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Abstract In this work, we introduce analytical approxi-
mate black hole solutions in Einstein-Cubic gravity. To obtain
complete solutions, we construct the near horizon and asymp-
totic solutions as the first step. Then, the approximate analytic
solutions are obtained through continued-fraction expansion.
We also compute the thermodynamic quantities and use the
first law and Smarr formula to obtain the analytic solutions for
near horizon quantities. Finally, we follow the same approach
to obtain the new static black hole solutions with different
metric functions.

1 Introduction

Higher-order gravity models recently attracted considerable
attention. In the context of cosmology, in order to go beyond
the standard ACDM model and find an explanation for the
late-time accelerated expansion, dark matter or inflation [1—
4], higher-order curvature gravity theories are helpful. In
AdS/CFT context, higher-order gravities have been used as
tools to characterize numerous properties of strongly coupled
conformal field theories [5—10]. From quantum gravity view-
point, in order to unify quantum mechanics and gravitational
interactions, going beyond the Einstein gravity is necessary
[11].

In recent years, a new class of higher derivative theories
has been discovered that is ghost-free and in four dimen-
sions neither topological nor trivial known as Generalized
Quasi-Topological Gravity [12—15]. One of the such higher-
derivative gravity theories which in the four dimensions is
neither topological nor trivial is Einsteinian cubic gravity.
This theory of gravity, that has been recently proposed in
[16], is the most general up to cubic order in curvature dimen-
sion independent theory of gravity that shares its graviton
spectrum with Einstein’s theory on constant curvature back-
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grounds. The Einsteinian cubic gravity field equations admit
generalizations of the Schwarzschild solution, i.e. static,
spherically symmetric solutions with a single metric func-
tion [17-19]. The Lagrangian density of this theory is given
by [17,20]

L =R —2A + Bika + Poke + P,

where x4 and k¢ are four and six-dimensional Euler densities
and correspond to the usual Lovelock terms, and P is the
cubic term. In 4-dimensions the terms proportional to 81 and
B> have no contribution on the field equations. In [17-21],
the authors construct static and spherically symmetric gen-
eralizations of the Schwarzschild and Reissner—Nordstrom-
(Anti-)de Sitter black hole solutions in four-dimensions and
study the orbit of massive test bodies near a black hole, espe-
cially computing the innermost stable circular orbit. They
compute constraints on the ECG coupling parameter and the
shadow of an ECG black hole. In [22], bounce universe in
the critical point of the coupling constants of the theory has
been studied. In [23], the holographic complexity of AdS
black hole in Einsteinian cubic gravity has been investi-
gated through the “complexity equals action” and “complex-
ity equals volume” conjectures. In [24] the condensation of a
charged scalar field in a (3 + 1)-dimensional asymptotically
AdS background in the context of Einsteinian cubic gravity
has been studied. In [25] holography on squashed-spheres, in
[26] the holographic entanglement entropy, and in [27] vari-
ous aspects of holographic ECG have been studied. In [20],
the gravitational lensing due to the presence of supermassive
black holes at the center of the Milky Way and other galaxies
in Einsteinian Cubic Gravity has been studied.

In this paper, by using the continued fraction expansion
technique, we obtain the static spherically symmetric solu-
tions for the theory. This ansatz is designed so that the coeffi-
cients in the continued fraction are fixed by the behavior of the
metric near the event horizon, while the pre-factors are intro-
duced to match the asymptotic behavior at infinity [28-30].
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This method is an accurate analytic method that has recently
been applied with success in a variety of contexts [31,32].
These analytic studies of the black hole also allowed us to
study thermodynamics and other properties of the solutions.
While, the numerical solutions do not give a clear picture of
the metric dependence on physical parameters of the system.
The paper is organized as follows: in the next section, we
first review Einsteinian cubic gravity and continued-fraction
expansion. Then, calculating the thermodynamical quanti-
ties and inserting them in the first law and Smarr formula,
we obtain the solutions for the near horizon quantities. We
also plotted the metric functions and thermodynamical quan-
tities and compared them with the previous works on this the-
ory, we find a good agreement between them. In Sect. 3, we
introduce new solutions of the theory with different metric
functions. Finally, we conclude the paper in Sect. 4.

2 Basic equations

In 4D, Einstein cubic gravity theory is determined by the
action [17-21]

1

=—— [ d*x/=g(R—=2A +aP —kF, F%), (1)
167G

where R represent the Ricci scalar, o is coupling constant
of the theory, and P cubic-in-curvature correction to the
Einstein-Hilbert action is given as [17-21]

P = 12R " Re“a’ R i + Rap™ Rea® R
—12Rupca R R + 8R," R, R, )

The correction term in four dimensions is dynamical and
is not topological or trivial [17-21]. Using the variational
principle, one can find the following equation of motion

X 1
Eqp = PacdeRdee - EgabL - 2VCVdPacdb — 2T =0,

1
ViF® =0, Ty = FuFf - 28 Fae Fde 3)

where L is the Lagrangian of Einstein cubic gravity and
P®cd — 9L /9 R ypeq is
Pabed = 8ale 8b1d + 6 [Rad Rpe — RacRpa + gpa R Ree

— 8adR,Rce — gheRGRae + ac R, Rae

— 86 R Racef + 8be R Racaf + 8ad R Roecy
— 3Ry 4’ Rpecs

— 2acRY Rpear + 3Ra®e’ Rpeay

1
+ ERabechdefiI~ “4)
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Here, we consider the following spherically symmetric and
static line element for describing the geometry of spacetime

2 102
45? = — fart + 2 12 (agr 4 SR 2
fr) k

&)

As, we know generic static, spherically symmetric metrics
do not need obey g;; g, = —1 necessarily, but field equation
(3) admits solutions with this property [17-21], to which case
we shall restrict our consideration in this section.

By inserting the metric into the field equations, the differ-
ential equations for f(r) become

1
El —2T" = m[24ar2 ff" @k =2f +rf')

+24ar Ff? + r(r* + R2arff’

— 96kaf + 96af>) f”

+24ar(4f —k) f? +4r3(—k + f + Ar?)
+ (96kaf + 6r*
q2
4

—96af?) f'14+ = =0. (6)

Expanding the function f(r) around the event horizon r4

f) = fir =r) + folr =r)* + 30 =)+ (D)
and then inserting these expressions into Eq. (6), we find

_ =2ArY 4+ 2kr} 4 120kfE — 3 fird —2q?

fa= 7} ,
I+
f : RO
= — 6 for
’ 3r3 + 720:rJ3rf12 + l44arif1k '+

+ fird(l — 48afd) + 4r2 Q4afl fr — k)

+ 48afiry (— f2 4 3kf2) + 8¢% — 96ak fﬁ},

1

T4 = 8 Gbasik + 48ars 72 4 D)

y [20q2 T 14dakfy fyrd + 48afrt — 384af firt

— 384ar’ fi f7 + 93 f3 — 4rt fr — 6kr® — fir)
— 360akf? + 624ar? o fE — 576ar3 f2 f3
— 240ary f{ — 192akr? f1 f3 + S04afy fo f37

+720ar kfy fo — 144arlk ff} )

where 4, fi are undetermined constants of integration. In
the large r limit, we linearize the field equations about the
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Schwarzschild background

2M
f(V)=1—T+€F(r), &)

where F(r) should be calculated from the field equations.
We linearize the differential equation by keeping terms only
to order €, and the resulting differential equation for F(r)
takes the form

F"+ymF" +n()F +o@)F +g(r) =0, (10)

where

4656M%q%a  432MaF;
7r8 rd

736 M2 Fao 995328 M3
N 10 N 5,11

3456 M2 (1831 M2 + 57642 1
+ ( > ) Lo <7) .

11r rt-
(18)

For o goes to zero, one expects the metric returning to the
RN. As a result F4 should be zero. The solution at large r,
thereby giving

96ar? + 11520 M? — 768aMr — 96kar? + r® + 192ak Mr

S ; 11
v(r) 48ar @M — )M — r + kr) (i
" —16ar?k + 416aM? — 240aMr + 48akMr + 16ar? — ro (12)
r)= s
7 8ar22M —r)3M —r + kr)
288akMr — 576aMr + 1680aM? + r®
o) =— (13)
12ar3Q2M —r)3M + kr —r)
(k — D)r7 — g*r> —288Mar?(k — 1) + 120a M?r (5k — 14) 4 2208a M3
g(r) = . (14)

12ar*Q2M —r)(3M — r + kr)

In the large r limit and k = 1, the homogenous equation
reads

4 3 2
r ” r F r

144M« 24M o + 36 Mo

This equation can be solved exactly in terms of hypergeom
functions

P N 1 3 P
r) = erceom || =], =, —
c1iypets 5115 " 720Ma
+ Zhypergeom 3 7 r
cor .1zl -
21 Mypetg 51°15] " 720Ma

+ c3rhypergeom 2 1 46 r
c3r T -, sl ==, — .
3rHypers 5 55| 720Ma

(16)

F/// +

F=0. (15)

In the large r, F(r) decays super-exponentially and can be
neglected. More relevant is the particular solution, which
reads

F, F F
fn =Y =+ (17)

r
n=2

By inserting the above expansions into the field equations
(10) and solving order by order, one can get

g% F4  432aM?  64Ma(23M?* + 18¢2)
=a2ta- g T 7
r 3r

~

M g2

g>  432aM?  64Ma(23M? + 1842)
Fry=l= o * 2 0 + 3r7
4656M%q%a 995328 M3
7r8 5rll
3456 M2a2 (1831 M2 + 57642) 19
+ 11-12 ' (19

It should be noted, the other components of field equations
give the same results for (7)—(18). We wish to obtain an
approximate analytic solution (for k = 1) that is valid near
the horizon and at large r. To this end we employ a continued
fraction expansion [31], and write

fr) = xA®x), x=1-"7% (20)

r

with

A@)=1—€e(1—x)+ (ap — €)(1 — x)?

aj(l —x)?
+ aox (21)
I+ asx
I+ asx
1+
14+...

where we truncate the continued fraction at order 4. By
expanding (20) near the horizon (x — 0) and the asymp-
totic region (x — 1) we obtain

Fy q?
EZ___I, a():_zv a1:—1—610+26+1’+f1
r4 r+

(22)
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for the lowest order expansion coefficients, with the remain-
ing a; given in terms of (4, f1); we provide these expres-
sions in the Appendix A.

The result is an approximate analytic solution for metric
functions everywhere outside the horizon. For a static space
time we have a timelike Killing vector § = 9; everywhere
outside the horizon and so we obtain

£
4

_fi_(=2+a+ap)

C4m 4mry
T4

T =

1+68(r1, q)
dgry

(23)

Extreme charged black hole solutions exist if f; = 0 imply-
ingthata; = 2e —ag— 1. We compute the entropy as follows
[33,34]

€ab€cd
abed

B ' ” ’

1 + 6« (f—+i):|
i r+ r+

1 + 6a (f—l+ﬁ>:|
i r+ r+

LG AGEL DN ST q)]:| :

SL
S = —271/ d*xn
Horizon IR

(24)

N e O N - N N e

Iy

We now consider the thermodynamics of these black hole
solutions, whose basic equations are the first law and Smarr
formula

dM = TdS + ¢dgq,
M =2TS +q¢,

(25)
(26)

where there are no pressure/volume terms since we have set
A = 0. From Eq. (26) we have

i 4300 + 6608 (ry, q) + 4228 (ry, q) +r18(ry, q) + 6087 (ry, q) + 2¢7r

yielding the mass parameter as a function of the hori-
zon radius. In the following, we show that the asymptotic
behavior of the mass (27) is the same as the mass of the
Schwarzschild black hole. So, one can interpret the mass
(27), as ADM mass. We now impose the first law (25), which
becomes

oM oM
—dry + —dq = err + T dq + ¢dq (28)
8r+ Bq 3 r4 8
yielding
oM N
— —T—=0,
8r+ 3r+
60 + 13206 (r4, q) + 84a52(r+, q)
98 (ry,
+ 12083 (ry, @) + 2472 — a8ar, 22U 1)
8}”+
a8(ry, a8 (ry,
600 5(rs. q) (ry,q) 3 (ry,q)
8r+ 8r+
38 (ry,
12ar, 82y, ) 20D (29)
I+
and
oM TaS ¢=0 =
dq dq o
a8 , 38 (ry,
480 (re.q) + 6008 (s q) 38(ry, q) ) (ry,q)
aq aq aq
+ 120820y, q)M g2 =0 (30)

as differential equations that must be satisfied by 8(ry, g).
From now, we consider the case ¢ = 0. So, from Eq. (29)
one can get

2r+

. 27

VU

1= 24— 4
12/a Qs

rE(L+8(r0))? + 24a(1 4 8(r1))°
+6a(1 +8(r))* +4eir} =0, 31)

by solving above equation one can obtain solutions for § (r4)
as:

iv2 \/864v ot2+\/_Q3r++x/_(r++288c1ar++QB(4V+ 144a))—36\/2aQri

\/_QGZ/{4

(32)
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e e e
12/a Qs
V2 3 2 7 3 L4 4

—— T \/864v2Q02 — VUQ5ry — VUG +288ciard + Q3 (4rf — 1440)) — 3620 0r} (33)

JaQsUi
where

In Fig. 3a, we have shown the free energy in terms of 7

P =36y 2ac) for positive @. As can be seen in the black, green, and blue

\/ 192car8 +373248¢103 + 24ard — 921602c3rt — 20736¢102r}
Q = (—864cirta +31104c10® + 18 + Pyry

U=T200% —24 0% + QFry +288r3cra+r. (34)

Inserting (32)—(34) into the thermodynamical quantities and
plotting them, one can arrive Figs. 1, 3 and 5. In Fig. 1,
we have illustrated the temperature, entropy, and mass for
different values of parameters. In these figures, the black and
red solid lines correspond to the physical solutions, while
the green and blue solid lines correspond to the non-physical
black hole solutions. The physical solutions have positive
temperatures and mass. In these figures, the behavior of the
red solid lines is similar to the Schwarzschild black hole, and
the behavior of the black solid lines is different from that of
Schwarzschild black holes. In Fig. 1a, we observe that, unlike
the Einstein gravity case, it no longer diverges for r1 — O.
Instead, there is a maximum value 7,,,, that is reached at
I+ max-

In Fig. 1b, c, the behavior of entropy and mass in the
large radii are similar to the Schwarzschild black hole and in
the small radii, unlike the Einstein gravity case, diverge for
r4+ — 0. Different panels of Fig. 2, compare our black hole
solutions (solid and long dashed lines) with those obtained
in [17-19] (dashed and dotted lines). The solid and dashed
lines are the results of our calculus and the paper [17-19] for
positive «, respectively. The long dashed and dotted lines are
the results of our calculus and the paper [17-19] for negative
o, respectively. As can be seen, there is a good agreement
in both cases between our computations and the results of
the mentioned papers in large radii and somewhat different
in small radii but have the same behavior. This shows that
the first law of thermodynamic and the Smarr formula in the
form of (25) and (26) are valid for this theory of gravity.

In the following, we are going to look at the thermody-
namical stability of the solutions. In global stability, we allow
a system in equilibrium with a thermodynamic reservoir to
exchange energy with the reservoir. The preferred phase of
the system is the one that minimizes the free energy. In
order to investigate the global stability, we use the following
expression for the free energy

F=M-TS. (35)

branches the free energy is decreasing functions of r. This
shows the black holes in these branches globally are stable.
While in the red branch, the free energy has an increasing
behavior and is a globally unstable branch.

On the other hand, local stability is concerned with how
the system responds to small changes in its thermodynamic
parameters. In order to study the thermodynamic stability of
the black holes with respect to small variations of the ther-
modynamic coordinates, one can investigate the behavior of
the heat capacity. The positivity of the heat capacity ensures
local stability. The heat capacity is given by

C oM 36

=37 (36)
In Fig. 3b, heat capacity in terms of r for positive o have
been illustrated. As can be seen the heat capacity in all radii
is negative, this shows the black hole in all branches locally
unstable.

In Fig. 4, the heat capacity and free energy are compared
based on our calculations and the results of papers [17,18].
As can be seen from the dashed lines of both figures, the black
holes in small radii are locally stable but globally unstable
(Figs. 5,6, 7).

In panels of Fig. 8, we have depicted the metric functions.
In Fig. 8a and b, the mass of the black hole is positive and
these solutions are similar to Schwarzschild’s black hole. In
Fig. 8c and d, the mass of black holes are negative and their
behavior is different from the Schwarzschild black hole.

3 New solutions

Here, in order to obtain the new static, spherically symmetric
black hole solutions of theory we consider a line element with
different metric functions. We consider the following static
metric

ds® = —h(r)di> + ar +r? (d92 + sin2(9)d¢2) . (37
f@r)

Unlike the previous section, here we have two metric func-
tions that require two components of field equations to obtain
them. By inserting the metric into the field equations, the dif-

@ Springer



675 Page6of 15 Eur. Phys. J. C (2022) 82:675
0.064 \ 2004 6
\
0047 \\\ 1504 y
Y
0.024 27
— -
T s M ~
0 0
-0.02 501 -2+
-0.04- -44
0
0 2 4 3 s 0 7 s 0 2 H 6 8 10
. "y
Fig. 1 The temperature, entropy and mass as a function of r forc; = —0.25, « = 0.5. The orange long dashed lines related to the Schwarzschild’s
black hole
0.064 \ 2001
\
\%
0041 \-‘\ 1504
T S 1004

-0.024

-0.04+

0

Fig. 2 The temperature, entropy and mass as a function of ry for

Long dashed lines are the results of our method and dotted lines are
for the paper [17,18]. The orange long dashed lines related to the
Schwarzschild’s black hole

c1 = —0.25,a¢ = 0.5: solid lines are the results of our method and
dashed lines are the results of the paper [17,18]. For « = —0.5:
Fig. 3 The free energy and heat 3

capacity as a function of r for
c; = —0.25, = 0.5. The
orange long dashed lines related
to the Schwarzschild’s black
hole 1

20

-204

404

~2-

-604

-80

-100-

-120-

ferential equations for f(r) and /(r) become

SrARYET = B3 0+ Ant3 1 8% it
+ 83K Fh + 2, FR3R — W2t R — 8r2ht—
a[—12r2R°0 £ — a8rf 1 f'h"
+24rhf?n” — 24ri®h’ f* — 48 f*h*h'h +

@ Springer

24rf2h* f'h 4 24 £ 120" £

—24rhf 0" — 2477 f03 f20" — 48 20N f
+48r 2k f'h" + 48r [ H b

+ 1207 PR + 48 f1H f

+24r2 21 f'1' R

+48rf 3K 17 — 24r*hf? R



Eur. Phys. J. C (2022) 82:675

Page 70f 15 675
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capacity as a function of r for
c1 = —0.25, ¢ = 0.5: solid
lines are the results of our
method and dashed lines are the
results of the paper [17,18]. For
o = —0.5: Long dashed lines
are the results of our method and

40

204

-204

. C
dotted lines are for the paper 407
[17,18]. The orange long dashed
lines related to the ~607
Schwarzschild’s black hole ~80-
-100
73- T T T T T - 120- : !
2 4 6 8 10 5
v, "+
109 500
0.034
81 4004
9 0.024 3007
M S
44 200+
0.014
24 1004
0‘! T T T 0- T T T T 0‘! T T T T T T T
0 0.01 0.02 0.03 50 100 150 200 0 1 2 3 4 5 6 7
T S M
Fig. 5 The plots of temperature, entropy and mass for c; = —0.25, ¢ = 0.5
109 400
N
3004
64
M S 2004
o
1004
2
0- 0- T T T T 0‘! T
50 100 150 200 0 6
S
Fig. 6 The temperature, entropy and mass as a function of r for ¢; = —0.25, o = 0.5: solid lines are the results of our method and dashed lines

are the results of the paper [17,18]. For « = —0.5: Long dashed lines are the results of our method and dotted lines are for the paper [17,18]

— 2472 F3nn"*n"],

and

—4r* W ES = =3r* 03 f'0 — 6r* 3 f1 — 12770 £

(38)

— 1277 fR = 120 R0 + 3r% fRPH 4 127K

+ 3a[—16r2 f17 f20" + 32 f21° f'h”
+32rfR3K f'* —16r2hf2 f'h"
— 16r°hf>h"n"

+16rf2h% £ ' + 1682 £2R% £ h'h"

+16r2 fh2 f20? — 872130 £

+ 8% f20 — 16rhf>h"”

+32rR2 300 = 32203 h

—32rf 22’ R = 32rfR3 f' R

+ 16rhf?h® — 16rh’ fn'

+327h3h 1. (39)

@ Springer



675 Page 8 of 15

Eur. Phys. J. C (2022) 82:675

1 \ _

0.84
0.6

0.44

0.2

Fig. 7 The temperature (dotted line), heat capacity (solid line) and free
energy (dashed line) as a function of r for ¢y = —0.25, ¢ = 0.5

Similar to the previous section, expanding the function A (r)
and f(r) around the event horizon r

F@) = i =r) + Lo =r)? + 3 =)’ +

(40)
h(r) = hy(r —ry) + hao(r —r)* + ha(r —ry)® + ...

(41)

and then inserting these expressions into the field equations,
we find

p hr? —hy fird + 6afPhor? + 6ah £ + 120 ho f7
2 =

6ary fih1 2+ ry f1)
(42)

where r, f1, hy and h, are undetermined constants of inte-
gration. The other near horizon constants provided in the
Appendix B. In the large r limit, we linearize the field equa-
tions near the Schwarzschild background

2M
fr)y=1- - +€eF(r), (43)

2M
h(r)y=1-— - +eH(r), (44)

where F(r) and H (r) are determined by the field equations,
and we linearize the differential equations by keeping terms
only to order €. The resulting differential equations for F(r)
and H (r) take the form

H' +y(OH +n()F'
+omFr)+ EF)HF)+gr) =0,
H" + 7 H' + () F’

(45)

@ Springer

+a(F )+ EHr) +g(r) =0, (46)
where the functions shown in the above equations are given
in the Appendix C. In the large r limit, the homogenous
equations read

, 4 ., 2 _, 4F 4AMH
H'+-H +~F +— — —— =0, (47)
r r r? r3
, 2, 2, 2F 2M’H
H' +ZH +“F + =+ — =o. (48)
r r 1"2 V4

Equations (47) and (48) can be solved exactly to obtain

(M + 2r)?

F(r) = 2chre 12

M
Jrr?
/ / M
+\/;(M+2r) <C1 +C2€”_f <2+ 7))] ) (49)

M
H(r) =c1 + cerf (2 + —) . (50)
r
In the large r, F (r) and H () become
2M(J7C, + Tcherf (2) + che™)
F@r)~
JIr
N M2 (J7c| + Jmcherf(2) — che™) N 8che M3
Jrr? Jrr
86’2674M4 _s
- 1
S 007, (51)
HO) n F2) + 2C2€_4M 4626_4M2
r) & e -
crree Jrr Jr?
l4cre M3 10cre*M* _5
O . 52
3/mr3 3/mrt O (52)

As we know, for « — 0, the metric is expected to return to
the Schwarzschild metric. To fulfill this desire, we must have:
c1 = ¢| = ¢ = ¢4 = 0. To obtain the particular solution,
we consider the following expansions

F, F  F
f,,(r)zzr—jjz g 28 (53)
n=2
H, H, Hz
h,,(r):Zr—nzr—2+r—3... (54)
n=2

Inserting the above expansions into the field equations and
solving order by order, one can get

1120aM3  288aM?*  756aM?
fp(r) =— 7 T 8 T 9
3r r r
2016aM®  27216aM 1
- 10 - 5,11 +0 P12 (55)



Eur. Phys. J. C (2022) 82:675 Page 9of 15 675
1 0.6
1.14
\\\
054 05 e
0.44
0.6
0.9
f 0.3
0.4+
0.8
0.29
0.2
0.14 0.74
0- T T T T T T T T T T OAV 0'6<V T T T T T T
10 20 30 40 50 60 70 80 90 100 6 7 8 9 10 11 12 13 14 15 20 40 60 80 100 120 140
r r r
@ ry =6.21,M =3.11 (¢) asymptotic
19 1.154
1104\
0.84 \
\
1.054 \\
o ~
0.6 \\\§
£ L00 - T TIET
0.4+
0.954
0.2
0.90
0- T T T T T T T T T T 0.85- T T T T T T T
10 20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 140

I

(d) ro =1.0,M =1.28

() asymptotic

0.10-]
i
0.8
0.05
0.6
f
0.4
o
0.2
0 . . . . i 0.05 . . . 0.96- .
0.98 099 1 1.01 20 40 60 80 100 120 140

T
5 10 15 20 25 30
r

(g ri=10,M=—0.11

Fig. 8 The plots of metric for ¢c; = —0.25, ¢ = 0.5

256aM3  108aM?*  252aM?

hp(r) == 3r7 r8 rd
3024aM®  81648aM’ 1
¢ * o (—) . (56)
5r10 55r11 ri2
In large r, the solutions are:
2M 2M
f(r)%l—7+fp, h(r)%l—T—i-hp. 67

We wish to obtain an approximate analytic solution that is
valid near the horizon and at large r. To this end we employ

r

(h) near horizon

(i) asymptotic

a continued fraction expansion, and write

h(r)

— — B%(x),
o - BW

h(r) =xAx), (58)

with

AX)=1—e(1—x)+ (ag — )1 —x)>+ Ax)(1 — x)°
(59

B(x) =1 +bo(l — x) + Bx)(1 — x)* (60)
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Fig. 9 The temperature, entropy and mass as a function of r for ¢; = @ = —0.5. The orange dashed lines related to the Schwarzschild’s black
hole
Fig. 10 The free energy and 4
heat capacity as a function of r
for ¢; = @ = —0.5. The orange
dashed lines related to the
Schwarzschild’s black hole 7
F 24
ry r,
where horizon and so we obtain
r - ai
x=1-—" Aw = ToxS
r 1+ o RS f(r)h,(r) _ Nl
I+ asx 4 \ h(r) 4
1+ Tt
b I+ _(1—26+a1+a0) 63)
B(x) = . 1) drrs (L+ D)
brx
14
b3x
14 b ) )
1+ 4x We compute the entropy by using of the first two term in
14 ...

where we truncate the continued fraction at order 4. By
expanding (58) near the horizon (x — 0) and the asymp-
totic region (x — 1) we obtain

H Fl1—HI1 H-
e=-q p=T 0 4= (&
r+ 2}"+

for the lowest order expansion coefficients, with the remain-
ing a; and b; given in terms of (ry, k1, f1, h2); we provide
these expressions in the Appendix. For a static space time we
have a timelike Killing vector £ = 0, everywhere outside the

@ Springer

continued fraction expansion as follows [33,34]

SL
S = —271/ d2xﬁ €ab€cd
Horizon 5Rabc
2h h 2h
:nri 1 4 6« —; — f121 + (r+)]3‘1
ry ry faory
/mwﬁ+fmm%
frord  hrpr:
4h h
= nrf_ |:1 + 6a (—; + f1—21>:| . (64)
I":,’_ V+
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Fig. 11 The temperature (dotted line), heat capacity (solid line) and
free energy (dashed line) as a function of v forc; = —0.25, « = —0.5

Then the mass from (25), becomes

2

2 ry ry

To obtain the new black hole solutions we consider the differ-
ent relations between f] and /1 [35]. In the case of f; = Ay,
we obtain the results of the first section.

3.1 The case hy = f}

We now consider following relation between f; and /1 as

hi(ry) = f7rp). (66)
From Egs. (25) and (26), we have

2
M= 2’;—1(& + Lary fiHry) + 48af{ (1), (67)

21} fl(re) + 48ar? fra) £l (rp)
+168ary £ (r) 1) + filr)rd — 24afiry) = 0.

(68)
Solving (68), one can achieve following equation as
1 24af]
Eriffw r+f‘ + 6aff +c1 =0 (69)

which leads to a maximum of eight solutions for fi(r;)
depending on the value of parameters. Inserting the solu-
tions of (69) into the thermodynamical quantities, one can
obtain the analytical solutions for them, which we have plot-
ted in Figs. 9 and 10. In these figures, the dashed orange
lines are the behavior of the thermodynamical quantities of
Schwarzschild’s black hole. In Fig. 9, the blue and red solid
lines are the physical branches, because the temperatures and
the mass of these branches are positive. Also, the red branch

is globally and locally unstable and the blue branch is glob-
ally stable while locally unstable (Fig. 10). From the Fig. 11,
there is a divergence in the heat capacity, but this divergence
does not coincide with the extremum points of temperature
and free energy. So, the phase transition does not occur.

In panels of Fig. 12, we have depicted the metric functions.
In these figures, the mass of the black hole is positive and
these solutions are similar to Schwarzschild’s black hole.

4 Conclusion

In this paper, we studied the black hole solutions of Ein-
steinian cubic gravities by using continued fraction approx-
imations. To get a complete solution, first, we constructed
the near horizon and then asymptotic solutions and then
used them to obtain an approximate analytic solution using a
continued-fraction expansion. Then, we calculated the ther-
modynamic quantities like entropy, temperature and mass,
and by inserting them in the first law and Smarr formula, we
obtained the analytic solutions for the near horizon quanti-
ties. Then, one can obtain a metric according to continued
fraction expansion that is only a function of constant inte-
gration not extra function like f; or h;. We also showed
that continued fraction expansion can be used to accurately
approximate black hole solutions in cubic gravity, which are
valid everywhere outside of the event horizon. Finally, to
obtain the new black hole solutions, we considered the dif-
ferent relationships between the near horizon constants. We
also compared our results with those of previous works on
the subject and we found a good agreement between them.
The important point in our work is that we assumed the near
horizon constant f in the first law of thermodynamic and the
Smarr formula, is a function of the event horizon radius. This
assumption is correct, because f is proportional to tempera-
ture according to Eq. (23). This method is different from the
one used in previous papers like [17, 18]. First, they used the
differential equations for metric function which have been
obtained from the action of the theory, while, we have used
the components of the field equations (3) of the theory. Sec-
ond, they obtained the thermodynamical quantities from the
first and the second term of near horizon expansion, while
we obtained from the first law of thermodynamics and Smarr
formula. Our method is applicable to every theory of gravity
(as we previously applied to the quadratic gravity in refer-
ence [32]), while the method of the papers is only applicable
for the theory in which the on-shell action is integrable with
respect to r. Finally, this approach also allows us to obtain
black hole solutions different from Einstein gravity solutions
by assuming f; # hp in the near horizon expansion as we
have done in Sect. 3. We think using the thermodynamics
to obtain the black hole solutions is a normal approach with
respect to one in the references [17,18].
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We leave for future work, obtaining the non-vacuum, rotat-
ing black hole, and other solutions of the theory by using the
continued fraction expansion.

Appendix 1: Explicit terms in the continued fraction
approximation

We present terms up to fourth order in the continued fraction
approximation:

(70)

F 4a; — 5¢ + 1 + 3ag + for?
e:——l—l, ar=—1—ap+2+ryfi,a0=— ! ot fory

r4 aj

1

az = ——|: — f3r+3 +a1a22 + Sajar + 6ag + 10a; — 9¢ + 1i|

ajar

f4r+4 + a1a2® + 2a1a0% a3 + ayaraz? + 6ayar? + 6ajaras + 15aia; + 10ag + 20a; — 14e + 1
as = —

apazas
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Appendix B: Near horizon constants

Here, we present some near horizon constants regarding sec-
tion (2) and (3) as follows:
The quantity f4 is given in (8)

—1

= 0 1480 i+ 2470 D@8 e a 1% 1 960 fi £ 1]

x [— 31712 +7524r,. 1 fila

— 11064 7" f13a — 4608 1 %a” £12 — 86400 4a® f1*
+ 109447 f130® — 1534464 r, 2a* £10+
888192, 0> f1° — 89136 4.8 f1%a® — 5971968 o £, 8
+5640192a* f17r 3 — 17694720 1,57, O+

184896, ° fi3a? + 1248 r,° fi + 341 B f — 864ar+8}. (71)
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The near horizon constants regarding Sect. (3):

1 1

=— hy = —

5 2592(fi3hi?r 202 (r3 i3 + 84+ 612 i + 1214 f1)) 2592(fi*hiry2e? (r3 fid +8 + 61 2 fi2 + 1214 f1))

x |:6912a2f16h22r+4 + 712 3= x [11 2 f12 =40 On 2 fi2 35k 2

1607 5h12 12 +59r 5 h 2 f1 + 301 *hy? —6ry 2 + 72000 £1%R1%r 2 + 8424 0% f14h

+ 547202 f1%h1%r 2 + 1234802 fi°h 2ry + 948 f1*h 2r fa + 528 [0 Pr P«

14536 0% f1 712 4 889202 f17hy 2r i+ — 3607 2hi%a fi2 + 1728 a2 fi7hy2ry

876 fi*hi2rita + 816 fi°h 2r e — 7921 2k 2a f12 + 691202 fi7hy?ry 3 4+ 691202 1902y * 4+ 172802 f1 iy ry >

+ 17282 £ hi%ry 3 + 691202 f17hory 3 — +252 1302 30 + 576 hyr P hy fi2a — 528 hir o ho fite

816717+ h fir*a + 1728 2 fi ho?r 5 + 684 £1312r 3a +1920 i ho frde — 672 i S fila ho—

+ 576 hirs3hy fi2e — 19584 02 f15hy 1y 2hy+ 1411207 f1%h1 742 o — 23040 0% 101742 ha

4 3 6,5 2,6 3
2496 hyry*hy fila — 960 hyry O fiPa hy — 1238462 f1%h r 3 hy 345602 f T hyr sty — 17280a2f14h2r+h1]. (73)
— 34560 f1 Thirethy — 17280 f1*hary hl]. (72)
—1

fa

T 248832(f10h 3 rs 3 (r3 f12 + 107 4 Ai* 4807, 2 f12 + 3244073 £1° + 8074 f1))
X [ — 92237 f1 #2557 e A 7713 030 13— 8528 B 10yt

—328h 3 r 8 f17 + 813888 a2 £13hah 2 — 1990656 o3r, 3 1802 + 8136 f1°h13r 3

— 59424 f1*h 3y fa — 1492992 &3 r, 7 1110003 4 247896 f13h13r Oa® + 89712 £1h 3 r fa®

— 248832037, 8 11 ho3 + 143424 1103 T a® + 384012 f17hir Sa? + 230688 o f180,3r 2

+ 2488320 f1'0n 3 r t + 316224 0 1171133 + 654480 03 17 h Pry + 37164 £17h 3 r0a

+31788 f13h*r o — 15924 £ 3r B + 4824 1 *hPa £12

— 64807 2h 3o it — 7608 hi3ry” fila — 2985984 o r, O 19,3 + 124416 3 f1 V130 —
288000 r 8 1 hohi > — 492 -, %113 + 6765120 1% + 237312 %10 f1°ho%hy — 16128« f12hor >hi>

— 829440 & £1%hy%r 2y — 138240 & f1*ho?r *hy — 399168 &®ry * f17hah? — 87024 o ry ! fi*hoh >+
1302912 0y 2 1" hohy® — 356544 &®r, 8 £1%hahy?

+ 580608 a’ry” fi' ho?hy + 2377728 33 17 ho by — 414720 &3 r L 0 £ oy ® + 2598912 037, 6 £1'0ha% R

+ 4230144 &> r 3 f1°h%hy — 460800 a?ry° fi3hy%hy — 34560 a*ry” f17hyhy — 1260288 a1 6 f1%hy%h)

+ 4105728 o ry* f18h2%hy 4+ 189360 @ 18 f17hah1? + 9072 0 f10hohy? — 52128 o 7y © f13hahy?

+ 110592 &® f1*hory 3hy > — 746496 o f10hory hy? — 771264 &% r, 7 £18hah1? — 50928 a 10 £ hyhy?

+ 313920 a7y 3 £1%hahy? — 1022976 & ry £1'0hohy? + 1369728 1y * f17hohy?

+ 723456 a%r} 8 f18h22h1:|. (74)
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—1

ha =
T 2488321127 303 (r 0 15+ 10r* 1Y+ 807, 2 12 43244073 13 + 8074 f1))

X [— 810 h®ry fi + 709 hPri " £1% + 3177 hi3r° f1% — 283203 10 f1*

— 424 h 3 r 8 17 + 426816 1> £i8hah 2 — 1990656 o3 f180,° — 251640 f17h 1 r 30

— 36576 fi*h13r 8o — 1492992 o r 7 £11%1,% + 354456 13113 %a® + 126576 £1%h13r *a?

— 2488320 r 8 11 hy® + 129600 £1°h1 3 Ta® + 442476 1 hi 3 r 0 — 377568 02 £i8h 3y 2
+331776 & f1On 3 rit 4+ 205632 % 178133 — 482544 03 17 h P ry 424780 fi7h P rda

+ 11532 f13h P r e + 11628 £1%h 3 r 8 + 6552 . *h P £12 — 113616 . 2h 3 fi* — 26232 3 ry fioa
— 2985984 a8 f1%h23 + 124416 0> £1' 3y — 472320021, 8 f17 hoh? + 180 7.5 + 116640 o £1%h,
+ 195840 & ? f1°hohy — 11520« f12hory "hy® — 829440 o £1%h2%r 2 hy — 138240 a2 f1*hory *hy

— 1200960 & * f1°hahy? — 54768 a i fi*hoh? 4 1496448 oy 2 1 hohy? — 301248 %18 £1%hyh 2
+580608 & ry” i a2k + 2377728 &3y 3 17 hoPhy — 414720071, 0 1 ok % + 2847744 o3 1,0 1100070y
+ 522547263 £17ha by — 460800 o1y f1ohohy — 34560 a®rL” £ hy?hy — 1094400 o’ 1 15052k,
+5101056 0> * £18h2%hy + 124848 e ry 8 f1°hah* + 8688 a ry® f10hah? — 43680 a 1.0 fi3hohy?

+ 276480 & fi*har 3 hy? + 82944 o £1%hor, hi? — 810432 0% r, " fi8hohi? — 31344 6 1 10 £ hoh 2

+ 489024 0> 3 f1%hoh1? — 1354752013 f1'Ohahy? 4 1342080 o®r it f17hah1? T + 599040 o’y 8 f18h22h1]

(75)

Appendix C: Functions

Here, we present the functions regarding differential equa-
tions (45) and (46) as follows:

4r7 —9Mr® — 5280 M?r + 816a M3

= 7
v F(r — 2M)(r® + 2400 M?) (76)
2r7 —3Mr% — 5280 M?r + 1296a M?
n(r) = = 2 77
r(r —2M)(r° + 240 M?)
)= 2(2r% — 6Mr” + 3M?r + 2400 M?r? — 1968 M>r + 27360 M*)
w= P2Q2M — r)2(r5 + 2400 M?) ’
(78)
H 2M (2r7 — 5Mr® — 1008 M?%r 4 17762 M?)
2() = 2@ -5 . d (79)
r=(r® 4+240aM=)2M —r)
1344 M3
- 80
800 == 506 4 240a01%) (80)
and
_ 2r7 —3Mr® — 3520 M2r + 864aM>
7(r) = = 5 81)
r(r —2M)(r® + 160a M?)
_ 2r7 — 5Mr® — 3520 M2r + 544aM>
i(r) = = 5 (82)
r(r —2M)(r® + 160a M?)
2M2(r0 + 672raM — 1184aM?
o) = (r° + ro aM~*) (83)

r2(r® 4+ 160aM?)(2M — r)?
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208 —AMr7 + 3M?r® + 160 M?r? — 1312a M3r + 18240 M%)

80 = 26 + 160aM2)2M — r)?

(84)

3
896a M (85)

800 =505 1 160am?)
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