. Figure 3.5 shows the results for this unique case of

quenching. We can clearly see in Fig. 3.5 that the splitting is zero at time t = 0. This change in the initial
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Figure 3.6: Numerical calculation of O(t) for a closed chain with 34 sites. The periodic and antiperiodic
closed chains represent even and odd fermion sectors respectively. One can see that there is blocking in the
second case, whereas a small amount of overlap persists in the first case after crossing the critical point.
Also the envelope of the adiabatic fidelities for closed chains is compared with that of the open chain for the
same number of sites. Even though there is no ‘parity blocking’ within the topological phase in the case of
closed chain due to absence of the edge modes, the overall the behavior remains qualitatively the same.

condition drastically affects the evolution of the ground state and we do not see complete parity blocking in

this case.

Comparison with a closed chain: The case of parity blocking in closed chains with periodic and

antiperiodic boundary conditions has been studied in detail [2]. While the previous analysis involved

momentum modes, simplifying the problem to a set of two-level Landau-Zener systems, the real space

formalism is easily extended here to compute all the quantities for a closed chain. The numerical results

are shown in Fig. 3.6. Even though there is parity blocking in the case of an open chain, we may still

expect the envelope of the adiabatic fidelity to be comparable with that of the periodic case. In Fig. 3.6, we

see a good match between the envelopes in the two cases. For a closed chain, the final parity can flip from

the initial state depending on the boundary conditions. As can be seen, the parity does not change for the

periodic closed chain and therefore one still has a finite overlap. The match between the envelopes in the

open and closed chain cases is very close. This suggests that overall the open chain would also respect the

Kibble-Zurek behavior for the defect production and excitation density that was found in the closed chain

case. The crucial difference between open and closed chains is the parity blocking and switching due to the

coupling of the two Majorana end modes.
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3.4.3 Residual Energy

The numerical results for the variation of the residual energy with time using the full many-body formulation

in Eq. (3.24) is shown in Fig. 3.7 for both open and closed chains. The two cases have the same average

behavior. Both show a rapid increase in the energy of the system above the instantaneous many-body ground

state as they approach the critical point. This rapid rise is due to the system falling out of equilibrium upon

approaching the critical point and thus losing adiabaticity. Far beyond the critical point, we find that the

energy asymptotes to a fixed average value.
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(a) Residual energy for an open chain with N = 36
and N = 18.
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(b) Residual energy for a periodic closed chain with
N = 34

Figure 3.7: Residual energy plots with the critical point occurring at t = 2. One can notice in the case of
open chain the oscillations before crossing the critical point, which arise due to the oscillation of mid-gap
states.One can see that the steps arising due to the splitting scales inversely with the system size.

Effect of Majorana end modes: The crucial difference between the open and closed chains in Fig. 3.7

is the presence of the abrupt jumps at small times in the case of the open chain. Reflecting the behavior of

adiabatic fidelity, these jumps correspond to switching back and forth between the ground state and excited

states due to parity blocking. Upon comparing the behavior of the residual energy with the energy splitting

and parity switching, we find that there is a complete match between the points at which the jumps in the

residual energy take place and the points where the parity switching occurs.

Signatures of Loschmidt echoes: In addition to parity blocking, there is evidence for the Majorana-

mode related physics found in previous work on single particle dynamics in quenching [184]. The Loschmidt

echo studied in this work calculates the probability for an initial Majorana mode to become a single-particle

bulk excitation as a function of time as one sweeps through the critical point. If one varies µ(t) extremely

slowly so as to be close to the adiabatic limit, the gap between the mid-gap end states and bulk states

scales as 1/N on approaching the critical point since the dynamical critical exponent is equal to 1. The level

spacing of the low lying bulk states also scales as 1/N . Hence the Loschmidt echo turns out to be a periodic
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function with period N as one quenches to or across the critical point.
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(b) N = 36

Figure 3.8: The residual energy plots for a very small quench rate which is nearly adiabatic. In this case
one can see the periodic recurrence of excitations at times after crossing the critical point. The period is
doubled if we double the system size.

In the results from the real space many-body formalism, these echoes appears as ‘chirps’ of excitations

whose occurrence has a period of N . These excitations contribute to the overall energy of the state. Note

that this is true only if the quench rate is extremely slow. As shown in Fig. 3.8, one can see these oscillations

in the numerical results at a low quench rate like 1/τ = 0.1. The frequency of occurrence of these chirps in

the excitations is indeed halved when the system size is doubled. These chirps also appear in the adiabatic

fidelity.

To summarize, open and closed chains broadly show similar average behaviors as expected for quench

dynamics, However, both in the adiabatic fidelity and residual energy, distinct non-analytic features arise in

the form of jumps only for an open chain, and these can be attributed directly to the presence of end modes

and their associated fermion parity.

3.5 Real-space formalism for non-equilibrium dynamics

Here we present the details of the real-space formalism used for calculation of Adiabatic fidelity, ground-state

Fermion parity and residual energy.
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3.5.1 Calculation of adiabatic fidelity O(t)

Let us start with a general Hamiltonian which is quadratic in Majorana operators aj ,

H = i

2N∑
i,j=1

aiMij(t)aj . (3.27)

The antisymmetric Hermitian matrix iM has real eigenvalues which come in pairs±λj with corresponding

eigenvectors xj and x∗j , which are orthonormal to each other. We define a set of linear combinations of

Majorana operators in terms of these eigenvectors as

b†j(t) =
1√
2

2N∑
i=1

(xTj )iai,

bj(t) =
1√
2

2N∑
i=1

(x†j)iai. (3.28)

In terms of a (2N)-component vector b̄ = (b1, b2, · · · , bN , b†1, · · · , b
†
N )T , Eq. (A2) can be expressed as a linear

transformation

b̄(t) = B(t)ā. (3.29)

The rows of the (2N)-dimensional matrix B are the eigenvectors xTj and x†j , and B belongs to the unitary

group U(2N) with det(B) = ±1. In terms of bj , the Hamiltonian (A1) becomes, up to a constant,

H = 4

N∑
j=1

λjb
†
jbj . (3.30)

If |Ψ(0)〉 is the initial ground state of H at t = 0, then bj(0)|Ψ(0)〉 = 0. The instantaneous ground state

|ψins(t)〉 of H(t) is annihilated by bj(t), namely, bj(t) |ψins(t)〉 = 0.

We now want to find the adiabatic fidelity 〈Ψ(t)|ψins(t)〉. Let us examine the operators which annihilate

the time evolved state |Ψ(t)〉 and some of their properties. Let us say βj(t) |Ψ(t)〉 = 0. We want to put the

information of the time evolution with H(t) into βj(t). The time evolution of the Majorana operators aj is

given by their Heisenberg equations of motion:

daj(t)

dt
= −i[H(t), aj(t)] = −4

2N∑
k=1

Mjk(t)ak(t). (3.31)

In terms of a (2N)-component vector ā, the solution of the equation dā(t)/dt = −4M(t)ā(t) is given by the
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evolution operator

ā(t) = S(t, 0)ā(0). (3.32)

Here S(t, 0) = T exp(−4
∫ t

0
M(t′)dt′) which can be calculated numerically for a given M(t). It can now

be shown that β̄(t) = B(0)ā(t) = B(0)S(t, 0)ā(0), where β̄(t) is the (2N)-component vector comprising of

βj(t), β
†
j (t) similar to b̄(t). Therefore the relation between β̄(t) and ¯b(t) is given by

β̄(t) = B(0)S(t, 0)[B(t)]−1b̄(t). (3.33)

The key idea underlying the calculation in real space is to express all the quantities of interest in terms of

those which can be calculated numerically. We can see that given the form of the initial Hamiltonian H(0)

and the time-dependent H(t), the quantities B(0), B(t) and S(t, 0) can be easily computed. Given these

and the annihilation operators of the ground states, we will now derive the final expression for the adiabatic

fidelity.

Consider the Fock space of 2N states |φa〉, a = 1, 2, · · · , 2N . Their fermionic occupation numbers are given

by β†j (t)βj(t) = 0 or 1. For a |Ψ(t)〉 belonging to this Fock space, βj(t) |Ψ(t)〉 = 0; hence β†j (t)βj(t) |Ψ(t)〉 = 0

for all j. We now define the following operators Lj

Lj = βj(t) for 1 ≤ j ≤ N, (3.34)

= β†2N+1−j for N + 1 ≤ j ≤ 2N. (3.35)

In the Fock space, |Ψ(t)〉 is the only state which is not annihilated by the product L1L2 · · ·L2N . In fact,

L1L2 · · ·L2N |Ψ(t)〉 = |Ψ(t)〉 . (3.36)

We will make use of this fact to reduce the calculation in the 2N dimensional Fock space to a matrix

computation in 2N dimensions as follows. Consider the quantity

〈ψins(t)|L1L2 · · ·L2N |ψins(t)〉

= 〈ψins(t)|L1L2 · · ·L2N

2N∑
a=1

|φa〉 〈φa |ψins(t)〉

= 〈ψins(t)|L1L2 · · ·L2N |Ψ(t)〉 〈Ψ(t)|ψins(t)〉

= |〈ψins(t) |Ψ(t)〉 |2. (3.37)
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This can be simplified further using a form of Wick’s theorem given in Ref. [189], in terms of a (2N)-

dimensional antisymmetric matrix A defined as

Ajk = 〈ψins(t)|LjLk |ψins(t)〉 for j < k,

= −〈ψins(t)|LkLj |ψins(t)〉 for j > k,

= 0 for j = k.

This matrix can be calculated using the relation between β̄(t) and b̄(t) and the fact that bj(t) |ψins〉 (t) = 0.

Finally we get

〈ψins(t)|L1L2 · · ·L2N |ψins(t)〉 = Pf(A) = |〈ψins(t) |Ψ(t)〉 |2.

Since the Pfaffian is given by Pf(A) = ±
√
det(A), we see that the adiabatic fidelity is

|〈ψins(t) |Ψ(t)〉 | = |det(A)|1/4. (3.38)

Now we need to calculate the matrix elements Ajk. Since A is antisymmetric, we need to calculate only

the elements for j < k. These are given by

Ajk

= 〈ψins(t)|βjβk |ψins(t)〉 for j ≤ N, k ≤ N,

= 〈ψins(t)|βjβ†2N+1−k |ψins(t)〉 for j ≤ N, k > N,

= 〈ψins(t)|β†2N+1−jβ
†
2N+1−k |ψins(t)〉 for j ≤ N, k > N.

We need to evaluate each of these terms. We introduce G(t) = B(0)S(t, 0)B−1(t) so that β(t) = G(t)b(t).

Consider the first case j ≤ N, k ≤ N :

〈ψins(t)|βjβk |ψins(t)〉

=
∑
m,n

〈ψins(t)|Gjmb̄mGknb̄n |ψins(t)〉

=
∑
m,n

GjmDmnGkn. (3.39)
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The matrix D is given by

Djk = 〈ψins(t)| b̄j b̄k |ψins(t)〉

= 〈ψins(t)| bjbk |ψins(t)〉 = 0 for j ≤ N, k ≤ N,

= 〈ψins(t)| bjb†k−N |ψins(t)〉 = δj,k−N for j ≤ N, k > N,

= 〈ψins(t)| b†j−Nbk |ψins(t)〉 = 0 for j > N, k ≤ N,

= 〈ψins(t)| b†j−Nb
†
k−N |ψins(t)〉 = 0 for j > N, k > N.

Using this fact, we get

〈ψins(t)|βjβk |ψins(t)〉

=
∑
m≤N

Gjm(t)Gk,m+N (t)

= (first half of j-th row of G)× (second half of k-th row of G)T . (3.40)

Similarly the other elements of Ajk can be found and numerically evaluated as a function of time. Once we

have the matrix A, the adiabatic fidelity is simply related to its determinant.

3.5.2 Parity in a two-site problem

For an open chain, the overall parity of the ground state is decided by the fermion parity of the split energy

states arising from the overlap of the Majorana end modes. We will consider here the effective Hamiltonian

for such a system and illustrate how det(B) determines the parity of the system. The effective Hamiltonian

for the coupled Majoranas is given by

Hf = i2Ja1a2N . (3.41)

The eigenvalues are given by λ = ±J and the eigenvectors are x and its conjugate x∗, where

x =
1√
2

(
1

−i

)
. (3.42)

Using these eigenvectors we can construct the matrix B which transforms the Hamiltonian into the canonical

form.

B =
1

2

 1 i

1 −i


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Now suppose that J changes sign; then the eigenvalues are flipped and the rows in B are also flipped. The

sign of the determinant of a matrix changes when two of its rows are interchanged. The value of J also

changes sign, the energy corresponding to the state with a particular fermion parity changes. The sign of

det(B) precisely tracks this flip in the parity of the energy level which contributes to the ground state.

One can also see this from the calculation of the Pfaffian of the Hamiltonian for the two-site problem.

The Hamiltonian in the Majorana basis is given by:



0 −iµ/2 0 i(−w + ∆)/2

iµ/2 0 i(w + ∆)/2 0

0 −i(w + ∆)/2 0 −iµ/2

−i(−w + ∆)/2 0 iµ/2 0


The Pfaffian of this Hamiltonian is given by

Pf(H) =
µ2

4
− w2 −∆2

4
(3.43)

From this expression the Pfaffian changes its sign at µ2

4 = w2−∆2

4 . One can see that this is precisely the

condition we have in Eq. (2.82) for N = 2. As shown in Kitaev’s paper [47] we have the condition:

P (H) = sgn[Pf(H)] = sgn[det(B)]. (3.44)

3.5.3 Calculation of residual energy

The residual energy is defined as

Eres = [〈Ψ(t)|H(t)|Ψ(t)〉 − EG(t)]/|EG(t)|, (3.45)

where EG(t) is the instantaneous ground state energy. Let us calculate the first term in the expression,

〈H(t)〉. The matrix B(t) transforms the time-dependent Hamiltonian to the canonical form

H(t) = 4

N∑
j=1

λj(t)b
†
j(t)bj(t)− 2

N∑
j=1

λj(t)

= 4
N∑
j=1

λj(t)b̄N+j(t)b̄j(t)− 2

N∑
j=1

λj(t). (3.46)

82



Therefore, 〈H(t)〉 = 4
N∑
j=1

λj 〈Ψ(t)| b̄N+j(t)b̄j(t) |Ψ(t)〉 − 2
N∑
j=1

λj(t). From Eq. (A7) and using the definition

G(t) = B(0)S(t, 0)B(t)−1 from the last section, we obtain

b̄i(t) =
∑
j

G−1
ij (t)β̄j(t). (3.47)

As before, let us try to reduce everything to quantities which can be numerically computed.

〈H(t)〉+ 2

N∑
j

λj(t)

= 4

N∑
j

λj(t) 〈Ψ(t)| b̄N+j(t)b̄j(t) |Ψ(t)〉

= 4

N∑
j,k,l

λj(t) 〈Ψ(t)|G−1
N+j,k(t)β̄k(t)G−1

j,l (t)β̄l(t) |Ψ(t)〉

= 4

N∑
j,k,l

λj(t)G
−1
N+j,k(t) 〈Ψ(t)| β̄k(t)β̄l(t) |Ψ(t)〉G−1

j,l (t).

Now using

β̄j = βj for j ≤ N,

β̄j = β†j for N < j ≤ 2N,

we have

〈Ψ(t)| β̄k(t)β̄l(t) |Ψ(t)〉

= 〈Ψ(t)|βk(t)βl(t) |Ψ〉 (t) = 0 for k ≤ N, l ≤ N

= 〈Ψ(t)|βk(t)β†l−N (t) |Ψ(t)〉 = δk,l−N for k ≤ N, l > N,

= 〈Ψ(t)|β†k−N (t)βl(t) |Ψ(t)〉 = 0 for k > N, l ≤ N,

= 〈Ψ(t)|β†k−N (t)β†l−N (t) |Ψ(t)〉 = 0 for k ≤ N, l ≤ N.

Hence the required expression simplifies to

〈H(t)〉 = 4

N∑
j,k

λj(t)G
−1
N+j,k(t)G−1

j,k+N (t)− 2

N∑
j

λj(t). (3.48)
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Finally the expression for the residual energy is given by

Eres = [4

N∑
j,k

λj(t)G
−1
N+j,k(t)G−1

j,k+N (t)]/|EG(t)|. (3.49)

EG is calculated simply by summing over all the negative eigenvalues of the numerically diagonalized Hamil-

tonian, namely, −
∑N
j=1 λj(t), and the first term is calculated from G, which we already have to calculate

numerically to find the adiabatic fidelity.

3.6 Summary and conclusion

The study of non-equilibrium behavior in finite-sized Majorana wires demonstrates that the features of

topological phases can dramatically alter quench dynamics. We have seen here that the coupling between

Majorana end modes and the associated ground state parity flips as a function of a tuning parameter gives

rise to a drastic manifestation of parityblocking due to a succession of switches between topological sectors

within a single topological phase. As a result, some common measures studied in the quench dynamics

literature, such as wave function overlaps between time-evolved states and instantaneous ground states (the

adiabatic fidelity), and residual energies, show a series of non-analytic structures in the form of characteristic

jumps which are not observed in standard Kibble-Zurek physics. Although the energy splitting between

the Majorana modes goes to zero as we increase the chain length, the number of fermion parity switches

increases linearly with the length. This has a dramatic consequence for the adiabatic fidelity under a quench,

namely, parity blocking occurs more frequently as we increase the system size. (This is very different from

conventional finite size effects which typically vanish in the thermodynamic limit). We therefore see that

parity blocking is not merely a finite size effect, but is a relevant manifestation of the physics of Majorana

modes and their topological nature in any real system.

This study shows that quench dynamics serves well as a probe of topological phases. While blocking

features need not be unique to topological systems in that the invariants in other systems can possibly have

similar effects, they are necessary conditions under appropriate circumstances (for instance, open boundary

condition in the case studied here). Moreover, unlike in most other systems, such as ferromagnets having

local order, we expect this blocking phenomenon to be robust against local perturbations.

In fact, the issue of parity forms the basis of several discussions and proposals for Majorana wires,

particularly in light of the potential experimental discovery of isolated Majorana end modes and their

implications for topological braiding and quantum computing. Several schemes involve changing the on-site

chemical potential at specific locations as a means of manipulating and dynamically moving the isolated
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end modes. A popular study regarding the end modes is the fractional Josephson effect (see, for instance,

[47, 69, 185, 68, 74, 72]), which involves parity switches between two finite-sized Majorana wires connected

to each other at their ends and their effect on Josephson physics (in principle, other zero energy end bound

states could mediate such an effect). The study here is highly relevant to these lines of investigation and it

provides a dynamic quantum many-body formulation that goes beyond quasi-static approximations.

An experimental setup probing the predictions of parity blocking would be remarkable. In the setting

involving spin-orbit coupled wires, where the isolated end modes have potentially been observed, in principle,

ground state parity switches can be observed by coupling the wire to another system. For instance, a possible

read-out could involve tunnel-coupling to a quantum dot or STM tip (see, for example, [76, 186]). Cold

atomic systems [187] are another promising avenue where topological phases could be realised and parity

effects could be probed .

Finally, the study of parity blocking in quench dynamics presented here and the associated quantum

many-body formulation offer wide scope for further exploration. Several aspects of this initial study require

more detailed investigation, for instance, more involved studies of system size, and further connections

with Kibble-Zurek scaling and single-particle physics, including anomalous scaling due to boundary effects

and appearance of Loschmidt echoes. Oscillations have been found in the derivative of the Renyi entropy

with respect to the chemical potential in [188] and it may be interesting to see if there are such effects

related to the oscillations in the ground state parity. A host of open issues related to topological blocking

in Majorana wires include constraints on thermalization imposed by topological phases, effects of external

potentials, such as quasiperiodic potentials and disorder, and higher dimensional analogs, such as the Kitaev

honeycomb model.
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Chapter 4

Hawking-Unruh effect and quantum
Hall effect

Interlude: On structural parallels

The human mind is still ahead of the computer, for the moment and for a long time to come I hope, to detect

the structural analogies between theories which look quite different in content, but in which the same kind of

phenomena appear. Translation will never be a literal one, and there will always be two texts written in two

different languages and there will never be a one to one correspondence between the words of one language

and the words of the other. But there will be these strange hints which may well evaporate if you try to rush

and write them down too precisely. There are boxes that are very well understood on one side - and not

understood at all on the other. Even if it doesnt provides a key to open something, it binds us, it forces us

to think from the other side. – Alain Connes

Thus we seem to have partially demonstrated that even in foundations, not substance but invariant form

is the carrier of the relevant mathematical information. –F. William Lawvere

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. – Marcel

Proust

4.1 Introduction: Parallel structures

In physics, we see appearance of certain structures, models or concepts in multitudinous settings and at

different scales, even though their physical interpretation would be different within each context. A simple

harmonic oscillator and the two-level system are such prototypical quantum mechanical models that occur

in various contexts from atomic physics to superconducting systems . As Sidney Coleman says ”The ca-

reer of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of

abstraction”. It captures certain fundamental manifestations of quantum mechanics such as existence of

86



vacuum, occurrence of discrete spectrum, transition to classical picture and so on. The Ising model is also

such a model at a higher level of sophistication and captures many-body physics. It is one of the prototypical

modes for a class of classical and quantum phase transitions, predicting the critical exponents without the

requirement of details and only considering the dimension and symmetry of the model. We have various

such constructs that are of immense value in understanding phenomena across broad scales, such as the

Dirac equation, conformal field theories, Luttinger liquids etc.

There is also the emergence of very simple single particle quantum mechanics in complex many-body

systems. Such examples involve phase dynamics in Josephson junctions, quantum optics and quasiparticle

dynamics in lowest Landau level. All these examples take the form of ‘single-particle’ Schrodinger equations

in certain interesting potentials such as the Mathieu potential, Poschl-Teller potential for example. There are

also themes that historically appeared first in high energy physics, but are now part of mainstream condensed

matter physics. Dirac monopoles, Majorana fermions, Skyrmions and anomalies are just a few examples to

quote. Bear in mind that these structures are now accepted as the description of these systems rather than

as treating them as mere analogies to things that happened to appear first historically. The emergence of

certain bare structures of fundamental quantum mechanics at the level of condensed matter systems that

form the basis of standard experiments in labs, gives a tremendous opportunity to probe those structures in

depth. The concept of symmetry is a good guiding principle in trying to seek similar structures in different

phenomena. But once the concept of symmetry is invoked, one must be aware of all the mathematical

aspects it brings along because of its articulation in terms of group theory. From quarks to new topological

phases, symmetry arguments are extremely powerful.

In this chapter, we will be studying such parallel structures that arise in black hole spacetimes and quan-

tum Hall effect through symmetries, specifically in the context of thermality. On one hand, in the quantum

Hall effect one starts with a simple consideration of electrons in a magnetic field in two dimensions. This

gives rise to Landau levels, non-commutativity in the lowest Landau levels, quantized Hall conductance, edge

localisation, topological band structure, fractionalisation, anyons and many more fascinating phenomena[18].

This problem is one of the simplest instances of introducing gauge fields into quantum mechanics result-

ing in non-trivial effects such as the Berry’s phase. On the other hand, black holes are one of the most

intriguing astrophysical objects. They are one of the simplest macroscopic objects in nature in that they

are described by their mass, angular momentum and charge[10]. Their ‘construction’, at least classically, is

purely geometrical and yet they exhibit a plethora of features such as the singularities, one-way membrane,

quasinormal modes and wormholes[11] . Further, on introducing quantum mechanics, there is the emergence

of Hawking radiation[15] followed with the issue of its thermal interpretation and the information paradox.
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These phenomena continue to baffle us to this day and is an ongoing field of intense research. A black hole is

the key phenomenological entity in nature that forms the ground for interplay between quantum mechanics

and gravity. In fact, describing black hole thermality would be a test bed for theories of quantum gravity.

In this chapter, we will see that certain bare essential structures that appear in the description of thermality

in the presence of black hole horizons, also appear in the context of quantum Hall effect and the common

model appearing in both contexts is a simple quantum mechanical Hamiltonian of the inverted Harmonic

oscillator. This model is realised through applying a saddle potential to a quantum Hall system. The saddle

potential has been studied and well known in the field of quantum Hall effect and used to model systems

with point contacts[190, 191]. Quantum point contacts are an integral part of many experimental set ups

for conductance measurements. These are very important for studying shot noise and Anyon interferometry.

Therefore, the parallels constructed between the black hole phenomena and quantum Hall effect are easily

accessible to experiments. While it might be ambitious to expect such experimentally accessible parallels

to help in investigations on quantum gravity, the process of investigating these parallels is in itself a very

fruitful process. It helps us re-appreciate certain aspects of fundamental quantum mechanics. Casting the

well known physics of quantum Hall effect in the light of structures parallel to black hole physics, could lead

to better understanding of the quantum Hall phenomena.

This chapter is organised as follows: In the next section, an overview is given about the kind of parallels

we will be drawing between the two settings. This will be followed by a section where the basics of black hole

physics is reviewed. Black hole/Rindler thermality is derived using both path integrals and mode exapnsion

and the derivation of black hole quasinormal modes is presented. Then, the basics of quantum Hall physics

and lowest Landau levels is presented. Finally, the exact parallels of black hole thermality and quasinormal

modes are shown in lowest Landau level in the presence of an applied potential

4.2 An overview on structural parallels in quantum Hall effect

This section hopes to achieve two things. One is to paint in very simple terms, the heuristics appearing in

the emergence of the Hawking radiation or the Unruh effect and identifying parallel ones in the quantum

Hall systems. The aim is to try to boil both down to a unifying theme of quantum mechanical scattering

theory and its subtelties. This is to provide a simpler and intuitive picture to a reader not familiar with

these topics. The second aim is to summarize in succinct and exact terms, the parallels of the mathematical

structures and logical steps seen in these two disparate settings. The parallels we will be drawing are in

terms of exact mathematical isomorphisms and can be stated in minimal set of sentences. This will be a
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bit technical and terse, but serves the purpose of giving the exact crux of the parallels and also to give an

expert a quick but a complete glimpse. Both the discussions will not involve details.

Heuristics– A black hole is an astrophysical, macroscopic object emerging from the collapse of a star under

its own gravitational field. Inspite of the vast number of constitutional, thermodynamic, hydrodynamic and

other macroscopic complications that could arise in the collapsing star, the end product of a black hole is

a pure geometric entity. It is determined by a metric of a curved spacetime and can be defined completely

though quantities like Killing vectors which characterize the symmetries of the spacetime. A black hole

spacetime is defined by the existence of an ‘event horizon’ or from now just termed as the horizon. This

is defined locally as a light-like or a null surface frozen at a particular region in spacetime.To understand

in simple terms, consider a light wave front passing by an observer. The observer cannot travel to pass

through that light front again as its is forbidden by relativity to travel faster that the speed of light. One

can consider the horizon to be a closed, locally static lightfront through which objects can pass through but

cannot travel back. Thus the horizon bifurcates the spacetime into two parts- which we shall call ‘inside’

and ‘outside’ of the black hole. Geometrically, there is nothing ‘singular’ happening at the horizon itself. An

observer outside the black hole can set up a co-ordinates system to describe the physics happening outside

but because of the horizon property of the black hole cannot describe the inside. On the other hand, an

observer freely falling into the black hole does not see any thing special at the horizon(at at least classically)

and can set up another co-ordinate description of physics. This description would then cover the entire

spacetime except at the singularity.

When quantum mechanical degrees of freedom are considered on such a black hole spacetime, Hawking

showed that a far away observer sees the black hole radiating thermally and it decays(evaporates) gradually

through radiation. One can describe the story of black hole formation and evaporation as a scattering

scenario in the following way, paying attention to the spatial and temporal boundary conditions : A far

away observer at ‘spatial infinity’ sees at some ‘initial time’ an incoming state(‘in-state’) of a matter-energy

in some suitable ‘vacuum state’ collapsing radially to form a black hole. Once the black hole is formed

the outside observer does not have access to the physics happening within the event horizon. But at ‘later

times’, the observer at ‘spatial infinity’ sees the ‘decaying out-state’ of the evaporating black hole. Thus, an

observer ‘restricted’ to the outside of a horizon, sees an incoming state decay into a thermal state. Having

the boundary conditions mentioned here in mind, we will draw parallels between this thermality in the black

hole case and the transmission probability in the context of quantum mechanical scattering off an inverted

Harmonic oscillator(IHO).

A scattering problem off an inverted oscillator potential is depicted in Fig. (4.1). In terms of boundary
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Figure 4.1: Figure on the left shows the scattering barrier of an IHO. The scattering barrier divides the
region into half-spaces. There are incoming, reflected and transmitted states that belong to the energy
spectrum. Purely incoming and outgoing states have support only on one side, similar to the situation for
observer outside the event Horizon of a black hole. On the right is the scattering problem in a quantum Hall
system with an applied saddle potential (Figure adapted from [3])

conditions we have a similar situation to that of a black hole. Instead of ‘outside’ and ‘inside’, we have the ±

region corresponding to the left and right regions(Caution that we are not making an exact correspondance

between the two regions of black hole and those of the inverted oscillator). For an ‘an observer’ at ‘spatial

infinity’ on the right side, there are ‘in-’ and ‘out- states’. It happens that in the case of IHO, these ‘in- and

out-’ quantum mechanical states have support either only on the right side or the left side of the barrier.

The exact energy eigenstates on the other hand have tunneling and reflecting parts on either sides.(Note that

the purely incoming or outgoing states need not be real energy eigenstates of the Hamiltonian) . The very

setting of the scattering problem allows for a two-fold doubling (right and left) of purely outgoing energy

eigen states . But the observer on the right side can only measure one of them. Further, suppose you take a

purely ingoing state (that can be seen as a wavepacket of the energy eigenstates) the scattered state would

decay in time and would be a purely out-state on the right. This corresponds to the quasinormal or resonant

decay seen also in black hole scattering . The calculated tunneling and reflection amplitudes have exactly the

thermal form for the inverted oscillator scattering (this is not true for all scattering potentials) . Though this

is an illustrative sketch of an argument, we can already see that the time and space boudary conditions play

a very important role in the thermality appearing in both the black hole and the IHO scattering problem.

In fact, t’Hooft has proposed a scattering matrix (S-matrix) formulation of the black hole evaporation [192]

and a recent work [193] derives the black hole S-matrix from the inverted oscillator in some approximation.

On a technical side note, it must be mentioned that the S-matrix description is limited to matter-energy
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fields on the spacetime that do not have a back reaction and change the background metric.

To relate the scattering scenario to a physical set up, let us actually consider the first work where parallels

to Hawking radiation was proposed in the quantum Hall effect. In [3],M. Stone proposed that by applying

a saddle potential to a quantum hall system and restricting to the lowest Landau level, one can engineer

the semi-classical trajectories of the chiral states at the edge so as to get an analog of Hawking radiation.

As shown in Fig.4.1, the trajectories of chiral states branch out at y = 0 and have opposite velocities .

A transition between them is classically forbidden, thus demarcating y = 0 as the ‘event horizon’. But

one can have quantum mechanical tunneling between the branches and the tunneling probability is of the

’thermal form’ |t|2 = 1/(1 + eβε)(This will be explicitly calculated later)[250]. The applied saddle potential

when restricted to the lowest Landau level is the inverted harmonic oscillator(IHO) . Here one can think of

‘integrating out’ the states ‘inside’ the black hole (shaded region in the figure) to obtain a thermal state on

the ‘outside’. An entanglement perspective is also given in [3] by showing that one can get a thermal density

matrix by integrating out the ‘inside’ of the effective black hole. Further, an effective metric description can

be written based on the velocity profile of the chiral state in the presence of the saddle potential.

There have been several other works in the field of ‘Analog gravity’ in trying to ‘mimic’ black hole space-

times in superfluids, metamaterials, polaritons etc [194, 19, 195, 196, 197, 198, 199, 200] . The ‘spacetimes’

here resemble near-horizon behaviour of actual curved spacetimes but the idea is more of replicating the

equation of motion of a field in curved spacetime. These are realised as equations of motion of a field in an

engineered inhomogeneous condensed matter medium such as a superfluid or a metamaterial. It is remark-

able that quantum fluctuations considered along with such equations of motion give rise to Hawking-type

radiation and a thermal distribution like the one above.

Another route which we shall pursue here is to ‘go beyond the appearance’. Our goal here is not so

much to construct a spacetime lookalike but to capture bare minimum structures necessary for obtaining

the Hawking-Unruh effect. The symmetry structures are the central actors and lead us in directions that are

unexplored in quantum Hall physics. In the paragraphs above, an intuitive picture was painted about the

thermality emerging in a black hole setting, how there are parallels to the scenario of a scattering problem

and its realisation in a quantum Hall set up. The intention was to motivate the discussion on the parallels

between two disparate physical phenomena of black holes and quantum Hall effect.

Exact statements of the parallels– In the following we will be more precise and state succinctly what

are the structures of interest in black hole physics and their parallels in the quantum Hall effect . All the

concepts will be explained in detail in the following sections. The intention here is to show how elegantly

the black hole thermality is captured by very minimal set of concepts such as spacetime structure, symmetry

91



and their interplay with quantum mechanical states. It is exactly these structures we tap into when drawing

parallels with quantum Hall effect.

• Spacetime structure and horizons: A black hole spacetime have event horizons that are locally one-way

membranes that restrict certain set of observers from accessing information beyond the horizon. One

has a similar situation in a simpler setting of uniformly accelerating observers in Minkowksi spacetime.

They are restricted to a part of the Minkowski spacetime called the ‘Right Rindler wedge’(Rindler

spacetime) bound by the lightcone/ ‘Rindler horizon’ (4.2). In fact, the description of a general

spacetime with a horizon reduces to Rindler wedge near the horizon and contains most of the relevant

structure for the emergence of thermality.This forms a simpler stage for understanding thermality in

the presence of horizons.

• Spacetime symmetries–The lightcone structure of the Minkowski spacetime is preserved by the trans-

formations belonging to the Poincare group.The Lorentz boost is one of such transformations.

• Quantum fields– One has a quantum field defined over the Minkowski spacetime with a ground state

and operators acting on them.

• Hawking Unurh effect– Given all this, the statement of Unruh effect is - ” The vacuum in a Minkowski

spacetime restricted to the right Rindler wedge is a thermal state”.

• One of the crucial facts related to all this is - “The time translation τ in the right Rindler wedge is a

boost with rapidity τ with respect to the Minkowski spacetime.” i.e “Rindler Hamiltonian(generator

of time translation) is a boost with rapidity τ”.

We will explain in detail all the technical terms mentioned above.It would be a grave omission to not

mention that these statements are actually the basic ingredients of the ‘Bisognano-Wichmann theorem’

[201] which was adapted by Sewell [202] as a formal proof of the Hawking-Unruh effect. Our discussion

in this chapter will not be explicitly involving this theorem. But for completeness its salient aspects are

mentioned here without going to technical details. It starts by considering a Hilbert space, a vacuum state

and some bounded operators acting on them (satisfying conditions of locality, hermiticity and covariance).

These are defined on a Minkowki spacetime whose symmetries form the Poincare group. There is a unique

PCT(Parity, Charge conjugation and Time reversal symmetry) operation defined on these fields. Now the

theorem states that considering a set of operators localised within the Right Rindler wedge, the vacuum is a

thermal state with respect to the time-translations generated by the Lorentz boost1 . The theorem identifies

1More technically, the ‘modular evolution’ of the vaccum vector and the Rindler wedge is given by a unitary representation
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Figure 4.2: Minkowski spacetime (t, x) with the lightcone structure. The right quadrant forms the ‘Right
Rindler wedge’. A family of uniformly accelerating observers indicated by hyperbolae, are confined to the
this region. The statement of Hawking Unurh effect is that the Minkwoski vacuum restricted to the right
Rindler wedge is a thermal state with respect to the time translationsin the right wedge.

the operators within the right Rindler wedge with their counterparts which are complex conjugates but are

localised within the left Rindler wedge, thus implementing in an abstract way the Bogoliubov particle-hole

mixing and the Hawking-Unurh effect. This ends the quick discussion on the theorem noting that it brings

together in a fundamental manner certain key elements of spacetime structure, quantum field theory and

quantum statistical mechanics. There have been works that have made use of the theorem in the context of

condensed matter physics [203, 204] , black holes and information paradox [205] and has been of importance

in relating entanglement aspects of quantum field theories to gravity and geometry [206, 207, 208, 209]. 2

3. There are other approaches to the phenomena of Hawking-Unurh effect, such as tunneling [212, 213] and

anomalies [214].

Let us give an idea of what thermality entails in this context in familiar terms, one can imagine an

of the Lorentz boosts, which maps the Rindler wedge onto itself. On restriction to right Rindler wedge the operators acting
on the vacuum follow the KMS condition(after Kubo-Martin-Schwinger) 〈A(τ)B〉 = 〈BA(τ + i~β)〉, where β is the inverse
temperature. The KMS condition is the technical way of stating equilibrium thermality.

2To give a broader perspective of things. The mathematical machinary associated with the Bisognano-Wichmann theorem
is called the Tomita-Takesaki theory. This branch of mathematical physics, dealing with operator algebras, has been used
to give a formal foundation for quantum field theory[210] and quantum statistical mechanics[211]. It has become even more
important with recent developments in quantum field theory and entanglement [206]. Its relevance for the enigma of black hole
thermality[205, 208] makes it all the more crucial. The parallels to quantum Hall effect stated in this thesis are but the first
few steps in trying to see the relevance of these fundamental structures in condensed matter systems.

3On a personal note, during the initial days of working on this project, coming across these fundamental aspects was the most
exciting and happiest moments of my grad school life, only matching the excitement of learning general relativity and quantum
mechanics for the first time as an undergraduate. The possibility of getting to learn these topics and see if they manifest in
phenomena of different settings such as black holes and condensed matter has made the pursuit of physics in general exciting
than ever.
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observer in uniform accelerated motion in Minkowski spacetime. The statement that Minkowski vaccum

looks thermal to that observer is usually written as the observer measuring the particle content of the

Minkowski vacuum and finds it to be a thermal distribution:

〈n〉 =
1

eβE − 1
, (4.1)

where β is the inverse temperature.

The question now is whether some or all of these mathematical structures, such as the symmetry group,

a Rindler-like partition and the evolution given by a Rindler Hamiltonian, be captured in a non-spacetime

like condensed matter setting. The lowest Landau level of the quantum Hall effect provides such a plat-

form. In fact the Lowest Landau level(LLL) physics is not restricted to quantum Hall but emerges in other

systems such as rotating Bose-Einstein condensates, skyrmionic systems, topological phases etc. One of the

characteristic feature of LLL is the non-commutativity of the so called guiding center co-ordinates

[X,Y ] = i (4.2)

This commutation relation constrains the kind of Hamiltonians that can be written within the LLL. These

Hamiltonians are directly related to the kind of potentials we apply on a realistic quantum Hall set-up. This

constraint can be physically understood as follows- Restriction to the lowest Landau level means that we

need to preserve the applied magnetic field or the flux through the system. Therefore, any potential applied

on the quantum Hall system must preserve the area or the flux through the system. The set of symmetry

operations which achieves that are part of the sl(2,R) Lie-algebra, which have a specific set of commutations

relations between set the generators of the symmetry. Now we present the exact statement of our parallels

between the Hawking-Unruh effect and saddle potential in a quantum Hall system.

• The lowest Landau level is characterised by the commutation relation between the guiding center

co-ordinates [X,Y ] = i.

• The set of potentials in the Lowest Landau level are a set of area preserving transformations in two

dimensions. The generator of such operations form the Lie-algebra sl(2,R).

• The generators of sl(2,R) are the Hamiltonians acting on the single particle states in Lowest Landau

level. There are two hyperbolic transformations and one rotation.

• There is an isomorphism between the symmetry generators of the Lorentz group in 2+1 dimensions

and the symmetry generators of sl(2,R). This is the isomorphism sl(2,R) ∼ so(2, 1). The Lorentz
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Lie algebra consists of two boosts and a rotation. Thus one can identify the as parallels of Lorentz

kinematics in the lowest Landau level. 4

• The Hamiltonian in the LLL corresponding to one of the boosts is the inverted Harmonic oscillator

Hamiltonian(IHO).

• The IHO acts as a parallel to the Rindler Hamiltonian and generates Unruh-like effect in the quantum

Hall systems.

• The quasinormal modes are identified with the resonances of the IHO.

• The parallels can be generalized to phase space dynamics because of the isomorphism to the symplectic

Lie algebra: sl(2,R) ∼ so(2, 1) ∼ sp(2,R)

Each of the technical terms and the statements made here will be will be fleshed out in detail in the section

on quantum Hall effect and the section on parallels. The key message here is that the parallels of structures

drawn in the quantum Hall system are tapping directly into the bare structures responsible for the Hawking-

Unurh effect through exact isomorphisms. These bare structures are in terms of general concepts of spacetime

symmetries, which carries much more baggage than just being specific to the phenomena at hand. The added

advantage of this is that it does more than the intended task of getting an analogue of Hawking-Unurh effect.

It gives us ‘new eyes’ to see the quantum Hall phenomena in terms of Lorentz kinematics. Further, it gives

a unified picture for both facilitating exchange of insights between the disparate setting of black holes and

quantum Hall effect. Nevertheless, if these are too abstract, one can always revert back to the more intuitive

picture of scattering off an inverted oscillator, which by itself has more insights to offer. The last chapter of

this thesis is dedicated to the study of various features of the IHO.

This concludes an overview of the parallels and now we shall proceed to lay out the basics of both the

worlds of black hole physics and the quantum Hall effect before demonstrating the parallels. I

4.3 Spacetime physics, gravity and black holes

We shall start with a very quick review of the fundamental aspects of special and general relativity, stressing

on the aspects of symmetry generators, rapidity of boosts, Killing vectors which will help in understanding

4The idea of considering isomorphisms of Lie algebras was inspired by some of old works by Dirac[215] and Kim and
Wigner[216]. Dirac in his “Forms of relativistic dynamics” gives a prescription for constructing a Hamiltonian dynamics that
obeys the principle of relativity. His idea is to identify the generators and the algebra of the canonical transformations in the
phase space to the generators of the Poincare algebra of relativity. He then proceeds to argue that there are different ways of
realising this using constraints. We are not following Dirac’s methods in this work though the idea of identifying the Lorentz
algebra with sl(2,R) was inspired by that. The approach followed here is much closer to the work of Wigner and Kim, where
they build parallels of Lorentz Kinematics in quantum optics using the isomorphism so(2, 1) ∼ su(1, 1).
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the defining properties of black holes and the Hawking-Unurh effect.

The special and general theories of relativity form one of the foundations of physics as they provide

the framework and structure for the laws of physics. Let us first consider the special theory of relativity.

In contrast to the typical approach of focusing more on ‘things being relative’, length’s contracting, time

dilating etc, the precise content of special relativity lies more in what remains invariant and how physical

quantities transform relative to different frames of description. The postulates of special theory of relativity

are :

1) Covariance: The physical description of nature are covariant with respect to inertial frames of reference.

2) Universality of speed of light: Light always propagates in empty space with a definite velocity c which is

independent of the velocity of the observer in uniform motion.

Most laws of physics are stated in terms of mathematical relations between certain ‘physical quantities’.

Some of these physical quantities are directly measurable. The value of the physical quantities can change

as the state of its observer changes. But if the laws of physics, which are precise relations between these

quantities, change in an indefinite manner, a consistent description of nature would be difficult. The state-

ment of covariance is that the the form of these relations that are the laws of nature must remain the same

with respect to frames of reference that move with constant velocity with respect to another. This is called

‘Lorentz covariance’. Given this exact form, one could then deduce how quantities transform relative to

different frames. The startling revelation of special relativity is that space and time themselves change with

respect to different frames much in contrast with everyday experience. This follows from the other postulate

of relativity that the velocity of light is constant irrespective of the state of motion of the observer. This

necessitates that space and time comprise a bigger manifold called the ‘space-time’, where space and time

can change but leaves a particular structure of that manifold invariant.

This is where geometry enters into the picture and gives a structure to what Lorentz-covariance should

look like. It dictates that the spacetime structure is a geometric one. The spacetime relevant for the

description of physics with respect to inertial observers is given by a manifold with a metric ηµν . The

interval or the line element is then given by -

ds2 = c2dt2 − dx2 − dy2 − dz2 = ηµνdx
µdxν (4.3)

where ‘c’ is the speed of light and ηµν is the Minkowski metric ηµν = diag(1,−1,−1,−1) (We will usually

take c=1 unless otherwise specified.). Suppose one makes a transformation of co-ordinates x′µ = Λµνx
µ then

, the interval ds2 in the x′µ co-ordinates must remain the same. For that to be so, the spacelike distances
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and time-like intervals must change correspondingly. This results in the famous length contraction and

time dilation. The quantities defined over such a spacetime, be it a velocity vector, a gauge field or the

electromagnetic field tensor must transform in a ‘covariant’ manner such that the laws of physics remain the

same in different frames, though the physical manifestations will differ. Consider the example of Maxwell’s

equations for electromagnetism ∂αF
αβ = Jβ , where Fαβ is the Field strength tensor whose components

are electric and magnetic fields and Jβ is the4- current. If one makes a transformation x′µ = Λµνx
µ, the

quantities in the equation must ‘transform as Lorentz tensors’ such that the form of Maxwell’s equations does

not change: ∂′αF
′α′β′ = J ′β

′
. The physical manifestation of this is that the field strength tensor manifests

as an electric field for a static observer and would manifest with a component of magnetic field for a moving

observer.But in each of these frames Maxwell’s equations are satisfied. In this sense we want the laws of

physics to be Lorentz covariant.

Lorentz group and Lorentz Lie Algebra:

There are very specific set of transformations that can keep the metric of the Minkowski form invariant- i)

Spatial rotations about 3-axis ( with 3 parameters) ii) Lorentz transformations in 3 directions(3 parameters)

ii) Translations in all 4 directions(4 parameters). The group of these transformations form the 10-parameter

Poincare group in 3+1-dimensions. The subgroup of this that excludes the translations is called the ‘Lorentz

group’. This group structure dictates the kind of quantities that can be written and the form of relations

between them, if one wants a relativistic theory in terms of those quantities. The Lorentz group is important

as it is the symmetry group of Maxwell’s electromagnetism, Dirac’s equation and the Standard model.

The Lorentz group is represented as SO(d, 1) to indicate that it belongs to a group of special orthogonal

rotations on a space with a Lorentzian signature of one time-like component and d space-like components.

One can think of these as rotations of 4-vectors of the form (A0, A1, A2, A3) preserving the length AαAα =

A0A0 −A1A1 −A2A2 −A2A2.

The 2+1- dimensional Lorentz group SO(2, 1)and its Lie algebra so(2, 1) will be quite important for our

further discussions and that will be our point of contant in drawing parallels to black hole phenomena in

quantum Hall physics. The arguments that we give would also be valid for the SO(3, 1), the Lorentz group

of the spacetime of the so called ‘real world’. The SO(2, 1) group is a collection of 3 transformations - Two

boosts and a rotation. A familiar form of representation of these transformations acting on (t, x1, x2) is
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given by [216]:

B(0, β) = exp−iβK1 =


coshβ 0 sinhβ

0 1 0

sinhβ 0 coshβ

 (4.4)

B(θ = π/2, η) = exp−iηK2 =


1 0 0

0 cosh η sinh η

0 sinh η cosh η

 (4.5)

R(θ) = exp−iθL3 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (4.6)

The first two are the boosts along x1 and x2 directions and the last one is a rotation in the (x1, x2) plane.

The entities of interest to us are the generators of these transformations (K1,K2, L3). These generators

form a Lie-algebra defined through the relations [216]:

[K1,K2] = −iL3, [K3, L3] = iL1, [L3,K1] = iK2 (4.7)

Given this algebra and a representation for the generators, one can generate transformations on the space-

time manifold as well as the functions defined on them. This structure is extremely important in under-

standing the Hawking-Unruh effect and making parallels to it in the quantum Hall effect. We will see that

the boost generator is crucial in generating thermality and a potential acting on the Lowest Landau level

acts as a boost generator.

Causal structure of the spacetime- The metric gives a very specific causal structure for the spacetime.

Based on the sign of the metric, the separation between two space-time points are classified as i) Space-like if

ds2 < 0. Such points are called ‘Space-like’ separated and are causally disconnected. ii) Time-like if ds2 > 0.

Such points are time-like separated and are causally connected through exchange of matter and energy.

iii) Null-like if ds2 = 0. Such points are connected though light rays. All other four-vectors are similarly

classified as space-like, time-like and null-like. The Lorentz group generators mentioned above preserve this

structure under transformations. Its important to note that special relativity puts a constraint on the regions

of spacetime we can access. The inaccessibility of the full region of the spacetime leads to bifurcaton into

half-space and becomes quite important in our discussion on black hole physics and thermality.
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Boost as an imaginary rotation– Boost is one of the transformations in Lorentz group that takes the

observer from one frame to another and it can be view as a hyperbolic rotation in space-time. This way

of writing the boost will be extremely useful in understanding the Unruh effect. Transforming from a fame

with co-ordinates (x, t) to frame (x′, t′) moving velocity v is written as

t′ = t cosh(β) + x sinh(β) (4.8)

x′ = x sinh(β) + t cosh(β) (4.9)

Here β is called the ‘Rapidity’ parameter, given in terms of the usual Lorentz factor by coshβ = 1√
1−v2

. In

this way of writing the transformation, it can be easily seen by taking t → it, a boost with rapidity β is

a rotation of angle β in Euclidean spacetime (x, it). Also, the rapidities add with successive boosts unlike

velocities. If Λ(β) is the Lorentz transformation, then Λ(β1)Λ(β2) = Λ(β1 + β2). This provides an easier

way of understanding relativistic phenomena such as Wigner rotation. Note that We will make use of the

picture of boost as imaginary rotation in spacetime to derive the thermality in the Unruh effect.

General relativity: The key message of special relativity is that space and time are to be taken together

as a flat Minkowski spacetime geometry and the laws of physics for inertial observers are written on that

space-time manifold. The general theory of relativity is an extension to curved spacetimes. It makes an

explicit statement that a theory of gravity and its interaction with matter is a theory of geometry on curved

spacetime. Therefore, the line element ds2 now contains a metric which is a function of the space-time.

ds2 = gµν(xµ)dxµdxν (4.10)

The metric tensor gµν is the main physical quantity in the theory that describes the space-time. The

curvature of the spacetime is directly related to the stress-energy tensor of the matter considered. The

metric tensor is calculated as a solution to Einstein’s equations

Rµν =
1

2
Rgµν =

8πG

c2
Tµν (4.11)

Here Rµν and R are the Ricci tensor adn Ricci scalar which determine the curvature of the spacetime.

Tµν is the stress-energy tensor that characterizes the matter causing the spacetime curvature and G is the

universal gravitational constant. The Einstein’s equations form 10 linearly independent non-linear differential

equations and one must solve them to obtain the metric of the spacetime. Put in very simple terms, the

central message here is that the matter-energy tells spacetime how to curve and the spacetime curvature
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tells matter-energy how to move.

Once the metric is determined, various physical features of the spacetime and the behaviour of matter

on the spacetime can be calculated. The geodesic equation for the matter particles is obtained to be:

d2xµ

ds2
+ Γµαβ

dxα

ds

d2xβ

ds
= 0, (4.12)

where ‘s’ is a scalar parameter and Γµαβ is the Christoffel connection, which captures how the local bases

change on parallel transporting a vector along the trajectory.The particle trajectories obtained from these

would be curved trajectories. Therefore, what was thought of as motion of a particle under the influence of

a gravitational force of another massive object is nothing but a geodesic on the curved spacetime created

by the presence of a massive object in accordance with Einstein equations. The reader is referred to the

vast literature[11] on the theory of gravitation to experience it in its full grandeur. Here only the minimal

basics necessary for understanding the Unruh-Hawking effect is presented. Most of the relevant details are

presented by making use of the elegant Killing vector formalism.

Proper time in relativity: As we will using the concept of proper time quite often in the following

discussions, lets understand that here. Time is usual choice for parametrization of dynamics and trajectories.

But in relativistic cases, time transforms as one of the components of a four vector in the spacetime. A

suitable quantity that transforms as a scalar under Lorentz transformation is required and ‘proper time’ is

such a quantity. For a trajectory with time-like vector defined at every point, the proper time is defined

as the time measured by a comoving observer. For a co-moving observer, ds2 > 0 because of the time-like

condition and dx = 0 as the observer is at rest in the co-moving frame. Then the proper time is given by

∆dτ =

∫
ds =

∫ √
gµνdxµdxν (4.13)

4.3.1 Symmetries and Killing vectors

Symmetries play a crucial role in the theory of space, time and gravitation. A given set of symmetries

dictate the nature of solutions of Einstein’s equation and thus the resulting spacetimes. For example, there

are uniqueness theorems for spacetimes with spherical symmetry and asymptotic flatness. Any solution of

Einstein’s equations with those conditions will be related to Schwarzschild spacetime. One can make use

of these symmetries and obtain a lot of information about the spacetime without having to use specific

co-ordinates. Killing vectors provide one such way.

Consider a spacetime with the metric gαβ and vector field ξα defined on it. Moving along the vector field,
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the metric changes as a function of spacetime gαβ(xα + ξα) and to compare the change one must transform

the metric with the local basis change along the vector field. This difference is called the Lie derivative along

the vector field ξα [11, 10]:

Lξgαβ = gαβ(xα + ξα)− gα
′β′(xα

′
) (4.14)

This is equal to zero if the vector field ξα happens to be in the direction of symmetry .i.e the metric does

not change along the vector field. Then ξα is called a Killing vector field. The equation Lξgαβ = 0 can be

solved to obtain the Killing vector field. We will make use of such Killing vectors to define features of a

black hole.

4.3.2 Black holes

The presentation of black holes physics in this section is highly influenced by Prof. C. V. Vishveshwara.

Parts of this section follows the unpublished draft of an undergraduate textbook on black hole physics I

wrote with him before coming to graduate school.5

“Black Holes of nature are the most perfect macroscopic objects there are in the universe: the only

elements in their construction are out concepts of space and time. And since the general theory of relativity

provides only a single unique family of solutions for their descriptions, they are the simplest objects as well

- S.Chandrasekhar in ‘Prologue to “The Mathematical Theory of Black Holes” [10]

Black holes are one of the most intriguing predictions of Einstein’s general relativity. As mentioned in

the introduction, black holes are formed by the gravitational collapse of a massive star, but inspite of all

the complications in the details of the matter-energy content of the collapsing star, black holes are obtained

as pure geometrical objects in the general theory of relativity. They are obtained as solutions to Einstein’s

equation of gravitation. They are characterised by the existence of an ‘event horizon’, a surface of no-return,

which we shall define precisely below. Black holes also have a spacetime singularity at their ‘center’ where

geometrical quantities such as the curvature tensor diverge. The form of the black hole solutions to Einstein’s

equations is completely determined by the symmetry of the spacetime and the boundary conditions. The

typical boundary conditions for astrophysical black holes is ‘asymptotic flatness’ i.e at spatial infinity of the

spacetime it should approach the limit of a flat Minkowski spacetime. Birkhoff’s theorem[11] states that Any

spherically symmetric vacuum solution of Einsteins equation which is asymptotically flat must be a static

solution like Schwarzschild. . To illustrate the nature of the features appearing in black holes, consider the

5 I had the privilege of learning about black holes from Prof. C. V. Visveshwara. He introduced me to the beautiful world of
Killing vectors and symmetries. He pioneered the use of Killing vectors to define the properties of black holes before the name
‘black hole’ was coined. In his paper [217], he elegantly demonstrates the properties of null surface, static limit and infinite
redshift in black holes using the Killing vectors. Some of his other works employ Killing vectors to study various other aspects
of general relativity - [218, 219, 220].
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Schwarzschild spacetime written in the Schwarzschild co-ordinates -

ds2 =

(
1− 2M

r

)
dt2 − dr2(

1− 2M
r

) − r2(dθ2 + dφ2 sin2 θ) (4.15)

The ranges of the co-ordinates are given by

−∞ < t <∞, 0 < r <∞, 0 ≤ θ ≤ π, 0 ≤ θ ≤ 2π (4.16)

Here M is the Mass of the black hole One can see that there is a singularity at r = 2M , but this can

be removed by making an appropriate co-ordinate transformations. The actual singularity at r = 0 is

the curvature singularity and cannot be removed. The Schwarzschild co-ordinates are valid only outside the

r = 2M surface and do not give a complete description of the spacetime. As we shall see the r = 2M surface is

the ‘event horizon’ and this is the object of our interest.The defining properties of the horizon are described

below. Before jumping into that let us note that there is a conjecture called ‘No-hair conjecture’ which

states that a steady-state black hole is parametrised by only three independent parameters- mass, charge

and angular momentum. The Schwarzschild black hole is characterised only by its mass. The solutions to

Einstein’s equations that describe rotating and charged black holes are called Kerr and Reissner-Nordstrom

solutions respectively. We shall not delve into those aspects here.

Defining properties of a Black Hole– .

Lets first consider stationary spacetimes with time translation symmetry. A given spacetime could have

other symmetries in the space-like co-ordinates. Exploiting these symmetries will simplifies the calculation

and give insights to various phenomena without having to deal with co-ordinates [217].

We shall do so by defining a Killing vector ξα = (1, 0, 0, 0) , which is along the direction of the time

translation symmetry. These vectors can be used in the description of various physical phenomena in a very

simple manner. The projection of certain quantities, say momentum, along the Killing vector direction, will

be conserved along a geodesic. This would simplify the equation of motion. Most importantly, the killing

vectors are directly related to the geometry of spacetime. So, expressing phenomena in terms of these will

give a direct geometric and co-ordinate invariant description.

1. Static limit– Consider the scalar formed by the time-like Killing vector ξα is

ξ2 = ξαξα = gαβ ξαξβ = g00 (4.17)

As the scalar remains invariant under transformations, we can use it for a co-ordinate independent description
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to classify the vectors.

ξ2 > 0 Timelike (4.18)

ξ2 < 0 Spacelike (4.19)

ξ2 = 0 Null (4.20)

Four velocity of a static observer is given by Uα = (dxα/ds) = 1/
√
g00(1, 0, 0, 0) Expressed in terms of

Killing Vectors

Uα = ξα/
√
ξαξα (4.21)

We see that Uα becomes imaginary at ξ2 < 0 and we cannot define the four-velocity in that region. Thus,

the surface ξ2 = 0 or g00 is a static limit beyond which one cannot have static observers in the spacetime.

2. Infinite redshift surface–

The energy measured by an observer with four velocity Uα is

E = PαUα (4.22)

For example in flat spacetime Pα = m√
1−v2

(1, ~v) For an observer at rest Uα = (1, 0, 0, 0)

PαUα =
m√

1− v2
(4.23)

Since this is locally true it should be true in general relativity in arbitrary metric also. Therefore energy

measured by a static observer in a gravitational field :

PαUα = (Pαξα)/
√
ξαξα (4.24)

Suppose Pα is the four-momentum of a geodesic and if ξα is a killing vector of a symmetry, then Pαξα

is conserved along the geodesic. One can see from Noether’s theorem that the conjugate momentum is

conserved. Therefore for a static observer, the energy

E = (Pαξα)/
√
ξαξα) (4.25)

Now let us derive the formula for gravitational red shift in a very simple way using the above concepts.

Suppose there are two static observers at two different points in a gravitational field and one of them sends
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a photon to another. The ratio of the energies measured at the two points is

E1

E2
=

pαξα√
(ξαξα)1

√
(ξαξα)2

Pαξα
(4.26)

Pαξα is constant along a geodesic and since
√

(ξαξα)1 = (
√
g00)1 we have

E1/E2 = (
√
g00)2/

√
g00)1 (4.27)

(4.9) Taking the energies to be quantized E = hν ,we have

ν1/ν2 = (
√
g00)2/

√
g00)1 (4.28)

Thus, the frequency of a photon changes its frequency when exchanged between two static observers.

But now the points on which g00 = 0 is the horizon. Therefore, far away observer sees a photon infinitely

redshifted as it approaches the horizon.

3. One-way membrane – Consider an equation for a surface φ(xα) = constant, which has a normal

nα =
∂φ(xα)

∂xα
(4.29)

On the surface , nαdx
α = dφ = 0n.Therefore, nα ⊥ dxα .

n2 = nαnα = gαβφ,αφ,β (4.30)

As usual n2 > 0 implies a time-like surface , n2 < 0 a spacelike surface and n2 = 0 a null-surface.

Let us consider few examples in flat space . a) Consider the surface t = constant. Its normal nα =

(1, 0, 0, 0) and n2 = 1 > 0. Therefore it is time-like. All directions in the surface are outside the null cone.

We have only space like vectors here. All time-like curves can cross this surface only once, which is the

consequence of the fact that we cannot go back in time unless we travel faster than the speed of light.

b) Consider the surface y = constant , nα = (0, 0, 1, 0),n2 = −1 < 0. Therefore it is a space-like surface.

Space-like, time-like and null vectors can exist in this surface. It can also be crossed both the ways .

c) Now consider a surface t− y = constant . nα = (1, 0,−1, 0) and n2 = 0, making it a null-surface. The

normal to the surface is orthogonal to the tangent to the surface which itself is null. Therefore this surface

is self orthogonal. Time like curves can cross it in one direction but cannot cross it again. Unlike the case of

time-like surface, the null surface does not define a particular moment of time which cannot be recaptured.
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The best example is that of a light wave front. Once a wave front passes, you cannot overtake to cross it

again making it a one-way membrane. Now lets consider a curved spacetime with a metric gαβ and examine

the condition g00 = 0 at which there is a horizon:

g′αβ
∂x0

∂x′α
∂x0

∂x′β
= g00 = 0 (4.31)

This is an equation for a hypersurface: x0 = φ(x′α) = constant. Anormal to this surface is given by

ξ̄α = φ,α =
∂x0

∂x′α
(4.32)

Due to the null surface condition, we have

g′αβ ξ̄αξ̄β = 0 (4.33)

This shows the known fact that the normal ξ̄α is a null vector. If dx′α is a tangent to the hypersurface

φ = 0, then we have

dφ = φ,αdx
′α = ξ̄αdx

′α = 0 (4.34)

The contravariant component of the normal vector is ξ̄α.The differential dx′α is in the direction of

ξ̄α,orthogonal to the null vector. Therefore we can see that the hypersurface contains a tangent null vector

at every point. Through every point of x′α we can draw a cone of vectors dx′α. Therefore we have a local light

cone at every point of the hypersurface. Since the a light cone acts as a one-way membrane the hypersurface

also has the one-way membrane property at each point. The null hypersurface marks the points beyond

which information cannot be accessed by an outside observer making it an event horizon.

One can see that for a Schwarzschild black hole, at r = 2M surface is the static limit, infinite redshift

surface and the one-way membrane coincide. This is not the case for a Kerr black hole.

4.3.3 Myths about black holes

Here let us consider some commonly stated misconceptions about black holes and clarify them stressing on

the importance of the notion of a horizon. These myths were first stressed by C. V. Vishveshwara[221].

The gravitational pull of a black hole is so strong that nothing, not even light, can escape it It is true that

the gravitational effects near the black hole are extremely strong. The very fact that black hole is purely a

general relativistic notion suggests that. But it is certainly not that the strength of the gravitational pull

which is the sole reason for light not being able to escape the black hole. It is the property of the one
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way membrane which does not allow anything to come out of the black hole. Let us demonstrate this more

clearly. The spacetime curvature is the exact indicator of the strength of a gravitational field. From principle

of equivalence a free falling frame is locally equivalent to an inertial frame. But over longer time and length

scales there exist tidal forces, which lead to deviations from inertial frame like behaviour. These tidal forces

are directly related to the curvature. Now the curvature of the Schwarzschild spacetime and the tidal forces

are proportional to the mass divided by the cube of the radial distance R ∼M/R3. Consider a neutron star

of one solar mass with a radius of ten kilometers. One can show that the tidal force at the surface of this

neutron star is larger than the tidal force one could encounter at the event horizon of the black hole of over

five solar masses and radius of fifteen kilometers. Counter intuitively higher the mass of the black hole the

smaller the tidal force at its horizon. If you consider a white dwarf of one solar mass and with size of earth,

the force at its surface would be greater than that at the event horizon of a black hole of about hundred

thousand masses and above. It is only that the thrust required for sustaining a static observer at the event

horizon would be infinitely large. This is the notion of static limit. Therefore to say that nothing escapes a

black hole because of its strong gravitational field is an imprecise statement.

Let us consider another myth : A Black hole is so dense that it does not allow light or anything to escape.

As we have seen, a black hole is defined by a surface or a membrane. A surface in space is devoid of any

material content and the space it contains is empty except for the matter that has collapsed to the center.

There for the density of a black hole is not a well defined concept. If we could divide the mass of the black

hole by the volume of the sphere of Schwarzschild radius, we end up with a huge number for a solar mass

black hole. But if one calculates it for a super massive black hole it will be extremely small. Sir Oliver Ridge

calculated that for a black hole made up of million billion suns the density would be around million-billionth

of the density of the water. Therefore one cannot exactly define such a density. But we stress again that

the reason for objects not being able to escape the black hole is due to the one way membrane property.

These myths show us the one-way membrane or the horizon feature of the black hole is fundamental to

many properties associated with it. As we shall see it is also the horizon property that leads to Hawking-

Unurh effect. The horizon being a null-surface or a one-way membrane restricts an observer outside to the

information within the horizon. This leads to the black hole thermality. Now that we have reviewed the

basics of black hole physics, let us focus on the description of physics near the horizon, where the features

of Rindler spacetime can be used.
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4.4 Horizon physics: Rindler spacetime, horizon and Rindler

Hamiltonian

Before trying to understand the Hawking radiation and black hole thermality, it is useful to understand a

simpler version of it that occurs in accelerating frames called as the Unruh effect [222]. For an accelerating

observer, the vacuum in the Minkowski spacetime is a thermal state. This simpler scenario is shown to

completely capture the essential structures that give rise to Black hole thermality. The principle of equiv-

alence is at the heart of this relation between the two - An accelerating frame has effects of similar nature

as those present in the curved spacetime of gravitation. In fact Unruh was motivated along these lines[222].

Additionally, a spacetime associated with an accelerating observer called the ‘Rindler spacetime’ will be im-

portant in its own right for studying this effect. Here we will present the key aspects of relativity concerning

the the Rindler spacetime and then consider the quantum mechanics on top of that leading towards different

derivations and perspective on the Unruh effect. Throughout the discussion, the bare essential structures

necessary for the Unruh effect are highlighted and will be shown how they emerge in the quantum Hall effect

in a later section.

4.4.1 Accelerating observers and Rindler spacetime

Uniformly accelerating observers – The metric of a Minkowski spacetime in 1+1- dimensional spacetime is

given by

ds2 = dt2 − dx2 = ηµνdx
µdxν (4.35)

We want to calculate the trajectory (x(τ), t(τ)) of the uniformly accelerating observers with acceleration a.

The relativistic velocity parametrised by proper time τ along the observer’s trajectory is uµ(τ) = dxµ

dτ =

(γc, γ~v), where γ is the lorentz factor 1/
√

1− v2 and ~v is the usual velocity. Using the condition ηµνu
µuν = 1

and the acceleration defined as aµ(τ) = u̇µ(τ) is orthogonal to the velocity ηµνa
µuν = 0 . This leads to a

convariant condition for constant acceleration [223]

ηµνa
µaν = −a2 (4.36)

. From this one obtains the equation d
dt (v/

√
1− v2) = a. From this the trajectory of a uniformly accelerating

observer is given by a branch of the hyperbola x2 − t2 = a−2.

Now, to get the trajectories (x(τ), t(τ)), remember that the proper time τ is related to the Minkowski
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Figure 4.3: Spacetime diagram for Minkowski spacetime and the right Rindler wedge. The lightcone structure
in the Minkowski spacetime bifurcates the spacetime into spacelike and time like regions. A family of
observers with constant acceleration are indicated by hyperbolic trajectories. These observers are confined to
the spacelike region shaded in blue. This region is known as the ‘right Rindler wedge’, which can be described
in terms of co-ordinates (τ, ξ). The constant time slices are shown by slanted lines. The trannlsation can be
seen to be a hyperbolic rotation in the Minkowski space.

time t by : τ =
∫ t

0
dt′
√

1− v(t′)2. From this the trajectories are obtained:

t(τ) =
1

a
sinh(aτ) x(τ) =

1

a
cosh(aτ) (4.37)

Rindler Spacetime and Rindler horizon: The trajectories derived for a uniformly accelerating observer by

themselves form geodesics of a spacetime called the ‘Rindler spacetime’. Rather than considering trajectories

of observers in Minkowski spacetime, we can study the Rindler spacetime and its causal structure. They are

solutions of the Einstein’s equations. This spacetime plays a very important prototype for understanding

the black hole thermal physics.

The trajectories Eq.(4.37) with positive acceleration are restricted to the ‘right wedge’ of the Minkowski

spacetime: x > 0 and |t| < x. The lightcone t − x = 0 acts as a ‘horizon’ for these set of observers: The

observers in that part of the spacetime cannot access any information on t > x. Similarly, the accelerating

observers with negative a are restricted to the ‘left wedge’ and have a horizon. We are primarily interested in

such horizons in spacetimes, which when considered along with quantum mechanics give interesting results.

An observer at rest in the Minkowski spacetime(T (t), X(t) = (t, x)) can recieve information from the region
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t > x and do not percieve such a Horizon. Therefore, this notion of horizon is an observer dependent concept

with a dependence on the family of causal curves we consider.

A broad class of spacetimes including curved spacetimes of gravity, with a metric that is ‘conformally’

equivalent to the Minkowski metric are relevant for studying the horizon physics. Such a metric has the

form:

ds2 = Ω(ξ0, ξ1)((dξ0)2 − (dξ1)2), (4.38)

where the Conformal factor Ω(ξ0, ξ1) is a non-zero function. The trajectories of the light rays form the

‘light-cone’. If one has a family of curves such as Eq.(4.37) then t − x act as a horizon. For a co-moving

observer with proper time τ , (ξ0(τ), ξ1(τ)) = (τ, 0) on such a trajectory. The change of co-ordinates from

the Minkowski spacetime to a conformally equivalent spacetime is then determined from that condition to

be-

ξ0(τ) =
eκξ

1

κ
sinh(κξ0) ξ1(τ) =

eκξ
1

κ
cosh(κξ0) (4.39)

Here the acceleration of the observers is replaced by the parameter κ of the Rindler spacetime and we shall

stick to this use. The metric now reads:

ds2 = e2κξ1

((dξ0)2 − (dξ1)2). (4.40)

These co-ordinates have a range: −∞ < ξ0 <= ∞, −∞ < ξ1 < +∞. This covers only the quarter of the

Minkowski spacetime i.e the ‘right Rindler wedge’. The family of ξ0 = constant, ξ1 = constant curves are

shown in Fig.4.3. The family of accelerated observers also cannot perceive distances larger than κ−1 in

the direction opposite to the acceleration [224]. An observer at a space-like co-ordinate ξ1 = 0, ξ0 = 0 (an

observer with acceleration κ in Minkowski basically) measures an infinite range of co-ordinates −∞ < ξ1 < 0,

measure the distance:

d =

∫ 0

−∞
expκξ1dξ1 =

1

κ
(4.41)

This is restating that an accelerating observer cannot measure the entire Minkowski spacetime and is bound

by the horizon. One can change to a different space co-ordinate (1− κξ̄1) = eκξ
1

to write the metric as

ds2 = (1 + κξ̄1)(dξ0)2 − d(ξ̄1)2 (4.42)
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Finally, making a transformation (1 + κξ1) =
√

2κ` and τ = ξ0 we get,

ds2 = (2κ`)dτ2 − d`2

2κ`
(4.43)

This form of the metric is quite important especially for focusing on the physics near a horizon. The horizon

in this case is located at ` = 0. The advantage of this metric is that it can be exteneded to negative values

of ` to cover all four quadrants of the spacetime [225].

As will be shown below the Rindler metric is extremely important for the following reasons:

• Other curved spacetimes with horizons can be approximated to the Rindler spacetime of the above

form near their horizon.

• This set of co-ordinates are also useful in making an ‘extension’ to cover the full Minkowski spacetime.

This is technically known as the ‘Maximal extension’ and is used in extending the Schwarzschild co-

ordinate that covers spacetime outside the black hole to Kruskal-Szekeres co-ordinate that covers the

entire spacetime except the singularity.

• A non-trivial transformation between how the clocks tick (time translation) in the Rindler space and

the completed space is the key feature in giving rise to thermality near horizons and black holes.

4.4.2 Rindler approximation to black hole horizons

Now we shall show that a general curved static spacetime with a horizon can be approximated near its

Horizon can be to Rindler spacetime. This discussion will closely follow the elegant line of reasoning similar

to [225]. We saw that the Schwarzschild metric is of the form:

ds2 = f(r)dt2 − dr2

f(r)
+ r2dΩ2, f(r) =

(
1− 2M

r

)
(4.44)

The horizon in this case was located at r = 2M . One can in fact consider metrics of the above form with an

arbitrary function f(r), that has a simple zero at r = rH , which is the event horizon. The near the horizon,

the metric can be written as (focusing only on the time-like and space-like part of the metric) :

ds2 ≈ f ′(rH)(r − rH)dt2 − dr2

f ′(rH)(r − rH)
(4.45)
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Introducing κ = f ′(rH)/2 and ` = (r − rH), the metric reads as

ds2 ≈ 2κ`dt2 − d`2

2κ`
(4.46)

This is exactly the form of the Rindler metric we derived in the previous sections. This derivation is made

rigorous for a general spacetime in the following. This illustration that any black hole horizon spacetime

approximates to Rindler spacetime near the horizon is extremely important especially for the Hawking-Unruh

effect as the aspects of Rindler spacetime directly feed into its derivation.

Consider a spacetime ds2 = gµνdx
µdxνwith the following conditions:

1. Static in that given co-ordinate representation of the metric g0ν = 0, gab(t, x) = gab(x)

2. g00(x) = N2(x) that vanishes on a 2-hypersurface H. The hypersurface is defined by the equation

N2 = 0.

3. ∂µN is finite and non-zero on H

4. All other metric components remain finite and regular on H

The metric is then written as:

ds2 = N2(xa)dt2 − γab(xa)dxadxb (4.47)

Now, a family of observers can be constructed similar to the accelerating observers in Minkowski spacetime.

These observers are characterized by ~x = constant, four-velocity uµ = Nδ0
µ and four acceleration aµ =

uµ∂µu
µ = (0,−a). The spatial components of this are given by aa = (∂aN)/N . The unit normal to the

hypersurface N = constant is na = ∂µN(gµν∂µN∂νN)1/2 = aa(aba
b)−1/2. The normal component of the

four-acceleration is related to the surface gravity κ.

We can go to a co-ordinate where N is treated as one of the spatial co-ordinates and other spatial co-

ordinates xA are along the transverse directions to the N=constant surface. Such a co-ordinate change is

valid atleast locally. The components of the acceleration along N is given by aN = aµ∂µN = Na2. The

metric components in this set of co-ordinates are

gNN = γab∂µN∂νN = N2a2, gNA = NaA (4.48)

The metric line element now reads:

ds2 = N2dt2 − dN2

(Na)2
− dΩ2

⊥ (4.49)

111



where dΣ2 is the line element on the transverse surface.

The unit vector normal to the constant N surface as we calculated is given by na and the component of

the acceleration along this vector becomes the surface gravity of the horizon κ at the N=0 surface i.e in the

the limit N → 0,Na→ κ. Therefore, in the limit of going towards the horizon N → 0, the metric reads:

ds2 = N2dt2 − dN2

κ2
− dΩ2

⊥ (4.50)

Finally to switch to Rindler-like metric the transformation is d` = dN/a, ` ≈ N2/(2κ):

ds2 = 2κ`dt2 − d`2

2κ`
+ dΩ2

⊥ (4.51)

We have shown that a general static spacetime with a horizon can be approximated to the Rindler spacetime

in the limit of going towards horizon. This could be extended to stationary spacetime like the Kerr too but

with much more complicated analysis.

4.4.3 Boost as Rindler time-translation

”The time translation τ in the right Rindler wedge is a boost with rapidity τ with respect to the Minkowski

spacetime.”

This is one of the key facts that forms the crux of Unruh effect. The generator of time translation of in

the right Rindler wedge being identified with a boost, a symmetry generator of the Minkowski spacetime that

preserves the Rindler wedge, has non-trivial consequence and lead to thermality. One of the simplest ways

to see this in the Rindler spacetime is to go to lightcone co-ordinates. Typically the boost along x-direction

is given by : t→ t coshβ+x sinhβ, x→ t sinhβ+x coshβ, where β is the rapidity. If we switch to lightcone

co-ordinates u = t − x, v = t + x, the boost looks much simpler : u → ueβ , v → ve−β . Now relating the

lightcone co-ordinates to the Rindler co-ordinates :

u = eξ+τ v = eξ−τ (4.52)

One can immediately see from the above that a time translation τ would look like a boost in the lightcone

co-ordinates.

A much general discussion of this fact involves showing that the time-like Killing vector in the Rindler

wedge is the Boost Killing vector in the Minkowski. This result holds for other general metrics we saw to

be approximated to Rindler wedge spacetimes.
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Another useful approach is to view boost as a complex rotation with parameter iβ, as the hyperbolic

functions become trigonometric. Now, using this fact one can see that:

Time translation τ in the Rindler wedge is a rotation in the Euclidean time τE = iτ This fact becomes

important in the path- integral derivation of the Unruh effect.

4.5 Unruh effect and Hawking radiation

Now that the ingredients on the side of classical system of relativistic spacetimes are described, we can derive

the Hawking-Unruh effect by considering quantum mechanical degrees of freedom on the spacetimes with

horizons. Three different approaches for the description of Hawking-Unruh effect are presented. The path

integral approach is very strong in terms of capturing the bare essence of the phenomena purely in terms of

symmetry structures and properties of the quantum mechanical degrees of freedom.

Before getting into the derivations, it must be confessed that the discussion here does not cover the

crucial entanglement aspects of the Hawking-Unruh effect in much detail. But we note that entanglement

is at the heart of this phenomena and the reader is referred to the literature on it [226, 206].

4.5.1 Path integral approach

As presented in the previous section, the trajectories of the accelerating observers are restricted to the right

Rindler wedge in the full Minkowski spacetime. We also saw that in general static spacetimes with horizons

can be approximated to Rindler spacetime near the horizon. Therefore, we shall restrict to using the Rindler

spacetime in the below. Now, everything is set to bring quantum mechanics into the scene and derive the

Hawking-Unurh effect. The statement of Hawking-Unruh effect is this: Consider the vacuum of quantum

mechanical degrees of freedom on the Mikowski spacetime. On restriction to the right Rindler wedge, the

density matrix of the quantum mechanical state is a thermal one, given by :

ρ = e−2πHR/(}κ) = e−βHR , (4.53)

where HR being the Rindler Hamiltonian/ boost generator and β = 2π/(~κ) is the inverse temperature of

the thermal state .

To show this, we just need the vacuum state of a quantum field theory defined on the Minkowski spacetime

and the Rindler Hamiltonian. We shall follow the path integral approach to derive the density matrix in

the Rindler wedge [225, 206, 227]. In the path integral approach, it is convenient and illustrative to work in
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Figure 4.4: Time evolution in the lower half plane for the vacuum wave functional is covered in two different
ways for Minkowksi and Rindler co-ordinates . The Minkwoski time slices are dashed horizontal lines whereas
the euclidean time is along the angular direction. The initial state is given on the t = 0 surface which includes
the full range −∞ < x < ∞. For Rindler time slice τ , only the half-space is covered. The Rindler time
evolution in Euclidean time is a complex rotation in (t, x) space and is generated by the boost of rapidity τ .

Euclidean time τ = it. Making use of the Euclidean time evolution, we can get the ground state as :

|0〉 = lim
τ→∞

e−Hτ |χ〉 (4.54)

Here |χ〉 is any other state with 〈χ| 0 > 6= 0. Then one can see that taking E = 0 to be the vacuum state

lim
τ→∞

e−Hτ |χ〉 = lim
τ→∞

∑
E

e−Eτ |E〉 〈E|χ >= |0〉 〈0|χ > (4.55)

The vacuum wave functional can then be written as a Feynman path integral over different field config-

urations

Ψ0[φ] = lim
t→∞

〈φ| e−tHχ =

∫ φ(t=0)=φ

φ(t→−∞)=χ

Dφe−S/~ (4.56)

Here S is the Euclidean action corresponding to the Hamiltonian H. The initial state is given on a t = 0

hypersurface on the whole range of −∞ < x < ∞. This separates into two regions belonging to left and

right Rindler wedges. The field configurations in those regions is indicated by (|φR〉 , x > 0), (|φLx < 0〉.

The metric for the right Rindler wedge in Euclidean time is given by

ds2 = κ`2dτ2 + d`2 (4.57)

Here τ can be used as an angular co-ordinate with periodicity 2π/κ. The time evolution in Minkowski

time t = −∞ to t = 0 is therefore mapped to evolution along the angular co-ordinate from t = π → 0

as shown in Fig.(4.4). The lower half-plane in the time evolution in the path integral is covered in two
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different way for the Minkowski and Rindler co-ordinates. One can slice the path integral into integration

over field configurations at constant time slices. At each time slice the range of −∞ < x <∞ is covered in

the Minkowski spacetime. On the other hand, for each constant τ , the range of ∞ > x > 0 is covered in the

Rindler co-ordinates. This allows us to write the path integral as

Ψ0[φ] =

∫ φ(τ=0)=φR

φ(τ→π/κ)=φL

Dφe−S/~ (4.58)

Now the generator of complex rotation is a boost operator or the Rindler Hamiltonian. Due to the partition

from the Rindler wedge the state 〈φ| is now a tensor product of 〈φL| ⊗ 〈φR|. Considering these, the path

integral takes the form

Ψ0[φL, φR] = 〈φR| e−πHR/κJ |φL〉 (4.59)

The final state φL is written as J |φL〉, where J is the PCT(parity, charge conjugation and time-reversal)

conjugation operator which comes along with the Lorentz symmetry. Now integrating over the fields φ,

|0〉 =

∫
DφLDφR |φL〉 |φR〉 〈φR| e−πHR/κJ |φL〉 =

∫
DφL |φL〉 e−πHRJ |φL〉 (4.60)

Finally, we can obtain the density matrix with suitable normalisation

ρ = TrL |0〉 〈0| = e−2πHR/κ (4.61)

The above discussion clearly shows that the quantum mechanical degrees of freedom on the right and left

Rindler wedge are entangled in the vacuum state and restricting to one of the wedge ‘integrates’ over the

other to give a thermal density matrix. This derivation illustrates the fundamental nature of this effect. The

key ingredients in the entire discussion involved the Lorentz symmetry of the spacetime and the path integral

formalism of the quantum mechanics. This also links back to the discussion about the Bisognano-Wichmann

theorem in the overview section.

4.5.2 Wave-equation, mode expansion and particles

Now we move on to deriving and interpreting the Hawking-Unruh effect using wave equation of fields and

mode expansion in terms of particle states [224]. This derivation is along the lines of derivation in Hawking

and Unurh’s original papers [15, 228, 222]. This gives a more intuitive derivation in terms of known concepts

of particles but that is also its drawback. One runs into issues about the interpretation of the particle content

corresponding to the thermality of the Hawking-Unurh effect [229].
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There is a way to define the particles and compare the particle content in the Minkowski and Rindler

frames. Then one arrives at the result that the Minkowski vaccum is a thermal bath of particles for the

Rindler observer. “Particles” are defined as positive frequency modes of a given field. But the positive

frequency is defined with rest to the proper time of the observer. As we saw the time co-ordinate in the

Minkowski (t) and the accelerating frame (ξ0) are related in a non-trivial way. The Rindler time translation is

a Lorentz boost. As a result, comparing the positive frequency modes results in a Bogoliubov transformation

operators associated with the hyperbolic transformation of the boosts. Thus the notion of ”particle” changes

when we switch frames and leads to the Hawking-Unruh effect.

To show this consider a massless scalar field in 1 + 1-dimensional spacetime,

S[φ] =
1

2

∫
gαβφ,αφ,β

√
−gd2x (4.62)

This action is conformally invariant and therefore the actions in Minkowski and Rindler co-ordinates look

the same.

S =
1

2

∫
[(∂tφ)2 − (∂xφ)2]dtdx =

1

2

∫
[(∂ξ0φ)2 − (∂ξ1φ)2]dξ0dξ1 (4.63)

In lightcone co-ordinates, the field equations become

∂u∂vφ = 0 ∂ũ∂ṽ = 0 (4.64)

The right-moving positive frequency solutions in the Minkowski space are given by

φ ∝ e−iωu = e−iω(t−x) (4.65)

The rightmoving positive frequency solutions in the Rindler space is given by

φ ∝ e−iΩũ = e−iΩ(ξ0−ξ1) (4.66)

Now we shall do a mode-expansion for the fields in the two spacetimes.The Minkowski vacuum |0m〉 is

annihilated by the operator

âω |0M 〉 = 0 (4.67)

Similarly the Rindler vacuum |0R〉 is annihilated by

b̂Ω |0R〉 = 0 (4.68)
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Given these the mode-expansion is given by

φ̂ =

∫ ∞
0

dω√
4πω

[e−iωuâω + eiωuâ†ω] + (leftmoving) (4.69)

φ̂ =

∫ ∞
0

dΩ√
4πΩ

[e−iΩũb̂Ω + eiΩũb̂†Ω] + (leftmoving) (4.70)

These operators obey the commutation relations

[âω, â
†
ω′ ] = δ(ω − ω′) (4.71)

[b̂Ω, b̂
†
Ω′ ] = δ(Ω− Ω′) (4.72)

The two operators are related by Bogoliubov transformations

b̂Ω =

∫ ∞
0

dω[αΩωâω − βΩωâ
†
ω] (4.73)

The co-efficients αΩω and βΩω are given by

αΩω, βΩω = ± 1

2πa

√
Ω

ω
e±

πΩ
2a exp

(
iΩ

a
ln
ω

a

)
Γ(−iΩ/a) (4.74)

Now that we have all the ingredients in place, we can compute the expectation value of the number of

particles N̂Ω = b̂†Ωb̂Ω in the Minkowski vacuum

〈N̂Ω〉 = 〈0M | b̂†Ωb̂Ω |0M 〉 =

∫
dω|βωΩ|2 (4.75)

From this, the average density of the number of particles is given by

nΩ =
〈N̂Ω〉
V

=
1

exp(2πΩ/a)− 1
(4.76)

Thus, for an accelerating observer, the Minkowski vacuum looks like a thermal distribution of particles with

temperature given in terms of the acceleration

T =
a

2π
(4.77)
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One can

Schwarzschild black hole and Hawking radiation— Recall that the metric in the Schwarschild co-ordinates

is given by

ds2 =

(
1− 2M

r

)
dt2 − dr2(

1− 2M
r

) − r2(dθ2 + dφ2 sin2 θ) (4.78)

Introducing the Torotise co-ordinate,

dr∗ =
dr

1− 2M/r
(4.79)

the metric (considering only the radial and time part)becomes

ds2 = (1− 2M

r(r∗)
)[dt2 − dr2

∗] (4.80)

The tortoise co-ordinates is called so as it makes r change slower on approaching the horizon and takes the

horizon to r∗ → −∞. Now introducing the tortoise lightcone co-ordinates ũ = t − r∗ and ṽ = t + r∗, the

metric simplifies to

ds2 =

(
1− 2M

r(ũ, ṽ)

)
dũdṽ (4.81)

Schwarzschild and tortoise co-ordinates cover only the region outside the black hole and becomes singular

at the horizon.. Kruskal-Szekeres co-ordinates are used to extend the description of spacetime to the interior.

The transformation to kruskal-Szekeres co-ordinates are given by

u = −4Mexp(−ũ/4M) , v = 4Mexp(ṽ/4M) (4.82)

The metric is now written as

ds2 =
2M

r(u, v)
exp

(
1− r(u, v)

2M

)
dudv (4.83)

Now we make the analogy to the derivation of Unruh effect in Minkowski space. Since the tortoise co-

ordinate covers only the exterior of the black hole, its similar to the Rindler spacetime. The KS co-ordinate

system which covers the entire spacetime except the singularity at the center, is similar to the Minkowski

spacetime. In fact the KS and the tortoise co-ordinates are related formally in exactly similar way as the

Minkowski and Rindler co-ordinates. The acceleration is replaced here by surface gravity κ = 1/4M . Thus

the derivation of thermal distribution of particles in Kruskal vacuum follows similarly and the temperature

of the Hawking radiation is given by

TH =
κ

2π
=

1

8πM
(4.84)

118



Thus, using both the path integral and the mode expansion approaches, we have seen the derivation

of the Hawking-Unruh effect. The key essence is that observer outside the horizon do not have access ot

the information inside the horizon. Therefore, when one considers a vacuum of a quantum field on the full

spacetime, observers outside the black hole or within the Rindler wedge perceive the vacuum as a thermal

state. The key concept central to both derivations is that the Rindler time translation is generated by the

boost. The boost being a complex rotation in euclidean time, acts on the quantum mechanical states leading

to thermality.

4.6 Black hole perturbations and quasinormal modes

Quasinormal modes are another manifestly characteristic phenomena associated with black holes. They

were pioneered in the context of black hole stability by C. V. Vishveshwara in [13] and has been studied

extensively since then [230, 231, 232]. It was shown that the late time decay behaviour of black holes are

completely determined by the black hole parameters such as mass, charge and angular momentum alone.

Here we collectively refer to the resonances in the scattering problem arising from a wave equation in curved

spacetimes as quasi-normal modes. The Hawking-Unruh effect was a purely quantum mechanical effect. The

quasinormal modes on the other hand can arise in the scattering of classical or quantum mechanical field.

Scattering resonances or the quasinormal modes are not extraneous or exotic as one might consider. On

contrary they are immediate consequences of having open boundary conditions in a scattering system. We

shall see more on the subtleties and surprises regarding boundary conditions and scattering theory in the

section on the IHO and scattering physics. Here we will show the basic set-up for studying a wave-equation

in a black hole spacetime and how a scattering problem arises in this context. We will show the appearance

of IHO in the limit of WKB approximation. Wave equations appear as equations of motion for fields that

can correspond matter or energy in the background of a metric. These could arise from perturbations of

scalar or higher spin fields without any back reactions on the metric. Or from the perturbation of the metric

itself, in which case the waves obtained are the gravitational waves.

The equation of motion for a masless scalar field is given by the Laplacian written for a curved metric

[231]

�φ =
1√
−g

∂

∂xν

(
gµν
√
−g∂µφ

)
(4.85)

If it is a Maxwell field (spin-1 gauge field), then Maxwell’s equation with no source reads

1√
−g

∂

∂xν

(
gρµgσν

√
−gFρσ

)
= 0 (4.86)

119



If we are considering the perturbation of a metric gµν = g0
µν + δgµν , then the linearised Einstein’s equation

is

δRµν = κδ(Tµν − 1/(D − 2)Tgµν) +
2Λ

D − 2
δgµν (4.87)

In stationary spacetimes, one can always do a decomposition of the field into a ‘radial part’ and an ‘angular’

part. The angular part is given by simple/ vector/ tensor spherical Harmonics. For example, for a scalar

field:

φ(t, r, θ, φ) = e−iωtYl(θ, φ)ψ(r)/r (4.88)

Here r is the radial co-ordinate for example in the Schwarzsschild spacetime. On such substitution the wave

equation reduces to the following form:

∂

∂r2
∗
ψ + V (r, ω)ψ = ω2ψ (4.89)

This resembles a quantum mechanical problem of scattering off a potential barrier V (r). The potential V(r)

for a Schwarzschild spacetime is given by

V (r) =

(
1− 2M

r

)
(
l(l + 1)

r2
+

2M(1− s2)

r3
) (4.90)

For scalar field the spin s = 0, for Maxwell gauge fields s = 1 and for gravitational perturbation of axial

type s = 2

Suppose, r1, r2 are the turning points of the potential V , the WKB wavefunctions outside the turning

points are given by [233]

ψi(r) ≈ V −1/4exp

(
± i
∫ ri

r

[V (r′)]1/2dr′
)

(4.91)

Within the region between the turning points, the potential can be approximated by a parabola. Thus

V (r) = V0 + 1/2V ′′0 (r)(r − r0)2 +O((r − r)3) (4.92)

Then the scattering equation becomes

d2ψ

dx2
+ (ν +

1

2
− 1

4
x2)ψ = 0 (4.93)

where x = (2V ′′0 )1/4eiπ/4(r−r0), ν+1/2 = −iV0/(2V
′′
0 )1/2. This is known as Weber’s equation, which is also

the Schrodinger equation in the quantum mechanical problem of scattering against an IHO potential. This
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derivation shows an equivalence between the classical scattering in a gravitational spacetime and a quantum

mechanical scattering problem. .

The general solution of the Weber equation/ IHO Schrodinger equation is given by

ψ = ADν(x) +BD−ν−1(ix) (4.94)

The asymptotic forms at large x→∞ is given by [233]

ψ ∼ Be−3iπ(ν+1)/4(4k)−(ν+1)/4(x− x0)−(ν+1)ei
√
k(x−x0)2/2 (4.95)

+ [A+B
√

2πe−iνπ/2/Γ(ν + 1)]eiπν/4(4k)ν/4(x− x0)νe−i
√
k(x−x0)2/2 (4.96)

Here k = 1/2Q′′0 and γ(ν) is the Gamma function. To obtain purely outgoing wave, set the co-efficient of

the incoming wave to zero. This involved finding ν such that Γ(−ν) =∞. This leads to a condition that ν

can take only integer values

Q0/
√

2Q′′0 = i(n+ 1/2) n = 0, 1, 2 (4.97)

Thus one can interpret this as the Schrodinger equation having imaginary and discrete eigenvalues and the

corresponding eigenfunctions as outgoing modes. We shall get back to the detailed study of quasinormal

modes as resonances with an eye for the sensitivity to boundary conditions and wave function normalisibility,

in the next chapter on the IHO.

QNMs are as fundamental characteristics of physical systems as its normal modes or the bound states.

In the context of black holes, the existence of a horizon explicitly makes it a dissipative phenomena, in the

sense that it absorbs all the energy fall into it and decays by emission of thermal radiation. In a general

open system, the boundary conditions necessitates the existence of QNMs to allow for purely incoming

or outgoing boundary conditions. The QNMs depend purely on the parameters of the black hole such as

the mass, charge and angular momentum and not any other details. This makes them the direct probes

to detect black holes. In fact, the first LIGO measurements achieved precisely that. For a Schwarzschild

black hole of one solar mass, the calculated decay time is 0.35ms [234]. The decay time in the remarkable

first measurement by LIGO from binary black hole merger was 4 milliseconds [235]. The QNMs hav ealso

become extremely important in the context of holography. They correspond to the poles of the retarded

green function of the boundary theory that is dual to a bulk geometrical spacetime.

Now that we have described the Unruh effect associated with spacetime horizons and the quasinormal

modes we can proceed to study their parallels in the quantum Hall effect. In the next section the basics
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of the quantum Hall effect and lowest Landau levels are presented to prepare for identifying the Lorentz

algebra structures appearing as the applied potentials.

4.7 Quantum Hall effect and the Lowest Landau level

Here we will review the basics of integer quantum Hall effect, existence of Landau levels, degeneracy in

the lowest Landau level and edge localisation are reviewed. Throughout the discussion, the points key for

drawing the parallels to black hole phenomena are highlighted

The quantum Hall effect is one of the most non-trivial macroscopic manifestations of quantum mechanics.

Historically, it was discovered through a dramatic experimental observation of von Klitzing and group [16]

that the fine structure constant could be determined with high precision through resistance measurements in

Hall systems. It was found that the Hall resistance is expressed only in terms of the fundamental constants

h(the Planck’s constant) and the elementary charge e, and does not depend on the properties of the material

under consideration. This was the discovery of the integer quantum Hall effect that the Hall conductance is

quantized in the integer multiples of (e2/h) [18]. The discovery of fractional quantum Hall effect was even

more intriguing as the conductance quantization was in fractions of (e2/h) . Investigations to understand

these phenomena have led to exploration of a rich variety concepts such as Berry’s phase, topological quantum

numbers, Anderson localisation, Chern-Simons theory and so on [9, 18]. This has given rise to the field of

topological phases which continues to be a topic of active investigation to this day.

Here we will show that the intriguing structures appearing in the context of relativistic spacetimes such

as black holes can be found in the quantum Hall systems by applying external potentials. The physical set

up of the integer quantum Hall effect consists of a two dimensional electron gas formed in a semiconductor

heterostructure such as a thin layer of GaAs sandwiched in between AlAs semiconductors. The electrons

are trapped in the layer of GaAs. This heterostructure is subject to strong magnetic fields of the order of

few Teslas and low temperatures(< 4K). The measured transverse resistivity ρxy is found to be quantized

and occurs as plateaus as a function of the magnetic field. The longitudinal resistivity is zero whenever the

transverse one is on a plateau. The values of the resistivity on the plateaus are given by:

ρxy =
2π~
e2

1

ν
, ν = 1, 2, 3.... (4.98)

The integer ν is measured to be precise upto 1 part in a billion. Such robust ‘quantization’ cannot be

captured through classical physics and is purely a manifestation of quantum mechanics.

We shall start with the quantum mechanical Hamiltonian of a single particle in the presence of a magnetic
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fields we are not considering interactions here

H0 =
1

2m

(
~p− e ~A

)2

(4.99)

Here ~A is the vector potential related to the magnetic field ∇× ~A = Bẑ. The canonical momentum operator

( termed as the Kinetic momentum)is given by

πi = pi − eAi (4.100)

The commutation relations between the kinetic momenta and the co-ordinates are then given by

[xi, πi] = iδij , [πi, πj ] = i
εij
`2b
, (4.101)

where the magnetic length is given by `B =
√

1/eB. The generator of translations in this case is not the

kinetic momentum but is given by a pseudo-momentum operator that commutes with the Hamiltonian [45]:

~K = ~p− ~A+ e ~B × ~r, (4.102)

where ~r is the regular position operator and [K,H0] = 0. Then the operator for a translation of ~δ is given

by T (~δ) = e−i
~δ. ~K . The components of pseudo-momenta do not commute with each other:

[Kx,Ky] = −ieB (4.103)

This results in the non-commutativity of the translation operators :

T (~a)T (~b) = T (~b)T (~a) exp (−i [~a×
~b]z

`2B
) (4.104)

This non-commutativity is a direct manifestation of the emergence of Aharonov-Bohm phase in the presence

of gauge fields in quantum mechanics. The theme of non-commutativity runs throughout our discussion and

is one of the key structures in the emergence of the Hawking-Unruh effect in the quantum Hall systems. As

already mentioned, we are focusing on the electron system in absence of electron-electron interactions. So,

transition to many particle physics can be done through product of single particle states.

Now, we would like to determine the form of single-particle energy eigenfunctions. To proceed, let us

choose the Landau gauge ~A = xBŷ. Note that on making a gauge transformation the wavefunctions gain a
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phase factor and probability densities are not affected. The Hamiltonian in this gauge is given by

H0 =
1

2m
(p2
x + (py + eBx)2) (4.105)

As py commutes with the Hamiltonian, the energy eigenstates can be written as

ψk(x, y) = eikyfk(x), (4.106)

where k is the momentum along y. Therefore, for each k one can write the Hamiltonian as that of a Harmonic

oscillator displaced from the origin

Hk =
1

2m
p2
x +

mω2
c

2
(x+ k`2) (4.107)

Here ωc = B/m is the cyclotron frequency. Therefore, for each k the the spectrum is that of a harmonic

oscillator

En = ~ωc(n+
1

2
) (4.108)

The energy levels En are called the Landau levels.

Degeneracy in the Landau levels– Using the Landau gauge helps us see the degeneracy in each Landau

level. Let us considered a system on a confined rectangular region Lx × Ly. This quantizes the plane wave

states along y-direction in the increments of ky = 2π
Ly

. The harmonic oscillator eigenfunctions along the

x-direction are localised around points x0 = −k`2 in the range 0 ≤ x0 ≤ Lx. This also imposes a constraint

on the allowed values of k: −Lx/`2 ≤ k ≤ 0. Then one can calculate the number of states per each energy

level:

N =
Ly
2π

∫ 0

−Lx/`2
dk =

eB(LxLy)

2π~
=

Φ

Φ0
(4.109)

where Φ0 = 2π~/e is the flux quantum and Φ = B(LxLy) is the total flux through the system. This indicates

that the number of states in the Landau level is given by the flux quanta through the system. Such a finite

sized system has edges and there are states that are localised near these edges. These edge states play an

important role in quantum hall physics.

Confining potential and edge-localisation: The edge of the system can be taken into consideration by

introducing a confining potential V (x) to the system along x direction. The assumptions about the potential

are that it varies slowly in the scale of ` and that it is smooth and differentiable. Taylor expanding the
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potential around the x0 points and considering it in the Hamiltonian, we get

Hk =
p2
x

2m
+

1

2
mω2

c (k`2 + x)2 + V0 + x
∂V

∂x

∣∣∣∣
x0

(4.110)

Since the additional terms are constants, completing the squares, the Hamiltonian can be modified into

(upto a constant)

Hk =
p2
x

2m
+

1

2mω2
c

(
k`2 +

∂V

∂x

1

mω2
c

+ x

)2

− 1

2mω2
c

(
∂V

∂x
)2 − k`2 ∂V

∂x
(4.111)

The energy eigenvalues are now modifed as

En(k) = ~ωc(n+
1

2
)− 1

2mω2
c

(
∂V

∂x
)2 − k`2 ∂V

∂x
(4.112)

From the above expression one can calculate the group velocity of the wavepackets composed of different

momenta

vy =
∂E

∂k
= − 1

eB

∂V

∂x
. (4.113)

From this one can deduce that the group velocity at the two edges will be opposite to each other. Therefore,

the left and right moving states are confined to different edges of the system. Thus the time reversal

symmetry is explicitly broken in the system. Let us note at this point that one way of creating black hole

horizon behaviour in the quantum Hall system is by explicitly engineering the spatial profile of this group

velocity [3].

Now one can explicitly compute the conductance in the system by calculating the current when a chemical

potential difference of ∆µ is applied across the ends of the system

Iy = − e

Ly

∫
dk
Ly
2π
vy(k) =

e

2π`2

∫
dx

1

eB

∂V

∂x
=

e

2π~
∆µ (4.114)

By noting that VH = ∆µ/e,

σxy =
Iy
VH

=
e2

2π~
(4.115)

In the presence of high magnetic fields, the system will be constrained to be in the lowest level state of the

ground states of the system. This state is called the lowest Landau level(LLL). We will be focused mostly

on the physics in the lowest Landau level.

Lowest Landau level– The symmetric gauge ~A = 1/2 ~B × ~r will be particularly convenient for studying
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the LLL. Also introduce two types of momenta π, π′ defined as π =
~

p+ e ~A, π′ = ~p− e ~A. The two momenta

commute with each other [πi, π
′
i] = 0 and also obey [π′x, π

′
y] = ie~B. Now introduce the ladder operators

a = (πx − iπy)/
√

2e~B and a′ = (π′x + iπ′y)/
√

2e~B. The Hamiltonian is now given by

H0 =
~ωc
2

(
a†a+

1

2

)
(4.116)

The second set of operators a′ generate the degeneracy within the Landau level. The general state in the

Hilbert space is given by |n,m〉 = (a†)n(b†)m√
n!m!

|0, 0〉. For n = 0 (i.e the LLL), the wavefunctions take a simple

and illustrative form if they are expressed in complex co-ordinates z = x− iy, z̄ = x+ iy. Then the operator

a takes the form:

a = −i
√

2

(
`∂̄ +

z

4`

)
(4.117)

The state that is annihilated by this operator gives the LLL wavefunction:

ψLLL(z, z̄) = f(z)e−|z|
2/4`2 (4.118)

The states within the degenerate space can be generated using the operators b = −i
√

2(`∂ + z̄/4`). The

basis of LLL wavefunctions is then given by acting with b† and one obtains a space of holomorphic functions

(called the Bargmann space):

ψLLL,m ∼
(
z

`

)m
e−|z|

2/4`2 (4.119)

This representation is illustrative as there is a natural interpretation of the states in terms of angular

momentum. If one defines an angular momentum operator J = ~(z∂ − z̄∂̄). Then the LLL states are

eigenstates of the angular momentum operator

JψLLL,m = ~mψLLL,m (4.120)

As we will see later, the applied potentials on the quantum Hall system when projected to LLL act as

Hamiltonians on the space of functions f(z). One then obtains a simpler form of Schrodinger equations in

the LLL.

This covers some of the basics of the vast subject of quantum Hall effect. One can find detailed exposition

in this vast subject in many textbooks and review articles [18, 45, 9]. Now we will turn our attention to

the potentials applied on the quantum Hall system that will lead to parallels with Lorentz Kinematics and

Hawking-Unruh effect. First we will study the application of saddle potential on the quantum hall system
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Figure 4.5: A quantum Hall system comprises of a two dimensional electron gas in the presence of a strong
magnetic field. The states at the edges have a chiral nature and are unidirectional. Point contacts are applied
as probes for conductance measurements and are modeled with a saddle potential V (x, y) = λ(x2 − y2).

without restricting it to the LLL and then look into the types of restricted potentials in the LLL.

4.8 Saddle potential and emergence of inverted harmonic

oscillator

Quantum mechanical tunneling in the saddle potential has been of interest in the condensed matter setting

since 1950’s [190, 191] because of its relevance to the semiclassical motion of electrons in metals with com-

plicated Fermi surfaces and also in the presence of high magnetic fields. Since the discovery of quantum

Hall effect, it has become even more important especially because of its relevance to systems involving point

contacts. Point contacts are key tools in conductance experiments and are used as probes for anyon inter-

ferometry and shot noise. It was shown by Fertig and Halperin [190] that the Hamiltonian for electrons in

two dimensions in the presence of a high magnetic field and a saddle potential, splits into two commuting

parts. One corresponding to a harmonic oscillator and the other to an inverted harmonic oscillator. The

tunneling between the semi-classical orbits is completely determined by the tunneling across the inverted

Harmonic potential. We will see that the inverted Harmonic oscillator will turn out to be the parallel of the

Rindler Hamiltonian in the quantum Hall system. Here will provide a gauge invariant derivation of Fertig

and Halperin’s result.

The Hamiltonian for the quantum Hall system in a saddle potential is given by

H =
1

2m

(
1

i
∇+ ~A

)2

+ λ(x2 − y2) (4.121)

Let us introduce the operators (assuming no specific gauge) b = 1√
B

(πx + iπy), [b, b†] = 1. (From this point
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we shall work in the units of ~ = c = e = 1).Now define the ‘guiding center co-ordinates’

Ri = xi +
1

B
εijπj (4.122)

These will be of crucial importance in the LLL physics and they form a non-commutative plane.

[Ri, Rj ] = −i 1

B
εij (4.123)

They commute with the kinetic momenta: [Ri, πj ] = 0. One can construct ladder operators from these

guiding center co-ordinates a = −i
√
B/2(Rx − iRy):

[a, a†] = 1 [a, b] = [a†, b] = 0 (4.124)

In the terms of these operators, the Hamiltonian reads

H =
ωc
2
b†b+

λ

B
(a2 + (a†)2 + b2 + b†

2 − a†b− b†a) (4.125)

One can see that the a and b operators are coupled in the above form and it is suitable to decouple them.

Making a rotation of basis that preserves the commutation rule

 a

b

 =

 eiφ/2 cos(θ) sin(θ)

− sin(θ) e−iφ/2 cos(θ)


 c1

c2

 (4.126)

The choice of φ = 0 and tan(2θ) = −4λ/(Bωc) removes the cross terms of the type c†1c2,c1c2., the

Hamiltonian is then simplified to:

H = Ωc†1c1 +
λ

B
(c21 + c†1

2
)−

∣∣∣∣Ω− ωc
2

∣∣∣∣c†2c2 +
λ

B
(c22 + c†2

2
) (4.127)

Here,

Ω =
tan θ

tan2 θ − 1
Ω− ωc

2
=

1

tan2 θ − 1
(4.128)

The parameter Ω is always positive for a given value of θ. A Bogoliubov transformation can be made to

diagonalize a part of the Hamiltonian with the choice of tanh(2θ1) = ΩB/λ and tanh(2θ2) = −λ/(B|Ω −
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ωc/2|).  ci

c†i

 =

 cosh θi sinh(θi)

sinh(θi) cosh(θi)


 γi

γ†i

 (4.129)

The Hamiltonian reduces to the form H = H1 +H2, where

H1 = E1(γ2
1 + γ†1

2
) (4.130)

H2 = E2(γ†2γ2 + 1/2) + constant (4.131)

We see that H1 corresponds to a squeezing operator whereas H2 corresponds to the harmonic oscillator.

Making another transformation X = (γ†1 − γ1)/(
√

2i), P = (γ1 + γ†1)/
√

2 and x = (γ†2 + γ2)/
√

2, p =

(γ2 − γ†2)/(
√

2i), we get

H = E1(P 2 −X2) + E2/2(p2 + x2) (4.132)

Thus the Hamiltonian for the quantum Hall system in a saddle potential is a sum of an inverted oscillator

and a harmonic oscillator, a result similar to that obtained in [190], but in a gauge invariant way. In the

limit B →∞, the system is restricted to one of the Harmonic oscillator levels and is equivalent to a Landau

level. Expressed explicitly in terms of guiding center co-ordinates, the Hamiltonian in the lowest Landau

level is the inverted oscillator. The transmission co-efficient is one of the key quantities derived in this set-up

as it relates directly to the conductance. The transmission co-efficient is given by: |t|2 = 1/(1 + e2πE) and

is completely determined by the physics of the inverted harmonic oscillator [190] In the following we will

examine the algebraic structure of the class of such potentials that can be written within the lowest Landau

level.

4.9 Lowest Landau level physics, applied potentials and strain

generators

On imposing the condition of preserving the flux through the quantum Hall system, the kind of potentials

that can be applied on the system is constrained. The external electrostatic potentials applied on the system

are important for conductance measurements. With recent advances in the understanding of response of

the quantum Hall system to geometric deformations, the generators of strain in the system that preserve

the flux are also important. Here we will consider both of them, study their algebraic structure and their
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Figure 4.6: Figure on the left shows the semiclassical trajectories for single particle states in a saddle potential
and scattering across the branches. Figure on the left shows the 3 different area preserving transformations
applied to the quantum Hall system in the lowest Landau level.

projection to the lowest Landau level.

Strain generators– To study the geometrical deformation on a quantum Hall system consider unifrom area

preserving deformations of a two dimensional system in a magnetic field. 6. Consider the transformations

on (xi, πi) generated by generators Jij : S = e−iλijJij , Λ = eλ and expect that SxiS
−1 = λjixj , SπiS

−1 =

Λ−1
ij πj This gives us the algebraic relations:

i[Jij , πk] = δikπj (4.133)

i[Jij , xk] = −δjkxi (4.134)

i[Jij , Jkl] = δilJkj − δjkJil (4.135)

The last condition defines the algebra of these generators which is the sl(2,R) lie algebra (we shall study

that soon). The strain generators can be written in terms of the (xi, πi) from the above conditions [236]:

Jij = −1

2
{xi, πj}+

1

4
{xi, πj}δij +

B

2
εikxjxk (4.136)

The first two terms generate shear in the absence of magnetic field. This can be easily seen from the fact

that πi are the generator of ‘kinetic translations’. The last term appears in the presence of a magnetic field

as gauge transformations and also compensates for the non-commutativity of kinetic momenta.

6Thanks to Barry Bradlyn for the notes on strain generators in lowest Landau level
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Three independent generators are given. The rotation generator is given by:

L = −1

2
εijJij = −1

4

(
B|~R|2 +

1

B
|~π|2

)
(4.137)

Two shear generators are then given by

Ja =
1

2
σzijJij =

1

4B
{πx, πy}+

B

4
{Rx, Ry} (4.138)

Jb =
1

2
σxijJij =

B

4
(R2

y −R2
x) +

1

4B
(π2
y − π2

x) (4.139)

Quadratic potentials– Now, in the same spirit one can write down the allowed quadratic electrostatic

potentials

V1 = λ1(x2 + y2), V2 = λ2(xy), V3 = λ3(x2 − y2) (4.140)

Expressing in terms of guiding center and kinetic co-ordinates

V1 = λ

[
R2
x +R2

y +
1

B2
(π2
x + π2

y) +
2

B
(Ryπx −Rxπy)

]
(4.141)

V2 = λ

[
1

2
{Rx, Ry} −

1

2B2
{πx, πy}+

1

B
(Rxπy +Ryπx)

]
(4.142)

V3 = λ

[
R2
x −R2

y +
1

B2
(π2
y − π2

y)− 2

B
(Ryπx +Rxπy)

]
(4.143)

Projection to the lowest Landau level – One can restrict to the LLL to study the electron dyamics in

the presence of high magnetic fields. We will see that the above mentioned potential take a simpler form of

Schrodinger equations when projected to LLL. Consider the Hamiltonian of the following form:

H = H0 + V =
1

2m
π2
i + V = ωc

(
b†b+

1

2

)
+ V (4.144)

The potentials V can be one of the electrostatic potentials Vi . The Hamiltonians in the presence of strain

generators are:

Ha = H0 +
4λ

B
Ja, Ha = H0 +

4λ

B
Jb, HL = H0 +

4λ

B
L (4.145)

Let us introduce the lowest Landau level projection operator PLLL that satisy the following relations with

Landau level lowering/raising operators and the angular momentum operators:[b, PLLL] = −PLLLb, [a, PLLL] =
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0 For a normal ordered function ofa, b operators, f(b, b†, a, a†) =
∑
n,m gnm(a, a†)(b†)nbm, the LLL projec-

tion is then given by PLLLf(b, b†, a, a†) = g00(a, a†) The a operators are given only in terms of the guiding

center co-ordinates : a = −i
√
B/2(Rx − iRy) and the b operators are similarly given in terms of the kinetic

momenta πi. The projection to LLL leaves us with expression only involving Rx, Ry. Also using the relation

for the strain generators PLLLJijPLLL = B
4 ε
jk{Ri, Rk}+O(1), one can see that LLL projections are given

by

PLLLV1PLLL == PLLLHLPLLL = |~R|2 +O(1) (4.146)

PLLLV2PLLL = PLLLJaPLLL =
1

2
{Rx, Ry}+O(1) (4.147)

PLLLV3PLLL = PLLLJbPLLL = (R2
x −R2

y) +O(1) (4.148)

Thus, we see that the strain generators and the electrostatic potentials lead to the identical forms of

Hamiltonian when projected to the LLL. This is grounded in the fact that both the potentials are generators

of the sl(2,R). From the above we can see that on projection to the LLL, the kinetic terms drop out and

the potentials Vi act as the Hamiltonians acting on the LLL states [237]. We see that what we have are 3

simple quadratic potentials. These generate the Hamiltonian dynamics in the LLL. Now connecting back to

Hawking-Unurh effect, recall that the Hamiltonian is the time translation generator and the boost playing

the role of Hamiltonian gave rise to the thermality. In the next section, we shall see that one of the above

potentials in the LLL are parallels to the Lorentz transformations and rotation in the Minkwoski case.

4.10 Lorentz Kinematics in the lowest Landau level

Hawking Unruh Lowest Landau Level
Platform Spacetime (x, t) Non-commutative plane [Rx, Ry] =

−i`2B in LLL
Invariant structure Spacetime metric ds2 = dt2 − d~x2 Commutation relation [Ri, Rj ] =

−i`2Bεij
Symmetry transfor-
mations

Metric preserving Lorentz transforma-
tions so(2, 1): Boost (K1,K2) and ro-
tations K0

Area preserving potentials sl(2,R):
Shears/Saddle (K1,K2) and rota-
tion/Harmonic K0

Rindler Hamilto-
nian

Boost Inverted Harmonic oscillator

Algebra of transformations [K1,K2] = −iK0 , [K0,K1] = iK2 , [K2,K0] = iK1

so(2, 1) ≈ sl(2,R)

Table 4.1: Table highlighting the parallels between the symmetry structures and platforms in the Hawking-
Unruh effect and the lowest Landau level

Let us rewrite the forms of the LLL potentials identifying P = Rx/
√
`B , X = Ry/

√
`B and renaming
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V1, V2, V3 as K0,K1,K3 respectively. Then we have the Hamiltonian in the LLL generated by applied

potential to be of the form

K0 = (P 2 +X2), K1 = (PX +XP ), K2 = (P 2 −X2) (4.149)

In the basis of LLL wavefunctions (Bargmann space), these can be written as differential operators [237]

K0 =
1

4

(
− ∂2

∂z2
+ z2

)
, K1 =

i

2
(z
∂

∂z
+

1

2
), K2 =

1

4

(
− ∂2

∂z2
− z2

)
(4.150)

These are exactly the generators of sl(2,R) (in a given representation). The group SL(2, R) consists to 2

dimensional matrices of unit determinant. One could think of these are area preserving deformations in two

dimensions and there are three generators of such a deformation. To get some intuition, one could think of

a square(4.6): it can be rotated within its plane and the area does not change- this is done by the rotation

generator K0. One can stretch it sideways increasing the length and decreasing the width preserving the area

or one could deform it to a parallelogram. These two are the shear transformations. The non-trivial part is

that the order of successive transformations do not commute, but the non-commuting part will always be

related to the third generators. This is expressed as the sl(2,R) ‘Lie-Algebra’:

[K1,K2] = −iK0, [K0,K1] = iK2, [K2,K0] = iK1 (4.151)

These generators are now the Hamiltonians acting on the LLL states. One can also think of them as the

generators of canonical transformations that preserve the commutation relation [Rx, Ry] = −i`2B . Such an

algebra that is present in the context of the symmetries of the Minkowski spacetime is the so(2, 1) which

was reviewed in one of the previous sections. In that context, the generators lead to transformation of the

spacetime (t, ~x) such that the metric ds2 = dt2−d~x2 is preserved. The generators were those of one rotation

and two boosts. The exact mathematical relation between two Lie algebras is a Lie algebra isomorphism.

sl(2,R) ∼ so(2, 1) (4.152)

Roughly speaking, one can map from one set to the other such that the algebraic relation in Eq.(4.151) is

always preserved. In this sense, the shear generators or the saddle- electrostatic potentials are equivalent to

the boosts and the rotation generators in LLL to rotation generators in spacetime. One must be cautioned

that this parallel atleast at the level of Lie algebra isomorphism should not be taken too literally, in the sense
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of treating the two dimensional quantum Hall system as a spacetime. We are particularly interested in the

action of the generator on the quantum mechanical states. In the quantum Hall system, these generators

are the Hamiltonians in the LLL and generate the time evolution of states. A summary of the parallels in

the structures between the two setting is given in the table 4.1.

This connection is extremely powerful as one can now think of generating quantum mechanical behaviour

that is generated by relativistic transformations, particularly Lorentz Kinematics. In the following, we shall

explore only a facet of this which manifests in the quantum hall effect as an equivalent to the Unruh effect.

4.10.1 Rindler Hamiltonian and the Hawking-Unruh effect in the LLL

We have seen that in the relativistic case, the boost acts as a generator of time translation or more precisely

angular time translation in euclidean time τ = it. In the specific case of a Rindler spacetime, the generator of

time translation was in fact the boost and was called the ‘Rindler Hamiltonian’. The immediate consequence

of the Rindler Hamiltonian/boost acting the quantum mechanical states was the Unruh effect. Therefore,

let us examine the shear generator/ saddle potential K3 that is parallel to the boost in the sense as discussed

above.

K2 =
1

4
(P 2 −X2). (4.153)

The above operator nothing but a quantum mechanical Hamiltonian for an inverted Harmonic oscilla-

tor(IHO)() . This is also equivalent to the generator K1 through a canonical transformation:

K1 = i
1

2
(XP + PX) (4.154)

This is called the dilatation generator and is an extremely important object in conformal field theory and

generates scaling transformations. We will make use of both the representations in out study of the IHO.

This identification of the inverted oscillator with the Rindler hamiltonian and the ensuing thermality has

been explored in the context of string theory in the name of c = 1 Matrix model. But more recently following

ideas of t’Hooft [192] of treating black hole collapse and decay as a scattering problem (as discussed in the

overview section.), Betzios et al [193] have shown that to an approximation the S-matrix of the black hole can

be exactly obtained from an inverted Harmonic oscillator. They have made use of the method of projective

light-cone construction to show the equivalence between the boost and the dilatation operator and finally

recognizing it as the IHO. In this context let us note even though we have considered the Lorentz lie-algebra

in 2+1- dimensions, the identification of the boost generator with the IHO is valid in 3+1-dimensions as

well [193].
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Now, let us consider the problem of quantum mechanical scattering off an inverted Harmonic oscillator

and show the appearance of a thermal-like tunneling probability. We start with the form of the Hamiltonian:

H =
1

2
(
p2

2m
− x2) (4.155)

The left and right sides of the barrier are denoted by ± and we take the mass m = 1/2 for convenience. The

scattering matrix relates the incoming states from left and right directions to the outgoing states on the left

and right, at energy E. The energy spectrum is a continuum in E : (−∞,∞).

The S-matrix relates the out and in states as follows |E,+〉out
|E,−〉out

 = Ŝ

 |E,+〉in
|E,−〉in

 (4.156)

Ŝ =
1√
2π

Γ

(
1

2
+ iE

) eiπ/4e−πE/2 e−iπ/4e−πE/2

eiπ/4e−πE/2 e−iπ/4eπE/2

 (4.157)

The derivation of the scattering properties and analysis of the IHO is given in detail in the next chapter as

it deserves a detailed treatment. Here we just state the results. From this the tunneling probability can be

immediately calculated

|t|2 =
1

1 + e2πE
(4.158)

The form of the tunnleing probability resembles a thermal distribution of degrees of freedom with energy E

similar to the one we encountered in the Hawking-Unruh effect.

One can obtain the thermal density matrix interpretation to this result by expressing an in-coming state

to the outgoing state [3]:

|0, in〉 = Nexp

[
i

∫ +∞

−∞
e−Eπ(b̂out,+E b̂out,−E + b̂out,−−E b̂out,+−E )

dE

2π

]
|0, out〉 (4.159)

The above âE , b̂E operators act on the vacua |0, in〉 , |0, out〉 respectively. A thermal density matrix can be

obtained by tracing out states on the −side:

ρ̂ = Σie
−2πEi |Ei,+〉 ⊗ 〈Ei,+| (4.160)

For completeness, let us also write down an effective metric in the quantum Hall system following[3]

and relating to the discussion on Rindler spacetime in the previous section. The effective velocity of the
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electron in the quantum Hall system under the application of the potential V (x, y) = λ(x2 − y2) is given

veff = λ
eB∂V/∂y = −(λe/B)y. This vanishes at y = 0 and that point can be interpreted as the event

horizon. The effective space-time metric with an ‘event horizon’ is then given by

ds2 = −dt2 +
1

veff (y)2
dy2 (4.161)

Using the veff = −κy with κ = λ/eB, we can write the metric in Euclidean time τ = it as

ds2 = Ω2(y)(dy2 + κ2y2dτ2) (4.162)

where Ω(y) = 1/(κ2y2) is a conformal factor. This is equivalent to the Rindler metric we had studied in the

previous section.

Thus, we have shown that the Rindler Hamiltonian, the crucial element in the the phenomenon of Unruh

effect can be captured as an exact mathematical isomorphism in the context of quantum Hall effect. The

thermality arises in the tunneling probability of scattering off an inverted oscillator potential. One can also

obtain a thermal density matrix and an effective Rindler space description in the quantum Hall system.

This concludes the demostration of the parallels of Hawking-Unurh effect in the quantum Hall effect with a

saddle potential.

4.11 Wavepacket scattering and quasinormal modes

QNM decay was originally predicted in the context of the stability of Schwarzschild black holes by C. V.

Vishveshwara in Ref. [13], as damped outgoing oscillations in response to incoming Gaussian wave packets..

Here, our map of black hole scattering to the quantum IHO problem [238, 233] and the resultant S-matrix

Eq. (4.157) enable us to explicitly characterize these damped oscillations, even if to the simplest approxi-

mation. The map also connects the black hole QNMs to previously unexplored dynamics of quantum Hall

systems in a saddle potential.

The S-matrix of Eq. (4.157) directly accesses the QNMs in its pole structure when analytically extended

to the complex energy plane[239]. Specifically, the residues of the poles are resonant (quasi-stationary, or

Gamow) states[240, 241]. These states explicitly decay in time and thus lie outside the standard Hilbert

space [242, 243]. The S-matrix for the IHO in Eq. (4.157) has poles at En = −i(n+ 1
2 );n = 0, 1, 2.., coming

from the Gamma function (see Fig. (4.7)). In order to probe these poles, as in both quantum scattering[239]

and black hole perturbations[231, 244], we employ a dynamic scattering process of impinging wavepackets
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Figure 4.7: Plots of wave-packet scattering off the IHO showing quasinormal mode behavior, as obtained
form analytical calculations.(a) Pole structure of the S-matrix of the IHO in the complex energy plane. The
blue crosses indicate the resonant poles of the IHO, and the purple boxes indicate generic resonance poles for
some arbitrary potential barrier. Closing the contour in the lower half plane is determined by the fact that
we have picked outgoing boundary conditions (b) A wave-packet composed of scattering energy eigenstates,
impinging on the barrier from the right. (c) The scattered wavepacket shows the “quasinormal ringdown”;
the form takes into account only a single pole for illustrative purposes. The scattered state escapes to infinity
as seen in its finite amplitude at large x, but as shown in (d), it exhibits an exponential time decay for a
given point x after t > log |x|

onto the potential, rather than energy eigenfunctions.

The wave packets for probing the scattering potentials comprise of a collection of scattering states that

are also eigen states. The asymptotic form of the scattering energy eigenfunctions of the IHO are given by

[26] (We shall derive them in the chapter on IHO):

χE(x→ −∞) ∼ i

√
2

|x|
(1 + e−2πE)1/2exp{−i(x

2

4
+ E log |x|+ φ/2 + π/4)} incident (4.163)

− e−πEexp{i(x
2

4
+ E log |x|+ φ/2 + π/4)} reflected (4.164)

χE(x→ +∞) ∼

√
2

|x|
exp{i(x

2

4
+ E log |x|+ φ/2 + π/4)} Transmitted (4.165)

Here

eiφ(E) = eπE/2
(1 + e−2πE)1/2

√
2π

Γ(
1

2
− iE) (4.166)
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In a textbook scattering problem in quantum mechanics, we have potentials such as square barrier, which

have a finite range. In such a case, we consider the plane waves of the form eikx to be the solution of

the Schrodinger equation asymptotically away from the barrier. The scattering problem is to calculate

the reflection and transmission amplitudes when these plane wave are incident on the barrier. In the IHO

problem, the scattering potential is no bounded, but the eigen-solution can be solved exactly and the

asymptotic form of incident, transmitted and reflected parts are given above. The modes eikx
2

can be

considered as the ‘plane waves’ of this problem.

To capture the effect of resonances which are specific poles of the scattering matrix, we need to consider

an incident wavepacket composed of scattering states of different eigen-energies following the notation in

[26]:

Ψi = i

√
1

|x|

∫
dEf̃(E)exp{−i(x

2

4
+ E log |x|+ φ/2 + π/4)}e−iEt (4.167)

The envelope function f̃(E) is peaked near E0 and is normalised as 2π
∫
dE|f̃(E)|2 = 1. Lets rewrite

Ψi = i

√
1

|x|
e−iE0−iΦ0

∫
dE[f̃(E)exp(−i(φ− φ0)/2)]exp(−i(E − E0)(t+ log|x|)) (4.168)

Here Φ0 = E0log|x| + x2 + φ0/2 + π/4 and fi(E) = f̃(E)exp(−i(φ − φ0)/2) We choose the wave-packet to

be Gaussian:

∫ +∞

−∞
dEfi(E)e−i(E−E0)t =

∫ +∞

−∞
dE(

1

2π3/2)1/2∆
e

(E−E0)2

2∆2 e−i(E−E0)t = (
∆

π1/2
)1/2e−t

2∆2/2 (4.169)

Ψi = iexp(−iE0t− iΦ0)

√
1

|x|
(

∆

π(1/2)
)1/2exp(−∆2(t+ log|x|)2/2) (4.170)

The reflected wave-packet is then given by

ΨR = −i e−πE0

(1 + e−2πE0)1/2
e−iE0t+iΦ0

√
1

|x|

∫
dEfr(E)exp(−i(E − E0)(t− log|x|)) (4.171)

fr(E) =
1√

2π3/2∆
e
−(E−E0)2

2∆2

[
1− e−2πE0

1 + e−2πE

]1/2
e−πE

eπE0
ei(φ−φ0) (4.172)

Substituting

eiφ = eπE/2
(1 + e−2πE)1/2

(2π)1/2
Γ(

1

2
− iE), (4.173)
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Fr =

∫
dEfre

−i(E−E0)(t−log|x|) =

∫
dE

e−(E−E0)2

/(2∆2)√
2π3/2∆

e−π(E−E0)/2 Γ( 1
2 − iE)

Γ( 1
2 − iE0)

e−i(E−E0)(t−log|x|)

(4.174)

Now, using standard methods of scattering theory we can extend the above integral into complex plane.

We see from above that the Gamma function within the integral has a pole in the lower half energy plane.

To access the lower half plane, we consider the times t > log|x|. The poles of the Gamma function Γ(x) are

at x = −n;n = 0, 1, 2. There for the poles of Γ(1/2− iE) are given by:

En = −i(n+
1

2
) (4.175)

The corresponding residue of the integral for reflection amplitude is then given by:

Res[Fr;E = −i(n+ 1/2)] =
e−(−i(n+ 1

2 )−E0)2

/(2∆2)√
2π3/2∆

e−π(−i(n+ 1
2 )−E0)/2 (−1)n

Γ( 1
2 − iE0)n!

e−i(−i(n+ 1
2 )−E0)(t−log|x|)

(4.176)

Lets pay close attention to the dependence on time and space in the above expression:

Ψr ∼ e−t/2elog|
√

2x| (4.177)

This indicates that the reflected wave decays exponentially in time and has finite amplitude at large x. This

is shown in Fig. 4.7. A Gaussian wavepacket is incident on the barrier in (b) and the reflected packet is

seen to escape to infinity in (c). At a later time the amplitude can be seen to be exponential suppressed

(as seen in (c))and has finite amplitude at large distances form the center. These are characteristic of the

quasinormal modes occurring in the context of black holes. While we study resonances here as arising from

the poles of the S-matrix a wave-packet scattering, they can be equivalently cast as states in a Rigged

Hilbert space having complex eigen-energies [242, 243, 240, 241, 245] arising in an open system with purely

outgoing boundary conditions. It is these boundary conditions that allow for seemingly nonunitary decay.

Such QNM decay arises in any system having a potential landscape characterized by a local maxima, such as

in Gamow’s theory of radioactivity[28]. Thus, this analysis predicts the existence of black hole-type QNMs

in our quantum Hall setting.
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4.12 Experimental signatures

The existence of the quasinormal decay has not be explored in the context of the quantum Hall systems.

A direct measure of QNM decay would require a time-resolved non-equilibrium setting. In the black hole

situation, the LIGO breakthrough recorded ringdown signals in cataclysmic black hole mergers, ushering

in the era of multi-messenger astronomy. For a Schwarzschild black hole of one solar mass, the calculated

decay time is 0.35ms [234]; the decay time in the remarkable first measurement by LIGO from binary black

hole merger was 4 milliseconds [235].

We now propose a setup in the quantum Hall situation for observing QNMs and derive analogous esti-

mates. A pinched point contact geometry creates a saddle potential in the bulk of the quantum Hall system.

Sources of bulk or edge state quasiholes undergo saddle potential scattering and tunneling as described in

the previous section. An indirect measure of QNM poles in the scattering matrix would be a Lorentzian

form for the associated tunneling conductance, known as the Breit-Wigner distribution:

G(E) =
(1/τ)2

(E − E0)2 + (1/τ)2
(4.178)

, where τ is the QNM decay rate and E0 is the real part of the resonant pole due to a confining potential.

Observing such features would allows to detect QNM behaviour. This has been done in certain point contact

experiments[246].

A direct measure would require a dilute beam of incoming quasiholes [247] that could enable time

resolving QNMs in the out-going beam. Considering a point contact of width d, for applied voltage V and a

background magnetic field B, we have that τ = d2B/2V , and λ = eV/d2. Putting in typical numbers for a

split-gate graphene junction [248], we find that τ ∼ 400ps, while ~effλ ∼ 125mK � ~ωc, and `B ∼ 5nm. We

anticipate then that the ringdown associated with quasihole wavepackets should be observable at a distance

of order 100nm from the point contact at times on the order of nanoseconds. Finally, we note that realistic

scattering potentials would have finite range, unlike the unbounded IHO; the Pöschl-Teller potential yields

a tractable candidate for such analyses [249, 191]. We suggest that the actual recorded temporal decay in a

given measurement would serve to recreate the underlying potential.

4.13 Summary and outlook

In this chapter, we have considered two fundamental phenomena of physics- black holes on the astronomical

scale and quantum Hall effect on the mesoscopic scale. We have seen that the black hole thermality and
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quasinormal decay can be captured in terms of their essential structures in the quantum Hall effect. Black

holes are characterised by existence of an event horizon and bifurcates the spacetime based on the accessibility

of information. This leads to non-trivial effects when quantum mechanical degrees of freedom are considered

in the full spacetime. The region outside the black hole does not have access to the region inside the event

horizon. This ‘restriction’ of the quantum mechanical states to outside the horizon leads to the vaccum in the

full spacetime emerging as a thermal state for the region outside. This phenomena can be captured in a much

simpler setting of the Unruh effect where one starts with a Minkowski flat spacetime. The Minkowski vacuum

restricted to a Rindler wedge is then the thermal state. This can be derived from minimal considerations

of the spacetime-structure, symmetry transfromations on the spacetime and the action of these symmetry

generators on the quantum mechanical states. The key element in the derivation is that the generator of

RIndler time translation/ the Rindler Hamiltonian is the boost. The Euclidean time evolution then results

in a thermal density matrix.

One can capture these essential structures in the context of a quantum Hall system with an applied saddle

potential. Restricting to the lowest Landau level, the allowed Hamiltonians are restricted to the generators of

sl(2,R) algebra. Making use of the isomorphism with the Lorentz group sl(2,R) ∼ so(2, 1), one can identify

the action of shear generator or the saddle potential on the LLL states to be similar to the the action of

boosts. The shear generator/ saddle potential when restricted to the LLL takes the form of the inverted

harmonic oscillator. The IHO is a prototypical scattering problem and provides a more physically intuitive

analogy with the black hole situation. The setting of the IHO scattering problem allows for purely incoming

and outgoing states on both sides of the barrier thus leading to a doubling in the quantum mechanical

states. Accessing the tunneling or reflected state on only side can be thought of as integrating the states

on the other side. This gives a natural interpretation of the thermal form of the tunneling probability. In

the quantum Hall system, the tunneling probability manifests directly in terms of conductance and can be

directly measured. The symmetry parallels between quantum Hall potentials and the relativistic generators

also allows one to explore Lorentz Kinematics in the LLL.

One of the immediate manifestations of open boundary conditions in a scattering problem is the existence

of quasinormal decay. These are the purely outgoing or incoming states with a characteristic and quantised

decay times. These are similar to the quasinormal modes one gets from the effective potential scattering

in the context of black holes. The time decaying behaviour and finite amplitude at spatial infinity are

characteristics of these states. These states can be obtained as eigenfunctions with the imaginary eigenvlalues

of the Hamiltonian. The states no longer belong to the regular Hilbert space but to a Rigged Hilbert space.

These are not to be seen as exotic and unusual characteristics of the system. The resonant states are as
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fundamental as the usual real energy eigenstates. They are a consequence of opening up the boundary

conditions in a scattering problem and this leads to emergence of features that are usually not explored

in the bound or closed quantum systems. The quasinormal decay manifests in the quantum Hall systems

as Breit-Wigner distribution in the conductance. One can also directly access them through time-resolved

measurements. The existence of these resonant modes have close connects to quantum chaos and thermality

in open quantum systems.

The formal aspects of the derivation of the Hawking-Unruh effect in the relativistic setting involve

the Bisognano-Wichmann theorem, which is further based on Tomita-Takesaki theory of operator alge-

bras. These formalisms are of fundamental importance in quantum field theory [201], quantum statistical

mechanics[211] and more recently in quantum gravity[206, 207, 209]. Our derivation of Hawking-Unruh type

effect in the quantum Hall system has tried to access some elements in those frameworks. It would be very

useful to transfer more insights from those to quantum Hall physics and could lead to a better understanding

of quantum Hall physics and thermality in general. The parallels we have drawn in the context of LLL have

much broader scope. The LLL structure is manifest not only in quantum Hall effect but in various other

settings such as skyrmionic systems, rotating BECs and metamaterials. Further, broadly much of what we

have said is applicable to the framework of phase space quantum dynamics that involves canonical transfor-

mations, coherent states and Wigner functions. It would certainly be interesting to explore the concepts of

quasinormal decay and thermality in that setting.

One of the key problems both in the context of Hawking-Unruh and quantum Hall is the interpretation

of thermality. The current paradigm seeks description of thermality in terms a statistical mechanics of some

discrete quantum mechanical degrees of freedom. One of the key requirements is the extensive scaling of

the thermodynamic quantitites with the bulk of the system assuming that the statistical degrees of freedom

lie with in the bulk. The entire frame work of Hawking-Unruh effect and the thermality appearing in that

context seem strange from that point of view. One of the key challenges would be to understand this

issue. But given that the parallels in quantum Hall effect are much easier to access experimentally, it would

hopefully provide some window to breakdown these issues into problems tractable through measurements.
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Chapter 5

A primer on inverted harmonic
oscillator and scattering theory

The IHO model exhibits potential scattering features that have made the model invaluable in a broad variety

of contexts since the birth of quantum mechanics [25, 250, 26, 27]. From its infancy, phenomena such as

particle decay [28] and metastability [29] have been analyzed using the IHO. In developments across the

decades, the IHO has played key roles in the context of chaos theory[30, 31, 32], decoherence [33, 34, 35] and

quantum optics [36] . In modern high energy physics and cosmology, it has provided a basis for understanding

2D string theory, tachyon decay[37, 38, 39, 40] and even inflation in the early universe[41]. There have been

many works that have studied in depth, the physics of inverted Harmonic oscillator[242, 243, 26, 27]. Here

we will present the salient aspects of the model such as the PCT symmetries, the energy spectrum, existence

of time decay states, importance of boundary conditions etc, highlighting the features that are usually

overlooked in the bound-state quantum mechanics presented in the textbooks.

5.1 Canonical transformations and different representations

The Hamiltonian for the inverted Harmonic oscillator in the position basis is given :

H =
1

2
(P 2 −X2) (5.1)

Here P and X are the usual momentum and position operators. In the position space basis, one gets a

Schrodinger equation

H =
1

2

(
− ∂2

∂x2
− x2

)
(5.2)

This is a Schrodinger equation for scattering off a parabolic potential barrier. Much like the harmonic

oscillator being the prototype for the bound state quantum mechanics, the IHO is a prototype for scattering

off smooth potentials.
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One can make a canonical transformation from the position basis to the‘’light-cone’ basis u± :

u± =
p± x√

2
(5.3)

The canonical commutation relation is still preserved in this basis: [û+, û−] = i. In this basis the Hamiltonian

is written as

H =
1

2
(u+u− + u−u+) = −± i

(
u±∂u± +

1

2

)
(5.4)

The states in this basis correspond to the incoming and outgoing states on the two sides of the barrier

denoted by ±. The Hamiltonian in this form is also called the ‘dilatation generator’ which generates scaling

on the functions it acts on. Expansion in its eigenbasis is called the Mellin transform, as we will see in a

following section. This form is also known as the ‘Berry-Keating’ Hamiltonian studied in relation to quantum

chaos.

Another representation of the IHO is in the form of ‘Squeezing operator’ which is well studied in quantum

optics. This representation is in terms of the operators a, a† u+ = (a+ a†)/
√

2 and u− = (a− a†)/
√

2. The

Hamiltonian is then given by

H =
1

2i
((a†)2 − a2) (5.5)

5.2 Properties of the Hamiltonian

Self-adjoint in the Hilbert space – The self-adjoint property of the Hamiltonian is a necessary condition

for the unitary evolution in quantum mechanics. Typically in finite dimensional cases, self-adjoint property

ensures Hermitian or symmetric property on operators. One needs to be careful in infinite dimensional

cases and for unbounded operators. The momentum operator in the position representation is the simplest

example where one is not guaranteed Hermitian property from the self-adjoint property. Here we will prove

the self-adjoint property of the IHO. In most of the following discussions, we will be using the ‘light-cone’

basis : H = i(u∂u + 1
2 ), dropping the ± label for now. Let us define the operator:

U = e−iHt = et/2etx∂x (5.6)

U acts on functions belonging to the Hilbert space ψ ∈ L2(R):

Uψ(x) = et/2ψ(etx) (5.7)
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One can show that for ψ, φ ∈ L(R) :

〈Uψ| |Uφ〉 =

∫ ∞
−∞

¯Uψ(x)Uφ(x) =

∫ ∞
−∞

et ¯ψ(etx)φ(etx) =

∫ ∞
−∞

¯ψ(y)φ(y)dy = 〈ψ|φ〉 (5.8)

This ensures unitarity of H and by Stone-von Neumann theorem, H is self-adjoint in L2(R)

PCT symmetries: Defining the parity operator as : PxP−1 = −x and PpP−1 = −p , one can see that

the Hamiltonian is P-symmetric.

PHP−1 = H (5.9)

The IHO has interesting time-reversal properties for a simple quantum mechanical Hamiltonian. As

shown by Wigner, the T operator can be realised either as a Unitary or an anti-unitary operator. In the

case of bound Hamiltonian, one chooses T to be anti-unitary, to exclude negative energy eigenvalues. IHO

is an unbounded operator and with a unitary T satisfies the relation

TH +HT = 0 (5.10)

Therefore,

H |ψE〉 = E |ψE〉 , HTψE = −ETψE (5.11)

Therefore, IHO has a both negative and positive energy spectrum. Time reversal operation also acts as the

Fourier transformation in this system Tφ(x, t) = F [φ](x, t):

F [φ](x, t) =
1√
2π

∫
eikxφ(k, t)dk (5.12)

PCT invariance– We have a simple complex conjugation operator C defined in the simple quantum

mechanical setting: cψ = ψ̄. The IHO Hamiltonian is both CT and PCT invariant [242]:

[H,CT ] = [H,PCT ] = 0 (5.13)

There fore if HψE = EψE , then HF [ψ̄E ] = EF [ψE ]

5.3 Energy Spectrum

The PCT properties of the IHO allow for some interesting properties in the spectrum of the Hamiltonian.

As the Hamiltonian is unbounded, the spectrum of real energy eigen values is continuous and ranges from
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Figure 5.1: Phase space showing different co-ordinates and semi-classical trajectories of the IHO. u± indicate
the ‘light-cone’ basis obtained through a canonical transformation from the (X,P ) basis. The state in the
u± basis are purely incoming and outgoing states. I and II represent the two sides of the IHO. The dotted
curves are the hyperbolic trajectories of constant energy.

−∞ to ∞. The parity invariance leads to a doubly degenerate spectrum. This is associated with the states

on the two sides of the barrier.

We shall reintroduce the labels u±.The u+ basis describe the ingoing states and u− the outgoing states

and these two basis are related by[193, 38]:

〈u+|u−〉 =
1√
2π
eiu

+u− (5.14)

In this basis the Hamiltonian can be written as

H =
1

2
(u+u− + u−u+) = −± i

(
u±∂u± +

1

2

)
(5.15)

The time-dependent Schrodinger equation are of the form

i∂tψ±(u±, t) = ∓i(u±∂upm + 1/2)ψ±(u±, t) (5.16)

As shown in the Fig. 5.1, there are two sets of energy eigenstates corresponding to regions I and II. The

state |E,±〉 correspond to the states in the two regions respectively. These are written in the in-going and
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out-going bases. In terms of in-going bases,

〈u+|E,+〉in =
1√
2π

(u+)iE−1/2Θ(u+) (5.17)

〈u+|E,−〉in =
1√
2π

(−u+)iE−1/2Θ(−u+) (5.18)

where Θ(u+) is the Theta-step function. Writing in terms of outgoing bases:

〈u−|E,+〉out =
1√
2π

(u−)−iE−1/2Θ(u−) (5.19)

〈u−|E,+〉out =
1√
2π

(−u−)−iE−1/2Θ(−u−) (5.20)

These states correspond to the ‘steady state’ scattering states. The IHO also allows for complex eigenvalues

and these are related to the resonant / quasinormal decay states, which we shall study soon.

5.4 S-matrix of IHO : Mellin Transform

Now that we have the eigensolutions, we can calculated the scattering matrix for the IHO. In a typical text

book quantum mechanics scattering problem, one considers plane waves to scatter against a barrier. These

plane waves are eigenmodes of the momentum operator. The spatial bounded natures of the scattering

potential allows one to consider plane wave states at infinity. Any other state is expanded in the basis of

plane waves resulting in a Fourier transfrom. Mellin transform, which is a multiplicative version of Fourier

transform becomes important when dealing with dilatation operator form of IHO which generates scaling.

Lets define Mellin transform as

F̃ (ε) =

∫ ∞
0

f(u)uiε−1du (5.21)

and the inverse is given by:

f(u) =
1

2π

∫ ∞
−∞
|u|iεF̃ (ε)dε (5.22)

From the above it can be seen that Mellin transform is an expansion in the basis of eigenfunctions of the

IHO. Now we shall make use of this in the derivation of the S-matrix for the IHO . Mellin transform has

been shown to useful in the context of AdS-CFT too [251, 252, 253] and in general scattering theory.
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The mode expansion for a superposition of incoming states is given by

ψ̂in(u+) =
1√
2π

∫ ∞
−∞

dE[(u+)iE−1/2âin,+E + (−u+)iE−1/2âin,−E ] (5.23)

The mode expansion for the outgoing state is given by

ψ̂out(u
−) =

1√
2π

∫ ∞
−∞

dE[(u−)−iE−1/2b̂out,+E + (−u−)−iE−1/2b̂out,−E ] (5.24)

The above âE , b̂E operators act on the vacua |0, in〉 , |0, out〉 respectively.

The S-matrix relates the out and in states as follows |E,+〉out
|E,−〉out

 = Ŝ

 |E,+〉in
|E,−〉in

 (5.25)

For the above-defined in and out states are then related by

ψ̂out(u
−) = [Ŝ](u−) =

∫ +∞

−∞

du+

√
2π
e−iu

+u− ψ̂in(u+) (5.26)

For simplifying the above we shall make use of the Mellin transforms

∫ ∞
−∞

du+eiu
+u− |u+|−iE−1/2 = eiπ/4eEπ/2|u−|iE−1/2Γ(

1

2
− iE) (5.27)

∫ ∞
−∞

du+e−iu
+u− |u+|−iE−1/2 = e−iπ/4e−Eπ/2|u−|iE−1/2Γ(

1

2
− iE) (5.28)

The S-matrix is given by  b̂out,+E

b̂out,−E

 = Ŝ

 âin,+E

âin,−E

 (5.29)

Ŝ =
1√
2π

Γ

(
1

2
+ iE

) eiπ/4e−πE/2 e−iπ/4e−πE/2

eiπ/4e−πE/2 e−iπ/4eπE/2

 (5.30)
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5.5 Scattering states in x-basis: Parabolic cylinder functions

The solutions of IHO Hamiltonian in x- basis are known to be parabolic cylinder functions. We can obtain

them easily from the solutions in u± basis.

〈x |E,+〉 =

∫
du+〈x |u+〉 〈u+ |E,+〉 (5.31)

The canonical transformation from {X,P} to {u+, u−} operators has a corresponding representation given

by [38, 242, 243]

〈x |u+〉 = exp[i(
x2

2
− 2u+x+ u+2

)] (5.32)

Therefore, there transformation now reads

〈x |E,+〉 =

∫ ∞
0

du+exp[i(
x2

2
− 2u+x+ u+2

)]u+iE−1/2
(5.33)

Using the integral representation of the parabolic cylinder function,

D−iE−1/2(x) =
e
−x2

4

Γ( 1
2 + iE)

∫ ∞
0

dt|t|iE− 1
2 exp(

−t2

2
− xt) (5.34)

〈x |E,+〉 = N0e
πE4 Γ(

1

2
+ iE)D−iE− 1

2
(x) (5.35)

5.6 Analytic S matrix: Gamma function

From the above derivations one can see that the IHO S-matrix and the energy eigenstates 〈x |E,+〉 have the

Gamma functions Γ(iE + 1
2 ). The analytic properties of the Gamma function in the complex energy plane

determine the analytic properties of the S-matrix and the wavefunctions. one cannot extract all the crucial

properties of the Hamitlonian especially in scattering theory from the real energy eigen states alone. The

resonant modes that determine the quasinomal decay are also fundamental characteristics of the system and

these are uncovered by the analytic properties in the complex energy plane.

The gamma function Γ(z) has simple poles at z = −n, where n = 0, 1, 2.... Therefore the poles of the

IHO scattering problem lie at the imaginary values of :

Ẽn = i

(
n+

1

2

)
(5.36)
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These are the resonant poles of the problem and can be interpreted as complex energy eigenvalues. But

the states corresponding to the complex energy eigenvalues do not belong to the Hilbert space L2(R). These

states also decay in time are known as quasinormal modes.

5.7 Resonant modes and quasinormal decay : Operator method

To obtain the wavefunctions and the time behaviour of the resonant modes of IHO, lets introduce ladder

operators in the ‘lightcone basis’ [254]

b± = (x± p)/
√

2 =
1√
2

(
x∓ i d

dx

)
(5.37)

These operators obey the commutation relations [b+, b−] = −i,[b±, b±] = 0. Defining N = {b+, b−}/2 =

(b+b− + n−b+)/2, the Hamiltonian is given by H = −N . This leads to relation between ladder operators

and the Hamiltonian, similar to that in the Harmonic oscillator:

[H, b±] = ∓ib∓ (5.38)

Now, with this machinery one can construct the resonant states of the IHO. Lets assume that there are set

of states satisfying the condition:

b∓u±0 =

(
d

dx
∓ ix

)
u±0 = 0 (5.39)

The solutions of this equation are given by

u±0 = B±0 e
±ix2/2 (5.40)

These solutions do not belong to the regular Hilbert space and belong to the ‘Rigged Hilbert space’. Now

one can verify that

Hu±0 = ∓ i
2
u±0 (5.41)

Therefore, thes states can be interpreted as the complex energy eigenstates with eigenvalues ∓i/2. One can

construct a series of states starting form this with the ladder operators: (b±)nu±0 . The nth states obey the

relation:

Hu±n = E±n u
±
n (5.42)
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Observing that [
1√
2

(
∓ i d

dx
+ x

)]n
u±0 (x) = B±0

(
±i√

2

)n
e±ix

/2e∓ix
2 dn

dxn
e±ix

2

(5.43)

Thus one obtains:

u±n (x) = B±n e
±ix2/2Hn±(x) (5.44)

where H±n (x) = (∓)ne∓ix
2 dn

dxn e
±ix2

.

5.8 Outgoing/Incoming states: Time-decay and probability

current flux

Now we can study the behaviour of these resonant states which are starkly different than the stationary

states with real eigenvalues. The wavefunction of these states are now given by

ψ±n (t, x) = A±nB
±
n e
∓(n+1/2)te±ix

2

H±n (x) (5.45)

The immediate observation is that these states decay in time. To understand the full picture of this

behaviour we calculate the probability densities and the currents. The probability densities are given by

ρ±n (t, x) = |A±n |2|B±n |2e∓(2n+1)tH∓n (x)H±n (x) (5.46)

and the currents are given by

j±n (t, x) = ±|A±n |2|B±n |2e∓(2n+1)t(xH∓n (x)H±n (x)± 2nIm[H∓n (x)H(n− 1)±(x)]) (5.47)

These satisfy the continuity equation:

∂

∂t
ρ±n (t, x) +

∂

∂x
j±n (t, x) = 0 (5.48)

Finally the asymptotic behaviour of the currents is given by

j±n (t, x) ≈ ±e∓(2n+1)tx2n+1 (5.49)

Thus from the above we see that the probability density decays in time and but the current conservation

ensures that this decay manifests as a finite current that goes out to infinity(thus the finite value at infinity).
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Therefore, the resonant modes correspond to purely incoming states or purely outgoing states in one

direction(left or right). Therefore, they need to have finite amplitude at infinity thus not belonging to the

regular Hilbert space. One needs to enlarge the Hilbert space to so called ‘Rigged Hilbert space’ [241]. The

purely outgoing behaviour is intricately related to the time decay of the wavefunctions and probabilities.

Thus, with the model as simple as the IHO one can see that in a scattering problem, opening up the boundary

conditions lead to time decay behaviour . Such behaviour is captured in the resonant pole structure of the

problem and can be interpreted as the complex energy eigen values. From the above expression one can also

see that the ‘decay rates’ of the wavefunctions are quantized as (n+1/2), much like the bound state energies

of the simple Harmonic oscillator. This minimum value of decay rate is the ‘zero-point’ factor of 1/2 which

is coming purely from quantum fluctuations associated with the commutation relation [X,P ] = i.

5.9 Lessons from scattering

Studying the IHO problem or a scattering problem in general, makes one get exposed to many aspects of

quantum mechanics typically overlooked or seen as unconventional from the perspective of restricting to

studying quantum mechanics of bound or closed systems. But scattering problems are as ubiquitous and as

important as the bound state problems. In fact most of our important measurement schemes in experiments

heavily use scattering , be it crystallography, tunneling spectroscopy or conductance measurements. To get

a bigger picture, a comparison is given in the table 5.1 between the features of harmonic oscillator and

inverted harmonic oscillator. One can see that every fundamental aspect of quantum mechanics such as the

state, evolution and boundary conditions, manifest in a unique way in the two prototypical problems and

give rise to the fundamental quantum mechanical characteristics such as the existence of a vacuum state in

the case of a harmonic oscillator or a bound on the decay rate in the IHO1.

1It is humbling and a satisfying thing to conclude my PhD thesis on something as basic as the tenets of quantum mechanics
and something as simple as the inverted harmonic oscillator.
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Prototype Harmonic oscillator H = P 2

2m + mω2

2 X2 Inverted oscillator H = P 2

2m −
mω2

2 X2

Bound state QM(Closed system). Scattering QM (Open system).
State |ψ〉 Belongs to Hilbert space of L2(R) nor-

malizable functions.
Requires rigged Hilbert space.

Boundary condi-
tions

Wavefunctions vanish at spatial infini-
ties.

Wavefunctions can have finite probabil-
ity current at spatial infinity.

Behaviour of states
in time

Eternal and stationary states. Also allows states decaying in time.

Time evolution Unitary evolution eiHt on the Hilbert
space

Unitary on the Hilbert space but also
gives irreversible(semi-group) evolution
on distributions(Rigged Hilbert space)

Spectrum Discrete and real eigenvalues . Has a continuous spectrum of real
eigenvalues and a discrete spectrum of
imaginary eigenvalues(Scattering reso-
nances).

Non-commutativity
of phase
space[X,P ] = i~

Gives rise to zero-point/ vacuum energy
E0 = ~ω

2 .
Bound on the decay rate 1

τ = ω
2 .

Table 5.1: A comparision between the features of a simple harmonic oscillator and an inverted harmonic
oscillator, highlighting how the basic tenets of quantum mechanics manifest differently in the two protypical
models

153



References

[1] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg.
Majorana zero modes in superconductor-semiconductor heterostructures. Nature Reviews Materials,
3(5):52–68, May 2018.

[2] G Kells, D Sen, J K Slingerland, and S Vishveshwara. Phys. Rev. B, 89:235130, 2014.

[3] M. Stone. An analogue of Hawking radiation in the quantum Hall effect. Classical and Quantum
Gravity, 30(8), April 2013.

[4] P. W. Anderson. More is different. Science, 177(4047):393–396, 1972.

[5] Jason Alicea. New directions in the pursuit of majorana fermions in solid state systems. Reports on
Progress in Physics, 75(7):076501, 2012.

[6] M. Franz. Majorana’s wires. Nature Nanotechnology, 8(3):149–152, 2013.

[7] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma. Majorana fermions and a topological phase
transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett., 105:077001, Aug 2010.

[8] Yuval Oreg, Gil Refael, and Felix von Oppen. Helical liquids and majorana bound states in quantum
wires. Phys. Rev. Lett., 105:177002, 2010.

[9] C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S. Das Sarma. Non-abelian anyons and topological
quantum computation. Reviews of Modern Physics, 80(3):1083, 2008.

[10] S. Chandrasekhar. Clarendon Press/Oxford University Press (International Series of Monographs on
Physics. Volume 69), 1983.

[11] Charles W. Misner, Kip S. Thorne, and John A. Wheeler. Gravitation. New York : W.H. Freeman
and Company, 1973.

[12] A. Einstein. Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften (Berlin), Seite 844-847., 1915.

[13] C. V. Vishveshwara. Scattering of gravitational radiation by a schwarzschild black-hole. Nature,
227:936 EP, 1970.

[14] William H. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. Astrophys.
J., 170:L105–L108, 1971.

[15] S. W. Hawking. Black hole explosions? Nature, 248:30 EP, 1974.

[16] K. von Klitzing, G. Dorda, and M. Pepper. Phys. Rev. Lett., 45:494, 1980.

[17] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Phys. Rev. Lett., 48:1559, 1982.

[18] R.E. Prange and S.M. Girvin. The Quantum Hall Effect. Springer, 1987.

154
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