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Abstract In this work, we introduce analytical approxi-
mate black hole solutions in Einstein-Cubic gravity. To obtain
complete solutions, we construct the near horizon and asymp-
totic solutions as the first step. Then, the approximate analytic
solutions are obtained through continued-fraction expansion.
We also compute the thermodynamic quantities and use the
first law and Smarr formula to obtain the analytic solutions for
near horizon quantities. Finally, we follow the same approach
to obtain the new static black hole solutions with different
metric functions.

1 Introduction

Higher-order gravity models recently attracted considerable
attention. In the context of cosmology, in order to go beyond
the standard �CDM model and find an explanation for the
late-time accelerated expansion, dark matter or inflation [1–
4], higher-order curvature gravity theories are helpful. In
AdS/CFT context, higher-order gravities have been used as
tools to characterize numerous properties of strongly coupled
conformal field theories [5–10]. From quantum gravity view-
point, in order to unify quantum mechanics and gravitational
interactions, going beyond the Einstein gravity is necessary
[11].

In recent years, a new class of higher derivative theories
has been discovered that is ghost-free and in four dimen-
sions neither topological nor trivial known as Generalized
Quasi-Topological Gravity [12–15]. One of the such higher-
derivative gravity theories which in the four dimensions is
neither topological nor trivial is Einsteinian cubic gravity.
This theory of gravity, that has been recently proposed in
[16], is the most general up to cubic order in curvature dimen-
sion independent theory of gravity that shares its graviton
spectrum with Einstein’s theory on constant curvature back-
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grounds. The Einsteinian cubic gravity field equations admit
generalizations of the Schwarzschild solution, i.e. static,
spherically symmetric solutions with a single metric func-
tion [17–19]. The Lagrangian density of this theory is given
by [17,20]

L = R − 2� + β1κ4 + β2κ6 + αP,

where κ4 and κ6 are four and six-dimensional Euler densities
and correspond to the usual Lovelock terms, and P is the
cubic term. In 4-dimensions the terms proportional to β1 and
β2 have no contribution on the field equations. In [17–21],
the authors construct static and spherically symmetric gen-
eralizations of the Schwarzschild and Reissner–Nordström-
(Anti-)de Sitter black hole solutions in four-dimensions and
study the orbit of massive test bodies near a black hole, espe-
cially computing the innermost stable circular orbit. They
compute constraints on the ECG coupling parameter and the
shadow of an ECG black hole. In [22], bounce universe in
the critical point of the coupling constants of the theory has
been studied. In [23], the holographic complexity of AdS
black hole in Einsteinian cubic gravity has been investi-
gated through the “complexity equals action” and “complex-
ity equals volume” conjectures. In [24] the condensation of a
charged scalar field in a (3 + 1)-dimensional asymptotically
AdS background in the context of Einsteinian cubic gravity
has been studied. In [25] holography on squashed-spheres, in
[26] the holographic entanglement entropy, and in [27] vari-
ous aspects of holographic ECG have been studied. In [20],
the gravitational lensing due to the presence of supermassive
black holes at the center of the Milky Way and other galaxies
in Einsteinian Cubic Gravity has been studied.

In this paper, by using the continued fraction expansion
technique, we obtain the static spherically symmetric solu-
tions for the theory. This ansatz is designed so that the coeffi-
cients in the continued fraction are fixed by the behavior of the
metric near the event horizon, while the pre-factors are intro-
duced to match the asymptotic behavior at infinity [28–30].
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This method is an accurate analytic method that has recently
been applied with success in a variety of contexts [31,32].
These analytic studies of the black hole also allowed us to
study thermodynamics and other properties of the solutions.
While, the numerical solutions do not give a clear picture of
the metric dependence on physical parameters of the system.

The paper is organized as follows: in the next section, we
first review Einsteinian cubic gravity and continued-fraction
expansion. Then, calculating the thermodynamical quanti-
ties and inserting them in the first law and Smarr formula,
we obtain the solutions for the near horizon quantities. We
also plotted the metric functions and thermodynamical quan-
tities and compared them with the previous works on this the-
ory, we find a good agreement between them. In Sect. 3, we
introduce new solutions of the theory with different metric
functions. Finally, we conclude the paper in Sect. 4.

2 Basic equations

In 4D, Einstein cubic gravity theory is determined by the
action [17–21]

S = 1

16πG

∫
d4x

√−g(R − 2� + αP − κFabF
ab), (1)

where R represent the Ricci scalar, α is coupling constant
of the theory, and P cubic-in-curvature correction to the
Einstein-Hilbert action is given as [17–21]

P = 12Ra
c
b
d Rc

e
d
f Re

a
f
b + Rab

cd Rcd
e f Ref

ab

−12Rabcd R
acRbd + 8Ra

bRb
cRc

a . (2)

The correction term in four dimensions is dynamical and
is not topological or trivial [17–21]. Using the variational
principle, one can find the following equation of motion

Eab = PacdeRb
cde − 1

2
gabL − 2∇c∇d Pacdb − 2Tab = 0,

∇a F
ab = 0, Tab = FdaF

d
b − 1

4
gabFdeF

de (3)

where L is the Lagrangian of Einstein cubic gravity and
Pabcd = ∂L/∂Rabcd is

Pabcd = ga[c gb]d + 6α

[
Rad Rbc − RacRbd + gbd R

e
a Rce

− gad R
e
bRce − gbcR

e
a Rde + gacR

e
bRde

− gbd R
ef Raec f + gbcR

ef Raed f + gad R
ef Rbec f

− 3Ra
e
d
f Rbec f

− gacR
ef Rbed f + 3Ra

e
c
f Rbed f

+ 1

2
Rab

e f Rcde f

]
. (4)

Here, we consider the following spherically symmetric and
static line element for describing the geometry of spacetime

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2(

√
kθ)

k
dφ2

)
.

(5)

As, we know generic static, spherically symmetric metrics
do not need obey gtt grr = −1 necessarily, but field equation
(3) admits solutions with this property [17–21], to which case
we shall restrict our consideration in this section.

By inserting the metric into the field equations, the differ-
ential equations for f (r) become

Er
r − 2T r

r = 1

4r5
[24αr2 f f ′′′(2k − 2 f + r f ′)

+ 24αr3 f f ′′2 + r(r4 + 12αr f f ′

− 96kα f + 96α f 2) f ′′

+ 24αr(4 f − k) f ′2 + 4r3(−k + f + �r2)

+ (96kα f + 6r4

− 96α f 2) f ′] + q2

r4 = 0. (6)

Expanding the function f (r) around the event horizon r+

f (r) = f1(r − r+) + f2(r − r+)2 + f3(r − r+)3 + ... (7)

and then inserting these expressions into Eq. (6), we find

f2 = −2�r4+ + 2kr2+ + 12αk f 2
1 − 3 f1r2+ − 2q2

r4+
,

f3 = 1

3r5+ + 72αr3+ f 2
1 + 144αr2+ f1k

[
− 6 f2r

4+

+ f1r
3+(1 − 48α f 2

2 ) + 4r2+(24α f 2
1 f2 − k)

+ 48α f1r+(− f 2
1 + 3k f2) + 8q2 − 96αk f 2

1

]
,

f4 = − 1

r6+(96α f1k + 48αr+ f 2
1 + r3+)

×
[

20q2 + 144αk f2 f3r
3+ + 48α f 3

2 r
4+ − 384α f1 f

3
2 r

4+

− 384αr3+ f1 f
2
2 + 9r5+ f3 − 4r4+ f2 − 6kr6+ − f1r

3+
− 360αk f 2

1 + 624αr2+ f2 f
2
1 − 576αr3+ f 2

1 f3

− 240αr+ f 3
1 − 792αkr2+ f1 f3 + 504α f1 f2 f3r

4+

+ 720αr+k f1 f2 − 144αr2+k f 2
2

]
(8)

where r+, f1 are undetermined constants of integration. In
the large r limit, we linearize the field equations about the
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Schwarzschild background

f (r) = 1 − 2M

r
+ εF(r), (9)

where F(r) should be calculated from the field equations.
We linearize the differential equation by keeping terms only
to order ε, and the resulting differential equation for F(r)
takes the form

F ′′′ + γ (r)F ′′ + η(r)F ′ + ω(r)F + g(r) = 0, (10)

where

γ (r) = −96αr2 + 1152αM2 − 768αMr − 96kαr2 + r6 + 192αkMr

48αr(2M − r)(3M − r + kr)
, (11)

η(r) = −16αr2k + 416αM2 − 240αMr + 48αkMr + 16αr2 − r6

8αr2(2M − r)(3M − r + kr)
, (12)

ω(r) = −288αkMr − 576αMr + 1680αM2 + r6

12αr3(2M − r)(3M + kr − r)
, (13)

g(r) = (k − 1)r7 − q2r5 − 288Mαr2(k − 1) + 120αM2r(5k − 14) + 2208αM3

12αr4(2M − r)(3M − r + kr)
. (14)

In the large r limit and k = 1, the homogenous equation
reads

F ′′′ + r4

144Mα
F ′′ + r3

24Mα
F ′ + r2

36Mα
F = 0. (15)

This equation can be solved exactly in terms of hypergeom
functions

F(r) = c1hypergeom

([
1

5

]
,

[
3

5

]
,− r5

720Mα

)

+ c2r
2hypergeom

([
3

5

]
,

[
7

5

]
,− r5

720Mα

)

+ c3rhypergeom

([
2

5
, 1

]
,

[
4

5
,

6

5

]
,− r5

720Mα

)
.

(16)

In the large r , F(r) decays super-exponentially and can be
neglected. More relevant is the particular solution, which
reads

f p(r) =
∑
n=2

Fn
rn

= F2

r2 + F3

r3 + .... (17)

By inserting the above expansions into the field equations
(10) and solving order by order, one can get

f p(r) = q2

r2 + F4

r4 − 432αM2

r6 + 64Mα(23M2 + 18q2)

3r7

− 4656M2q2α

7r8 + 432MαF4

r9

− 736M2F4α

r10 − 995328M3α2

5r11

+ 3456M2α2(1831M2 + 576q2)

11r12 + O
(

1

r13

)
.

(18)

For α goes to zero, one expects the metric returning to the
RN. As a result F4 should be zero. The solution at large r ,
thereby giving

f (r)≈1 − 2M

r
+ q2

r2 − 432αM2

r6 + 64Mα(23M2 + 18q2)

3r7

− 4656M2q2α

7r8 − 995328M3α2

5r11

+ 3456M2α2(1831M2 + 576q2)

11r12 . (19)

It should be noted, the other components of field equations
give the same results for (7)–(18). We wish to obtain an
approximate analytic solution (for k = 1) that is valid near
the horizon and at large r . To this end we employ a continued
fraction expansion [31], and write

f (r) = x A(x), x = 1 − r+
r

(20)

with

A(x) = 1 − ε(1 − x) + (a0 − ε)(1 − x)2

+ a1(1 − x)3

1 + a2x

1 + a3x

1 + a4x

1 + ...

(21)

where we truncate the continued fraction at order 4. By
expanding (20) near the horizon (x → 0) and the asymp-
totic region (x → 1) we obtain

ε = − F1

r+
− 1, a0 = q2

r2+
, a1 = −1 − a0 + 2ε + r+ f1

(22)
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for the lowest order expansion coefficients, with the remain-
ing ai given in terms of (r+, f1); we provide these expres-
sions in the Appendix A.

The result is an approximate analytic solution for metric
functions everywhere outside the horizon. For a static space
time we have a timelike Killing vector ξ = ∂t everywhere
outside the horizon and so we obtain

T = f
′
(r)

4π

∣∣∣∣∣
r+

= f1
4π

= (1 − 2ε + a1 + a0)

4πr+
=1 + δ(r+, q)

4πr+
.

(23)

Extreme charged black hole solutions exist if f1 = 0 imply-
ing that a1 = 2ε−a0 −1. We compute the entropy as follows
[33,34]

S = −2π

∫
Horizon

d2x
√

η
δL

δRabcd
εabεcd

= A

4

[
1 + 6α

(
f ′2

r2+
+ 4 f ′

r3+

)]

= A

4

[
1 + 6α

(
f 2
1

r2+
+ 4 f1

r3+

)]

= A

4

[
1 + 6α(1 + δ(r+, q))

r4+
[5 + δ(r+, q)]

]
. (24)

We now consider the thermodynamics of these black hole
solutions, whose basic equations are the first law and Smarr
formula

dM = TdS + φdq, (25)

M = 2T S + qφ, (26)

where there are no pressure/volume terms since we have set
� = 0. From Eq. (26) we have

M = r4+ + 30α + 66αδ(r+, q) + 42αδ2(r+, q) + r4+δ(r+, q) + 6αδ3(r+, q) + 2q2r2+
2r2+

, (27)

yielding the mass parameter as a function of the hori-
zon radius. In the following, we show that the asymptotic
behavior of the mass (27) is the same as the mass of the
Schwarzschild black hole. So, one can interpret the mass
(27), as ADM mass. We now impose the first law (25), which
becomes
∂M

∂r+
dr+ + ∂M

∂q
dq = T

∂S

∂r+
dr+ + T

∂S

∂q
dq + φdq (28)

yielding

∂M

∂r+
− T

∂S

∂r+
= 0, �⇒

60α + 132αδ(r+, q) + 84αδ2(r+, q)

+ 12αδ3(r+, a) + 2q2r2+ − 48αr+
∂δ(r+, q)

∂r+

− 60αr+δ(r+, q)
∂δ(r+, q)

∂r+
− r5+

∂δ(r+, q)

∂r+

− 12αr+δ2(r+, q)
∂δ(r+, q)

∂r+
= 0 (29)

and

∂M

∂q
− T

∂S

∂q
− φ = 0, �⇒

48α
∂δ(r+, q)

∂q
+ 60αδ(r+, q)

∂δ(r+, q)

∂q
+ r4+

∂δ(r+, q)

∂q

+ 12αδ2(r+, q)
∂δ(r+, q)

∂q
+ 2q2r2+ = 0 (30)

as differential equations that must be satisfied by δ(r+, q).
From now, we consider the case q = 0. So, from Eq. (29)
one can get

r4+(1 + δ(r+))2 + 24α(1 + δ(r+))3

+6α(1 + δ(r+))4 + 4c1r
4+ = 0, (31)

by solving above equation one can obtain solutions for δ(r+)

as:

δ1,2 = −2 +
√

2U
12

√
αQ 1

6

±

i
√

2
√

αQ 1
6 U 1

4

√
864

√
2Qα

3
2 + √

UQ 2
3 r+ + √

U(r7+ + 288c1αr3+ + Q 1
3 (4r4+ − 144α)) − 36

√
2αQr4+ (32)
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δ3,4 = −2 +
√

2U
12

√
αQ 1

6

±
√

2
√

αQ 1
6 U 1

4

√
864

√
2Qα

3
2 − √

UQ 2
3 r+ − √

U(r7+ + 288c1αr3+ + Q 1
3 (4r4+ − 144α)) − 36

√
2αQr4+ (33)

where

P = 36
√

2αc1√
192c1αr8+ + 373248c1α3 + 24αr8+ − 9216α2c2

1r
4+ − 20736c1α2r4+

Q = (−864c1r
4+α + 31104c1α

2 + r8+ + P)r+

U = 72αQ 1
3 − 2r4+Q 1

3 + Q 2
3 r+ + 288r3+c1α + r7+. (34)

Inserting (32)–(34) into the thermodynamical quantities and
plotting them, one can arrive Figs. 1, 3 and 5. In Fig. 1,
we have illustrated the temperature, entropy, and mass for
different values of parameters. In these figures, the black and
red solid lines correspond to the physical solutions, while
the green and blue solid lines correspond to the non-physical
black hole solutions. The physical solutions have positive
temperatures and mass. In these figures, the behavior of the
red solid lines is similar to the Schwarzschild black hole, and
the behavior of the black solid lines is different from that of
Schwarzschild black holes. In Fig. 1a, we observe that, unlike
the Einstein gravity case, it no longer diverges for r+ → 0.
Instead, there is a maximum value Tmax that is reached at
r+,max .

In Fig. 1b, c, the behavior of entropy and mass in the
large radii are similar to the Schwarzschild black hole and in
the small radii, unlike the Einstein gravity case, diverge for
r+ → 0. Different panels of Fig. 2, compare our black hole
solutions (solid and long dashed lines) with those obtained
in [17–19] (dashed and dotted lines). The solid and dashed
lines are the results of our calculus and the paper [17–19] for
positive α, respectively. The long dashed and dotted lines are
the results of our calculus and the paper [17–19] for negative
α, respectively. As can be seen, there is a good agreement
in both cases between our computations and the results of
the mentioned papers in large radii and somewhat different
in small radii but have the same behavior. This shows that
the first law of thermodynamic and the Smarr formula in the
form of (25) and (26) are valid for this theory of gravity.

In the following, we are going to look at the thermody-
namical stability of the solutions. In global stability, we allow
a system in equilibrium with a thermodynamic reservoir to
exchange energy with the reservoir. The preferred phase of
the system is the one that minimizes the free energy. In
order to investigate the global stability, we use the following
expression for the free energy

F = M − T S. (35)

In Fig. 3a, we have shown the free energy in terms of r+
for positive α. As can be seen in the black, green, and blue
branches the free energy is decreasing functions of r+. This
shows the black holes in these branches globally are stable.
While in the red branch, the free energy has an increasing
behavior and is a globally unstable branch.

On the other hand, local stability is concerned with how
the system responds to small changes in its thermodynamic
parameters. In order to study the thermodynamic stability of
the black holes with respect to small variations of the ther-
modynamic coordinates, one can investigate the behavior of
the heat capacity. The positivity of the heat capacity ensures
local stability. The heat capacity is given by

C = ∂M

∂T
. (36)

In Fig. 3b, heat capacity in terms of r+ for positive α have
been illustrated. As can be seen the heat capacity in all radii
is negative, this shows the black hole in all branches locally
unstable.

In Fig. 4, the heat capacity and free energy are compared
based on our calculations and the results of papers [17,18].
As can be seen from the dashed lines of both figures, the black
holes in small radii are locally stable but globally unstable
(Figs. 5, 6, 7).

In panels of Fig. 8, we have depicted the metric functions.
In Fig. 8a and b, the mass of the black hole is positive and
these solutions are similar to Schwarzschild’s black hole. In
Fig. 8c and d, the mass of black holes are negative and their
behavior is different from the Schwarzschild black hole.

3 New solutions

Here, in order to obtain the new static, spherically symmetric
black hole solutions of theory we consider a line element with
different metric functions. We consider the following static
metric

ds2 = −h(r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2(θ)dφ2

)
. (37)

Unlike the previous section, here we have two metric func-
tions that require two components of field equations to obtain
them. By inserting the metric into the field equations, the dif-

123



  675 Page 6 of 15 Eur. Phys. J. C           (2022) 82:675 

Fig. 1 The temperature, entropy and mass as a function of r+ for c1 = −0.25, α = 0.5. The orange long dashed lines related to the Schwarzschild’s
black hole

Fig. 2 The temperature, entropy and mass as a function of r+ for
c1 = −0.25, α = 0.5: solid lines are the results of our method and
dashed lines are the results of the paper [17,18]. For α = −0.5:

Long dashed lines are the results of our method and dotted lines are
for the paper [17,18]. The orange long dashed lines related to the
Schwarzschild’s black hole

Fig. 3 The free energy and heat
capacity as a function of r+ for
c1 = −0.25, α = 0.5. The
orange long dashed lines related
to the Schwarzschild’s black
hole

ferential equations for f (r) and h(r) become

8r4h4Er
r = h3r4 f ′h′ + 4h4r3 f ′ + 8r2 f h4

+ 8r3h3 f h′ + 2r4 f h3h′′ − h2r4 f h′2 − 8r2h4−
α[−12r2h3h′ f ′3 − 48r f h3 f ′h′′

+ 24rh f 2h′3 − 24rh3h′ f ′2 − 48r f 2h2h′h′′+

24r f 2h2 f ′h′2 + 24 f r2h2h′2 f ′2

− 24rh f 3h′3 − 24r2 f h3 f ′2h′′ − 48 f 2h3h′ f ′

+ 48r f 2h3 f ′h′′ + 48r f 3h2h′h′′

+ 12r2 f 3h′4 + 48 f h3h′ f ′

+ 24r2 f 2h2 f ′h′h′′

+ 48r f h3h′ f ′2 − 24r2h f 2 f ′h′3
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Fig. 4 The free energy and heat
capacity as a function of r+ for
c1 = −0.25, α = 0.5: solid
lines are the results of our
method and dashed lines are the
results of the paper [17,18]. For
α = −0.5: Long dashed lines
are the results of our method and
dotted lines are for the paper
[17,18]. The orange long dashed
lines related to the
Schwarzschild’s black hole

Fig. 5 The plots of temperature, entropy and mass for c1 = −0.25, α = 0.5

Fig. 6 The temperature, entropy and mass as a function of r+ for c1 = −0.25, α = 0.5: solid lines are the results of our method and dashed lines
are the results of the paper [17,18]. For α = −0.5: Long dashed lines are the results of our method and dotted lines are for the paper [17,18]

− 24r2 f 3hh′2h′′], (38)

and

−4r4h4Ea
a = −3r4h3 f ′h′ − 6r4h3 f h′′ − 12r3h4 f ′

− 12r2 f h4 − 12 f r3h3h′ + 3r4 f h2h′2 + 12r2h4

+ 3α[−16r2 f h3 f ′2h′′ + 32r f 2h3 f ′h′′

+ 32r f h3h′ f ′2 − 16r2h f 2 f ′h′3

− 16r2h f 3h′′h′2

+ 16r f 2h2 f ′h′2 + 16r2 f 2h2 f ′h′h′′

+ 16r2 f h2 f ′2h′2 − 8r2h3h′ f ′3

+ 8r2 f 3h′4 − 16rh f 3h′3

+ 32rh2 f 3h′h′′ − 32 f 2h3h′ f ′

− 32r f 2h2h′h′′ − 32r f h3 f ′h′′

+ 16rh f 2h′3 − 16rh3 f ′2h′

+ 32 f h3h′ f ′]. (39)
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Fig. 7 The temperature (dotted line), heat capacity (solid line) and free
energy (dashed line) as a function of r+ for c1 = −0.25, α = 0.5

Similar to the previous section, expanding the function h(r)
and f (r) around the event horizon r+

f (r) = f1(r − r+) + f2(r − r+)2 + f3(r − r+)3 + ...

(40)

h(r) = h1(r − r+) + h2(r − r+)2 + h3(r − r+)3 + ...

(41)

and then inserting these expressions into the field equations,
we find

f2 = h1r2+ − h1 f1r3+ + 6α f 3
1 h2r2+ + 6αh1 f 2

1 + 12αr+h2 f 2
1

6αr+ f1h1(2 + r+ f1)
,

(42)

where r+, f1, h1 and h2 are undetermined constants of inte-
gration. The other near horizon constants provided in the
Appendix B. In the large r limit, we linearize the field equa-
tions near the Schwarzschild background

f (r) = 1 − 2M

r
+ εF(r), (43)

h(r) = 1 − 2M

r
+ εH(r), (44)

where F(r) and H(r) are determined by the field equations,
and we linearize the differential equations by keeping terms
only to order ε. The resulting differential equations for F(r)
and H(r) take the form

H ′′ + γ (r)H ′ + η(r)F ′

+ ω(r)F(r) + �(r)H(r) + g(r) = 0, (45)

H ′′ + γ̄ (r)H ′ + η̄(r)F ′

+ ω̄(r)F(r) + �̄(r)H(r) + ḡ(r) = 0, (46)

where the functions shown in the above equations are given
in the Appendix C. In the large r limit, the homogenous
equations read

H ′′ + 4

r
H ′ + 2

r
F ′ + 4F

r2 − 4MH

r3 = 0, (47)

H ′′ + 2

r
H ′ + 2

r
F ′ + 2F

r2 + 2M2H

r4 = 0. (48)

Equations (47) and (48) can be solved exactly to obtain

F(r) = M√
πr2

⎡
⎢⎣2c′

2re
− (M + 2r)2

r2

+√
π(M + 2r)

(
c′

1 + c′
2erf

(
2 + M

r

))]
, (49)

H(r) = c1 + c2erf

(
2 + M

r

)
. (50)

In the large r , F(r) and H(r) become

F(r) ≈ 2M(
√

πc′
1 + √

πc′
2erf (2) + c′

2e
−4)√

πr

+ M2(
√

πc′
1 + √

πc′
2erf (2) − c′

2e
−4)√

πr2
+ 8c′

2e
−4M3

√
πr3

− 8c′
2e

−4M4

√
πr4

+ O(r−5), (51)

H(r) ≈ c1 + c2erf (2) + 2c2e−4M√
πr

− 4c2e−4M2

√
πr2

+ 14c2e−4M3

3
√

πr3
− 10c2e−4M4

3
√

πr4
+ O(r−5). (52)

As we know, for α → 0, the metric is expected to return to
the Schwarzschild metric. To fulfill this desire, we must have:
c1 = c′

1 = c2 = c′
2 = 0. To obtain the particular solution,

we consider the following expansions

f p(r) =
∑
n=2

Fn
rn

= F2

r2 + F3

r3 ... (53)

h p(r) =
∑
n=2

Hn

rn
= H2

r2 + H3

r3 ... (54)

Inserting the above expansions into the field equations and
solving order by order, one can get

f p(r) = −1120αM3

3r7 − 288αM4

r8 − 756αM5

r9

− 2016αM6

r10 − 27216αM7

5r11 + O
(

1

r12

)
(55)

123
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 The plots of metric for c1 = −0.25, α = 0.5

h p(r) = −256αM3

3r7 − 108αM4

r8 − 252αM5

r9

− 3024αM6

5r10 − 81648αM7

55r11 + O
(

1

r12

)
. (56)

In large r , the solutions are:

f (r) ≈ 1 − 2M

r
+ f p, h(r) ≈ 1 − 2M

r
+ h p. (57)

We wish to obtain an approximate analytic solution that is
valid near the horizon and at large r . To this end we employ

a continued fraction expansion, and write

h(r) = x A(x),
h(r)

f (r)
= B2(x), (58)

with

A(x) = 1 − ε(1 − x) + (a0 − ε)(1 − x)2 + Ã(x)(1 − x)3

(59)

B(x) = 1 + b0(1 − x) + B̃(x)(1 − x)2 (60)

123
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Fig. 9 The temperature, entropy and mass as a function of r+ for c1 = α = −0.5. The orange dashed lines related to the Schwarzschild’s black
hole

Fig. 10 The free energy and
heat capacity as a function of r+
for c1 = α = −0.5. The orange
dashed lines related to the
Schwarzschild’s black hole

where

x = 1 − r+
r

Ã(x) = a1

1 + a2x

1 + a3x

1 + a4x

1 + ...

B̃(x) = b1

1 + b2x

1 + b3x

1 + b4x

1 + ...

(61)

where we truncate the continued fraction at order 4. By
expanding (58) near the horizon (x → 0) and the asymp-
totic region (x → 1) we obtain

ε = −H1

r+
− 1, b0 = F1 − H1

2r+
, a0 = H2

r2+
(62)

for the lowest order expansion coefficients, with the remain-
ing ai and bi given in terms of (r+, h1, f1, h2); we provide
these expressions in the Appendix. For a static space time we
have a timelike Killing vector ξ = ∂t everywhere outside the

horizon and so we obtain

T = 1

4π

√
f (r)

h(r)
h

′
(r)

∣∣∣∣∣
r+

=
√

f1h1

4π

= (1 − 2ε + a1 + a0)

4πr+ (1 + b1)
. (63)

We compute the entropy by using of the first two term in
continued fraction expansion as follows [33,34]

S = −2π

∫
Horizon

d2x
√

η
δL

δRabcd
εabεcd

= πr2+

[
1 + 6α

(
2h1

r3+
− f1h1

r2+
+ 2h(r+) f1

f (r+)r3+

+h(r+) f 2
1

f (r+)r2+
+ f (r+)h2

1

h(r+)r2+

)]

= πr2+

[
1 + 6α

(
4h1

r3+
+ f1h1

r2+

)]
. (64)

123
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Fig. 11 The temperature (dotted line), heat capacity (solid line) and
free energy (dashed line) as a function of r+ for c1 = −0.25, α = −0.5

Then the mass from (25), becomes

M =
√

f1h1r2+
2

[
1 + 6α

(
4h1

r3+
+ f1h1

r2+

)]
. (65)

To obtain the new black hole solutions we consider the differ-
ent relations between f1 and h1 [35]. In the case of f1 = h1,
we obtain the results of the first section.

3.1 The case h1 = f 3
1

We now consider following relation between f1 and h1 as

h1(r+) = f 3
1 (r+). (66)

From Eqs. (25) and (26), we have

M = f 2
1

2r+
(r3+ + 12αr+ f 4

1 (r+) + 48α f 3
1 (r+)), (67)

2r4+ f ′
1(r+) + 48αr2+ f 4

1 (r+) f ′
1(r+)

+ 168αr+ f 3
1 (r+) f ′

1(r+) + f1(r+)r3+ − 24α f 4
1 (r+) = 0.

(68)

Solving (68), one can achieve following equation as

1

2
r2+ f 4

1 + 24α f 7
1

r+
+ 6α f 8

1 + c1 = 0 (69)

which leads to a maximum of eight solutions for f1(r+)

depending on the value of parameters. Inserting the solu-
tions of (69) into the thermodynamical quantities, one can
obtain the analytical solutions for them, which we have plot-
ted in Figs. 9 and 10. In these figures, the dashed orange
lines are the behavior of the thermodynamical quantities of
Schwarzschild’s black hole. In Fig. 9, the blue and red solid
lines are the physical branches, because the temperatures and
the mass of these branches are positive. Also, the red branch

is globally and locally unstable and the blue branch is glob-
ally stable while locally unstable (Fig. 10). From the Fig. 11,
there is a divergence in the heat capacity, but this divergence
does not coincide with the extremum points of temperature
and free energy. So, the phase transition does not occur.

In panels of Fig. 12, we have depicted the metric functions.
In these figures, the mass of the black hole is positive and
these solutions are similar to Schwarzschild’s black hole.

4 Conclusion

In this paper, we studied the black hole solutions of Ein-
steinian cubic gravities by using continued fraction approx-
imations. To get a complete solution, first, we constructed
the near horizon and then asymptotic solutions and then
used them to obtain an approximate analytic solution using a
continued-fraction expansion. Then, we calculated the ther-
modynamic quantities like entropy, temperature and mass,
and by inserting them in the first law and Smarr formula, we
obtained the analytic solutions for the near horizon quanti-
ties. Then, one can obtain a metric according to continued
fraction expansion that is only a function of constant inte-
gration not extra function like f1 or h1. We also showed
that continued fraction expansion can be used to accurately
approximate black hole solutions in cubic gravity, which are
valid everywhere outside of the event horizon. Finally, to
obtain the new black hole solutions, we considered the dif-
ferent relationships between the near horizon constants. We
also compared our results with those of previous works on
the subject and we found a good agreement between them.
The important point in our work is that we assumed the near
horizon constant f1 in the first law of thermodynamic and the
Smarr formula, is a function of the event horizon radius. This
assumption is correct, because f1 is proportional to tempera-
ture according to Eq. (23). This method is different from the
one used in previous papers like [17,18]. First, they used the
differential equations for metric function which have been
obtained from the action of the theory, while, we have used
the components of the field equations (3) of the theory. Sec-
ond, they obtained the thermodynamical quantities from the
first and the second term of near horizon expansion, while
we obtained from the first law of thermodynamics and Smarr
formula. Our method is applicable to every theory of gravity
(as we previously applied to the quadratic gravity in refer-
ence [32]), while the method of the papers is only applicable
for the theory in which the on-shell action is integrable with
respect to r . Finally, this approach also allows us to obtain
black hole solutions different from Einstein gravity solutions
by assuming f1 	= h1 in the near horizon expansion as we
have done in Sect. 3. We think using the thermodynamics
to obtain the black hole solutions is a normal approach with
respect to one in the references [17,18].
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(c)(b)(a)

Fig. 12 The behavior of f (r) (blue line) and 0.8h(r) (red line) in terms of r for c1 = α = −0.5. Left: correspond to the red branch. Middle:
correspond to the blue branch. Right: correspond to the yellow branch in Fig. 9

We leave for future work, obtaining the non-vacuum, rotat-
ing black hole, and other solutions of the theory by using the
continued fraction expansion.
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Appendix 1: Explicit terms in the continued fraction
approximation

We present terms up to fourth order in the continued fraction
approximation:

ε = − F1

r+
− 1, a1 = −1 − a0 + 2ε + r+ f1, a2 = −4a1 − 5ε + 1 + 3a0 + f2r2+

a1

a3 = − 1

a1a2

[
− f3r+3 + a1a2

2 + 5a1a2 + 6a0 + 10a1 − 9ε + 1

]
(70)

a4 = − f4r+4 + a1a2
3 + 2a1a2

2a3 + a1a2a3
2 + 6a1a2

2 + 6a1a2a3 + 15a1a2 + 10a0 + 20a1 − 14ε + 1

a1a2a3

Appendix B: Near horizon constants

Here, we present some near horizon constants regarding sec-
tion (2) and (3) as follows:
The quantity f4 is given in (8)

f4 = −1

3[r+10(r+3 + 48 α f1 + 24 r+ α f12)(48 r+ α f12 + 96 α f1 + r+3)]
×

[
− 31 r+12 + 7524 r+10 f1

2α

− 11064 r+11 f1
3α − 4608 r+6α2 f1

2 − 86400 r+4α3 f1
4

+ 10944 r+7 f1
3α2 − 1534464 r+2α4 f1

6+
888192 r+5α3 f1

5 − 89136 r+8 f1
4α2 − 5971968 α5 f1

8

+ 5640192 α4 f1
7r+3 − 1769472 α3 f1

6r+6+

184896 r+9 f1
5α2 + 1248 α r+9 f1 + 34 r+13 f1 − 864 α r+8

]
. (71)
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The near horizon constants regarding Sect. (3):

f3 = − 1

2592( f13h1
2r+2α2

(
r+3 f13 + 8 + 6 r+2 f12 + 12 r+ f1

)
)

×
[

6912α2 f1
6h2

2r+4 + 71 h1
2r+7 f1

3−

160 r+6h1
2 f1

2 + 59 r+5h1
2 f1 + 30 r+4h1

2

+ 5472 α2 f1
6h1

2r+2

+ 4536 α2 f1
4h1

2 + 8892 α2 f1
5h1

2r++
876 f1

4h1
2r+4α + 816 f1

5h1
2r+5α − 792 r+2h1

2α f1
2

+ 1728 α2 f1
7h1

2r+3 + 6912 α2 f1
5h2

2r+3−
816 h1r+5h2 f1

4α + 1728 α2 f1
7h2

2r+5 + 684 f1
3h1

2r+3α

+ 576 h1r+3h2 f1
2α − 19584 α2 f1

5h1r+2h2+
2496 h1r+4h2 f1

3α − 960 h1r+6 f1
5α h2 − 12384 α2 f1

6h1r+3h2

− 3456 α2 f1
7h1r+4h2 − 17280 α2 f1

4h2r+ h1

]
. (72)

h3 = − 1

2592( f14h1r+2α2
(
r+3 f13 + 8 + 6 r+2 f12 + 12 r+ f1

)
)

×
[

11 h1
2r+7 f1

3 − 40 r+6h1
2 f1

2 + 35 r+5h1
2 f1

− 6 r+4h1
2 + 7200 α2 f1

6h1
2r+2 + 8424 α2 f1

4h1
2

+ 12348 α2 f1
5h1

2r+ + 948 f1
4h1

2r+4α + 528 f1
5h1

2r+5α

− 360 r+2h1
2α f1

2 + 1728 α2 f1
7h1

2r+3

+ 6912 α2 f1
5h2

2r+3 + 6912 α2 f1
6h2

2r+4 + 1728 α2 f1
7h2

2r+5

+ 252 f1
3h1

2r+3α + 576 h1r+3h2 f1
2α − 528 h1r+5h2 f1

4α

+ 1920 h1r+4h2 f1
3α − 672 h1r+6 f1

5α h2−
14112 α2 f1

6h1r+3h2 − 23040 α2 f1
5h1r+2h2

− 3456 α2 f1
7h1r+4h2 − 17280 α2 f1

4h2r+ h1

]
. (73)

f4 = −1

248832( f15h1
3r+3α3

(
r+5 f15 + 10 r+4 f14 + 80 r+2 f12 + 32 + 40 r+3 f13 + 80 r+ f1

)
)

×
[

− 922 h1
3r+7 f1 + 2557 h1

3r+11 f1
5 + 7713 h1

3r+9 f1
3 − 8528 h1

3r+10 f1
4

− 328 h1
3r+8 f1

2 + 813888 α3r+3 f1
8h2h1

2 − 1990656 α3r+5 f1
8h2

3 + 8136 f1
5h1

3r+3α2

− 59424 f1
4h1

3r+6α − 1492992 α3r+7 f1
10h2

3 + 247896 f1
8h1

3r+6α2 + 89712 f1
6h1

3r+4α2

− 248832 α3r+8 f1
11h2

3 + 143424 f1
9h1

3r+7α2 + 384012 f1
7h1

3r+5α2 + 230688 α3 f1
8h1

3r+2

+ 248832 α3 f1
10h1

3r+4 + 316224 α3 f1
9h1

3r+3 + 654480 α3 f1
7h1

3r+ + 37164 f1
7h1

3r+9α

+ 31788 f1
3h1

3r+5α − 15924 f1
6h1

3r+8α + 4824 r+4h1
3α f1

2

− 6480 r+2h1
3α2 f1

4 − 7608 h1
3r+7 f1

5α − 2985984 α3r+6 f1
9h2

3 + 124416 α3 f1
11h1

3r+5−
288000 α2r+6 f1

7h2h1
2 − 492 r+6h1

3 + 676512 α3 f1
6h1

3 + 237312 α2r+9 f1
9h2

2h1 − 16128 α f1
2h2r+5h1

2

− 829440 α3 f1
6h2

2r+2h1 − 138240 α2 f1
4h2

2r+4h1 − 399168 α3r+4 f1
9h2h1

2 − 87024 α r+7 f1
4h2h1

2+
1302912 α3r+2 f1

7h2h1
2 − 356544 α2r+8 f1

9h2h1
2

+ 580608 α3r+7 f1
11h2

2h1 + 2377728 α3r+3 f1
7h2

2h1 − 414720 α3r+6 f1
11h2h1

2 + 2598912 α3r+6 f1
10h2

2h1

+ 4230144 α3r+5 f1
9h2

2h1 − 460800 α2r+5 f1
5h2

2h1 − 34560 α2r+7 f1
7h2

2h1 − 1260288 α2r+6 f1
6h2

2h1

+ 4105728 α3r+4 f1
8h2

2h1 + 189360 α r+8 f1
5h2h1

2 + 9072 α r+9 f1
6h2h1

2 − 52128 α r+6 f1
3h2h1

2

+ 110592 α2 f1
4h2r+3h1

2 − 746496 α3 f1
6h2r+ h1

2 − 771264 α2r+7 f1
8h2h1

2 − 50928 α r+10 f1
7h2h1

2

+ 313920 α2r+5 f1
6h2h1

2 − 1022976 α3r+5 f1
10h2h1

2 + 1369728 α2r+4 f1
5h2h1

2

+ 723456 α2r+8 f1
8h2

2h1

]
. (74)
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h4 = −1

248832( f16h1
2r+3α3

(
r+5 f15 + 10 r+4 f14 + 80 r+2 f12 + 32 + 40 r+3 f13 + 80 r+ f1

)
)

×
[

− 810 h1
3r+7 f1 + 709 h1

3r+11 f1
5 + 3177 h1

3r+9 f1
3 − 2832 h1

3r+10 f1
4

− 424 h1
3r+8 f1

2 + 426816 α3r+3 f1
8h2h1

2 − 1990656 α3r+5 f1
8h2

3 − 251640 f1
5h1

3r+3α2

− 36576 f1
4h1

3r+6α − 1492992 α3r+7 f1
10h2

3 + 354456 f1
8h1

3r+6α2 + 126576 f1
6h1

3r+4α2

− 248832 α3r+8 f1
11h2

3 + 129600 f1
9h1

3r+7α2 + 442476 f1
7h1

3r+5α2 − 377568 α3 f1
8h1

3r+2

+ 331776 α3 f1
10h1

3r+4 + 205632 α3 f1
9h1

3r+3 − 482544 α3 f1
7h1

3r+ + 24780 f1
7h1

3r+9α

+ 11532 f1
3h1

3r+5α + 11628 f1
6h1

3r+8α + 6552 r+4h1
3α f1

2 − 113616 r+2h1
3α2 f1

4 − 26232 h1
3r+7 f1

5α

− 2985984 α3r+6 f1
9h2

3 + 124416 α3 f1
11h1

3r+5 − 472320 α2r+6 f1
7h2h1

2 + 180 r+6h1
3 + 116640 α3 f1

6h1
3

+ 195840 α2r+9 f1
9h2

2h1 − 11520 α f1
2h2r+5h1

2 − 829440 α3 f1
6h2

2r+2h1 − 138240 α2 f1
4h2

2r+4h1

− 1200960 α3r+4 f1
9h2h1

2 − 54768 α r+7 f1
4h2h1

2 + 1496448 α3r+2 f1
7h2h1

2 − 301248 α2r+8 f1
9h2h1

2

+ 580608 α3r+7 f1
11h2

2h1 + 2377728 α3r+3 f1
7h2

2h1 − 414720 α3r+6 f1
11h2h1

2 + 2847744 α3r+6 f1
10h2

2h1

+ 5225472 α3r+5 f1
9h2

2h1 − 460800 α2r+5 f1
5h2

2h1 − 34560 α2r+7 f1
7h2

2h1 − 1094400 α2r+6 f1
6h2

2h1

+ 5101056 α3r+4 f1
8h2

2h1 + 124848 α r+8 f1
5h2h1

2 + 8688 α r+9 f1
6h2h1

2 − 43680 α r+6 f1
3h2h1

2

+ 276480 α2 f1
4h2r+3h1

2 + 82944 α3 f1
6h2r+ h1

2 − 810432 α2r+7 f1
8h2h1

2 − 31344 α r+10 f1
7h2h1

2

+ 489024 α2r+5 f1
6h2h1

2 − 1354752 α3r+5 f1
10h2h1

2 + 1342080 α2r+4 f1
5h2h1

27 + 599040 α2r+8 f1
8h2

2h1

]
.

(75)

Appendix C: Functions

Here, we present the functions regarding differential equa-
tions (45) and (46) as follows:

γ (r) = 4r7 − 9Mr6 − 528αM2r + 816αM3

r(r − 2M)(r6 + 240αM2)
, (76)

η(r) = 2r7 − 3Mr6 − 528αM2r + 1296αM3

r(r − 2M)(r6 + 240αM2)
, (77)

ω(r) = 2(2r8 − 6Mr7 + 3M2r6 + 240αM2r2 − 1968αM3r + 2736αM4)

r2(2M − r)2(r6 + 240αM2)
,

(78)

�(r) = − 2M(2r7 − 5Mr6 − 1008αM2r + 1776αM3)

r2(r6 + 240αM2)(2M − r)2 , (79)

g(r) = − 1344αM3

r3(r6 + 240αM2)
. (80)

and

γ̄ (r) = 2r7 − 3Mr6 − 352αM2r + 864αM3

r(r − 2M)(r6 + 160αM2)
, (81)

η̄(r) = 2r7 − 5Mr6 − 352αM2r + 544αM3

r(r − 2M)(r6 + 160αM2)
, (82)

ω̄(r) = 2M2(r6 + 672rαM − 1184αM2)

r2(r6 + 160αM2)(2M − r)2 , (83)

�̄(r) = 2(r8 − 4Mr7 + 3M2r6 + 160αM2r2 − 1312αM3r + 1824αM4)

r2(r6 + 160αM2)(2M − r)2 ,

(84)

ḡ(r) = − 896αM3

r3(r6 + 160αM2)
. (85)
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