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Summary

Inside a theory of gravity coupled to higher spin fields in three dimensions, the problem

on the existence of black hole solutions carrying higher spin charges is studied. A consistent
thermodynamic description for static and circularly symmetric higher spin fields living on the
solid torus is given by purely topological considerations.
As the higher spin symmetries are bigger than the diffeomorphisms group, in this theory, the
usual geometrical notions to define regular black holes solutions, i.e., curvature, causal structure,
etc., are ruled out. This rise the necessity of find them by considering other, more direct,
methods which are worked out in this thesis based mainly on topological considerations and on
coordinates matters. Finally, a simple ansatz to build regular higher spin black holes and higher
spin fields is given.
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Chapter 1

Introduction

During the lasts 80 years, higher spin field theory, which originally begins as a very unpopular
topic pushed only by a very few enthusiast, through the years has evolved to become into a very
interesting, rich and active field of research. The principal motivation for a physicist to study
them is due to that higher spin fields, of non-fundamental nature, has been observed as Hadronic
resonances (composed quark bound states) in nature, where higher spin theory has proven to
be very useful in their description. On other side, string theory naturally predicts the existence
of an infinite tower of massive higher spin fields as forming part of the full string spectrum
of excited states.This is another reason to study them if one seriously takes the string theory
picture as a fundamental theory of nature. Moreover, without appealing to string theory, an old
group theoretical analysis to build physical theories, based on the representations of the Lorentz
group, reveals that besides the allowed usual lower spins, which are truly found to be part in
the standard model description of nature, higher spin fields are also allowed to exist without
any consistency problems but freely. However, in the physical world we are interested in study
interacting systems, but interacting higher spins has been shown to be a very difficult topic of
research. At quantum field theory level, there exists several no-go theorems concerning their
interactions (Weinberg, Weinberg-Witten, Coleman-Mandula) that, at present energy scales,
rules them out where conventional perturbative field theory methods are used. If higher spins
really do exist in nature, they must interact with gravity as this is known to be universal. The
field of research dedicated to its study is called ‘Higher Spin Gravity’, which has been advocated
in the hope to find consistent UV completions for a quantum theory of gravity, which by itself, is
well known that is plagued with infinities. The prospects of the higher spin gravity theory is that
infinities may be eliminated by the addition of higher spin fields, in an analogous fashion as the
addition of local super-symmetry to gravity leads to super-gravity which possess an improved
UV behaviour than just ordinary gravity.

In this thesis, we work in a three dimensional theory of higher spin fields which are non-
minimally coupled to gravity. In particular this theory describes a highly coupled system of a
tower of fundamental higher spin fields, from spin 2 up to a spin N, in which each spin appears
only once. This theory, besides from already being complicated enough on its technical issues,
it presents several challenging theoretical concepts to any researcher in the field, because at the
present moment there is an enormous lack of knowledge about the geometric concepts regarding
higher spin fields. However, the main objective of this work has been precisely to find out if this
theory admits regular black hole solutions (or some sensible possible generalizations of them),
carrying fundamental higher spin charges as additional ‘hairs’ to use in their description. Also,
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a thermodynamic study of these solutions has been carried out and also given for all N, provid-
ing a successful and consistent description through a generalized higher spin euclidean partition
function, in a saddle point approximation, which naturally arises as the exponentiation of the
on-shell action of the theory.

In order to facilitate the exposure, reading and understanding of the background theory,
and thus, of the subsequently original contribution of this work, the content of this thesis has
been arranged in 8 separate chapters. The contents treated from chapter (2) to chapter (7)
are basically a bibliographic revision of the literature, made with a very personal touch on its
explanation and straightforward exposition possessing a focus on the relevant concepts for this
work. Chapter (8) is a collaboration, which has been published in [50]. Finally, chapter (9) is
a personal work, which has not been published yet. However, some parts of its contents will be
hopefully shown in a forthcoming publication.

The content of this thesis is organized as follows: Chapter (2) is a review, where mainly from
a group theoretic point of view, higher spin nature of the fields is explained by its definition
as irreducible unitary representations of the Poincare group. This chapter intends to be purely
motivational for the reader and, in this way, a brief list about fundamental higher spin issues,
inside the usual field theory context, is also treated. In chapter (3), we review the free theory
of higher spin fields in a usual Lagrangian formulation. This material can be understood as
complement of chapter (2), however it is not less important, because here an explicit connection
is made with usual field theories. Chapter (4) is a very brief review where the inconsistency
problem of minimally coupled higher spin interactions is introduced. A brief exposition about the
issues one faces when one naively tries to minimally couple higher spin fields s > 2 to themselves
or, also, to lower spin fields s < 2 is shown. This chapter is roughly focussed on the main general
idea of the inconsistency problem, and on its exceptional solution in three dimensions. Until
chapter (4) the content is introductory and it was made in order for the reader to get a feeling
of the higher spin scenario, before moving to the more complicated fully interacting higher spin
scenario, which is the core of the theoretical framework of this thesis. Therefore, if the reader
is unfamiliar with these higher spin basic concepts, these chapters should not be skipped from
the reading.
Chapter (5) is one of the most important chapters regarding the theoretical framework we use
in this thesis. Here, a consistent theory of interacting higher spins fields with gravity in three
dimensions is developed and its fundamentals are shown in an extended frame formalism thanks
to the help of the three-dimensional Chern-Simons theory. Thus, its reading turns out to be
indispensable. In chapter (6) we roughly discuss the main ideas of AdS/CFT holography, which
are also used on this thesis. To this end a pedagogical example, in the simplest case of the scalar
field on a fixed AdS background, is given. However, if the reader is unfamiliar with AdS/CFT
holography, its reading turns out to be indispensable in order to understand the main concepts
used on this work. Chapter (7), it is devoted to fulfil a gap in the link between bosonic holography
which is done in the metric like formalism and treated in chapter (6), and holography done in the
Chern Simons formalism, which is the main formalism used in this work. Chapter (8) is about
the interpretation of the euclidean AdS/CFT partition function in saddle point approximation
over static and circularly symmetric solutions defined on the torus, solutions which must gives
rise to black hole solutions in the bulk, as the thermodynamic partition function which describes
the thermodynamic properties of these prospective black hole solutions. Finally in chapter (9),
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we explicitly show the construction of regular black hole solutions carrying higher spin charges.
We first work the case of a single spin 3 coupled to gravity, to then pass to the case of one spin
3 and one spin 4 coupled to gravity.




Chapter 2

Introduction to Higher Spins

2.1 Introduction

The scope of this chapter is to give the reader a context for higher spin theory. This chapter
begins introducing Wigner’s classification of particles as unitary irreducible representations of
the Poincar group, labelling these irreps by mass and spin. First we make use of the quadratic
Casimir invariant operator of the Poincare group, to separate the different class of momentum
that may exist according to the rest mass and energy of the free particles. Then inside a given
class, we make a classification of its irreducible pieces by making an irreducible classification of
the Wigner little group. This allows us to see single particles as irreducible representations of the
Poincare group. In order to see these particles as forming part of some kind of fields, as is usually
seen from the fields excitation paradigm, we then move into a spin classification of the Lorentz
group, reducible under the rotation subgroup, which allows us to represent massless higher spin
fields (s > 2) as traceless and completely symmetric tensors (for an excellent review see [1]).
Then we review how, from the Bargman and Wigner study on relativistic wave equations, one
can interpret the removing of the lower spin gauge degrees of freedom a spin s possess, as the
necessary conditions that lead to an energy bounded from below. In section two, in the context
of quantum field theory over flat space-time, we enumerate and roughly explain some old no-
go theorems concerning higher spin interactions, and some possible ways to surpass them (for
excellent reviews see [2],[3]).

2.2 Wigner classification of fundamental particles by mass and
spin

In an old but seminal work, using the method of induced representations ([4]), Wigner has
shown how to classify fundamental particles as unitary representations of the Poincaré group in
D = 4. He studied one-particle states in QFT !, and showed that these states, under general
Lorentz transformations, only transform non-trivially under the subgroup called the Wigner
little group. To achieve this, he first used the quadratic Casimir ? of D = 4 Poincaré algebra:

1One particle states of course are given as the eigenstates of the Hamiltonian related to a free theory. These
states are labeled by the particle’s momentum and possibly some quantum numbers denoting the particle’s species
such as spin.

2An usual invariant operator of a Lie algebra
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Cy=P,Pt=-M 2 acting on the space of one particle states, whose eigenvalues are essentially
labeled by the mass of the particle. Then, in order to classify the different classes of one particle
states, i.e. non-related by a proper orthochronous ® Lorentz Transformations 4 he used the
Casimir related mass value: M, and the energy value: pp of its four momentum vector. The
different classes of momentum which arise according this classification are:

p?=-M? < 0 and py < 0: Massive and Negative energy (2.1)

p?=—-M? < 0 and po>0: Massive and Positive energy (2.2)

p?=—-M? = 0 and py < 0: Massless and Negative energy (2.3)

p?=—-M? = 0 and pp>0: Massless and Positive energy (2.4)

p?=—-M? > 0: Tachyonic imaginary mass (2.5)
pp=20

In a free theory, from the above classes, only (2.2) and (2.4) are considered physical 5.
Sitting in the class (2.2), corresponding to massive and positive energy particles, one can study
the subgroup At of the proper orthochronous Lorentz transformations A™, which leaves invari-
ant a particular four-momentum representative vector k# ~ p* of this class, i.e: kK# = (AT)# ,K".
Without loosing generality the representative for this class of massive and positive energy parti-
cles can be chosen in the rest frame to be: k, = (1,0,0,0). The group given by At in this way,
it is called the Wigner Little Group for massive particles and it is direct to see that it correspond
to the rotation group AT = SO(3). This group has different (2s + 1) x (2s + 1)-dimensional spin
s representations, in which a given spin s representation posses 2s + 1 states. Thus in D = 4,
massive particles posses 2s + 1 physical degrees of freedom.

For the class of massless and positive energy particles (2.4), which is a light-like class of
4-momentum, we cannot choose a rest frame, because it does not exist one in which we are
able to be at rest with the particle 8, so, without loosing generality, we are forced to choose in
the simplest case as some representative the vector: x, = (1,1,0,0). Then, it is direct to see
that the group given by A in this case should contain SO(2), but it is not so straight forward
to see that it also should contain translations in Ry (see [4]). Thus, in the class of massless
particles, Wigner Little Group is the isometry group of Ry, usually called 1.SO(2), which is
non-compact. However, there exist a known theorem, that says that finite dimensional unitary
representations of a non-compact group are not faithful, but only infinite dimensional ones are.
In the case of 1SO(2), this would corresponds to continuous spin representations, given by the
non-compact part of translations in Rs, and because we haven’t observed this kind of spin in
nature, we exclude these representations with continuous spin. 7. This is as if we are left with

3Which preserves the direction of time

4An element of SO(3,1)%, i.e., identity connected and orthochronous (A® ¢ = 1) Lorentz transformation which
excludes parity and temporal Inversion operations, which can be seen as a pair of discrete elements belonging to
the full Lorentz Group O(3,1). Also, the use of SO(3,1)" instead of O(3,1)" is well founded as Wigner himself
proved that any symmetry transformation, which is continuously connected with the identity, acting on the space
of one particle states must be represented as a linear unitary operator acting on this space [4]

Sup to 2.1 and 2.3 in the case of anti-particles, which are interpreted as to move backward in time, the analysis
in this case is essentially the same, but it is restricted to the negative branch of frequencies (po < 0). So we will
restrict here only to the classes with positive energy.

5Due to its massless nature, the particle propagates with the speed of light.

"which basically is due to exclude the translation operators from the group which acts unfaithful over finite
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only SO(2) as the Wigner Little group for massless particles, and SO(2) algebra has only one
element, but including parity, we have two elements which leads to the well known result that
massless particles in D = 4 only carry two degrees of freedom, i.e. the helicities +h. Their
different spin representations can be given by considering topological arguments but they are
beyond the scope of this section.

Also, as SO(2) for massless particles, and as SO(3) for massive particles, all of its differ-
ent spin representations can be exhausted by traceless and completely symmetric tensors, i.e.,
different single row of arbitrary length Young tableaux 8, each corresponding to different spin
representations.

The same analysis can be made, for the D dimensional Poincare group, case in which we
have SO(D — 1) for massive particles, and SO(D — 2) for massless particles. However for D > 4
subtleties arise as we just cannot use only single row Young tableaux for SO(N) with N > 4.
i.e. for all the different spin representations that may exist.

With the previous analysis, we can see beforehand that spin for massive particles are not
the same as spin for massless particles, which is reflected in the fact that the number of physical
degrees of freedom of some given spin s field, in these two different cases does not match.

Thus, the Wigner classification of single particles as unitary irreducible representations of
the Poincare group, can be reduced to the problem of classify the irreducible representations of
the Wigner little group for some given class of momentum of the particle. In order to see these
single particles inside the usual context of field theory, i.e., as the excitations coming from a field,
we will now move onto a classification of the higher spin fields by constructing different spin
representations of the full Lorentz group, but which are reducible under its rotation subgroup.

Building different spin representations of the Lorentz Group:

The homogeneous Poincare algebra or Lorentz algebra SO(3,1) is given by:
My, Mpo| = Mpunop + Muptve — MouTpw — Muonup (2.6)
From the above generators, the Boost K, and rotations J; generators can be written as:

Ki = ]\/f()i J, = ifijijk (27)

and the Lorentz Algebra in terms of the new generators is left as:

[Ji,Jj] = ieiijk (28)
[Ki,Kj] = ——iﬁiijk (2.9)
{Ji,Kj] = iéiijk (210)

dimensional unitary representations.
8This is a classification of tensors under its symmetry properties, given by how do they transform under the
permutation group acting on their indices.
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by choosing the combinations:

(J; +iK;) NI =Z(J; —iK;) (2.11)

N

N; =

|

the Lorentz algebra SO(3, 1) splits out as two hermitian conjugated copys of SU(2) algebra,
that do not see each other:

[Ni,Nj] = iéijka (212)
INLNT] = iejiV] (2.13)
[N, N]] = 0 (2.14)

So, we have the following isomorphism at algebra level SO(3,1) ~ SU(2) & SU(2).

In order to build different spin representations of SO(3,1), we can use the different spin rep-
resentations of SU(2). The representations of SU(2) are well known, and we can use a Cartan
basis to work with it. This traduces in choosing some combinations of the generators of SU(2)
as follows: we will have one Cartan operator which is diagonal in this basis with weight s, and
two lader operators which upper and lower the weights of the basis. We choose the highest
weight basis such that the upper operator acting on a highest weight state annihilates it.
Then for some given highest weight s, s = 0,1/2,1,..., we can find a (2s+1) % (2s+1) dimensional
representation of SU(2), in which the Cartan operator has the eigenvalues: —s,—s+1,...,+s,
because it is represented in a spin s basis composed by 2s+ 1 states. In this way we can exhaust
all the different spin s representations of SU(2).

We do the same for the other copy of SU(2), and use the pair (s1,s2) to denote the high-
est weights of the two different SU(2) representations, and also to denote a possible SO(3,1)
representation. Given that the rotation operator is given by J; = N; + Nf, we can use the
standard rules of adding angular momentum to build the different possible spin representations
of SO(3,1) ~ SU(2) @ SU(2) algebra. Also, given that at the Lie Algebra level SO(3,1) is the
direct sum of the two SU(2), the possible highest weight basis of SO(3,1) will be given by the
sum of the highest weights of SU(2), i.e. $1 + s2, which has allowed values for the total angular
momentum given by j =| 81 — s2 |,| 81 — s2 | +1,..., 81 + s2.

One cannot use arbitrary values of (s, s2) for labelling possible representations of SO(3,1).
We can see this by considering that the space-time inversion operator V has to be included on
the full Lorentz Group. This operator leaves invariant even-rank tensors, but changes the sign
when act on odd-rank tensors. It is the inclusion of this discrete operator that, in order for
this operation exist, leads to the constraint on the spectrum of the two Cartan operators for
each copy of SU(2) to be equal. This constraint, in terms of the highest weights values of the
two SU(2) representation, it is traduced in the two allowed cases for the representations of the
Lorentz Algebra:

e 1) (5, 3) representation gives a rise to a spin s bosonic representations of SO(3, 1) in which
the allowed values of total angular momentum are 7 = 0,1,2,3...,s and possible values
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of J3 component are m = —j,...,j

e 2) (5,5 o (&, 5) representation gives a rise to a spin § fermionic representations of
SO(3,1) with the allowed values of total angular momentum j= ;, g’, g, .-+, %, 50 possible
values of J3 component are m = —7,...,j

With this at hand, in general we see that a spin s bosonic, (§ fermionic) field contains in-
variant subspaces containing all integer (half-integer) lower spins up to and including s (§), thus
these representations are reducible under the rotation subgroup. From now on, and along all
the text, when we refer to the phrase ‘invariant subspaces’ we will refer that they are invariant
with respect to the rotation subgroup.

Now, we will see that the representations (5, 35) are rank-s completely symmetric space-
time tensors and traceless in any pair of space-time index. The vector representation (2, 2) of
SO(3,1), can be constructed by using the fundamental representation of SU(2) given by the
Pauli matrices. The elements in which the fundamental representation of SU(2) x SU(2) acts
are two-index spinor tensor fields 2%, which are related to the vector representation via the
Pauli matrices as: ¢* = ok, ¢**. Also, the representations of (5,%) acts on 2n-index spinor
tensor fields ¢1-0m&1--Gn for all n <'s. They are symmetric in all the «;, and symmetric in all
the ¢; spinor indices. By using Pauli matrices O'gn &, b0 contract each pair of o and & indices,
and taking the direct sum of all the spinor representations with n < s, this results in a rank-s
space-time symmetric tensor field representation as:

gHrbe = UZ?m - Uasasqsalal et (2.15)

Using the standard properties of Pauli matrices and the rules for spinor calculus, it can be
shown they are also traceless in each pair of space-time indices ([5]).

In an analogous fashion, one can show that the half integer spin representations of SO(3,1)

are spinor tensor fields, symmetric in the space-time indices, and of rank s — - , which in par-
ticular for the spin s representation are given by: W§ Hoy and satisfy a cramma—traceless
condition: 'y \Ilum g = 0

7

Then, since the work of Bargman and Wigner ([6]) on the classification of relativistic wave
equations, it becomes clear that in order to eliminate the lower spin invariant subspaces that a
bosonic rank-s tensor field has, one has to impose the divergence/ transversality condition on
this field:

aU¢I/u1...,u,s_1 = 0 (216)
And an analogous condition for the half integer spin fermionic fields, given by:
O Vo psor =0 (2.17)

Such constraints imposes naturally that the lower spin s — 1 degrees of freedom given by
this divergence be eliminated, which when analyzed in the Lagrangian context for a spin s field,
as Fierz and Pauli ([5]) shown before Bargman and Wigner in this context, they traduces in a
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necessary condition for the positivity of the energy of the fields.

Lastly, in ([6]) was shown that having gauged away the lower spin gauge degrees of freedom
that can exist inside a massless spin s field, and using the quadratic Casimir operator of the
Poincare algebra applied on it, one have that the free massless field has to satisfy the on mass

shell conditions:
O¢uy..us =0 (2.18)

and similarly for fermions, which traduces in :

7266,,\112‘1“_“3_% =0 (2.19)
Together the divergence (transversality) condition °, with the on mass shell conditions, are the
so called 'physicality conditions’ for the single traceless (gamma-traceless) bosonic (fermionic)

fields.

2.3 Obstructions to higher spin interactions in flat QF T (No-Go
theorems)

As we saw above, mainly from a group theoretical point of view, free massive and massless fields
of arbitrary high spin, are allowed to exist in which their physical part are given by unitary
irreducible representation of the Poincare group. In fact, as we will see in chapter (3) in the
context of a Lagrangian derived theory, the free theory for massive and massless higher spin field
is well posed and constructed. Even if higher spin fields has not been observed in nature at the
present scales of energies we manage in the laboratory, this does not means that they cannot
exist. The problem with higher spin begins when one try to introduce interactions of higher
spin fields with any kind of other field (for an excellent review see (2, 3]). In this subsection we
will roughly review the main problems which arise with a higher spin interacting theory in the
context of usual quantum field theory over flat space-time.

2.3.1 Trivial scattering matrix obstruction (Coleman-Mandula no-go theo-
rem)

The Coleman-Mandula theorem [7] on all the possible symmetries of the S-Matrix, and the
Haag-Lopuszanski-Sohnius extension of the above [8] for super-symmetric theories, under its
restricted but usual assumptions, put several constraints on the kind of symmetries that an
interacting theory defined in flat space-time can have, in order for its S-Matrix to be non-trivial.
Coleman-Mandula theorem essentially states that if one try to combine the Poincare symme-
tries with another group of internal symmetries, in order for the theory be non-trivial, i.e., the
scattering matrix be different from one, then the only allowed form for the extended symmetry
group, is given by the direct product of external (Poincare) and internal (Bosonic) symmetries.
Turning this analisys into graded Lie Algebras, Haag-Lopuszansk-Sohnius have shown that one

9Here we are working with massless fields, and as such, these are only some possible gauge conditions, but
for a massive theory, these conditions should be understood as the natural conditions, i.e., that follows from
the equations of motion for the massive field. As an example, Lorentz condition follows directly from the Proca
equations of motion in the case of the massive spin 1 field.
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can also have super-symmetry as another ingredient of the puzzle, now using the super-Poincare
algebra extension of the Poincare group, and in which the bosonic internal symmetry algebra is
commuting with the elements of the Poincare Algebra but not with the extended elements of
the super-algebra.

In the massless bosonic higher spin context, by definition, there exist some bosonic higher

spin symmetries, thus the higher spin bosonic generators of that symmetries must exist, but these
generators turns out to be non-commuting with the elements of the Poincare algebra. Therefore
in general we see, that at difference with respect to the lower spin scenario, the symmetry of the
higher spin theory will not be one which is the direct product of bosonic higher spin generators
time Poincare group nor even a super-symmetric extension of it, and in this way higher spins
are automatically ruled out by Coleman-Mandula or by its Haag-Lopuszanski-Sohnius extension
(see [2]) .
However, this theorem can be circumvented in other background space-times such as Anti de
Sitter space, in which there is no notion of asymptotic states where the scattering matrix can
make some sense. In that kind of spaces-times however there exist other types of observables
which can be defined making use of conformal field theories which lives on the boundary of the
AdS space.

2.3.2 Highly constrained values of coupling and/or momenta due to conser-
vation laws (Weinberg low energy no-go theorem)

Weinberg low energy theorem [9] basically puts restrictions on the kind of bosonic massless par-
ticles that can interact at low energies, with each other and with itself. This is a no-go theorem
only for low energy interactions. For higher spin particles it basically says that no higher spin
particle with s > 2 can interact at low energy.

Weinberg low energy theorem goes as follows, consider we have a non trivial scattering process
which involves N external particles with ingoing momenta p; and spin s; (j = 1,...,N), in
which we have that an additional bosonic particle of spin s is absorbed with an arbitrary but
soft momentum ¢q at the ith external leg (see figure 2.1).

The scattering matrix element in which this process occurs (figure 2.1), posses a part that
controls the absortion of the spin s massless particle given by a vertex of type s — s; — s; with
coupling constant g;, that at low energy can be factored from the rest of the process as show in

figure 2.2

The spin s polarization &,, ,,(¢) that appears in 2.2 is not Lorentz covariant. Under a
Lorentz transformation it transforms as:

E;Ll..-llfs (q) - 6#1..#3 (Q) + Q(HIX;LQ...[,LS)

where Xxy,..u,_, iS @ symmetric tensor of rank (s —1).
Then, to eliminate the contribution coming from the spurious lower spin gauge degrees of

freedom with spin: 0,...s — 1 pertaining to the spin s emitted particle, we must demand that
the S-matrix be Lorentz invariant. This is accomplished with the following condition, which

10
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PN

Figure 2.1: Scattering matrix element corresponding to the absortion of a soft spin s particle
with momentum q

PN
(s)_u .
!J;ﬁ?)f:“ T Di
By x
2ptq
P
Figure 2.2: Factorization of the process at low energy
involves the couplings and incoming momentum as:
s (
s) Hs—1 _
Sgtpt e =0, (2.21)
i=1

The above relation for spin s = 1 reduces just to the charge conservation: vazl gfl) = 0,

as is well known in quantum electrodynamics. For a spin s = 2, it reduces to the relation
Zfil gi(Q)pf 1 =0, Vp;, and considering the momentum conservation law for the momentum of
the incoming particles, given by }:fil pi't = 0, it reduces just to gl@) = ¢(®), which states that
the coupling of any particle with the graviton field must be the same. As Weinberg states it,
this is the counterpart of the equivalence principle in quantum field theory.

For spin s > 3, the equation (2.21) has no solution for the arbitrary incoming momenta,

which automatically leads to gfs) = 0, s > 2. Thus, this relation states that no higher spin
particle can interact at low energy. i.e. mediate long range interactions.

11
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In particular this theorem do not rules out higher spin interactions unless we demand that
the same Lagrangian should describes the physics of both IR and UV sectors.

2.3.3 No higher spin Lorentz covariant conserved currents and nor gauge
invariant (Weinberg-Witten no-go theorem)

Weinberg-Witten theorem [10] as they states, says:

e Theorem 1). A theory that allows the construction of a Lorentz-covariant conserved four-
vector current J, cannot contain massless particles of spin j > 1/2 with non-vanishing
values of the conserved charge [ Jod3z

e Theorem 2). A theory that allows the construction of a conserved Lorentz covariant
energy-momentum tensor 7}, for which [T;,d3z is the energy-momentum four-vector
cannot contain massless particles of spin j > 1.

This theorem put constraints on the kind of allowed vertex interactions that some kind of
theories can have. It is usually applied to abelian gauge theories which makes use of minimal
coupling prescription between some kind of massless spin s; field, and the spin s; conserved
Noether currents coming from some massless spin s, field.

For example, in the case of electrodynamics and gravitation, theorem 2) states that effec-
tively a Lorentz covariant and gauge invariant and conserved energy momentum tensor (spin 2
Noether current) can be constructed for the electromagnetic field (spin 1 field), and thus the
energy of the field can be localized, which allows the corresponding minimal coupling to the
graviton (spin 2 field).

Another example, is in the case of the massless graviton, where 2) already states that a
Lorentz covariant and gauge invariant, at the same time, energy momentum tensor (spin 2 cur-
rent) for the graviton itself, cannot be constructed, and thus the energy of the field cannot
be localized, forbidding minimal coupling to itself. But as we know, this does not forbids to
the graviton interact with itself in a non-minimally way, the example of this is the existence of
general relativity. 1°

This theorem in particular for the graviton s = 2 and also for higher spin fields s > 2 rules
out the possibility of construct a gauge invariant and Lorentz covariant energy momentum tensor
for these fields, which rules out the minimal coupling to gravitation as a valid prescription for
these fields.

10 Another way to see this is that the covariantization of the Fierz-Pauli Lagrangian, which must be see as the
minimal coupling prescription for a spin 2, does not give us back general relativity as a result.

12




Chapter 3

Review of Free bosonic massless
higher spin fields over a fixed
maximally symmetric background

3.1 Introduction

In this chapter we will focus on free bosonic higher spin fields, because this thesis directly works
with them, so from here on, fermionic fields will be left aside. More-over we will be interested on
free massless bosonic higher spin fields. This is because the free massive higher spin field theory
in D dimensions can be directly derived from the free massless higher spin field theory in D +1
dimensions, via Kaluza-Klein reduction, i.e., compactifying the extra dimension, as a Wigner
little group analysis indirectly suggest. In this chapter we will expose the most straightforward
approach to get into free massless higher spins which is principally due to Fronsdal [11]. However,
for the sake of historical completeness (and also brevity), we will give only the strange historical
context on how Fronsdal get its theory for free massless higher spin fields, by taking the massless
limit of an interacting theory of massive higher spin fields with the electromagnetic field. It was
Fierz who first work on Higher Spin in ([12]), then Fierz and Pauli [5] try to attack the problem
of the coupling of a massive spin s field with the spin 1 electromagnetic field at the level of the
equations of motions and of the physicality conditions, by directly replacing partial derivatives
with spin 1 covariant ones, spotting that several inconsistencies arise because that is not a
proper modification to account for interactions, instead this leads to algebraically inconsistent
equations. Then Singh and Hagen ([13]) were successful in attack this problem by getting the
equations of motion, and physicality conditions, directly from a more general Lagrangian. In
order to do this for a spin s field, they introduced physicality conditions via suitable Lagrange
multipliers, and also introduce some auxiliary lower spin fields with spins from 0...s— 1 in the
game, to then impose that these lower spin fields be turned off when interactions are absent.
To this end, they fixed the value of the Lagrange multipliers a posteriori, such that at on shell
level, the equations of motions gives the correct physicality conditions, which reduces to the
Bargman and Wigner ones, mean at the same time, the lower auxiliary fields are turned off
when interactions are turned off, all in a consistent way. Finally comes Fronsdal [11], who take
the massless limit of the Singh and Hagen Lagrangian to realize that all the auxiliary lower
spin fields decouples, except the auxiliary field of spin s — 2, which he combined with the single
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traceless spin s field into only one, symmetric, but now double traceless rank s tensor field. Then
due to the massless nature of the fields, the free higher spin theory was settled as a gauge theory,
thus Fronsdal payed the price of having to tackled its gauge symmetry problem. Fortunately,
after Fronsdal work, the theory took a simpler form than before, and its grounds were then well
posed. For excellent reviews see the works [14], [15]. Finally, Fronsdal equations of motion can
be written in a very algorithmic way for any spin, with the only requirement they satisfy some
symmetry preserving criteria (gauge invariance).

3.2 Free bosonic Fronsdal’s higher spin fields in flat space

3.2.1 Fronsdal’s equations of motion

For a spin s Bosonic field (rank s symmetric tensor field), Fronsdal equations of motion in D-
dimensional Minkowski space-time are:

v S(S N 1) v
Fugeps = OPpypg — Sa(mav‘1> po..ps) T —-—5——8(,“8”2@

Where the left hand side of (3.1) defines the Fronsdal tensor. From here on, a pair of paren-
theses will denote a complete symmetrization of all the non-contracted indices it enclose, divided
by the total number of terms used for the complete symmetrization.

VU3.ps) 0 (31)

These equations are a natural generalization of the equations of motion for lower spin massless
bosonic fields:

s =0, Scalar, O0® = 0, No gauge symmetries (3.2)
s =1, Vector, O®, — §,0,9” =0, Gauge symm.: 6P, = Je (3.3)
s =2, Tensor, O®, — 20,0(,9% ) + 0,0,8% o = 0, Gauge symm.: 6P, = 20,€,) (3.4)

The equation 3.1 is left invariant under the gauge transformation:

0Ppy.ps = 80(u1Cpin..pis) (3.5)

with a rank s — 1 symmetric tensor gauge parameter €,, . ,,_,, which is traceless in any pair
of indices. i. e.:
v —
3 vpy...mhs—3 — 0 (36)

as can be seen by a direct calculation:
1
5.7?“1,._”3 - 53(8 — 1)(5 — 2)3(“16#28#3611 Lo fis)V — 0 (3.7)

Clearly this condition on the gauge parameter becomes relevant for s > 3.

If we want to be able to build a local gauge invariant ! action under the gauge transformation
3.5, which of course give us the equations of motions (3.1) when arbitrary varied, we need one
more restriction on this system. This restriction consist in that the spin s field has to be double-
traceless in any pair of indices [16], but of course this has to be imposed ”off mass shell”:

lup to a total derivative or boundary term

14
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prve ViVopl . fhs—d 0 (3‘8)

This condition, obviously becomes relevant for s > 4, and is directly related to the fact that,
due that the imposed gauge invariance of the theory, at the action level i.e. off shell, demands
that exist some generalized Bianchi identities that has to be identically satisfied, as we will see
below.

The gauge invariant action under the gauge transformation 3.5 is defined as:

S = / Az ®*H Gy (3.9)
Where:
_ 1 Fatl
g#l---l"s = Jp1ps T ZS(S - 1),’7([11/12 U3 fhs )Y (310)
Using the above definition one can see that the following is satisfied:
9" Gypz..ps X 8(#2‘9#3‘9#4‘1"/1”2 vivas..-fs) (3.11)
In which it can be see, that imposing 3.8 we have the following Bianchi identities:
"Gy =0 (3.12)

With these at hand, the gauge invariance of the action under 3.5 up to a boundary term
follows as 2:

o5 = /ddch(I)“L-mgulmm+@p1...p36gulmys (3.13)
= / dizsdFehz-1)G, o+ 0 (3.14)

= bt +/dda:e“‘*-'“sa”’ng,,,us =bt.+0 (3.15)
(3.16)

The equations of motion follows from varying with respect to ¢ as:

1
Gproops = Fpurops — 23(3 = UMy )y =0 (3.17)

and considering 3.8 the off shell double trace of the Fronsdal tensor vanish, i.e, F of aBus. s =
0. Thus, taking the single-trace of the e.o.m. 3.17, and using the vanishing double trace identity
of the Fronsdal tensor, we are left with the on shell equation:

d
gua‘-.uw7 =(1- ZS(S - 1))]:;13---;1377 =0 (3.18)

2where from the first to second line, we have made use explicit of the gauge invariance of 3.10 tensor trough
the gauge invariance of the Fronsdal tensor under 3.5, and in the third line we have made an integral by parts,
and then used 3.12.
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Which for arbitrary d and s, (except for the special case d = 2,s = 2), has as solution the
vanishing of the on shell single trace of the Fronsdal tensor: F,, .7 = 0, which replacing into
3.17, leads to the equivalent equation of motion:

gp,l.../,cs =S py..ps — 0 (319)

For the interested reader, there exist a formulation due to Francia and Sagnotti ([17],[18]),
which makes no use of a constrained gauge parameter as 3.6, neither makes use of a constrained
Fronsdal field as 3.8, motivated by the contact between String Theory and Higher Spin Fields,
in which these restrictions seems rather unnatural, but this formulation presents other highly
complex issues as now the action principle should be non-local and higher derivative and it is
beyond the scope of this thesis, so we won’t insist on this.

3.2.2 Gauge degrees of freedom and the de Donder-gauge fixing

In D-dimensions, a symmetric rank-s tensor field has C(D — 1 + s, s) 2 number of independent
components. The double trace of a rank s tensor field, is a rank s — 4 tensor field, imposing this
double trace to be zero, we have C(D — 1 + s — 4, s — 4) conditions. So in principle a Fronsdal
massless spin s field has a total of C(D—1+s,s)—C(D—1+s—4, s—4) independent components.

But we have gauge symmetries, so not all this components are physical, we have redundant
mathematical unphysical information we want to gauge away. For this we can perform a gauge
transformation with a symmetric and single-traceless rank s — 1 tensor gauge parameter, which
carries a number of C(D —1+4+s—1,s—1) - C(D — 1+ s — 3,s — 3) independent components,
and in this way fix this same number of components inside the spin s field by choosing some
gauge condition.

With respect to the gauge condition, a natural generalization of the Lorentz covariant gauge
fixing for s = 1, and of the de Donder covariant gauge fixing for s = 2, it is the generalized de
Donder covariant gauge condition for arbitrary spin:

1 %

HN2~--N3 = a’yé"ﬂt?n#s - 5(3 - 1)8(;,62 (DNSMIJS)'Y =0 (320)

This reduces to the Lorentz gauge for s = 1, and to de Donder gauge for s = 2.

With this gauge fixing condition, the equations of motion are left as a wave equation for the
spin s field:
D(p,ul...,us =0 (321)

And, in fact we see it describes a massless field.

However, this gauge fixing condition does not fix the gauge completely, because we can still
perform a gauge transformation whose gauge parameters satisfy:

Oepy.psy =0 (3.22)

3This is the binomial coefficient C(n, k) = (})
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In which clearly we have another set of C(D —1+s—-1,s—1)-C(D—-1+5s—3,5—3)
components that we can gauge away to completely fix the gauge.

So the total number of propagating degrees of freedom is:

DoF(s,D) = C(D—-1+4s,8)—C(D—-1+s—4,s—4)
-2x(C(D-14+s-1,s—1)-C(D—-1+s—-3,5s—3))
= CD-5+s,s)+20(D—-5+s,5—-1) (3.23)

In particular we see that in D = 4 for any s > 0. ie. only gauge fields * we have

DoF(s,4) = 2, which is the well known result that massless gauge fields carry only two physical
propagating degrees of freedom. i.e. the helicities +h.
Another important particular case that follows is that in D = 3, for any s > 0 we have
DoF(s,3) = 0, which is related to, the well known fact, that in three dimensions the little
group of massless particles ISO(1) is trivial, but including parity we have as the little group
{1,-1} x R, and excluding continuous spin degrees of freedom (R), we are only allowed to dis-
tinguish between bosons and fermions with {1, —1} part. These cases are well known results in
field theory.

Thus, the off shell vanishing doubly-trace condition on the spin s field, together with the
generalized de Donder gauge fixing, are necessary to eliminated all the lower spin s — 1 invariant
subspaces a spin s field may have.

By using a further gauge condition due to ([19]), a considerably simplification with respect
to on-shell fields can be done. This preserves the generalized de Donde gauge condition and one
recovers the Bargman-Wigner form of the fields, this is the vanishing single trace condition on
the spin s field, in which the generalized de Donder gauge reads simply as the transversality

condition:
Hyypg = 0"y g =0 (3.24)

And the equations of motion are still 3.21, but now considering the spin s field is single
traceless, i.e: ®7 ., ,, =0.

3.3 Free bosonic Fronsdal’s higher spin fields over fixed (A)dS
space

In the last section Fronsdal theory was presented in a flat Minkowski background. In this section
we will move into the other two possible classes of a maximally symmetric backgrounds. i.e. de
Sitter and Anti de Sitter space. The reason for choose this class of backgrounds, resides in the
fact their Weyl tensor are zero, and furthermore, due that the tracefull parts of the Riemann
tensor can be completely expressed in terms of the metric and the cosmological constant. This
requirement as a necessity, is easily explained as follows, if we move into a arbitrary but fixed
(non-dynamical) curved background to put the free theory to live in, in principle we just have
to covariantize all off the expressions with respect to the background. We are not adding any

“we are excluding the spin s = 0 scalar boson, which has no gauge symmetries and thus it is considered as a

matter field
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interactions, we are just changing the background. This demands to promote partial derivatives
to covariant ones, but covariant derivatives no longer commute. This is a problem because
when we take gauge variations of the covariantized spin s action, terms proportional to the full
Riemann tensor will appear, which will eventually spoil the gauge invariance of the theory, in such
a way that it wont be possible to be recovered unless we have chosen some background which has
vanishing Weyl tensor, which in the case of a maximally symmetric background, Riemann tensor
is completely determined in terms of the background metric and the cosmological constant, which
guaranties we will be able to modify the action (and thus the equations of motions derived from
it), by adding some suitable terms which keep alive the gauge invariance of the free covariantized
theory. One part of this same problem shows up when we try to add interactions but we will
cover this in the next chapter.

More explicitly, due that covariant derivatives no longer commute, when we take the gauge
variation of the (A)dS covariantized Fronsdal tensor, i.e the tensor (3.1) but with all its partial
derivatives changed to (A)dS covariant derivatives defined in the sequel by V, under the (AdS)
covariantized gauge transformation:

5(:5111.../1,3 = S?(pleuz...‘us) (325)
the covariantized Fronsdal tensor is no longer gauge invariant:
0Fpy.ps 70 (3.26)

In order to recover gauge invariance of the covariant Fronsdal tensor, we have to modify it by
adding to it some terms which ensures its gauge invariance, giving rise to a modified covariant
Fronsdal tensor:

Frnone =Furps FA(82 + (D = 6)s —2(D = 3))Bpu; s + 5(5 = D)F(aa®Ppis i)y ))  (3:27)

where gp,, is the (A)dS background metric and where A = —71; for AdS, and A = Z% for dS
space-times.

The modified Fronsdal tensor, now results to be gauge invariant under 3.25, i.e:
6 Fuyps =0 (3.28)

And the gauge invariant action under the gauge transformation 3.25 is defined as:

S = / dle/ =GR G (3.29)
Where: 1
gyl...us = ]:p,l...;ts - Zs(s - 1)77(#1#2‘7-23...pg)'y (330)

This gauge invariant action results to be uniquely defined up to a boundary term, and under
some ordering convention for the covariant derivatives.
The equations of motions are now:

G =0 (3.31)
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Which, analogously to the last section, they are simplified to:
-7:-/,51...;1,s =0 (332)

The counting of propagating degrees of freedom remains exactly the same as in the case of
flat backgrounds, as it should be. But now the generalized covariant de Donder gauge fixing
condition is: )

Hyy g =V @y g — '2‘(3 - 1)V(#2¢Z3‘..u3)7 =0 (3.33)

Which leads to the gauge fixed equations of motions as:
O®p; e + AP+ (d—6)s —2(d = 3))@py s + 5(5 = V(1o Ppapieyy ) =0 (3.34)

In which we can see that the coefficients m; = A((s*>+ (d—6)s—2(d—3)) and my = As(s—1)
plays the role of something like mass terms [20] for the spin s gauge field in (A)dS. To inter-
pret this, we can see that the deformed covariant Fronsdal tensor (3.27) has acquired a part
proportional to the cosmological constant, which is linear in the spin s field. This will reflects
itself like a ”"mass terms” in the Lagrangian when we have moved from flat into (A)dS back-
ground. However, gauge symmetries has not been lost in the process, they are still there. Thus
in (A)dS backgrounds we can still talk about massless or gauge fields even having present in the
Lagrangian, or in the equations of motions, something like a "mass term” for them if its form
is given by m1 and mgy. These are called Fronsdal masses.

As in the flat case, staying on the generalized de Donder gauge condition, for on shell fields,
one can further gauge away the trace of the spin s field, and the generalized de Donder gauge
reduces to transversality condition in (A)dS:

Hypops =V, 4, =0 (3.35)
The equations of motions are reduced to:
O®py .y + A((8* + (d — 6)s — 2(d = 3))®py; .y, =0 (3.36)

Thus, the single-traceless, transversality and 3.36 are the physicality conditions for on shell
fields in (A)dS.

The mass-like term m; = A((s? + (d — 6)s — 2(d — 3)) in (3.36) , also appears in the action

(3.29) trough (3.27) and (3.30), and is responsible for what is called the Breitenlohner-Freedman
bound of the energy from below [21].
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Chapter 4

Review of Higher spins and
inconsistency in a minimally coupled
system

4.1 Massless higher spins interacting minimally with gravity

Attempts to introduce interactions of fields with spin s > 2 with the gravitational field has been
shown to be plagued with inconsistencies. The gauge symmetries of the original non-interacting
sectors, when minimally coupled, are spoiled in such a way that it is not possible to recover
gauge invariance, neither in a deformed way. Aragone-Deser spots this fact for a spin 2 mini-
mally coupled to gravity in ([22]), and in the hyper-gravity context ([23],[24]) for a spin g In
the special case of super-gravity, i.e. for a spin % Rarita-Schwinger field, the coupling to gravity
pass the test, due to some very special properties as the Fierz rearrangement identities of the
gamma matrices which allows to build a gauge invariant action. However, in general, for fields
with s > 2 a gravitational minimal coupling prescription is condemned to fail.

4.1.1 Aragone-Deser obstruction to preserve higher spin symmetries in the
minimal coupling prescription in D > 3

Consider we are in D-dimensions, If we try to couple a spin s field to gravity minimally. i.e.
using the usual prescription that follows:

e 1) Take the free spin s field action defined over flat background. Then covariantize the free
action over what will be the arbitrary, but now dynamical gravitational field, i.e. promot-
ing partial derivatives to covariant ones, and promoting the integral over flat coordinates
to arbitrary ones, i.e. with its respective Jacobian in terms of the metric.

* 2) Add this resulting spin s Lagrangian to the gravitational one, i.e. Einstein-Hilbert
Lagrangian.
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then we will see that, in general for s > 2, several inconsistencies arises, given rise to a non-
consistent interacting theory. This means that the interacting theory do not posses gauge
symmetries: nor the original ones, neither a somehow deformed symmetries from the original
ones which comes from the free system, as one naively would expect. Thus we have introduced
the interactions inconsistently, because in this process we have lost the gauge invariance of the
theory, which, in final instance, leads to a wrong number of propagating degrees of freedom of
the interacting theory, i.e., these number will differ from the number of propagating D.o.F that
the free theory originally has which could lead to several contradictions.

To illustrate this problem, which is absent in the s = 1 case, but present for the cases with
s > 2, lets take the simplest example: consider we have a spin 2 field, and we want to couple it
to gravitation using the minimal coupling prescription, thus covariantizing the Frondal tensor,
and choosing some usefull conventional ordering for the covariant derivatives [25]:

Frrpe = OPpip, — V/\vm Ppon + vmv)\@uzk + Vi Vi, @2 A (4.1)

and considering to deform the gauge symmetries, as is given by the covariantization with
respect to the dynamical gravitational field:

0Ppurpy = 2V (€ psy) (4.2)

Then the tensor 4.1 is not gauge invariant under 4.2, and in fact it transform as:

8 F sy = 2Roy jnpV*e” — 25"V Ry s + Rip1a V€ p3) — 3R (10 Vn)e® (4.3)

From 4.3, we see there are parts in which the Ricci scalar, and Ricci tensor appears and these
parts are considered innocuous because they can be gauged away by a suitable deformation of
the gauge transformations that acts on the metric (deformed diffeomorphisms). But the parts
in which the full Riemann tensor appears ! are considered dangerous, because they cannot be
compensated by a deformed gauge transformation done on the metric. This means that for
s > 2 we cannot modify the action by adding some ‘suitable’ terms to it, with the hope that
when gauge transformed the metric with now some ‘suitable’ deformed gauge transformation,
its transformations will cancel the unwanted Riemann terms that spoil the gauge invariance of
the Fronsdal tensor part of the action.

4.1.2 Surpassing Aragone-Deser obstruction in three dimensions

In three dimension, for any metric the Weyl tensor vanish, thus the Riemann tensor can be fully
expressed in terms of its tracefull parts, i.e, Ricci tensor, ricci scalar, and in terms of the metric.
This allows us to build terms to add to the action, that when gauge transformed the metric
in a suitably deformed way, it compensates the non-invariant terms coming from the Fronsdal
tensor. Thus in three dimensions Aragone-Deser obstruction is not an obstruction to build an
interacting action starting with minimal coupling as prescription, but in the process of adding
terms to the Lagrangian, in order to recover the gauge invariance under some deformed gauge

Yfor s > 2, due to the spacetime index structure, the full Riemann tensor is always present.
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transformation of the metric, of course the action is not minimally coupled anymore, but it has
non-minimal terms that (omitting the space-time indices) schematically goes as:

Lam=3.. . R..&. . +... (4.4)

Where & denotes the spin s field and R denotes the Riemann tensor and its tracefull parts
and the dots represent possible contractions.
In fact, in ([25]) it has been constructed an action for a spin s field, non-minimally coupled to
gravity in which for s > 2 terms as 4.4 are always present.

4.2 Some comments about a precursor: Vasiliev’s interacting
theory

As respect to theories of interacting higher spin fields, besides the theory we will directly use
in this thesis, and thus deserves the full next chapter, probably the only other known existing
theory of fully interacting higher spin fields, is due to Vasiliev in his pioneer work ([26]). Vasiliev
construct his theory in a very geometric way, in a parallel way with the first order formulation
of the equations of motion for gravity. Furthermore, in this formalism, Vasiliev theory is an
extension of the last, and that is why the name Higher Spin Gravity has been given to it. This
theory is defined over maximally symmetric backgrounds. It is important to recall that Vasiliev
theory is a classical theory, i.e. the only objects which are known from this theory are its equa-
tions of motion, sadly an action principle is still lacking. However, Vasiliev equations of motions
enjoy gauge symmetries under deformed gauge transformations of the free Fronsdal theory for
all spins, and the last is contained in its weak field expansions, which gives rise, to its lowest
orders on the fields, to its weak interacting and free limits.

The theory itself is extremely complicated because in order to account for the interactions and
gauge symmetries consistently, in a similar way as the Singh and Hagen work, it requires the
introduction of auxiliary fields of all spins, and also requires that an infinite tower of non-
auxiliary fields of all spin from s = 0... o0 in order to exist consistently. This principally is due
that Vasiliev used an infinite higher spin gauge algebra, which is given by an infinite dimensional
extension of the Lorentz sub-algebra contained in the isometry algebra of the maximally sym-
metric background, and its is realized in terms of fermionic oscilators and star products. Thus,
there posses generalized geometric objects, as generalized spin connections which gives rise to
the auxiliary fields, and generalized vielbeins which gives rise to the higher spin fields. We wont
turn into this theory in this thesis, but for the sake of completeness, and as a precursor of all
interacting higher spin theories, we cannot leave it without mention it. We can also say that this
theory is extremely complicated because due to the infinite oscilator realization of the higher
spin algebra, its information is quite encoded, and thus extremely large expressions can appear
when one try to extract something known in the usual field theory language, g.e., just to obtain
the (A)dS background of the theory, one can use two full page of calculations, or, g.e., to get the
free scalar field equation in the non interacting theory one can use four full pages. Fortunately,
we don’t work with this theory in this thesis, instead we work with a simpler theory, which will
be reviewed in the next chapter, but which has somehow its roots in Vasiliev’s work.
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Chapter 5

Review of Three dimensional Higher
Spin Gravity

5.1 Introduction

In the last chapters we saw that the fields described by Fronsdal equations (3.1) in three dimen-
sions for s > 1 does not propagate local degrees of freedom. However, we will keep talking about
them as higher spin fields, because even if the bulk dynamics is trivial, when studied on AdS
backgrounds they can lead to a non-trivial dynamics living on the AdS boundary. This fact is
what motivates the study of this chapter about a fully non-linear interacting higher spin field
theory in three dimensions. The interacting higher spin gauge theory which will be presented
in this chapter, worked out in [27], is a fully interacting theory of spins from s = 2,..., N in
which each spin is present only once (almost simultaneously it was also worked out by [28] and
its super-symmetric generalization were worked out in [29]). This theory is consistent because
it posses some non-linearly deformed higher spin gauge symmetries, which allows to have the
same number of physical D.o.F. that the free theory has, i.e., zero in the bulk but which can
be non-zero at the AdS boundary. Furthermore, in the linearized limit, this theory falls into
Fronsdal theory for free massless higher spin fields. The reason for work in three dimensions is
simply that, as many examples has shown [30, 31, 32, 33|, in three dimensions life is so much
easier than in higher dimensions, and also very interesting properties can be found. This the-
ory, besides higher spins s > 2, it posses a spin 2, thus, being fully non-linear, it also contains
gravity, but not as an isolated sector of the theory, but as a fully mixed one, on its non-linear
interactions, with the other spins s > 2. As such, one can expect to find very interesting things,
as all the interesting things that pure AdS gravity in three dimensions posses, i.e.: black holes
solutions [31, 32, 33], solutions with asymptotic conformal symmetries [34, 35], etc.

5.2 Review of pure AdS gravity: Its action as the difference of
two Chern Simons actions

After the works ([36],[30]), it is a well known fact that gravity with negative cosmological con-

stant in three dimensions can be formulated, in its frame formalism, with the help of two Chern

Simons (CS) actions were both gauge fields are valued over the SL(2,R) algebra. It is the
purpose of this section to show this construction, because this will be the starting point to then
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incorporate higher spin interactions in the theory.

The Cherns Simons functional in three dimentions is given by:

JCS[A]zzlf?;/tr(AAdAJr;A/\A/\A) (5.1)

where k is the called CS level, A is a one form A = AjT,dz* defined over a semi-simple
Lie Algebra A expanded by the T, generators, and where ¢r stands for a symmetric and non-
degenerated bilinear form defined on A, i.e. its Killing metric.
The CS theory has a lot of interesting properties:

e 1) It is written purely in terms of differential forms, thus it is diffeomorphism invariant.

e 2) It is a topological action, i.e., it does not need a metric to be defined, and its integral
over a compact manifold is a number.

e 3) It is gauge invariant on manifold without boundaries.

e 4) Defined on manifolds with boundary, under gauge transformations, it change as the
W ZW action at the boundary.

e 5) The equations of motion are flat connections, i.e., of vanishing curvature F[A] = 0, so
it does not posses local degrees of freedom.

e 6) On topologically non-trivial manifolds, i.e., non simply-connected !, it can have non-
trivial solutions.

It is well known that three dimensional gravity with negative cosmological constant can be
written by the use of one CS action valued over the O(2,2) algebra (which is isomorphic to AdS3
isometry algebra), using the gauge connection:

A=eP, +wP My (5.2)

Where P,, Mg, are the generators of O(2,2), which satisfies:

[]waby j\/fcd] = nachb - nadJV[cb — MbeMgq + nbd]\/fca (5'3)

[May, Pe] = 71epP* = 1ea P° (5.4)
1

P B) = My (5.5)

i.e. with a hole, such that there can exist some class of curves on it which cannot be contracted into a point.
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and using the killing form for this algebra given by:

tr(MapMeq) =0 (5.6)
tr(PaMpe) = €abe (5.7)
tr(PoPy) = 0 (5.8)
(5.9)

With k = Té—a’ where G35 is the Newton constant in three dimensions, the CS action is left
as:

1 1
Ics = ol /eabc (e* A RPC 4+ RV e® A el Aef) (5.10)

The equations of motion are F[A] = dA+ AN A = 0 (ie., the solution is a flat A gauge
connection), and reads explicitly as:

1
R® _ —¢®*Ae? = 0 AdS curvature (5.11)
2[2

T® = 0 zero torsion condition (5.12)

Where as usual, the Riemann curvature two-form is defined as R® = dw™ +w A we®, and
the torsion two-form is defined as 7% = de® +w%p A eb.

In three dimensions, a two-index antisymmetric tensor can be dualized into a vector, thus
in this case we can define the Lorentz generators Mg = €qpeM € to simplify the writing of the
SO(2,2) algebra as:

[]\ffa, Afb] = Eabcl\/fc
[Maa Pb] = 6abcf)c
1
[Paa Pb] = 'l‘_zfabc]\/fC

By the same reason, this induces the rewriting of the spin connection as w® = %eabcwbc, which
is left with the same index structure that the dreibein e has. 2

If we now further decomposes the algebra elements as:

My, = Jo+Ja (5.13)
1 -
P, = 7(Ja—Ja) (5.14)

the (5.13) algebra, splits out as two SL(2,R), which does not see each other:

[Ja, Jb] = €gbe) (5.15)
(Ja, Jp] = €abed” (5.16)
[Jaajb] =0 (5~17)

which means that SO(2,2) = SL(2,R) & SL(2,R).

2Consequently, we will also have the dualization of the curvature: R® = 1¢%°Ry..

1l
2
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The Killing form of a g & g algebra, where g Algebra is expanded by some generators Jg,
can be generically decompose as:

tT(Jajb> =0, tr(Jods) = Nab, tr(jajb) = Tlab (5.18)

Where 74 is the Killing form of the g algebra.
This suggest to use the simplified action, given by:

Igrav = ICS[A] - ICS[A] (5'19)

Where now, we use two gauge connections, in where each are valued on the same single copy
of the SL(2,R) algebra:

A = A%J,dz* (5.20)

A = A}J,dz" (5.21)

In order to recover the frame formalism objects, starting with the two new connections in
the new action (5.19), and due that now, dreibein and spin connection shares the same index

structure 3, we can take the linear combinations to form the frame fields:
e = : (A—A)
2
1 -

where [ denotes the AdS radius.
Then is straight-forward to see that making use of the above dictionary, replacing in (5.19),
one recovers the action for the frame formalism:

- 1 1
Ics|A] — Ios|A] = m/tr(e/\R%-é—ﬁe/\e/\e) (5.22)
But now (5.22) requires that the two CS levels k be equal, and equal to k = Zfé? and where tr
is taken with the killing metric of one single SL(2,R) copy. This action, in its explicit SL(2,R)
Lie algebra index structure, reads as:

1 1
ICS{A] - Ics[A] = 57?(—; / (ea A Rq + Eabc6—l2- e A eb A ec) (5.23)

The equations of motion, now are two flat connections F[A] = 0, F[A] = 0, which using the

map (5.22) are reduced to ((5.11),(5.12)). These equations, now due to the dualization of spin
connection, reads as:

1
ﬁeabceb A ec (5.24)

0 = de®+e®uwyAe, (5.25)

1
0 = dw®+ —ieabcwb A we +

3From here on, and along all the text, we will only use the dualized expressions for the frame indices that spin
connection one form and Riemann curvature two form posses, i.e., with only one frame index.
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The contact with the metric formulation is given by using:
Juv = tr(epey)) = nabeZeﬁ (5.26)

and, as usual, imposing the dreibein postulate, i.e., vanishing covariant derivative of the
dreiben with respect to all its indices (frame and space-time indices):

ouep + € bcwzef, - Fﬁyeg =0 (5.27)

together combined with the vanishing torsion condition (5.25), we can solve for the spin
connection in terms of the dreibein as:

1 1 b
Wy = 'Q'Edabwzb = §edab(26”[“8we,}] - euce”[ael&](?,,eca) (5.28)
Thus, instead of working with one SO(2,2) gauge connection as in (5.10), we have reduced
the problem to work with two SL(2,R) connections as in (5.19). This point, will be the starting
point for a generalization to include higher spins by extending the SL(2,R) gauge algebra to

SL(N,R) gauge algebra.

5.3 Review of full interacting Higher Spin Gravity Action in
Chern Simons formulation

In [37], Blencowe has generalized the CS construction for pure AdS Gravity in order to incor-
porate higher spin fields, falling this way into Vasiliev equations of motions for an infinite tower
of higher spin fields but in three dimensions. However his construction, rather complicated just
as Vasiliev one, makes use of an infinite extension of each copy of the SL(2,R) algebras in such
a way that also an infinite number of auxiliary fields has to be added for the consistency of the
theory. In [27], Campoleoni et a.l. have made significant simplifications to Blencowe’s work, by
showing that in three dimensions, choosing the extended the gauge algebra of the CS theory in a
proper way, it is not necessary that the introduced algebra be an infinite one, in order to account
for higher spin fields and their interactions. Thus, in this way they showed we can construct an
interacting theory with a finite spectrum of fields with spins from s = 2,..., N in which each
spin s is present only once. The purpose of this section to show this construction (for excellent
review see also [38]).

The idea behind the work ([27](37]), is that instead of introduce non-linear interactions in
the free Fronsdal action, which hopefully respect some deformed non-linear gauge symmetries
in the metric-like formalism,i.e., constructing a non -linear gauge invariant action under them,
the idea is to introduce the interactions, simply, in the frame formalism. In order to achieve this
it is easier to work, more precisely, with the Chern Simons actions by enhancing the algebra of
the gauge connections. This construction guaranties gauge invariance a priori. Particularly in
([27]) this algebra has been chosen in such a way that in the linearized limit this gauge algebra
accounts properly for the Fronsdal Fields and the gauge symmetries they posses. Thus in this
way CS formulation allows us to construct a gauge invariant action for the first order formalism
in a very easy way, to a posteriori interpret the metric-like field counterpart, analogously as one
does in the case of pure AdS Gravity given in the last section.
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For this consider an action which is the difference of two CS actions as:

S =lIcslA] - Ics[4] (5.29)

with k = k = Z%’ but now each is valued over the SL(3,R) algebra ¢, and split the SL(3,R)
generators as:

[Ja: Jb] = fachc (5.30)
[']a7 Tbc] = Em a(ch)m (531)
[Taby Tcd] = —(na(cf'd)bm + nb(ced)am)‘]m (5'32)

where eq. (5.30) is the SL(2,R) subalgebra contained in SL(3,R), and the generators T in
eq. (5.31) are symmetric and traceless tensors that accounts as the complementary higher spin
generators °, which according to (5.31) transform as irreducible SL(2,R) ~ SO(2,1) Lorentz
tensors. Finally (5.32) close the SL(3,R) algebra.

In the fundamental representation of SL(3,R) ((3 x 3) dimensional matrix representation),
the higher spin generators T, can be constructed from the 3 x 3 dimensional adjoint represen-
tation of SL(2,R) generators, by using symmetrized and traceless products of these generators
as:

2
T = '](a']b) - §UachJc (5'33)

where 1, = tr(J,Jp) is the Killing metric of the SL(2,R) part. Note that the matrix trace
is Tr(Typ) = 0, thus they fulfill traceless properties of a Lie Algebra generators. Also note that
NPT = T%% = 0.

Then construct the gauge connections as:

A = (AMJ,+ AT )dz" (5.34)
A = (A% + APT)dat (5.35)
And from them, lets construct the generalized dreibein and spin connection:
e = %(A — A) (5.36)
w = %(A + A) (5.37)

4In order to extend the gravitational theory, in principle it is not necessary to choose this algebra, it is only
necessary that the chosen algebra posses a non-degenerate symmetric bilinear form, and contains SL(2,R) as a
sub-algebra. The first is in order to be able to use CS actions to define it, and the last is in order to be able
to identify what would be the gravitational part of the theory when we set the rest of the field content equal to
zero. However, one thus should consider that different spectrum of fields, i.e. with different spin, should arise as
the field content of the theory, depending on the chosen algebra. By the way, this spectrum, may or may not
contain higher spins, and respectively they may or may not fall in the free Fronsdal theory at linearized limit.
Furthermore, a particular chosen gauge algebra can have different possibles spectrum depending on the choice
made to embed the SL(2,R) algebra into the chosen bigger one.

5 As these generators has two Lorentz index, they are spin 2 generators, however they will represent the higher
spin part of the components of the gauge field which also carry an additional spin 1 because they posses one
space-time index
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These objects can be expanded as:

e = (ehJa+ePTy)dz" (5.38)
w = (WiJe+wiTy)dz* (5.39)

where eZ and wa accounts for the usual dreibein and spin connections, i.e. spin 2 fields, and
el‘jb and wﬁb accounts for the spin 3 fields, which being contracted with higher spin generators
T, are completely symmetric and traceless in its frame indices, which means they are higher

spin irreducible representations of the Lorentz group in the frame indices.
After the map given by ((5.36)), the action is left as:

_ 1 1
§ = Ios[A] - IoslA] = = /tr(e AR+ e AeAe) (5.40)

where R = dw + w A w and the tr is taken over only one single SL(3,R) copy, which in its
index structure it explicitly reads as:

1 1
S = G / [ea A (dwq + §eabcwb A W€ + 2€ 50w A w® d) (5.41)

1
+2e% A (dwgpy + €cd(aW® A Wh) 4 4+ @eabc(e“ A€l A€ +12e% Aebd A el 2] (5.42)

Meanwhile in the CS formulation the equations of motion are those of flats connections
F[A] = 0, F[A] = 0, in the frame formalism the equations of motions for the spin 2 fields:
e, w?, reads as:

de® + €™wy A ee + 46™epy Awe 4 =0 (5.43)
1 1 1
dw® + -éeabc(wb A we + 26 Aec) + 2eabc(wbd Awe®+ 72 6bd A ec d) =0 (5.44)
Note that ((5.43),(5.44)) can be directly compared with the equations of motion of the
SL(2,R) theory ((5.24),(5.25)), to directly see the extra contributions coming from the spin 3

fields e, w% in the SL(3,R) case.
The equations of motion for the spin 3 fields e, w®, reads:

de® + ey A egh) 4+ eUag, AWyt =0 (5.45)
1

dw® + €U, A wy® + l—,_,ec‘i(aec ANeg? =0 (5.46)

(5.47)

5.4 Contact with the metric-like formulation

The action (5.29) is invariant under the infinitesimal gauge transformations:

§A = DN=d\+[A,) (5.48)
SA = D =d\+[A4) (5.49)
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which with the help of the map:

A=A+Xe=A-2X | (5.50)

can be mapped into the frame formulation as the transformations:

de = de+|w,e] +[e, A
dw = dA+ [w, A+ Lee]

12
(5.51)
which leaves the frame action (5.40) invariant.
The parameters A and € of the map ((5.50)), can be explicitly written as:
A = A, +A%T, (5.52)
e = &%, 4%y, (5.53)

where the Lie algebra components A® gives rise to local Lorentz transformations, and the
components £ gives rise to diffeomorphisms, while the components A% gives rise to a generalized
spin 3 local Lorentz-like transformation, and £ gives rise to a generalized spin 3 diffeomorphism-
like transformation.

Note that, from ((5.51)), besides the usual action of the spin 2 parameters (A%, £%) on the
spin 2 fields (e? , w®) (which in the following expression is omitted), also the spin 3 parameters
(A% | %) of the transformation acts non trivially on the spin 2 fields as:

5 = 4e"upge,? + 4oy, ¢ (5.54)

- 4
Swt = 4e®CupuA + l—Q-eabcebdsc d (5.55)

Also, from ((5.51)), the spin 2 and spin 3 parameters acts on the spin 3 field as:

5eab = g% + Ecd(awc £q b) + Ecd(aec Ay b) + Ecd(awb) ccq+ Ecd(aeb) Ny (5.56)
1 1

Sw® = dA% 4 e“ay, Ay + ﬁeCd(“ec eq? + ecdlagh) Ag+ l—z—ec‘i(“eb) ced  (5.57)

(5.58)

To identify what would be the higher spin generalization of the metric-like fields, which
in the pure gravity SL(2,R) case, the metric (spin 2 field) it is invariant under local Lorentz
transformations, and it is given as:

G = nabefLez = trsm(e(uey)) (5.59)
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in the higher spin SL(N,R) theory one ask for which combinations of the fields are also
invariant under the generalized local lorentz-like fields with A parameters. An analysis reveal
that for the SL(3,R) case, the combinations given by:

G = trsus(eey)) (5.60)
Guy = trsis(epevey)) (5.61)
(5.62)

fulfills this invariance under a gauge transformation with full A (A® spin 2, and A% spin 3
local Lorentz-like parameters).

However, the spin 2 and spin 3 diffeomorphism related parameters €, through (5.54) acts on
the fields (5.60) in an unexpected and very mixed way. This has as consequence that meaningful
quantities in General Relativity as good coordinates invariant, in the higher spin setting are not
so meaningful because they are no longer invariant under higher spin transformations, e.g., one
can change the causal structure of a space-time in which we have a higher spin by simply making
a higher spin transformation. One possible way to understand this, as we saw in chapter (2), is by
the fact that in general, higher spin transformations are made with higher spin gauge parameters,
which always must somehow carry lower spins invariant subspaces on its gauge parameters, which
in last instance, in the interacting system, these lower spin invariant subspaces must acts on the
lower spin fields. This spots the necessity of posses a enhanced setting of higher spin geometry
with higher spin geomteric concepts, which is at the moment unknown.

Now, trough (5.60), we have only a partial contact with a metric-like formulation of this
theory. A full metric-like formulation of this theory (action and equations of motion) it is not
known yet, because we don't have a full dictionary to go from the frame formulation to the
metric-like one. The reason of this, is that, at difference as in the case of pure AdS gravity
(SL(2,R) case), we don’t know a way on how to generically invert the generalized dreibein in
order to solve the equations of null torsion (5.43) and null generalized higher spin torsion (5.45),
and metricity, for the generalized spin connection in terms of the generalized dreibein.

5.5 Recovering the free higher spin Fronsdal equations in the
linearized limit

From the above definitions for the full metric-like fields, one can recover the free Fronsdal metric-
like fields by making a weak field expansion, at linearized order, around some AdS background
values, i.e., the exact AdS metric which is left invariant by the six killing vectors of AdSs, and a
zero spin 3 field which is left invariant also by the ten traceless killing tensors of AdS3. This con-
figuration, as a background demand, is the configuration with the maximal amount of symmetry.

Consider for this to have, &}, as the AdS background dreibein and @, as the AdS background
spin connection solutions, both in the principal embedding (see section (4.7)), and éﬁb =0 as
the AdS higher spin background dreibeins and Jzﬁb = 0 as the AdS higher spin background
connections, thus consider to have the fields as linearized around this background configurations
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e® = &4 ho (5.63)

e? = pab (5.64)

and from (5.60), the linearized Fronsdal fields follows as:

(bﬂlmus = g™ (u1hu2)a1 (5.65)

(I)m.--ﬂs = gn (ul-éa2 M2 hua)alaz (5.66)

It was shown in [27] that these linearized fields, satisfy the free Fronsdal’s equations, and
that the linearized gauge transformations coming from the linearization of (5.51), given by the
diffeomorphism-like related gauge parameter €, reduces to the free Fronsdal’s gauge transforma-
tions on fixed AdS that we saw in chapter 2.

5.6 Extension to arbitrary N: the SL(N,R) theory

The above construction can be done for SL(N,R) x SL(N,R) CS theories.
In this case we split the SL(N,R) algebra as:

[Ja, Jb] = €apeJ® (5.67)

[Ja Toybg] = €™ oo Doy by 1ym » §=2,...,N —1 (5.68)

where J, expand a N dimensional representation of the SL(2,R) algebra and where the
generators in (5.68) are symmetric and single traceless in all its indices. This line shows they
transform as irreducible higher spin representations of the Lorentz group SO(2,1) ~ SL(2,R).

One can construct the gauge fields of the CS theory considering, besides the SL(2, R) part,
also the Lie algebra components corresponding to the higher spin generators:

= (AZ,J(I + Azla2Ta1a2 + o e + Azl'“as—lTa”.aS_l)dx“ (569)

A
A = (AlJy+ ADST, 0+ .. + AfpGoaT o )dat (5.70)

As before, we construct the frame fields as in (5.36), and we will have:

e = (epJat ey o, +. ..+ el 1T, o )dz" (5.71)
w = (wWiJs+ Wi ®Tayap + ... + w1 Ty gy, )dat (5.72)

Then we can construct the N — 1 'metric-like fields’ as:

®Note we are linearizing around trivial spin 3 background values, i.e., we are considering the spin 3 field e
as being its own fluctuations as the solution with maximal symmetry, i.e., the background demands it be.
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Gupa = tr(e(uepus)) (5.73)
Juipops = tr(e(meme%)) (5.74)
(5.75)

uipops. iy = tr(e(mewzeﬂ3 . ..euN)) (5.76)

This is allows us to have, N — 1 independent fields. This is because the SL(N,R) algebra
posses N — 1 Casimir invariants corresponding to the trace of the powers p = 2,...,N of an
arbitrary algebra element. Thus the above fields, omitting space-time index (and omitting the
Lie agebra indices) can be seen as constructed by taking the trace of these different N —1 powers
of the dreibein one form e.

The free Fronsdal higher spin fields now follows by linearizing around AdS background
values, which are chosen to be given by only non-null components of the spin 2 generators J,
that corresponds to the principal embedding (see below):

=as

5As—1
118y 8 fis—1Cus)araz..as_1 (5.77)
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5.7 Different SL(2,R) embeddings into the SL(N,R) theory

Now we will see that having the SL(N,R) theory, we can describe different theories, i.e., with
different field content, depending on the different embeddings of the SL(2,R) algebra, into the
SL(N,R) algebra, that we chose to describe the pure gravitational part” (see the works [39],[40]).

The generators of SL(N,R) algebra can be arranged by choosing several different sets com-
posed by three generators, which together form an SL(2,R) algebra. A particular choice of the
possible SL(2,R) sets, describes what is called an SL(2,R) embedding into SL(N,R) algebra.
Depending on the chosen SL(2,R) set, we will have that the rest of the generators of the com-
plementary Lie algebra space to fill the whole SL(N,R) algebra, will transform according to
some definite rules, in each case, under the chosen SL(2,R) set, which can be analyzed on the
same footing for all the possible SL(2,R) sets, by studying the adjoint representation of the
SL(N,R) algebra. In the adjoint representation of SL(IV,R) we will have its N? — 1 generators
represented by (N? —1) x (N? — 1) dimensional matrices to expand the whole algebra. Then we
can bring each (N? — 1) x (N? — 1) dimensional generator into a Jordan block-diagonal form,
accommodating in this way all the generators in different sets, each sets corresponding to the
different blocks of some definite n x n dimensional size categorized by it spin s and given by
n = 2s+1. We will call this idea of spin s as conformal spin, but it is essentially the same concept
of spin that arise when one study finite dimensional representations of e.g. SU(2). Thus, each
set of generators of some fixed conformal spin s will transform under a representations of the
SL(2,R) algebra of the same conformal spin s. In this way, by choosing different embeddings,
we will have different branchings for the generators of the SL(N,R) algebra according on the
spin of the SL(2,R) part in which they transform.

"Please understand the pure gravitational part, as the part corresponding to a chosen SL(2, R) algebra which
remains when we turn off the components along the other generators that completes SL(N, R)
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For example in the case of SL(3,R) algebra, we will have two branchings. One is given by

choosing the so called ’principal embedding’ of the SL(2,R) into SL(3,R), and is characterized
by the fact that the SL(3,R) algebra in the adjoint representation splits (in this case) in two
sets of generators: one is a set of conformal spin 1 (3 x 3 dimensional) and the other set is of
conformal spin 2 (5 x 5) dimensional, and of course due to the dimensions, each set occurs once,
giving the branching 8 = 3 ® 5. Also, note that this is the branching corresponding to choose
the J, SL(2,R) generators in the adjoint of SL(2,R) (3 dimensional representation, i.e. spin
1 representation) and the Tj, generators of eq. (5.31), which in the 8 dimensional adjoint of
SL(3,R) can be seen as represented by a (5 x 5) block matrix, and thus as transforming under
a spin 2 representation of the SL(2,R) algebra, as the equation (5.31) shows.
The other existing branching in SL(3,R) is given by the so called 'diagonal embedding’ of
SL(2,R) into SL(3,R). In this case the generators splits in four sets of generators, each set
is of different spin related size, and they are given by the branching 8 = 3@ 2 x 2@ 1. This
say that the first set transform under a conformal spin 1 representation of SL(2,R), the second
set appears twice and, each copy, transform under a spin % representation of SL(2,R), and the
third set transform as a conformal spin 0.

Now, concerning the Lie algebra components of the gauge field, to see the real field content
of the theory, the analysis is as follows: Consider to take the conformal spin s of each set of
generators, then consider the fact that the SL(3,R) gauge fields carry also 'spin 1’ vector space-
time index. Thus the final field content that a theory with definite SL(2,R) embedding into
SL(3,R) posses, will be given by adding ’one’ to the conformal spin s that each set of a given
branching posses. This means that the theory defined in the principal embedding will posses,
as field content, one spin 2 field and one spin 3 field. On the other side the theory defined on
the diagonal embedding will posses as field content, one spin 2, two spin % bosonic & Rarita
Schwinger field, and one spin 1 field. Thus, we learn that different embeddings of the SL(2,R)
‘gravitational ’ part, leads to different theories with the same SL(N,R) algebra.

In particular, note that by construction the free Fronsdal Higher spin theory would be only
recovered when we choose the principal embedding as the gravitational part, thus if we are
trying to describe a theory of interacting higher spin, i.e., which falls into the free Fronsdal
equation in the linearized limit, we better work with the principal embedded SL(2,R) part as
the gravitational part. This last point, at least in my concern, has not been made explicit in the
literature before. In fact it is very natural to wonder about if the diagonal embedding posses a
possible higher spin interpretation (may be as composed states of lower spin particles) due that
its spectrum does not posses fundamental spins higher than 2.

5.8 Solutions of the SL(3,R) theory with asymptotic W3 symme-
tries a la Brown-Henneaux
In [27] it has been also shown that this formulation of a fully non-linear interacting spin 2 and

spin 3 fields, posses a solution with enhanced conformal asymptotic symmetries given by the
W3 Zamolodchikov algebras ([41]) with a non-trivial central charge, which is the same as in the

8Bosonic, because the algebra is realized with commutators, not with anti-commutators as in super-gravity in
which one uses a super-algebra
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case of pure AdS gravity, a la Brown-Henneaux [34] which was done in the metric formalism. To
achieve this, in [27], it has been worked in the CS gauge connections (directly linked with the
frame formalism), where it was chosen the right AdS boundary conditions on the on shell bulk
gauge fields. For this it was used the asymptotic AdS gauge connection with leading behaviour
at O(r?) pertaining to the principal embedding of SL(2,R) into SL(3,R), and then it has been
looked for a SL(3,R) solution which departs softly from the background, i.e., only departs
asymptotically from the asymptotic AdS solution in the asymptotics sub-leading terms O(1).

(A - AAdS)!Boundary = 0(1) (5.78)
(A - AAdS)IBoundary = 0(1)

This choice of boundary conditions, when seen at the boundary, constitutes an asymptotic
gauge fixing that allows to the authors to isolate the ‘would be physical’ degrees of freedom of
the full interacting system, which propagates at the boundary with the correct spin (s = 2, 3).
This result should be considered somehow expected because of the AdS/CFT conjecture we will
see in the next chapter (6).

In order to find this solutions, the authors considered the following flat solutions, working
in coordinates r and light-cone coordinates x4 = % + ¢ coordinates:

A = b7'9b, Ap=bla(zi)b, A_=0 (5.79)
A, = bob', AL =0, A_ =ba(z_)b! (5.80)

where, in order to obtain them, it was chosen a partial (not complete) gauge fixing at
the boundary, trough the boundary conditions A_ = 0 (and A, = 0 for the other copy),
and trough the choice for the radial group element at the boundary, which was chosen to be
b(r) = e!Mlo Also, in (5.79,5.80) the fields a(zy) and @(z_) respectively, are allowed to
carry remaining unfixed pure gauge degrees of freedom, by taking values in the whole SL(3,R)
algebra ?. This partial gauge fixing at the boundary, trough the equations of motions, extend
to the whole interior of the bulk manifold leading to chiral fields as shown in (5.79,5.80). And
it is also the gauge fixing condition which allows to keep the CS theory invariant in a manifold
with boundary!'® under ‘gauge fixing preserving’ gauge transformations. And it is well known
that in the CS theory with a boundary the CS solutions, i.e., for one copy, e.g., lets say A in
(5.79), leads to a Kac-Moody algebra in the Poisson bracket structure of the phase space for
the remaining degrees of freedom (inside a(z;)), and analogously for the other copy A (inside
a(x_)). However, these solutions are not asymptotically AdS, thus it is necessary to further fix
some of the remaining gauge freedom by using the criteria given by (5.78), which is the same
to demand the desired AdS boundary conditions. As a final result, this further gauge fixing
procedure gives gauge connections with a minimum amount of remaining pure gauge degrees of
freedom, which can be interpreted as physical at the boundary:

2 ™ B 2m - T .=
a(zy) = L1+?£(x+)L_1—§EW(I+)W_2 , a(z-) = L_.1+—k—[,(x_)L1—§—]5W(x_)W2 (5.81)

®For the convention over the generators of SL(3,R) algebra used here, see appendix
9For a discussion of the CS theory with boundary see appendix.
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Understanding the symmetry in the connections A and A, the discussion that follows will
be given for only one copy A because for the other copy A can be done analogously.

Having fixed the gauge for A as in (5.79) with a(zy) as in (5.81), they look for the allowed
gauge transformations which preserves the gauge choice for the gauge fixed components A,, A_
as in (5.79), i.e., that leaves them invariant. But they also required that the remaining gauge
freedom inside a(z4) as in (5.81), be allowed to change under this gauge transformation, but in
such a way that leaves invariant the generator structure of (5.81), i.e., only allowing to change
the finally remaining pure gauge degrees of freedom L(z4),W(z4)), finding that the gauge
transformations with parameter A = b=!(r)\(z)b(r) fulfill this condition, where:

1

2
Mzs) =D @)Lli+ D> X™(@+)Wn (5.82)

and where the parameters inside (5.82) are conveniently expressed with the help of the
redefinitions € = ¢! and x = x? as:

L = (5.83)
el = ée" + gkzaﬁ - %XW (5.84)
'o= =y (5.85)
N %x” N 4% C (5.86)
o= —%XW 1307r ’ﬁ_ Xﬁ’ (5.87)
x? = 214X’”’ ?;Z "L+ AX 'L+ 3k xL" + —k—2—X52 - ﬁd/v (5.88)

Considering (5.83), it was found that under this transformation the fields £(z4) and W(z)
transform as:

6L = el +2L+ Z’j—re’” (5.89)
SW = eW +3'W (5.90)
6L = YW +3x'W (5.91)
W = —~{9XE’”+9V.C”+15X”L’+10X’”£+ K x(°) + i’r(xﬁ.c’+x'52)} (5.92)

where a prime denotes derivative with respect to z.

Note that eq. (5.89) says that the field £(z4) is a non-primary field of conformal weight 2,
i.e., energy momentum tensor of what would be the conformal boundary theory, and (5.90) says
that W(x, ) is primary field of conformal weight 3 (see appendix).

Furthermore, just as it was done by Brown-Henneaux in [34], for the spin 2 case, where W,

Virasoro conformal algebra was found, in [27] it was shown that this asymptotic W3 conformal
symmetry algebra can be realized canonically, trough the Dirac Brackets, worked out directly
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from the constrained CS theory with the circle as a boundary.

The Poisson Bracket algebra of the reduced phase space of the theory, was calculated in [27]
and leads to the W3 algebra:

(L) LN = ~Glo— L) + 250 - L) + 1" -¢))  (6:99)
(L(p), W(£)} = —(28(p — ¢ )W (@) + 38 (¢ = & IV(9)) (5.94)
W(p), W)} = -%(25@ — )L (p) + 98" (0 — &)L () + 158" (0 — ¢') L' ()

k
+108" (¢ — ¢')L(p) + 55(5’@0 ~¢)

+§%71(5(<p — L)L (@) + 8 (¢ — )L (9))) (5.95)

where the equal time dependence of the fields in (5.93) has been omitted.
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Chapter 6

Review of AdS/CFT Holography for
bosonic lower spins

6.1 Introduction

The AdS/CFT conjecture was firstly spotted in the work of Maldacena [42] inside the context of
string theory on AdSs x S° and N = 4 super Yang-Mills in four dimensions. After that, it was
further clarified and generalized by Witten in [43], where it was also stated that the holographic
phenomena will be present in any theory which posses a conformal symmetry. Subsequently, the
conjecture was quickly developed even further, leading to highly extended works, such as the
one by Aharony et al. [44], and being applied to many systems such as strongly coupled QCD,
condensed matter systems, etc. At today, AdS/CFT is a highly developed tool to study quantum
systems at regimes in which perturbative methods fails, and although not fully understood, the
application of AdS/CFT to systems possessing higher spins fields is not an exception. Actually,
there is a lot of research works that are being carried out on this line. Regarding the importance
of this review chapter to the original work of this thesis, we can say that it lies in the fact
that in the theoretical framework we have a two dimensional CFT with Wy symmetries defined
on the boundary, and we would like to understand, in a sensible AdS/CFT picture, the three
dimensional AdS gravitational solutions associated to these two dimensional CFT.

6.2 AdS/CFT conjecture at level of symmetries

AdS/CFT is a tool for build and/or study theories based on the duality given by equivalence of
having a theory with the conformal group as the group of symmetries living in flat d dimensional
compactification of Minkowsky space, and a gravitational theory with (global or asymptotic)
AdS isometries in d + 1 dimensions. This is due to the isomorphism of these two groups which
is SO(d, 2).

In d > 2 dimensions ! a theory which posses conformal symmetries (a scale invariant theory),
can be understood as a theory with the symmetry of the conformal group expanded by the

In two dimensions the conformal group is infinite dimensional, this fact can be seen directly by considering that
in two dimensions we can work in the complex plane, thus considering that any holomorphic function defined on it
can give rise to a conformal transformation, by expanding it in a Laurent series and then by linear independence
of the terms in the series, we will see that each term in the series will be accompanied by a generator of the
conformal group in two dimensions. Of course this result can be also obtained if we do not work in the complex
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generators:
[]V[;wy ]Mpa] = Af[punap + M#,ﬂ?w - J\/[au"]pu - ]\/I;wnz/p (6'1)
[Pp, ]\/I;w] = (npuPV - anPu) (6-2)
[va ]\/IHV] = (nPuKV - UpuKu) (6'3)
[Ku: PI/] = 2(77LLVD - J/W) (6'4)
[D,F)] = By (6.5)
DK, = -K, (6.6)
(6.7)

Where M, Lorentz transformations generators, P, are translations generators, D are di-
latations generators, and K, are generators related to special conformal transformations. These
generators acts on the field configurations that the theory posses, as they usually does in field
theory, depending on the nature of the field, by means of finite or infinite dimensional represen-
tations.

Also, this symmetry group is isomorphic to the isometry group of AdS;,; space, i.e. the
group of transformations in a d + 2 dimensional space that leaves invariant the quadric:

DT =D va=-F (6:8)

The group action in the fundamental representation is on a vector defined in R®%2. The
induced metric on this surface is the AdS4.1 metric, and the isometry group of this surface
can be realized infinitesimally trough its Killing vectors as generators, and the Lie bracket as
operation (with Lie derivatives), and the action on field configurations which lives on AdS is
realized trough the Lie derivative along the AdS Killing vectors. The algebra of Killing vectors
is isomorphic to the SO(d,2) algebra.

Furthermore the conformal boundary of a d+1 dimensional AdS space is the compactification
of d dimensional Minkowsky space by adding some points at infinity 2. Thus, the isometry group
of AdSg+1, at the boundary, can be seen as acting as the d dimensional conformal group does
on the field configurations at the boundary.

6.3 AdS/CFT correspondence at level of quantum theories

The AdS/CFT correspondence originally ([43]) states that:

eWiel = / [D®]eTaravl®] (6.9)
OAdSD~G

Where W(g] is the effective action of d-dimensional theory, which classically posses confor-
mal symmetries (which may or may not survive at quantum level), and the right hand side is

plane by a straight forward analysis done by studying the properties of conformal transformations done in a
general two dimensional metric. The conformal group in the two dimensional case will contain a sub-algebra
which is isomorphic to the SO(2, 2) algebra and is isomorphic to the algebra of killing vectors in exact AdSs.

2 Analogously as the Riemann sphere is the compactification of R?
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the partition function of a d 4+ 1-dimensional theory, which may or may not include gravity and
in which, classically, its gravitational background (dynamical or not, repectively) asymptotically
enjoy the symmetries of AdS;y; space-time. In the right hand side, the path integral over all
the possible bulk fields configurations, it is constrained to be only over bulk fields which at the
boundary of AdS space its leading behavior, carries as coefficient the value of the boundary field

P.

On the left hand side of (6.9), for some d dimensional QFT, we have that the effective action
of connected green functions W (¢) is given by:

eW[@] — /[DO]e_SCFT[Oi]+fddI¢iOi — <efddx;[;i@i>CFT (610)

Note we added a subscript ’CFT’ to recall that this discussion, which is valid in general, in
this case will be related to the CFT side of the correspondence. In the notation used in (6.10),
@; denote the sources which couples to O; CFT fields, and @i denote its quantum counterpart
operators of the quantum ’CFT’. As usual, this allows us to construct correlations functions for
the operators by taking functional derivatives of W with respect to the sources, and then setting
the sources to zero, e.g.,:

4

B 0p1...0Pn |¢:0
Of course higher-lower order correlators can be computed.

On the right hand side of (6.9), i.e. the AdS;y1 bulk side, the partition function for the d + 1
dimensional gravitational theory, in a saddle point (semi classical) approximation, i.e., allowing
only the contribution which comes from the classical configuration (for bulk on-shell fields given
by ¢ ), is defined as:

(Oy...0,) (6.11)

Zaran(p) = eloro® (6.12)

where ¢ are on-shell bulk fields, and Igray 0(¢) is the on shell 3 gravitational action.

In saddle point approximation of the quantum bulk theory, the AdS/CFT conjecture states
that:

W(@) = Igrav o(p) (6.13)

subject that the on-shell bulk fields ¢ posses boundary values given by ¢|sadgs ~ @, which
of course now, due to the on-shell condition, they has to be given by boundary conditions com-
patible with the on shell condition for bulk fields in an AdS background, or in other background
(a dynamical one if includes gravity) which asymptotically goes as AdS does. Note that, in the
saddle point approximation, the bulk on-shell action means that we are dealing with a classical
theory in d + 1 dimensions, and on the other hand, the effective action of the d dimensional
conformal theory means we are dealing with a quantum theory with conformal symmetries in
the d dimensional boundary of the d + 1 dimensional AdS space-time.

37To be the on-shell action, besides from being the action of the theory valued at the on-shell field configurations,
it has to be such that its functional derivatives are well defined in order for this action truly posses an extrema.
If this is not the case it has to be re-defined by adding suitable boundary terms to it.
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6.4 Holographic renormalization and the radial coordinate
paradigm

In AdS/CFT correspondence, specifically in the AdS side, one usually choose coordinates of the
base manifold, such that one of them is normal to the AdS boundary. This coordinate runs
from the boundary, along the bulk, up to the ’interior point’ of the bulk manifold. The other
coordinates are the ones that successful describes the boundary, and thus they are used to sitting
the CFT fields to be defined on them. One usually uses some symmetric configuration of the
bulk manifold, e.g., in euclidean AdS/CFT one can think in the sphere, in which the picture
can be visualized as:

S

oAd

Figure 6.1: AdS3 euclidean ball

Once we have properly chosen the coordinates to perform AdS;,1/CFTy computations, it
may happen (and it usually does) that the ’gravitational’ action Igrsy valued on the on shell bulk
fields configuration, turns out to be infinite at the d dimensional boundary. These infinities are
divergences coming from the radial coordinate at the ’point’ in which the boundary is located.
On the other hand, looking the other side of the correspondence in (6.13), this phenomena
manifest itself by infinites in the effective action W. Infinites in the quantum theory spots the
necessity of carry out a renormalization process of W to get ride of them. This is the first
clue that the radial coordinate is somehow related to an energy scale at which we are looking
the quantum d dimensional theory. In order to renormalize the d dimensional boundary theory
we can work on the gravitational side, and introduce a regulator, i.e., a cutoff in the radial
coordinate to be able to identify the divergent terms, and then we can construct local boundary
counter-terms to eliminate them, giving rise this way to a renormalized on shell gravitational
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action which is finite [45]. The existence of local counter terms, in general has been proven to
be guarantied in the work [46]. Also, it could happen that in order for this renormalized (finite)
on shell action posses a well defined Dirichlet problem, we could need to add some suitable finite
local terms to it. The final result of this process is a renormalized effective action Wiy, for the d
dimensional theory which, after the renormalization process, could be or could not be conformal
at some points of the ’energy scale’ related to the radial coordinate of the bulk side. In fact,
most of the systems, e.g. the dual d dimensional theory of AdSg;, gravity (is only one of them)
has shown to posses an anomaly called conformal anomaly (see [47]) at the boundary, such that
if the classical boundary theory which gave rise to Wien is conformal, the consistent quantiza-
tion of this theory kills this symmetry at the quantum level, at the same energy scales at which
the classical theory do posses it. However, it could happen that the conformal invariance at
quantum level can be recovered at some other energy scales, i.e., leading to a null beta function.

Note that in the gravitational side of the correspondence, the AdS boundary is located at
large distances, so from this side of the theory, the boundary divergences correspond to IR
divergences of the 'would be’ the quantum d + 1 dimensional bulk theory, according to right
hand side of the full correspondence (6.9). Furthermore, by a hand waving argument one can
say that large distances from the centre at the bulk side (near the boundary, from the interior
of the bulk point of view distance is large), corresponds to short distances from the boundary
at the CFT side (near the boundary, from the boundary point of view distance is small), and
just as this suggest it has been shown that the AdS/CFT conjecture use to relates, i.e., spots
a duality relation [42] between weakly (AdS) / strongly (CFT) coupled theories at large bulk
distances (IR), and between strongly (AdS) / weakly (CFT) coupled theories at short bulk
distances (UV).

6.5 Abused and over-simplified scalar field example in exact
AdS

One of the most abused and simplest examples of the AdS/CFT correspondence is the case of
a massless scalar field living on fixed AdS background. The scalar field, massive or massless
does not posses gauge symmetries, and here resides its simplicity: no gauge symmetries means
no gauge fixing is needed at the boundary to isolate some 'would be’ physical boundary degrees
of freedom, thus it is hard to imagine how this can shed some light in the massless higher spin
problem. However, it results to be the best example to explain the correspondence, because
many of the general ideas of the correspondence are present, and now we will show it in detail.
For this consider, we are in fixed AdS background with is metric given in Poincare coordinates:

1 ,
ds? = —2—(dz2 + dz;dx"), whereiruns fromi=1,...,d (6.14)
z
where the boundary of AdS space is located at z = 0, and the interior is located at z = co.

The massive scalar field action on fixed AdS background is given by:

1

Tags = 5 / A2 /g(V 1V P + mPe?) (6.15)
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Its equations of motion are:
O¢ —m?2p=0 (6.16)

to get some knowledge about the asymptotic (near z = 0) boundary behavior of the solutions,
consider first to solve for spherically symmetric solutions:
(1 — d)z8, + 2202)¢p — m°¢ = 0 (6.17)
whose solutions are:
$(2) = g0z~ + ¢12° (6.18)

where the exponent A, called conformal dimension 4 is one of the two solutions of the mass
parameterization:
m? = A(A — d) (6.19)

If we now we allow for a dependence on the boundary coordinates z;, we can solve:
(1 — d)20, + 2282 + 228;8")p — m*¢ =0 (6.20)

which has an asymptotic solution (near z = 0) in a series expansion that schematically goes
as:

bz, 71) = 242 (60(:) + O(2)) + 25(61(m:) + O(2)) (6.21)

For the discussion that follows, lets assume that in in (6.21) we have chosen the value of A
such that d — A < A, thus ¢ will be the coefficient of the leading power near z = 0.

The asymptotic expansion (6.21) is useful to identify what would be the sources and what
would be the vacuum expectation values (Vev’s) in the boundary theory. To see this consider
the variation of the action 6.15:

6Iads = — / dlz,/g(0¢ — m*$)6e + / diz\/gVZ ¢ (6.22)
AdS

0AdS

Then plugging the on shell solution (6.21) on the variation 6.22, the bulk part is zero, and
we only get contributions from the boundary (near z = 0):

1
6Ipds os = Obulk + /aAds de— 28,25 B+ ...+ B+ ) (TR0 + ..+ 2201+ )

= [ (- 2= 0dg0 )+ {Aidsn + (4= Aendon)
+{AZ?20¢15¢1 + .. .}) (6.23)

The boundary part has been divided into three parts distinguished by curly brackets: the
first part is divergent, the second part is finite and the third part is vanishing, as z — 0.

The vanishing part does not provide information. On the other hand, it was shown in [46]
that in general terms, i.e., for any theory, the divergent part can always be written as a total
variation, thus it can always be suppressed from the original on shell action action Jads on shell by

41t is the conformal dimension of the operator of the CFT, this can be seen by the fact that the full scalar
field has to posses conformal dimension equal to zero, thus from (6.18) it follows that ¢1...
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adding suitable local counter-terms to it, to build in this way a new renormalized on shell action
in the holographic renormalization process. Also, in order to get a well posed Dirichlet problem,
further terms corresponding to a total variation of the zero mode (finite part) are needed to be
added to the renormalized on shell action. The final outcome of the application of this process
to the variation of the original on shell action, is directly seen from (6.23) to be:

5Iren = (QA - d)¢15¢0(:12) (6.24)

This expression says that the final renormalized on shell action Iren will be asymptotically
well behaved (finite), and possessing an extrema when ¢y is held fixed at the boundary. Leading

to the relation:
611'61’1

5(]50(1’)
where, according the correspondence, this means we will have a relation between the sub-

leading component ¢;(z) of the bulk field at the boundary, and the Vev’s in presence of sources,
given by:

= (2A — d)¢1(2) (6.25)

<O(x)>sources = (2A - d)ﬁbl (1') (6.26)

Also, having carefully followed the holographic renormalization process discussed above,
but being applied directly to the original on-shell action (not to its variation) one gets the
renormalized action Iy, as:

Lyon = %(m _d) / dldo(z)é1(2) (6.27)

which using the correspondence means that the leading component ¢¢ of the bulk field at
the boundary, sources an operator @ at the boundary:

Wien = 3 / 20 (2)0(z) (6.28)

Also, as (6.24) shows explicitly, the renormalized on shell action I, has to be considered
as a function only on the sources ¢o(z). In fact note that, if we consider ¢o(z) and ¢:1(z) as
independent, from (6.27) we will have:

0Iren _1
dpo(w) 2

which gives a wrong answer because (6.29) does not coincide with (6.25) by a factor of one
half. Thus, in order to get a well posed prescription and the correspondence makes sense, we
have to consider the sources: ¢g(z) and Vevs: ¢;(z) as to be related in some way. Now we will
see that they has to be related satisfying some regularity conditions at the interior z = co of
the bulk manifold.

(24 — d)$1(w) (6.29)

To illustrate the process lets take the Fourier modes of the field ¢,(z) = [ dpo(z, $)e”i”i
then making some further simplifications, eq. (6.20) can be reduced into a modified Bessel
equation for the Fourier modes, whose solutions are in terms of modified Bessel functions:

d d
¢p(z) = C’lzil_A+%(pz) + ngEKA_%(pz) (6.30)
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This solution posses two integration constants, which has to be fixed some way to achieve
regularity at the interior. As the modified Bessel function I,(pz) has lim, o I,(pz) = 00, Va,
regularity at the interior demands C; = 0. However, in this Fourier transformed form of the
solutions, it is difficult to see directly the relation that the non-transformed asymptotic leading
¢o(x) and sub-leading ¢1(z) components has to satisfy.

A possible way to see the relation directly, it is considering the already well behaved (finite)
exact solution of (6.20) obtained by the method of green functions [43], which is regular at the
interior (z = co) of the bulk manifold:

62(2,8) = [ dyKa (e Do(@) (6.31)
where:
. . z A
Ka(z,7;y) = Ca <m) (6.32)

is called the boundary to bulk propagator, whose role as (6.31) show, is to build bulk fields
starting from boundary fields, and Ca is an integration constant unimportant for this discussion.
Being regular, the solution (6.31) already encodes the regularity conditions that the compo-
nents ¢o(x), ¢1(x) has to satisfy. In order to see it explicitly, we expand the form of Ka(z, T; )
near the boundary z = 0, considering two cases:
when T # ¢ in which, near z = 0, we have:
z

Kna(z,%9) ~ CA(_—W

where ... means terms of higher orders than z2.

The other case is when ¥ is near #, case in which under the integral sign the function given by
279K (2,7; %) near z = 0 behaves as a multiple of the delta function (witten):

+. (6.33)

dlyz"Ka(z,59)fly) _~  z7%f(z) (6.34)
z—0,2—>y
using these results we have near z = 0:
o _ d-A d ¢’0
,T) = C dy e .
¢A(z :C) ? ¢0 + az / y)2A regular terms (6 35)

Comparing with (6.21) at order 22 we can identify the regularity condition on the asymptotic
components, being:

$1(Z) = Ca / ddi‘/@»‘@%})?& (6.36)
Plugging this result in (6.27) we have:
Lyen = (2A d)Ca / ddz / ddy ¢’° ¢§§g> (6.37)

In which it can be see that taking functional derivatives with respect to the source ¢(w) we
have the right answer:
0lren

o (W)

= (28 - d)Cs [ Py n(d) = (2 - () (6.39)
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which correctly coincides with (6.25). Furthermore this expression becomes null when we
turn off the source, which is an expected result.

Finally, taking one further derivative with respect to the source we have the two point
function (propagator):

52[ren . (2A — d)CA _ . .
56o@)000 . GEopB = o@oE) (6.39)

which has the correct distance dependence for an operator O(Z) of conformal dimension A.

6.6 Stressing the importance of bulk regular solution at the in-
terior of the bulk manifold in AdS/CFT correspondence

Summarizing, with the above example, we saw that in principle, when we study boundary con-
ditions for the bulk fields, the sources can be free asymptotically, i.e. they are not related with
the Vev’s at the boundary, but if we then go into the interior of the bulk manifold, regularity of
the solution, which is needed for the consistency of the AdS/CFT correspondence, demands they
be related at the boundary. In other words, for the consistency of the correspondence, it is not
sufficient to have an on shell bulk solution, it is rather necessary to have a regular bulk solution
which has to be accomplish as such, by some regularity conditions between sources and Vev’s,
which in final instance will lead to some integrability conditions necessary for the consistency
of the correspondence. Consequently, this means that in order to compute correlation functions
by taking functional derivatives of the renormalized on shell gravitational action, in this process
we have to consider the on shell action as a function only in the sources. Once we have taken
the functional derivative, and only then, we can set the sources equal to zero to get the correct
correlation functions between operators. It is important to recall that this scheme repeats itself
in other examples of the AdS/CFT correspondence, and in particular we will use it when we
tackle the problem of higher spin black holes in chapter (8).

6.7 Further comments about the correspondence

Having shown the most simple example of the AdS/CFT correspondence, some comments are
in order about the use of AdS/CFT:

o If we have a theory with other type of metric-like field content, e.g, vector fields, symmetric
tensor fields, etc, Lorentz invariance of the boundary theory demands that we have to
consider that the bulk fields defines, at the boundary, sources of the same nature in the
CFT, which must respectively couple (sources) to its operator counterpart in the CFT.
This means: as we saw in the explicit example, a scalar bulk field defines a scalar source
at the boundary, this scalar source at the boundary it is coupled to a scalar operator of
the CFT. Similarly, a vector bulk field defines a vector source at the boundary, this vector
source at the boundary it is coupled to a vector operator of the CFT, etc. If we have AdS
gravity as the bulk theory, the metric field at the boundary defines a boundary metric,
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which acts as a source in the boundary CFT. The corresponding CFT operator, sourced by
this boundary metric, is the Energy-momentum tensor of the boundary CFT. For Higher
spins ,this scheme must be in this same way (see [19]).

e The AdS/CFT correspondence can be applied by starting with an explicit theory in the
bulk (AdS side), and then, after some work, one can compute the correlators between
operators of the boundary theory, without explicitly make some realization of the boundary
theory, i.e., without having knowledge of what is the explicit CFT Lagrangian. Something
like this is what was done in the scalar field case. When working with gauge theories, in
this case one usually can compute the symmetries that the dual CFT posses.

e Similarly, if we only know the symmetries of a CFT, without explicitly know which is
the CFT Lagrangian, we can build the bulk theory starting from the boundary data, i.e.,
starting from sources and Vevs (see [45]).

e In the process of the holographic renormalization (see also [45], [19]), started with a given
bulk Lagrangian (as in the above scalar field example), we could have build explicitly
if we want, a new bulk Lagrangian which accounts for introducing interactions (or self-
interactions) along the bulk, which were absent in the original bulk Lagrangian. These
extra pieces would correspond to the needed deformation of the bulk theory in order for
its quantization to be finite. This phenomena in AdS/CFT language it is usually called
by the phrase ‘Adding interactions along the bulk’. ‘
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Chapter 7

Review of Holography in Chern
Simons formulation

7.1 Introduction

In this section we will see how from a CS action in a manifold with boundary, but without
a metric structure, and only linear in first order derivatives of the fields, people use to do
holography.

7.2 Chern-Simons holography from the gauge connections with-
out a metric structure

Recall that the Chern Simons action is a special case which cannot be directly connected with
the AdS/CFT picture as was done for the scalar case in chapter (6), because its equations of
motion are only first order in derivatives, and furthermore it lacks of a metric structure on all
its expressions. Thus, in a first attempt is not directly to see how to carry out an holographic
study for a system which is describe by the CS action, as one would do it for e.g. the scalar
field case.

7.2.1 Global W; symmetries from Chern-Simons theory

In chapter (5) we saw how from a globally defined (radial independent) gauge fixing in the
classical CS theory with boundary, one can obtain a gauge fixed CS gauge connection with
remnant classical W3 symmetry, in which the remaining degrees of freedom, i.e., the fields
L(z4+),W(z4+) can be interpreted as the ‘physical’ degrees of freedom of a theory which lives
on the two dimensional boundary. Now we will see how this result can be connected with the
AdS/CFT picture, in which holography allows to interpret these fields as vacuum expectation
values for their analogous operators C(a:+) W(z+) of a quantum theory with W3 conformal
symmetry at the boundary of AdS space-time.
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7.2.2 Adding sources: CFT Ward identities from a deformation of the CFT
action

Now, in the higher spin context, we will see the problem of how the symmetries of the classi-
cal system manifest itself in the quantum theory as some existent relation between operators
correlation functions, leading, in this way to some identities between correlators called Ward
identities. The main idea of this section, in the higher spin context, has been developed in [48],
which uses a slightly different line of though than the earlier work [49] in which Ward identities
computations were developed in light cone gauge coordinates for holomorphic fields. It is worth
to mention that the work [48] has been partially inspired by the work [50] presented in this thesis
in which the particular case for constant fields was firstly developed to subsequently be strongly
supported with some of the ideas presented in [51] from a Hamiltonian point of view. Even if
the work [50] chronologically appears earlier than [48], for an easier exposure of the ideas the
work [48] will be shown firstly because it makes an easier contact with what is pretend to be
shown here.

To start, lets focus on one side of the AdS/CFT correspondence and compute the effective
action for the two dimensional conformal theory that lives on the boundary in the usual way,
with the partition function: Z[@] = "(#) = (ef d%“_’o)c FT, Where @ are the sources and O are
the CF'T fields or the symmetry currents of the CFT, etc. In the following lets think that we ar-
rive to this expression starting with Hamiltonian path integral method as if we were functionally
integrating over the Hamiltonian phase space. In this way, all the expectation values (...) can be
thought as taken with the Hamiltonian path integral of the CFT. Thus a possible insertion of the
exponential operator el d%upo’ inside correlations functions, can be understood as a Hamiltonian
deformation of the CFT action. At the moment, it is unknown to us the explicit form of the
CFT action (Lagrangian or Hamiltonian), but we know through the analysis done in chapter 4,
that it posses a conformal symmetry which is realizable canonically through the Poisson bracket
of the charges 5.93, which is well defined at the Boundary ‘point’. Thus this symmetry has to
be a symmetry of the unknown CFT action, an due to it is canonically realizable it must be a
symmetry of the CF'T hamiltonian. Thus the deformation we will introduce on the CFT, it will
be a symmetry of the Hamiltonian CFT system.

Now, specifically in our case, we will have:
Zle, u) = V&) = (e FHLTN) (7.1)

This expression does not tell us anything about the method used to compute the effective
action, and certainly it should not depend on the method (Lagrangian or Hamiltonian). But as
we are interested in compute the Ward identities for correlators in presence of sources, we need
to use it without turning off the sources.

In the following we will make emphasis in the quantum operators description of the system
by denoting explicitly the CFT fields inside the original path integral, as quantum operators
inside brackets: o

Zle, u) = (eJ FaCLT1W ¢ oy (7.2)

where temporal ordering at the left side has been assumed.
Now, consider the expectation values for the operators in presence of sources, by functionally
differentiating (7.2) with respect to one of the sources, g.e., lets say €, and showing explicitly
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the temporal ordering denoted by the operator ‘7, we get:

~ 0Z
(‘C)E,M 56

and by taking temporal derivatives at both sides of (7.3) we get:

<T( ef d2z(52+u17\7)2)> (7.3)

O (L(t', ¢ ))e = O ( /dtd<ﬁ€ (6, 9)T(L(t, 9) Lt ) + ult, ) TOV(E, Q)L ¢))e (T:4)
Now considering an expression of the form:

f(t, ) = / dtdg at, O T(E(E, &) I(t, 0))) (7.5)

Dividing into two parts the integral interval in (7.5),i.e. first for —oco <t < t' and then for
t' <t < oo, and considering explicitly the temporal ordering we get:

f(t ) = / dtdp oft, o) (B, )Pt 0) — [ dtdp alt, )Tt R(E, &)  (1.6)

t1 t2

then from 7.6, it follows exactly the identity:

o f(t,e) = [ do alt, I RE ), IE,0)]) (17)
Then using (7.7) applied on (7.4) we get:

oLt ew = [ doslt, O Elt0), L))+t DIFE0), E0 ) Do (19)
An analogous computation can be done for the Vev of the operator W in presence of sources:

AWt ) / dee(t, @) L(t, ), Wt )| + ult, @) W(t, @), Wt ) ey (7.9)

Now is when the symmetry comes into play. Lets consider the equal-time Poisson bracket
of the W3 algebra of the reduced phase space 5.93 at boundary. This algebra is satisfied by the
global charges which lives on the boundary where it also lives the conformal theory as we saw in
chapter 4. Now promote the fields to operators and classical bracket to quantum commutators:

L(¢), L)) = =g~ @)L () +20' (0 — ¢)L(p) + 11?7;5’”(50 — ')
(), W) = —(26(p — &YW () + 38 (0 — ¢ YW ()
W(p), W) = —%(25@ — &)L () + 98" (0 — @) L"(10) + 156" (0 — ¢') L (¢p)
+106" (¢ — ¢') L(p) + -5;5(5)«0 ~¢)

+§f}1(5(<p L)L (g) + &' (¢ — )L (9)))

(7.10)
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Then we plug the expressions (7.10) into (7.8) (and also into (7.9)), and denoting the expec-
tation values of the operators in presence of sources as:

~

L = (Dep (7.11)
W = Wy (7.12)

after taking the angular integral, making use of several Dirac delta identities, we get:

; k
L = Ee’” + 2L + Le 4+ 2W x + 3WY/

k 3 1 167
A By _2pn g _—pih,, _ / /
X 4£X 6[2 X 3k£(£x+£x)

w 481
(7.13)

5 5
W'e + 3We' — ZEIX" - gﬁx'" -

Expressions (7.13) are the time-evolution equations for the charges. From these expressions,
considering the time evolution that each parameter produces by itself, in each one of the fields,
we get:

5L = —k—e’” + 2L + L
4
6L = 2W'x+3WX

W = We+3We

167 , ,
ap LUEX+ Lx')

k 3 1
NGB _2pn g ity
X gt sL7x

_ S5y O am
OW = —gLXT - X gy

(7.14)

These expressions are the Ward identities associated to W3 algebra.

7.2.3 Recovering CFT Ward identities holographically from the classical CS
bulk constraint

Now we will carry out the computations of the CFT Ward identities, but holographically, i.e.,
deriving them from the classical CS bulk constraint. For this we step into the radial gauge given
by A, = 0 and consider we have a gauge fixed Ay connection, which satisfy the equations of
motion F,s = 0 given by:

4 8
Ay=Li+ —gc(t,@L_l + %W(t, S)W_s (7.15)

Then we consider a general A; given along all the SL(3,R) components:

At = E(t7¢)L1 +50(t’¢)L0+€—1(ta¢)L—-l
+x(t, 3)Wa + x1(t, &)W + xo(t, &) Wo + x-1(t, @)W1 + X—2(t,)W_2 (7.16)

After that, for arbitrary charges £, W, we solve the CS equations of motions Fys = 0. This
system fix 6 of the 8 parameters which enters in the components of the SL(3,R) Lie algebra
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along a;, where the x,e components of the a; field, are left undetermined. However we have 8
equations, thus in order to completely fulfil the equations of motion, we need that two extra
conditions be imposed on the system. These condition gives the time evolution of the fields
LW.

In details, the values of the six parameters inside (7.16) which partially solves the equations
of motion Fyy = 0 are:

& = —¢€
47 87
4 = é'+=rC —W
€1 6+k <€~|-]C X
_ l/
X1 = 2X
1 /1 ., 4r
Xo = 3 <2x +—k:£x>
1/1, 4« 107 .,
o= -2z —Lx+—L
X-1 3<2X +k X + A X
1,, 6r., 14r ., 4rx _, 167° , 8«
o o= =" - X = LY - =L - =L+ —W
X-2 S TR S TR S T e T L

(7.17)

where a ‘prime’ denotes derivative with respect to ¢.

The system is completely solved if also the charges follows the temporal evolution given by:

i = %e'" + 2L + Le+ 2V x + 3WY (7.18)
. 5 5 k 3 1 16
W = WI€+3W€,_Z£/XU—gﬁxlll—EX(S)_ Zl://X/_BL///X_3_;T_£(£/X+£X/)

(7.19)

where a dot denotes temporal derivative.

From the above expressions (7.18),(7.19), we consider the time evolution that each parame-
ter €, x produces by itself in each of one the fields £, W:

5L = ﬁs’" +2L + L
4

5L = 2Wx+3Wx

SIW = We+3We

_ S un Oam i
W = 4£x L

167
6-X T 18x

3 1
By _2pn g Zpm,,
XU EX g X T

L(L'x+ LX)
(7.20)
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These expressions are exactly the same as (7.14), but to confirm that they are the Ward
identities, they must come from variations of the action with respect to the sources.

If we compute the on shell variation of the CS action, the bulk part is zero because the

equations of motion holds, and we are left with only a boundary term, where the explicit
parameters of the solutions appears as:

k
612s = Opu+ E/dtd¢(A¢5At — Ai6Ay)
=—/ﬁw<%&u4wma@w+mwg (7.21)

then, we can sum to the action a local term Bio as:

k
Bm:/ﬁw<§ﬂ+%W) (7.22)
defining a new action Ipney = Ig g + Biot whose variations gives:
5Inew = ‘4/dtd¢ ([,68 + W(SX) (723)
From the variation of this action we read,
5Inew .
3e = —4L
5Inew — —4W
ox

which confirms that the expressions given in (7.20), are the Ward identities for correlation
functions derived from Ineq-
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Chapter 8

The Action for Higher Spin (V)
Black Holes in three dimensions

8.1 Introduction

In this chapter we will see that the well defined, i.e., with an allowed extrema, euclidean on
shell CS action, defined on the non-trivial topology of the solid torus, leads to a consistent
thermodynamic picture for higher spin black holes. This result has been motived by the fact
that in [49] it has been conjectured the existence of a partition function trough some integrability
conditions which arises as consequence of some holonomy conditions that must be imposed on
the fields as they are defined on the torus. The integrability conditions demands that a well
defined functional exist from which, by functional differentiation, one can extract Vev’s of some
physical quantities of interest. In this chapter we will show that the above functional is in fact
the CS action, but properly modified by adding some properly defined boundary terms, and
subsequently valued on the solutions of the equations of motion, which after that, is usually
called the on shell CS action. The result of this chapter has been published in the work [50].

8.2 Classifying solutions by holonomies

Euclidean black holes lives on the non-trivial solid torus topology and as we will be interested
in evaluating the action for this type of solutions, in what follows we will work on this topology
(see figure 8.1), but fixing the rank of coordinates a priori as:

0<t<1,0<¢<21r, 0<r<oo (8.1)

It is important to recall that one usually works with a free periodicity 8 on the temporal
coordinate:

0<t<p,0<¢<2r,0<r<o0 (8.2)

which is usually related to the inverse temperature of the solution. But with the choice (8.1)
of a priori fixed-rank topology, if one want to keep the freedom of the periodicity 3 of the fields
on the topological manifold (8.2), one should recover this freedom by an explicit apparition of
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Figure 8.1: Solid torus topology

this periodicity-parameter, but now inside the fields, as one straight-forward change of coordi-
nates in the integral sign would demand.

The solutions to CS equation of motion F' = 0 are flat connections, which at first naive
sight could lead one to think there is no interesting solutions. In fact, one can argue that a
particular solution, being a flat connection, can be obtained by gauge transforming the trivial
solution A = 0 with a particular group element, and thus one can think that all the solutions
are gauge equivalent to the trivial one. This is only true when we have defined our gauge fields
on simply connected manifolds with no holes inside, in which we can use any particular well
defined gauge transformation to build any particular solution starting from the trivial one. Over
this trivial class of topological manifolds the converse is also true, supposing we have a solution
with A # 0 we can bring this solution to the zero solution by performing a well defined gauge
transformation. However, as we are working on the non-trivial topology of the solid torus, the
above statement is not longer true and we must classify solutions by its holonomies around
contractile and non-contractile cycles.

The whole point of holonomies is the following: suppose you have a gauge connection over a
non-trivial manifold and that you want to bring it to zero by a gauge transformation, the answer
to the question if this is really possible, depends on whether the space-time components of the
gauge connection are along contractile or non-contractile cycles. As the manifold is non-trivial,
i.e., with some holes inside, one can define different class of curves on it. If there is only one hole,
one class will be the class of contractile curves into a point, which are defined as going around a
contractile cycle, and the other possible class will be the non-contractile ones which goes along
the non-contractile cycle that surrounds the hole. Then, coming back to the question, the answer
is that space-time components of the gauge field which goes as a contractile curve does, can be
made zero by a well defined gauge transformation, meanwhile space-time components which goes
as a non-contractile curve does cannot be made zero by a well defined gauge transformation,
but only by means a multivalued gauge transformation which leads, at final instance, to a gauge
field which is singular at the points in which the multivalued gauge group element changes to
another branch.
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In order to build black holes, we need that the metric-like fields be static and circularly
symmetric, and we can guaranty this by considering the set of static and circularly symmetric
solutions, which has the form:

Ar = gflargh
Ay = g7l agg (8.3)
A= g7 g

where g1 = gi1(r) is a SL(N,R) group element which depend only on the radial coordinate,
and a¢, ag are constant SL(NV,R) algebra matrices which satisfy [at, ag] = 0. Analogous type of
solutions (static and circularly symmetric) are use for the other copy of the gauge fields:

B, = 9516r92
By = g5 'bsgo (8.4)
B; = g5 'bige

Due that we are working from a theory whose action can be written as the difference of
two CS actions, and we will be mainly working with this total action, we will focus all of the
following discussion only for one copy of the gauge field (and one CS action), because for the
other copy this discussion is analogous and straight forwardly constructed.

For the small case connection, which fulfils the equations of motion [as, ag] = 0, it is obvious
that a; = f(ae). Thus, we can write the general solution as a power series in a4 to then remove
the trace in order that a; be an algebra element. But due to the Cayley-Hamilton theorem !
we can use the matrix valued characteristic polynomial to rewrite the power series solution as
a polynomial with a finite amount of terms. In the case of the SL(N,R) algebra, the resulting
polynomial is of order N —1 and, as such, a number of N —1 arbitrary parameters are introduced.
Finally, after removing the trace, the most general form of a; is left as:

a; = o204 + 03 (ai — INA);N Tr(a?b)> + - 4oy (ag_l - IN];NTr(ag‘l)> (8.5)
where 09,03,...,0n are the N — 1 arbitrary parameters, which will turn to be crucial for
the description of the thermodynamic behavior of the solution because they will play the role
of chemical potentials.
Also, it will be very convenient to use the definition of the i-th power-like invariant Casimir
Operator- related parameters:

Qo= 3Tr(ad), Qs =3Tr(a)), .. Q= Tr(a}). (3.6)

This set of parameters will also be used for the thermodynamic description, playing the roles
of charges. Furthermore, in the sequel we will see that the pairs: o,,@p, for n =2,..., N play
the role of canonically conjugated thermodynamics variables.

Tt is a trivial theorem that says that any square matrix satisfy its own characteristic polynomial.
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At this point of the discussion it is important to stress that for a given solution of the
equations of motion fulfills the holonomy conditions discussed above, the charges Qn must be
fixed in terms of chemical potentials o, or vice-versa, more of this will be discussed in the next
sections.

8.3 The on shell action for higher spin black holes

Lets consider to have the CS action as:

Icg[Alzg—r/tr(A/\dA%-%A/\A/\A) (8.7)
and take its variations to get:
51 i / Te(F A 6A) + / Tr(A A SA) (8.8)
cs = — .
47 RxTh 47 T

where, due that on shell F = 0, the on shell bulk part is zero and we are left with only a
boundary term:

k
SIcslo = Opux + Z;/ dtdg Tr(AgdAr — AtdAg) . (8.9)

Then, considering a solution of the form (8.3), is very easy to see that the radial dependent
group element plays no role in this analysis, in fact plugging (8.3) inside (8.9) we have:

k
Slcslo = = /dtdqb Tr(agbas — atdag + 2[at, a¢]g6g‘1) . (8.10)

where the last term vanish for static and circularly symmetric solutions, and even if the
solutions are not of this sort, the last term under the integral sign vanish as consequence of the
periodicity of the fields living on the solid torus, giving us:

k
dlcslo = Z;/dtdd)’l‘r(%(?at — atdag) (8.11)

Then, considering the explicit form for the small case connections that a solution must satisfy,
given by (8.5) which inserted in (8.11) gives:
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N
éleslo = > Z Tr <a¢5(0na2_1) - anag"léad,)
n=2
N
= g Z Tr (a;éan + 2= 2an5(ag))
n=2
p
= 52 (0Qudon + (n — 2)0n6Qn)
n=2
N k N
= k 22 Qnion + 6 (5 Z(n — 2)anQn>
n= n=2
(8.12)

where in the third equality of (8.12), we have used (8.6), and where in the last line, the last
term is a total variation which we can pass it into the other side to define a new action I, given
by:

Al
Is = Icslo— Z E(n— 2)0nQn (8.13)

n=2

such that 8.12 guaranties that the new action Ios it is a function only on the chemical
potentials o, as:

N
los =k > Qndoy, (8.14)
n=2

This expression tell us that the action (8.13) posses an extrema when chemical potentials
on are fixed, and as we must have Ios(0,) this action is adequate for a ‘(grand) canonical’
description of the system, where the charges @Qn can fluctuate. Similarly, by performing a
Legendre transformation acting on (8.13), one can define a new action I} which will depends
only on the charges Q,, as:

N
I =Tos =k Quon (8.15)
n=2

such that varying (8.15) and considering (8.14) we get:
N
I = =k Y 0ndQn (8.16)
n=2

In this case IN®¥(Q,) will posses an extrema when the charges are kept fixed. The action
1% (Qp) is adequate for a ‘micro-canonical’ description as the chemical potentials are allowed
to fluctuate.

Now, we still need the value of the CS action valued on shell: Icslo. To find it we can pick
the angle ¢ as a special coordinate to do a foliation of the solid torus. This foliation is regular
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everywhere as is made by using planes (regular surfaces) which do not intersect at any point.
Using a 2+1 decomposition using the angle ¢ as the direction in which we do the foliation, we
get:

k
ICS = ic—ﬂ- /dq&/d2x’I‘re°‘ﬂ(—Aa¢9¢A5 + A¢Faﬁ) - 2171'- /T-_> dtdqﬁTr(AtA(p) . (817)

In the bulk part, this foliation is covariant in the two dimensional planes at some constant
#, thus we can use a well defined set of coordinates to value it. Also, as respect to the on shell
value of (8.17), the bulk part is zero as consequence of the circular symmetry of the fields (i.e.:
dsAs = 0) and also due to the fact that it is a solution (i.e.: Fup = 0), thus we get:

k
Ieslo =~ dtde Tr(AAg) - (8.18)

r—00

But, considering (8.3), the radial dependence is again factored out giving:
k
ICSIO = —-— dtd(bTr(at%) . (819)
4T Jr o0

and using (8.5) and (8.6) in (8.19) we have:

N
k
ICS|0 = —§ZnanQn- (8'20)
=2

Finally, using (8.20) in (8.13) the new action Ios is:

N
Ios = -k Z(n_ 1) on Qn (8.21)
n=2
Note that if we vary the explicit final form of (8.21), then (8.14) is not automatically satisfied.
In fact, as we said before, (8.14) tell us that Ios must be only a function of the chemical potentials,
and as such, in order to vary it consistently, i.e.: fulfil consistency with (8.14), we have to consider
some conditions which allows to express the charges Q, in terms of the chemical potentials op,
before take the variation.
The converse is also true for the micro canonical on-shell action, which with the value (8.20)
in (8.15) we get:

N
INY =~k n0onQn (8.22)
n=2

In the next section we will see that the right conditions for the consistency of the on shell
variational problem are precisely given by the trivial holonomy conditions along the temporal
(contractile) cycle.

Lastly, note that being the full action of the theory, given by the difference of two CS actions
with two independent gauge fields: Itotal = Ics|A] — Ics|A], then the obvious result of this
section is that the full on-shell CS action for the higher spin black holes will be given by the
straight forward extension of the above expressions which consider both copies as. For example
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for the total on-shell CS action appropriate for higher spin black holes in a ‘(grand) canonical’
description we have:

N
Is(on,0n) = Z n—1) anQn—i-kZ n—1)5, Qn (8.23)
n=2 n=2
such that:
N N
0Ios =k > Qnbon —k Y _ Qndon (8.24)
n=2 n=2

meanwhile in a ‘micro-canonical’ description we have:

N N
n=2 n=2
such that:
N N
SINY =~k 0n0Qn+ kY 5n0Qn (8.26)
n=2 n=2

8.4 Holonomy conditions and Consistency: Spin 2, Spin 3 and
Spin 4 examples

In this section we will see explicitly how the above mechanism works for different spins N = 2, 3,4
examples. As explained at the beginning of this chapter, interesting gauge fields solutions de-
fined on the solid torus must fulfils some holonomy conditions, and as we have two class of curves
in the solid torus, i.e., contractile and non-contractile, we must have:

The non-trivial holonomy restriction along the non-contractile angular cycle is:

Pef 2ed £ Iy (8.27)
The trivial holonomy condition along the contractile temporal cycle is:

pef it — Iy (8.28)

where Iy denotes the N x N dimensional identity matrix.

We also have similar independent holonomy conditions for the other copy. As the formula-
tion of the full CS action is symmetric in treatment in both copies, we will restrict here to prove
the consistency for only one copy, because for the other copy is done analogously in a straight
forward manner.

From the above expressions, the first one (8.27) is a restriction, which gives us no condition,
but rather suggest we must keep free the charges which are defined trough (8.6) such that a4
cannot be brought to zero via a regular gauge transformation. The second one (8.28) is a condi-
tion which states that a; can be brought to zero by a regular gauge transformation. In order to
impose this condition one must solve the chemical potential as functions of the charges as we will
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see below. In the SL(NV,R) theory, the trivial holonomy conditions (8.28), for constant gauge
fields, traduces into N — 1 conditions on the eigenvalues of at, or equivalently into conditions on
the N — 1 power-like Casimirs of a;. These N — 1 conditions allows us to solve for the N —1
chemical potentials oy, in terms of the N — 1 charges Qn.

8.4.1 N=2 example

In the simplest example, i.e., the SL(2, R) theory, we can make the choice of parametrizing the
ay gauge fields explicitly in terms of its Casimir as:

0 Q2
ap = [ o } (8.29)

by the way, it is important to recall that the above result is independent of the choice made
for the matrix parameterisation of the gauge fields.

The trivial holonomy condition reads as:
Tr(a?) = ¢* (8.30)

with ¢ fixed as ¢ = v/27. Using a; as given in (8.5) (with N = 2), this condition explicitly

reads as:
2052Qs — ¢ =0 (8.31)

where, considering o2 as a function of Q2, differentiating one gets:

%%922 _ 9 %2 (8.32)
Using explicitly 8.21, for N = 2 we have:
Is = — ko2 Q2 (8.33)
using 8.33 and 8.32 one gets:
aaﬁ’; = kQo (8.34)

which coincides with 8.14 at N = 2.

8.4.2 N=3 example

At N = 3, i.e., for SL(3,R) theory, we can choose as a possible parameterization in terms of ay
Cassimirs as:

0 10, @
ag=|1 0 3Q2 (8.35)
0 1 0

The trivial holonomy condition now reads as:
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Tr(a}) = ¢ (8.36)
Tr(ad) = 0 (8.37)
(8.38)

with ¢ fixed as ¢ = 2v/27. Using (8.5), with IV = 3, these conditions are written as:

2
3 032Q22 +20952Qs + 60203Q3 — ¢ =0

2
-3 033Q2 + 203 Q2209% +3032Q202 Q3 +302°Q3 +3033Q32 =0
(8.39)

where, considering chemical potentials o2, 03 as functions of the charges Q2, @3, differenti-
ating the above expressions one gets:

'aa% _ ]—\[—2(303623—02@2) (8.40)
%%‘. = Nig(-4agQ22+902Q3) (8.41)
%%3. = 7\%(—403@224-902623) (8.42)

where N3 = 4032Q2 — 3 022.

Due that at N = 3 we have more than one pair of canonically conjugated variables, this is
the first time we observe integrability conditions in the space of chemical potentials, which is
absent in the N = 2 case. In fact, comparing (8.41) and (8.42), we directly see:

0Q>  0Q3
_— = 8.44
80'3 80‘2 ( )
For N = 3 in 8.21, we explicitly have:
Is = —k (0'2 Q2 + 203 Qg) (8.45)
differentiating 8.45 and using (8.40),(8.41),(8.42),(8.43) one directly gets:
Olos  _ kQo (8.46)
30’2
Olos  _ kQs (8.47)
003

which coincides with 8.14 at N = 3.
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8.4.3 N=4 example

At N = 4, ie., for the SL(4,R) theory, a convenient parameterization of ag in term of its
Casiimirs is given by:

0 $Q2 3Q3 Qa-— =Q2°
1 0 i@ £ Q3
ay = 3 : (8.48)
0 1 0 3 Q-2
0 0 1 0

or, due that this analysis is independent on the explicit matrix parameterization of the gauge
connection, provided we write it in terms of the ag Casimirs, we could equivalently have used:

0 HQ2v3 L Qs V3 %Q«;—%@Qf

2o = V3 0 £ Q2 5 Qsv3 (8.49)
0 2 0 LQ:V3
0 0 V3 0

which is a more appropriate parameterization for the next chapter when we will try to build
explicit black hole metrics.

The trivial holonomy condition now reads as:

Tr(a}) = 204 (8.50)
Tr(ad) = 0 (8.51)
Tr(a}) = 1644* (8.52)

(8.53)
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but now with ¢ fixed as ¢ = 7. Using (8.5) with N = 4, this conditions explicitly reads as:

0

3
703Q204Q3+603Q309 + 804 Qq0y + 604°Qs Q2 — 03°Q5% + 1 04°Q3?
+209°Qa — 04°Q0% + 405°Q4 — 20 4° (8.54)

9 15
2404Q40903Q9 + 3 04°Q1 Q2 Q3 + 12 03’Qu 04 Qs + 703 Q204°Q32

21 21
+—2— 02°Q204 Q3 — 605 Qa30, o3 + 5 02 Q2%042Q3 + 6 532Q3 0y Q2

9
+503 Q3%02 04 +3042Qq 09 Q3 + 304°Q4 Q2203 + 1203 Qq 092 + 12 0304%Q,2

3 9 3
—-3022Qq%03 — 3 042Qo 03 + 1 043Q2%Q3 — 3 04%Q3> + 30,°Q; + 303°Q3%  (8.55)

3

3 03%Q2504% + 304 Q33053 — 203'Q2%Q4 — 6022Qx% 042 + 12 04*Q42Q5>
21

+1803°Q3%09% — 3032Q5%02 + = 04 Q3%Q2% - 209 Q2°04% + 30,°Q5%04

8
—304'Q2* Q4 + 2031 Q5 Q32 —402°Q2%04 + 24,2 Q4 02° + 12052 Q203 Q4
+2803 Q309 Q4+400’4 Q4 02 Q9 + 48 0y Q4 020'3 + 36 04 Q42Q9 03

15 159
+8043Q3 03 Q4% — - 03 3Q2%04 Qs + — 03%Q2%04%Q3% - 703°Q2°Q3 0y

8
25 13 39
—1503%Q2%042Q, + 303 Q204°Q3% — = 03Q2%043Q;5 + T 04°Q3%02% Qs
17 9 9
+—2-U4 3Q3% 09 Qo2 +ZU4 Q330300 + 404 3Q3%Quoy + = 104 1Q3%Q4 Q,

21

+? 04°Q3%03%Q4 + 14 553Qs 03 Q3+ 2402°Q2 04 Q4 + 24 522Q520, Q4

1 21
+— 03' Qo + = 040 Qst + 403'Qs + 40,4Q3 + 402*Qs — 1203%Q4204 Q402

64
+21 03Q2%04 Q3 09% — 303 Qx30, Q302+4903 Q204 Q3%02 + 4303 Q22043Q5 Q4
+3003°Q 04 Q3 Q4 + 48 03 Q3 0y 04 Qs+ 10203 Q2 04°Q3 Qy 0y — 164 ¢* (8.56)
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where, considering Q2, @3, Q4 as a function of 03,03, 04, differentiating one gets:

0
—a-% = —-( —2403Q302 + 80’22Q2 + 6403 Q4 — 4804 Q409 + 270’4 Q3
—12 03Q204Q3 — 32 0'32Q2 + 36 02 Qz oy — 7204 Q4 Q2 + 36 0'42Q23) (8.57)
0 1
5%2;2 = E(m 022Q3 — 3203 Q4 00 — 1803 Q3% 04 + 8032Q3 Q2 + 1202 Q204 Q3
1809 Q%03 + 36 04°Qq Q3 — 18 Q2%04°Q3) (8.58)
0
3%2 = —(18042622 4+ 1209 Q2304 — 16032Q2° — 36 04°Q4 Q2" +18Q2 04 2Qs”
—2803Q302Q2+3203 Q2 Qs — 2403 Q404 Q3 — 9Q3 oy 04 + 1203°Q5°
+16 Q4 02 ) (8.59)
0Q3 1
oy V4(12022Q3 — 3203 Qu00 — 1803Q3°04 +803°Q3Q2 + 1202 Q204 Qs
1805 Qo203 + 36 042Q4 Q3 — 18 Q2%04°Q3) (8.60)
o) 1
—(‘3_3 = —(16Q402% +1203°Q3% — 36 Q3’0204 — 1603 Q302 Q2 — 405°Q*
o3 Ny
44803 Q4 04 Q3 + 4804 Qy 02 Q2 — 14404°Q4* + 18 Q2 042Q32
3603 Qo204 Qs — 1202 Q2P0 + 108 042Qu Q2% — 1804°Q2") (8.61)
0Q3 1 .
Fr 7\/-—4(12 01 Qotos + 2704%Q2°Qs + 802 Q2%03 — 1204 Q4 Q2203 + 4202 Q2204 Q3
—540,2Q4 Q2 Q3 — 3003 Qo 04 Q3% + 14022Q2 Q3 — 32Q4 0203 Q2
+27 0’42Q33 + 96 03 04 Q42 —4804Q402Q3 — 603 Q320'2 + 16 0"32Q4 Q3) (8.62)
0Q4
e =W L (18042Q2* + 1203 Q%04 — 16052Q0® — 36 04°Q4 Q2% + 18 Q5 04° Qs

—2803Q302 Qo +3203°Q2 Q4 — 2403 Q104 Q3 — 9Q3205 04 + 12032Q3°
116 Q4 027) (8.63)
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Q4 1 4 - 23 3 2 2
Doy J\/_'4(1204Q2 03+ 2704°Q2°Q3 + 802 Q2°03 — 7204 Q4 Qs 03 +4202 Q2704 Q3
—5404*Q4 Q2 Q3 — 3003 Q2 04 Q3% + 14 72°Q2 Q3 — 32Q4 05 03 Qo
+270‘42Q33 + 9603 04 Q42 — 4804 Q409 Q3 — 603 Q320'2 + 16 0‘32Q4 Qg) (8.64)
Qs 1 4 4_ 2 3_2 3 3_2
P ‘N—4(-6Q2 0402 = 8Q2"03" + 36 Q2°04° Q4 — 18 Q230304 Q3 — 4Qx30

+60 Q2%04 Q4 72 — 28 Q2205 Q3 00 + 16 Q2°03%Qu — 72 Q2 042Q4>
120204 Q303Q4 — 6 Q204 Q3702 + 24 Q 092Q4 + 20 Qs 03°Q3?
+36 Q3Q4 04% — 1804 03 Q3> — 48 0y Q4%02 — 803Q3Qu00 + 3 Q3%02?) (8.65)

where we have defined:

Ny = —40’23 - 80‘33Q3 +3603Q30904 + 80‘320‘2 Q2 — 18 022Q2 04
—48 032Q4 o4 + 36 0'42Q4 o9 — 270‘43Q32 + 1803 Q5 042Q3
+24 Q2°03%04 — 3602 Q22042 + 54 043Q4 Q5 — 27 543053 (8.66)

Observing the following pairs of equations: (8.58,8.60), (8.59,8.63) and (8.64,8.62) we observe
the following integrability conditions:

%%2 _ % (8.67)
g_i% _ % (8.68)
%% _ % (8.69)
From 8.21, for N = 4 we explicitly have:
Tos = —k (02 Q2 + 203 Q3 + 304 Q) (8.70)

Now we differentiate (8.70) only once with respect to each of the chemical potentials, and
then we plug the expressions (8.57) - (8.65) on it, and we get:

0los

= =k, (8.71)

o))

ZIOS — kQs (8.72)

03

(?9104 — kO, (8.73)
(8.74)

which coincides with 8.14 at N = 4.
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Finally, we can remark that in a completely analogous way, in any of these examples the
relations can be reverted, i.e., considering the chemical potential o; as functions of the charges
0i(Qj). Thus, considering this dependence we also use the holonomy equations, but now in the
computations instead of use the (grand) canonical on shell action (8.21), one uses the micro-
canonical action (8.22) to find consistency with (8.16).

8.5 Entropy for the Higher spin black holes

In gravitational theories, the entropy for black hole solutions is often given by horizon valued
boundary terms coming from the on shell Hamiltonian action. This boundary term arises due
to the necessity of regularize an infinite value for the Hamiltonian action at the horizon.

On the other hand, in the case of a CS theory, we can compute the Hamiltonian action, for
this we make a 241 decomposition on the torus, but now using time to foliate it, getting:

k k
Ttamiionian = 1= / dt / drdg(A: 0, Ay + AiFro) + ( / dtds Tr(AtAd,)> ~ B, (8.75)

The boundary term B in (8.75) comes from the need of introduce a virtual boundary that
surrounds the inner ring at that center of the torus (at the point » = 0) where the vector field 9,
along which we make the temporal foliation has a fixed point, i.e., all the leaves of the foliation
intersect at the ring r = 0, thus the foliation is degenerated.

Evaluating this action in a black hole-like solution, which must be static and spherically
symmetric, the bulk term vanish and we get:

k
I?Iamiltonian = Z; (/ dtd¢ Tr(AtAcb)) - B+ (8.76)
00

On the other hand if we evaluate the CS action decomposed along the angular coordinate
(8.17) in a black hole-like solution, due that the solution is circularly symmetric, i.e., independent
from ¢, we get:

k
Igngular = _Z;/ dtd(;S Tr(AtAzb) (8.77)

The action (8.75) is the same that the action (8.17), where just a different 241 dimensional
split has been done. Also these two actions are the same as the fully convariant (8.7). Thus
equating its on shell values given by (8.76) and (8.77) and solving for the boundary term B,
we get (see [52]):

k
By =5 / dtdé Tr(AA,) (8.78)

And using the equations of motion (8.3) with (8.5), and using the definitions (8.6), we get
an explicit expression for the boundary term of the CS action, given by:

N
By =k Y nQuon (8.79)

n=2
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Now, considering that the formulation of the gravitational theory is given by the substraccion
of two CS actions with the same level, then the entropy for the higher spin black holes, which
should be given by the total boundary term of the higher spin gravitational theory, is given by:

N N
S =BV - BPA] =k Y nQuon— kY nQnsn (8.80)
n=2 n=2

8.6 Conclusions

We have shown that it is the on-shell CS action the functional, which solves the integrability
conditions, whose existence was spotted in the literature. In the process, we also have shown
that this functional posses a natural description in terms of the gauge invariant Casimirs of the
angular components of the gauge connections as the physical degrees of freedom of the boundary
theory. Also, in the process, chemical potentials were introduced by solving the equations of
motion, to then analyse the on-shell variational principle to find that both kind of variables,
i.e.: Casimirs and chemical potentials, turns out to be canonically conjugated at the boundary.
This gave us the knolewdge about the simplectic structure at the boundary due to these con-
jugated variables. Furthermore, studying the consistency of the on-shell variational principle,
i.e., allowing only variations of the gauge fields which are solutions of the equations of motion,
it was shown that the impossition of trivial holonomy conditions around the contractile cycle
of the torus, turns out to be fundamental in order to have consistent picture of the variational
principle.

68




Chapter 9

"Higher Spin Black Holes

9.1 Introduction

Previous attempts to build explicit black hole solutions with higher spin charges has been car-
ried out in [49, 40, 39, 50], however all of these solutions belongs to the non-rotating case and
therefore they are charaterised by only two parameters, i.e., only one of spin 2 nature, and only
one of spin 3 nature. Even more, the solutions constructed in [40, 39], by construction belongs
to the diagonal embedding which means that they carry no fundamental higher spin charges.
Furthermore, in [51] it has been argued that solutions found in [49] also belongs to the principal
embedding. In this work we will construct rotating black hole solutions possessing higher spin
charges, which at the same time posses a regular smooth horizon.

In the last chapter (8), we have found the action for higher spin black holes in three dimen-
sions, which leads to a consistent ‘thermodynamics’. There, we have also learnt which are the
relevant canonically conjugated variables involved in its ‘thermodynamic’ description. In the
process we learnt that this action is completely topological and also independent on the radial
coordinate, and as such, a regularization and renormalization process has not been needed. In
fact in the process we have only needed to take care about a well settled Dirichlet problem.
However, regarding the solutions found in the last chapter, as we have not said too much about
the radial coordinate itself, which should somehow be involved in a explicit metric-like black
hole description, one may think that it could be too early to call them black holes. These
prospective black hole solutions are allowed to exist, at this time of the discussion, just because
we have made a topologically non-trivial characterization of the CS flat solutions which lives on
the non-trivial solid torus manifold. In fact, in the previous analysis of the on shell CS action,
the Casimirs invariants of the angular components of the gauge field were identified as the gauge
invariant, and thus physical, boundary degrees of freedom (and as such, being free). This was
supported by the restriction made on the angular holonomies (around the non-contractile cycle)
to be non-trivial. On the other hand, the trivial temporal holonomies (around the contrac-
tile cycle) were fundamental to gives us the right regularity conditions !, between the relevant
canonically conjugated variables at infinity (the boundary). Thus, just as we saw in chapter
(6) in the simple scalar field example, and also as we saw and confirmed in chapter (8) for our

'which are imposed at the gauge field level, which being radially independent, are also also globally defined
and purely topological ones
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higher spin setting, the regularity conditions once again are needed for the consistency of the
holographic correspondence.

In chapter (5), we have mentioned an argument which says that in a metric-like fully interact-
ing (non-linearised) theory, non-linearised higher spin (with spin sg > 2) gauge transformations
should act on the lower spin (with spin s;, < sg) fields. This is because the higher spin gauge
parameters (with are symmetric tensor possessing a spin sy — 1) also carry lower spin invariant
subspaces up to spin s, —1. ...which at the end of the day, should mean that the deformed? gauge
symmetries of the full interacting theory, must somehow acts on the lower spin fields through the
deformed fully non linear gauge transformation of the fully interacting system. Furthermore, in
the frame formulation of the SL(3,R) theory in chapter (5), we explicitly saw how a higher spin
gauge transformation acts on the spin 2 metric. This has as consequence, that the meaningful
coordinate invariants quantities (i.e., under non-linear spin 2 gauge transformations) that exist
in general relativity, when are analysed inside the higher spin (s > 2) setting, they lose its fully
gauge invariant meaning, because they are no longer invariant under the higher spin diffeomor-
phisms which are the extended symmetries of the system. Certainly, this is problematic in the
higher spin setting, if we are planing to keep the concept of a (higher spin) black hole as an
object characterized by a singularity expressed in the (spin 2) curvature invariants.

However, as respect with what should be black holes solutions in the higher spin context, in
an euclidean formulation besides the condition of having pairs of canonically conjugated ther-
modynamic variables to describe them, which we know it is possible, one further condition that
one would like to have for a black hole, is the existence of an horizon, or something similar,
perhaps as an extended concept, maybe a ‘higher spin horizon’. Of course, at the present the
lacking of knowledge about a full metric-like formulation of the theory, and also the lacking of
knowledge of higher spin geometric concepts such as, e.g., prospective higher spin curvatures,
prospective higher spin coordinate transformations (i.e., full non-linear completion of higher spin
diffeomorphism), etc., one can imagine, but it would be very difficult to prove, an hypothetical
relation between this hypothetical higher spin horizon and some hypothetical singularity in a
higher spin curvature invariant surrounded by the higher spin horizon. Thus, at the moment,
an attempt to tackle the problem by this route should be completely abandoned because it is
pure speculation.

However, in the SL(2,R) theory, the spin 2 euclidean BTZ black hole, posses an horizon
but not a curvature singularity. Due to its topological construction on the solid torus, it rather
may posses only a coordinate singularity, which reflects itself as coming from a bad choice in the
temporal period which leads to a topological conical singularity. But having properly chosen the
value of temporal period, the conical singularity will be absent, leading to a completely regular
surface at the horizon, which is located at the center of the topological manifold, i.e., the solid
torus, corresponding to the ring at r = 0.

In the three dimensional euclidean higher spin context, we will also make a topological con-
struction of the solutions, and in analogy with the SL(2,R) case, this construction spots that
higher spin black holes should be described by bulk fields which near the horizon are described

2Deformed from the free theory
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by completely regular surfaces, and regular ‘higher spin surfaces’, without having to refer this
regularity to some still unknown higher spin curvature extensions of geometry. Thus, in the
higher spin theory, just regularity of the bulk fields at the ‘horizon’, will be a mandatory con-
cept to construct what we will call as a regular ‘black hole solution’.

It is better to stress that in trying to build regular solutions with spin 3 (or with higher
spin charges), one mayor ‘problem’ that we have faced, is that in the construction of regular
black holes solutions, in general we have found that they do not posses a ‘desired’ asymptotic
behaviour at infinity. Firstly, this was thought only as a technical problem in the construction,
because as we will see, there is a lot of gauge freedom involved in their construction, which leads
one to think that by somehow choosing the ‘right gauge fixing’ conditions one could achieve the
desired asymptotic behaviour. Also, the lacking of a well settled knowledge about higher spin
geometrical concepts, makes this situation as an even worst scenario to do work. However, after
an enormous amount of attempts in trying to find regular solutions with the ‘desired’ asymptotic
behaviour, we have found a theorem, which is beyond the scope of this thesis and thus it wont
be shown here, rather it will be shown in a future publication. That result which is worth to
mention basically states that in the higher spin theory (N > 2), for regular solutions the ‘desired
behaviour’ it is ruled out, i.e., do not exist. A partial discussion of what it implies will be done
in some of the next sections.

9.2 Importance of a regular solution in the AdS/CFT context

In chapter (6), we saw that in order to have a consistent picture of the AdS/CFT conjecture
along the bulk, we need to construct regular bulk fields solutions at the interior ‘point’ of the
bulk manifold. Thus, a regular bulk field solution at the interior, turns out to be the required
configuration for the whole consistency of the holographic picture.

In the context of euclidean higher spin black holes which lives on the solid torus, in the following,
we will call the interior point of the topological bulk manifold as the ‘horizon’ which is the ring
at the center of the solid torus. And this will be the ‘point’, where we will demand that the
bulk field solutions be regular (see figure 8.1).

9.3 General considerations: Static and circularly symmetric so-
lutions

In order to build black hole solutions, we should consider to start considering the set of static and
circularly symmetric CS solutions, which in the chapter (8) were shown to be the appropriate
gauge connections for black hole physics. The most general solution to CS equations of motion
fulfilling these conditions are:

A= Ql_largl , Br= g;largg
Ap=grlapq , By =95 bygo (9.1)
Av=g7'ag1 ,  Bi=g5'bgo

where g1 = ¢1(r), g2 = g2(r) are fully arbitrary radial-dependent SL(N,R) group elements,
and the lower case matrices a;, ay,, b, by, are constant SL(N,R) algebra matrices, which satisfy
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the equations:
[a't7 a(p] =0 ) {bt: b(p] =0 (92)

in order that the equations of motion be satisfied. Recall that they can be solved as it was
done in chapter (8), and as was discussed there, given a, we will have a; = f(a,) in which
the functional form of f, by Cayley-Hamilton theorem, is uniquely fixed by the introduction
of N — 1 arbitrary parameters (chemical potentials), and thus the form of a; will depend on
these, and also in the explicit form that a, posses. Note that given a,, and thus a given as, and
considering a general unconstrained but only radial dependent gauge group element g;(r), the
fields A, represents itself, also the set of all the gauge transformed fields with a radial dependent
group element, which preserves the static and circular symmetry. Of course these discussions
holds for the B,, fields.
As was described in chapter (5), the dreibein and spin connection are constructed as:

e, =A,—B, , w,=A,+ B, (9.3)
and the NV — 1 metric fields are:
Guape = 3% tr(€(u ps))
Guipens = tr(E(u€ureps))
(9.4)
Gt = tr(equ - euy))

Where fy is just a normalizing factor given in the appendix.

9.4 Definition of a horizon

Given a solution, we define the horizon as the point in the radial coordinate where temporal
component of the dreibein ‘e; = A; — B; ’ vanish. This means:

et(0) = A¢(0) — B(0) = gl—l(o)atgl(o) - g{l(O)btgg(O) =0 (9.5)

This definition of horizon implies that all the components of the metric-like fields given by
(9.4), that at least posses one temporal index will vanish at the horizon. We take this definition
as the very starting point to solve the big problem that would be to try to define the horizon
without having the frame formalism, by just doing it in the metric formulation of the theory
which, given that we don’t even know what is the complete metric-like formulation of it, it would
be insane to try to do this.

By looking at (9.5), it is straight forward to see that in order for this definition of horizon
be able to exist, the following conditions has to be satisfied:

e 1) The lower case matrices a; and b; has to be in the same class a; ~ bs:
These conditions on the lower case gauge connections, can be translated into conditions
between the chemical potentials and the would be physical degrees of freedom (a4 casimirs)
which are present in the thermodynamic description of the system in an euclidean formu-
lation. Let’s say, to put a; in some given class, we adjust it’s chemical potentials in terms
of the it’s charges. By the other side, the same is true for b;. Of course we do this, by
taking care that we have put both a; and b; in the same class.
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e 2) Given a; and by in the same class, the existence of a well defined similarity matrix
U = go(r0)gy (o) which relates a; and b; as by = Ua;U~! has to be guaranteed:
This condition partially fix the form of the group elements g;(r9), g2(r0) at the horizon
denoted by 7p.

9.5 FEuclidean solutions and holonomies

Now if we want to have euclidean solutions (after a Wick rotation) with a smooth horizon we
have to put a; and b; in the trivial class, this means that trivial temporal holonomies has to be
satisfied. Of course, the very definition of a horizon as e; = 0 is further justifyied considering
the fact that for euclidean solutions, the euclidean temporal differential dt is an angle, and thus
it explodes at the horizon, which is easy to see in Cartesian coordinates where we have: dt ~ %,
thus e; must vanish at least as e; ~ p.

9.6 Constrainning the group elements along the bulk

Considering the above discussion, if we plan to build euclidean regular solutions, we need that
the trivial temporal holonomies be satisfied. These are conditions on the chemical potentials to
be solved in terms of the charges. Also, the group elements g; = ¢1(r), g2 = go(r) has to satisfy
some regularity conditions at the horizon. However, the group element, still has a lot of gauge
freedom along the bulk, and in order to have a sensible solution one has to constraint it using
some sensible criteria.

The criteria used to constraint the group elements has been the following ones:

1. The metric-like must posses a Fefferman-Graham form which is somehow desired if one
want to do holography. Explicitly it has been demanded that the metric posses a FG form
in radial proper coordinates: i.e. a form with the aspect: g,, = 1,9, = 0,9y, = 0.

2. It has been demanded that some spin 3 metric-like components be null, g.e: gyt = gprp =
Gppt = Gppp = Gppp = gptt = 0. This form for the spin 3 metric like field, is somehow
desired because the resulting field posses a form as

d¢ x Black Hole (9.6)

Having imposed these conditions, one expects, and in fact it turns out to be, that the
following conditions are automatically satisfied:

1. The solutions posses a smooth horizon, in which the holonomy conditions on gauge fields
imply Hawking periodicity conditions on metric-like fields.

2. The solutions posses a BTZ as limit when spin 3 charges (and chemical potentials) are
turned off.

However, it has been observer two class of solutions in which it has been observed the
following phenomena:
Class A solutions:

73




CHAPTER 9. HIGHER SPIN BLACK HOLES

1. Metric-like solutions, as expected, are described completely in terms of four independent
charges.

[N

. When spin 3 charges are on, the solutions asymptotes to a different curvature radius than
when spin 3 charges are absent.

Class B solutions:

1. Metric-like solutions, contrary to what one expect, are described completely in terms of
three independent charges.

2. Cosmological constant do not change.

It is worth to mention that there has been implemented so many methods to look for solutions
with the characteristics we were expecting to see, but from the workable ones, essentially all
of them give the same answers. However it has been only one method that has allowed us to
manage in a controlled and systematic way the large expressions which are usually involved in
the computations. This method is the one which will be presented in the next sections.

9.7 Method to construct euclidean regular solutions

With the setting as is (9.1), one choose a, (and b,) as the appropriate gauge connections in
the principal embedding, which posses explicit W3 symmetries. Then we chose a; (and b; re-
spectively) by Cayley-Hamilton introducing chemical potentials as in (8.5). Then one solves the
holonomy conditions fixing the chemicals potentials in terms of the charges. Doing this one is
putting a; and b; in the trivial class. By the discussion done above, being a; and b; in the same
class, there must exists groups elements such at the horizon fulfils the condition of vanishing e;.

Being a; and b; in the trivial class (which satisfy the trivial temporal holonomies), and given
that originally a;, which is constructed from a4 trough the addition of chemical potentials, and
by other side the construction of b; is analogous, but taking into account that the parameters of
both copies a;, b; are unrelated to each other, one conclude there must exist a charge independent
matrix C as a representative of the trivial class. One way to think about this is from (9.5), as
e.g.

et(0) = A¢(0) = B(0) = C — C = g7 (0)aeg1(0) — g3 (0)brg2(0) = 0 (9.7)

Having g7 (0)arg1(0) = C, g5 '(0)b:g2(0) = C and thus a; ~ C and b, ~ C which of course

implies: a; ~ b;.

Due to the structure of the equations of motion in (9.1) and given that at this point of the
discussion g; and go in (9.1) are arbitrary up to some regularity conditions, one can invert the
problem and choose to start with:

A, =hi'0hy , Br=hy'0ho
Ay =h7'Chy , By=h;'Chy
A, =hi'Coh1 , By =hy'Cuhs (9.8)
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where now C is a trivial class charge independent SL(N, ) matrix, and the horizon existence
condition implies that at the horizon, the group elements are the identity matrix: hy(0) =
h2(0) = Inxn. Of course in order for the equations of motion holds:

C, Cd’] =0, [C, C'tﬁ} =0 (9.9)

has to be satisfied using Cayley-Hamilton theorem to introduce N — 1 new parameters in the
game, which are not the chemical potentials, because having started with the trivial class matrix
C the trivial holonomies are already satisfied. Rather, they are just new parameters in order to
reparameterise the (N — 1)-th Casimirs charges of the angular gauge connections. Of course, it
is not difficult to convince oneself, that if originally we have chosen to begin with a particular
form for the a4 field in (9.1), lets say e.g. as the principally embedded form of the solution given
by (8.35), when passing to this construction in (9.8), we will have that the Cy field constructed
from the solution of (9.9) will be in the same class that the original a4 field, where the similarity
matrix is the same similarity matrix that relates a; and C. Analogously, this discussion is also
valid for the C’¢ and by fields.

This is one of the most sensible and workable methods we have used to look for regular
solutions, and using it has proven to be the most easy way to make sensible ansatz for the
group element hi(r), ha(r) in order to fix the radial gauge freedom. This is what will be used
in the next sections and, furthermore, it will prove to be useful to unravel an ansatz structure
extensible to build regular solutions for all V.

9.8 The BTZ example

Let’s begin applying the method developed in this thesis, with a simple computation, in order
to build the BTZ black hole [31, 32] in the SL(2,R) theory. Let’s use the gauge connections:

1@{01}_1

at:b =C = =
' 2 10| V2

(=L + L_1) (9.10)

which already satisfy the (anti) trivial ® holonomy conditions Tr(a?) = Tr(b?) = ¢° provided
that ¢ = £v/2 7. Note that for a Minkowskian computation, the value of q # 0 is left arbitrary,
but we still need that Tr(a?) = Tr(b?) = ¢° be satisfied, which means that a; and by are in the
same class. Moreover in the method we will use here we will demand they be equal as stated in
(9.10).

The solution to the equations of motion [as, ag] = 0 and [bs, bs] = 0, by Cayley-Hamilton
theorem are given by:

ap = prar , by = poby (9.11)

%In fact to be precise, the regular euclidean BTZ gauge connection satisfy Pefatdt = _J, (and similarly for by)
(see [39]), which basically means that after two complete temporal cycles, the parallel transported matrix comes
back to its original value, or equivalently, after two temporal cycles is like if it has transformed by the identity
matrix. One possible way to understand this fact, is because in this example, we have built BTZ by using the
fundamental representation of SL(2,R) which is 2 X 2 dimensional representation, i.e., a spin % representation
provided that the representation posses dimension d = 2s + 1.
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Where now the Casimirs of ag, by will be given in terms of the new parameters uy, us, as:

1 1 = 1 1
Q2= §Tr(ai) = §Q2H% ; Q2= §Tr(b3¢) = 5@2/@ (9.12)

At this point of the discussion, it is not necessary to fulfil our goal, but surely it is very
instructive to stress that with this new reparameterisation (9.12) of the charges, the holonomy
equation (8.31) (and the analogous equation for b;) can be solved for the spin 2 chemical potential
as:

o9 = i , 02 = ——1— (9.13)
1 H2

Of course, we do not need do this at this time because we have already started with an

holonomy fulfilling fields a; (and b;).

Having started with (9.10), the idea is give radial dependence to the fields trough (9.1),
using a group element which gives the identity when valued at the horizon, at which e;(0) =
g7 1(0)azg(0) — g(0)bsg~1(0) = as — by = 0. Demanding this it will be guaranteed that all the
fields with at least one temporal index in (9.4) vanish at the horizon.

One further restriction one want to impose is to fix the radial gauge freedom by the vanishing
of the components g,: = gp4 = 0 along all the bulk, and also made the choice of a proper radial
coordinate g,, = I2, i.e., this is to choose a FG [53] coordinate system. The choice of this system
is made by choosing the group element given by:

g9(p) = { - (_)e } = erlo (9.14)

Then trough the first line in (9.4) using f» = L (see appendix), the metric is given by the
arc length:

ds? = g2 — S (20 20 _gyar - B () (o2 1 20 2) s
= [*dp 5 (e7?P +e ) dt 5 (1 —p2) (72 +e ) do
¢ 2 2 -2 2 2
+—- (2 + i + pre > Ppug + €2 Pus p1) dg®  (9.15)

In this coordinates the ranges goesas 0 < p< oo, 0 < ¢ < 27, —00 < t < 00, and if we are
demanding an Euclidean continuation, as t — ¢7 in order to give sense to the trivial temporal
holonomies, we need that the temporal coordinate be identified as 7 ~ 7+m, such that 0 < 7 < 1.

In order to prove that this metric is BTZ is useful to do the parametrization given by:

1
Ty =3 qV2 (1 = p2) 1 (9.16)

and performing the change of coordinates given by:

1 \/§7‘+ ql2
t— —t where: = 9.17
B (—=r—+7ry) (r—+74) (9-17)
p— r  where: cosh®(p)rZ —sinh? (p)r? =1’ (9.18)
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we are left with a metric in the form:
ds? = —N2dt? o d¢ + Ny dt)? (9.19)
S - t° + N2 + 7% (d¢ + Ny dt) .

where now the ranges of coordinates goes as ry < r < o0, 0 < ¢ <27, 0 <t <, and
where:
T—  r_T4 o (r=r)(r+ro)(r—ry)(r+ry)
Ny = —— N? = 9.20
¢ ril + r2l r2[2 (9:20)
Note that the outer horizon is located at 7., which is the point where the lapse N and also
the regular shift N, 4 vanish.

Finally, using the relations:

r2 +r2 =8GMI? | rir_ =4GJl (9.21)

it is clear that this metric is BTZ.

On the other hand, using (9.16) and (9.12), is clear that the relations between the asymptotic
BTZ conserved charges (mass M and angular momentum J) and the Casimir invariants of the
gauge connections ag, by are:

l

Ml = k(Qa+ Q2),J = k(Q2 — Q2) ,where we have used: k = YT (9.22)

From here on, we will refer to the regular BTZ by the metric given in (9.15), where we can
straightforwardly see that it describes a regular surface at the horizon p = 0. In fact, passing
to the euclidean formulation doing ¢t — it and fixing ¢ = v/27 in (9.15) we can compute the
Hawking periodicity condition:

2o = 47 (9.23)

which is the right periodicity condition for a regular surface, i.e., a plane near the horizon
p =0 in the polar coordinates: (p,t).

Finally, note that this method, from which we directly obtain the regular BTZ metric as
appear in the form given by (9.15), only describes BTZ in the outer region where p > 0, or
equivalently » > r4 in (9.19). However, if we allow ourselves to extend the range of coordinates
in (9.19) we will be describing BTZ also into the inner region of the black hole.

The same method used here to describe BTZ by falling in (9.15), will be extended and then
used for the construction of the regular rotating spin 3 black hole solution in the outer horizon
region. However, we will restrict ourselves to work only in the coordinates p,t,¢ as in (9.15).
This means that we will not to attempt to make an analogous higher spin extension of the
passage from the coordinates in p — r as was done when we pass from (9.15) to (9.19) in the

4This ‘regular’ angular shift can be understood as a shift constructed from the usual shift Ny = T;T;i that in
the literature BTZ posses, by performing a change of coordinates given by d¢ — d¢ — :—_‘;dt such that the metric
in the new coordinates is regular. Of course with the construction made here the metric automatically is regular.
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BT7Z case, this is because in the higher spin case, this passage is not well understood, thus rather
than simply be an ordinary coordinate transformation, it may imply to perform something that
would be like a higher spin diffeomorphism but we do not know how this must act directly on
metrics.

9.9 Extending the method for SL(3,R): a naive solution

For the SL(3,R) theory we choose the trivial class matrix Cy given by:

00 1
000 (9.24)
100

ag=b=Cq=

Sl

which satisfy Tr(a?) = Tr(b?) = ¢> and Tr(a3) = Tr(b}) = 0. Fixing g = 2v/27 this matrix
is on the trivial class.

The solution to the equations of motion [at,as] = 0 and [b;,bs] = 0, by Cayley-Hamilton
theorem are given by:

I
ag = pas + v1(af — ——tr(at)) = —pigbs — 1o (b7 — é’tr(bf)) (9.25)

Where now the quadratic and cubic Casimirs of ag (bs) will be given in terms of the new
parameters py,vy (u2,v2), as

1 = 1
Q= §Tr(a§,) 1 (1/1 P+ 6,u12) , Q2= §Tr(bi = (1/2 g + 6 uo? ) (9.26)
- 1 q
2 2 2 — 3y _ 2 2 2 -
Qs = Tl‘(%) = 108 ( ¢ +18m*%) , Qs= -?;Tr(%) = 108 (¢ — 18 12%)(9.27)
We chose the group elements as:
g1 = 92—1 — ep(v1—2x2L0+I(VV1+VV‘1)) (928)

We construct the two-index metric and three-index metric by using (9.4), using f3 = 2 (see
appendix). The non-null two index metric components are:
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gy = 1 (9.29)
1
g = .-% P (z - 1) (z+1)° (e - e2¢)% + 1 PPz (-1+22°) (¢f - e ?)’? (9.30)
12¢? o2
Gp = —-% ((\/5(—1/2+V1)q—2u2+2m) ¥ + 2 po —2u1> (z—1)(z+1) (2 —e7??)
l2q2

TS (\/5(—1/2 +uv1)qg—2p2 + 2,ul) (21 + \/§> <—29: + \/5) z2 (ep - e'—P)2 (9.31)

12¢? _
Gop = 3—% (\/51/1 qz® —2p1 + 2x2u1) (\/§V2 qz? + 222 s — 2,u2) (62” —€ 2”)2
12 2 B
+-L (\/§V1q+2,u1) (\/51/2(1—}-2/12) (2$+\/§) (—2:E+\/§) z? (e” —e ”)2
32
l2 2
+oL (n+ )@ +6 (m +m2)°) (9:32)

The three index metric is left with the form:

dsd = do x (g¢ppdp2 + g¢ttdt2 + g¢,¢td¢>dt + g¢¢¢d¢2) (9.33)

but for the purpose of this discussion the expressions for its components are very long and
not worth displaying. It is enough to report that the two-index metric like field depends on
the four independent parameters p1, fi2, V1, v2 and it also depends explicitly on the parameter x
which comes from the group element. The metric is asymptotically AdS.

If we set v; = 0,5 = 0 we are turning off the cubic Casimirs Q3 =0, Q3 = 0 and the metric
asymptotes AdS with the same radius. The BT7Z limit of this solution requires, besides from
vanishing cubic Casimirs vy = 0,1, = 0, it requires that z = 0, in which for the two index metric
we recover BTZ and the three index metric vanish.

However, if we a priori we set z = 0, then the two and three index metrics only sees three
independent combinations of the four parameters: p1, 42, V1, V2, these combinations are given by
(p1 + p2), (1 — p2), (1 + 12). We will see that this happens because this solution, instead of
being a solution belonging to the principal embedding is a solution that belongs to the diagonal
embedding.

9.10 Remark on different embeddings

It was shown in the previous chapter (8) that the boundary degrees of freedom are completely
encoded inside the lower case connections ay, (b,). Thus, we should not expect such a determin-
ing behaviour as the above depending on the presence or absence of a parameter coming from
the group element. As was explained in chapter (5), for SL(3,R) connections there exist only
two inequivalent embeddings: Principal and diagonal. From these, only the principal embedding
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describes higher spins, with one spin 2 and one spin 3 field as a field content. Meanwhile the
diagonal embedding describes one spin 2, one spin 1, and two spin % fields. Due to this fact, the
diagonal embedding will not be of interest to us, simply because, even if it is certainly possible
to build a metric-like field which posses three space-time index, this three index metric-like field
will not be a fundamental higher spin field, rather it will be some field composed by lower spin
fields.

9.11 SL(3,R) solution in the diagonal embedding

The solution found in point 9.9 with the required condition that the BTZ limit exist: i.e., z = 0,
is a solution which belongs to the diagonal embedding, even if is certainly that there exist
a similarity matrix which transforms Cy by conjugation into a principally embedded a4 (and
analogously for C’¢ and by), it can be shown, and it is very easy to convince himself, that this
similarity matrix it is not connected with the identity matrix on its parameters space, i.e., there
is not exist values of the parameters for which the similarity matrix be the identity matrix. Thus,
as it is disconnected from the identity, it cannot be thought as a SL(3,R) Lie group element
produced by the exponentiation of a SL(3,R) algebra element. Rather, the matrices Cy (and
Cy) are in the diagonal embedding because they can be brought into a diagonally embedded a,
(and by respectively) with null spin % fields, by using identity connected similarity matrices.

In fact, the matrix Cy can be constructed as:

Cum i+ 1ty 939

where the generators L¢ and L%, corresponds to the diagonally embedded SL(2,R) generators
L‘li = Wy and L% 1 = W_g respectively. Also, with the BTZ limit choice of the extra parameter
z = 0, the group element is simply given by g = ePo.

With z = 0 fixed a priori, the metric is left as:

2 2,2 g 2 —2p\2 5.2 g 2p —2p\2
ds* = ldp———8——(€p—e p) dt ———8-(6 —e ) (“NQ“‘,M])d(f)dt
¢ (1 2 9 2 2p  —2p\2\ 4.2
+—4 g(u2+vl)q+(u1+u2)+u1u2(e — e ?P)" ) do
(9.35)
And the three index metric is left as:
3,2 l3 4
ds3 = l_2q_ (vo 4 v1) dp’dé — ——1—%— (62” - e_2”)2 (va + 1) dp dt?
l3q4 2 —2p\2 2
-5 (e%P —e7?P)" (v + v1) (—p2 + 1) do°dt
' 1 2 9 20 _—2p\2 2\ ;.3
+—1—é—(1/2+v1) ——1—8—(1/2+u1)q+(e —e7*P) py pp + (p1 + p2)” ) do
(9.36)
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9.12 SL(3,R) principal embedding solution

In analogy with the SL(2,R) case, we start with the temporal components of the gauge fixed
connections chosen to be given by a principally embedded Cp matrix as:

010
atzbtszzg- 101 =§\(17-5(—L1+L_1) (9.37)
010

where L; and L_; are principally embedded SL(2, R) generators. The parameter ¢ in eu-
clidean solutions is chosen to be ¢ = 21/27, such that C,, already satisfy the trivial 3 holonomy
conditions Tr(a2) = Tr(b7) = ¢ and Tr(a}) = Tr(b3) = 0.

The solution to the equations of motion [a¢,as] = 0 and [bs, bg] = 0, by Cayley-Hamilton
theorem are given by:

ap = piar + 11 (a? 3

I
tr(a2)) , by = —pabs — (b} — —gtr(bf)) (9.38)

Where now the quadratic and cubic Casimirs of ag (bs) Will be given in terms of the new
parameters 1,1 (H2,v2), as:

1 2 . - 1 2
Q2 = 5Tr(a}) = % (1’ +6m?) Qo= Ta(b)) = (11—2 (2 + 6p2%)  (9.39)
1 12 q4 ~ 1 V9 q4
5= ~Tr(a3) = —uv2¢® + 18y ? = “Tr(b3) = 202 _ 18 11p?)(9.40
Q3 3 r(ay) 103 (-’ +18m°) , Qs 3 (b3) 108 (12°q 8 112%)(9.40)

Again at this point it is instructive, but not necessary for the discussion, to stress that
with this reparameterisation of the charges we can solve the holonomy equations (8.39) for the
chemical potentials in what we will call the BTZ branch® as:

oy = 6 1112 — 1/12112 oy = —211
3ur (2m? —wi%¢?) pr (22— v1%g?)

Gy = — 6 p2” - v’q’ 55 = —2vy
3pe (2u2% — 12%¢%) po (2 po? — v2%q?)

(9.41)

We choose the group element as being given by:

5In this case, as we are working with a 3 x 3 dimensional spin 1 representation of SL(2,R), we have that
after only one complete temporal cycle, the parallel transported a; matrix comes back to its original value
Pef ®d = 1], (and similarly for by)

6Recall that being the SL(N,R) holonomy equations a highly coupled system of polynomial equations, in
general there will be several branches as solutions. In particular for the SL(3,R) in (8.39) there exist three
branches, from which we will call the BTZ branch as the branch which posses the limit of null spin 3 chemical
potential 03 = 0 as the spin 3 charge goes to zero Qs = 0. Note that in (9.41) this limit is controlled by v1, being
achieved when v; = 0.
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e 0 0
g=]10 1 0 [=erbo (9.42)
0 0 e”

Using (9.4), with the normalising factor as f3 = 2 (see appendix), then the metric is left as:

2 _ 0 Pg p_-0\2 2 Pd° p_ —p\2
ds® = ldp—?(e —e )dt—T(e — )" (11 — pp) do dt (9.43)
'S b2, O (2o —2p\2 @ 2 2 2
T | Mk (e —e™?)" + Rt (P —e™2P)" 1 —é—(V1+V2) + (w1 + p2)* ) do
and the spin 3 metric-like field is left as:
ds® = d¢ x (g¢ppdp2 + g¢ttdt2 + gpprdodt + g¢¢¢d¢2) (9.44)
where:
l3q2
9bpp = — T (V1 + o) (9.45)
g P _ o—p)\2 2p _ ,—2p\2
Gotr = ﬁg(l/1+1/2) (—8 (e —e ) +3(e —e ) ) (9,46)
l3q4 P —p 2 2p —2p 2
9opt = o1 (4 (v1 + 12) (p2 — 1) (e#—e ) +3(pyvo — pav1) (e*P —e ) )(9.47)
Goos = 5o I3 (144 p p2 (V1 + ) (e — e””)z)
2304 -
1
+2—30—4 Bt ((~9 vivy (11 + 19) ¢° + 54 py vy + 54 puo’vy) (2P — e“Q”)Q)
1
+m Bg* (‘8 (11 + 12)° ¢ + 144 (11 + p2)? (1 + V2)) (9.48)

The range of these coordinates goes as 0 < p<00,0<¢p<2r, —00 <t< oo. Note that
going into the Euclidean section we do ¢t — 47, and identify 7 = 7 + m with m integer, such
that 0 < 7 < 1. Then in order to fulfil trivial temporal holonomies of the gauge connections, we
set: ¢ = 2v/2, and then from the spin 2 metric we can compute the Hawking periodicity of the
fields, which is given by:

2o =42 (9.49)

and we see it posses the correct periodicity for a plane in polar coordinates, i.e., we have:

d.92 ~ 12 (dp2 + p2 (27T)2d72) =+ { . -}regular terms (950)
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Therefore, holonomies provides the right periodicity conditions for euclidean regular fields.

Analogously, as the spin 3 metric-like field posses a Black hole form times the ‘regular’
angular differential d ¢ , we expect to have near the horizon p = 0, which its location is shared
with the location of the horizon in the spin 2 metric, we can compute the Hawking periodicity
condition in these coordinates obtaining:

Lot g (9.51)
P* G¢pp

which tell us that, near the horizon the spin 3 metric-like field is described by a regular
object which is: (plane) xd¢ as:

d33 ~ dp % (d,O2 + 02 (27T)2d72 + { . -}regular terms) (9'52)

These metric-like fields that has been found are thus completely regular. A further compu-
tation of the curvature shows that they do not posses, at least spin 2 curvature, singularities.
Using spin 2 technology one can compute the curvature invariants for the two index metric-like
field and for the black hole part of the three index metric like fields.

However they represent mayor conceptual challenges because a new phenomena occurs which
is absent in the SL(2,R) theory where we have pure gravity coupled to a cosmological constant.
And this conceptual challenge, firstly spotted in [49], it is the fact that in (9.43) the spin 3 related
parameters, i.e., 1, v which controls the presence (v; # 0, 15 # 0) or absence (7 = 0, vo = 0)
of spin 3 charges (see Q3,Q3 in (9.40)), also controls asymptotically (p — oc) dominant terms
(~ €%?) in the spin 2 metric (see (9.43)). In order to explain why this behaviour is problematic
conceptually speaking, lets analyse the following: In the scenario of lower spins coupled to grav-
ity, the terms which are asymptotically dominant (leading) in the metric use to be associated
with the order of the background, such fluctuations around the background will be given by
asymptotically sub-leading terms, in some cases as e.g. regular rotating BTZ, fluctuations can
be found at most at the same order of the background. In this way at large distances (radial
coordinate), fluctuations can be considered small compared to the background, and we can say
that the full solution departs softly from the background.

The inverse of this situation is precisely what happens in the higher spin case. Higher spin
fluctuations are dominant in such a way that for large radius they cannot be considered small
and thus the picture of small higher spin fluctuations around a background fails.

However, it is important to mention that this asymptotic behaviour of the solution it is
not due to the particular gauge fixing criteria settled in 9.6. This ‘problematic behaviour’ it
is not of a gauge fixing nature. In a future publication it will be shown a mathematical proof
of this claim, which basically states that starting with static and spherically symmetric fields
as in (9.1), in which the lower case connections are in the principal embedding, and a; and
by fields are holonomy fulfilling, then there is no exist group elements g;(r), g1(r) in (9.1) for
which this behaviour can be avoided. That result, which is beyond the scope of this report,
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sets an incompatibility in the higher spin theory, between regular solutions and an expected
asymptotic behaviour similar in nature to the lower spin scenario as ‘small fluctuations around
a background’.

This method, to build regular solutions, can be easily extended for general N. It just
consist in to pick a gauge in which a; and b; are equal to a charge independent similarity
matrix C which belongs to the (anti)-trivial class for N (even) odd, respectively, but which goes
only along the principally embedded Li,L_; generators. Then by Cayley-Hamilton theorem
introduce N — 1 independent parameters along the a, component, and others N — 1 parameters
along by components. In each copy, the N — 1 parameters introduced will give rise to the
N — 1 independent Casimirs of the angular component. Finally, pick the group elements as
g1 = g5 = ePlo generators. After that the metric like fields are constructed with (9.4).

9.13 Justification of the presence of a strong back-reaction

This behaviour was heuristically explained by Gutperle and Krauss in [49] and the physical
argument goes as follows: Standing at the CFT side, when we have deformed the CFT action
as in (7.1), we have coupled a spin 3 operator W ~ Q3 to the CFT, which by definition posses a
conformal dimension (3,0) and thus also a scaling dimension A = 3, which means that its mass
dimensions is 3. Then the spin 3 operator, considering that the CEF'T lives in two dimensions, by
mass dimension counting turns to be non-renormalisable. As such, it must be UV relevant from
the CFT point of view. This leads one to think that it must be irrelevant at the IR CFT, i.e., not
affecting the IR CFT physics. Then, according to the weak-strong nature of AdS/CFT duality,
and regarding to the interpretation given to the radial coordinate as an energy scale at which
we are looking the boundary theory (see chapter (6)), the CFT has its minimum length (high
energy) scale at the boundary, because from the boundary point of view, we are looking the CFT
theory near the boundary. This implies that the UV CFT regime must belongs to the boundary.
On the other side, when we are looking the bulk theory from the bulk point of view, we measure
distances from the centre of the bulk manifold, i.e., as if we were stand on the horizon. Therefore,
the boundary from this point of view it is located at large distances (low energy). In particular
this means that the IR BULK physics must be located at the boundary, which is where the UV
CFT physics live. Therefore the spin 3 operator, being an UV CFT relevant operator, it must
affect the UV CFT physics, and this statement at the BULK theory side should be understood
as it must affect the IR BULK physics which is precisely located at the boundary. Furthermore,
in lower spins AdS/CFT, it is usual to think that, at the BULK theory side, the IR BULK
physics is described asymptotically, i.e., at large distances, being far away from the centre (and
thus near the asymptotic boundary), which is the regime where the physical BULK fields can be
seen as small fluctuations around an asymptotic fixed background. This asymptotic background,
being asymptotically defined, is considered as living on the boundary, where all the fluctuation
of the fields can be thought as small because are highly suppressed by the long radial coordinate
approaching the boundary. It is precisely this picture of small fluctuations around an asymptotic
background, the one which fails in the higher spin N > 3 scenario, because, being the spin NV > 3
operator, an UV CFT relevant operator, it relevantly affects the IR BULK physics according
the conjecture (see figure (9.13) for a schematic commutative diagram).
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Q3 irrelevant en IR CFT —— Q3 irrelevant en UV BULK

l I

Q3 relevant en UV CFT —— Q3 relevant en IR BULK

Please also note, that the in the first line of the above diagram, this scheme also justify the
solution found in for the spin 3 field in the principal embedding, because just as this line states,
the irrelevant at the IR CFT spin 3 operator, must be irrelevant at the UV bulk regime which
is located near the horizon. This is confirmed with the fact that in the near horizon p ~ 0
analysis, the expressions (9.50) and (9.52) concerned to the study of possible divergencies, are
independent on the spin 3 operator, and thus the near horizon behaviour it is not affected by
this operator. (see also (9.70),(9.76) and (9.78) concerning the spin 4 case).

9.14 SL(4,R) solution in the principal embedding
Just as before, we use a principally embedded charge-independent matrix given by:
ar = b = Cp = q(—L1 + L_l) (953)

where Ly, L_; are the 4 x 4 dimensional SL(2,R) generators which are principally embedded
into SL(4,R) (see appendix for conventions). Then, the C}, matrix satisfy:

Tr(Cy) = 20¢*, Tr(C}) = 0,Tr(Cy) = 164¢* (9.54)

If we choose to fix ¢ = 7, then C}, satisfy the (anti)-trivial holonomy conditions, i.e.,:

gior = gibe — ¢iCp — [ (9.55)

where I is the 4 x 4 identity matrix.

After that, by Cayley-Hamilton theorem the fields a, and by are constructed as:

1 1
ag = wmCp+11(CF - ZIdTr(c,’;‘)) +e1(C3 - ZL,,:rr(c;,’*)) (9.56)
1 1
by = —p2Cp— 1n(Ca — ZIdTr(c}j)) — &5(C} - ZIdTr(CS’)) (9.57)

With this new parameterisation the spin 2, 3, and 4 charges (Casimirs) are given as:

Q2 = 2¢° (1611°¢% +5” + 82¢°p1 e1 + 365 ¢*¢1?) (9.58)
Q3 = 641, q4 (ul + Teq q2) (,ul +13¢; q2) (9.59)
Qs = 265721¢"%e;* + 118100 1 ¢'%1° + 6 ¢® (3281 p1? + 58401, %¢?) &, (9.60)

+4¢%p1 (1968 11%¢° + 365 u1?) €1 + ¢* (41 pua* + 256 11 g* + 480 p1 %11 %¢?)

and analogously, for the other copy we have:
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Q2 = 2¢% (1612¢% + 5 uo? + 82 %2 &2 + 365 g*e2?) (9.61)
Qs = —64g" (uo+13e2¢%) (p2 + 7e2 %) (9.62)
Qs = 265721¢"%e" + 118100 pp ¢*%2° + 6 ¢ (3281 po? + 5840 1,2¢%) 52 (9.63)

+4¢°ps (1968 102¢% + 365 ua?) e2 + g* (41 pa + 256 1og* + 480 pa’vy2¢?)

Again, we can say that our a; and b; fields already satisfy the (anti) trivial temporal
holonomies, but supposing that this were not the case, performing this reparameterization of
the charges, we could have solved the holonomy conditions in the BTZ branch with:

) ,
0 = 5% (74620159 + 41243 ¢Be1* 1 + (—658211%¢% + 9010 ¢%p12) 1®
+ (964 ¢* 13 — 369011 2¢% 1) &1 + (=594 v1%q i ® — 160 11%¢° + 50 1) &1
-32utgtun - 30 % + 1e®) (9.64)
1%
o3 = —Tgl— (32 12 +15¢%u e + 27 prer? — 275953 + ,u13) (9.65)
1
oy = §(~91 gre1® — pi%er — 20 p1 612 + 102 ¢*ri? 4+ 2112 m) (9.66)
where:

S=(m+9a1¢) (m+e1d’) ((m +7e1¢%)" - 4V12q2) ((m +13¢1¢%)" - 16 V12q2> (9.67)

and for the other copy, we could have solved the holonomy conditions with analogous ex-
pressions for the chemical potentials &9, 3, 74 in terms of the other parameters po, v, €2, which
for brevity we omit.

Once more, please note that BTZ branch is the branch which has the BTZ values for the
chemical potentials oy = ﬁ, 03 = 0, 04 = 0 in the limit case when 14 = 0,e; = 0. Also,
note that in this limit case we will have Q3 = 0, and Q2 # 0 but also we have Q4 # 0. The
last, it is not supposed to be a problem given that already in the simple fundamental SL(2,%)
theory there exist non-vanishing quartic Casimirs invariants given as multiples of the quadratic
Casimirs invariants.

The group elements are chosen as g1 = gy 1 = erLo and the two index metric-like field,
trough (9.4) with normalising factor fy = %, are given as (omitting combinatoric factors):

ds? = gppdp® + gudt® + gpdtdd + gpedd’ (9.68)
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with the components:

Gop = 1?
g = —12¢%(eF —e?)’
_ _4_112 _ 4_12(_ 2 p_ ,—p)2
g = = (e —e2)q (—po + 1)@ ) (e —e7?)
347 41 , N2
9o = g <—5—€251q4+ 5 (€2u1+u261)q2+u2u1> (ef —e ?)
12124 1812¢8
5q vy (6P — 6_2”)2 + 4 che (e3P - e‘3p)2
20244 2
+-——5—— (41(€2u1 + pogg+ p1€1+ u261)+8(l/1 +l/2) )
+7312¢% (5 + )+ 12¢* (1 +u2)2 (9.69)

This two index metric-like field depends on the six charge-related parameters p1, pi2, V1, V1,1, €2

independently. Posses an horizon at p =0 where al the components with at least one temporal
label vanish. The horizon is smooth as near the horizon p ~ 0 we get:

ds* =12 (dp2 + p?*(2m)%dT + {. . }regular terms) (9.70)

Note that the strong back-reaction it is again present in (9.69), but in a pronounced way,

where dominant leading terms in gy NOW goes as ~ ebr.
Also, in the limit v; =0, vp = 0, &1 = 0, €2 = 0, the metric (9.69) falls in BTZ.

The three index metric like field is given as:

ds? = do % (gappdp® + goudt® + goprdddt + gapedd”) (9.71)
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with the components:

gope = —121¢% (1 + 1) (9.72)
ge = 313¢* (11 + o) (—8 (e — 6_9)2 +3 (e*P - 6"2")2) (9.73)
give = —13q*{3(T1(e1vn — ea11) + 80(1161 — €a0)) ¢ + 24 (1, + vo) (u1 — p2)} (e — e"")2

+13q* (—180 (e2v1 —e102) ¢ + 18 (uyv2 — pa 1)) (€2 — 6—2’))2

+2713¢% (g2 11 — 1 1) (€37 — 6"3”)2 (9.74)

Gess = {2049 Begey (1 +12) @+ 313 (80v1 ey o+ T1vy iy e+ 80 pivoen + Tl pp &1 va) ¢°
+24 805 1 (1 + 1) ¢} x (e# — e7P)°
+913q4{91 (6221/1 + 6121/2) q4 +20 (poeavy + p1e12) q2
+N22V1 +,u121/2} x (62;) _ e—2p)2
+ (135 %261 (v1 +12) ¢° +271% (pa e vo + 11 py £2) ¢°) x (2P — e_3p)2
+2184 13 (61 + €2) (11 + 1) ¢® + 48013 (g1 + €2) (11 + v2) (w1 + p2) ¢°
+24 13 (1 + p2)* (1 + 12) ¢* (9.75)

This three index metric-like field depends on the six charge-related parameters u1, uo, v1,v1,€1,

independently. In the BTZ limit: v, =0, v =0, 1 = 0, €2 = 0 this field vanish. Also this field
posses an horizon at p = 0 where all the components with at least one temporal label vanish.
The horizon is smooth as near the horizon p ~ 0, up to a global numerical factor, we get:

d$3 ~ dqb X (dp2 + p2(27'l')2d7'2 + { . '}regular terms) (976)

The four index metric-like field, posses the form (omitting combinatoric factors):

ds* = Gppppdp® + GpprtdpP At + Gppsdp®dtdd + gpppsdp®dd’®
+gttttdt4 + gttt¢dt3d¢ + gtt¢¢dt2d¢2 + gt¢¢¢dtd¢3 + g¢¢¢¢d¢4 (9.77)
The components of the 4-index metric-like field are given by extremely huge expressions
which are not worth to show them. However, it is important to stress that this field in general
does not factorizes as two black holes, nor even as d¢? x (BH), nor a combination of the two.

But we can certainly say that this metric-like field near the horizon p ~ 0, expanding it at order
O(p*) (as there is a component gy ), has a structure given by:

d34 = (dp2 + p2(27r)2d7‘2) X (dp2 + p2(271')2d7'2 + { . ~}regu1ar terms) + { . -}regular terms (9~78)

which means it posses a smooth horizon, because near from it, it is given by the product of
two regular surfaces.
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Also, in the BTZ limit (v; = 0, v2 = 0, €1 = 0, g2 = 0) for this field we have a factorization

as:
ds* ~ (BTZ) x (BTZ) (9.79)

with BTZ given as in (9.15).

9.15 Conclusion

We have shown a way to construct regular bulk solutions inside a theory of higher spin fields
coupled to gravity. To this end, we have used the criteria of the existence of an horizon which
has been demanded by imposing e; = 0 at this point. In particular, for static and spherically
symmetric solutions of the equations of motion, the existence of an horizon implies that the
constant lower case matrices a; and b; must be in the same class. Also, looking for solutions
that posses spin 3 charges and a BTZ limit when these spin 3 charges are turned off, we have
used solutions belonging to the principal embedding. In order to do this, inspired by the simplest
example given by N = 2, an automatic way to ensure that we have a solution in the principal
embedding has been given by using as a starting point some particular choices for the fields as
ar = by = C, where C is a charge independent constant matrix which belongs to the principal
embedding. Also, we have shown that if we want euclidean metric-like solutions with smooth
horizons, the C' matrix must belong to the class which posses trivial (for N odd) or anti-trivial
(for N even) holonomies. Meanwhile the geometry of a regular spin 2 metric near the horizon is
a plane, we have shown that the geometry of the regular higher spin metric-like fields, near the
horizon is described, in the spin 3 case, by the direct product of the regular angular 1-form with
a plane, i.e.: ‘d¢x plane’. Similarly, in the spin 4 case we have shown that near the horizon
the geometry is given as a ‘plane x plane’. In both cases, for N = 3 and N = 4 we have found
that the solutions posses an asymptotic behaviour which strongly departs from the background.
This is consistent with the fact that in this theory an irrelevant IR CFT spin N > 2 operator
has been coupled to the system, being relevant for the IR bulk physics. The method used here
to construct regular bulk solutions can be straightforwardly generalised for all V.
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Appendix A

Algebra Generators

A.1 SL(3,R) generators representation, first convention

In chapters 5 and 7, we have strictly followed conventions used in [27] for the fundamental

representation of the SL(3,R) algebra:

0 00 10 0 0 -2 0
Ii=|100]|,Lo=|00 0 |,La=]0 0 -2
010 0 0 -1 0 0 0
0 0O 0 0 O 0 O
Wo=1]000|,Wi=|1 0 0 ,VVor—% -2 0
2 00 0 -1 0 1
0 -2 0 0 0 8
W_.i=10 0 2|, Wao=|00 0
0 0 O 000
These eight generators satisfy the SL(3,R) algebra given by:
(Li, L] (i — 7)Li+;
[Li, W] = (20 = m)Witm
(W, Wa| = —%(m —n)(2m? + 2n? — mn — 8)Limin

(A1)

(A.2)

(A.3)

(A.4)
(A.5)

(A.6)

The generators (L1, Lo, L—1) are the generators of SL(2,R) principally embedded into SL(3,R).

They transform as a spin 1 triplet under themselves, meanwhile the generators (Wa, W1, Wo, W_1, W_s)
transforms as a five component spin 2 multiplet under (L1, Lo, L—1).

The generators (Wa, Lo, W_2) are the generators of SL(2,R) diagonally embedded into
SL(3,R). They transform as a spin 1 triplet under themselves. On the other hand under a
transformation with (W2, Lo, W_2), the generator Wp transform as a spin 0, meanwhile the

1

generators (Wi, L_1) and (W_1, 1) transforms as two spin 5 doublets.
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A.2  Principally embedded SL(2, R) generators into SL(N, R) con-
vention

In chapter 9, we have strictly followed the convention used in Castro et al work [54]. An
explicit representation for the principally embedded SL(2, ) generators into the fundamental
representation of the SL(N,R) algebra, is given by:

[0 0]
N-1 0 ..
0 V2(N=2) o0
Ly = - : 0 0 ; (A.7)
0 0 VE(N=9] o0
0 0 0 0
0 N-T 0
[0 VN -1 0 0 0 0 0 ]
0 0 2(N-2) 0 0 0 0
0 0 0 0 0 0
L, = |0 0 0 0 li(N —4)] 0 0 , (A.8)
0 0 0 0 0 0
0 0 0 0 0 0 VN-1
0 0 0 0 0 0 0 |
[ (N -1) 0 0
0 (N-3) 0
0 0 0 0 0
Ly = % 0 0 (N+1-2) o0 0 0 (A.9)
0 0 0 0 0
0 0 0 0 —(N-3) 0
) —(N-1) |

The above generators satisfy the SL(2, %) commutation relation:

[Li, L] = (i = j) Liy; (A.10)
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From them we have the normalization factor:
f = tr(LoLo) = %N(N2 _1) (A.11)

Although not explicitly used in this thesis, for completion we can say that higher spin
generators can be explicitly constructed by taking products of the principally embedded SL(2,R)
generators as:

(s+m—1)! s—1
_W[L—l’[L_l’[L_l’Ll ]] (A12)

These higher spin generators satisfy the relation commutation:

Wi = (-1)*m!

L, W) = (i(s — 1) — m)W,)

i+m

(A.13)

In the N = 2 case, there exist only one embedding which through (A.7) is explicitly given

by:
00 0 1 11 0
L1 = — ,L-l = ,Lo == y (A.14)
10 0 0 210 -1

For the N = 3 case (SL(3,R)), the principally embedded SL(2,R) generators in (A.7) are
explicitly given by:

0 0 0 0 vV2 0 2. 0 0
1
Li=—|+v2 0 0|, L.i=({0 0 V2 Lo=5100 0 |, (A.15)
0 V2 0 0 0 O 0 0 -2

For the N = 4 case (SL(4,R)), the principally embedded SL(2,R) generators in (A.7) are
explicitly given by:

0 0 0 0 0 v3 0 0 30 0 O

V3 0 0 0 0 0 V2 0 1101 0 o0
Ll__ ,L._1: ,Loz— ,

0 V2 0 0 0 0 0 V3 2100 -1 0

0 0 V3 0 0 0 0 O 00 0 -3
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Chern-Simons with Boundary

Here, we will give a brief review of the CS theory defined on a manifold with boundary. This
exposition follows the lines that were developed in [55].

In the CS theory defined on the solid torus manifold, we have the torus surface as a boundary.
To study the consequences of having a boundary, we can study its Hamiltonian formulation, to
this we do a (2 + 1) splitting of the coordinates as:

A = Aydt + Aydz (B.1)

with this splitting the CS action reads as:
k A . k A
Scs = —/ dt A dxt A dl‘]tT‘(AiAj + AtFij) + — / dz*tr(A:A;) + Br (B.2)
4 Jm 4m Jom
where Br is an extra boundary term that guaranty the differentiability of the CS action.

Expanding the above expression explicitly in the gauge algebra generators one is left with:

k A A . k ;
Scs = - /M dt A dz* A dal goy(AZAL + AFED) + = /{9 § datgap(ALA?) + Br (B.3)
where ggp is the Killing metric of the Lie algebra, and the indices a,b : 1,..., N stands for

label the different generators of the algebra, where N is the gauge group dimension.

After space and time splitting, this action is automatically left as a Hamiltonian action,
where Af are N dynamical fields and its conjugated momentum 7, is given by 7 = ——6” gabAb
Although nobody use this directly, it is worth to mention it.

Also, Af are N Lagrange multipliers while F gives rise to N first class constraints which
comes from vary with respect to the Lagrange multiplier A as:

$a(2) = —gabe” Fjj() (B.4)

For two functionals P;, P, defined on the phase space, its equal-time Poisson brackets is
given by:
0P, 0P

0A;(z) 6A; (z)) (B-5)

{Pl,PQ} = —2-]? /dCL‘1 A dl‘jt’l’(
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Using the Poisson bracket, we see that ¢, satisfy a first class algebra given by:

{a(2), 05(7)} = fapte(2)0(z — ') (B.6)

To study how the gauge transformations acts on field configurations, it is useful to define
an extended generator of gauge transformations as a distribution smeared with a test gauge
function A as:

B[A] = ?4’% L ds?tr(Ad) + QA
_ 4% /a det A datr(AF) + QIA] (B.7)

where Q[A] is a boundary term chosen in such a way that ensures functional differentiability
of ®[A]. This boundary term is crucial to understand from where does it comes the physical
degrees of freedom of the theory.

For gauge transformations using (B.7) in which the parameter A is independent of the fields,
we have:

QA = —% / dritr(AA;) (B.8)

Using this kind of parameter-independent gauge transformations, we can compute the Pois-
son bracket of the extended generators of gauge transformation ®[A1] and P[As] getting:

{(I)[Al] @[Az]} = @[[AlAQ” + zﬁﬂ_‘ /dl’itT(AlaiAg) (Bg)

Also, for the transformations performed with ®[A], after imposing the constraints, in the
weak equality we have ®[A] ~ Q[A]. Now, if A is such that Q[A] # 0, then the gauge trans-
formations performed with ®[A] will give rise to global symmetries which transforms a physical
state of the boundary into another physical state of the boundary, which are not gauge equiva-
lent. In particular this means that for some values of A in which Q[A] # 0, true gauge symmetry
coming from the bulk is really lost at the boundary, and thus Q[A] receives the name of global
charges of the ‘would be’ the boundary theory. Is straightforward to see, after solving the con-
straints, that the global charges satisfy an algebra similar to (B.9), but now with the Dirac
brackets of the reduced phase space:

(@A} QIAal}p = QllAr Aol) + o / dz'tr(A0iAo) (B.10)

Using (B.8) inside (B.10), with the Af fields expanded on modes on the circle, one finally
arrives at the Kac-Moody Algebra. If one imposes the correct constraints on the boundary
values of A? fields, one can fall into the extended conformal W, algebras.
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Appendix C

Quasi-Primary and Primary
Operators

In the language of holomorphic operator product expansions (OPE) of the CFT, a quasi-primary
operator ‘O(w,@)’ is one that under a transformation made with the spin 2 current ‘energy
momentum’ operator (denoted in its holomorphic components as ‘E(z),Z(E)’), transforms, in
the OPE formalism, as:

£)0w,@) = +h€(ff))2 +8g(ff)’) + (C.1)
LZ)O(w,&) = ...+ Bg(f;;l + a((Z(_w:Dc:);) +... (C.2)

where (h, k) are called the conformal weights of the operator O(w,®). These two parameters
can be related to the spin ‘s’ and scaling ‘A’ parameters of the operator O(w,@) through:

s=h—h (C.3)
A=h+h (C.4)

which are, respectively, the eigenvalues of the rotation operator R = 20 — 20 and dilatations
operator D = 20 + Z0.

The dots on the left hand side of (C.1) (and (C.2)), means higher powers of the singular
terms which are at orders higher than (Z_lw)g (and Z_lw)g for the second line), meanwhile the
dots on the right hand side means regular terms.

A primary operator is a quasi-primary operator, for which the terms denoted by the dots of
left hand side of (C.1) (and (C.2)) are completely absent, i.e, the series truncates at order (—L;_Lw)—g

The above OPE transformation (C.1), for a primary operator (without the presence of higher
order singular terms in the dots of the left hand side), after quantum averages has been taken,
produces a behaviour in the averaged quantities as a general smooth conformal transformation
with §z = e(z2):
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§0(w,®) = 0’ (w, @) + he' O(w, ®) (C.5)

An analogous expression holds for the anti-holomorphic transformation 6z = &(z) produced

with the anti-holomorphic component L(Z) of the energy-momentum tensor.

If the transformed operator is a non-primary one, as is the case of the energy-momentum
itself, using © = L(2) in (C.1), then a higher order singular term of the left side of (C.1) is
present, being proportional to the central charge. This term give rise to the term that goes
as ¢” in (5.89). Thus, in principle, without possessing explicitly the OPES, but knowing the
transformation rules for an operator, one can indirectly see that there must exist singular terms
of orders higher than (2711;)7 in (C.1) and thus deduce that the operator in question will be a

quasi-primary one.
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