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Abstract

The infinite length approximation is often used to sim-
plify the calculation of the beam coupling impedance of
accelerator elements. This is expected to be a reasonable
assumption for devices whose length is greater than the trans-
verse dimension but may be a less accurate approximation
for segmented devices. In this contribution we present the
extension of the study of the beam coupling impedance of a
finite length device to the transverse plane. In order to take
into account the finite length, we decompose the fields in
the cavity and in the beam pipe into a set of orthonormal
modes and apply the Mode Matching Method to obtain the
impedance. To validate our method, we will present compar-
isons between analytical formulas and 3D electromagnetic
CST simulations.

INTRODUCTION

The impedance of finite length devices has been studied
by other authors in the past mainly under the Leontovich
or short inserts hypothesis [1-4]. The case under study is
a cavity loaded with a toroidal insert of linear, stationary,
homogeneous, isotropic and dispersive material as shown in
Fig. 1. In the approach presented in this work we analyze the
problem of determining the transverse dipolar impedance
following the procedure as in [5, 6], i.e. applying the Mode
Matching Method (MMM).

PEC

Figure 1: Structure under study: loaded cavity connected
with two beam pipes.

MODE MATCHING METHOD

Given a volume enclosed in an ideal surface S the scat-
tered electromagnetic fields E and H may be decomposed
by means of the Helmholtz theorem in summation of irrota-
tional and solenoidal modes which constitute a complete set
of orthonormal functions [7].
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Since the eigenvectors are determined by the geometry of
the structure under study, the problem reduces into finding
the unknown modal coefficients imposing the continuity of
the EM field on the boundary surface S. The electromagnetic
problem can be systematically solved recurring to the MMM
as shown in detail in [5, 6].

With respect to the longitudinal impedance case, the trans-
verse impedance calculation deserves more attention since
the displaced source beam is coupled also to the TE modes
in the cavity and the beam pipes.

BENCHMARKS

The MMM implementation has been extensively bench-
marked in order to test the performance and reliability of
the method itself. In the frame of these benchmarks, un-
less differently specified, we will consider the calculation of
the transverse dipolar impedance in a cavity of pipe radius
b = 5cm and insert thickness t = 25 cm.

Basic tests have been done in order to ensure the method
convergence as shown in Fig. 2 for a calculation of resis-
tive wall impedance: increasing the number of longitudinal
modes S and keeping constant the transverse modes P in the
cavity, we can cover a wider frequency range and approach
the expected resistive wall impedance curve. Similar consid-
erations hold considering the convergence over the number
of transverse modes P and fixed modes S.
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Figure 2: MMM convergence of the real part of the trans-
verse impedance as a function of the longitudinal cavity
modes S. MMM parameters: L = 20cm, o = 10°S/m,

B=1.

In the case of an empty cavity structure, we recover the
modal distribution of a pillbox. Figure 3 shows the TM and
TE modes excited in a cavity. As mentioned before, the trans-
verse source current used to calculate the transverse dipolar
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impedance couples both the TE and TM cavity modes. The
insert has been taken with small but non-null conductivity
in order to make the modes visible.
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Figure 3: TM and TE modes excited in the dipolar
impedance of an empty cavity. MMM parameters: b = 1 cm,
L=20cm, o, =10"S/m,B=1,P=10,S5 = 10.

Varying the conductivity in the insert we benchmarked
the MMM results with the classical resistive wall formulas
for low frequency (LF) [8] and intermediate frequency range
(IF) [9]. Figure 4 shows the comparison of the imaginary
part of the dipolar impedance with the MMM calculation
which is in good agreement. Analogous conclusions could
be inferred also for the real part of the impedance.
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Figure 4: Comparison between MMM and classical theory
of resistive wall impedance in the low (LF) and intermedi-
ate frequency range (IF). MMM parameters: ¢ = 500 um,
L=20cm, 8=1,0.¢€ (103 =10% S/m, P = 10, § = 20.

Decreasing the insert conductivity we can study the case
of materials with small conductivity o, or equivalent con-
ductivity 0.y = weoe, tand, where &, is the dielectric
constant, &g the vacuum permittivity, and tan ¢ the loss tan-
gent of the material. Figure 5 shows a comparison with
CST Particle Studio 2013 [10] in case of a material with
o = 1072 S/m simulated with a bunch length of 07, = 3 cm,
wake length L, 4k, = 20 m using the indirect testbeams in-
tegration method. The agreement is very good.

The last benchmark but not least in importance has
been done for the impedance dependence on beam velocity
v = fBc. This study is relevant for the correct modeling of the
impedance in low energy machines like the CERN PSB and
PS at the injection energy. Figure 6 shows the comparison
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Figure 5: Comparison of MMM and CST for a poorly
conducting insert. MMM parameters: L = 20cm,
0. = 1072 S/m, B =1, P =15 85 = 15. CST parameters:

op =3cm, Lypgke = 20m, Nyesn = 1.1 - 10° hexahedral.

of the MMM results as a function of the relativistic 8 with
the available code “2D-Axi” for the study of a circular beam
pipe geometry [11]. The discrepancy at low frequencies
is due to the implementation of the PEC layer in 2D-Axi
as a layer with high, but finite, conductivity. The overall
agreement is otherwise satisfying.
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Figure 6: Comparison between MMM and the 2D-Axi code

for different relativistic 8. The transverse impedance is nor-

malized over 8. MMM parameters: ¢ = 0.5 mm, L = 20cm,

o =100S/m, B = (0.2—1), P =25, S = 25.

APPLICATIONS

The developed model allowed for the study of very thin
inserts whose simulation is usually challenging in particle
simulators like CST.

A resonant behavior was observed and studied for the
longitudinal impedance in [5,6]. A similar one is present also
in the transverse impedance as shown in Fig. 7 and it is due
to the interplay of the insert impedance with the inductive
load of the beam pipe below the TE; cut-off frequency. The
details of this effect are still under investigation.

Interesting is the length dependence of the broadband
impedance at low frequency. Figure 8 shows the scaling of
the transverse cavity impedance normalized to the length in
case of a filling material with conductivity o = 10 S/m.
Well above the skin depth frequency (red line) the impedance
calculated with a 2D code as 2D-Axi (blue curve) agrees
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Figure 7: Kink in the dipolar impedance at the TE|; mode
cut-off frequency. MMM parameters: b = Scm, t = 12 cm,
L=1/82T o =10"2S/m, g =1, P=5, S=25.
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with the MMM ones (black curves). Close to the skin depth
frequency, the insert impedance does not scale linearly and
shows an increase for shorter cavity lengths.
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Figure 8: Impedance comparison between MMM (black
curves) and the 2D-Axi model (blue curve) at low frequency.
MMM parameters: o, = 10° S/m, Bg=1,P=10,5=10.

This effect can be understood resorting to a simplified pic-
ture: above the skin depth limit, the current mainly flows on
the device surface and the losses are increasing as the device
length increases, i.e. linearly with the device length. On
the other hand, the contribution of the capacitance between
the two PEC edges that enclose the insert tends to increase
for shorter lengths resulting in higher impedance per unit
length.

Figure 9 shows a similar effect in the case of a ferrite
TT2-111R as filling material. A comparison with CST is
shown fora o, = 4cm, L,,4xe = 3 m and direct integration
method. In this case, the inductance of the ferrite interacts
with the capacitance of the two side plates. The capacitance
increases for shorter lengths and the resonant frequency is
therefore pushed downwards.

CONCLUSIONS

The Mode Matching Method has been successfully ex-
tended to the study of the transverse impedance of a cylin-
drical cavity loaded with a toroidal insert.
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Figure 9: Comparison between MMM (blue, green and
red lines) and CST (black lines) for a ferrite insert. MMM
parameters: o, = 10° S/m, B=1,P =30, =30. CST
parameters: 05, = 4cm, Lyake =3m, Npyes, = 1 - 10°
hexahedral.

An extensive set of benchmarks has been performed as-
sessing the method reliability and good performance over a
wide range of parameters.

A particular behavior has been observed at the cut-off
frequency where the beam pipe load induces a resonant
kink, and in the low frequency range for short inserts of
lossy materials for which the usual linear scaling of the
impedance with length is not valid due to the increase of the
insert capacitance.

Further studies are ongoing for the method generaliza-
tion to arbitrary geometries by means of general Eigenmode
solvers.
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