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Summary 

Inside a theory of gravity coupled to higher spin fields in three dimensions, the problem 
on the existence of black hole solutions carrying higher spin charges is studied. A consistent 
thermodynamic description for static and circularly symmetric higher spin fields living on the 
solid torus is given by purely topological considerations. 
As the higher spin symmetries are bigger than the diffeomorphisms group, in this theory, the 
usual geometrical notions to define regular black holes solutions, i.e., curvature, causal structure, 
etc., are ruled out. This rise the necessity of find them by considering other, more direct, 
methods which are worked out in this thesis based mainly on topological considerations and on 
coordinates matters. Finally, a simple ansatz to build regular higher spin black holes and higher 

spin fields is given. 
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Chapter 1 

Introduction 

During the lasts 80 years, higher spin field theory, which originally begins as a very unpopular 
topic pushed only by a very few enthusiast, through the years has evolved to become into a very 
interesting, rich and active field of research. The principal motivation for a physicist to study 
them is dueto that higher spin fields, of non-fundamental nature, has been observed as Hadronic 
resonances (composed quark bound states) in nature, where higher spin theory has provento 
be very useful in their description. On other side, string theory naturally predicts the existence 
of an infinite tower of massive higher spin fields as forming part of the full string spectrum 
of excited states.This is another reason to study them if one seriously takes the string theory 
picture as a fundamental theory of nature. Moreover, without appealing to string theory, an old 
group theoretical analysis to build physical theories, based on the representations of the Lorentz 
group, reveals that besides the allowed usual lower spins, which are truly found to be part in 
the standard model description of nature, higher spin fields are also allowed to exist without 
any consistency problems but freely. However, in the physical world we are interested in study 
interacting systems, but interacting higher spins has been shown to be a very difficult topic of 
research. At quantum field theory level, there exists several no-go theorems concerning their 
interactions (Weinberg, Weinberg-\Vitten, Coleman-Mandula) that, at present energy scales, 
rules them out where conventional perturbative field theory methods are used. If higher spins 
really do exist in nature, they must interact with gravity as this is known to be universal. The 
field of research dedicated to its study is called 'Higher Spin Gravity', which has been advocated 
in the hope to find consistent UV completions for a quantum theory of gravity, which by itself, is 
well known that is plagued with infinities. The prospects of the higher spin gravity theory is that 
infinities may be eliminated by the addition of higher spin fields, in an analogous fashion as the 
addition of local super-symmetry to gravity leads to super-gravity which possess an improved 
UV behaviour than just ordinary gravity. 

In this thesis, we work in a three dimensional theory of higher spin fields which are non­
minimally coupled to gravity. In particular this theory describes a highly coupled system of a 
tower of fundamental higher spin fields, from spin 2 up toa spin N, in which each spin appears 
only once. This theory, besides from already being complicated enough on its technical issues, 
it presents several challenging theoretical concepts to any researcher in the field, because at the 
present moment there is an enormous lack of knowledge about the geometric concepts regarding 
higher spin fields. However, the main objective of this work has been precisely to find out if this 
theory admits regular black hole solutions (or some sensible possible generalizations of them), 
carrying fundamental higher spin charges as additional 'hairs' to use in their description. Also, 
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CHAPTER l. INTRODUCTION 

a thermodynamic study of these solutions has been carried out and also given for all N, provid­
ing a successful and consistent description through a generalized higher spin euclidean partition 
function, in a saddle point approximation, which naturally arises as the exponentiation of the 
on-shell action of the theory. 

In order to facilitate the exposure, reading and understanding of the background theory, 
and thus, of the subsequently original contribution of this work, the content of this thesis has 
been arranged in 8 separate chapters. The contents treated from chapter (2) to chapter (7) 
are basically a bibliographic revision of the literature, made with a very personal touch on its 
explanation and straightforward exposition possessing a focus on the relevant concepts for this 
work. Chapter (8) is a collaboration, which has been published in [50]. Finally, chapter (9) is 
a personal work, which has not been published yet. However, sorne parts of its contents will be 
hopefully shown in a forthcoming publication. 

The content of this thesis is organized as follows: Chapter (2) is a review, where mainly from 
a group theoretic point of view, higher spin nature of the fields is explained by its definition 
as irreducible unitary representations of the Poincare group. This chapter intends to be purely 
motivational for the reader and, in this way, a brief list about fundamental higher spin issues, 
inside the usual field theory context, is also treated. In chapter (3), we review the free theory 
of higher spin fields in a usual Lagrangian formulation. This material can be understood as 
complement of chapter (2), however it is not less important, because here an explicit connection 
is made with usual field theories. Chapter ( 4) is a very brief review where the inconsistency 
problem of minimally coupled higher spin interactions is introduced. A brief exposition about the 
issues one faces when one naively tries to minimally couple higher spin fields s 2:: 2 to themselves 
or, also, to lower spin fields s < 2 is shown. This chapter is roughly focussed on the main general 
idea of the inconsistency problem, and on its exceptional solution in three dimensions. Until 
chapter ( 4) the content is introductory and it was made in order for the reader to get a feeling 
of the higher spin scenario, before moving to the more complicated fully interacting higher spin 
scenario, which is the core of the theoretical framework of this thesis. Therefore, if the reader 
is unfamiliar with these higher spin basic concepts, these chapters should not be skipped from 
the reading. 
Chapter (5) is one of the most important chapters regarding the theoretical framework we use 
in this thesis. Here, a consistent theory of interacting higher spins fields with gravity in three 
dimensions is developed and its fundamentals are shown in an extended frame formalism thanks 
to the help of the three-dimensional Chern-Simons theory. Thus, its reading turns out to be 
indispensable. In chapter (6) we roughly discuss the main ideas of AdS/CFT holography, which 
are also used on this thesis. To this end a pedagogical example, in the simplest case of the scalar 
field on a fixed AdS background, is given. However, if the reader is unfamiliar with AdS/CFT 
holography, its reading turns out to be indispensable in order to understand the main concepts 
used on this work. Chapter (7), it is devoted to fulfil a gap in the link between bosonic holography 
which is done in the metric like formalism and treated in chapter (6), and holography done in the 
Chern Simons formalism, which is the main formalism used in this work. Chapter (8) is about 
the interpretation of the euclidean AdS/CFT partition function in saddle point approximation 
over static and circularly symmetric solutions defined on the torus, solutions which must gives 
rise to black hole solutions in the bulk, as the thermodynamic partition function which describes 
the thermodynamic properties of these prospective black hole solutions. Finally in chapter (9), 
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CHAPTER l. INTRODUCTION 

we explicitly show the construction of regular black hole solutions carrying higher spin charges. 
\Ve first work the case of a single spin 3 coupled to gravity, to then pass to the case of one spin 

3 and one spin 4 coupled to gravity. 
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Chapter 2 

Introduction to Higher Spins 

2.1 Introduction 

The scope of this chapter is to give the reader a context for higher spin theory. This chapter 
begins introducing vVigner's classification of particles as unitary irreducible representations of 
the Poincar group, labelling these irreps by mass and spin. First we make use of the quadratic 
Casimir invariant operator of the Poincare group, to separate the different class of momentum 
that may exist according to the rest mass and energy of the free particles. Then inside a given 
class, we make a classification of its irreducible pieces by making an irreducible classification of 
the Wigner little group. This allows us to see single particles as irreducible representations of the 
Poincare group. In order to see these particles as forming part of sorne kind of fields, as is usually 
seen from the fields excitation paradigm, we then move into a spin classification of the Lorentz 
group, reducible under the rotation subgroup, which allows us to represent massless higher spin 
fields ( s 2 2) as traceless and completely symmetric tensors ( for an excellent review see [1]). 
Then we review how, from the Bargman and vVigner study on relativistic wave equations, one 
can interpret the removing of the lower spin gauge degrees of freedom a spin s possess, as the 
necessary conditions that lead toan energy bounded from below. In section two, in the context 
of quantum field theory over fiat space-time, we enumerate and roughly explain sorne old no­
go theorems concerning higher spin interactions, and sorne possible ways to surpass them (for 
excellent reviews see [2], [3]). 

2.2 Wigner classification of fundamental particles by mass and 
Spln 

In an old but seminal work, using the method of induced representations ([4]), Wigner has 
shown how to classify fundamental particles as unitary representations of the Poincaré group in 
D = 4. He studied one-particle states in QFT 1, and showed that these states, under general 
Lorentz transformations, only transform non-trivially under the subgroup called the vVigner 
little group. To achieve this, he first used the quadratic Casimir 2 of D = 4 Poincaré algebra: 

10ne particle states of course are given as the eigenstates of the Hamiltonian related to a free theory. These 
states are labeled by the particle's momentum and possibly sorne quantum numbers denoting the particle's species 
such as spin. 

2 An usual invariant operator of a Lie algebra 
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CHAPTER 2. INTRODUCTION TO HIGHER SPINS 

C2 = PJ.LPJ.L = - Jv12 acting on the space of one particle states, whose eigenvalues are essentially 
labeled by the mass of the particle. Then, in order to classify the different classes of one particle 
states, i.e. non-related by a proper orthochronous 3 Lorentz Transformations 4 , he used the 
Casimir related mass value: 1\!I, and the energy value: Po of its four momentum vector. The 
different classes of momentum which arise according this classification are: 

P2 = -M2 < o and Po< O: Massive and N egative energy (2.1) 

P2 = -M2 < o and Po> O: Massive and Positive energy (2.2) 

P2 = -M2 o and Po< O: Massless and Negative energy (2.3) 

P2 = -M2 o and Po> O: Massless and Positive energy (2.4) 

P2 = -M2 > 0: Tachyonic imaginary mass (2.5) 

PJ.L =O 

In a free theory, from the above classes, only (2.2) and (2.4) are considered physical 5 . 

Sitting in the class (2.2), corresponding to massive and positive energy particles, one can study 
the subgroup A+ of the proper orthochronous Lorentz transformations A+, which lea ves invari­
ant a particular four-momentum representa ti ve vector r;,~-' '"""p~-' of this class, i.e: r;,~-' = (A +)J.L v""v· 

vVithout loosing generality the representative for this class of massive and positive energy partí­
eles can be chosen in the rest frame to be: ""~-' = (1,0,0,0). The group given by A.+ in this way, 
it is called the vVigner Little Group for massive particles and it is direct to see that it correspond 
to the rotation group A+ = 50(3). This group has different (2s + 1) x (2s + 1 )-dimensional spin 
s representations, in which a given spin s representation posses 2s + 1 states. Thus in D = 4, 
massive particles posses 2s + 1 physical degrees of freedom. 

For the class of massless and positive energy particles (2.4), which is a light-like class of 
4-momentum, we cannot choose a rest frame, because it does not exist one in which we are 
able to be at rest with the particle 6 , so, without loosing generality, we are forced to choose in 
the simplest case as sorne representative the vector: ""~-' = (1, 1, O, 0). Then, it is direct to see 
that the group given by A+ in this case should contain S0(2), but it is not so straight forward 
to see that it also should contain translations in R2 (see [4]). Thus, in the class of massless 
particles, Wigner Little Group is the isometry group of R 2 , usually called JS0(2), which is 
non-compact. However, there exist a known theorem, that says that finite dimensional unitary 
representations of a non-compact group are not faithful, but only infinite dimensional ones are. 
In the case of 150(2), this would corresponds to continuous spin representations, given by the 
non-compact part of translations in R2, and beca use we haven't observed this kind of spin in 
nature, we exclude these representations with continuous spin. 7 . This is as if we are left with 

3vVhich preserves the direction of time 
4 An element of 50(3, 1)+, i.e., identity connected and orthochronous (A0 0 = 1) Lorentz transformation which 

excludes parity and temporal lnversion operations, which can be seen as a pair of discrete elements belonging to 
the fui! Lorentz Group 0(3, 1). Also, the use of 50(3, 1)+ instead of 0(3, 1)+ is well founded as Wigner himself 
proved that any symmetry transformation, which is continuously connected with the identity, acting on the space 
of one particle states must be represented as a linear unitary operator acting on this space [4] 

5 up to 2.1 and 2.3 in the case of anti-particles, which are interpreted asto move backward in time, the analysis 
in this case is essentially the same, but it is restricted to the negative branch of frequencies (po < 0). So we will 
restrict here only to the classes with positive energy. 

6 Due to its massless nature, the particle propagates with the speed of light. 
7 which basically is due to ex elude the translation operators from the group which acts unfaithful over finite 
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CHAPTER 2. INTRODUCTION TO HIGHER SPINS 

only 50(2) as the Wigner Little group for massless particles, and 50(2) algebra has only one 
element, but including parity, we have two elements which leads to the well known result that 
massless particles in D = 4 only carry two degrees of freedom, i.e. the helicities ±h. Their 
different spin representations can be given by considering topological arguments but they are 
beyond the scope of this section. 

Also, as 50(2) for massless particles, and as 50(3) for massive particles, all of its differ­
ent spin representations can be exhausted by traceless and completely symmetric tensors, i.e., 
different single row of arbitrary length Young tableaux 8 , each corresponding to different spin 
representations. 

The same analysis can be made, for the D dimensional Poincare group, case in which we 
have 50(D- 1) for massive particles, and 50(D- 2) for massless particles. However for D > 4 
subtleties arise as we just cannot use only single row Young tableaux for 50(N) with N > 4. 
i.e. for all the different spin representations that may exist. 

With the previous analysis, we can see beforehand that spin for massive particles are not 
the same as spin for massless particles, which is reflected in the fact that the number of physical 
degrees of freedom of sorne given spin s field, in these two different cases does not match. 

Thus, the VVigner classification of single particles as unitary irreducible representations of 
the Poincare group, can be reduced to the problem of classify the irreducible representations of 
the Wigner little group for sorne given class of momentum of the particle. In order to see these 
single particles inside the usual context of field theory, i.e., as the excitations coming from a field, 
we will now move onto a classification of the higher spin fields by constructing different spin 
representations of the full Lorentz group, but which are reducible under its rotation subgroup. 

Building different spin representations of the Lorentz Group: 

The homogeneous Poincare algebra or Lorentz algebra 50(3, 1) is given by: 

(2.6) 

From the above generators, the Boost Ki, and rotations Ji generators can be written as: 

K¡= Moi Ji= ÍEijkMjk 

and the Lorentz Algebra in terms of the new generators is left as: 

dimensional unitary representations. 

[Ji,Jj] 

[Ki,Kj] 

[Ji,Kj] 

ÍEij kJk 

-ÍEijkKk 

ÍEij kKk 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

8 This is a classification of tensors under its symmetry properties, given by how do they transform under the 
permutation group acting on their indices. 
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CHAPTER 2. INTRODUCTION TO HIGHER SPINS 

by choosing the combinations: 

(2.11) 

the Lorentz algebra S0(3, 1) splits out as two hermitian conjugated copys of SU(2) algebra, 
that do not see each other: 

[Ni,Nj] iEij kNk (2.12) 

[Nit, NJJ . Nt U'.ij k k (2.13) 

[Ni,NJJ o (2.14) 

So, we have the following isomorphism at algebra level 50(3, 1) "'SU(2) EB SU(2). 

In order to build different spin representations of S0(3, 1), we can use the different spin rep­
resentations of SU(2). The representations of SU(2) are well known, and we can use a Cartan 
basis to work with it. This traduces in choosing sorne combinations of the generators of SU(2) 
as follows: we will have one Cartan operator which is diagonal in this basis with weight s, and 
two lader operators which upper and lower the weights of the basis. vVe choose the highest 
weight basis such that the upper operator acting on a highest weight state annihilates it. 
Then for sorne given highest weight s, s =O, 1/2, 1, ... , we can find a (2s+1) x (2s+1) dimensional 
representation of SU(2), in which the Cartan operator has the eigenvalues: -s, -s + 1, ... , +s, 
beca use it is represented in a spin s basis composed by 2s + 1 states. In this way we can exhaust 
all the different spin s representations of SU (2). 

We do the same for the other copy of SU(2), and use the pair (s1, s2) to denote the high­
est weights of the two different SU(2) representations, and also to denote a possible S0(3, 1) 
representation. Given that the rotation operator is given by Ji = Ni + Nit, we can use the 
standard rules of adding angular momentum to build the different possible spin representations 
of S0(3, 1)"' SU(2) EB SU(2) algebra. Also, given that at the Lie Algebra level S0(3, 1) is the 
direct sum of the two SU(2), the possible highest weight basis of S0(3, 1) will be given by the 
sum of the highest weights of SU(2), i.e. s1 + s2, which has allowed values for the total angular 
momentum given by j =1 s1- s2 1, 1 s1- s2 1 +1, ... , s1 + s2. 

One cannot use arbitrary values of (s1, s2) for labelling possible representations of S0(3, 1). 
vVe can see this by considering that the space-time inversion operator V has to be included on 
the full Lorentz Group. This operator leaves invariant even-rank tensors, but changes the sign 
when act on odd-rank tensors. It is the inclusion of this discrete operator that, in order for 
this operation exist, leads to the constraint on the spectrum of the two Cartan operators for 
each copy of SU(2) to be equal. This constraint, in terms of the highest weights values of the 
two SU(2) representation, it is traduced in the two allowed cases for the representations of the 
Lorentz Algebra: 

• 1) ( ~, ~) representation gives a rise toa spin s bosonic representations of S0(3, 1) in which 
the allowed values of total angular momentum are j = O, 1, 2, 3 ... , s and possible values 
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of h component are m= -j, ... ,j 

• 2) ( ~, 8! 1 ) EB ( 8! 1 , ~) representation gives a rise to a spin ~ fermionic representations of 
80(3, 1) with the allowed values of total angular momentum j = !, ~' ~' ... ,~'so possible 
values of J3 component are m = - j, ... , j 

With this at hand, in general we see that a spin s bosonic, ( ~ fermionic) field contains in­
variant subspaces containing all integer (half-integer) lower spins up to and including s ( ~), thus 
these representations are reducible under the rotation subgroup. From now on, and along all 
the text, when we refer to the phrase 'invariant subspaces' we will refer that they are invariant 
with respect to the rotation subgroup. 

N ow, we will see that the representations ( ~, ~) are rank-s completely symmetric space­
time tensors and traceless in any pair of space-time index. The vector representation (!, ~) of 
80(3, 1), can be constructed by using the fundamental representation of 8U(2) given by the 
Pauli matrices. The elements in which the fundamental representation of 8U(2) x 8U(2) acts 
are two-index spinor tensor fields waó:, which are related to the vector representation via the 
Pauli matrices as: <j;J.L = O"~a:q;aa. Also, the representations of (~, ~) acts on 2n-index spinor 
tensor fields q;a1 ... an,0:1 ... 0:n for all n::::; s. They are symmetric in all the O:i, and symmetric in all 
the Ó:i spinor índices. By using Pauli matrices O"~nO:n to contract each pair of o: and 0: índices, 
and taking the direct sum of all the spinor representations with n ::::; s, this results in a rank-s 
space-time symmetric tensor field representation as: 

(2.15) 

Using the standard properties of Pauli matrices and the rules for spinor calculus, it can be 
shown they are also traceless in each pair of space-time índices ([5]). 

In an analogous fashion, one can show that the half integer spin representations of 80(3, 1) 
are spinor tensor fields, symmetric in the space-time índices, and of rank s- ~' which in par­
ticular for the spin S representation are given by: W~¡ ... J.L 1 , and satisfy a gamma-traceless 

S-'J 

condition: ~~(3· we M1 ... M 3 = 0 
~ s-'! 

Then, since the work of Bargman and Wigner ([6]) on the classification of relativistic wave 
equations, it becomes clear that in order to eliminate the lower spin invariant subspaces that a 
bosonic rank-s tensor field has, one has to impose the divergence/ transversality condition on 
this field: 

fjV </Jv¡t1 ... ¡t8 _ 1 = O (2.16) 

And an analogous condition for the half integer spin fermionic fields, given by: 

fY'Ij;a =O 
Vft1···fls-1 

(2.17) 

Such constraints imposes naturally that the lower spin s - 1 degrees of freedom given by 
this divergence be eliminated, which when analyzed in the Lagrangian context for a spin s field, 
as Fierz and Pauli ([5]) shown before Bargman and vVigner in this context, they traduces in a 
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necessary condition for the positivity of the energy of the fields. 

Lastly, in ([6]) was shown that having gauged away the lower spin gauge degrees of freedom 
that can exist inside a massless spin s field, and using the quadratic Casimir operator of the 
Poincare algebra applied on it, one have that the free massless field has to satisfy the on mass 
shell conditions: 

0</J¡.q ... ¡.tg =o 
and similarly for fermions, which traduces in : 

(2.18) 

(2.19) 

Together the divergence ( transversality) condition 9 , with the on mass shell conditions, are the 
so called 'physicality conditions' for the single traceless (gamma-traceless) bosonic (fermionic) 
fields. 

2.3 Obstructions to higher spin interactions in flat QFT (No-Go 
theorems) 

As we saw above, mainly from a group theoretical point of view, free massive and massless fields 
of arbitrary high spin, are allowed to exist in which their physical part are given by unitary 
irreducible representation of the Poincare group. In fact, as we will see in chapter (3) in the 
context of a Lagrangian derived theory, the free theory for massive and massless higher spin field 
is well posed and constructed. Even if higher spin fields has not been observed in nature at the 
present scales of energies we manage in the laboratory, this does not means that they cannot 
exist. The problem with higher spin begins when one try to introduce interactions of higher 
spin fields with any kind of other field (for an excellent review see [2, 3]). In this subsection we 
will roughly review the main problems which arise with a higher spin interacting theory in the 
context of usual quantum field theory over flat space-time. 

2.3.1 Trivial scattering matrix obstruction (Coleman-Mandula no-go theo­
rem) 

The Coleman-Mandula theorem [7] on all the possible symmetries of the S-Matrix, and the 
Haag-Lopuszanski-Sohnius extension of the above [8] for super-symmetric theories, under its 
restricted but usual assumptions, put several constraints on the kind of symmetries that an 
interacting theory defined in flat space-time can have, in order for its S-Matrix to be non-trivial. 
Coleman-Mandula theorem essentially states that if one try to combine the Poincare symme­
tries with another group of internal symmetries, in order for the theory be non-trivial, i.e., the 
scattering matrix be different from one, then the only allowed form for the extended symmetry 
group, is given by the direct product of external (Poincare) and internal (Bosonic) symmetries. 
Turning this analisys into graded Líe Algebras, Haag-Lopuszansk-Sohnius have shown that one 

9 Here we are working with massless fields, and as such, these are only sorne possible gauge conditions, but 
for a massive theory, these conditions should be understood as the natural conditions, i.e., that follows from 
the equations of motion for the massive field. As an example, Lorentz condition follows directly from the Proca 
equations of motion in the case of the massive spin 1 field. 
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can also have super-symmetry as another ingredient of the puzzle, now using the super-Poincare 
algebra extension of the Poincare group, and in which the bosonic internal symmetry algebra is 
commuting with the elements of the Poincare Algebra but not with the extended elements of 
the super-algebra. 

In the massless bosonic higher spin context, by definition, there exist sorne bosonic higher 
spin symmetries, thus the higher spin bosonic generators of that symmetries must exist, but these 
generators turns out to be non-commuting with the elements of the Poincare algebra. Therefore 
in general we see, that at difference with respect to the lower spin scenario, the symmetry of the 
higher spin theory will not be one which is the direct product of bosonic higher spin generators 
time Poincare group nor even a super-symmetric extension of it, and in this way higher spins 
are automatically ruled out by Coleman-Mandula or by its Haag-Lopuszanski-Sohnius extension 
(see [2]) . 
However, this theorem can be circumvented in other background space-times such as Anti de 
Sitter space, in which there is no notion of asymptotic states where the scattering matrix can 
make sorne sense. In that kind of spaces-times however there exist other types of observables 
which can be defined making use of conforma! field theories which lives on the boundary of the 
AdS space. 

2.3.2 Highly constrained values of coupling and/or momenta dueto conser-
vation laws (Weinberg low energy no-go theorem) 

Weinberg low energy theorem [9] basically puts restrictions on the kind of bosonic massless par­
ticles that can interact at low energies, with each other and with itself. This is a no-go theorem 
only for low energy interactions. For higher spin particles it basically says that no higher spin 
particle with s > 2 can interact at low energy. 
vVeinberg low energy theorem goes as follows, consider we have a non trivial scattering process 
which involves N external particles with ingoing momenta Pj and spin Sj (j = 1, ... ,N), in 
which we have that an additional bosonic particle of spin s is absorbed with an arbitrary but 
soft momentum q at the ith externalleg (see figure 2.1). 

The scattering matrix element in which this process occurs (figure 2.1), posses a part that 
controls the absortion of the spin s massless particle given by a vertex of type s - Sj - Sj with 
coupling constant gj, that at low energy can be factored from the rest of the process as show in 
figure 2.2 

The spin s polarization EJ.L 1 .. .J.l.s ( q) that appears in 2.2 is not Lorentz covariant. Under a 
Lorentz transformation it transforms as: 

where XJ.L 1 ... J.Ls-l is a symmetric tensor of rank (s- 1). 

Then, to eliminate the contribution coming from the spurious lower spin gauge degrees of 
freedom with spin: O, ... s - 1 pertaining to the spin s emitted particle, we must demand that 
the S-matrix be Lorentz invariant. This is accomplished with the following condition, which 

10 
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PJV 

P1 

Figure 2.1: Scattering matrix element corresponding to the absortion of a soft spin s particle 

with momentum q 

P.v PN 

p¡ J!J 

Figure 2.2: Factorization of the process at low energy 

involves the couplings and incoming momentum as: 

N 

:L g~s)Prl ... P;s-1 =o, \/pi (2.21) 

i=1 

The above relation for spin s = 1 reduces just to the charge conservation: ¿~:1 g~ 1 ) = O, 
as is well known in quantum electrodynamics. For a spin s = 2, it reduces to the relation 

¿!1 g?)p;1 = O, \/pi, and considering the momentum conservation law for the momentum of 

the incoming particles, given by ¿!1 p~t 1 = O, it reduces just to g~2 ) = g(2), which states that 
the coupling of any particle with the graviton field must be the same. As Weinberg states it, 
this is the counterpart of the equivalence principle in quantum field theory. 

For spin s 2 3, the equation (2.21) has no solution for the arbitrary incoming momenta, 

which automatically leads to g~s) = O, s > 2. Thus, this relation states that no higher spin 
particle can interact at low energy. i.e. mediate long range interactions. 

11 
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In particular this theorem do not rules out higher spin interactions unless we demand that 
the same Lagrangian should describes the physics of both IR and UV sectors. 

2.3.3 No higher spin Lorentz covariant conserved currents and nor gauge 
invariant (Weinberg-Witten no-go theorem) 

Weinberg-Witten theorem [lO] as they states, says: 

• Theorem 1). A theory that allows the construction of a Lorentz-covariant conserved four­
vector current Jv cannot contain massless particles of spin j > 1/2 with non-vanishing 
values of the conserved charge J J0d3x 

• Theorem 2). A theory that allows the construction of a conserved Lorentz covariant 
energy-momentum tensor T11v for which J T0vd3x is the energy-momentum four-vector 
cannot contain massless particles of spin j > l. 

This theorem put constraints on the kind of allowed vertex interactions that sorne kind of 
theories can have. It is usually applied to abelian gauge theories which makes use of minimal 
coupling prescription between sorne kind of massless spin si field, and the spin SI conserved 
N oether currents coming from sorne massless spin s2 fiel d. 

For example, in the case of electrodynamics and gravitation, theorem 2) states that effec­
tively a Lorentz covariant and gauge invariant and conserved energy momentum tensor (spin 2 
N oether current) can be constructed for the electromagnetic field ( spin 1 field), and thus the 
energy of the field can be localized, which allows the corresponding minimal coupling to the 
graviton (spin 2 field). 

Another example, is in the case of the massless graviton, where 2) already states that a 
Lorentz covariant and gauge invariant, at the same time, energy momentum tensor (spin 2 cur­
rent) for the graviton itself, cannot be constructed, and thus the energy of the field cannot 
be localized, forbidding minimal coupling to itself. But as we know, this does not forbids to 
the graviton interact with itself in a non-minimally way, the example of this is the existence of 
general relativity. IO 

This theorem in particular for the graviton s = 2 and also for higher spin fields s > 2 rules 
out the possibility of construct a gauge invariant and Lorentz covariant energy momentum tensor 
for these fields, which rules out the minimal coupling to gravitation as a valid prescription for 
these fields. 

10 Another way to see this is that the covariantization of the Fierz-Pauli Lagrangian, which must be see as the 
mínima! coupling prescription for a spin 2, does not give us back general relativity as a result. 
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Chapter 3 

Review of Free bosonic massless 
higher spin fields over a fixed 
maximally symmetric background 

3.1 Introduction 

In this chapter we will focus on free bosonic higher spin fields, because this thesis directly works 
with them, so from here on, fermionic fields will be left aside. More-over we will be interested on 
free massless bosonic higher spin fields. This is because the free massive higher spin field theory 
in D dimensions can be directly derived from the free massless higher spin field theory in D + 1 
dimensions, via Kaluza-Klein reduction, i.e., compactifying the extra dimension, as a vVigner 
little group analysis indirectly suggest. In this chapter we will expose the most straightforward 
approach to get into free massless higher spins which is principally dueto Fronsdal [11]. However, 
for the sake of historical completeness ( and also brevity), we will give only the strange historical 
context on how Fronsdal get its theory for free massless higher spin fields, by taking the massless 
limit of an interacting theory of massive higher spin fields with the electromagnetic field. It was 
Fierz who first work on Higher Spin in ([12]), then Fierz and Pauli [5] try to attack the problem 
of the coupling of a massive spin s field with the spin 1 electromagnetic field at the level of the 
equations of motions and of the physicality conditions, by directly replacing partial derivatives 
with spin 1 covariant ones, spotting that several inconsistencies arise because that is not a 
proper modification to account for interactions, instead this leads to algebraically inconsistent 
equations. Then Singh and Hagen ([13]) were successful in attack this problem by getting the 
equations of motion, and physicality conditions, directly from a more general Lagrangian. In 
order to do this for a spin s field, they introduced physicality conditions vía suitable Lagrange 
multipliers, and also introduce sorne auxiliary lower spin fields with spins from O ... s- 1 in the 
game, to then impose that these lower spin fields be turned off when interactions are absent. 
To this end, they fixed the value of the Lagrange multipliers a posteriori, such that at on shell 
level, the equations of motions gives the correct physicality conditions, which reduces to the 
Bargman and vVigner ones, mean at the same time, the lower auxiliary fields are turned off 
when interactions are turned off, all in a consistent way. Finally comes Fronsdal [11], who take 
the massless limit of the Singh and Hagen Lagrangian to realize that all the auxiliary lower 
spin fields decouples, except the auxiliary field of spin s- 2, which he combined with the single 
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A FIXED 1\!IAXINIALLY SYMMETRIC BACKGROUND 

traceless spin s field into only one, syrnrnetric, but now double traceless rank s tensor field. Then 
due to the rnassless nature of the fields, the free higher spin theory was settled as a gauge theory, 
thus Fronsdal payed the price of having to tackled its gauge syrnrnetry problern. Fortunately, 
after Fronsdal work, the theory took a sirnpler forrn than before, and its grounds were then well 
posed. For excellent reviews see the works [14], [15]. Finally, Fronsdal equations of rnotion can 
be written in a very algorithrnic way for any spin, with the only requirernent they satisfy sorne 
syrnrnetry preserving criteria (gauge invariance). 

3.2 Free bosonic Fronsdal's higher spin fields in fiat space 

3.2.1 Fronsdal's equations of motion 

For a spin s Bosonic field (rank s syrnrnetric tensor field), Fronsdal equations of rnotion in D­
dirnensional Minkowski space-tirne are: 

.F = 01> -so f) q>v + s(s- 1) f) f) q>v =O 
1-"l···f.Ls- f.Ll···f.Ls (J.Ll V f.12···f.Ls) 2 (J.Ll f.12 Vf.13···f.Ls) (3.1) 

Where the left hand side of (3.1) defines the Fronsdal tensor. Frorn here on, a pair of paren­
theses will denote a complete syrnrnetrization of all the non-contracted índices it endose, divided 
by the total nurnber of terrns used for the complete syrnrnetrization. 

These equations are a natural generalization of the equations of rnotion for lower spin rnassless 
bosonic fields: 

S = o, Scalar, oq> = o, No gauge symmetries (3.2) 

S= 1, Vector, oq>f.J,- f)J.Lf)Vq_>V =o, Gauge symm.: Jq>f.J, = Of.J,E (3.3) 

S= 2, Tensor, oq>f.J,V- 28a8(J.Lq_>CL v) + f)J.Lf)Vq_>Cl! a= o, Gauge symm.: 61>J.LV = 28(J.LEv) (3.4) 

The equation 3.1 is left invariant under the gauge transforrnation: 

(3.5) 

with a rank s- 1 syrnrnetric tensor gauge pararneter E:J.L 1 ... J.Ls-l, which is traceless in any pair 
of indices. i. e.: 

E:v -O Vf.J,¡ ... f.Ls-3 -

as can be seen by a direct calculation: 

6.Ff.11 ... J.Ls = ~s(s- 1)(s- 2)8(J.L1 0f.120J.13 E:v J.14 ... J.Ls)v =O 

Clearly this condition on the gauge pararneter becornes relevant for s ;::: 3. 

(3.6) 

(3.7) 

If we want to be able to build a local gauge invariant 1 action under the gauge transforrnation 
3.5, which of course give us the equations of rnotions (3.1) when arbitrary varied, we need one 
more restriction on this systern. This restriction consist in that the spin s field has to be double­
traceless in any pair of índices [16], but of course this has to be irnposed "off rnass shell": 

1up to a total derivative or boundary term 
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(3.8) 

This condition, obviously becomes relevant for s 2': 4, and is directly related to the fact that, 
due that the imposed gauge invariance of the theory, at the action level i.e. off shell, demands 
that exist sorne generalized Bianchi identities that has to be identically satisfied, as we will see 

below. 

The gauge invariant action under the gauge transformation 3.5 is defined as: 

(3.9) 

vVhere: 

g = F - ~s(s - 1)r¡( P /-L!···J.Ls - ¡.q ... J.Ls 4 /-LlJ.L2 J.L3 .. ·J.Ls )'y 
(3.10) 

Using the above definition one can see that the following is satisfied: 

8'9rJ.L2 .. ·/-LS (X a(J.L2aJ.l3aJ.L4 <I>l/jl/2 lljli2J.L5 .. ·J.Ls) 
(3.11) 

In which it can be see, that imposing 3.8 we have the following Bianchi identities: 

(3.12) 

vVith these at hand, the gauge invariance of the action under 3.5 up to a boundary term 

follows as 2 : 

5S J ddx5<I>J.L¡ ... J.Ls" + <I>J.Ll ... J.Ls 5" '=' J.L¡ ... J.Ls '=' J.L¡ ... J.Ls 

J ddxs8(J.L¡EJ.L2· .. J.Ls)r: +O '=' J.L¡ ... J.Ls 

b.t. + j ddXEJ.L2 ... J.Ls8~1 91J.L 2 ... J.Ls = b.t. +O 

The equations of motion follows from varying with respect to cjJ as: 

1 9 = F - -s(s- 1)r¡( P - O ¡t¡ ... J.Ls - J.L¡ ... J.Ls 4 /-Ll/-L2 J.L3 ... J.L 8 )'y -

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

and considering 3.8 the off shell double trace of the Fronsdal tensor vanish, i.e, Fa(3 af3J.L5 ... J.Ls = 
O. Thus, taking the single-trace of the e.o.m. 3.17, and using the vanishing double trace identity 
of the Fronsdal tensor, we are left with the on shell equation: 

d g 1 - (1 - -s(s- l))F 1 - O J.L3- .. J.Lsr - 4 J.L3 .. ·J.Lsr -
(3.18) 

2 where from the first to second line, we have made use explicit of the gauge invariance of 3.10 tensor trough 
the gauge invariance of the Fronsdal tensor under 3.5, and in the third line we have made an integral by parts, 

and then used 3.12. 
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Which for arbitrary d and s, ( except for the special case d = 2, s = 2), has as solution the 
vanishing of the on shell single trace of the Fronsdal tensor: Fll-3 ···11-sl 1 = O, which replacing into 
3.17, leads to the equivalent equation of motion: 

(3.19) 

For the interested reader, there exista formulation dueto Francia and Sagnotti ([17],[18]), 
which makes no use of a constrained gauge parameter as 3.6, neither makes use of a constrained 
Fronsdal field as 3.8, motivated by the contact between String Theory and Higher Spin Fields, 
in which these restrictions seems rather unnatural, but this formulation presents other highly 
complex issues as now the action principie should be non-local and higher derivative and it is 
beyond the scope of this thesis, so we won't insist on this. 

3.2.2 Gauge degrees of freedom and the de Donder-gauge fixing 

In D-dimensions, a symmetric rank-s tensor field has C(D- 1 + s, s) 3 number of independent 
components. The double trace of a rank s tensor field, is a rank s- 4 tensor field, imposing this 
double trace to be zero, we have C(D- 1 + s- 4, s- 4) conditions. So in principie a Fronsdal 
massless spin s field has a total of C(D-1+s, s) -C(D-1+s-4, s-4) independent components. 

But we have gauge symmetries, so not all this components are physical, we have redundant 
mathematical unphysical information we want to gauge away. For this we can perform a gauge 
transformation with a symmetric and single-traceless rank s- 1 tensor gauge parameter, which 
carries a number of C(D- 1 + s- 1, s- 1)- C(D- 1 + s- 3, s- 3) independent components, 
and in this way fix this same number of components inside the spin s field by choosing sorne 
gauge condition. 

vVith respect to the gauge condition, a natural generalization of the Lorentz covariant gauge 
fixing for s = 1, and of the de Donder covariant gauge fixing for s = 2, it is the generalized de 
Donder covariant gauge condition for arbitrary spin: 

- 1 1 ( ) 1 Hll-2· .. Jl-s =a if!/Jl-2 .. ·11-s - 2 S- 1 a(Jl-2 if! Ji-3 .. ·11-sh =o (3.20) 

This reduces to the Lorentz gauge for s = 1, and to de Donder gauge for s = 2. 

vVith this gauge fixing condition, the equations of motion are left as a wave equation for the 
spin s field: 

Di'J!Il-l· .. Jl-s =O 

And, in fact we see it describes a massless field. 

(3.21) 

However, this gauge fixing condition does not fix the gauge completely, because we can still 
perform a gauge transformation whose gauge parameters satisfy: 

(3.22) 

3 This is the binomial coefficient C(n, k)= G) 
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In which clearly we have another set of C(D- 1 + s- 1, s- 1)- C(D- 1 + s- 3, s- 3) 
components that we can gauge away to completely fix the gauge. 

So the total number of propagating degrees of freedom is: 

DoF(s, D) = C(D- 1 + s, s)- C(D- 1 + s- 4, s- 4) 

-2 X (C(D- 1 +S- 1, S- 1)- C(D- 1 +S- 3, S- 3)) 

C(D- 5 + s, s) + 2C(D- 5 + s, s- 1) (3.23) 

In particular we see that in D = 4 for any s > O. i.e. only gauge fields 4 we have 
DoF(s, 4) = 2, which is the well known result that massless gauge fields carry only two physical 
propagating degrees of freedom. i.e. the helicities ±h. 
Another important particular case that follows is that in D = 3, for any s > O we have 
DoF(s, 3) = O, which is related to, the well known fact, that in three dimensions the little 
group of massless particles IS0(1) is trivial, but including parity we have as the little group 
{ 1, -1} x at, and excluding continuous spin degrees of freedom (at), we are only allowed to dis­
tinguish between bosons and fermions with { 1, -1} part. These cases are well known results in 
field theory. 

Thus, the off shell vanishing doubly-trace condition on the spin s field, together with the 
generalized de Donder gauge fixing, are necessary to eliminated all the lower spin s- 1 invariant 
subspaces a spin s field may have. 

By using a further gauge condition dueto ([19]), a considerably simplification with respect 
to on-shell fields can be done. This preserves the generalized de Donde gauge condition and one 
recovers the Bargman-vVigner form of the fields, this is the vanishing single trace condition on 
the spin s field, in which the generalized de Donder gauge reads simply as the transversality 
condition: 

H = éf11> =O /-L2···1-Ls - 'Y/-L2···/-Ls (3.24) 

And the equations of motion are still 3.21, but now considering the spin s field is single 
traceless, i.e: 1>"~ 'YI-L3···1-Ls = O. 

3.3 Free bosonic Fronsdal's higher spin fields over fixed (A)dS 
space 

In the last section Fronsdal theory was presented in a flat Minkowski background. In this section 
we will move into the other two possible classes of a maximally symmetric backgrounds. i.e. de 
Sitter and Anti de Sitter space. The reason for choose this class of backgrounds, resides in the 
fact their vVeyl tensor are zero, and furthermore, due that the tracefull parts of the Riemann 
tensor can be completely expressed in terms of the metric and the cosmological constant. This 
requirement as a necessity, is easily explained as follows, if we move into a arbitrary but fixed 
(non-dynamical) curved background to put the free theory to live in, in principie we just have 
to covariantize all off the expressions with respect to the background. vVe are not adding any 

4 we are excluding the spin s = O scalar boson, which has no gauge symmetries and thus it is considered as a 
matter field 
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interactions, we are just changing the background. This dernands to prornote partial derivatives 
to covariant ones, but covariant derivatives no longer cornrnute. This is a problern because 
when we take gauge variations of the covariantized spin s action, terms proportional to the full 
Riernann tensor will appear, which will eventually spoil the gauge invariance of the theory, in such 
a way that it wont be possible to be recovered unless we have chosen sorne background which has 
vanishing Weyl tensor, which in the case of a rnaxirnally syrnrnetric background, Riernann tensor 
is cornpletely deterrnined in terrns of the background rnetric and the cosrnological constant, which 
guaranties we will be able to rnodify the action ( and thus the equations of rnotions derived frorn 
it), by adding sorne suitable terrns which keep alive the gauge invariance of the free covariantized 
theory. One part of this sarne problern shows up when we try to add interactions but we will 
cover this in the next chapter. 

More explicitly, due that covariant derivatives no longer cornrnute, when we take the gauge 
variation of the (A)dS covariantized Fronsdal tensor, i.e the tensor (3.1) but with all its partial 
derivatives changed to (A )dS covariant deriva ti ves defined in the sequel by V, under the ( AdS) 
covariantized gauge transforrnation: 

81)Jll···Jls = s'\7(Jl1EJ12 .. ·Jls) (3.25) 

the covariantized Fronsdal tensor is no longer gauge invariant: 

8FJll ... Jls "1- Ü (3.26) 

In order to recover gauge invariance of the covariant Fronsdal tensor, we have to rnodify it by 
adding to it sorne terrns which ensures its gauge invariance, giving rise to a rnodified covariant 
Fronsdal tensor: 

where g~v is the (A)dS background rnetric and where A= -[x for AdS, andA= [x for dS 
space-tirnes. 

The rnodified Fronsdal tensor, now results to be gauge invariant under 3.25, i.e: 

(3.28) 

And the gauge invariant action under the gauge transforrnation 3.25 is defined as: 

(3.29) 

Where: 
' ' 1 ' " = F - -s(s - 1)r¡( P 'dJl¡ ... Jls - Jl¡ ... Jls 4 JlJJ12 Jl3· .. Jlsh 

(3.30) 

This gauge invariant action results to be uniquely defined up to a boundary terrn, and under 
sorne ordering convention for the covariant derivatives. 
The equations of rnotions are now: 

(3.31) 
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Which, analogously to the last section, they are simplified to: 

f: -o !1-1···11-s - (3.32) 

The counting of propagating degrees of freedom remains exactly the same as in the case of 
fl.at backgrounds, as it should be. But now the generalized covariant de Donder gauge fixing 
condition is: 

_- 1 - 'Y 
H - vn<I> - -(s- 1)Y'( <I> =O 11-2···11-s - "111-2···11-s 2 11-2 Jl-3···11-sh (3.33) 

Which leads to the gauge fixed equations of motions as: 

(3.34) 

In which we can see that the coefficients m 1 = A((s2 + (d- 6)s- 2(d- 3)) and m2 = As(s-1) 
plays the role of something like mass terms [20] for the spin s gauge field in (A)dS. To inter­
pret this, we can see that the deformed covariant Fronsdal tensor (3.27) has acquired a part 
proportional to the cosmological constant, which is linear in the spin s field. This will refl.ects 
itself like a "mass terms" in the Lagrangian when we have moved from fl.at into (A)dS back­
ground. However, gauge symmetries has not been lost in the process, they are still there. Thus 
in (A)dS backgrounds we can still talk about massless or gauge fields even having present in the 
Lagrangian, or in the equations of motions, something like a "mass term" for them if its form 
is given by m1 and m2. These are called Fronsdal masses. 

As in the fl.at case, staying on the generalized de Donder gauge condition, for on shell fields, 
one can further gauge away the trace of the spin s field, and the generalized de Donder gauge 
reduces to transversality condition in (A)dS: 

(3.35) 

The equations of motions are reduced to: 

(3.36) 

Thus, the single-traceless, transversality and 3.36 are the physicality conditions for on shell 
fields in (A)dS. 

The mass-like term m1 = A((s2 + (d- 6)s- 2(d- 3)) in (3.36) , also appears in the action 
(3.29) trough (3.27) and (3.30), and is responsible for what is called the Breitenlohner-Freedman 
bound of the energy from below [21]. 
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Chapter 4 

Review of Higher spins and 
inconsistency in a minimally coupled 
system 

4.1 Massless higher spins interacting minimally with gravity 

Attempts to introduce interactions of fields with spin s :2: 2 with the gravitational field has been 
shown to be plagued with inconsistencies. The gauge symmetries of the original non-interacting 
sectors, when minimally coupled, are spoiled in such a way that it is not possible to recover 
gauge invariance, neither in a deformed way. Aragone-Deser spots this fact for a spin 2 mini­
mally coupled to gravity in ( [22]), and in the hyper-gravity context ( [23], [24]) for a spin ~. In 
the special case of super-gravity, i.e. for a spin ~ Rarita-Schwinger field, the coupling to gravity 
pass the test, due to sorne very special properties as the Fierz rearrangement identities of the 
gamma matrices which allows to build a gauge invariant action. However, in general, for fields 
with s :2: 2 a gravitational minimal coupling prescription is condemned to fail. 

4.1.1 Aragone-Deser obstruction to preserve higher spin symmetries in the 
minimal coupling prescription in D > 3 

Consider we are in D-dimensions, If we try to couple a spin s field to gravity minimally. Le. 
using the usual prescription that follows: 

• 1) Take the free spin s field action defined over flat background. Then covariantize the free 
action over what will be the arbitrary, but now dynamical gravitational field, i.e. promot­
ing partial derivatives to covariant ones, and promoting the integral over flat coordinates 
to arbitrary ones, i.e. with its respective Jacobian in terms of the metric. 

• 2) Add this resulting spin s Lagrangian to the gravitational one, i.e. Einstein-Hilbert 
Lagrangian. 
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then we will see that, in general for s 2: 2, several inconsistencies arises, given rise to a non­
consistent interacting theory. This means that the interacting theory do not posses gauge 
symmetries: nor the original ones, neither a somehow deformed symmetries from the original 
ones which comes from the free system, as one naively would expect. Thus we have introduced 
the interactions inconsistently, because in this process we have lost the gauge invariance of the 
theory, which, in final instance, leads to a wrong number of propagating degrees of freedom of 
the interacting theory, i.e., these number will differ from the number of propagating D.o.F that 
the free theory originally has which could lead to several contradictions. 

To illustrate this problem, which is absent in the s = 1 case, but present for the cases with 
s 2: 2, lets take the simplest example: consider we have a spin 2 field, and we want to couple it 
to gravitation using the minimal coupling prescription, thus covariantizing the Frondal tensor, 
and choosing sorne usefull conventional ordering for the covariant derivatives [25]: 

( 4.1) 

and considering to deform the gauge symmetries, as is given by the covariantization with 
respect to the dynamical gravitational field: 

8<I>J.L1J.L2 = 2\l(J.Ll f:J.L2) (4.2) 

Then the tensor 4.1 is not gauge invariant under 4.2, and in fact it transform as: 

8FÍJ1J.L2 = 2RcxJ.L1J.L2f3\lcxr::f3- 2r::cx\lcxRJ.L1J.L2 + R(J.L1cx\lcxr::J.L2)- 3R(J.L1Ci\lJ.L2)Ecx (4.3) 

From 4.3, we see there are parts in which the Ricci scalar, and Ricci tensor appears and these 
parts are considered innocuous because they can be gauged away by a suitable deformation of 
the gauge transformations that acts on the metric ( deformed diffeomorphisms). But the parts 
in which the full R.iemann tensor appears 1 are considered dangerous, because they cannot be 
compensated by a deformed gauge transformation done on the metric. This means that for 
s 2: 2 we cannot modify the action by adding sorne 'suitable' terms to it, with the hope that 
when gauge transformed the metric with now sorne 'suitable' deformed gauge transformation, 
its transformations will cancel the unwanted Riemann terms that spoil the gauge invariance of 
the Fronsdal tensor part of the action. 

4.1.2 Surpassing Aragone-Deser obstruction in three dimensions 

In three dimension, for any metric the \:Veyl tensor vanish, thus the Riemann tensor can be fully 
expressed in terms of its tracefull parts, i.e, Ricci tensor, ricci scalar, and in terms of the metric. 
This allows us to build terms to add to the action, that when gauge transformed the metric 
in a suitably deformed way, it compensates the non-invariant terms coming from the Fronsdal 
tensor. Thus in three dimensions Aragone-Deser obstruction is not an obstruction to build an 
interacting action starting with minimal coupling as prescription, but in the process of adding 
terms to the Lagrangian, in order to recover the gauge invariance under sorne deformed gauge 

1for s :;:: 2, due to the spacetime index structure, the full Riemann tensor is always present. 
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transformation of the metric, of course the action is not minimally coupled anymore, but it has 
non-minimal terms that (omitting the space-time índices) schematically goes as: 

_eN M = <I> .•• R ... <I> •.. + ... (4.4) 

vVhere <I> denotes the spin S field and R denotes the Riemann tensor and its tracefull parts 
and the dots represent possible contractions. 
In fact, in ([25]) it has been constructed an action for a spin s field, non-minimally coupled to 
gravity in which for s 2: 2 terms as 4.4 are always present. 

4.2 Sorne comments about a precursor: Vasiliev's interacting 
theory 

As respect to theories of interacting higher spin fields, besides the theory we will directly use 
in this thesis, and thus deserves the full next chapter, probably the only other known existing 
theory of fully interacting higher spin fields, is dueto Vasiliev in his pioneer work ([26]). Vasiliev 
construct his theory in a very geometric way, in a parallel way with the first order formulation 
of the equations of motion for gravity. Furthermore, in this formalism, Vasiliev theory is an 
extension of the last, and that is why the name Higher Spin Gravity has been given to it. This 
theory is defined over maximally symmetric backgrounds. It is important to recall that Vasiliev 
theory is a classical theory, i.e. the only objects which are known from this theory are its equa­
tions of motion, sadly an action principie is stilllacking. However, Vasiliev equations of motions 
enjoy gauge symmetries under deformed gauge transformations of the free Fronsdal theory for 
all spins, and the last is contained in its weak field expansions, which gives rise, to its lowest 
orders on the fields, to its weak interacting and free limits. 
The theory itself is extremely complicated because in order to account for the interactions and 
gauge symmetries consistently, in a similar way as the Singh and Hagen work, it requires the 
introduction of auxiliary fields of all spins, and also requires that an infinite tower of non­
auxiliary fields of all spin from s = O ... oo in order to exist consistently. This principally is due 
that Vasiliev used an infinite higher spin gauge algebra, which is given by an infinite dimensional 
extension of the Lorentz sub-algebra contained in the isometry algebra of the maximally sym­
metric background, and its is realized in terms of fermionic oscilators and star products. Thus, 
there posses generalized geometric objects, as generalized spin connections which gives rise to 
the auxiliary fields, and generalized vielbeins which gives rise to the higher spin fields. We wont 
turn into this theory in this thesis, but for the sake of completeness, and as a precursor of all 
interacting higher spin theories, we cannot leave it without mention it. vVe can also say that this 
theory is extremely complicated because due to the infinite oscilator realization of the higher 
spin algebra, its information is quite encoded, and thus extremely large expressions can appear 
when one try to extract something known in the usual field theory language, g.e., just to obtain 
the (A)dS background of the theory, one can use two full page of calculations, or, g.e., to get the 
free scalar field equation in the non interacting theory one can use four full pages. Fortunately, 
we don't work with this theory in this thesis, instead we work with a simpler theory, which will 
be reviewed in the next chapter, but which has somehow its roots in Vasiliev's work. 
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Chapter 5 

Review of Three dimensional Higher 
Spin Gravity 

5.1 Introduction 

In the last chapters we saw that the fields described by Fronsdal equations (3.1) in three dimen­
sions for s > 1 does not propagate local degrees of freedom. However, we will keep talking about 
them as higher spin fields, because even if the bulk dynamics is trivial, when studied on AdS 
backgrounds they can lead to a non-trivial dynamics living on the AdS boundary. This fact is 
what motivates the study of this chapter about a fully non-linear interacting higher spin field 
theory in three dimensions. The interacting higher spin gauge theory which will be presented 
in this chapter, worked out in [27], is a fully interacting theory of spins from s = 2, ... , N in 
which each spin is present only once (almost simultaneously it was also worked out by [28] and 
its super-symmetric generalization were worked out in [29]). This theory is consistent beca use 
it posses sorne non-linearly deformed higher spin gauge symmetries, which allows to have the 
same number of physical D.o.F. that the free theory has, i.e., zero in the bulk but which can 
be non-zero at the AdS boundary. Furthermore, in the linearized limit, this theory falls into 
Fronsdal theory for free massless higher spin fields. The reason for work in three dimensions is 
simply that, as many examples has shown [30, 31, 32, 33], in three dimensions life is so much 
easier than in higher dimensions, and also very interesting properties can be found. This the­
ory, besides higher spins s > 2, it posses a spin 2, thus, being fully non-linear, it also contains 
gravity, but not as an isolated sector of the theory, but as a fully mixed one, on its non-linear 
interactions, with the other spins s > 2. As such, one can expect to find very interesting things, 
as all the interesting things that pure AdS gravity in three dimensions posses, i.e.: black holes 
solutions [31, 32, 33], solutions with asymptotic conformal symmetries [34, 35], etc. 

5.2 Review of pure AdS gravity: Its action as the difference of 
two Chern Simons actions 

After the works ([36],[30]), it is a well known fact that gravity with negative cosmological con­
stant in three dimensions can be formulated, in its frame formalism, with the help of two Chern 
Simons (CS) actions were both gauge fields are valued over the SL(2, SR) algebra. It is the 
purpose of this section to show this construction, because this will be the starting point to then 
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incorporate higher spin interactions in the theory. 

The eherns Simons functional in three dimentions is given by: 

k J 2 Ics[A] =- tr( A!\ dA+ -A A A!\ A) 
4K 3 

(5.1) 

where k is the called es level, A is a one form A = A~Tadx~-t defined over a semi-simple 
Líe Algebra A expanded by the Ta generators, and where tr stands for a symmetric and non­
degenerated bilinear form defined on A, i.e. its Killing metric. 
The es theory has a lot of interesting properties: 

• 1) It is written purely in terms of differential forms, thus it is diffeomorphism invariant. 

• 2) It is a topological action, i.e., it does not need a metric to be defined, and its integral 
over a compact manifold is a number. 

• 3) It is gauge invariant on manifold without boundaries. 

• 4) Defined on manifolds with boundary, under gauge transformations, it change as the 
W ZW action at the boundary. 

• 5) The equations of motion are flat connections, i.e., of vanishing curvature F[A] = O, so 
it does not posses local degrees of freedom. 

• 6) On topologically non-trivial manifolds, i.e., non simply-connected 1 , it can have non­
trivial solutions. 

It is well known that three dimensional gravity with negative cosmological constant can be 
written by the use of one es action valued over the 0(2, 2) algebra (which is isomorphic to AdS3 
isometry algebra), using the gauge connection: 

vVhere Pa, lvfab are the generators of 0(2, 2), which satisfies: 

[Mab,Mcd] 

[Mab,Pc] 

[Pa,Pb] 

TfacMdb - Tfadlvfcb - Tfbclvfda + TfbdMca 

Tfcbpa - Tfcapb 

1 
zzMab 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

1 i.e. with a hole, such that there can exist sorne class of curves on it which cannot be contracted into a point. 
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and using the killing form for this algebra given by: 

tr(MabMed) = O 

tr(PaMbe) = Eabe 

tr(PaPb) =O 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

vVith k = 4b3
, where G3 is the Newton constant in three dimensions, the CS action is left 

J 1 ¡ ( a be 1 a b e) ( 1 ) es= 167TG Eabe e 1\R + 3[2e 1\e 1\e 5. O 

The equations of motion are F[A] = dA+ A 1\ A = O (i.e., the solution is a flat A gauge 

connection), and reads explicitly as: 

O AdS curvature 

O zero torsion condition 

(5.11) 

(5.12) 

Where as usual, the Riemann curvature two-form is defined as Rab = d wab + wa e 1\ web, and 

the torsion two-form is defined as ya = d é + wa b 1\ eb. 

In three dimensions, a two-index antisymmetric tensor can be dualized into a vector, thus 
in this case we can define the Lorentz generators Mab = Eabelvfe to simplify the writing of the 

50(2, 2) algebra as: 

[Ma,Mb] 

[Ma,Pb] 

[Pa, Pb] 

Eabelvfe 

E abe pe 
1 e 
l2 Eabelvf 

By the same reason, this induces the rewriting of the spin connection as wa = ~EabeWbe, which 
is left with the same index structure that the dreibein ea has. 2 

If we now further decomposes the algebra elements as: 

Ja +la 
1 -
y(Ja- Ja) 

the (5.13) algebra, splits out as two 5L(2, ~), which does not see each other: 

[Ja, Jb] 

[la, lb] 

[Ja, lb] o 

which means that 50(2, 2) = 5L(2, ~) EB 5L(2, ~). 

2 Consequently, we will also have the dualization of the curvature: Ra = ~Eabc Rbc· 
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The Killing form of a g EB g algebra, where g Algebra is expanded by sorne generators la, 
can be generically decompose as: 

Where TJab is the Killing form of the g algebra. 
This suggest to use the simplified action, given by: 

19rav = Ics[A]- Ics[A] 

(5.18) 

(5.19) 

vVhere now, we use two gauge connections, in where each are valued on the same single copy 
of the SL(2, llt) algebra: 

A 

A 
(5.20) 

(5.21) 

In order to recover the frame formalism objects, starting with the two new connections in 
the new action (5.19), and due that now, dreibein and spin connection shares the same index 
structure 3 , we can take the linear combinations to form the frame fields: 

e 

w 

where l denotes the AdS radius. 

l -
-(A- A) 
2 
1 -
"2(A +A) 

Then is straight-forward to see that making use of the above dictionary, replacing in (5.19), 
one recovers the action for the frame formalism: 

- 1 J 1 Ics[A]- Ics[A] = - 0 tr(e 1\ R + -l2 e 1\ e 1\ e) 
16n 3 

(5.22) 

But now (5.22) requires that the two CS levels k be equal, and equal to k= 4b3 , and where tr 
is taken with the killing metric of one single SL(2, ~) copy. This action, in its explicit SL(2, ~) 
Lie algebra inclex structure, reacls as: 

Ics[A]- Ics[A] = S:G J (ea 1\ Ra + Eabc 6~2 ea 1\ eb 1\ é) (5.23) 

The equations of motion, now are two flat connections F[A] =O, P[A] =O, which using the 
map (5.22) are recluced to ((5.11),(5.12)). These equations, now dueto the clualization of spin 
connection, reads as: 

o 

o 

(5.24) 

(5.25) 

3 From here on, and along al! the text, we will only use the dualized expressions for the frame indices that spin 
connection one form and Riemann curvature two form posses, i.e., with only one frame index. 
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The contact with the metric formulation is given by using: 

9¡.¡v = tr(e(¡.¿ev)) = T/abe~e~ (5.26) 

and, as usual, imposing the dreibein postulate, i.e., vanishing covariant derivative of the 
dreiben with respect to all its índices (frame and space-time índices): 

(5.27) 

together combined with the vanishing torsion condition (5.25), we can solve for the spin 
connection in terms of the dreibein as: 

(5.28) 

Thus, instead of working with one 50(2, 2) gauge connection as in (5.10), we have reduced 
the problem to work with two SL(2, ~) connections as in (5.19). This point, will be the starting 
point for a generalization to include higher spins by extending the SL(2, ~) gauge algebra to 
SL(N, ~) gauge algebra. 

5.3 Review of full interacting Higher Spin Gravity Action In 
Chern Simons formulation 

In [37], Blencowe has generalized the es construction for pure AdS Gravity in order to incor­
porate higher spin fields, falling this way into Vasiliev equations of motions for an infinite tower 
of higher spin fields but in three dimensions. However his construction, rather complicated just 
as Vasiliev one, makes use of an infinite extension of each copy of the SL(2, ~) algebras in such 
a way that also an infinite number of auxiliary fields has to be added for the consistency of the 
theory. In [27], eampoleoni et a.l. have made significant simplifications to Blencowe's work, by 
showing that in three dimensions, choosing the extended the gauge algebra of the es theory in a 
proper way, it is not necessary that the introduced algebra be an infinite one, in order to account 
for higher spin fields and their interactions. Thus, in this way they showed we can construct an 
interacting theory with a finite spectrum of fields with spins from s = 2, ... , N in which each 
spin s is present only once. The purpose of this section to show this construction (for excellent 
review see also [38]). 

The idea behind the work ([27][37]), is that instead of introduce non-linear interactions in 
the free Fronsdal action, which hopefully respect sorne deformed non-linear gauge symmetries 
in the metric-like formalism,i.e., constructing a non -linear gauge invariant action under them, 
the idea is to introduce the interactions, simply, in the frame formalism. In order to achieve this 
it is easier to work, more precisely, with the ehern Simons actions by enhancing the algebra of 
the gauge connections. This construction guaranties gauge invariance a priori. Particularly in 
([27]) this algebra has been chosen in such a way that in the linearized limit this gauge algebra 
accounts properly for the Fronsdal Fields and the gauge symmetries they posses. Thus in this 
way es formulation allows us to construct a gauge invariant action for the first order formalism 
in a very easy way, to a posteriori interpret the metric-like field counterpart, analogously as one 
does in the case of pure AdS Gravity given in the last section. 
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For this consider an action which is the difference of two CS actions as: 

S= Ics[A]- Ics[A] (5.29) 

with k= k= 4~, but now each is valued over the SL(3, ~) algebra 4 , and split the SL(3, ~) 
generators as: 

(5.30) 

(5.31) 

(5.32) 

where eq. (5.30) is the SL(2, ~) subalgebra contained in SL(3, ~), and the generators Tab in 
eq. (5.31) are symmetric and traceless tensors that accounts as the complementary higher spin 
generators 5 , which according to (5.31) transform as irreducible SL(2, ~) "" 80(2, 1) Lorentz 
tensors. Finally (5.32) close the SL(3, ~) algebra. 

In the fundamental representation of SL(3, ~) ( (3 x 3) dimensional matrix representation), 
the higher spin generators Tab can be constructed from the 3 x 3 dimensional adjoint represen­
tation of SL(2, ~) generators, by using symmetrized and traceless products of these generators 
as: 

- 2 e ( ) Tab = J(aJb) - 37labJcJ 5.33 

where 7lab = tr(JaJb) is the Killing metric of the SL(2, ~) part. Note that the matrix trace 
is Tr(Tab) = O, thus they fulfill traceless properties of a Lie Algebra generators. Also note that 
7]abyab =ya a =O. 

Then construct the gauge connections as: 

A 

A 
(A~Ja + A~bTab)dx11 

(A~Ja + A~bTab)dx11 

And from them, lets construct the generalized dreibein and spin connection: 

e 

w 

l -
-(A- A) 
2 
1 -
"2(A +A) 

(5.34) 

(5.35) 

(5.36) 

( 5 .37) 

4In order to extend the gravitational theory, in principie it is not necessary to choose this algebra, it is only 
necessary that the chosen algebra posses a non-degenera te symmetric bilinear form, and contains SL(2, ?R) as a 
sub-algebra. The first is in order to be able to use CS actions to define it, and the last is in order to be able 
to identify what would be the gravitational part of the theory when we set the rest of the field content equal to 
zero. However, one thus should consider that different spectrum of fields, i.e. with different spin, should arise as 
the field content of the theory, depending on the chosen algebra. By the way, this spectrum, may or may not 
contain higher spins, and respectively they may or may not fall in the free Fronsdal theory at linearized limit. 
Furthermore, a particular chosen gauge algebra can have different possibles spectrum depending on the choice 
made to embed the SL(2, ?R) algebra into the chosen bigger one. 

5 As these generators has two Lorentz index, they are spin 2 generators, however they will represent the higher 
spin part of the components of the gauge field which also carry an additional spin 1 because they posses one 
space-time index 
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These objects can be expanded as: 

e 

w 

(e~Ja + e~bTab)dxJ.t 
(w~Ja + w~bTab)dxJ.t 

(5.38) 

(5.39) 

where e~ and w~ accounts for the usual dreibein and spin connections, i.e. spin 2 fields, and 
e~b and w~b accounts for the spin 3 fields, which being contracted with higher spin generators 
Tab are completely symmetric and traceless in its frame índices, which means they are higher 
spin irreducible representations of the Lorentz group in the frame índices. 

After the map given by ((5.36)), the action is left as: 

- 1 J 1 S= Ics[A]- Ics[A] = - 0 tr(e 1\ R + -l2 e 1\ e 1\ e) 
167T 3 

(5.40) 

where R = dw + w 1\ w and the tr is taken over only one single SL(3, !R) copy, which in its 
index structure it explicitly reads as: 

S = 1 J [ a (dw 1 b e bd e ) 
87TG e 1\ a + 2EabeW 1\ W + 2EabeW 1\ W d (5.41) 

+2eab 1\ (dwab + Eed(aWe 1\ Wb) d) + 6~2 Eabe(ea 1\ eb 1\ é + 12ea 1\ ebd 1\ é d)] (5.42) 

Meanwhile in the CS formulation the equations of motion are those of fiats connections 
F[A] = O, F[.A] = O, in the frame formalism the equations of motions for the spin 2 fields: 
ea, wa, reads as: 

(5.43) 

(5.44) 

Note that ((5.43),(5.44)) can be directly compared with the equations of motion of the 
SL(2, !R) theory ((5.24),(5.25)), to directly see the extra contributions coming from the spin 3 
fields eab, wab in the S L ( 3, !R) case. 
The equations of motion for the spin 3 fields eab, wab, reads: 

5.4 Contact with the metric-like formulation 

The action (5.29) is invariant under the infinitesimal gauge transformations: 

o A 
o A 

DI\= di\+ [A,>.] 
[)), = d5..+ [.A,>..] 
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which with the help of the map: 

A = A + 5., s = A - ). 

can be mapped into the frame formulation as the transformations: 

o e 

ow 
ds + [w, s] + [e, A] 

1 
dA+ [w, A] + [2 [e, s] 

which leaves the frame action (5.40) invariant. 
The parameters A ande of the map ((5.50)), can be explicitly written as: 

A A aJa+ Aabyab 

E:a Ja + E:abyab 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

where the Lie algebra components A a gives rise to local Lorentz transformations, and the 
components E:a gives rise to diffeomorphisms, while the components A ab gives rise to a generalized 
spin 3 local Lorentz-like transformation, and E:ab gives rise toa generalized spin 3 diffeomorphism­
like transformation. 

Note that, from ((5.51)), besides the usual action of the spin 2 parameters (A a , sa) on the 
spin 2 fields (ea , wa) (which in the following expression is omitted), also the spin 3 parameters 
(Aab , sab) of the transformation acts non trivially on the spin 2 fields as: 

Also, from ( (5.51)), the spin 2 and spin 3 parameters acts on the spin 3 field as: 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

To identify what would be the higher spin generalization of the metric-like fields, which 
in the pure gravity SL(2, ~) case, the metric (spin 2 field) it is invariant under local Lorentz 
transformations, and it is given as: 

(5.59) 
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in the higher spin SL(N, ~) theory one ask for which combinations of the fields are also 
invariant under the generalized local lorentz-like fields with A parameters. An analysis reveal 
that for the SL(3, ~) case, the combinations given by: 

trsL3 ( e(J.Lev)) 

trsL3 ( e(f.l eve'Y)) 

(5.60) 

(5.61) 

(5.62) 

fulfills this invariance under a gauge transformation with full A (Aa spin 2, and Aab spin 3 
local Lorentz-like parameters). 

However, the spin 2 and spin 3 diffeomorphism related parameters E, through (5.54) acts on 
the fields (5.60) in an unexpected and very mixed way. This has as consequence that meaningful 
quantities in General Relativity as good coordinates invariant, in the higher spin setting are not 
so meaningful because they are no longer invariant under higher spin transformations, e.g., one 
can change the causal structure of a space-time in which we have a higher spin by simply making 
a higher spin transformation. One possible way to understand this, as we saw in chapter (2), is by 
the fact that in general, higher spin transformations are made with higher spin gauge parameters, 
which always must somehow carry lower spins invariant subspaces on its gauge parameters, which 
in last instance, in the interacting system, these lower spin invariant subspaces must acts on the 
lower spin fields. This spots the necessity of posses a enhanced setting of higher spin geometry 
with higher spin geomteric concepts, which is at the moment unknown. 

N ow, trough ( 5. 60), we ha ve only a partí al contact with a metric-like formulation of this 
theory. A full metric-like formulation of this theory (action and equations of motion) it is not 
known yet, because we don't have a full dictionary to go from the frame formulation to the 
metric-like one. The reason of this, is that, at difference as in the case of pure AdS gravity 
(SL(2, ~) case), we don't know a way on how to generically invert the generalized dreibein in 
order to sol ve the equations of null torsion (5.43) and null generalized higher spin torsion (5.45), 
and metricity, for the generalized spin connection in terms of the generalized dreibein. 

5.5 Recovering the free higher spin Fronsdal equations in the 
linearized limit 

From the above definitions for the full metric-like fields, one can recover the free Fronsdal metric­
like fields by making a weak field expansion, at linearized order, around sorne AdS background 
values, i.e., the exact AdS metric which is left invariant by the six killing vectors of AdS3 , and a 
zero spin 3 field which is left invariant also by the ten traceless killing tensors of AdS3 . This con­
figuration, as a background demand, is the configuration with the maximal amount of symmetry. 

Consider for this to have, e~ as the AdS background dreibein and w~ as the AdS background 

spin connection solutions, both in the principal embedding (see section (4.7)), and e~b = O as 

the AdS higher spin background dreibeins and w~b = O as the AdS higher spin background 
connections, thus consider to have the fields as linearized around this background configurations 
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6. 

and from (5.60), the linearized Fronsdal fields follows as: 

<P - -a¡ h 
1-Ll···I-Ls - e (!-LJ !-L2)a¡ 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

It was shown in [27] that these linearized fields, satisfy the free Fronsdal's equations, and 
that the linearized gauge transformations coming from the linearization of (5.51), given by the 
diffeomorphism-like related gauge parameter e, reduces to the free Fronsdal's gauge transforma­
tions on fixed AdS that we saw in chapter 2. 

5.6 Extension to arbitrary N: the SL(N, ~) theory 

The above construction can be done for SL(N, ~) x SL(N, ~) es theories. 
In this case we split the SL(N, ~) algebra as: 

(5.67) 

(5.68) 

where Ja expand a N dimensional representation of the SL(2, ~) algebra and where the 
generators in (5.68) are symmetric and single traceless in all its índices. This line shows they 
transformas irreducible higher spin representations of the Lorentz group 80(2, 1) '""SL(2, ~). 

One can construct the gauge fields of the es theory considering, besides the SL(2, ~) part, 
also the Líe algebra components corresponding to the higher spin generators: 

A 

A 

As befare, we construct the frame fields as in (5.36), and we will have: 

e 

w 

Then we can construct the N- 1 'metric-like fields' as: 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

6 Note we are linearizing around trivial spin 3 background values, i.e., we are considering the spin 3 field eab 

as being its own fluctuations as the solution with maximal symmetry, i.e., the background demands it be. 
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gJ.11J.12 tr(e(J.Ll eJ.L 2)) (5.73) 

9J.L1J.12J.13 tr(e(J.Ll eJ.L 2 eJ.L3J) (5.74) 

(5.75) 

gJ.11J.12J.13 .. ·J.lN tr(e(J.Ll eJ.L2eJ.L3 ... eJ.LN)) (5.76) 

This is allows us to have, N- 1 independent fields. This is because the SL(N, 3t) algebra 
posses N - 1 Casimir invariants corresponding to the trace of the powers p = 2, ... , N of an 
arbitrary algebra element. Thus the above fields, omitting space-time index (and omitting the 
Lie agebra índices) can be seen as constructed by taking the trace of these different N -1 powers 
of the dreibein one form e. 

The free Fronsdal higher spin fields now follows by linearizing around AdS background 
values, which are chosen to be given by only non-null components of the spin 2 generators Ja 
that corresponds to the principal embedding (see below): 

(5.77) 

5. 7 Different SL(2, ~) embeddings into the SL(N, ~) theory 

Now we will see that having the SL(N, 3t) theory, we can describe different theories, i.e., with 
different field content, depending on the different embeddings of the SL(2, 3t) algebra, into the 
SL(N, 3t) algebra, that we chose to describe the pure gravitational part7 (see the works [39],[40]). 

The generators of SL(N, 3t) algebra can be arranged by choosing several different sets com­
posed by three generators, which together forman SL(2, ~) algebra. A particular choice of the 
possible SL(2, ~) sets, describes what is called an SL(2, ~) embedding into SL(N, ~) algebra. 
Depending on the chosen SL(2, ~) set, we will have that the rest of the generators of the com­
plementary Lie algebra space to fill the whole SL(N, ~) algebra, will transform according to 
sorne definite rules, in each case, under the chosen SL(2, ~) set, which can be analyzed on the 
same footing for all the possible SL(2, ~) sets, by studying the adjoint representation of the 
SL(N, ~) algebra. In the adjoint representation of SL(N, ~) we will have its N 2 - 1 generators 
represented by (N2 -1) x (N2 - 1) dimensional matrices to expand the whole algebra. Then we 
can bring each (N2 - 1) x (N2 - 1) dimensional generator into aJordan block-diagonal form, 
accommodating in this way all the generators in different sets, each sets corresponding to the 
different blocks of sorne definite n x n dimensional size categorized by it spin s and given by 
n = 2s+ l. We will call this idea of spin s as conforma! spin, but it is essentially the same concept 
of spin that arise when one study finite dimensional representations of e.g. SU (2). Thus, each 
set of generators of sorne fixed conforma! spin s will transform under a representations of the 
SL(2, ~) algebra of the same conformal spin s. In this way, by choosing different embeddings, 
we will have different branchings for the generators of the SL(N, ~) algebra according on the 
spin of the SL(2, ~) part in which they transform. 

7 Please understand the pure gravitational part, as the part corresponding toa chosen SL(2, al) algebra which 
remains when we turn off the components along the other generators that completes SL(N, al) 
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For example in the case of SL(3, íR) algebra, we will have two branchings. One is given by 
choosing the so called 'principal embedding' of the SL(2, íR) into SL(3, íR), and is characterized 
by the fact that the SL(3, íR) algebra in the adjoint representation splits (in this case) in two 
sets of generators: one is a set of conforma! spin 1 (3 x 3 dimensional) and the other set is of 
conforma] spin 2 (5 x 5) dimensional, and of course dueto the dimensions, each set occurs once, 
giving the branching 8 = 3 EB 5. Also, note that this is the branching corresponding to choose 
the Ja SL(2, íR) generators in the adjoint of SL(2, íR) (3 dimensional representation, i.e. spin 
1 representation) and the Tab generators of eq. (5.31), which in the 8 dimensional adjoint of 
SL(3, íR) can be seen as represented by a (5 x 5) block matrix, and thus as transforming under 
a spin 2 representation of the SL(2, íR) algebra, as the equation (5.31) shows. 
The other existing branching in SL(3, íR) is given by the so called 'diagonal embedding' of 
SL(2, íR) into SL(3, íR). In this case the generators splits in four sets of generators, each set 
is of different spin related size, and they are given by the branching 8 = 3 EB 2 x 2 EB l. This 
say that the first set transform under a conforma! spin 1 representation of SL(2, íR), the second 
set appears twice and, each copy, transform under a spin ~ representation of SL(2, íR), and the 
third set transform as a conforma] spin O. 

Now, concerning the Líe algebra components of the gauge field, to see the real field content 
of the theory, the analysis is as follows: Consider to take the conforma! spin s of each set of 
generators, then consider the fact that the SL(3, íR) gauge fields carry also 'spin 1' vector space­
time index. Thus the final field content that a theory with definite SL(2, íR) embedding into 
SL(3, íR) posses, will be given by adding 'one' to the conforma! spin s that each set of a given 
branching posses. This means that the theory defined in the principal embedding will posses, 
as field content, one spin 2 field and one spin 3 field. On the other side the theory defined on 
the diagonal embedding will posses as field content, one spin 2, two spin ~ bosonic 8 Rarita 
Schwinger field, and one spin 1 field. Thus, we learn that different embeddings of the SL(2, íR) 
'gravitational ' part, leads to different theories with the same SL(N, íR) algebra. 

In particular, note that by construction the free Fronsdal Higher spin theory would be only 
recovered when we choose the principal embedding as the gravitational part, thus if we are 
trying to describe a theory of interacting higher spin, i.e., which falls into the free Fronsdal 
equation in the linearized limit, we better work with the principal embedded SL(2, íR) part as 
the gravitational part. This last point, at least in my concern, has not been made explicit in the 
literature before. In fact it is very natural to wonder about if the diagonal embedding posses a 
possible higher spin interpretation (may be as composed states of lower spin particles) due that 
its spectrum does not posses fundamental spins higher than 2. 

5.8 Solutions of the SL(3, ~) theory with asymptotic VV3 symme­
tries a la Brown-Henneaux 

In [27] it has been also shown that this formulation of a fully non-linear interacting spin 2 and 
spin 3 fields, posses a solution with enhanced conforma! asymptotic symmetries given by the 
W3 Zamolodchikov algebras ([41]) with a non-trivial central charge, which is the same as in the 

8 Bosonic, because the algebra is realized with cornrnutators, not with anti-cornrnutators as in super-gravity in 
which one uses a super-algebra 
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case of pure AdS gravity, a la Brown-Henneaux [34] which was done in the metric formalism. To 
achieve this, in [27]' it has been worked in the es gauge connections ( directly linked with the 
frame formalism), where it was chosen the right AdS boundary conditions on the on shell bulk 
gauge fields. For this it was used the asymptotic AdS gauge connection with leading behaviour 
at O(r2 ) pertaining to the principal embedding of SL(2, ~) into SL(3, ~), and then it has been 
looked for a SL(3, ~) solution which departs softly from the background, i.e., only departs 
asymptotically from the asymptotic AdS solution in the asymptotics sub-leading terms 0(1). 

(A- AAds)IBoundary = 0(1) 

(A- AAds)IBoundary = 0(1) 

(5.78) 

This choice of boundary conditions, when seen at the boundary, constitutes an asymptotic 
gauge fixing that allows to the authors to isolate the 'would be physical' degrees of freedom of 
the full interacting system, which propagates at the boundary with the correct spin (s = 2, 3). 
This result should be considered somehow expected because of the AdSjeFT conjecture we will 
see in the next chapter (6). 

In order to find this solutions, the authors considered the following flat solutions, working 
in coordinates r and light-cone coordinates X± = f ± cp coordinates: 

(5.79) 

(5.80) 

where, in order to obtain them, it was chosen a partial (not complete) gauge fixing at 
the boundary, trough the boundary conditions A_ = O ( and A+ = O for the other copy), 
and trough the choice for the radial group element at the boundary, which was chosen to be 
b(r) = eln(r)Lo. Also, in (5.79,5.80) the fields a(x+) and a(x_) respectively, are allowed to 
carry remaining unfixed pure gauge degrees of freedom, by taking values in the whole SL(3, ~) 
algebra 9 . This partial gauge fixing at the boundary, trough the equations of motions, extend 
to the whole interior of the bulk manifold leading to chiral fields as shown in (5.79,5.80). And 
it is also the gauge fixing condition which allows to keep the es theory invariant in a manifold 
with boundary10 under 'gauge fixing preserving' gauge transformations. And it is well known 
that in the es theory with a boundary the es solutions, i.e., for one copy, e.g., lets say A in 
(5.79), leads to a Kac-Moody algebra in the Poisson bracket structure of the phase space for 
the remaining degrees of freedom (inside a( x+)), and analogously for the other copy A (inside 
a(x_)). However, these solutions are not asymptotically AdS, thus it is necessary to further fix 
sorne of the remaining gauge freedom by using the criteria given by (5.78), which is the same 
to demand the desired AdS boundary conditions. As a final result, this further gauge fixing 
procedure gives gauge connections with a mínimum amount of remaining pure gauge degrees of 
freedom, which can be interpreted as physical at the boundary: 

9 For the convention over the generators of SL(3, 3í') algebra used here, see appendix 
1°For a discussion of the CS theory with boundary see appendix. 
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Understanding the symmetry in the connections A and A, the discussion that follows will 
be given for only one copy A because for the other copy A can be done analogously. 

Having fixed the gauge for A as in (5.79) with a(x+) as in (5.81), they look for the allowed 
gauge transformations which preserves the gauge choice for the gauge fixed components Ar, A_ 
as in (5.79), i.e., that leaves them invariant. But they also required that the remaining gauge 
freedom inside a(x+) as in (5.81), be allowed to change under this gauge transformation, but in 
such a way that leaves invariant the generator structure of (5.81), i.e., only allowing to change 
the finally remaining pure gauge degrees of freedom .C(x+), W(x+)), finding that the gauge 
transformations with parameter A= b-1 (r).\(x+)b(r) fulfill this condition, where: 

1 2 

>-(x+) = 2::: Ei(x+)Li + 2::: xm(x+)Wm (5.82) 
i=-1 m=-2 

and where the parameters inside (5.82) are conveniently expressed with the help of the 
redefinitions E = E1 and x = x2 as: 

-2 
X 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

Considering (5.83), it was found that under this transformation the fields .C(x+) and W(x+) 
transform as: 

E.C1 + 2E1 .C + .!5_E111 

47f 
EW' + 3E1W 

2xW' + 3x'W 

-~{2x.C"' + 9x'.C" + 15x".C' + 10xm.c + 4~x(5J + 6~7f (x.C.C' + x'.C2)} 

where a prime denotes derivative with respect to x+. 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

Note that eq. (5.89) says that the field .C(x+) is a non-primary field of conforma! weight 2, 
i.e., energy momentum tensor of what would be the conforma! boundary theory, and (5.90) says 
that W(x+) is primary field of conforma! weight 3 (see appendix). 

Furthermore, just as it was done by Brown-Henneaux in [34], for the spin 2 case, where TV2 
Virasoro conforma! algebra was found, in [27] it was shown that this asymptotic tV3 conforma! 
symmetry algebra can be realized canonically, trough the Dirac Brackets, worked out directly 
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from the constrained es theory with the circle as a boundary. 

The Poisson Bracket algebra of the reduced phase space of the theory, was calculated in [27] 

and leads to the w3 algebra: 

{.C(cp), .C(cp')} 

{.C(cp), W(cp')} 

{W(cp), W(cp')} 

k 
-(8(cp- cp').C'(cp) + 281(cp- cp').C(cp) + -8"'(cp- cp')) (5.93) 

47r 
-(28(cp- cp')W'(cp) + 38'(cp- cp')W(cp)) (5.94) 

-~(28(cp- cp').C111 (cp) + 98'(cp- cp').C"(cp) + 158"(cp- cp').C'(cp) 

+ 108111 ( cp- cp').C( cp) + ..!5._8(5) ( cp- cp') 
47r 

647r 2 +y(8(cp- cp').C(cp).C'(cp) + 8'(cp- cp').C (cp))) (5.95) 

where the equal time dependence of the fields in (5.93) has been omitted. 
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Chapter 6 

Review of AdS / CFT Holography for 
bosonic lower spins 

6.1 Introduction 

The AdS/CFT conjecture was firstly spotted in the work of Maldacena [42] inside the context of 
string theory on AdS5 x 8 5 and N= 4 super Yang-Mills in four dimensions. After that, it was 
further clarified and generalized by Witten in [43], where it was also stated that the holographic 
phenomena will be present in any theory which posses a conforma! symmetry. Subsequently, the 
conjecture was quickly developed even further, leading to highly extended works, such as the 
one by Aharony et al. [44], and being applied to many systems such as strongly coupled QCD, 
condensed matter systems, etc. At today, AdS/CFT is a highly developed tool to study quantum 
systems at regimes in which perturbative methods fails, and although not fully understood, the 
application of AdS/CFT to systems possessing higher spins fields is not an exception. Actually, 
there is a lot of research works that are being carried out on this line. Regarding the importance 
of this review chapter to the original work of this thesis, we can say that it lies in the fact 
that in the theoretical framework we ha ve a two dimensional CFT with W N symmetries defined 
on the boundary, and we would like to understand, in a sensible AdS/CFT picture, the three 
dimensional AdS gravitational solutions associated to these two dimensional CFT. 

6.2 AdS/CFT conjecture at level of symmetries 

AdS/CFT is a tool for build and/or study theories based on the duality given by equivalence of 
having a theory with the conformal group as the group of symmetries living in flat d dimensional 
compactification of Minkowsky space, and a gravitational theory with (global or asymptotic) 
AdS isometries in d + 1 dimensions. This is due to the isomorphism of these two groups which 
is SO(d, 2). 

In d > 2 dimensions 1 a theory which posses conforma! symmetries (a scale invariant theory), 
can be understood as a theory with the symmetry of the conforma! group expanded by the 

1In two dimensions the conforma] group is infinite dimensional, this fact can be seen directly by considering that 
in two dirnensions we can work in the complex plane, thus considering that any holomorphic function defined on it 
can give rise to a conforma] transformation, by expanding it in a Laurent series and then by linear independence 
of the terms in the series, we will see that each term in the series will be accornpanied by a generator of the 
conforma] group in two dimensions. Of course this result can be also obtained if we do not work in the complex 
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generators: 

[MJLV> Nipa] 

[Pp,MJLv] 

[Kp, M~-'v] 

[K~-', Pv] 

[D,P~-'] 

[D,K~-'] 

NfpvryaJL + NfJlpryva - MavrypJl - NfJlaryvp 

( rypJLPv - rypvPJl) 

(rypJL}(V- rypvKJl) 

2(ryJlvD- JJLv) 

p~-' 

-K~-' 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

vVhere NIJLV Lorentz transformations generators, PI-' are translations generators, D are di­
latations generators, and KJL are generators related to special conformal transformations. These 
generators acts on the field configurations that the theory posses, as they usually does in field 
theory, depending on the nature of the field, by means of finite or infinite dimensional represen­
tations. 

Also, this symmetry group is isomorphic to the isometry group of AdSd+l space, i.e. the 
group of transformations in a d + 2 dimensional space that leaves invariant the quadric: 

d 2 

2:: x;- 2:: y~= -R2 (6.8) 
i=l n=l 

The group action in the fundamental representation is on a vector defined in ~d, 2 . The 
induced metric on this surface is the AdSd+l metric, and the isometry group of this surface 
can be realized infinitesimally trough its Killing vectors as generators, and the Lie bracket as 
operation (with Líe derivatives), and the action on field configurations which lives on AdS is 
realized trough the Lie derivative along the AdS Killing vectors. The algebra of Killing vectors 
is isomorphic to the SO( d, 2) algebra. 

Furthermore the conformal boundary of a d+ 1 dimensional AdS space is the compactification 
of d dimensional Minkowsky space by adding sorne points at infinity 2 . Thus, the isometry group 
of AdSd+l, at the boundary, can be seen as acting as the d dimensional conformal group does 
on the field configurations at the boundary. 

6.3 AdS/CFT correspondence at level of quantum theories 

The AdS/CFT correspondence originally ([43]) states that: 

(6.9) 

Where W[qs] is the effective action of d-dimensional theory, which classically posses canfor­
mal symmetries (which may or may not survive at quantum level), and the right hand side is 

plane by a straight forward analysis done by studying the properties of conforma! transformations done in a 
general two dimensional metric. The conforma! group in the two dimensional case will contain a sub-algebra 
which is isomorphic to the 50(2, 2) algebra and is isomorphic to the algebra of killing vectors in exact AdS3. 

2 Analogously as the Riemann sphere is the compactification of ~2 
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the partition function of a d + 1-dimensional theory, which mayor may not include gravity and 
in which, classically, its gravitational background ( dynamical or not, repectively) asymptotically 
enjoy the symmetries of AdSd+l space-time. In the right hand side, the path integral over all 
the possible bulk fields configurations, it is constrained to be only over bulk fields which at the 
boundary of AdS space its leading behavior, carries as coefficient the value of the boundary field 
cp. 

On the left hand side of (6.9), for sorne d dimensional QFT, we have that the effective action 
of connected green functions W(cp) is given by: 

(6.10) 

Note we added a subscript 'CFT' to recall that this discussion, which is valid in general, in 
this case will be related to the CFT side of the correspondence. In the notation used in (6.10), 
43i denote the sources which couples to Oi CFT fields, and Oi denote its quantum counterpart 
operators of the quantum 'CFT'. As usual, this allows us to construct correlations functions for 
the operators by taking functional derivatives of vV with respect to the sources, and then setting 
the sources to zero, e.g.,: 

(6.11) 

Of course higher-lower order correlators can be computed. 
On the right hand side of (6.9), i.e. the AdSd+l bulk side, the partition function for the d + 1 
dimensional gravitational theory, in a saddle point (semi classical) approximation, i.e., allowing 
only the contribution which comes from the classical configuration (for bulk on-shell fields given 
by 'P ) , is defined as: 

Z ( ·~) - elgravo(r.p) 
grav '!-' - (6.12) 

where lp are on-shell bulk fields, and Igrav o( lp) is the on shell 3 gravitational action. 

In saddle point approximation of the quantum bulk theory, the AdS/CFT conjecture states 
that: 

W(cp) = Igrav o(lfJ) (6.13) 

subject that the on-shell bulk fields lp posses boundary values given by rlaAdS rv cp, which 
of course now, dueto the on-shell condition, they has to be given by boundary conditions com­
patible with the on shell condition for bulk fields in an AdS background, or in other background 
(a dynamical one if includes gravity) which asymptotically goes as AdS does. Note that, in the 
saddle point approximation, the bulk on-shell action means that we are dealing with a classical 
theory in d + 1 dimensions, and on the other hand, the effective action of the d dimensional 
conforma! theory means we are dealing with a quantum theory with conforma! symmetries in 
the d dimensional boundary of the d + 1 dimensional AdS space-time. 

3 To be the on-shell action, besides from being the action of the theory valued at the on-shell field configurations, 
it has to be such that its functional derivatives are well defined in arder for this action truly posses an extrema. 
If this is not the case it has to be re-defined by adding suitable boundary terms to it. 
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6.4 Holographic renormalization and the radial coordinate 
paradigm 

In AdS/CFT correspondence, specifically in the AdS side, one usually choose coordinates of the 
base manifold, such that one of them is normal to the AdS boundary. This coordinate runs 
from the boundary, along the bulk, up to the 'interior point' of the bulk manifold. The other 
coordinates are the ones that successful describes the boundary, and thus they are used to sitting 
the CFT fields to be defined on them. One usually uses sorne symmetric configuration of the 
bulk manifold, e.g., in euclidean AdS/CFT one can think in the sphere, in which the picture 
can be visualized as: 

Figure 6.1: AdS3 euclidean ball 

Once we have properly chosen the coordinates to perform AdSd+I/CFTd computations, it 
may happen (and it usually does) that the 'gravitational' action Igrav valued on the on shell bulk 
fields configuration, turns out to be infinite at the d dimensional boundary. These infinities are 
divergences coming from the radial coordinate at the 'point' in which the boundary is located. 
On the other hand, looking the other side of the correspondence in (6.13), this phenomena 
manifest itself by infinites in the effective action ~V. Infinites in the quantum theory spots the 
necessity of carry out a renormalization process of W to get ride of them. This is the first 
clue that the radial coordinate is somehow related to an energy scale at which we are looking 
the quantum d dimensional theory. In order to renormalize the d dimensional boundary theory 
we can work on the gravitational side, and introduce a regulator, i.e., a cutoff in the radial 
coordinate to be able to identify the divergent terms, and then we can construct local boundary 
counter-terms to eliminate them, giving rise this way to a renormalized on shell gravitational 
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action which is finite [45]. The existence of local counter terrns, in general has been proven to 
be guarantied in the work [46]. Also, it could happen that in order for this renorrnalized (finite) 
on shell action posses a well defined Dirichlet problern, we could need to add sorne suitable finite 
local terrns to it. The final result of this process is a renorrnalized effective action Wren for the d 
dimensional theory which, after the renorrnalization process, could be or could not be conforrnal 
at sorne points of the 'energy scale' related to the radial coordinate of the bulk side. In fact, 
rnost of the systerns, e.g. the dual d dimensional theory of AdSd+l gravity (is only one of thern) 
has shown to posses an anornaly called conforrnal anornaly (see [47]) at the boundary, such that 
if the classical boundary theory which gave rise to Wren is conforrnal, the consistent quantiza­
tion of this theory kills this syrnrnetry at the quanturn level, at the sarne energy scales at which 
the classical theory do posses it. However, it could happen that the conforrnal invariance at 
quanturn level can be recovered at sorne other energy scales, i.e., leading toa null beta function. 

Note that in the gravitational side of the correspondence, the AdS boundary is located at 
large distances, so frorn this side of the theory, the boundary divergences correspond to IR 
divergences of the 'would be' the quanturn d + 1 dimensional bulk theory, according to right 
hand side of the full correspondence (6.9). Furtherrnore, by a hand waving argurnent one can 
say that large distances frorn the centre at the bulk side (near the boundary, frorn the interior 
of the bulk point of view distan ce is large), corresponds to short distan ces frorn the boundary 
at the CFT si de ( near the boundary, frorn the boundary point of view distance is srnall), and 
just as this suggest it has been shown that the AdS/CFT conjecture use to relates, i.e., spots 
a duality relation [42] between weakly (AdS) / strongly (CFT) coupled theories at large bulk 
distances (IR), and between strongly (AdS) / weakly (CFT) coupled theories at short bulk 
distances (UV). 

6.5 Abused and over-simplified scalar field example In exact 
AdS 

One of the rnost abused and sirnplest exarnples of the AdS/CFT correspondence is the case of 
a rnassless scalar field living on fixed AdS background. The scalar field, rnassive or rnassless 
does not posses gauge syrnrnetries, and here resides its sirnplicity: no gauge syrnrnetries rneans 
no gauge fixing is needed at the boundary to isolate sorne 'would be' physical boundary degrees 
of freedorn, thus it is hard to imagine how this can shed sorne light in the rnassless higher spin 
problern. However, it results to be the best exarnple to explain the correspondence, because 
rnany of the general ideas of the correspondence are present, and now we will show it in detail. 
For this consider, we are in fixed AdS background with is rnetric given in Poincare coordinates: 

ds2 = ~(dz2 + dxidxi), whereiruns from i = 1, ... , d 
z 

(6.14) 

where the boundary of AdS space is located at z = O, and the interior is located at z = oo. 

The rnassive scalar field action on fixed AdS background is given by: 

(6.15) 
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Its equations of motion are: 
(6.16) 

to get sorne knowledge about the asymptotic (near z = O) boundary behavior of the solutions, 

consider first to salve for spherically symmetric solutions: 

(6.17) 

whose solutions are: 
(6.18) 

where the exponent b.., called conformal dimension 4 , is one of the two solutions of the mass 

parameterization: 
(6.19) 

If we now we allow for a dependence on the boundary coordinates Xi, we can salve: 

(6.20) 

which has an asymptotic solution (near z = O) in a series expansion that schematically goes 

as: 
(6.21) 

For the discussion that follows, lets assume that in in ( 6.21) we ha ve chosen the val u e of b.. 
such that d -· b.. < b.., thus t/Jo will be the coefficient of the leading power near z = O. 

The asymptotic expansion (6.21) is useful to identify what would be the sources and what 
would be the vacuum expectation values (Vev's) in the boundary theory. To see this consider 

the variation of the action 6.15: 

( 6.22) 

Then plugging the on shell solution (6.21) on the variation 6.22, the bulk part is zero, and 
we only get contributions from the boundary (near z = 0): 

(jJAdS o.s = Obulk + r ddx d~l Z20z(Zd-6.t/Jo + · ·. + Z6.tPl +. · .)(zd-6.0t/Jo + · · · + Z6.0tP1 + · · .) 
laAdS Z 

r ddx( {(d- b..)zd-26.t/Jo8t/Jo + ... } + {b..tjJ18t/Jo + (d- b..)t/Jo6t/Jl} 
laAdS 

+{b..z26.-dtP10tP1 + ... } ) (6.23) 

The boundary part has been divided into three parts distinguished by curly brackets: the 
first part is divergent, the second part is finite and the third part is vanishing, as z -1- O. 

The vanishing part does not provide information. On the other hand, it was shown in [46] 
that in general terms, i.e., for any theory, the divergent part can always be written as a total 
variation, thus it can always be suppressed from the original on shell action action JAdS on shell by 

4 lt is the conforma! dimension of the operator of the CFT, this can be seen by the fact that the full scalar 
field has to posses conforma! dimension equal to zero, thus from (6.18) it follows that c/J1 ... 
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adding suitable local counter-terms to it, to build in this way a new renormalized on shell action 
in the holographic renormalization process. Also, in order to get a well posed Dirichlet problem, 
further terms corresponding toa total variation of the zero mode (finite part) are needed to be 
added to the renormalized on shell action. The final outcome of the application of this process 
to the variation of the original on shell action, is directly seen from (6.23) to be: 

Mren = (2D.- d)(fJ18r/Jo(x) (6.24) 

This expression says that the final renormalized on shell action Iren will be asymptotically 
well behaved (finite), and possessing an extrema when r/Jo is held fixed at the boundary. Leading 
to the relation: 

8Iren 
Ór/Jo(x) = (2D.- d)cp1(x) ( 6.25) 

where, according the correspondence, this means we will have a relation between the sub­
leading component cp1 ( x) of the bulk field at the boundary, and the Vev's in presence of sources, 
given by: 

(O( X) )sources = (2D. - d)r/Jl (x) (6.26) 

Also, having carefully followed the holographic renormalization process discussed above, 
but being applied directly to the original on-shell action (not to its variation) one gets the 
renormalized action Iren as: 

1 J d Iren = 2(2.6.- d) d xr/Jo(x)rfJl(x) ( 6.27) 

which using the correspondence means that the leading component rf;o of the bulk field at 
the boundary, sources an operator O at the boundary: 

1 J d Wren =- d xr/Jo(x)O(x) 
2 

( 6.28) 

Also, as (6.24) shows explicitly, the renormalized on shell action Iren has to be considered 
as a function only on the sources r/Jo(x). In fact note that, if we consider r/Jo(x) and r/J1(x) as 
independent, from (6.27) we will have: 

( 6.29) 

which gives a wrong answer because (6.29) does not coincide with (6.25) by a factor of one 
half. Thus, in order to get a well posed prescription and the correspondence makes sense, we 
ha ve to consider the sources: r/Jo ( x) and Vevs: rP1 ( x) as to be related in so me way. N ow we will 
see that they has to be related satisfying sorne regularity conditions at the interior z = co of 
the bulk manifold. 

To illustrate the process lets take the Fourier modes of the field r/Jp(z) = J ddpcp(z, x)eix;p; 
then making sorne further simplifications, eq. (6.20) can be reduced into a modified Bessel 
equation for the Fourier modes, whose solutions are in terms of modified Bessel functions: 

(6.30) 
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This solution posses two integration constants, which has to be fixed sorne way to achieve 
regularity at the interior. As the modified Bessel function Ia(pz) has limz->oo Ia(pz) = oo, Ya, 
regularity at the interior demands e1 = O. However, in this Fourier transformed form of the 
solutions, it is difficult to see directly the relation that the non-transformed asymptotic leading 
c/Jo ( x) and sub-leading c/J1 ( x) components has to satisfy. 

A possible way to see the relation directly, it is considering the already well behaved (finite) 
exact solution of (6.20) obtained by the method of green functions [43], which is regular at the 
interior ( z = oo) of the bulk manifold: 

(6.31) 

where: 

(6.32) 

is called the boundary to bulk propagator, whose role as (6.31) show, is to build bulk fields 
starting from boundary fields, and e6. is an integration constant unimportant for this discussion. 

Being regular, the solution (6.31) already encodes the regularity conditions that the compo­
nents c/Jo ( x), c/J1 ( x) has to satisfy. In order to see it explicitly, we expand the form of K 6. ( z, x; iJ) 
near the boundary z =O, considering two cases: 

when x ::/= iJ in which, near z = O, we have: 

( 6.33) 

where ... means terms of higher orders than z6.. 
The other case is when iJ is near x, case in which under the integral sign the function given by 
z-d Kt;. (z, x; iJ) near z = O behaves as a multiple of the delta function (witten): 

(6.34) 

using these results we have near z = 0: 

A, ( -) d-6.A, ( -) e 6. J dd c/Jo (iJ) 
'!-'6. Z 1 X = Z '!-'0 X + t;.Z Y(- -)26. + · · · 

X - y regular terms 
(6.35) 

Comparing with (6.21) at order z6., we can identify the regularity condition on the asymptotic 
components, being: 

( -) j d c/Jo(iJ) c/J1 x = e6. d y (x _ iJ)26. (6.36) 

Plugging this result in (6.27) we have: 

1 ( ) ¡ d j d c/Jo(x)c/Jo(Y) 
Iren = "2 2~- d e6. d x d y (x _ iJ) 26. + ... (6.37) 

In which it can be see that taking functional deriva ti ves with respect to the source cp( w) we 
have the right answer: 

(6.38) 
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which correctly coincides with (6.25). Furthermore this expression becomes null when we 
turn off the source, which is an expected result. 

Finally, taking one further derivative with respect to the source we have the two point 
function (propagator): 

82 Iren = (~~- i2~D. = (O(x)O(fj)) 
84Jo(x)84Jo(il) x-y 

(6.39) 

which has the correct distance dependence for an operator O(x) of conformal dimension ,6.. 

6.6 Stressing the importance of bulk regular solution at the in­
terior of the bulk manifold in AdS / CFT correspondence 

Summarizing, with the above example, we saw that in principie, when we study boundary con­
ditions for the bulk fields, the sources can be free asymptotically, i.e. they are not related with 
the Vev's at the boundary, but if we then go into the interior of the bulk manifold, regularity of 
the solution, which is needed for the consistency of the AdS/CFT correspondence, demands they 
be related at the boundary. In other words, for the consistency of the correspondence, it is not 
sufficient to have an on shell bulk solution, it is rather necessary to have a regular bulk solution 
which has to be accomplish as such, by sorne regularity conditions between sources and Vev's, 
which in final instance will lead to sorne integrability conditions necessary for the consistency 
of the correspondence. Consequently, this means that in order to compute correlation functions 
by taking functional derivatives of the renormalized on shell gravitational action, in this process 
we have to consider the on shell action as a function only in the sources. Once we have taken 
the functional derivative, and only then, we can set the sources equal to zero to get the correct 
correlation functions between operators. It is important to recall that this scheme repeats itself 
in other examples of the AdS/CFT correspondence, and in particular we will use it when we 
tackle the problem of higher spin black holes in chapter (8). 

6. 7 Further comments about the correspondence 

Having shown the most simple example of the AdS/CFT correspondence, sorne comments are 
in order about the use of AdS/CFT: 

• If we ha ve a theory with other type of metric-like field content, e.g, vector fields, symmetric 
tensor fields, etc, Lorentz invariance of the boundary theory demands that we have to 
consider that the bulk fields defines, at the boundary, sources of the same nature in the 
CFT, which must respectively couple (sources) to its operator counterpart in the CFT. 
This means: as we saw in the explicit example, a scalar bulk field defines a scalar source 
at the boundary, this scalar source at the boundary it is coupled to a scalar operator of 
the CFT. Similarly, a vector bulk field defines a vector so urce at the boundary, this vector 
source at the boundary it is coupled toa vector operator of the CFT, etc. If we have AdS 
gravity as the bulk theory, the metric field at the boundary defines a boundary metric, 
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which acts as a source in the boundary CFT. The corresponding CFT operator, sourced by 
this boundary metric, is the Energy-momentum tensor of the boundary CFT. For Higher 
spins ,this scheme must be in this same way (see [19]). 

• The AdS/CFT correspondence can be applied by starting with an explicit theory in the 
bulk (AdS side), and then, after sorne work, one can compute the correlators between 
operators of the boundary theory, without explicitly make sorne realization of the boundary 
theory, i.e., without having knowledge of what is the explicit CFT Lagrangian. Something 
like this is what was done in the scalar field case. When working with gauge theories, in 
this case one usually can compute the symmetries that the dual CFT posses. 

• Similarly, if we only know the symmetries of a CFT, without explicitly know which is 
the CFT Lagrangian, we can build the bulk theory starting from the boundary data, i.e., 
starting from sources and Vevs (see [45]). 

• In the process of the holographic renormalization (see also [45], [19]), started with a given 
bulk Lagrangian (as in the above scalar field example), we could ha ve build explicitly 
if we want, a new bulk Lagrangian which accounts for introducing interactions ( or self­
interactions) along the bulk, which were absent in the original bulk Lagrangian. These 
extra pieces would correspond to the needed deformation of the bulk theory in order for 
its quantization to be finite. This phenomena in AdS/CFT language it is usually called 
by the phrase 'Adding interactions along the bulk'. 
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Chapter 7 

Review of Holography in Chern 
Simons formulation 

7.1 lntroduction 

In this section we will see how from a es action in a manifold with boundary, but without 
a metric structure, and only linear in first order derivatives of the fields, people use to do 
holography. 

7.2 Chern-Simons holography from the gauge connections with­
out a metric structure 

Recall that the ehern Simons action is a special case which cannot be directly connected with 
the AdSjeFT picture as was done for the scalar case in chapter (6), because its equations of 
motion are only first order in derivatives, and furthermore it lacks of a metric structure on all 
its expressions. Thus, in a first attempt is not directly to see how to carry out an holographic 
study for a system which is describe by the es action, as one would do it for e.g. the scalar 
field case. 

7.2.1 Global W3 symmetries from Chern-Simons theory 

In chapter (5) we saw how from a globally defined (radial independent) gauge fixing in the 
classical es theory with boundary, one can obtain a gauge fixed es gauge connection with 
remnant classical W3 symmetry, in which the remaining degrees of freedom, i.e., the fields 
.C(x+), W(x+) can be interpreted as the 'physical' degrees of freedom of a theory which lives 
on the two dimensional boundary. N ow we will see how this result can be connected with the 
AdSjeFT picture, in which holography allows to interpret these fields as vacuum expectation 
values for their analogous operators f(x+), W(x+) of a quantum theory with W3 conforma! 
symmetry at the boundary of AdS space-time. 
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7.2.2 Adding sources: CFT Ward identities from a deformation of the CFT 
action 

Now, in the higher spin context, we will see the problem of how the symmetries of the classi­
cal system manifest itself in the quantum theory as sorne existent relation between operators 
correlation functions, leading, in this way to sorne identities between correlators called Ward 
identities. The main idea of this section, in the higher spin context, has been developed in [48], 
which uses a slightly different line of though than the earlier work [49] in which Ward identities 
computations were developed in light cone gauge coordinates for holomorphic fields. It is worth 
to mention that the work [48] has been partially inspired by the work [50] presented in this thesis 
in which the particular case for constant fields was firstly developed to subsequently be strongly 
supported with sorne of the ideas presented in [51] from a Hamiltonian point of view. Even if 
the work [50] chronologically appears earlier than [48], for an easier exposure of the ideas the 
work [48] will be shown firstly because it makes an easier contact with what is pretend to be 
shown here. 

To start, lets focus on one side of the AdS/CFT correspondence and compute the effective 
action for the two dimensional conformal theory that lives on the boundary in the usual way, 
with the partition function: Z[<,O] = eW(<P) = (ef d2 x<f?O)cFr, where <,O are the sources and 8 are 
the CFT fields or the symmetry currents of the CFT, etc. In the following lets think that we ar­
rive to this expression starting with Hamiltonian path integral method as if we were functionally 
integrating over the Hamiltonian phase space. In this way, all the expectation values ( ... ) can be 
thought as taken with the Hamiltonian path integral of the CFT. Thus a possible insertion of the 
exponential operator ef d2x<f?O, inside correlations functions, can be understood as a Hamiltonian 
deformation of the CFT action. At the moment, it is unknown to us the explicit form of the 
CFT action (Lagrangian or Hamiltonian), but we know through the analysis done in chapter 4, 
that it posses a conformal symmetry which is realizable canonically through the Poisson bracket 
of the charges 5.93, which is well defined at the Boundary 'point'. Thus this symmetry has to 
be a symmetry of the unknown CFT action, an due to it is canonically realizable it must be a 
symmetry of the CFT hamiltonian. Thus the deformation we will introduce on the CFT, it will 
be a symmetry of the Hamiltonian CFT system. 

Now, specifically in our case, we will have: 

(7.1) 

This expression does not tell us anything about the method used to compute the effective 
action, and certainly it should not depend on the method (Lagrangian or Hamiltonian). But as 
we are interested in compute the Ward identities for correlators in presence of sources, we need 
to use it without turning off the sources. 

In the following we will make emphasis in the quantum operators description of the system 
by denoting explicitly the CFT fields inside the original path integral, as quantum operators 
inside brackets: 

(7.2) 

where temporal ordering at the left side has been assumed. 
Now, consider the expectation values for the operators in presence of sources, by functionally 

differentiating (7.2) with respect to one of the sources, g.e., lets say E, and showing explicitly 
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the temporal ordering denoted by the operator 'T', we get: 

(7.3) 

and by taking temporal derivatives at both sides of (7.3) we get: 

Now considering an expression of the form: 

J(t', 'P') = j dtdr.p a(t, r.p)(T(X(t', 'P')'Y(t, 'P))) (7.5) 

Dividing into two parts the integral interval in (7.5),i.e. first for -oo ~ t ~ t' and then for 
t' ~ t ~ oo, and considering explicitly the temporal ordering we get: 

¡t' ¡t' J(t', 'P') = dtd'{J a(t, 'P)(X(t', 'P')Y(t, 'P)!- dtdr.p a(t, r.p)(Y(t, 'P)X(t', r.p')! (7.6) 
t¡ t2 

then from 7.6, it follows exactly the identity: 

Ot' f(t', 'fJ1) = j dr.p a(t', 'fJ)( [ X(t', 'fJ1), Y(t', 'P)]) 

Then using (7.7) applied on (7.4) we get: 

(7.7) 

An analogous computation can be done for the Vev of the operator W in presence of sources: 

Now is when the symmetry comes into play. Lets consider the equal-time Poisson bracket 
of the W3 algebra of the reduced phase space 5.93 at boundary. This algebra is satisfied by the 
global charges which lives on the boundary where it also lives the conforma! theory as we saw in 
chapter 4. Now promote the fields to operators and classical bracket to quantum commutators: 

[i('fJ), i('P')] 

¡i('fJ), W(r.p')J 

¡w('fJ), w('P')J 

~ ~ k 
-(6('P- 'P')C'(r.p) + 26'('P- 'P')C(r.p) + 4n ó"'('P- r.p')) 

-(26('P- 'P')W'('P) + 36'('P- 'P')W('P)) 

-~(26('P- 'P')i"'('P) + 96'('P- 'P')i"('P) + 1M"('P- r.p')i'(r.p) 
12 

+10J"'('P- 'P')i('P) + }5_s(5)('P- 'P') 
47r 

647r ~ ~ r2 
+k(S('P- 'P')C('fJ)C'('P) + S'(r.p- 'P')C ('P))) 
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Then we plug the expressions (7.10) into (7.8) (and also into (7.9)), and denoting the expec­

tation values of the operators in presence of sources as: 

.e 

w 
after taking the angular integral, making use of several Dirac delta identities, we get: 

k 

(7.11) 

(7.12) 

-E111 + 2.CE1 + .C1E + 2W1X + 3Wx1 

47r 
1 1 5 1 11 5 111 k (5) 3 11 1 1 r/11 l67r r( rl r 1) w E+ 3WE --.ex --.ex - -x --.e x - -L x- -L '-' x +'-'X 

4 6 487r 4 6 3k 
(7.13) 

Expressions (7.13) are the time-evolution equations for the charges. From these expressions, 
considering the time evolution that each parameter produces by itself, in each one of the fields, 

we get: 

!5_E111 + 2.CE1 + L 1 E 
47r 

2W1x + 3Wx1 

W 1E + 3WE1 

5 rl 11 5 r 111 k (5) 3 rll 1 1 r/11 l67r r(rl r 1) 
--L x --LX - -x - -L x - -L x- -L '-' x +'-'X 

4 6 487r 4 6 3k 

These expressions are the vVard identities associated to vV3 algebra. 

(7.14) 

7.2.3 Recovering CFT Ward identities holographically from the classical CS 
bulk constraint 

Now we will carry out the computations of the eFT Ward identities, but holographically, i.e., 
deriving them from the classical es bulk constraint. For this we step into the radial gauge given 
by Ap = O and consider we have a gauge fixed Aq, connection, which satisfy the equations of 

motion Fpq, =O given by: 

(7 .15) 

Then we consider a general At given along all the SL(3, í:R) components: 

At = E(t,cp)Ll+Eo(t,cp)Lo+E-l(t,cp)L_l 
+x(t, cp)W2 + Xl(t, cp)W1 + Xo(t, rjJ)Wo + X-l(t, cp)W-1 + X-2(t, r/J)W-2 (7.16) 

After that, for arbitrary charges .C, W, we solve the es equations of motions Ft.p =O. This 
system fix 6 of the 8 parameters which enters in the components of the SL(3, ~) Líe algebra 
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along at, where the x, E components of the at field, are left undetermined. However we have 8 
equations, thus in order to completely fulfil the equations of motion, we need that two extra 
conditions be imposed on the system. These condition gives the time evolution of the fields 
L,W. 

In details, the values of the six parameters inside (7.16) which partially solves the equations 
of motion Ft<P =O are: 

-e' 
/1 47r 87r 

e +-LE+-Wx 
k k 

XI 

X o 

X-I 

X-2 

(7.17) 

where a 'prime' denotes derivative with respect to c/J. 

The system is completely solved if also the charges follows the temporal evolution given by: 

k 
-e"' + 2Lc' + L1 e+ 2W' x + 3Wx' 
47r 

(7.18) 

'' ' 5 ' " 5 "' k (5) 3 rll ' 1 rlll 167r r( rl r ') Wc+3Wc --LX --LX --x --L x --L x--L LX+LX 
4 6 487r 4 6 3k 

(7.19) 

where a dot denotes temporal derivative. 

From the above expressions (7.18),(7.19), we consider the time evolution that each parame­
ter E, x produces by itself in each of one the fields L, W: 

2W'x + 3Wx' 

W'c+ 3Wc' 

-~L'x"- ~Lx'"- _!::_x(5)- ~L"x'- ~L"'x- 167r L(L'x +LX') 
4 6 487r 4 6 3k 

(7.20) 
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These expressions are exactly the same as (7.14), but to confirm that they are the Ward 
identities, they must come from variations of the action with respect to the sources. 

If we compute the on shell variation of the es action, the bulk part is zero because the 
equations of motion holds, and we are left with only a boundary term, where the explicit 

parameters of the solutions appears as: 

Obulk + _!5_ J dtd<jJ(Aq/iAt- AtoA</>) 
47r 

=- j dtd</J ( 2~ &" + 4L:& + 2xow + 6Wox) 

then, we can sum to the action a local term Btat as: 

Btat = j dtd<jJ ( 2k7r E11 + 2x W) 

defining a new action Inew = Ig5 + Btot whose variations gives: 

Olnew = -4 j dtd<jJ (L:OE + Wox) 

From the variation of this action we read, 

Ofnew -4L: 
0€ 

Ofnew 

ox 
-4W 

(7.21) 

(7.22) 

(7.23) 

which confirms that the expressions given in (7.20), are the vVard identities for correlation 

functions derived from Inew· 
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Chapter 8 

The Action for Higher Spin (N) 
Black Holes in three dimensions 

8.1 Introduction 

In this chapter we will see that the well defined, i.e., with an allowed extrema, euclidean on 
shell es action, defined on the non-trivial topology of the solid torus, leads to a consistent 
thermodynamic picture for higher spin black holes. This result has been motived by the fact 
that in [49] it has been conjectured the existence of a partition function trough sorne integrability 
conditions which arises as consequence of sorne holonomy conditions that must be imposed on 
the fields as they are defined on the torus. The integrability conditions demands that a well 
defined functional exist from which, by functional differentiation, one can extract Vev's of sorne 
physical quantities of interest. In this chapter we will show that the above functional is in fact 
the es action, but properly modified by adding sorne properly defined boundary terms, and 
subsequently valued on the solutions of the equations of motion, which after that, is usually 
called the on shell es action. The result of this chapter has been published in the work [50]. 

8.2 Classifying solutions by holonomies 

Euclidean black holes lives on the non-trivial solid torus topology and as we will be interested 
in evaluating the action for this type of solutions, in what follows we will work on this topology 
(see figure 8.1), but fixing the rank of coordinates a priori as: 

O S t S 1 , O S cp S 2n , O S r S oo (8.1) 

It is important to recall that one usually works with a free periodicity ¡3 on the temporal 
coordinate: 

O ::; t ::; ¡3 , O ::; cp ::; 2n , O ::; r S oo (8.2) 

which is usually related to the inverse temperature of the solution. But with the choice (8.1) 
of a priori fixed-rank topology, if one want to keep the freedom of the periodicity ¡3 of the fields 
on the topological manifold (8.2), one should recover this freedom by an explicit apparition of 
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Figure 8.1: So lid torus topology 

this periodicity-parameter, but now inside the fields, as one straight-forward change of coordi­
nates in the integral sign would demand. 

The solutions to CS equation of motion F = O are flat connections, which at first naive 
sight could lead one to think there is no interesting solutions. In fact, one can argue that a 
particular solution, being a flat connection, can be obtained by gauge transforming the trivial 
solution A = O with a particular group element, and thus one can think that all the solutions 
are gauge equivalent to the trivial one. This is only true when we have defined our gauge fields 
on simply connected manifolds with no holes inside, in which we can use any particular well 
defined gauge transformation to build any particular solution starting from the trivial one. Over 
this trivial class of topological manifolds the converse is also true, supposing we have a solution 
with A i- O we can bring this solution to the zero solution by performing a well defined gauge 
transformation. However, as we are working on the non-trivial topology of the solid torus, the 
above statement is not longer true and we must classify solutions by its holonomies around 
contractile and non-contractile cycles. 

The whole point of holonomies is the following: suppose you have a gauge connection over a 
non-trivial manifold and that you want to bring it to zero by a gauge transformation, the answer 
to the question if this is really possible, depends on whether the space-time components of the 
gauge connection are along contractile or non-contractile cycles. As the manifold is non-trivial, 
i.e., with sorne holes inside, one can define different class of curves on it. If there is only one hole, 
one class will be the class of contractile curves into a point, which are defined as going around a 
contractile cycle, and the other possible class will be the non-contractile ones which goes along 
the non-contractile cycle that surrounds the hole. Then, coming back to the question, the answer 
is that space-time components of the gauge field which goes as a contractile curve does, can be 
made zero by a well defined gauge transformation, meanwhile space-time components which goes 
as a non-contractile curve does cannot be made zero by a well defined gauge transformation, 
but only by means a multivalued gauge transformation which leads, at final instance, to a gauge 
field which is singular at the points in which the multivalued gauge group element changes to 
another branch. 
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In order to build black holes, we need that the metric-like fields be static and circularly 
symmetric, and we can guaranty this by considering the set of static and circularly symmetric 
solutions, which has the form: 

(8.3) 

where g1 = g1(r) is a SL(N,'R) group element which depend only on the radial coordinate, 
and at, atP are constant SL(N, 'iR) algebra matrices which satisfy [at, atP] = O. Analogous type of 
solutions (static and circularly symmetric) are use for the other copy of the gauge fields: 

Br = g:¡ 18rg2 

BtP = g:¡lbtPg2 

Bt = g:¡ 1btg2 

(8.4) 

Due that we are working from a theory whose action can be written as the difference of 
two es actions, and we will be mainly working with this total action, we will focus all of the 
following discussion only for one copy of the gauge field ( and one CS action), beca use for the 
other copy this discussion is analogous and straight forwardly constructed. 

For the small case connection, which fulfils the equations of motion [at, atP] = O, it is obvious 
that at = f(atP). Thus, we can write the general solution as a power series in atP to then remove 
the trace in order that at be an algebra element. But due to the Cayley-Hamilton theorem 1 

we can use the matrix valued characteristic polynomial to rewrite the power series solution as 
a polynomial with a finite amount of terms. In the case of the SL(N, 'iR) algebra, the resulting 
polynomial is of order N -1 and, as such, a number of N -1 arbitrary parameters are introduced. 
Finally, after removing the trace, the most general form of at is left as: 

(8.5) 

where u2 , u3 , ... , O" N are the N- 1 arbitrary parameters, which will turn to be crucial for 
the description of the thermodynamic behavior of the solution because they will play the role 
of chemical potentials. 
Also, it will be very convenient to use the definition of the i-th power-like invariant Casimir 
Operator- related parameters: 

(8.6) 

This set of parameters will also be used for the thermodynamic description, playing the roles 
of charges. Furthermore, in the sequel we will see that the pairs: O"n, Qn, for n = 2, ... , N play 
the role of canonically conjugated thermodynamics variables. 

1It is a trivial theorem that says that any square matrix satisfy its own characteristic polynomial. 
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At this point of the discussion it is important to stress that for a given solution of the 
equations of motion fulfills the holonomy conditions discussed above, the charges Qn must be 
fixed in terms of chemical potentials CTn or vice-versa, more of this will be discussed in the next 

sections. 

8.3 The on shell action for higher spin black hales 

Lets consider to have the CS action as: 

k J 2 Ics[A] =- tr( A!\ dA+ -A!\ A!\ A) 
47f 3 

(8.7) 

and take its variations to get: 

Mes = ~ { Tr(F !\ 8A) + ~ { Tr(A !\ 8A) 
47f JRxTz 47f Jrz 

(8.8) 

where, due that on shell F = O, the on shell bulk part is zero and we are left with only a 

boundary term: 

(8.9) 

Then, considering a solution of the form (8.3), is very easy to see that the radial dependent 
group element plays no role in this analysis, in fact plugging (8.3) inside (8.9) we have: 

(8.10) 

where the last term vanish for static and circularly symmetric solutions, and even if the 
solutions are not of this sort, the last term under the integral sign vanish as consequence of the 

periodicity of the fields living on the solid torus, giving us: 

(8.11) 

Then, considering the explicit form for the small case connections that a solution must satisfy, 

given by (8.5) which inserted in (8.11) gives: 
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Mes lo 
k N 
2 I:Tr ( a4>r5( O"nar1 ) - O"na~- 1 r5a4>) 

n=2 
N 

~ ~ Tr ( a~OO"n + n ~ 2 O"nr5(a~)) 
k N 
2 L (nQnOO"n + (n- 2)0"nr5Qn) 

n=2 

(8.12) 

where in the third equality of (8.12), we have used (8.6), and where in the last line, the last 
term is a total variation which we can pass it into the other side to define a new action 108 given 
by: 

N k 
los = lcslo- L 2(n- 2)<7nQn 

n=2 
(8.13) 

such that 8.12 guaranties that the new action los it is a function only on the chemical 
potentials O"n as: 

N 

r51os = k L QnOO"n (8.14) 
n=2 

This expression tell us that the action (8.13) posses an extrema when chemical potentials 
O"n are fixed, and as we must have 105 (<7n) this action is adequate for a '(grand) canonical' 
description of the system, where the charges Qn can fluctuate. Similarly, by performing a 
Legendre transformation acting on (8.13), one can define a new action If!sew which will depends 
only on the charges Qn as: 

N 

l~ew = los - k L QnO"n (8.15) 
n=2 

such that varying (8.15) and considering (8.14) we get: 

N 
New "\""" r5Q 8105 = -k L.._- O"n n (8.16) 

n=2 

In this case lJ:sew(Qn) will posses an extrema when the charges are kept fixed. The action 
IJ:lsew(Qn) is adequate for a 'micro-canonical' description as the chemical potentials are allowed 
to fluctuate. 

Now, we still need the value of the CS action valued on shell: les lo- To find it we can pick 
the angle cp as a special coordinate to do a foliation of the solid torus. This foliation is regular 
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everywhere as is made by using planes (regular surfaces) which do not intersect at any point. 
Using a 2+ 1 decomposition using the angle <jJ as the direction in which we do the foliation, we 

get: 

(8.17) 

In the bulk part, this foliation is covariant in the two dimensional planes at sorne constant 
<j;, thus we can use a well defined set of coordinates to value it. Also, as respect to the on shell 
value of (8.17), the bulk part is zero as consequence of the circular symmetry of the fields (i.e.: 
8q,A¡3 =O) and also dueto the fact that it is a solution (i.e.: Fa¡3 = 0), thus we get: 

Icslo = _3._ 1 dtd<j;Tr(AtA.p). 
47!' r---+oo 

(8.18) 

But, considering (8.3), the radial dependence is again factored out giving: 

(8.19) 

and using (8.5) and (8.6) in (8.19) we have: 

k N 
lcslo = -2 LnO"nQn. 

n=2 

(8.20) 

Finally, using (8.20) in (8.13) the new action los is: 

N 

los= -k L(n- 1) O'n Qn (8.21) 

n=2 

Note that ifwe vary the explicit final form of (8.21), then (8.14) is not automatically satisfied. 
In fact, as we said before, (8.14) tell us that 108 must be only a function of the chemical potentials, 
andas such, in order to vary it consistently, i.e.: fulfil consistency with (8.14), we have to consider 
sorne conditions which allows to express the charges Qn in terms of the chemical potentials O'n 

before take the variation. 
The converse is also true for the micro canonical on-shell action, which with the value (8.20) 

in (8.15) we get: 
N 

1~ew =-k¿ nO'n Qn (8.22) 

n=2 

In the next section we will see that the right conditions for the consistency of the on shell 
variational problem are precisely given by the trivial holonomy conditions along the temporal 

( contractile) cycle. 

Lastly, note that being the full action of the theory, given by the difference of two es actions 
with two independent gauge fields: Itotal = les [A] - les [A], then the obvious result of this 
section is that the full on-shell es action for the higher spin black holes will be given by the 
straight forward extension of the above expressions which consider both copies as. For example 
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for the total on-shell es action appropriate for higher spin black holes in a '(grand) canonical' 
description we have: 

N N 

Ios(an, i'7n) =-k L.)n- 1) an Qn +k L.)n- 1) i'7n CJn (8.23) 
n=2 n=2 

such that: 
N N 

M os = k L Qn8an -k L Qn8i'7n (8.24) 
n=2 n=2 

meanwhile in a 'micro-canonical' description we have: 

N N 

I[;!ew(Qn,Qn) =-k L:nanQn +k Lni'7nQn (8.25) 
n=2 n=2 

such that: 
N N 

OJ[;!ew =-k L an8Qn +k L i'7n8Qn (8.26) 
n=2 n=2 

8.4 Holonomy conditions and Consistency: Spin 2, Spin 3 and 
Spin 4 examples 

In this section we will see explicitly how the above mechanism works for different spins N= 2, 3, 4 
examples. As explained at the beginning of this chapter, interesting gauge fields solutions de­
fined on the solid torus must fulfils sorne holonomy conditions, andas we have two class of curves 
in the solid torus, i.e., contractile and non-contractile, we must have: 

The non-trivial holonomy restriction along the non-contractile angular cycle is: 

(8.27) 

The trivial holonomy condition along the contractile temporal cycle is: 

(8.28) 

where IN denotes the N x N dimensional identity matrix. 

vVe also have similar independent holonomy conditions for the other copy. As the formula­
tion of the full es action is symmetric in treatment in both copies, we will restrict here to prove 
the consistency for only one copy, because for the other copy is done analogously in a straight 
forward manner. 

From the above expressions, the first one (8.27) is a restriction, which gives us no condition, 
but rather suggest we must keep free the charges which are defined trough (8.6) such that a<P 
cannot be brought to zero via a regular gauge transformation. The second one (8.28) is a condi­
tion which states that at can be brought to zero by a regular gauge transformation. In order to 
impose this condition one must solve the chemical potential as functions of the charges as we will 
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see below. In the SL(N, ~) theory, the trivial holonomy conditions (8.28), for constant gauge 
fields, traduces into N- 1 conditions on the eigenvalues of at, or equivalently into conditions on 
the N- 1 power-like Casimirs of at. These N- 1 conditions allows us to solve for the N- 1 

chemical potentials CJn in terms of the N- 1 charges Qn. 

8.4.1 N=2 example 

In the simplest example, i.e., the SL(2, ~) theory, we can make the choice of parametrizing the 

a</> gauge fields explicitly in terms of its Casimir as: 

(8.29) 

by the way, it is important to recall that the above result is independent of the choice made 

for the matrix parameterisation of the gauge fields. 

The trivial holonomy condition reads as: 

(8.30) 

with q fixed as q = J21r. Using at as given in (8.5) (with N = 2), this condition explicitly 

reads as: 

where, considering CJ2 as a function of Q2, differentiating one gets: 

8Q2 = -2 Q2 
8CJ2 (}2 

Using explicitly 8.21, for N= 2 we have: 

using 8.33 and 8.32 one gets: 

which coincides with 8.14 at N = 2. 

8.4.2 N =3 example 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

At N= 3, i.e., for SL(3, ~) theory, we can choose as a possible parameterization in terms of a</> 

Cassimirs as: 

[
o ~ Q2 

a</>= 1 O 

o 1 

(8.35) 

The trivial holonomy condition now reads as: 
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with q fixed as q = 2vf2n. Using (8.5), with N= 3, these conditions are written as: 

~ (J'32Q22 + 2 (J'22Q2 + 6 (}'2 (}3 Q3 - q2 = o 

-~ (J'33Q23 + 2 (}3 Q22(J'22 + 3 (J'lQ2 (}'2 Q3 + 3 (J'23Q3 + 3 (J'33Q32 =o 

(8.36) 

(8.37) 

(8.38) 

(8.39) 

where, considering chemical potentials (}'2, (}3 as functions of the charges Q2, Q3, differenti­
ating the above expressions one gets: 

8Q2 
0(}2 

8Q2 
0(}3 

8Q3 

[)(}2 

8Q3 

[)(}3 

-6 
N 3 ( 3 (}3 Q3 - (}'2 Q2) 

~3 (-4(J'3Q22 +9(J'2Q3) 

~3 ( -4(}'3 Q22 + 9(}'2 Q3) 

-2Q2 ---¡:.¡;- ( 3 (}3 Q3 - (}'2 Q2) 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

Due that at N = 3 we have more than one pair of canonically conjugated variables, this is 
the first time we observe integrability conditions in the space of chemical potentials, which is 
absent in the N= 2 case. In fact, comparing (8.41) and (8.42), we directly see: 

(8.44) 

For N= 3 in 8.21, we explicitly have: 

(8.45) 

differentiating 8.45 and using (8.40),(8.41),(8.42),(8.43) one directly gets: 

(8.46) 

(8.47) 

which coincides with 8.14 at N= 3. 
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8.4.3 N =4 example 

At N = 4, i.e., for the SL( 4, íR) theory, a convenient parameterization of aq, in term of its 

Casiimirs is given by: 
o iQ2 ~Q3 Q4- 178 Q22 

1 o iQ2 ~Q3 
aq, = o iQ2 

(8.48) 
1 o 

o o 1 o 
or, due that this analysis is independent on the explicit matrix parameterization of the gauge 

connection, provided we write it in terms of the aq, Casimirs, we could equivalently have used: 

o 1~ Q2 V3 1\ Q3 V3 1 Q 41 Q 2 
6 4-600 2 

V3 o i Q2 112 Q3 V3 
aq, = 

o 2 o lo Q2 V3 
(8.49) 

o o V3 o 

which is a more appropriate parameterization for the next chapter when we will try to build 

explicit black hole metrics. 

The trivial holonomy condition now reads as: 

Tr(a;) 

Tr(a~) 

Tr(ai) 
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but now with q fixed as q = íT. Using (8.5) with N = 4, this conditions explicitly reads as: 

O = 7 a3 Q2 a4 Q3 + 6 a3 Q3 a2 + 8 a4 Q4 a2 + 6 alQ4 Q2- a32Q22 + ~ a42Q32 

+2 a22Q2- a42Q23 + 4 a32Q4- 20 q2 (8.54) 

o 9 3 2 15 2 2 24a4Q4a2a3Q2+za4 Q4Q2Q3+12a3 Q4a4Q3+4a3Q2a4 Q3 

21 2 3 21 2 2 2 
+2 a2 Q2 a4 Q3 - 6 a2 Q2 a4 a3 + 2 a2 Q2 a4 Q3 + 6 a3 Q3 a2 Q2 

+~ a3 Q32a2 a4 + 3 a42Q4 a2 Q3 + 3 a42Q4 Q22a3 + 12 a3 Q4 a22 + 12 a3 a42Q42 

22 324 933 333 3 32 
-3 a2 Q2 a3 - z a4 Q2 a3 + 4 a4 Q2 Q3 - 8 a4 Q3 + 3 a2 Q3 + 3 a3 Q3 (8.55) 

O 3 2Q 5 2 + 3 Q 3 3 2 4Q 2Q 6 2Q 4 2 + 12 4Q 2Q 2 z a3 2 a4 a4 3 a3 - a3 2 4 - a2 2 a4 a4 4 2 

18 2Q 2 2 3 2Q 3 2 21 4Q 2Q 3 2 Q 5 3 + 3 3Q 2 + a3 3 a2 - a3 2 a2 + 8 a4 3 2 - a2 2 a4 a2 3 a4 

-3 a4 4Q2 4Q4 + 2 a3 4Q2 Q32 - 4 a2 3Q23a4 + 24 a42Q42a2 2 + 12 a22Q2 a32Q4 

+28 a33Q3 a2 Q4 + 40 a43Q42a2 Q2 + 48 a4 Q42a2 a32 + 36 a42Q42Q2 a3 2 

3 2 15 3 3 159 2 2 2 2 3 2 
+8 a4 Q3 a3 Q4 - 2 a3 Q2 a4 Q3 + 8 a3 Q2 a4 Q3 - 7 a3 Q2 Q3 a2 

2 3 2 25 3 3 13 4 3 39 2 2 2 
-15 a3 Q2 a4 Q4 + 8 a3 Q2 a4 Q3 - 2 a3 Q2 a4 Q3 + 4 a4 Q3 a2 Q2 

17 3 2 2 9 2 3 3 2 9 4 2 
+ 2 a4 Q3 a2 Q2 + 4 a4 Q3 a3 a2 + 4 a4 Q3 Q4 a2 + 4 a4 Q3 Q4 Q2 

21 2 2 2 3 3 2 2 2 
+- a4 Q3 a3 Q4 + 14a2 Q2 a3 Q3 + 24a2 Q2 a4 Q4 + 24a2 Q2 a4 Q4 2 

1 4 4 21 4 4 4 2 4 3 4 2 2 Q 
+- a3 Q2 + - a4 Q3 + 4 a3 Q4 + 4 a4 Q4 + 4 a2 Q4 - 12 a3 Q2 a4 4 a2 4 64 

+21 a3 Q2 2a4 Q3 al- 3 a3 Q23a42Q3 a2 + 42 a3 2Q2 a4 Q32a2 + 43 a3 Qla43Q3 Q4 

+30 a33Q2 a4 Q3 Q4 + 48 a3 Q3 a2 2a4 Q4 + 102 a3 Q2 a42Q3 Q4 a2- 164 q4 (8.56) 

64 



CHAPTER 8. THE ACTION FOR HIGHER SPIN (N) BLACK ROLES IN THREE 
DIMENSIONS 

where, considering Q2, Q3, Q4 as a function of a2, a3, a4, differentiating one gets: 

~4 ( -24 0"3 Q3 0"2 + 8 a22Q2 + 64 0"32Q4- 48 0"4 Q4 0"2 + 27 0"42Q32 

-12 0"3 Q2 0"4 Q3- 32 0"32Q22 + 36 0"2 Q220"4- 72 0"42Q4 Q2 + 36 0"42Q23) (8.57) 

1 2 2 2 N4 (12a2 Q3-32a3Q4a2-18a3Q3 a4+8a3 Q3Q2+12a2Q2a4Q3 

+8 0"2 Q22a3 + 36 0"42Q4 Q3- 18 Q22a42Q3) (8.58) 

~4 (18 0"42Q2 4 + 12 0"2 Q23a4- 16 0"32Q2 3 - 36 0"42Q4 Q22 + 18 Q2 0"42Q32 

-28 a3 Q3 a2 Q2 + 32 alQ2 Q4- 24 a3 Q4 a4 Q3- 9 Q32a2 0"4 + 12 alQ32 

+ 16 Q4 0"2 2) (8.59) 

~4 (16 Q4 0"2 2 + 12 0"32Q32 - 36 Q32a2 0"4- 16 0"3 Q3 0"2 Q2- 4 a22Ql 

+48 0"3 Q4 0"4 Q3 + 48 0"4 Q4 0"2 Q2- 144 0"42Q42 + 18 Q2 0"42Q32 

-36 0"3 Q22a4 Q3- 12 0"2 Q230"4 + 108 0"4 2Q4 Q22 - 18 0"4 2Q2 4) (8.61) 

~4 (12 a4 Q24a3 + 27 a42Q23Q3 + 8 a2 Q2 3a3- 72 a4 Q4 Q22a3 + 42 a2 Qla4 Q3 

-54 a42Q4 Q2 Q3- 30 a3 Q2 a4 Ql + 14 alQ2 Q3 - 32 Q4 a2 a3 Q2 

+27 0"42Q33 + 96 0"3 0"4 Q42 - 48 0"4 Q4 0"2 Q3- 6 0"3 Q320"2 + 16 0"32Q4 Q3) (8.62) 

~4 (18 0"4 2Q2 4 + 12 0"2 Q2 3a4- 16 a32Q23 - 36 0"4 2Q4 Ql + 18 Q2 0"42Ql 

-28 0"3 Q3 a2 Q2 + 32 alQ2 Q4- 24 a3 Q4 a4 Q3- 9 Q32a2 a4 + 12 a32Q32 

+16 Q4 0"22) (8.63) 
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~4 (12 0"4 Q2 4 0"3 + 27 0"4 2Q23Q3 + 8 0"2 Q2 30"3 - 72 0"4 Q4 Q220"3 + 42 0"2 Q2 20"4 Q3 

-54 0"4 2Q4 Q2 Q3- 30 0"3 Q2 0"4 Q32 + 14 0"2 2Q2 Q3- 32 Q4 0"2 0"3 Q2 

+27 0"4 2Q33 + 96 0"3 0"4 Q42 - 48 0"4 Q4 0"2 Q3 - 6 0"3 Q320"2 + 16 0"3 2Q4 Q3) (8.64) 

~4 ( -6 Q2 40"4 0"2 - 8 Q2 40"3 2 + 36 Q230"4 2Q4 - 18 Q2 30"3 0"4 Q3 - 4 Q23 0"2 2 

+60 Q2 20"4 Q4 0"2- 28 Q2 20"3 Q3 0"2 + 16 Q220"3 2Q4- 72 Q2 0"4 2Q42 

+12 Q2 0"4 Q3 0"3 Q4- 6 Q2 0"4 Q3 20"2 + 24 Q2 0"2 2Q4 + 20 Q2 0"3 2Q32 

+36 Q32Q4 0"4 2 - 18 0"4 0"3 Q33 - 48 0"4 Q420"2- 8 0"3 Q3 Q4 0"2 + 3 Q3 20"2 2) 

where we have defined: 

N4 = -4 0"2 3 - 8 0"33Q3 + 36 0"3 Q3 0"2 0"4 + 8 0"3 20"2 Q2- 18 0"2 2Q2 0"4 

-48 0"3 2Q4 0"4 + 36 0"4 2Q4 0"2- 27 0"43Q32 + 18 0"3 Q2 0"4 2Q3 

+24 Q220"3 20"4- 36 0"2 Q2 2 0"42 +54 0"4 3Q4 Q2 - 27 0"43Q23 

(8.65) 

(8.66) 

Observing the following pairs of equations: (8.58,8.60), (8.59,8.63) and (8.64,8.62) we observe 
the following integrability conditions: 

8Q2 

80"3 

8Q2 

80"4 

8Q4 

80"3 

From 8.21, for N= 4 we explicitly have: 

8Q3 
80"2 

8Q4 
80"2 

8Q3 
80"4 

(8.67) 

(8.68) 

(8.69) 

(8.70) 

Now we differentiate (8.70) only once with respect to each of the chemical potentials, and 
then we plug the expressions (8.57) - (8.65) on it, and we get: 

81os 
80"2 

8Ios 
80"3 

8Ios 
-
80"4 

which coincides with 8.14 at N= 4. 

kQ2 

kQ3 

kQ4 

66 

(8.71) 

(8.72) 

(8.73) 

(8.74) 



CHAPTER. 8. THE ACTION FOR. HIGHER. SPIN (N) BLACK HOLES IN THR.EE 
DIMENSIONS 

Finally, we can remark that in a completely analogous way, in any of these examples the 
relations can be reverted, i.e., considering the chemical potential CTi as functions of the charges 
CTi(Qj)· Thus, considering this dependence we also use the holonomy equations, but now in the 
computations instead of use the (grand) canonical on shell action (8.21), one uses the micro­
canonical action (8.22) to find consistency with (8.16). 

8.5 Entropy for the Higher spin black holes 

In gravitational theories, the entropy for black hole solutions is often given by horizon valued 
boundary terms coming from the on shell Hamiltonian action. This boundary term arises due 
to the necessity of regularize an infinite value for the Hamiltonian action at the horizon. 

On the other hand, in the case of a es theory, we can compute the Hamiltonian action, for 
this we make a 2+1 decomposition on the torus, but now using time to foliate it, getting: 

(8.75) 

The boundary term B+ in (8.75) comes from the need of introduce a virtual boundary that 
surrounds the inner ring at that center of the torus (at the point r =O) where the vector field 8t 
along which we make the temporal foliation has a fix:ed point, i.e., all the leaves of the foliation 
intersect at the ring r = O, thus the foliation is degenerated. 

Evaluating this action in a black hole-like solution, which must be static and spherically 
symmetric, the bulk term vanish and we get: 

I~amiltonian = 4~ (L dtdcp Tr(AtAq,)) - B+ (8.76) 

On the other hand if we evaluate the es action decomposed along the angular coordinate 
(8.17) in a black hole-like solution, due that the solution is circularly symmetric, i.e., independent 
from r/J, we get: 

o k 1 !angular=-- dtdrjJTt(AtAq,) 
47r 00 

(8.77) 

The action (8.75) is the same that the action (8.17), where justa different 2+1 dimensional 
split has been done. Also these two actions are the same as the fully convariant (8. 7). Thus 
equating its on shell values given by (8.76) and (8.77) and solving for the boundary term B+, 
we get (see [52]): 

(8.78) 

And using the equations of motion (8.3) with (8.5), and using the definitions (8.6), we get 
an explicit expression for the boundary term of the es action, given by: 

N 

B+ = k L nQnCTn (8.79) 
n=2 
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N ow, considering that the formulation of the gravitational theory is given by the substraccion 
of two es actions with the same level, then the entropy for the higher spin black holes, which 
should be given by the total boundary term of the higher spin gravitational theory, is given by: 

N N 

S= B~) [A] - B~) [A] = k L nQnO"n - k L nQnan (8.80) 
n=2 n=2 

8.6 Conclusions 

We have shown that it is the on-shell es action the functional, which solves the integrability 
conditions, whose existence was spotted in the literature. In the process, we also have shown 
that this functional posses a natural description in terms of the gauge invariant easimirs of the 
angular components of the gauge connections as the physical degrees of freedom of the boundary 
theory. Also, in the process, chemical potentials were introduced by solving the equations of 
motion, to then analyse the on-shell variational principie to find that both kind of variables, 
i.e.: easimirs and chemical potentials, turns out to be canonically conjugated at the boundary. 
This gave us the knolewdge about the simplectic structure at the boundary due to these con­
jugated variables. Furthermore, studying the consistency of the on-shell variational principie, 
i.e., allowing only variations of the gauge fields which are solutions of the equations of motion, 
it was shown that the impossition of trivial holonomy conditions around the contractile cycle 
of the torus, turns out to be fundamental in order to have consistent picture of the variational 
principie. 
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Chapter 9 

Higher Spin Black Holes 

9.1 Introduction 

Previous attempts to build explicit black hole solutions with higher spin charges has been car­
ried out in [49, 40, 39, 50], however all of these solutions belongs to the non-rotating case and 
therefore they are charaterised by only two parameters, i.e., only one of spin 2 nature, and only 
one of spin 3 nature. Even more, the solutions constructed in [40, 39], by construction belongs 
to the diagonal embedding which means that they carry no fundamental higher spin charges. 
Furthermore, in [51] it has been argued that solutions found in [49] also belongs to the principal 
embedding. In this work we will construct rotating black hole solutions possessing higher spin 
charges, which at the same time posses a regular smooth horizon. 

In the last chapter (8), we have found the action for higher spin black holes in three dimen­
sions, which leads to a consistent 'thermodynamics'. There, we have also learnt which are the 
relevant canonically conjugated variables involved in its 'thermodynamic' description. In the 
process we learnt that this action is completely topological and also independent on the radial 
coordinate, and as such, a regularization and renormalization process has not been needed. In 
fact in the process we have only needed to take care about a well settled Dirichlet problem. 
However, regarding the solutions found in the last chapter, as we have not said too much about 
the radial coordinate itself, which should somehow be involved in a explicit metric-like black 
hole description, one may think that it could be too early to call them black holes. These 
prospective black hole solutions are allowed to exist, at this time of the discussion, just because 
we have made a. topologically non-trivial chara.cterization of the es flat solutions which lives on 
the non-trivial solid torus manifold. In fact, in the previous analysis of the on shell es action, 
the easimirs invariants of the angular components of the gauge field were identified as the ga.uge 
inva.riant, and thus physical, boundary degrees of freedom (and as such, being free). This was 
supported by the restriction made on the angular holonomies ( a.round the non-contractile cycle) 
to be non-trivial. On the other hand, the trivial temporal holonomies (around the contrac­
tile cycle) were fundamental to gives us the right regula.rity conditions 1, between the relevant 
canonically conjuga.ted variables at infinity ( the boundary). Thus, just as we sa.w in chapter 
(6) in the simple scalar field example, and also as we saw and confirmed in chapter (8) for our 

1which are imposed at the gauge field leve!, which being radially independent, are also also globally defined 
and purely topological ones 
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higher spin setting, the regularity conditions once again are needed for the consistency of the 
holographic correspondence. 

In chapter (5), we have mentioned an argument which says that in a metric-like fully interact­
ing (non-linearised) theory, non-linearised higher spin (with spin SH > 2) gauge transformations 
should act on the lower spin (with spin s1 < sH) fields. This is because the higher spin gauge 
parameters ( with are symmetric tensor possessing a spin sH - 1) also carry lower spin invariant 
subspaces up to spin sh -l. ... which at the end of the day, should mean that the deformed2 gauge 
symmetries of the full interacting theory, must somehow acts on the lower spin fields through the 
deformed fully non linear gauge transformation of the fully interacting system. Furthermore, in 
the frame formulation of the SL(3, lR) theory in chapter (5), we explicitly saw how a higher spin 
gauge transformation acts on the spin 2 metric. This has as consequence, that the meaningful 
coordina te invariants quantities (i.e., under non-linear spin 2 gauge transformations) that exist 
in general relativity, when are analysed inside the higher spin ( s > 2) setting, they lose its fully 
gauge invariant meaning, because they are no longer invariant under the higher spin diffeomor­
phisms which are the extended symmetries of the system. Certainly, this is problematic in the 
higher spin setting, if we are planing to keep the concept of a (higher spin) black hole as an 
object characterized by a singularity expressed in the (spin 2) curvature invariants. 

However, as respect with what should be black holes solutions in the higher spin context, in 
an euclidean formulation besides the condition of having pairs of canonically conjugated ther­
modynamic variables to describe them, which we know it is possible, one further condition that 
one would like to have for a black hole, is the existence of an horizon, or something similar, 
perhaps as an extended concept, maybe a 'higher spin horizon'. Of course, at the present the 
lacking of knowledge about a full metric-like formulation of the theory, and also the lacking of 
knowledge of higher spin geometric concepts such as, e.g., prospective higher spin curvatures, 
prospective higher spin coordinate transformations (i.e., full non-linear completion of higher spin 
diffeomorphism), etc., one can imagine, but it would be very difficult to prove, an hypothetical 
relation between this hypothetical higher spin horizon and sorne hypothetical singularity in a 
higher spin curvature invariant surrounded by the higher spin horizon. Thus, at the moment, 
an attempt to tackle the problem by this route should be completely abandoned because it is 
pure speculation. 

However, in the SL(2, lR) theory, the spin 2 euclidean BTZ black hole, posses an horizon 
but not a curvature singularity. Due to its topological construction on the solid torus, it rather 
may posses only a coordinate singularity, which reflects itself as coming from abad choice in the 
temporal period which leads to a topological conical singularity. But having properly chosen the 
value of temporal period, the conical singularity will be absent, leading to a completely regular 
surface at the horizon, which is located at the center of the topological manifold, i.e., the solid 
torus, corresponding to the ring at r = O. 

In the three dimensional euclidean higher spin context, we will also make a topological con­
struction of the solutions, and in analogy with the SL(2, iR) case, this construction spots that 
higher spin black holes should be described by bulk fields which near the horizon are described 

2 Deformed from the free theory 
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by completely regular surfaces, and regular 'higher spin surfaces', without having to refer this 
regularity to sorne still unknown higher spin curvature extensions of geometry. Thus, in the 
higher spin theory, just regularity of the bulk fields at the 'horizon', will be a mandatory con­
cept to construct what we will call as a regular 'black hole solution'. 

It is better to stress that in trying to build regular solutions with spin 3 ( or with higher 
spin charges), one mayor 'problem' that we have faced, is that in the construction of regular 
black holes solutions, in general we have found that they do not posses a 'desired' asymptotic 
behaviour at infinity. Firstly, this was thought only as a technical problem in the construction, 
because as we will see, there is a lot of gauge freedom involved in their construction, which leads 
one to think that by somehow choosing the 'right gauge fixing' conditions one could achieve the 
desired asymptotic behaviour. Also, the lacking of a well settled knowledge about higher spin 
geometrical concepts, makes this situation as an even worst scenario to do work. However, after 
an enormous amount of attempts in trying to find regular solutions with the 'desired' asymptotic 
behaviour, we have found a theorem, which is beyond the scope of this thesis and thus it wont 
be shown here, rather it will be shown in a future publication. That result which is worth to 
mention basically states that in the higher spin theory (N> 2), for regular solutions the 'desired 
behaviour' it is ruled out, i.e., do not exist. A partial discussion of what it implies will be done 
in sorne of the next sections. 

9.2 lmportance of a regular solution in the AdS/CFT context 

In chapter (6), we saw that in order to have a consistent picture of the AdS/CFT conjecture 
along the bulk, we need to construct regular bulk fields solutions at the interior 'point' of the 
bulk manifold. Thus, a regular bulk field solution at the interior, turns out to be the required 
configuration for the whole consistency of the holographic picture. 
In the context of euclidean higher spin black holes which lives on the solid torus, in the following, 
we will call the interior point of the topological bulk manifold as the 'horizon' which is the ring 
at the center of the solid torus. And this will be the 'point', where we will demand that the 
bulk field solutions be regular (see figure 8.1). 

9.3 General considerations: Static and circularly symmetric so­
lutions 

In order to build black hole solutions, we should consider to start considering the set of static and 
circularly symmetric es solutions, which in the chapter (8) were shown to be the appropriate 
gauge connections for black hole physics. The most general solution to CS equations of motion 
fulfilling these conditions are: 

Br = 9218r92 

B'P = 92 1b<p92 

Bt = 921bt92 

(9.1) 

where 91 = 91(r), 92 = 92(r) are fully arbitrary radial-dependent SL(N,'iR) group elements, 
and the lower case matrices at, a'P, bt, b'P are constant SL(N, 'iR) algebra matrices, which satisfy 

71 



CHAPTER 9. HIGHER SPIN BLACK HOLES 

the equations: 

(9.2) 

in order that the equations of motion be satisfied. Recall that they can be solved as it was 
done in chapter (8), and as was discussed there, given a'P we will have at = f(acp) in which 
the functional form of j, by Cayley-Hamilton theorem, is uniquely fixed by the introduction 
of N- 1 arbitrary parameters (chemical potentials), and thus the form of at will depend on 
these, and also in the explicit form that a'P posses. Note that given a'P, and thus a given at, and 
considering a general unconstrained but only radial dependent gauge group element g1 (r), the 
fields AJ.L represents itself, also the set of all the gauge transformed fields with a radial dependent 
group element, which preserves the static and circular symmetry. Of course these discussions 
holds for the BJ.L fields. 

As was described in chapter (5), the dreibein and spin connection are constructed as: 

eJ.L = AJ.L - BJ.L , wJ.L = AJ.L + BJ.L (9.3) 

and the N - 1 metric fields are: 

gJ.L 1 J.L 2 - !~ tr( e(J.LI eJ.L2 )) 

gJ.L 1J.L 2 J.L 3 tr(e(J.L1 eJ.L2 eJ.L3 )) 

(9.4) 

\Vhere f N is just a normalizing factor given in the appendix. 

9.4 Definition of a horizon 

Given a solution, we define the horizon as the point in the radial coordinate where temporal 
component of the dreibein 'et = At- Bt ' vanish. This means: 

(9.5) 

This definition of horizon implies that all the components of the metric-like fields given by 
(9.4), that at least posses one temporal index will vanish at the horizon. We take this definition 
as the very starting point to solve the big problem that would be to try to define the horizon 
without having the frame formalism, by just doing it in the metric formulation of the theory 
which, given that we don't even know what is the complete metric-like formulation of it, it would 
be insane to try to do this. 

By looking at (9.5), it is straight forward to see that in order for this definition of horizon 
be able to exist, the following conditions has to be satisfied: 

• 1) The lower case matrices at and bt has to be in the same class at "' bt: 
These conditions on the lower case gauge connections, can be translated into conditions 
between the chemical potentials and the would be physical degrees of freedom ( arp casimirs) 
which are present in the thermodynamic description of the system in an euclidean formu­
lation. Let's say, to put at in sorne given class, we adjust it's chemical potentials in terms 
of the it's charges. By the other side, the same is true for bt. Of course we do this, by 
taking care that we have put both at and bt in the same class. 
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• 2) Given at and bt in the same class, the existence of a well defined similarity matrix 
U= 92(ro)9}1(ro) which relates at and bt as bt =U atU-1 has to be guaranteed: 
This condition partially fix the form of the group elements 91(ro),92(ro) at the horizon 
denoted by ro. 

9.5 Euclidean solutions and holonomies 

Now if we want to have euclidean solutions (after a Wick rotation) with a smooth horizon we 
have to put at and bt in the trivial class, this means that trivial temporal holonomies has to be 
satisfied. Of course, the very definition of a horizon as et = O is further justifyied considering 
the fact that for euclidean solutions, the euclidean temporal differential dt is an angle, and thus 
it explodes at the horizon, which is easy to see in Cartesian coordinates where we have: dt"' ~' 
thus et must vanish at least as et "' p. 

9.6 Constrainning the group elements along the bulk 

Considering the above discussion, if we plan to build euclidean regular solutions, we need that 
the trivial temporal holonomies be satisfied. These are conditions on the chemical potentials to 
be sol ved in terms of the charges. Also, the group elements 91 = 91 ( r), 92 = 92 ( r) has to satisfy 
sorne regularity conditions at the horizon. However, the group element, still has a lot of gauge 
freedom along the bulk, and in order to have a sensible solution one has to constraint it using 
sorne sensible criteria. 

The criteria used to constraint the group elements has been the following ones: 

l. The metric-like must posses a Fefferman-Graham form which is somehow desired if one 
want to do holography. Explicitly it has been demanded that the metric posses a FG form 
in radial proper coordinates: i.e. a form with the aspect: 9pp = 1, 9pt =O, 9p<.p =O. 

2. It has been demanded that sorne spin 3 metric-like components be null, g.e: 9ttt = 9pt<.p = 

9ppt = 9p<.p<.p = 9ppp = 9ptt = O. This form for the spin 3 metric like field, is somehow 
desired because the resulting field posses a form as 

dcjJ x Black Role (9.6) 

Having imposed these conditions, one expects, and in fact it turns out to be, that the 
following conditions are automatically satisfied: 

l. The solutions posses a smooth horizon, in which the holonomy conditions on gauge fields 
imply Hawking periodicity conditions on metric-like fields. 

2. The solutions posses a BTZ as limit when spin 3 charges (and chemical potentials) are 
turned off. 

However, it has been observer two class of solutions in which it has been observed the 
following phenomena: 

Class A solutions: 
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l. Metric-like solutions, as expected, are described completely in terms of four independent 
charges. 

2. When spin 3 charges are on, the solutions asymptotes to a different curvature radius than 
when spin 3 charges are absent. 

Class B solutions: 

l. Metric-like solutions, contrary to what one expect, are described completely in terms of 
three independent charges. 

2. Cosmological constant do not change. 

It is worth to mention that there has been implemented so many methods to look for solutions 
with the characteristics we were expecting to see, but from the workable ones, essentially all 
of them give the same answers. However it has been only one method that has allowed us to 
manage in a controlled and systematic way the large expressions which are usually involved in 
the computations. This method is the one which will be presented in the next sections. 

9. 7 Method to construct euclidean regular solutions 

With the setting as is (9.1), one choose a'P (and bcp) as the appropriate gauge connections in 
the principal embedding, which posses explicit W3 symmetries. Then we chose at (and bt re­
spectively) by Cayley-Hamilton introducing chemical potentials as in (8.5). Then one salves the 
holonomy conditions fixing the chemicals potentials in terms of the charges. Doing this one is 
putting at and bt in the trivial class. By the discussion done above, being at and bt in the same 
class, there must exists groups elements such at the horizon fulfils the condition of vanishing et. 

Being at and bt in the trivial class ( which satisfy the trivial temporal holonomies), and given 
that originally at, which is constructed from aq:, trough the addition of chemical potentials, and 
by other side the construction of bt is analogous, but taking into account that the parameters of 
both copies a¡, bi are unrelated to each other, one conclude there must exist a charge independent 
matrix e as a representative of the trivial class. One way to think about this is from (9.5), as 
e.g.: 

et(O) = At(O)- Bt(O) =e- e= 911 (O)at91 (O)- 921(0)bt92(0) =O (9.7) 

Having 911(0)at91(0) =e, 92 1 (0)bt92(0) =e and thus at "'e and bt "'e which of course 
implies: at "'bt. 

Due to the structure of the equations of motion in (9.1) and given that at this point of the 
discussion 91 and 92 in (9.1) are arbitrary up to sorne regularity conditions, one can invert the 
problem and choose to start with: 

Ar = h118rh1 

At = h!1eh1 

Acp = h11ecph1 
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where now C is a trivial class charge independent SL(N, 8t) matrix, and the horizon existence 
condition implies that at the horizon, the group elements are the identity matrix: h1 (O) 
h2(0) = lNxN· Of course in order for the equations of motion holds: 

[C, Cq,] = O , [C, Cq,] = O (9.9) 

has to be satisfied using Cayley-Hamilton theorem to introduce N - 1 new parameters in the 
game, which are not the chemical potentials, because having started with the trivial class matrix 
C the trivial holonomies are already satisfied. Rather, they are just new parameters in order to 
reparameterise the (N- 1)-th Casimirs charges of the angular gauge connections. Of course, it 
is not diffi.cult to convince oneself, that if originally we have chosen to begin with a particular 
form for the aq, field in (9.1), lets say e.g. as the principally embedded form of the solution given 
by (8.35), when passing to this construction in (9.8), we will have that the Cq, field constructed 
from the solution of (9.9) will be in the same class that the original aq, field, where the similarity 
matrix is the same similarity matrix that relates at and C. Analogously, this discussion is also 
valid for the Cq, and bq, fields. 

This is one of the most sensible and workable methods we have used to look for regular 
solutions, and using it has proven to be the most easy way to make sensible ansatz for the 
group element h1(r),h2(r) in order to fix the radial gauge freedom. This is what will be used 
in the next sections and, furthermore, it will prove to be useful to unravel an ansatz structure 
extensible to build regular solutions for all N. 

9.8 The BTZ example 

Let's begin applying the method developed in this thesis, with a simple computation, in order 
to build the BTZ black hole [31, 32] in the SL(2, 8t) theory. Let's use the gauge connections: 

q-/2 [ o 1 l q at = bt = C = - 2- 1 O = -/2(-L1 +L-1) (9.10) 

which already satisfy the ( anti) trivial 3 holonomy conditions Tr( an = Tr(bn = q2 provided 
that q = ±-/2 1r. Note that for a Minkowskian computation, the value of q .¡. O is left arbitrary, 
but we still need that Tr( an = Tr(bn = q2 be satisfied, which means that at and bt are in the 
same class. Moreover in the method we will use here we will demand they be equal as stated in 
(9.10). 

The solution to the equations of motion [at, aq,] = O and [bt, bq,] = O, by Cayley-Hamilton 
theorem are given by: 

(9.11) 

3In fact to be precise, the regular euclidean BTZ gauge connection satisfy pef a,d, = -Id (and similar! y for b,¡,) 
(see [39]), which basically means that after two complete temporal cycles, the parallel transported matrix comes 
back to its original value, or equivalently, after two temporal cycles is like if it has transformed by the identity 
matrix. One possible way to understand this fact, is because in this example, we have built BTZ by using the 
fundamental representation of SL(2, ?R) which is 2 x 2 dimensional representation, i.e., a spin ~ representation 
provided that the representation posses dimension d = 2s + l. 
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vVhere now the Casimirs of a,p, b,p will be given in terms of the new parameters /-ll, f-l2 , as: 

(9.12) 

At this point of the discussion, it is not necessary to fulfil our goal, but surely it is very 
instructive to stress that with this new reparameterisation (9.12) of the charges, the holonomy 
equation (8.31) (and the analogous equation for bt) can be solved for the spin 2 chemical potential 
as: 

1 1 
(9.13) 0"2 = - ' (j2 = --

/-ll /-l2 

Of course, we do not need do this at this time because we have already started with an 
holonomy fulfilling fields at ( and bt). 

Having started with (9.10), the idea is give radial dependence to the fields trough (9.1), 
using a group element which gives the identity when valued at the horizon, at which et(O) = 
g- 1(0)atg(O)- g(O)btg- 1(0) = at- bt =O. Demanding this it will be guaranteed that all the 
fields with at least one temporal index in (9.4) vanish at the horizon. 

One further restriction one want to impose is to fix the radial gauge freedom by the vanishing 
of the components 9pt = 9p,P = O along all the bulk, and also made the choice of a proper radial 
coordina te 9pp = l2 , i.e., this is to choose a FG [53] coordina te system. The choice of this system 
is made by choosing the group element given by: 

[ 
e. e2 

g(p) = o 
o 
_e. 

e 2 

(9.14) 

Then trough the first line in (9.4) using h = ~ (see appendix), the metric is given by the 
are length: 

z2 2 z2 2 
ds 2 = l2dp2 - _q_ (e- 2 P + e2 P- 2) dt2 - _q_ (f-ll- /-l2) (e- 2 P + e2 P- 2) dc/;dt 

2 2 
l2 2 

q ( 2 2 -2 p 2 p ) ') + - 2- /-l2 + /-ll + /-ll e /-l2 + e /-l2 /-ll dq;- (9.15) 

In this coordinates the ranges goes as O < p < oo , O < e/; < 2íT , -oo < t < oo, and if we are 
demanding an Euclidean continuation, as t --+ iT in order to give sense to the trivial temporal 
holonomies, we need that the temporal coordinate be identified as T "" T+m, such that O < T < l. 

In order to prove that this metric is BTZ is useful to do the parametrization given by: 

1 
r± = 2 q,J2 (/-ll ± /-l2) l (9.16) 

and performing the change of coordinates given by: 

t--+ (9.17) 

p--+ r where: cosh2 (p) r~ - sinh2 (p) r~ = r 2 (9.18) 
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we are left with a metric in the form: 

(9.19) 

where now the ranges of coordinates goes as r + < r < oo , O < cjJ < 2n , O < t < (3, and 
where: 

N2 = ( r - r_) ( r + r _) ( r - r +) ( r + r +) 
r2z2 (9.20) 

Note that the outer horizon is located at r +, which is the point where the lapse N and also 
the regular shift N q, 4 vanish. 

Finally, using the relations: 

r 2+ + r 2_ = 8G ~1l2 4GJl 1v , r +r _ = (9.21) 

it is clear that this metric is BTZ. 

On the other hand, using (9.16) and (9.12), is clear that the relations between the asymptotic 
BTZ conserved charges (mass !vi and angular momentum J) and the Casimir invariants of the 
gauge connections aq,, bq, are: 

l 
Ml = k(Q2 + Q2), J = k(Q2- Q2) , where we have used: k= 4G (9.22) 

From here on, we will refer to the regular BTZ by the metric given in (9.15), where we can 
straightforwardly see that it describes a regular surface at the horizon p = O. In fact, passing 
to the euclidean formulation doing t -t i t and fixing q = v'2n in (9.15) we can compute the 
Hawking periodicity condition: 

-;. 2!!_. lo = 4n2 

p 9pp 
(9.23) 

which is the right periodicity condition for a regular surface, i.e., a plane near the horizon 
p =O in the polar coordinates: (p, t). 

Finally, note that this method, from which we directly obtain the regular BTZ metric as 
appear in the form given by (9.15), only describes BTZ in the outer region where p > O, or 
equivalently r > r + in (9.19). However, if we allow ourselves to extend the range of coordinates 
in (9.19) we will be describing BTZ also into the inner region of the black hole. 

The same method used here to describe BTZ by falling in (9.15), will be extended and then 
used for the construction of the regular rotating spin 3 black hole solution in the outer horizon 
region. However, we will restrict ourselves to work only in the coordinates p, t, cjJ as in (9.15). 
This means that we will not to attempt to make an analogous higher spin extension of the 
passage from the coordinates in p --+ r as was done when we pass from (9.15) to (9.19) in the 

4 This 'regular' angular shift can be understood as a shift constructed from the usual shift N q, = r-;. r-'- that in 
the literature BTZ posses, by performing a change of coordina tes given by dcp ---+ dcf¡ - ~ ~ dt such that the metric 

in the new coordinates is regular. Of course with the construction made here the metric automatically is regular. 
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BTZ case, this is because in the higher spin case, this passage is not well understood, thus rather 
than simply be an ordinary coordinate transformation, it may imply to perform something that 
would be like a higher spin diffeomorphism but we do not know how this must act directly on 
metrics. 

9.9 Extending the method for SL(3, ~): a naive solution 

For the SL(3, ~) theory we choose the trivial class matrix Cd given by: 

[ 
o o 1 1 

at = bt = cd = ~ o o o 
1 o o 

(9.24) 

which satisfy Tr(a¡j = Tr(bF) = q2 and Tr(ar) = Tr(bD =O. Fixing q = 2v'2n this matrix 
is on the trivial class. 

The solution to the equations of motion [at, a,p] = O and [bt, b,p] = O, by Cayley-Hamilton 
theorem are given by: 

vVhere now the quadratic and cubic Casimirs of a,p (b,p) will be given in terms of the new 
parameters f-L1,v1 (f-L2,v2), as: 

1 . ( 2) q2 ( 2 2 2) Q2 = 2Tr a,p = 12 v1 q + 6 /-L1 

1 . 3 1/1 q4 ( 2 2 2) Q3 = -Tr(a"') = -- -v1 q + 18 /-L1 
3 '1' 108 

vVe chose the group elements as: 

(9.28) 

vVe construct the two-index metric and three-index metric by using (9.4), using h = 2 (see 
appendix). The non-null two index metric components are: 
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9pp 
(9.29) 

9tt 
(9.30) 

9t,P - [:~2 ( ( y'2 ( -l/2 + ll1) q - 2 f.12 + 2 f.11) X2 + 2 f.12 - 2 f.11) (X - 1) (x + 1) (e2 p - e - 2 P/ 

_z:r ( y'2 (-z;2 + v1) q- 2¡.;,2 + 2¡.;,1) (2x + V2) ( -2X + J2) x2 (eP- e-P) 2 (9.31) 

g,p,p [:~2 ( y'2z;l qx2 - 2¡.;,1 + 2x2¡.;,1) ( v'2v2 qx2 + 2X2f.12- 2¡.;,2) (e2P- e-2P) 2 

+z:~2 (V2v1q+2¡.;,1) (V2v2q+2¡.;,2) (2x+V2) (-2x+V2)x2 (eP-e-P) 2 

+z:~2 ((v2 + v1)2 q2 + 6 (¡.;,1 + f.12)2) (9.32) 

The three index metric is left with the form: 

(9.33) 

but for the purpose of this discussion the expressions for its components are very long and 
not worth displaying. It is enough to report that the two-index metric like field depends on 
the four independent parameters ¡.;,1, ¡.;,2, v1 , v2 and it also depends explicitly on the parameter x 
which comes from the group element. The metric is asymptotically AdS. 

If we set v1 =O, v2 =O we are turning off the cubic Casimirs Q3 =O, Q3 =O and the metric 
asymptotes AdS with the same radius. The BTZ limit of this solution requires, besides from 
vanishing cubic Casimirs v1 = O, v2 = O, it requires that x = O, in which for the two index metric 
we recover BTZ and the three index metric vanish. 

However, if we a priori we set x = O, then the two and three index metrics only sees three 
independent combinations of the four parameters: ¡.;,1, ¡.;,2, v1 , v2, these combinations are given by 
(¡.;,1 + ¡.;,2), (¡.;,1- ¡.;,2), (v1 + 112). We will see that this happens because this solution, instead of 
being a solution belonging to the principal embedding is a solution that belongs to the diagonal 

embedding. 

9.10 Remark on different embeddings 

It was shown in the previous chapter (8) that the boundary degrees of freedom are completely 
encoded inside the lower case connections a'P (bcp)· Thus, we should not expect such a determin­
ing behaviour as the above depending on the presence or absence of a parameter coming from 
the group element. As was explained in chapter (5), for SL(3, ~) connections there exist only 
two inequivalent embeddings: Principal and diagonal. From these, only the principal embedding 
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describes higher spins, with one spin 2 and one spin 3 field as a field content. Meanwhile the 
diagonal embedding describes one spin 2, one spin 1, and two spin ~ fields. Dueto this fact, the 
diagonal embedding will not be of interest to us, simply because, even if it is certainly possible 
to build a metric-like field which posses three space-time index, this three index metric-like field 
will not be a fundamental higher spin field, rather it will be sorne field composed by lower spin 
fields. 

9.11 SL(3, ~) solution in the diagonal embedding 

The solution found in point 9.9 with the required condition that the BTZ limit exist: i.e., x = O, 
is a solution which belongs to the diagonal embedding, even if is certainly that there exist 
a similarity matrix which transforms Cq, by conjugation into a principally embedded aq, (and 
analogously for Cq, and bq,), it can be shown, and it is very easy to convince himself, that this 
similarity matrix it is not connected with the identity matrix on its parameters space, i.e., there 
is not exist values of the parameters for which the similarity matrix be the identity matrix. Thus, 
as it is disconnected from the identity, it cannot be thought as a SL(3, R) Lie group element 
produced by the exponentiation of a SL(3, R) algebra element. Rather, the matrices Cq, (and 
Cq,) are in the diagonal embedding because they can be brought into a diagonally embedded aq, 
( and bq, respectively) with null spin ~ fields, by using identity connected similarity matrices. 

In fact, the matrix Cd can be constructed as: 

Cd = ~( -L~ + L~1) (9.34) 

where the generators L~ and 1'!_1 corresponds to the diagonally embedded SL(2, R) generators 
L~:::: W2 and L'!_ 1 = Y,V_ 2 respectively. Also, with the BTZ limit choice of the extra parameter 
x = O, the group element is simply given by g = ePLo. 

With x = O fixed a priori, the metric is left as: 

(9.35) 

And the three index metric is left as: 
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9.12 SL(3, ~) principal embedding solution 

In analogy with the SL(2, IR) case, we start with the temporal components of the gauge fixed 
connections chosen to be given by a principally embedded Cp matrix as: 

a, ~ b, ~ e, ~ % [ ~ ~ ~ j (9.37) 

where L 1 and L_1 are principally embedded SL(2, IR) generators. The parameter q in eu­
clidean solutions is chosen to be q = 2/21r, such that Cp already satisfy the trivial 5 holonomy 

conditions Tr(ar) = Tr(b¡} = q2 and Tr(an = Tr(bn =O. 

The solution to the equations of motion [at, aq,] = O and [bt, bq,] = O, by Cayley-Hamilton 

theorem are given by: 

(9.38) 

Where now the quadratic and cubic Casimirs of a,p (b,p) will be given in terms of the new 

parameters /-Ll,vl (/-L2,v2), as: 

Q _ 1 T ( 2) Q
2 ( 2 2 6 2) 2 = 2 r aq, = 12 v1 q + /-LI 

(9.39) 

- 1 3 lll q4 ( 2 2 2) Q3 = -Tr(a.-~.) = -- -v1 q + 18 /-Ll 
3 'Y 108 

Again at this point it is instructive, but not necessary for the discussion, to stress that 
with this reparameterisation of the charges we can solve the holonomy equations (8.39) for the 
chemical potentials in what we will call the BTZ branch6 as: 

0'3 = 
/-Ll (2 /-Ll 2 - lll 2q2) 

a-3 = 
-2v2 

/-L2 (2 /-L22 - ¡;22q2) 

(9.41) 

vVe choose the group element as being given by: 

5 In this case, as we are working with a 3 x 3 dimensional spin 1 representation of SL(2, ~), we have that 
after only one complete temporal cycle, the parallel transported at matrix comes back to its original value 
pef a,d, =+Id (and similarly for bq,) 

6 Recall that being the SL(N, ~) holonomy equations a highly coupled system of polynomial equations, in 
general there will be severa! branches as solutions. In particular for the SL(3, ~) in (8.39) there exist three 
branches, from which we will call the BTZ branch as the branch which posses the limit of null spin 3 chemical 
potential 0"3 =O as the spin 3 charge goes to zero Q3 =O. Note that in (9.41) this limit is controlled by v1, being 

achieved when v1 = O. 
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g = [ : ~ ~ J = ePLo 

O O e-P 

(9.42) 

Using (9.4), with the normalising factor as !3 = 2 (see appendix), then the metric is left as: 

and the spin 3 metric-like field is left as: 

(9.44) 

where: 

(9.45) 

(9.46) 

z3q4 ( 
gq,q:,¡ 64 4 (vr + v2) (f.L2 - f-Lr) ( eP - e-P) 2 + 3 ( f-Ll v2 - f-L2 v1) ( e2P - e-2 P) 2) (9.47) 

gq,q,q, 23~4 l3q4 (144/-Ll /-L2 (vl + V2) (eP- e-P) 2) 

+ 23
1
04 l 3q4 ( ( -9 Vr V2 (vr + V2) q2 +54 f.L1 2v2 +54 f-L2 2v1) ( e2 p- e-2 P) 2) 

+ 23104 l3q4 ( -8 (vr + v2) 3 q2 + 144 (f.Ll + f.L2) 2 (vr + v2)) (9.48) 

The range of these coordinates goes as O < p < oo, O < cp < 21r, -oo < t < oo. Note that 
going into the Euclidean section we do t -+ ir, and identify r = r +m with m integer, such 
that O < r < l. Then in order to fulfil trivial temporal holonomies of the gauge connections, we 
set: q = 2v'21r, and then from the spin 2 metric we can compute the Hawking periodicity of the 
fields, which is given by: 

(9.49) 

and we see it posses the correct periodicity for aplane in polar coordinates, i.e., we have: 

(9.50) 
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Therefore, holonomies provides the right periodicity conditions for euclidean regular fields. 

Analogously, as the spin 3 metric-like field posses a Black hole form times the 'regular' 
angular differential d cp , we expect to have near the horizon p = O, which its location is shared 
with the location of the horizon in the spin 2 metric, we can compute the Hawking periodicity 
condition in these coordinates obtaining: 

(9.51) 

which tell us that, near the horizon the spin 3 metric-like field is described by a regular 
object which is: (plan e) x dcp as: 

(9.52) 

These metric-like fields that has been found are thus completely regular. A further compu­
tation of the curvature shows that they do not posses, at least spin 2 curvature, singularities. 
Using spin 2 technology one can compute the curvature invariants for the two index metric-like 
field and for the black hole part of the three index metric like fields. 

However they represent mayor conceptual challenges because a new phenomena occurs which 
is absent in the SL(2, !R) theory where we have pure gravity coupled toa cosmological constant. 
And this conceptual challenge, firstly spotted in [49], it is the fact that in (9.43) the spin 3 related 
parameters, i.e., v1, v2 which controls the presence (v1 =/=- O, v2 =/=- O) or absence (vi =O, v2 =O) 
of spin 3 charges (see Q3 , (hin (9.40)), also controls asymptotically (p --7 oo) dominant terms 
("-' éP) in the spin 2 metric (see (9.43)). In order to explain why this behaviour is problematic 
conceptually speaking, lets analyse the following: In the scenario of lower spins coupled to grav­
ity, the terms which are asymptotically dominant (leading) in the metric use to be associated 
with the order of the background, such fluctuations around the background will be given by 
asymptotically sub-leading terms, in some cases as e.g. regular rotating BTZ, fluctuations can 
be found at most at the same order of the background. In this way at large distances (radial 
coordinate), fluctuations can be considered small compared to the background, and we can say 
that the full solution departs softly from the background. 

The inverse of this situation is precisely what happens in the higher spin case. Higher spin 
fluctuations are dominant in such a way that for large radius they cannot be considered small 
and thus the picture of small higher spin fluctuations around a background fails. 

However, it is important to mention that this asymptotic behaviour of the solution it is 
not due to the particular gauge fixing criteria settled in 9.6. This 'problematic behaviour' it 
is not of a gauge fixing nature. In a future publication it will be shown a mathematical proof 
of this claim, which basically states that starting with static and spherically symmetric fields 
as in (9.1), in which the lower case connections are in the principal embedding, and at and 
bt fields are holonomy fulfilling, then there is no exist group elements g1 (r), g1 (r) in (9.1) for 
which this behaviour can be avoided. That result, which is beyond the scope of this report, 
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sets an incompatibility in the higher spin theory, between regular solutions and an expected 
asymptotic behaviour similar in nature to the lower spin scenario as 'small fiuctuations around 
a background'. 

This method, to build regular solutions, can be easily extended for general N. It just 
consist in to pick a gauge in which at and bt are equal to a charge independent similarity 
matrix C which belongs to the (anti)-trivial class for N (even) odd, respectively, but which goes 
only along the principally embedded L1, L-1 generators. Then by Cayley-Hamilton theorem 
introduce N- 1 independent parameters along the aq; component, and others N -1 parameters 
along bq; components. In each copy, the N - 1 parameters introduced will give rise to the 
N - 1 independent Casimirs of the angular component. Finally, pick the group elements as 
g1 = g;¡ 1 = ePLo generators. After that the metric like fields are constructed with (9.4). 

9.13 J ustification of the presence of a strong back-reaction 

This behaviour was heuristically explained by Gutperle and Krauss in [49] and the physical 
argument goes as follows: Standing at the CFT side, when we have deformed the CFT action 
as in (7.1), we have coupled a spin 3 operator W,...., Q3 to the CFT, which by definition posses a 
conforma! dimension (3, O) and thus also a scaling dimension b. = 3, which means that its mass 
dimensions is 3. Then the spin 3 operator, considering that the CFT lives in two dimensions, by 
mass dimension counting turns to be non-renormalisable. As such, it must be UV relevant from 
the CFT point of view. This leads one to think that it must be irrelevant at the IR CFT, i.e., not 
affecting the IR CFT physics. Then, according to the weak-strong nature of AdS/CFT duality, 
and regarding to the interpretation given to the radial coordinate as an energy scale at which 
we are looking the boundary theory (see chapter (6)), the CFT has its mínimum length (high 
energy) scale at the boundary, beca use from the boundary point of view, we are looking the CFT 
theory near the boundary. This implies that the UV CFT regime must belongs to the boundary. 
On the other side, when we are looking the bulk theory from the bulk point of view, we measure 
distances from the centre ofthe bulk manifold, i.e., as if we were stand on the horizon. Therefore, 
the boundary from this point of view it is located at large distances (low energy). In particular 
this means that the IR BULK physics must be located at the boundary, which is where the UV 
CFT physics live. Therefore the spin 3 operator, being an UV CFT relevant operator, it must 
affect the UV CFT physics, and this statement at the BULK theory side should be understood 
as it must affect the IR BULK physics which is precisely located at the boundary. Furthermore, 
in lower spins AdS/CFT, it is usual to think that, at the BULK theory side, the IR BULK 
physics is described asymptotically, i.e., at large distances, being far away from the centre (and 
thus near the asymptotic boundary), which is the regime where the physical BULK fields can be 
seen as small fiuctuations around an asymptotic fi:xed background. This asymptotic background, 
being asymptotically defined, is considered as living on the boundary, where all the fiuctuation 
of the fields can be thought as small beca use are highly suppressed by the long radial coordinate 
approaching the boundary. It is precisely this picture of small fiuctuations around an asymptotic 
background, the one which fails in the higher spin N 2:: 3 scenario, because, being the spin N 2:: 3 
operator, an UV CFT relevant operator, it relevantly affects the IR BULK physics according 
the conjecture (see figure (9.13) for a schematic commutative diagram). 
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Q3 irrelevant en IR CFT ------+ Q3 irrelevant en UV BULK 

1 r 
Q3 relevant en UV CFT ------+ Q3 relevant en IR BULK 

Please also note, that the in the first line of the above diagram, this scheme also justify the 
solution found in for the spin 3 field in the principal embedding, because just as this line states, 
the irrelevant at the IR CFT spin 3 operator, must be irrelevant at the UV bulk regime which 
is located near the horizon. This is confirmed with the fact that in the near horizon p '"'"' O 
analysis, the expressions (9.50) and (9.52) concerned to the study of possible divergencies, are 
independent on the spin 3 operator, and thus the near horizon behaviour it is not affected by 
this operator. (see also (9.70),(9.76) and (9.78) concerning the spin 4 case). 

9.14 SL( 4, ~) solution in the principal embedding 

Just as before, we use a principally embedded charge-independent matrix given by: 

(9.53) 

where L1, L-1 are the 4 x 4 dimensional SL(2, 3() generators which are principally embedded 
into SL( 4, 3() (see appendix for conventions). Then, the Cp matrix satisfy: 

If we choose to fix q = n, then Cp satisfy the (anti)-trivial holonomy conditions, i.e.,: 

where Id is the 4 x 4 identity matrix. 

After that, by Cayley-Hamilton theorem the fields ac/J and bc/J are constructed as: 

With this new parameterisation the spin 2, 3, and 4 charges (Casimirs) are given as: 

(9.54) 

(9.55) 

(9.56) 

(9.57) 

(9.58) 

(9.59) 

Q4 265721 q12E1 4 + 118100 /Ll q10E1 3 + 6 q8 (3281¡L1 2 + 5840 VJ 2q2) E1 2 (9.60) 

+4 q6 ¡L1 (1968 V1 2q2 + 365JL1 2 ) El + q4 ( 41¡Ll 4 + 256 V1 4 q4 + 480 JL1 2v1 2q2 ) 

and analogously, for the other copy we have: 
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(9.61) 

(9.62) 

Q4 265721 q12E2 4 + 118100 J-L2 q10E2 3 + 6 q8 (3281 J-L2 2 + 5840 vlq2 ) E22 (9.63) 

+4q6J-L2 (1968v22q2 + 365J-Ll) E2 + q4 (41J-L24 + 256v24q4 + 480J-L22v22q2) 

Again, we can say that our at and bt fields already satisfy the (anti) trivial temporal 
holonomies, but supposing that this were not the case, performing this reparameterization of 
the charges, we could have solved the holonomy conditions in the BTZ branch with: 

32 4 4 30 2 3 2 5) - 1/1 q /-Ll - q /-Ll 1/1 + f-Ll 

where: 

(9.64) 

(9.65) 

(9.66) 

and for the other copy, we could have solved the holonomy conditions with analogous ex­
pressions for the chemical potentials a2, a3, a4 in terms of the other parameters f-L2 1 1/2, E2, which 
for brevity we omit. 

Once more, please note that BTZ branch is the branch which has the BTZ values for the 
chemical potentials cr2 = ~1 , cr3 = O, CJ4 = O in the limit case when v1 = O, El = O. Also, 
note that in this limit case we will have Q3 = O, and Q2 i- O but also we have Q4 i- O. The 
last, it is not supposed to be a problem given that already in the simple fundamental SL(2, R) 
theory there exist non-vanishing quartic Casimirs invariants given as multiples of the quadratic 
Casimirs invariants. 

The group elements are chosen as g1 = g:¡ 1 = ePLo, and the two index metric-like field, 
trough (9.4) with normalising factor !4 = i, are given as (omitting combinatoric factors): 

(9.68) 
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with the components: 

9pp 

9tt 

9t<P 

z2 

_z2q2 (eP- e-P)2 

(- ~1 l2 (E1- E2) q4 -l2 (-/12 + /-Ll)q2) (eP- e-P) 2 

2 2 (347 4 41 2 ) ( p -p)2 l q 5 E2 E1 q + 5 (E2 /11 + /12 El) q + /12/11 e -e 

12l2q4 2 18l2q6 2 
+---llll/2 (e2P-e-2P) +---E2El (éP-e-3P) 

5 5 
2l2q4 

+-5- (41( E2 /11 + /12 E2 + /11 El+ /12 El)+ 8 (vl + l/2)2) 

+73l2q6 (El+ E2) 2 + l2q2 (/11 + /12)2 (9.69) 

This two index metric-like field depends on the six charge-related parameters /11, /12, v1, v1, E1, E2 
independently. Posses an horizon at p = O where al the components with at least one temporal 
label vanish. The horizon is smooth as near the horizon p "' O we get: 

ds 2 = l2 ( dp2 + l ( 2ni dT + { · · ·}regular terms) 
(9.70) 

Note that the strong back-reaction it is again present in (9.69), but in a pronounced way, 

where dominant leading terms in gq,q, now goes as rv éP. 
Also, in the limit v1 = O, v2 = O, E1 = O, E2 = O, the metric (9.69) falls in BTZ. 

The three index metric like field is given as: 

(9.71) 
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with the components: 

(9.72) 

(9.73) 

(9.74) 

g</Jc/Jc/J {2049l3é2 é1 (vl + v2) q8 + 3l3 (80 v1 él /L2 + 7lvl /Ll é2 + 80 /Ll v2 é2 + 71 /L2 é1v2) q6 

+24l3J.t2 /Ll (vl + v2) q4} x (eP- e-P) 2 

+9l3q4{91 (é22v1 + é1 2v2) q4 + 20 (J.t2 é2v1 + /Ll é1v2) q2 

+ J.t2 2v1 + J.t1 2v2} x (e2P- e-2P) 2 

+(135l3é2él (vl+v2)q8 +27l3 (J.t2élv2+VlJ.llé2)q6 ) x (e3P-e-3P) 2 

+2184!3 (él+ é2)2 (vl + v2) q8 + 480 l 3 (él + é2) (vl + 1/2) (J.tl + J.t2) q6 

+24!3 (J.tl + ¡.t2)2 (v1 + v2) q4 (9.75) 

This three index metric-like field depends on the six charge-related parameters /Ll, /L2, v1, v1, é1, é2 
independently. In the BTZ limit: v1 = O, v2 = O, é1 = O, é2 = O this field vanish. Also this field 
posses an horizon at p = O where all the components with at least one temporal label vanish. 
The horizon is smooth as near the horizon p"" O, up toa global numerical factor, we get: 

(9.76) 

The four index metric-like field, posses the form ( omitting combinatoric factors): 

ds4 = gppppdp4 + gppttdp2dt2 + gpptc/Jdp2dtdcp + gppc/Jc/Jdp2d1;2 

+guudt4 + gtttc/Jdt3 dcp + gttc/Jc/Jdt2 d1;2 + gtc/Jc/Jc/Jdtdcp3 + gc/Jc/Jc/Jc/Jdcp4 (9.77) 

The components of the 4-index metric-like field are given by extremely huge expressions 
which are not worth to show them. However, it is important to stress that this field in general 
does not factorizes as two black holes, nor even as dcj;2 x (BH), nor a combination of the two. 
But we can certainly say that this metric-like field near the horizon p"" O, expanding it at order 
O(p4 ) (as there is a component guu), has a structure given by: 

ds 4 = (d/ + /(2n)2dT2) X (dp2 + p2 (2n) 2 dT2 +{ ... }regular terms) +{ ... }regular terms (9.78) 

which means it posses a smooth horizon, because near from it, it is given by the product of 
two regular surfaces. 
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Also, in the BTZ limit (v1 = O, v2 = O, E1 = O, E2 = O) for this field we have a factorization 
as: 

ds4 rv (BTZ) X (BTZ) (9.79) 

with BTZ given as in (9.15). 

9.15 Conclusion 

vVe have shown a way to construct regular bulk solutions inside a theory of higher spin fields 
coupled to gravity. To this end, we have used the criteria of the existence of an horizon which 
has been demanded by imposing et = O at this point. In particular, for static and spherically 
symmetric solutions of the equations of motion, the existence of an horizon implies that the 
constant lower case matrices at and bt must be in the same class. Also, looking for solutions 
that posses spin 3 charges and a BTZ limit when these spin 3 charges are turned off, we have 
used solutions belonging to the principal embedding. In order to do this, inspired by the simplest 
example given by N = 2, an automatic way to ensure that we have a solution in the principal 
embedding has been given by using as a starting point sorne particular choices for the fields as 
at = bt = e, where e is a charge independent constant matrix which belongs to the principal 
embedding. Also, we have shown that if we want euclidean metric-like solutions with smooth 
horizons, the e matrix must belong to the class which posses trivial (for N odd) or anti-trivial 
(for N even) holonomies. Meanwhile the geometry of a regular spin 2 metric near the horizon is 
a plane, we have shown that the geometry of the regular higher spin metric-like fields, near the 
horizon is described, in the spin 3 case, by the direct product of the regular angular 1-form with 
aplane, i.e.: 'dc/Jx plane'. Similarly, in the spin 4 case we have shown that near the horizon 
the geometry is given as a 'plane x plane'. In both cases, for N = 3 and N = 4 we ha ve found 
that the solutions posses an asymptotic behaviour which strongly departs from the background. 
This is consistent with the fact that in this theory an irrelevant IR CFT spin N > 2 operator 
has been coupled to the system, being relevant for the IR bulk physics. The method used here 
to construct regular bulk solutions can be straightforwardly generalised for all N. 
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Appendix A 

Algebra Generators 

A.l SL(3, ~) generators representation, first convention 

In chapters 5 and 7, we have strictly followed conventions used in [27] for the fundamental 

representation of the SL(3, lR) algebra: 

~ ~] , Wo = ~ [ ~ 
-1 o o 

w-1 = l ~ ~? 
o o 

These eight generators satisfy the SL(3, lR) algebra given by: 

[Li, Lj] 

[Li,Wm] 

[Wm,Wn] 

(i-j)Li+j 

(2i- m)Wi+m 
1 2 2 -3(m- n)(2m + 2n - mn- 8)Lm+n 

(A.1) 

(A.2) 

(A.3) 

(AA) 

(A.5) 

(A.6) 

The generators (L1, L0 , L_I) are the generators of SL(2, R) principally embedded into SL(3, R). 
They transformas a spin 1 triplet under themselves, meanwhile the generators (W2, W1, vVo, W-1, W_2) 

transforms as a five component spin 2 multiplet under (L1, Lo, L-1)· 

The generators (W2, Lo, W_2) are the generators of SL(2, R) diagonally embedded into 
SL(3, lR). They transform as a spin 1 triplet under themselves. On the other hand under a 
transformation with (W2, Lo, vV-2), the generator Wo transform as a spin O, meanwhile the 
generators (vV1, L_I) and (W-1, L1) transforms as two spin ~ doublets. 
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A.2 Principally embedded SL(2, !R) generators into SL(N, !R) con­
vention 

In chapter 9, we have strictly followed the convention used in Castro et al work [54]. An 
explicit representation for the principally embedded SL(2, ?R) generators into the fundamental 
representation of the SL(N, ?R) algebra, is given by: 

o o 
vN-1 o 

o .j2(N- 2) o 
L1 o o (A.7) 

o o Jji(N- i)j o 

o o o o 
o vN-1 o 

o vN-1 o o o o o 
o o .j2(N- 2) o o o o 
o o o o o o 

L-1 = o o o o vli(N- i)l o o (A.8) 

o o o o o o 
o o o o o o vN-1 
o o o o o o o 

(N -1) o o 
o (N- 3) o 

o o o o o 
Lo 

1 
o o (N+ 1- 2i) o o o , (A.9) -

2 

o o o o o 
o o o o -(N- 3) o 

o -(N- 1) 

The above generators satisfy the SL(2, ?R) commutation relation: 

(A.10) 
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From them we have the normalization factor: 

1 2 
fN = tr(LoLo) = 12 N(N - 1) (A.ll) 

Although not explicitly used in this thesis, for completion we can say that higher spin 
generators can be explicitly constructed by taking products of the principally embedded SL(2, R) 

generators as: 

(s) _ (- )s+m-1 (s +m- 1)! [ [ [ s-1] ] Wm- 1 ( )' L-1, L-1,··· L-1,L1 ... 
2s- 2 . 

(A.12) 

These higher spin generators satisfy the relation commutation: 

(A.13) 

In the N = 2 case, there exist only one embedding which through (A.7) is explicitly given 

by: 

L1 = - [ O O l 'L_1 = [ O 1 l 'Lo = ~ [ 1 O l ' 
1 o o o 2 o -1 

(A.14) 

For the N= 3 case (SL(3, R)), the principally embedded SL(2, R) generators in (A.7) are 

explicitly given by: 

o 
o 

J2 
~ 1 ' 

-2 

(A.15) 

For the N= 4 case (SL(4, R)), the principally embedded SL(2, R) generators in (A.7) are 

explicitly given by: 

o o o o o V3 o o 3 o o o 

V3 o o o o o J2 o 1 o 1 o o 
L1 =-

J2 
,L-1 = ,Lo= 2 

o o o o o o V3 o o -1 o 

o o V3 o o o o o o o o -3 
(A.16) 

93 



Appendix B 

Chern-Simons with Boundary 

Here, we will give a brief review of the es theory defined on a manifold with boundary. This 
exposition follows the lines that were developed in [55]. 

In the es theory defined on the solid torus manifold, we have the torus surface as a boundary. 
To study the consequences of having a boundary, we can study its Hamiltonian formulation, to 
this we do a (2 + 1) splitting of the coordinates as: 

(B.1) 

with this splitting the es action reads as: 

k j . . . k i . Ses=- dt 1\ dx2 1\ dx1 tr(AiAj + AtFij) +- dx2tr(AtAi) + Br 
47r M 47r BA·I 

(B.2) 

where Br is an extra boundary term that guaranty the differentiability of the es action. 

Expanding the above expression explicitly in the gauge algebra generators one is left with: 

Ses=!!.._ { dt 1\ dxi 1\ dxlgab(AfA~ + A~Fi~) + !!.._ { dxigab(A~A~) + Br (B.3) 
47r J M 47r J a.tvt 

where 9ab is the Killing metric of the Lie algebra, and the indices a, b : 1, ... , N stands for 
label the different generators of the algebra, where N is the gauge group dimension. 

After space and time splitting, this action is automatically left as a Hamiltonian action, 
where Af are N dynamical fields and its conjugated momentum 1r~ is given by 1r~ = 4:Eij 9abA~. 
Although nobody use this directly, it is worth to mention it. 

Also, A~ are N Lagrange multipliers while Fij gives rise to N first class constraints which 
comes from vary with respect to the Lagrange multiplier Af as: 

(B.4) 

For two functionals P1, P2 defined on the phase space, its equal-time Poisson brackets is 
given by: 

(B.5) 
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Using the Poisson bracket, we see that ePa satisfy a first class algebra given by: 

(B.6) 

To study how the gauge transformations acts on field configurations, it is useful to define 
an extended generator of gauge transformations as a distribution smeared with a test gauge 

function A as: 

<I>[A] 

(B.7) 

where Q[Aj is a boundary term chosen in such a way that ensures functional differentiability 
of <I>[A]. This boundary term is crucial to understand from where does it comes the physical 

degrees of freedom of the theory. 

For gauge transformations using (B.7) in which the parameter A is independent of the fields, 

we have: 

(B.8) 

Using this kind of parameter-independent gauge transformations, we can compute the Pois­
son bracket of the extended generators of gauge transformation <I>[A1] and <I>[A2] getting: 

(B.9) 

Also, for the transformations performed with <I>[A], after imposing the constraints, in the 
weak equality we have <I>[A] ':::' Q[A]. Now, if A is such that Q[A] -=f. O, then the gauge trans­
formations performed with <I>[A] will give rise to global symmetries which transforms a physical 
state of the boundary into another physical state of the boundary, which are not gauge equiva­
lent. In particular this means that for sorne values of A in which Q[A] -=f. O, true gauge symmetry 
coming from the bulk is really lost at the boundary, and thus Q[A] receives the name of global 
charges of the 'would be' the boundary theory. Is straightforward to see, after solving the con­
straints, that the global charges satisfy an algebra similar to (B.9), but now with the Dirac 

brackets of the reduced phase space: 

(B.lO) 

Using (B.8) inside (B.lO), with the Aj fields expanded on modes on the circle, one finally 
arrives at the Kac-Moody Algebra. If one imposes the correct constraints on the boundary 
values of Ai fields, one can fall into the extended conformal ~Vn algebras. 
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Appendix C 

Quasi-Primary and Primary 
Operators 

In the language ofholomorphic operator product expansions (OPE) ofthe CFT, a quasi-primary 
operator 'O(w,w)' is one that under a transformation made with the spin 2 current 'energy 

momentum' operator (denoted in its holomorphic components as 'L(z), L(z)'), transforms, in 
the OPE formalism, as: 

L(z)O(w, w) 
O(w, w) oO(w, w) 

... + h ( )2 + ( ) + ... z-w z-w 
(C.l) 

L(z)O(w,w) 
- O(w,w) BO(w,w) 

... +h( )2+ ( ) + ... z-w z-w 
(C.2) 

where (h, h) are called the conformal weights of the operator O(w, w). These two parameters 
can be related to the spin 's' and scaling '6..' parameters of the operator O(w,w) through: 

s=h-h 

6..=h+h 

(C.3) 

(C.4) 

which are, respectively, the eigenvalues of the rotation operator R = zo- zB and dilatations 
operator D = zo + zB. 

The dots on the left hand side of (C.l) (and (C.2)), means higher powers of the singular 
terms which are at orders higher than (z-1w)2 (and (z-1w)2 for the second line), meanwhile the 
dots on the right hand side means regular terms. 

A primary operator is a quasi-primary operator, for which the terms denoted by the dots of 
left hand side of (C.l) (and (C.2)) are completely absent, i.e, the series truncates at order (z-1w)2 . 

The above OPE transformation (C.l), for a primary operator (without the presence of higher 
order singular terms in the dots of the left hand si de), after quantum averages has been taken, 
produces a behaviour in the averaged quantities as a general smooth conformal transformation 
with oz = c(z): 
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oO(w,w) = cO'(w,w) + hc'O(w,w) (C.5) 

An analogous expression holds for the anti-holomorphic transformation oz = t(z) produced 

with the anti-holomorphic component l.(z) of the energy-momentum tensor. 

If the transformed operator is a non-primary one, as is the case of the energy-momentum 
itself, using O = L.(z) in (C.l), then a higher order singular term of the left side of (C.l) is 
present, being proportional to the central charge. This term give rise to the term that goes 
as E111 in (5.89). Thus, in principie, without possessing explicitly the OPES, but knowing the 
transformation rules for an operator, one can indirectly see that there must exist singular terms 
of orders higher than (z-1w) 2 in (C.l) and thus deduce that the operator in question will be a 

quasi-primary one. 
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