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Abstract Elko is a massive spin-half field of mass dimen-
sion one. Elko differs from the Dirac and Majorana fermions
because it furnishes the irreducible representation of the
extended Poincaré group with a two-fold Wigner degener-
acy where the particle and anti-particle states both have four
degrees of freedom. Elko has a renormalizable quartic self
interaction which makes it a candidate for self-interacting
dark matter. We study Elko in the spatially flat FLRW space-
time and find exact solutions in the de Sitter space. Further-
more, we study its quantization under de Sitter space evolu-
tion. By choosing the appropriate solutions and phases, the
fields satisfy the canonical anti-commutation relations and
have the correct time evolutions in the flat space limit.

1 Introduction

The energy scale of inflation can be as high as 10'3 GeV. It is
therefore natural to use inflation to probe high energy physics
which is beyond the reach of the current Large Hadron Col-
lider (LHC). This program is called the cosmological collider
physics [1-15] and it has often been used to probe physics
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beyond the Standard Model (SM).! This framework can be
used to detect various types of particles, including massive
scalars [1,20,21], vectors [22,23], graviton [24], higher spin
particles [9] and massive fermions [25]. It can also be used
to detect massless particles as well as the SM particles [26].

While the SM has been successful in explaining most of
the phenomenologies at the LHC, there are strong motiva-
tions to study physics beyond the SM. In particular, accord-
ing to the ACDM model, the SM particles can only account
for 5% of the total energy and mass contents in the observ-
able universe with the remaining 25 and 70% appear in the
form of dark matter and dark energy. The task of searching
and finding the correct theory of dark matter are among the
most important problems in fundamental physics.

In 2004, Ahluwalia and Grumiller proposed the theory
of Elko and mass dimension one fermionic fields of spin-
half [27,28] ZInthe coming decades, much works have been
devoted to refine the construct [29-38], finally yielding a
local theory that respects Lorentz symmetry [39,40]. These
fermionic fields are physically distinct from their Dirac coun-
terparts. From a group representation perspective, they fur-
nish the irreducible representation of the extended Poincaré
group with a two-fold Wigner degeneracy. What this means
is that the particle and anti-particle states each have four
degrees of freedom, labelled by the spin-projection o = :i:%

1 See [16-19] for recent developments of this program.

2 Elko is the German acronym Eigenspinoren des Ladungskonju-
gatioperators. In English, it means the eigenspinors of the charge-
conjugation operator. By definition, Elko is a four-component spinor
in the (3,0) @ (0, §) representation. But for expedience, whenever
no confusions arise, we will simply use the term Elko to mean mass
dimension one fields.
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and an extra degeneracy index n = *1. Elko has mass dimen-
sion one because its kinematics is described by the spino-
rial Klein—Gordon and not the Dirac equation. Consequently,
these fermions have renormalizable quartic self-interaction,
a desirable property for dark matter.

There were attempts in building phenomenological mod-
els [41-46], but they were premature. Firstly, the free fields
had the long-standing problem of rotational symmetry break-
ing which perpetuates to the interaction, rendering these
models physically undesirable (there are stringent experi-
mental limits on rotational symmetry breaking). This prob-
lem was only resolved recently [39]. Secondly, the Elko inter-
actions are non-Hermitian. More precisely, they are pseudo-
Hermitian. Works that have taken pseudo-Hermiticity into
account can be found in [38,40,47] though more efforts are
needed to establish self-consistency.

In this paper, we initiate a systematic study of Elko in
curved space-time. The ultimate objective is to derive observ-
ables for Elko in the cosmological collider framework. Grav-
itational dynamics originating from the interplay of Klein—
Gordon kinematics and spin-connections have been exten-
sively studied in cosmology [48—63] and higher-dimensional
space-time [64—67]. But to the best of our knowledge, these
works have not directly confronted the issue of canonical
quantization. What we will accomplish here, is to study Elko
in the spatially flat FLRW background. We will solve the
equations of motion in the de Sitter (dS) space and perform
canonical quantization. In the process, the main difficulty is
that we have to solve a system of coupled differential equa-
tions. This difficulty is circumvented by making the observa-
tion that Elko has a dual-helicity structure. That is, the right-
and left-handed components of Elko have opposite helicity.
Utilizing the dual-helicity structure, the differential equa-
tions decouple and admit exact solutions that are amenable
to consistent quantization in the dS background with physi-
cally well-defined time evolutions in the flat space limit.

This paper is organized as follows. In Sect. 2, we review
the theory of Elko and mass dimension one fermions in
Minkowski space-time. In Sect. 3, we formulate the the-
ory in the FLRW background following [56] and make the
observation that in curved space-time, the spinorial Klein—
Gordon equation cannot be obtained by simply replacing
the partial derivative by the covariant derivative. The reason
being (J/“VM)2 is not equal to g*"V, V,. The relationship
between these two operators are given by the Lichnerow-
icz formula [68] (see Appendix A for details). In Sect. 4, we
solve the equations of motion for Elko in dS space and canon-
ically quantize them. By choosing the appropriate solutions
and phases, we show that Elko satisfies the canonical anti-
commutation relations and have the correct time evolutions
in the flat space limit. Conclusion and outlook are given in
Sect. 5.

@ Springer

2 Elko in flat space-time

We review the theory of Elko and mass dimension one
fermionic fields in the Minkowski space-time. For more
details, see [39]. Elko are eigenspinors of the charge con-
jugation operator in the (% 0) @ (O, %) representation. The
mass dimension one fermionic fields are quantum fields con-
structed using Elko as expansion coefficients.

We work in the representation where the y#* matrices are
given by [69]

0,1 - 0; o
0o_ . 2 I i 2
= l(]lg ©2>’ = l(a’ 0, ) W

and 3 = iy%y!y2y3. We take the Minkowski metric to be
(=, +, +, +), so the anti-commutators of y“ are

[V“, Vb} =211, 2)

where n% = —1 and 5"/ = §"/. We use the Latin (a, b, . ..)
and Greek alphabets (¢, B, . . .) to label objects in Minkowski
and in curved space-time respectively. The Lorentz genera-
tors are

2= —2 [y ). 3
4
Its respective rotation and boost generators are
1 /o O
— (223 w3 w12y _ 2 4
J=E22 s =2(4 ) 0
and
. 0,
— (30 y02 g3y _ L (O 5
K="525%=2( "2 ). 5)

whereo = (0!, 02, 0'3) are the Pauli matrices. The boost and
rotation transformations of spinors in the (% O) ® (O, %) rep-
resentation are given by exp(—iKC- @) and exp(i J - 0) where
Q= (pi(, 0 = 6n and cosh ¢ = wy/m, sinh ¢ = |k|/m with
wr = +/|k|* + m?. Here, we adopt the convention where the
top and bottom component of the spinors to be right-handed
and left-handed respectively.

The mass dimension one fermionic field A and its dual X
are given by

Sk 1 K,
o= [ G m;[e"”sz(k)af(k) o
+ e e Uoblh) |
and
. ) SN
k(x)=/(2n)3 zmwk;[e_’k'xér(k)a,'(k)
+ ey (k)b (k) | )
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As shown in [39], rotational symmetry and locality require
the particle and anti-particle states to each have four degrees
of freedomt =1, ..., 4.In(6), the spinors & and y are Elko,
having eigenvalues +1 and —1 with respect to the charge-
conjugation operator

Cér(k) = +&:(k), Cxr(k) = —x:(k) (®)
where

0O, i®
c_<_l.®©2)1<, ©)
with

0-1
0= < 10 ) (10)
being the Wigner time-reversal matrix which satisfies
©c®~! = —o*and K the complex conjugation operator

acting to its right Kf = f*. The solutions of Elko are given
by

=[] o[ 48]

B O S
and

= [H?Eg] - e®= [—lzlgg ’ (12)
[ 8] =] 28]

where ¢4 are the Weyl spinors. Here, we work in the helicity
basis 3 so that ¢ (k) are eigenspinors of o - k with eigenvalue
=+1k|. In the rest frame, they are given by

_L¢
m C e 2
¢+(€)=,/3<9/2 i¢>,
Sg/2€2
,id,
m —S, e 2
¢<e)=,/—< " e )
2\ cope?

where sy = sin 6, cg = cos6 and € = (sgcy, 5654, Co) Speci-
fies the direction of the spin-projection in the spherical coor-
dinate such that (0 -€)¢4 (€) = £ (€). In the helicity basis,
the direction of boost is €. As evident from (11-12), the left-
and right-handed components of Elko have opposite helicity
eigenvalues with respect to o - k. This feature is known as

the dual-helicity structure and it will play an important role
in Sect. 4 when we solve the equations of motion for Elko in

13)

3 We could choose other basis such as polarization basis, but in that
cases the direction of the spinors will change under a boost transforma-
tion, so it is inconvenient to compute.

the dS space. The Elko duals are given by

E\(k) = —ig](k)B,  E,(k) = +i&] (k)B,

B B . (14)
Ex(k) = +ig[(K)B,  E4(k) = —i&] (k).
and
X1 = —ixJ OB, xo(k) =+ix] (B, s
X3k) = +ix{ (OB, xak) = —ix](k)B,
where B = iy". Direct evaluations show that Elko are
orthonormal
El, gk, T) = —x (k. T)x (k. T') = mbrr, (16)
and the spin-sums are

4 -
D & ()€ (k) = +mly
= (17)

4
D xe()x (k) = —mly.

=1

Using the spin-sums, we find {1(z, x), x (t, y)} = Q4. The
free propagator obtained from the two-point time-ordered
product is fermionic and is given by

. d*k i Ly
(OITA (X)) X()]0) = | ——eik('=2) ___ ]
HOITA. (x') 40010} /(2n)4e K2+ m? —ie
(18)
Therefore, the free Lagrangian density takes the form
Lo=— [(aai)(aax) + mzh] . (19)

From the conjugate momentum 7 = 9, X, we readily verify
the canonical anti-commutation relations

(A, %), 01, x")} = Oy,
[, x), 7@, x')} = Oy, (20)
(At x), 7w, x))} = i8%(x — x")4.

The free Hamiltonian evaluates to

Hy = *k 4N (BA) + (V) - (VA ZaA
0—[@[(1)(¢)+( )- (VL) +m ]

43k

4
- (2n)3‘”"2[“1(")“f(k>—bz(k)bi(k)]. @1
=1

Itis positive-definite (with negative vacuum energy) provided
that the annihilation and creation operators satisfy fermionic
statistics

{acm).al )} = {pe(p). 301}
= (21)*8:48%(p — P). (22)

@ Springer
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One may incorrectly come to the conclusion that the above
spin-sums vanish in the massless limit. However, the factor
of m in the spin-sums is due to our choice of normalization.
We can alternatively define the Weyl spinors (13) without
the /m factor. After removing /m, the &; and x; spin-sums
would be equal to I and —I4 respectively. Upon adopting this
normalization, we also have to remove the 1//m factor in A

and X. Overall, the Lagrangian density and Hamiltonian do
not depend on the choice of normalization. However, knowl-
edgeable readers may note that without the factor of /m
in (13), the massless limit of ¢4 (p) is ill-defined. Therefore,

A and A do not have well-defined massless limit. This seems
to be an intrinsic feature of the theory and suggests that the
mass dimension one fields must be massive. The question as
to why the theory must be massive is left for future investi-
gation.

Since A and A are of mass dimension one, Elko has a

renormalizable quartic self interaction g()?)x)2 which makes
it a candidate for self-interacting dark matter. Elko can also
interact with the Higgs boson. Apart from the Yukawa inter-

action g h) A¢, we also have renormalizable interactions of the

form g’ X)»q’)z. Prior to study Elko phenomenology, we have
to deal with the issue of non-Hermitian interactions. We note,
while the free Hamiltonian is Hermitian, the individual terms
which contribute to Hy are non-Hermitian. If we study inter-
actions such as the ones presented here, then Hermiticity
is lost thus making the time evolutions non-unitary. There-
fore, a new formalism to compute transition probabilities and
observables has to be developed. Recent work establishing
pseudo Hermiticity of Elko provides a promising approach to
resolve this problem [40]. This task is important but beyond
the scope of the present work. The primary focus here is to
study Elko in the spatially flat FLRW space-time and show
that the free fields can be consistently quantized. Interactions
in the cosmological collider framework will be studied in the
future.

Before we proceed to study Elko in curved space-time,
there is an important issue concerning the solutions (11-12)
that requires further elaborations. Readers who are knowl-
edgeable in this subject would have noticed that we have not
presented Elko in its traditional form. In previous works, if
left-handed component of Elko is ¢+, then its right-handed
component takes the form ¥ ®¢} where ¥ is an imaginary
phase taken to be 4+i or —i. What the traditional construct
implies is that the left- and right-handed components are not
independent variables. If we confine the discussions within
the Lorentz group, then nothing goes wrong. That is, given
a left-handed Weyl spinor ¢4, then ®¢} transforms as a
right-handed spinor under boost and rotation. On the other
hand, if we include space-time translation, this argument
fails. Because under space-time translation, the left- and

@ Springer

right-handed spinors transform differently ¢ — e **¢.,
O¢% — ek *O¢xL. In light of this observation, we believe
that the correct approach is to simply treat Elko as a set of
four-component spinors with dual-helicity structure where
its left- and right-handed component are independent vari-
ables. Since it has already been verified that Elko furnishes
the irreducible representation of the extended Poincaré group
with a two-fold Wigner degeneracy [39,40], the traditional
construct starting from the two-component Weyl spinors is
no longer necessary. In Sect. 4, when solving the equations
of motion for Elko in the spatially flat FLRW space-time, this
issue appears once more. As we will demonstrate, if the left-
and right-handed components of Elko are related according
to the traditional approach, then the equations of motion only
admit trivial solution.

3 Elko in curved space-time

In the Minkowski space-time, the equation of motion for Elko
is the spinorial Klein—Gordon equation. In curved space-
time, Elko satisfies

(y“VMy”Vv - m2> »=0. (23)
Therefore, the action is
S — —/d“x./—g [vuiyﬂy”vvx+m2h]. (24)

The motivation for writing the equation of motion using
y"V,, instead of the Laplacian g""V,,V, will be explained
below. The Dirac matrices satisfy

{y*. v’} =2¢""1L, (25)

where gMV is the metric. We take the local and global coor-
dinates to be labelled by the Latin (a, b,...) and Greek
(m, v, ...) alphabets respectively. The Dirac matrices in the
two coordinates are related by

1= gty
voTm ey (26)
J/Il =e u)/av
where ¢?, is the tetrad
L ,
v w€ vlab @7

Nab = eaﬂebvg/uw

The covariant derivatives acting on the vectors and spinors
are [70]

Vik = duh — ATy,
Vih = 3 + Tyh,

(28)
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where F,lix is the Christoffel symbol and

i

r, = Ew,ﬂhzab. (29)
The spin connection w,ﬂb and the Christoffel symbol are
related by

w0 = el (aueb” + et Ffw) : (30)

The metric and tetrad satisfy
Voguw =0, Vge, =0. (31)

The main objective of this paper is to find exact solutions
for Elko in the dS space and show that it can be consis-
tently quantized. These tasks will be accomplished in the
next section. To solve (23), we first rewrite it in terms of par-
tial derivatives and make the following observation. In curved
space-time, the square of the Dirac operator (y* V#)2 is not
equal to the Laplacian g*"V, V,. Using the Lichnerowicz
formula (see Appendix A for details) [68],

1
Yyt Vo = (g;va,vu - ZR) A, (32)

where R is the Ricci scalar, we obtain
v 2 1
g"'vV, vV, — | m” + ZR A=0. (33)

Note that by using (32), we can rewrite the action (24) into
the following form

S = /‘d4x«/ [ WYY AV + <m2+%R>XA].
(34)

Using (31) and (28), the Laplacian is given by

gV, Yok = V, VF5

1
= ﬁaﬂ [V—g8" " VoA] + g™ T, Vyr. (35)

The equation of motion becomes [56]
3 [V=88" (A + T
+¢_[ MVD L (8yA + Tyh) — (m2 + %R) x} =0.
(36)
Repeat the above calculations for X, we obtain
0, [v=eg" @,% —ir))]

_ /—_g[ ML @8 — ATy) — (m +lR> } 0.
(37)

4 Quantization in the de Sitter space

In this section, we study Elko in the spatially flat FLRW
space-time where the metric is

ds? = —d? + a2(t) (dx2 Fdy? dzz) . (38)
The spin connections for (38) are

1,
IFo=04, T = S AY0Yi: (39)

Substituting (39) into (36-37), we obtain [56]

() : 3<d)2
43 )»——88)»— -] X
4 \a

1
+<m2+ZR)k+ =% @;x) =0, (40)
and
i+3 a X 18"8»;\ 3 (4 ZX
a a? 4 \a
1
2 p— —_—— =
+<m +4R>A (a )\) 0. 41)

Note that the Lagrangian density given in [56] becomes iden-
tical to its counterpart in (34) when the m? term is replaced
by m? + %R. Similarly, the equations of motion given in [56]
become (40—41) upon making the same replacement.

In curved space-time, we expand the fields as

d’k 1 -

At x) = e (& fa. (k

(1, %) (2n)3m2[ & (K, Dax (k)
e kT (K, t)bj(k)], (42)

and

N d*k 1 -

Rt x) = —ikxE (& pal(k

(t.x) (Zn)3WZ[ £, (k. Dya] (k)
ek y (k. )b, (k)] . (43)

To find exact solutions for Elko and its dual, it suffices to
solve (23). After obtaining the exact solutions for &;, x,, we

can use the definitions (14-15) to obtain & s )ET. Substitut-
ing (42-43) into (40—41), we obtain

: K3 a a\ L a o
sr(k,t)+|:a—2_§(a—z“r;)—i—la_zyoyzki
1
+ <m2 + ZR):| & (k1) =0, (44)

@ Springer
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and

K2 3 /a* a o i
e+ | =S-S5+ =) —isrYk

a 2 \a a a

1 (45)

+ <m2 + ZRH X e 1) =0,
where k> = k - k. Using the identity
i a?

R=6 P + ) (46)

the equations simplify to*
. Koo, a g

§c(k, 1) + S tmi iy y'ki|§c(k, 1) =0, (49)
and

N oo, ad g

Xz (k. 1) + tm iy Y'ki| x<(k,1) =0.  (50)

Since &; and x, are four-component spinors, both (11—
50) are systems of coupled differential equations. Solving
these equations directly is difficult. Fortunately, these equa-
tions can be decoupled. To do so, we impose the ansatz
that Elko in curved space-time can be factorized into a
product of Elko in the Minkowski space-time and time-
dependent scalar functions to be solved. As a result of
the ansatz, & 4(k, t), x2,3(k, t) and & 3(k, 1), x1,4(k, t) are
eigenspinors of y%y'k; with eigenvalues +k and —k respec-
tively. For Elko to have the correct time evolution, the time-
dependent functions are chosen as follow

Erk, 1) = wi(k, & k), &k, 1) = w5k, HEk),
&k, 1) = wy(k, )& (k), &k, 1) = wi(k, 1)a(k),
(51)
and
x1(k,t) = walk, t)x1(k),
x3(k, 1) = wik, 1) x3(k),

xo(k, 1) = wik, ) x2(k),
xalk,t) = wa(k, t)xa(k),
(52)

4 1t is instructive to note the following structures of the differential
equations by writing them in terms of the Weyl spinors. Taking &; =
(¥r @) where ¥, and ¢, are the right- and left-handed Weyl spinors
respectively, (49) becomes

2 .
et + (S 4 m?) g =i (o gt =0, 47)
a a
and
. kKo, a
ekt + (5 +m?) e+ (0 Be k) =0, (48)
a a

If we follow the traditional construct by taking v, = ¥ ©¢}, then (47—
48) would reduce to (¢ - k)¢ = 0 which only has trivial solution
¢ = 0. This cannot be correct because in the flat space limit, it is
impossible for the trivial solution to approach the non-trivial solutions
in Minkowski space. The resolution to this problem is simple — the left-
and right-handed components of Elko must be independent.

@ Springer

where w and w» are scalar functions that satisfy

.. k? 2 ., a
wi(k, 1) + ) +m —Hk(? wi(k, 1) =0,
- . (53)
.. ., a
wi(k, 1) + |:a_2 +m? — lk;j| wj(k, 1) = 0.
Hi

We now solve for w7 in the dS space with a(z) = e
where H is the Hubble constant. Making the following
change of variables

e—Ht

H ’

7 =2ikn, n=-— (54)
where 7 is the conformal time and adopt the normalizations
wik, ) =27k, ), wak.) =27y k), (55)

we obtain

d2<p+ 1+m21 L B D
dz? 4T H )2 |

d*y* I m2\1 1 17,
- 4 — S+ -+ —|y*=o0.
dz? +|:<4+H2>z2+4+22i|w

(56)

The solutions to (56) are given by the Whittaker functions
[71]. In the flat space limit n H ~ —1, we require wy ~ e tkn
and wy ~ ¥ With these limits in mind, we choose the
solutions to be’

wik, ) =c()z"PW_; (),
i (57)
wak, 1) = dk)z™ ' PWy | (—2),

where u = im/H and c, d are constants to be determined.
For the dual spinors, we adopt the same definitions in the
Minkowski space-time (14—15) to obtain

Exk, 1) = wik,1)E, (k).

E ke, 1) = walk, )& 4(k),
(58)

E 1k, 1) = walk, & (),
Ex(k.1) = wik, 1)E3(k),

and

Xalk, 1) = w3k, 1) x5 (k),

Xalk, 1) = wi(k, 1) x4(k).
(59)

X1k, 1) = wi(k, 1) (k),
X3k, 1) = w3k, 1) x3(k),

The Elko solutions and their duals are chosen in such
a way as to make the computations of the canonical anti-
commutators more expedient. We now compute

5 The solution for ¥*(k, z) is W1 M(z). Using the identity W7 ,U-(Z) =
2> 2

Wi _, (=2), we obtain ws.
3
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{A(t, x), X(t, y)}and {A(z, x), (¢, y)}. The first one evalu-
ates to

{x(: x), At y)} =(2n)_3/d—3k

o 2mka3 ()

4
Y- [t k) + xR X (kD] (60)

=1

The relevant spin-sums are

4
P _ A(k9 t) (0)2
;ak,r)é(k, r)-[ 0y ATk t)],
o (61)
- | Bk, 1) (03
X; x(k, 0)x Uk, 1) = [ 0 Bien|
7=
where
Ak, 1) = c(k)d()m
y)’l"w;‘cg/z + wlwzsg/z e*id’ce/zse/z(wj‘w;‘ —c.c.)
el¢cg/2s9/2(w’fw§ —c.c.) wi‘wi‘cg/z + wlwzsg/z ’ ©2)

Bk, t) = c(k)d(k)m

—wlwzcg/z — uﬁfu)’zksgz/2 e_“z’cs/zse/z(wfw; —c.c.)
e’¢c(9/2s9/2(w]“w§‘ —c.c.) —wTw§c§/2 — w]wzsg/z

where ¢y /2 = c0s(8/2), sg/2 = sin(6/2).In B, the Whittaker
functions only depends on k = |k| so they remain unchanged
under k — —k. In the spherical coordinate k — —k is
implemented via® — w — 6, ¢ — ¢ = where the top and
bottom signs apply when ky is positive and negative respec-
tively. Using these relations, the two matrices are related by
A(k,t) = —B(—k,t) so we obtain

{A(t,x), i, y)] — 0, (63)

In obtaining (61-63), we chose cd to be real, making it a
global multiplicative factor in the spin-sums. If c¢d is com-
plex, then the anti-commutator (63) would be non-vanishing.
We will determine ¢ and d by demanding Elko to have the
correct time evolution in the flat space limit.

From the Lagrangian density, the conjugate momentum is

7 = a39; . so we obtain

a’k
— =3 2
A, %), 7, y)} = 2n) Tk
4 . .
3 [sf (kD)8 (k. 1) + Xe(—k, 1) 3 (—k, t)] N
=1
The spin-sum in (64) is
4 . .
> [sf e, )8 (k. 1) + e (—k, D 1 (<K, r)}
=1
| Ck, 1) (073
- [ 0, —CY(k, t):| ’ ©65)

where

Ws3 5 — W¥ek , —e 19OV + W)
_ 6/2 6/2
Clhk, D)y =m [—e”ﬁ(w W) @G- sz |00

with W being the Wronskian of w; and wj. Using result

from [71], we obtain

W = wiiy — wiwa
= —c(k)d(k)HW {W_%’_M(Z), W%,—M(_Z)}
=ic(k)d(k)H (67)

and

j &k .
! f 2 k=) (k) d (k) HL,

{k(t,x), w(t,x )} = )3 %

(68)

To obtain the correct anti-commutator, we must have cd =
2k/H so that

(A, x), w(@t,x")) = i8°(x — p)L4. (69)

The asymptotic limit of wq and w} in the flat space limit
nH ~ —1 are

w1k, 1) ~ ———c()e™ ™, wik, 1) ~ id* (k)e k.

2kn
(70)
Choosing
2ik
c(k) = —’7, (k) =i, (71)
—ikn_

we obtain the desired behaviours wq ~ e‘”‘”, w’z“ ~e

5 Conclusion and outlook

The foundation of Elko in Minkowski space-time was estab-
lished in [39]. Building upon this work, we initiate a system-
atic study of Elko in curved space-time.

In this work, we study Elko in the spatially flat FLRW
space-time following [56]. By working in the helicity basis
and utilizing the dual-helicity structure of the spinors, we
found exact solutions in the dS background and showed that
the resulting mass dimension one fermionic fields satisfy the
canonical anti-commutation relations.

There are many open questions to be addressed. For more
realistic situations such as inflation, it is necessary to study
Elko in the quasi dS background. There are two cosmologi-
cal models worthy of future research: (1) A model of scalar
inflaton coupled to Elko. (2) Elko as an inflaton. The latter
possibility was initially considered by Boehmer et al. [48—
53] though at that time, the correct degrees of freedom have
not yet been identified and these works mainly focused on the

@ Springer
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classical dynamics. Since Elko is a dark matter candidate, the
second proposal is a model of dark matter driven inflation.
In this case, it may be possible to connect inflation with the
creation of dark matter.

In both scenarios, interactions coming from the scalar,
vector and tensor perturbations of the space-time metric can
be derived using the ADM formalism [72]. The real challenge
lies in computing observables such as multi-point correlation
functions and particle creation rates. As noted in [40], the
Elko interactions in the Minkowski space-time are in gen-
eral pseudo Hermitian. This feature is also present in curved
space-time. To compute observables, a formalism to deal with
pseudo Hermitian operators is required. In the Minkowski
space-time, the pseudo Hermiticity structure of the interact-
ing Hamiltonian allows one to define new inner-product that
preserves time translation symmetry and generalized unitar-
ity though further works are required to ascertain whether
observables can be consistently computed. Formalism and
techniques developed in flat space can in principle be gener-
alized to curved space though subtleties may arise since time
translation is no longer a symmetry.

Another open question is how Elko affects torsion in
space-time. In Einstein—Cartan gravity, which is the gauge
theory of the Poincaré group [73,74], the spin density of
matter can cause torsion [75,76]. Since the Dirac and Elko
field have different spin density tensors, it can be expected
that the two fields will induce different torsion effects.
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Appendix A: The Lichnerowicz formula

We derive the Lichnerowicz formula following [77]. Since
', satisty [T, ¥¥] = V", which means V,, commute
with y”, we write V,,V,, as a sum of its anti-commutator and
commutator

1 1
VIV Vok = 2y Vi Vol a2y [V W] A

1
= 8"V Vuh+ Syty? [V Vo]A. (AD

Our task is to evaluate the commutator on the third line
of (A1). Because V, X is a spin-vector, its covariant derivative
contains both the spin connection and the Christoffel symbol

Vi Vod = (9,Tv) A+ Tyopd + 9, 9yh + Tpdyh + DTy

—T,0,A — T4 T)\ (A2)
the commutator reads
[V Vo] d = (0,Ty — 0Ty + Ty =TT )4 (A3)

substitute the definition of I';;, we get

1
yHy? [VM, Vv] A= {Z (8,va“b — auwﬂ“”) Yy vave

1
+ Rwu“}’wv”dy“y” [Va ¥, chd]} A
(A4)
Using the identity
VaVp> VeVal = 2(MbcYaVd — NacVpVd
+0bdYeYa — Nad¥cVb), (AS)
we obtain
Yy [V Vo]
1
= Eeaxebd (E)[uwla,f + wmaca)vlc}:> Yy Py Xy,
(A6)
use equation (74) of [70]
1
yhy? [Vuv Vv] A= ZRMUXJVMVUVXVJ)\- (AT)

Equation (A1) becomes
1
yﬂvuyvvvk = gﬂvvuvu)& + gRvaUV'uVUVXVG)”- (AB)

The second term of (A8) can be simplified by considering

_2R;w7/v — Ruvyo yXy'y?

= _2R;w7/v + (Ruovy + RMXUV)VXVUVU
(A9)

R;w)(aVUVXVU
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where R, = R’ 5, and we have used the Bianchi identity.

Using the identity
Yy y? = yoyty —28%7y" + 2"y X (A10)
we obtain
Ruvxoyvyxya = _2RMUVV (A11)
and hence

Y ! Koy Va, X q,0
R=g""R,, Z_ERMUXO’)/ Yy vy . (A12)

Substituting (A12) into (A8), we obtain the Lichnerowicz
formula

1
YAV 'V = (g’“’VMVv — ZR> A

(A13)
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