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Abstract

This thesis determines framed and oriented extended two-dimensional topological
quantum field theories (TQFTs) valued in the bicategory of Landau-Ginzburg
models £G. This bicategory is important, for example, in knot theory, string
theory, and homological mirror symmetry. More specifically, the present study is
inspired by work on homological (or categorified) knot invariants.

First, we recall LG as a bicategory with adjoints. Roughly, objects of LG are
polynomials with an isolated singularity at the origin. The category of morphisms
between two such polynomials is a homotopy category of matrix factorizations
of their difference. We detail the definition of £G including some subtleties not
mentioned in the literature.

Then we construct an explicit symmetric monoidal structure on £G. The
monoidal product of two objects is basically the sum of polynomials. As for
the morphisms in the symmetric monoidal structure the unit 1-morphisms in
LG and their unitors are vital. Also functors of restriction of scalars for matrix
factorizations along ring isomorphisms feature prominently.

In the third part of the body of the thesis we define the dual of an object of
LG, essentially minus the polynomial. Building on the unit 1-morphisms of LG,
we single out coevaluation and evaluation morphisms for these duals. It follows
that every object of LG is fully dualizable.

Before turning to the last investigations of this thesis we recall the bicategor-
ical cobordism hypothesis and its analogue for oriented bordisms. The former
cobordism hypothesis combines with the conclusion of the preceding chapter to
establish that every object determines a framed extended TQFT valued in L£G.
Next, we prove that precisely for those objects of LG which are given by poly-
nomials in an even number of variables the corresponding Serre automorphism is
trivializable. This implies that these objects determine oriented extended TQFT's
valued in £G. Finally, we introduce a bicategory LG very similar to £G. In par-
ticular, it has the same objects and 1-morphisms. As opposed to LG, in LG there
are 2-morphisms of both even and odd degree (each of these morphisms being
identified with minus itself via a Zs-action). This enables that every one of its
objects determines an oriented extended TQFT valued in LG. We discuss an
example of such a TQFT related to our knot-theoretic inspiration.

Our proofs are greatly simplified by some coherence results. These general-
ize known coherence theorems to include the effects of functors of restriction of
scalars along ring isomorphisms.
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1. Introduction

This thesis is motivated by the desire to better understand one class of two-
dimensional topological quantum field theories (2d TQFTs). Namely, we study
the bicategory LG of Landau-Ginzburg models. Roughly, its objects are poly-
nomials with an isolated singularity at the origin. 1-morphisms are matrix fac-
torizations. This bicategory relates e.g. to conformal field theory and is thus of
interest to string theory. Moreover, it features prominently in the categorified
knot invariants defined by Mikhail Khovanov and Lev Rozansky in [KRIl [KR2].
In this thesis, we determine extended 2d TQFTs valued in £G.

We devote this introduction to an account of some context focusing mainly on
the mathematical description of TQFTs. In particular we comment on extended
and on defect TQFTs. The latter allow us to smoothly transition to a few words
on LG. Finally, we provide a short summary of our results.

TQFTs are a subject of mathematical physics and pure mathematics which is
rooted in theoretical physics, cf. Edward Witten’s [W]. As this thesis is dedicated
to mathematical investigations related to TQFTs we do however not go into their
origins in physics beyond the following remark.

In theoretical physics TQFTs are a special kind of quantum field theories. The
latter are commonly described in terms of path integrals, which are, however,
often ill-defined. These path integrals are used to compute certain numbers which
for theories modeling phenomena that can be probed experimentally, can be
compared with measured data. In TQFTs these numbers do not depend on the
metric of space-time, thus the adjective topological.

Their eponymous property makes TQFTs particularly accessible to the ap-
proach to formalizing quantum field theories in mathematically rigorous terms
originally proposed by Graeme Segal in [Se|] for conformal field theories (in which
not only the topology but also a conformal structure on space-time is relevant to
the quantities of physical interest). In line with [Se] Michael Atiyah suggested an
axiomatization of TQFTs, cf. [A]. For a pedagogical motivation of Atiyah’s ax-
ioms we recommend [CR4]. Here we concentrate on the mathematical description
of TQFTs inferred from [A], cf. eg. [K].

We denote by N the natural numbers without 0. Let n € N. The standard
way of paraphrasing Atiyah’s original formalization of an n-dimensional TQFT
is that it is a symmetric monoidal functor

Z : Bord,, ,—1 — Vecty. (1.0.1)



1. Introduction

Here Vecty is the category of vector spaces over a field k. Together with the tensor
product of vector spaces, its canonical associators, the natural isomorphisms V ®
W=2WwgV,V e Vecty, W € Vecty for a braiding, the field k as a unit object
and its canonical unitors this is a symmetric monoidal category.

Maybe less popularly, Bord, ,—; is a category whose objects are (n — 1)-
dimensional closed manifolds. Morphisms in Bord,, ,_; are certain diffeomor-
phism classes of n-bordisms, i.e. n-dimensional bordisms. Their precise defi-
nition takes into account some subtleties faced in realizing the idea that mor-
phisms between two (n — 1)-manifolds are n-manifolds whose boundary is the
former’s disjoint union. Bordisms are composed by gluing them along their com-
mon boundaries. Unit morphisms are represented by cylinders. Bord,, ,—; allows
for a symmetric monoidal structure whose product is disjoint union, with “twist
bordisms” (a special case of the so-called cylinder construction, i.e. their under-
lying n-manifolds are the disjoint union of two cylinders) as symmetry and the
empty manifold as unit object.

Note that a closed n-manifold can be regarded as a bordism from the empty set
to the empty set. The functor Z of assigns a number to such a manifold
which corresponds to the numbers which are computed in theoretical phyiscs,
cf. above. Thereby TQFTs yield invariants of manifolds. This has sparked con-
siderable interest in mathematicians.

What makes these invariants particularly computable is that since Z is a func-
tor it goes well along with gluing of manifolds. This allows to calculate its value
on a given manifold by splitting the latter into smaller pieces on which Z may be
easier to evaluate, applying Z to these and composing the results. This strategy
underpins the known classification results for TQFTs as in ((1.0.1)).

In the seminal work [BD|] John Baez and James Dolan envisioned a program
taking the logic of decomposing a manifold into smaller bits even more seriously.
This is about extended TQFTs as higher functors between higher categories.
More accurately, they consider what in later terminology is referred to as fully
extended n-dimensional TQFTs which are symmetric monoidal n-functors val-
ued in arbitrary symmetric monoidal n-categories. Their source n-category is a
bordism n-category “extended” to the point.

For example, one can think of a bordism n-category Bordff whose objects
are disjoint unions of framed points, 1-morphisms are framed 1-bordisms, 2-
morphisms are framed 2-bordisms etc. up to n-morphisms which are equivalence
classes of framed n-bordisms. Then Baez and Dolan conjectured that fully ex-
tended TQFTs with source Bordflr correspond to ‘objects with duals’ in their
target n-category. This is the cobordism hypothesis.

There is however a caveat: all higher categories and higher functors are assumed
to be weak. Yet there is no complete description of such weak higher algebraic
structures for n > 4.

This obstacle was overcome by Jacob Lurie in [Lul] using sophisticated tech-



niques of (0o, n)-categories. These allowed him to turn the ideas of [BD| into
clearer statements whose proof he sketched extensively. In particular he replaced
‘objects with duals’ by fully dualizable objects. Moreover he suggested how to
generalize the cobordism hypothesis for bordism categories with tangential struc-
tures other than a framing.

In parallel to Lurie’s work, Christopher Schommer-Pries developed a more
explicit approach to extended 2d TQFTs in [SPl].E] Indeed, in two dimensions
there is a well-understood theory of weak 2-categories, i.e. bicategories, which are
the appropriate stage on which to place extended 2d TQFTs. Schommer-Pries
classified oriented and unoriented extended 2d TQFTs by giving a generators and
relations presentation of the respective bordism bicategories. Hence every such
TQFT is determined by what it assigns to a finite set of data.

Using similar techniques Piotr Pstragowski gave a presentation of the framed 2d
bordism bicategory Bordgr in [P] thereby classifying framed extended 2d TQFTs
with values in an arbitrary symmetric monoidal bicategory B, i.e. symmetric
monoidal 2-functors Z : BordY — B. Moreover [P] employs this presentation to
prove the bicategorical cobordism hypothesis as inspired by [Lu]. We recall some
more details of this work in Section B.1.1]

In [H] Jan Hesse also proves the bicategorical version of Lurie’s cobordism
hypothesis for oriented bordisms. This is reviewed in Section below.

We now turn to another way in which higher categories feature in studying
TQFTs, so-called defect TQFTSs, cf. [DKR] for the two-dimensional case n = 2
and [CRS] for n € N. Here one equips the bordisms with embedded submanifolds.
These are additionally labeled by some chosen data ID. Physically, the labels for
top-dimensional manifolds can be interpreted as “theories”. Lower dimensional
submanifolds are thought of as “defects”. Equipping both the objects and mor-
phisms of Bord,, ,,_; with such labeled submanifolds in a compatible way results
in a symmetric monoidal category Bordi‘fﬁ_l(ﬂ)). An n-dimensional defect TQFT
is then defined to be a symmetric monoidal functor

Z : Bord™ (D) — Vecty.

n,n—1

It is expected that one can extract a weak n-category from such a functor. Its
objects are the theories, 1-morphisms are composed of the labels of defects, etc.
Finally, the set of n-morphisms results from applying Z to certain labeled (n—1)-
spheres. For n = 2 this is worked out in [DKRI, cf. the lecture notes [C2]. For
n = 3 see |[CMS].

An example of a bicategory which is believed to arise in this way from a 2d
defect TQFT is the bicategory £G of Landau-Ginzburg models. For physicists
Landau-Ginzburg models are given by specific action functionals whose infrared
properties are governed by a single holomorphic function. This limit of the theory
is supposed to be a conformal field theory and therefore relevant to string theory.

'In dimension two every extended TQFT is automatically fully extended.



1. Introduction

Objects of the bicategory LG comprise polynomials with an isolated singularity
at the origin. These represent the holomorphic functions which themselves are
the essential ingredient of the physicists’ theories. 1-morphisms in £G are matrix
factorizations of the difference of their target and source objects. In accordance
with the general way of constructing higher categories from defect TQFT's, these
matrix factorizations are thought of as defects between their source and target
theories. Chapter [2]is dedicated to introduce £G more thoroughly.

Besides being relevant to string theory another example where this bicategory
appears in theoretical physics is the paper [KapR] on some conjectured three-
dimensional TQFTs. Here LG is supposed to describe surface, line and point
defects. Moreover, since LG embeds matrix factorizations into a higher algebraic
context, it is relevant to the areas where the latter feature. These in particular
include homological mirror symmetry, cf. [HKK+, [ABC+|, and the theories of
categorified knot invariants defined by Mikhail Khovanov and Lev Rozansky in
[KR1, [KR2J.

Indeed, the topic of this thesis springs from the groundbreaking paper [KRI]
where Khovanov and Rozansky define knot homologies categorifying SU(n)-
Witten-Reshetikhin-Turaev invariants using matrix factorizations. In [KR1, §9]
it is claimed that there is an oriented “T'QFT with corners” involved in the con-
struction of these homologies. They “leave details to the reader”. We assemble
some of these details from the literature accumulated since the publication of
[KR1] and the results of this thesis.

From another point of view, the question whether one can define extended 2d
TQFTs valued in LG is just a special instance of the broader task of finding out
to which degree defect and extended TQFTs are related.

Concluding this introduction we outline the further content of the present the-
sis. First, in Chapter 2| we introduce in detail the definition of LG which we work
with. Then, in Chapter |3| we define the required data turning £G into a symmet-
ric monoidal bicategory. The monoidal product of objects is basically the sum of
polynomials and that of 1-morphisms is essentially the external tensor product of
matrix factorizations. This results in Theorem [3.3.12] which in particular entails

Theorem A. There exists a symmetric monoidal structure for the bicategory

LG.

In Chapter [4] we equip every object of LG with a dual object, roughly minus the
polynomial, and define the associated (co-)evaluation morphisms. This allows us
to state Corollary [£.7 which we quote as

Proposition B. Every object of LG is fully dualizable.

Finally, we begin Chapter |5| by providing some background on the bicategorical
versions of the framed and oriented cobordism hypothesis. This sets the stage
for us to subsequently use Theorem and Corollary to prove Corollary
and Corollary We summarize these results next.



Theorem C. Every object of LG gives rise to a framed extended 2d TQFT
valued in £G. Every object of LG with an even number of variables is the value
of an oriented extended 2d TQFT valued in LG in the positively oriented point.

Then we show Lemma |5.3.5, Proposition and Corollary which taken
together say

Proposition D. There is a symmetric monoidal bicategory LG such that every
object of LG gives rise to an oriented extended 2d TQFT valued in LG.

As an illustrative example of such a TQFT we consider the assignments of Kho-
vanov and Rozansky in [KRI] §9] in Section [5.3.2]

Much of what we show in this thesis is unsurprising to experts. It is our
contribution to prove it.
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2. The bicategory LG

In this chapter we define the bicategory L£G of Landau-Ginzburg models. We
intend to present LG rather pedagogically trying to clearly motivate the precise
choices of objects and morphisms in £G. To this end we begin with a preview
of the definition of £G. This helps us to justify why we consider the various
structures we present below in preparing the definition of £G. For the definition
of a bicategory we refer the reader to Definition [A.T.1]

Preview 1. Objects of LG are pairs (x, W), where @ is an ordered set of variables
and W € k[z] for a field k of characteristic zero is a potential as in Definition
2.1.1l 1-morphisms in £G from (x,V) to (y, W) are matrix factorizations of
(k[z,y], W(y) — V()) according to Definition [2.2.1]

The most authoritative exposition of the bicategory £G which we are aware of
is in [CM2]. For a very concise summary of the essentials required to compute in
this bicategory we recommend [CM3].

2.1. Potentials

We begin by defining the central notion when it comes to the objects of LG.

Let k be a field of characteristic zero. Throughout this thesis, we use bold type
asin ¢ = (z1,...,2,), n € N, to refer to ordered sets of variables. Denote by
(x)? C k[x] the ideal whose elements have no constant or linear terms.

Definition 2.1.1. Let W € k|x].
1. The Jacobi ring of W is the ring

Jacw = k[z]/(0x, W, ..., 0., W).

2. The element W € k[z] is called a potential if W € (x)? and

dimy(Jacy) < oo.
Remark 2.1.2. The polynomial function k™ — k corresponding to W has an
isolated singularity at the origin if and only if W is a potential.

Examples. One family of potentials is {z¢ € k[z], d € N>y}. Another family of
potentials is {z? + zy® € k[z,y], d € N>3}.
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2.2. Matrix factorizations

In this section we collect the definitions of matrix factorizations — particular ones
of which are 1-morphisms in £G — and their morphisms.

Let R be a ring. Below we use the following conventions. By “R-module”
we mean a left R-module. Let M be an R-module. We denote by r.m the
action of 7 € R on m € M. Also, we decompose a Zs-graded R-module M as
M = M° @ M? displaying the Z,-degree by superscripts. Moreover, we write
Modg for the category of R-modules. For its objects we write M € Modgr and
the set of morphisms from M € Modg to N € Mody is denoted by Modg (M, N).
In general, for C a category and A as well as B objects of C we write A € C,
B € C and denote the collection of morphisms from A to B in C by C(A, B).

The following definition rephrases the one in [E, §5].

Definition 2.2.1. Let R be a commutative ring and W € R. A matriz factor-
ization X = (X, dx) of (R, W) consists of the following.

1. X, is a Zs-graded free R-module.
2. dx is a Zy-odd R-module endomorphism of X, such that dE( =W.idy,,.

We refer to dx as the (twisted) differential of X and to X,, as the underlying
module of X.

Observe that given two Zs-graded R-modules M, N the R-module Modg (M, N)
is Zo-graded with

Modg (M, N)' = {(¢°, oY) ¢’ € Modg (M7, NU+Imed2)y i e £0 111 4 € {0, 1}.

(2.2.1)
For a homogeneous element ¢ € Modg (M, N)!, we indicate its Zy-degree as
|l = 1.

Definition 2.2.2. The category MFg i has matrix factorizations of (R, W) as
objects and for every pair (X,Y’) of matrix factorizations of (R, W) the Z,-
graded R-module MFz w (X,Y) := Modg (X, Y;,) as morphisms. Composition
and units in MFx y are those of Modg.

Remark 2.2.3. Morphisms in MFgz y(X,Y) are defined independently of dx
and dy. Still, the latter twisted differentials can be used to endow MFg 1 with
a non-trivial differential graded (dg) structure, cf. [Ke|, that is not present on
Modg. To wit, as we show in Lemma below, the twisted differentials of X
and Y combine into an honest differential on MF% (X, Y"). This differential is
an R-linear map of degree 1 with respect to the Z,-grading on MFz w (X,Y) =
Modg (X, Y;,) displayed in (2.2.1)). Thus, Definition together with Lemma
specify a differential Zo-graded category of matrix factorizations of (R, W).
Many aspects of this dg structure are elaborated in [Dyc].



2.3. Extension and restriction of scalars

Sometimes, cf. [Y) Definition 7.1], the Zy-degree zero cycles in the chain com-
plex of morphisms from X to Y are referred to as morphisms of matrix factor-
izations. This notion of morphisms reduces to morphisms of 2-periodic chain
complexes if one considers matrix factorizations of (R,0).

Occasionally, we write MF instead of MFg yy. This convention is used for the

categories of matrix factorizations which we introduce below, too. Similarly we
write Mod for Modg.

Remark 2.2.4. Definition [2.2.1) as well as Definition do not require W € R
to be a potential. In fact, potentials only re-enter our discussion in Section [2.8]

2.3. Extension and restriction of scalars

In line with Preview [l the categories of 1- and 2-morphisms in LG are closely
related to MFg w for specific pairs (R, W). As in every bicategory, cf. Definition
[A.1.1] the categories of 1- and 2-morphisms in £G are interconnected via functors
which yield the horizontal composites of morphisms. Preparing the ground for
introducing these functors we comment on extension and restriction of scalars for
matrix factorizations which are mentioned e.g. in [CMIl, Appendix A.1] or [DM|
§12].
Let R, S be two rings and ¢ : R — § a ring homomorphism. Then there is
the functor
¢, : Mods — Modg (2.3.1)

of restriction of scalars along ¢ which turns S-modules into R-modules by letting
r € R act as ¢(r), and reinterprets S-linear maps as R-linear maps.
Moreover, there is a functor

QO* : MOdR — MOdS

of extension of scalars along ¢ which acts as M +— §,(S) ®r M, where @, is
restriction of scalars for right modules and ¢,(S) ®z M is considered as a left
S-module via the multiplication in §. ¢* sends a morphism ¢ € Modg (M, N)
to idy, sy ®r?. The following is in line with [DM].

Lemma 2.3.1. Let R, S be two commutative rings, W € Rand ¢y : R — S a
ring homomorphism such that ¢, (S) is a free R-module. There is a functor

MFS,cp(W) — MFR,Wv (Xm7 dX) = (@*(Xm% @*(dX))v ¢ = @*W) (232)
for ¢ € MFS,@(W) (X, Y)

Proof. ¢.(X,,) is an R-module with Z,-grading induced from X,,. Since we
assume that ¢,(S) is a free R-module and X, is a free S-module, ¢,.(X,,) is
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a free R-module. Furthermore, ¢,(dx) is a Zs-odd R-module endomorphism of
0« (X,n) satisfying

(2:(dx))? = 0u(dx) = 0u((W).idx,,) = Wp.(idy,,) = W.idy, (x,.)

Thus, (¢«(Xm), p«(dx)) is an object of MFz . As ¢, is a functor Mods — Modg
and MF has the same morphism sets as Mod, the prescription (2.3.2)) is well-
defined on morphisms, too, and yields a functor. O

We use the following conventions which in light of (2.3.1]) introduce some am-
biguity. This is resolved in each instance by the context.

Definition 2.3.2. The functor in Lemma is restriction of scalars (for matrix
factorizations), ¢, : MFs ow) = MFr .

Remark 2.3.3. The functor in Lemma [2.3.1] is referred to as “pushforward” in
[CMI1] and [DM].

When working with restriction of scalars as we do below, it is useful to ob-
serve that such functors only change the ring actions in modules, but leave their
elements invariant.

Since restriction of scalars along isomorphisms of rings features particularly
prominently later on we ponder on this special case separately.

Remark 2.3.4. Note that, as the proof of Lemma illustrates, restriction
of scalars for matrix factorizations only works under the conditions of Lemma
2.3.1, The ring morphism ¢ : R — S must be such that ¢.(S,,) is a free R-
module and the source category can only comprise matrix factorizations of pairs
(S, W) such that W € Im(yp). Both requirements are met automatically if ¢ is
an isomorphism of rings.

Corollary 2.3.5. Let R and & be commutative rings, W € S, and ¢ : R — S
a ring isomorphism. Then ¢, : MFsw — MFg ,-1w) is an equivalence.

Proof. By Remark we can apply Lemma to conclude that ¢, is a
functor. Similarly, (¢!). is a functor MFg ,-14) — MFs . We assert that
(p71), is inverse to ¢,. . turns an S-module X,, underlying a matrix factor-
ization X into an R-module by letting 7 € R act as ¢(r). Applying (¢'). to
the resulting R-module gives an S-module on which s € S acts as ¢~ *(s) which
in turn acts as p(p~!(s)) = s. That is, ((¢p7")s 0 v)(Xy) = Xy Conversely,
(px0 (1)) (X,n) = X,p,. Since restriction of scalars leaves morphisms of modules
— including the differentials of matrix factorizations — unaffected, ((,0*1)* and ¢,
are inverse to each other on this level, too. O

Remarks 2.3.6. Corollary is a version for matrix factorizations of the fact
that isomorphic rings are Morita equivalent.
Our proof shows that ¢, is an isomorphism of categories.

10



2.4. Tensor products of matrix factorizations

Extension of scalars for matrix factorizations, which we turn to now, features

also in [KR2, (2.17)].

Lemma 2.3.7. Let R and § be commutative rings, W € R and p : R — S a
ring homomorphism. There is a functor

MFrw — MFEs sy, (Xm,dx) = (¢"(Xm), ¢"(dx)), ¥ = ©*(¥) (2.3.3)
for "Lp S MF'R,W<X, Y)

Proof. ¢*(X,,) is a free S-module since for an R-basis {e;}icr of X,,,, s € S and
e € Xp, ie. e =) r.e; for some r; € R, i € I, we have

iel
SRpe = S®R2n.ei = Zs@nn.ei = Zs-go(n)@Rei = Z(s-gp(ri)).(lébnei)
iel iel icl iel

which shows that {1 ®x e;}icr is an S-basis of ¢*(X,,). This module inherits a
Zo-grading ' ‘
O (X)) = @.(S) ®r X,,, i €{0,1}.

Furthermore, ¢*(dx) is a Zy-odd S-module endomorphism of ¢*(X,,) for which
(¢*(dx))* = (1 ®r dx)* = 1@ dk = L ®r (W.idx,,) = (W) ®r idx,,

Therefore, (¢*(Xn), ¢*(dx)) € MFs 4w). As in the proof of Lemma above
it follows directly from ¢* being a functor on categories of modules that the
assignment ([2.3.3) is well-defined on morphisms and gives a functor. O

Following up Definition we introduce

Definition 2.3.8. The functor in Lemma is extension of scalars (for matrix
factorizations), ¢* : MFz w — MFg o).

Remark 2.3.9. Note that extension of scalars for matrix factorizations is defined
for arbitrary homomorphisms of commutative rings.

2.4. Tensor products of matrix factorizations

In this section we introduce functors which we use later to define the horizontal
composition in £G. In doing so we follow [DM) §12]. Other references for tensor
products of matrix factorizations are e.g. [KR1] and [CR1].

From now on tensor products are assumed to be Zy-graded whenever this makes
sense unless specified differently. For example, let ¢, 1, ¢ and ¢ be morphisms of

11



2. The bicategory LG

Zsy-graded modules such that the following tensor products are defined. Assume
furthermore that ¢ and ¢ are homogeneous. Then

(0@ ¥)o(dd) = (-1 (pod) ® (o). (2.4.1)

The functors which we aim at are composed of extension and restriction of
scalars and the functors which we introduce in Lemma [2.4.2 below. Before turn-
ing to these functors we explain the notation which we use for their source cate-
gories. This is a special instance of a construction that is well-known in certain

mathematical circles, cf. Remark below.

Lemma 2.4.1. Let k be a commutative ring, & and y ordered sets of variables
and V' € k[z], W € k[y]. There is a category MFyy.w ® MFyy v defined by

(MF gy w @ MFpizv)o := (MFgyw X MFzv)o,
(MF g w @ MF a0 ) (Y1, X1), (Y2, X2)) := MFppyw (Y1, Y2) @ MFyg),v (X7, X2)

with composition dictated by the rule (2.4.1). The identity morphism on an
ObJeCt (K X) S (MFk[y},W (%9 MFk[va) is ldy (S ldX

Proof. The morphism idy ®; idy serves as an identity morphism for (Y, X) as
lidx| = 0 = |idy|. The composition is associative since

(V3 @k ¢3) 0 (V2 @k P2) © (V1 @4 ¢1))

(3 @k d3) o ((—1)""1921 (405 0 1) @4 (¢ 0 61))
1)|¢1H¢2I+\¢3H¢20¢1\(1/)3 01y 0 1) @y (b3 © P © 1)
1)|¢1\|¢2I+\¢3H¢2\+|¢3|W1|(¢3 0 1hy 0 1y) Ry, (b3 © P 0 B1),
(V3 @k ¢3) © (V2 @ ¢2)) © (V1 @4 P1)

—1)!l2l((45 0 9h2) @4 (65 © 82)) © (11 @ 61)
_1)|¢3||w2|+\¢3o¢2\|¢1\(% 01y 0 11) @y, (b3 0 Py 0 1)
_1)|¢3|I¢2I+\¢3\\¢1\+|¢2|\w1|(¢3 o1y 011) @y (3 0 da 0 ).

(-
=(-

(
=(
=(
=(

]

The functors introduced next provide us with a first means of composing cat-
egories of matrix factorizations.

Lemma 2.4.2. Let k£ be a commutative ring, & an ordered set of variables, set
R :=k[z] and let V€ R, W € R. There is a functor

KRR ZMFR’W (059 MFRJ/ — MFR’W+V’ (242)
(Y, X) = (Vi Or Xin, dy @r 1+ 1Qr dx), ¢ @k 0 — ¢ @r ¢

for (b S MFRy[/(Y, Y/), p e 1\/[];“727\/<)(7 X/)

12



2.4. Tensor products of matrix factorizations

Proof. Y, ®r X,, is a free R-module with Z,-grading

(Ym ®r Xm)o = ((Ym)o ®r (Xm>0) @ ((Ym)l QR (XM)l)v
(Ym ®r Xm)l = ((Ym)o ®R (Xm)l) S ((Ym)l R (Xm)o)

Also, dy ®r 1+ 1 ®p dx is odd with respect to this grading. Moreover,

(dy @ 1 +1@rdx)* =d? @r 1 +1@r dix = W.idy,, @zl + 1 ®% V.idy,,
= (W +V).idy, grx,.. (2.4.3)

where we use
(dy KRR 1) e} (1 KRR dx) = dy KRR dX = —(1 KRR dx) o (dy XRR 1),

cf. , in the first equality. Therefore the prescription is well-defined
on objects. Furthermore, it preserves identities as it maps id ®; id +— id ®x id.
Composition of morphisms is respected as it is defined by the rule in both
the source and the target. O]

Remark 2.4.3. The computation indicates that it yields consistent struc-
tures to work with Z,-graded tensor products in the context of matrix factoriza-
tions. Indeed, these tensor products are natural from the point of view of the
differential Z,-graded structure on MF mentioned in Remark [2.2.3] Also the
category introduced in Lemma is the standard way of defining the tensor
product of two differential graded categories as a differential graded category on
its ownH Likewise, it is well established that this tensor product extends to dg
functors, cf. [Ke, [T}, Drin]. This underlies Lemma [2.4.4] below.

It is crucial that the source category of ®% in Lemma is MFr w @ MFz v
rather than MFgz 1 x MFg . Taking the latter category in and setting
(9, 0)¢ — "¢ ®r ¢ instead, does not yield a functor. To wit, the resulting
prescription is not compatible with composition:

(2, 02) 0 (d1,01) = (P20 D1, 020 1) “ = " (P2 0 P1) @R (P2 0 1), (2.4.4)
(2 O 2) © (61 @ 1) = (—1)#21%1 (g5 0 §1) ®r (2 0 1),

where we assume that ¢; and (, are morphisms of homogeneous Zs-degree and

apply (2.4.1). In Section we encounter an alternative way of mitigating this
obstacle without referring to MF @ MF. There we consider equivalence classes of

morphisms of matrix factorizations modulo signs, following [KR1].

IThat we use the tensor product of dg categories is inspired by the definition of a monoidal
dg category in [Mol Definition 2.1.1]. In fact, using this tensor product as we do, one
can establish that certain categories of matrix factorizations are monoidal dg categories (as
special categories of morphisms in a variant of a bicategory), cf. Remark

13



2. The bicategory LG

The usual reference for certain functors that are very similar to those in Lemma
is [Y2]. In [Y2], however, only Zs-even morphisms of matrix factorizations
are considered. In this case one can replace MF ® MF in Lemma by the
cartesian product of the categories. We do so in most of this thesis. Moreover, if
one restricts to Zs-even morphisms of matrix factorizations the ring R need not
be a polynomial ring. Rather we can allow it to be an arbitrary commutative
ring.

We resume working towards the functors which serve as prototypes for the
horizontal composition of £G with Lemma . Let F' : MFyz,v — MFyyw
and G : MF K@, v MFk[@],W be two functors such that the corresponding func-
tions between sets of morphisms are maps of Zs-graded k-modules. Then we can
construct a new functor from them as follows.

Lemma 2.4.4. Given two functors F', G' as above, the following defines a functor
F®G: MFk[m],V 0% MFHELV/ — MFk[y],W ® MF

1. (F@G)O = Fo x Go

k[g), W

2. (F®G)xz) vy = Fuy) @ Gzy)

Proof. Since F' and G preserve identity morphisms the same is true for ' ® G.
We show that the function on morphisms respects the composition of morphisms:

(& @1 0) 0 (¥ @k ) = (—1)1 () 0 ) @, (G0 9)
— ()PP 0 ) @ G(d o ¢)
— (—)PIF(F() o F(1)) @ (G(8) 0 G(8))

= (F(¢) @k G(9)) o (F(¢) @k G(0)).

Note that the last equality hinges on the condition that neither F' nor G change
the Zo-degree of morphisms. O]

Particular examples of functors to which Lemma [2.4.4] applies are the functors
of extension of scalars for matrix factorizations from Lemma 2.3.7
Next we turn to the main definition of this section. First, however, we introduce

Notation 2.4.5. For k a commutative ring, V' € klz|, W € k[y]| and ¢, : k[x] —
klx,y], vy : kly] — k[z,y| the canonical inclusions of rings we write V(x) for
te (V) and W (y) for ¢, (W).

Definition 2.4.6. Let x, y, z be ordered sets of variables, k& a commutative ring,

Ueklz],Vekly, W e klz] and 1z, : klx,y] — k[z,y, 2], 1y : kly, 2] —

klx,y, z], tzz : k[x, 2] — k[x,y, 2] the canonical inclusions of rings. The functor
Okty) - MFriy. 21 w(e)-viy) @ MFkiz g vw)-v@) = MFke 2w (z)-0@)

is the composite
(ta2) © Dnjay,z) © ((ty2)" @ (t2y)").

14



2.5. Unit matrix factorizations and unitors

Note that restriction of scalars along ¢, . as it features in Definition is
possible since W(z) — U(x) € k[z,y, z] lies in the image of ¢, , and assuming
Y=Y,y Um), (Laz)«(k[x,y, 2]) is a free k[x, z]-module with a basis given, for
example, by {y!' ...y | i; € Ny, 1< j<m}.

We write Y®X for ®(Y, X) and for e € X,,,, f € Y}, we write e®gpy, f for the
corresponding element of (Y ®jy) X ).

We point out that the functor considered in [Y2] corresponds to &y, i.e. y = 0,
V =0, if one only considers Zs-even morphisms of matrix factorizations. As such
it is a fundamental ingredient of the monoidal product of LG which we introduce
in Chapter

We comment in Remark towards the end of this chapter on the ten-
sor products defined in [CR1] which from some perspective are more natural to
consider than the ones in Definition [2.4.6| The point is, though, that the two
products yield equivalent structures and the bicategory obtained using Definition
appears to be the easier one to endow with a monoidal structure, cf. Remark

B.21

2.5. Unit matrix factorizations and unitors

The horizontal composition of £G is modeled on the functor in Definition [2.4.6,
As we recollect in Definition [A. 1.1 a bicategory needs, on top of composition
functors, also unit 1-morphisms and unitor isomorphisms. These are considered
next.

The differentials of the unit matrix factorizations are defined using the following
in which we apply a version of Notation [2.4.5

Definition 2.5.1. Given a commutative ring k, two ordered sets of variables
Y= (Y1,---,Yn), 2 = (21,...,2,) and a polynomial W € k[zy,...,z,]|, we denote
by 8;]’yW the polynomial

W(yl,...,yi,l,zi,...,zn) — W(yl,...,yi,ZiJrl,...,Zn)
Zi —Yi

€ kly, z], i € N,.
(2.5.1)

To see that Definition is well-defined consider the numerator of
as a polynomial in k[z;]. Tts corresponding polynomial function k — k is zero at
2 = Yi-

In defining unit matrix factorizations, we employ the

Notation 2.5.2. Let R be a commutative ring and X a free R-module with a

basis {e; }icr. We denote by AX the exterior algebra of X over R. We sometimes
R
write €;...e; :=¢; A+ Nej and ei...é}...ek = €... 616541 ... €.

15



2. The bicategory LG

Another notational device which we use is the following. Suppose we are given
an ordered set & of n variables, a field k of characteristic zero and a potential
W e k[x]. According to Preview [I] these data define an object (x, W) € LG. To
describe endomorphisms of this object in £G we need to refine Preview[I] Namely,
we decorate either the set of variables pertaining to the source object or that
belonging to the target object with a prime such that an endomorphism of (x, W)
in £G is a matrix factorization of (k[z’, z], W (x)—W (z’)) or of (k[x, x|, W (2') —

Lemma 2.5.3. Let k be a commutative ring and assume throughout this lemma
that unspecified tensor products are over k. Set R := klx| = k[xy,...,z,),
R :=RXR,let W € R and write ¢ for the ring isomorphism

k'] = R°, x;i— x; @1, ) — 1Qx; Vi € Ng,. (2.5.2)
The following specifies a matrix factorization of (k[z’, x|, W(x) — W (x')).

1. Its k[x’, z]-module is

0. N\ (EDRe0,)) ), (2.5.3)

Re  i=1
where {6; | i € Ng,} is a chosen basis of (R°®)®". The Zy-degree of a basis
element of (2.5.3) is defined to be the parity of the number of 6 it involves.

2. The differential is

n

> (@i — 2).0; + 05" W . 0, A (-)), (2.5.4)

i=1

where by definition for j, € {0,1} VI € N,

GHOI . 07) = (—1)=" 5,0 606y o,

extended k[z', z]-linearly.

Proof. According to its definition the module in (2.5.3)) is a free k[x’, ]-module
on the basis

{01 ... 0 i € {0,1} Vj € Ne, ). (2.5.5)

We have defined its Zy-grading. Furthermore, we have specified a module endo-
morphism which is odd with respect to this grading as differential. Moreover, for
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2.5. Unit matrix factorizations and unitors

e an element of (2.5.3), writing d for (2.5.4]) we have

n n

(e) —;(xj — )00 (;((xi — a).0(e) + O (W).0: Ae))
Za{;ﬁ <i((wi — )05 () + 9 (W).6, A e))
=Zn;§;(xj — @) (x; — @) .05 (05 (e)) + 22 DO (W).07(0; Ae)
- 220&% —21).6; A (6;(e))
- ZZ@{;{” )OH (W).0; A (6: Ne). (2.5.6)

The first and the last summand in are zero since the polynomial coefficients
are symmetric in ¢ and j whereas the operators acting on e are antisymmetric in
7 and j. Similarly the summands with 7 # j in the second summand cancel with
those in the third summand. This leaves us with

n

(e) =3 (i = )T (W)0:(6; M) + D0 (W) i = ) 05 A (6 (e))

i=1
—Z (), 2wy x,) = WD, 2 i, 1))
(0*(0- Ne)+6; A (67 (e)))
—Z (@), x,) = W, 2 i, X)) e
:(W(:I:) —W(x')).e.
O

Definition 2.5.4. The matrix factorization described in Lemma [2.5.3is denoted
Iz w and called the unit matriz factorization of (R, W).

Remark 2.5.5. The description of Iz w in Lemma is well-suited for the
computations we carry out in this thesis. The unit matrix factorization can
however also be specified without explicitly presenting its underlying module and
differential. It is the “stabilized diagonal”, cf. [Dyc|. Similarly, the unitors which
we introduce in Lemma below can be specified through a universal property,

of. [CM2, §4.2).
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2. The bicategory LG

As unit 1-morphism in a bicategory the matrix factorization of Lemma
comes together with unitor 2-morphisms which we define using the following
notation. Let k£ be a commutative ring, , y two ordered sets of variables and
ta © k[x] = klx,y], 1y : kly] — k[z,y] be as in Notation 2.4.5] For g € kly],
[ € klx,y] we write g - f = 1,(9) - f € klz,y] and similarly, if ¢ € k[z,y],
f € klx] then g- f:=g-1.(f) € k[z,y].

Lemma 2.5.6. Let X € MFygwy)-v@ for € = (21,...,2,) and y =
(Y1, --.,Yn). Let ¢ be the ring morphism k[’ x] — k[z], z; — x;, ©,— x; Vi €
N<,, and let ¢ be the ring morphism kly', y] — k[y], vi — vi, ¥; — y; Vi € No,,.
The following define morphisms of matrix factorizations

X Ok I,y — X (2.5.7)
(9.2) @y (f07 ... 0) = (g-o(f).x dio- 0o

Ly w @py) X — X (2.5.8)
(901 -+ 0 ) Onpy (fx) = @) dio i

for polynomials f € k[/, @], g € k2], § € Ky y], [ € kla,y).

Proof. The prescriptions in ([2.5.7) and (2.5.8)) yield morphisms in MF (5 1 w (y)—v ()

since they are k[z,yl-linear maps of underlying modules: y;, j € N<, acts on
the left hand sides by multiplying g respectively g while x;, i € N<,, multiplies
f respectively f and

(i 9) - o(xi- f) = (yizi) - (g 0(£)), ¥(y;-9) - (i f) = (ym:) - @(G) - f).

The claim follows since (2.5.7)) and (2.5.8]) are k-linear as multiplying in k[z, y]
is bilinear and ¢ as well as 1) are ring homomorphisms. O

Definition 2.5.7. The map (2.5.8) is )\g?’v)’(y’w) = A\x, the left unitor (isomor-

phism) for X. The map (2.5.7) is PEVWW) = the right unitor (isomor-
phism) for X.

In words, we describe the actions of the unitor isomorphisms for a matrix
factorization X as follows. They project Iz (or Isw etc.) to its O-degree zero
part, which we also call the 1-component. Moreover, they identify the “middle-
variables” with the variables (acting) on the right in the case of p respectively
on the left in the case of X\. Finally, they multiply the resulting coefficients of
the 1-component of I and of basis elements of X in the polynomial ring with the
“outer” variables.

In defining right inverses of A and p we use

Definition 2.5.8. Let X € MFyp4 w(y)-v(z) have a basis {e;};c; for some
index set J. Denote by ¢ the ring homomorphism k[x’, x,y| — k[x,y] which

18



2.6. A homotopy category of matrix factorizations

maps &, — T, T; — ; and y; — y; for all 4, [. Thus, {e;},c; is a k[, z, y|-basis
of t.(X,,). Then (9 dX is the following k[z’, , y|-linear operator on t.(X,,).
Take the matrix representmg the k[z, y]-linear map dx in the basis {e;};es. Its
entries are elements of k[x,y]. View these as polynomials in the ax-variables

only. Finally, apply Definition [2.5.1] to the latter. Analogously, 07”’ dx is the

klx,y’ , y]-linear operator obtained by applying Definition to the entries of
the matrix representing dy viewed as polynomials in the y-variables only.

Definition 2.5.9. In the situation of Definition the right inverse (of the)
right unitor (p& VW -1 = px is the map in MF g 41 w () v (@) (X X Okja) Inf] 1)

specified by

e; — Z Z Z +l|ez €, ®k[w]{8 ! dX 8[”;]”“ dX}ji-eil Ce Hil. (259)

>0 i1<--<qy jeJ

Here (é) is a binomial coefficient and {—};; denotes the (ij)-entry of the matrix
representing the k[z’, x, y|-linear operator “—” in the basis {e;};c;. Using the
same notation the right inverse (of the) left unitor ()\g?’v)’(y’w))_l = A\ is the

morphism in MF g 1w () v () (X Ly, w Qrjy X ) determined by

€e; — Z Z Z{@fjl]y 851714 dx}ji.eil C Qil ®k[y]6j- (2510)
>0 i1<-<i; jeJ
We refer to the factor of Iz w in the tensor product of matrix factorizations in
the target of A1 or p~! as the unit matrix factorization created by \=! or p*
We mention one consequence of Definition and Definition which is
vital for our proof of Lemma below. The latter, in turn, implies that all
diagrams commute which have to commute for our definitions in the following
chapters to indeed define the structure we are looking for.

Observation 2.5.10. Assume that p~! is applied to some matrix factorization
and that subsequently the resulting factor of Ip is projected onto 6-degree
zero. This means that in the formula only the summand for [ = 0 is left.
Therefore the sum over iy < --- < 7; is turned into an empty sum. Furthermore,
{8”3 S 8[:;’1’]:” /dX}ji becomes {1};; = 0;;. Thus, solely e; remains from the sum
over j € J. From this it follows e.g. that pop~! is the identity map. A thoroughly
analogous reasoning applies to A% and X o A7,

Still, neither A=t o X nor p~! o p are the identity morphism in MF. Yet they are
identity maps as 2-morphisms in £G as we see in our proof of Proposition [2.10.3]

2.6. A homotopy category of matrix factorizations

The unitors of LG as displayed in Lemma|2.5.6|are not isomorphisms in MF. This
leads us to refine MF to a category whose morphisms are equivalence classes of
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2. The bicategory LG

morphisms in MF with respect to an equivalence relation which is such that
A"to X and p~! o p are equivalent to identity morphisms. As a prerequisite for
this we introduce a map dxy for each pair (X,Y’) of matrix factorizations as
follows.

Lemma 2.6.1. Let X and Y be two matrix factorizations of W € R. Ex-
tending the following prescription R-linearly yields an (honest) differential on
MFR,{/V(X, Y)
Oxy : MFRrw(X,Y)" — MFg (X, Y)+Dmed2 5 1o 1}, (2.6.1)
o> dyop—(—1) pody
Proof. For ¢ € MFz w(X,Y)" we compute

xy(p) = dxy(dyop—(=1) pody)
= dy(dyop—(=1)" podx) = (=1)""(dy o p — (-1)' p o dx)dx
= diop—(—1)idyopodyx — (—1)(dy o podx — (—1)" pod¥)
= (W.idy,)op— (=1)'dyopodyx — (—=1)*'dy opodx — po (W.idx,, )
= O’

using that ¢ is R-linear in the last step. O]

We say that dx y-closed maps of matrix factorizations are compatible with the
differentials (of X and Y').

Definition 2.6.2. The category HMFz 1 has the same objects as MFx iy but

HMFz w(X,Y) = {p € MFrw(X,Y)? | dxy(p) =0}/ ~, where
p1 ~ Pa & Py — P € Im(éX’y).

Representatives for the composite of two morphisms in HMF% 1 are given by the
composite in MFx w of representatives. HMFx yy is called the homotopy category
of matriz factorizations of (R, W).

That the composition of morphisms in MFz, - respects their equivalence classes
in HMFx w is a special case of Lemma which we proof below.

Remark 2.6.3. In words, Definition says that morphisms in HMFz w (X, Y)
are Zs-even module maps from X,, to Y,, which are dx y-closed modulo those

which are dx y-exact. Put differently, HMFx (X, Y) is the zeroth dx y-cohomology
of MFz 1 (X,Y) which we write as H*(MFz (X, Y)).

Remark 2.6.4. We show in Remark below that for all X, Y in MFz w
there is an X € MFgy such that H'(MFg 1 (X,Y)) = H{(MFgw(X,Y)). In
this sense we do not “lose” any structure by taking only the zeroth cohomology.
Moreover, restricting to zeroth cohomology saves us from having to accommodate
to various signs resulting from the rule ([2.4.1)).
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2.6. A homotopy category of matrix factorizations

In order to use homotopy categories for LG we translate Definition to the
level of HMF. We start with

Lemma 2.6.5. Extension and restriction of scalars for matrix factorizations de-
scend to the level of homotopy categories of matrix factorizations.

Proof. Since homotopy categories HMF have the same objects as MF for match-
ing indices, we only have to show that the functors restrict to the equivalence
classes of morphisms in MF which are morphisms in HMF. In this vein, note
first that restriction and extension of scalars for matrix factorizations leave the
Zo-degree of homogeneous morphisms invariant. The rest follows from extension
and restriction of scalars for matrix factorizations being functors and respecting
sums. For example, let ¢ : R — S be a homomorphism of commutative rings, 1),
¢y and ¥y morphisms in MFz (X,Y), then

dy op = odx = p*(dy o)) = ¢* (Y odx) = ¢*(dy) o p"(¥) = ¢*(¥) 0 ™ (dx)
= do=(vy 0 " (V) = 9" (¥) 0 dpr(x),

Uy =Y+ hodx +dyoh= ¢*(¢p1) = p* (Yo + hodx +dy oh)
=1®g (Yo +hodx +dyoh)
=1Qr s+ 1®g (hodx) +1®x (dy oh)
= ¢ (tha) + ¢ (hodx) +¢"(dy o h)
= " (¥2) + " (h) 0 " (dx) + ¢ (dy) 0 ©*(h)
= 0" (Y2) + ¢"(h) 0 dpe(x) + dp=(vy 0 " (h).

[
In particular, we note in passing

Corollary 2.6.6. The isomorphisms of categories from Corollary give iso-
morphisms of homotopy categories.

Proof. Let ¢ : R — S be an isomorphism of commutative rings. According to
Lemma this induces a functor HMF gy — HMFg -1y which acts as ¢,
both on objects and on representatives of morphisms. The same holds true for
ot Since Corollary states that ¢, and (o~ !), are each other’s inverses
also the induced functors are inverse to one another. O]

Causing some further ambiguity to be resolved by the context we use

Definition 2.6.7. Let ¢ : R — § be a homomorphism of commutative rings.
The functors in Lemma are ¢* : HMFrw — HMFs ), extension of
scalars (for HMF), and ¢, : HMFg o) — HMFg w, restriction of scalars (for
HMF).
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2. The bicategory LG

Definition 2.4.6] which we are about to mimic for HMF instead of MF relies
on extension and restriction of scalars as well as on the functor ®% from Lemma
2.42] We turn the latter into a functor on HMF next. As anticipated below
Remark we can employ the cartesian product of categories rather than
HMF @ HMF since morphisms in HMF are Zs-even module maps.

Lemma 2.6.8. The functor from Lemma 2.4.2] induces a functor
HMFRJ/V X HMFR7V — HMFR,W+V-

Proof. Since objects of HMF coincide with those of MF we only need to show that
the functor from Lemma sends morphisms in HMF to morphisms. For this
let v € HMFg w (Y, Y) have a representative ¢ € MFz w (Y, 17) and similarly for
gg € HMFx v (X, X)and ¢ € MFz v (X, X). Then, writing ® for ®% and keeping
in mind [¢)| =0 = |¢| and (2.4.1)), we have

dyo50(YR9) = (dyo)Ro+YPp@(dgop) = (Pody )29+ (podx) = (V@P)odyex

which shows that ¢ ® ¢ is 0y x yo x-closed. The following shows that the tensor
product is well-defined on equivalence classes in the first argument.

Y ® ¢ ~( + hdy + dyh) ® ¢
=Y ®¢+ (h@o)o(dy ®1)+ (dy @1) 0 (h® o)
=) ®¢+ (h®¢)odygx — (h®¢)o(1®dx)+dyyx o (h® )

—(1®dg)o(h® )

=V R ¢+ dygxyex(h®d) —(h®@¢)o(1®dx) - (1®dg)o (h®¢)
=)@ ¢+ dygxyex(h®¢) —h®(podx) +h® (dg o)
:¢®¢+5Y®X,?®X(h®¢)
~Y® .

It can be seen similarly that the tensor product is well-defined on equivalence
classes in the second argument. O]

Just as Definition does not distinguish between MF and HMF we use
Notation 2.6.9. We write ®% for the functor described in Lemma [2.6.8]

Definition [2.6.10| which comes next introduces functors which upon restriction
to a subcategory of HMF are the functors for horizontal composition in £LG. To
stress that it is nontrivial that this restriction is possible — it is enabled only
by [DM, Theorem 12.4] which we quote as Theorem below — we include
a tilde on the following functor, reserving untilded notation for the functors for
horizontal composition in £gG.
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2.6. A homotopy category of matrix factorizations

Definition 2.6.10. In the situation of Definition 2.4.6] the functor

Qi) : HMF gy 21 wz)-viy) X HMFym ) vg)-v@) = HMFye 2wz -v@)

is the composite
(ba2)x © kw2 © ((Ly,2)" X (bary)™)-

For Y € HMFk[y,z],W(z)—V(y)a X € HMFk[m,y},V(y)—U(m)a Yy € Ym, r € X, we
write
Y @iy X = Qi) (Y, X, y@piy) € (Vi) X)om-

Sometimes we also omit the indices on ®.

As we argue that we pass to homotopy categories of matrix factorizations to
ensure that the maps in Lemma become isomorphisms, it is appropriate to
point out

Lemma 2.6.11. The maps in Lemma [2.5.6|are compatible with the differentials.

Proof. Let X € HMFyz 4 w(y)-v(z) and consider Ay : ]k[y},W®X — X. We
argue that
dx o Ax = Ay O dlk[y],wéX (2.6.2)

as maps of modules. Note that dfk[y],wéX = dlk[y]’wél + 1®dx. The prescription
in Lemma says that Ax leaves the right factor untouched apart from multi-
plying it with a scalar. As dx is linear it follows that the equality holds if
Ax©0 (dfk[yLW@l) = 0. This is true. Ax projects Iy, w to its 1-component. There-

fore only the summands (y; —v;).0; in (2.5.4) can contribute to Ay o (dlk[y]’wél).
But since Ax sets y; = v, also this contribution vanishes.
One can prove analogously that px is compatible with the differentials. O]

Remark 2.6.12. At this point we are in a position to use the unitors of Definition
to define a bicategory. Its objects are pairs (y, W) where y is an ordered
set of variables and W € k[y] for some commutative ring k. The category of
morphisms from (z,V) to (y, W) is HMFyz 4w (y)-v(2)- Indeed, the proof of
[CM2, §4] that the maps in Definition are inverse to the unitors of Definition
[2.5.7 works in this generality. Moreover, there are canonical associators which
essentially act by moving brackets, cf. Lemma below which generalizes to
the present setting. That these satisfy the pentagon axiom and together with
the unitors also the triangle axiom follows as in LG, cf. Proposition [2.10.3. This
concludes the description of a bicategory. However, for our applications this
bicategory is not sufficient, cf. Section [2.8]
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2. The bicategory LG

2.7. A triangulated structure

As LG is related to TQFTs, it has more structure than that of a bicategory. In
particular there are adjoints for 1-morphisms. We define them using an ingredient
of a triangulated structure on HMF which we present next. For the definition
of a triangulated category we refer to [Neel Definition 1.3.13]. That HMF is
triangulated features in our proof of Corollary below.

Lemma 2.7.1. The following defines a functor [1] : MFg w — MFx w.

X e X[1], (X)), = X@0mod2 gi o g@med2 e o 1y,

for ¢ € MFz w(X,Y)"
o= p[1] € MFrw (X[1], Y[1]), @[1)f := (=1)" pUFDmod2, (2.7.1)

where we employ the notation of (2.2.1)) and (2.7.1)) is to be extended R-linearly
to MFR7w<X, Y)

Proof. By definition, (X[1]),, is a Zy-graded free R-module and dxp; a Zs-odd
endomorphism thereof. Also, d% = W.idy,, implies d?xm = W.idxy,,-
For ¢ a homogeneous morphism ¢[1] is defined as a pair of module homomor-
phisms which makes it a homogeneous morphism of the same degree as .
Finally, for (i,7) € {0,1}* let ¢ € MFzrw(X,Y)" and ¢y € MFrw (Y, Z).
Then 1 o ¢ € MFg (X, Z)(i+)m0d2 and for s € {0, 1} we compute

(o @] = (~1)FHmR(p 0 g)(rr e
B | i ws o ¢(s+1)mod2 fori =1
= (— ) ¢(5+1)m0d2 o ¢(s+1)mod2 fori=0
P[1]HDmed2 o yi1]s = (—1)7gp% o (—1)iglsTHmed2  for § =1

it o= {¢[1]S o [1]7 = (—1)gpletimed o (—1)igltimed  for i = 0.

This verifies that [1] respects the composition of morphisms. Furthermore [1]
respects identity morphisms since

idy € MFr (X, X)? = idx[1]! = (=1)%d{Ermed = id’ ).
0

The functor in Lemma is called the shift functor.

Lemma is analogous to the case of “untwisted” (periodic) chain com-
plexes. Likewise, as with “untwisted” complexes MFz yy itself is not triangulated.
But as in that situation HMFg y» becomes a triangulated category using

Corollary 2.7.2. The functor from Lemma induces an endofunctor on
HMF7 1.
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2.8. Adjoints for finite-rank matrix factorizations

Proof. Observe that according to LemmadX[l] = dx|[1]. Moreover, since the
sum of two homogeneous morphisms in MFg i is the sum of their components
we have (¢ + ¢)[1] = ¢[1] + ¢[1] for ¢ € MFr w(X,Y), ¢ € MFz w(X,Y). From
this it follows that 0y y-closed morphisms in MFz (X, Y)? are mapped to closed
morphisms and homotopic ones to homotopic ones as

dy¢[l] = dy[1)9[1] = (dy@)[1] = (¢pdx)[1] = ¢[1]dx[1] = ¢[1]dxp,
=0+ dyY +vdx = p[1] = ¢[1] + dyY[1] + Y [1]dxp)-

Paralleling the theory of categories of actual complexes [KR1] states

Proposition 2.7.3. HMFy y together with its inherited shift functor and the
usual cones is a triangulated category.

At this place, we return to Remark [2.6.4]

Remark 2.7.4. As mentioned e.g. in [CI] given two matrix factorizations X
and Y of (R, W) there is an isomorphism between the zeroth ¢ x y-cohomology of
MFr w(X,Y) and the first dxpi)y-cohomology of MFx 1/ (X([1],Y) which in the

notation of ({2.2.1]) sends a morphism (¢g, 1) to (@1, @o)-

2.8. Adjoints for finite-rank matrix factorizations

Using the shift functors of the previous section we associate matrix factorizations
XT and TX to matrix factorizations X whose underlying module has finite rank.
As we recapitulate in Definition for these to qualify as adjoints to X there
moreover have to be (co-)evaluation morphisms. We are not aware that the
latter have been defined more generally than on a subcategory of HMF which we
introduce below. For details we refer to [CM2], cf. [CR2] for earlier work in this
direction.

Lemma 2.8.1. Let X € MF% y and view R as a Zy-graded module concentrated
in degree zero. Then Modg(X,,, R) equipped with its R-module endomorphism
f = —(=1)!f ody is a matrix factorization of (R, —W).

Proof. Since X, is a free R-module so is Modgr (X, R). Moreover, Modg (X,,, R)
has the Zy-grading from ([2.2.1)). Furthermore, we have

(=)Wl fody) o dy = (=) fody = —f o (Wiidx,,) = —W.f

which verifies that the endomorphism in the lemma — which is Zs-odd as dx is —
squares to —W.id. O
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2. The bicategory LG

Definition 2.8.2. The matrix factorization described in Lemma P.8.1]is denoted
XV and referred to as the dual matrix factorization to X.

Next, we introduce the matrix factorizations which are adjoints in £G.

Definition 2.8.3. Let x, y be ordered sets of m € Ny and n € Ny variables,
respectively, k a field of characteristic zero, V' € k[x], W € k[y] potentials and X
a matrix factorization of (kz,y], W(y) — V(x)) such that X,, is a free module
of finite rank. Writing ¢ for the canonical ring homomorphism kly, x| — k[x, y|
we set

X1 = 6,(XV[m]), X = 6.(X"[n]).

Note that this definition allows for x =) and V =0 or y = () and W = 0.

In [CM2| §5, §6] it is shown that there are evaluation and coevaluation maps
exhibiting X7 and "X as right respectively left adjoints to X in £G. The co-
evaluation maps are based on the elements > (—1)lef®e; € (XV®X),, and

i=1

Y e®@er € (X®RXY),, for a basis {e1,...,e.} of X,, with dual basis {e*,... e*}.
=1

Therefore it is indispensable for these adjunctions that X be of finite rank. Hence
we define the subcategory of HMF for which these adjoints can be constructed.

Definition 2.8.4. A matrix factorization has finite rank if its underlying module
has finite rank. hmfg y is the full subcategory of HMF% i whose objects are
matrix factorizations of finite rank.

We mention as an aside

Lemma 2.8.5. The isomorphisms of Corollary carry over to isomorphisms
of homotopy categories of finite-rank matrix factorizations.

Proof. For two isomorphic rings restriction of scalars along their isomorphism
turns a basis into a basis. In particular it preserves the rank. As restriction of
scalars for matrix factorizations acts as restriction of scalars of the corresponding
modules on the level of underlying modules and the rank of a matrix factorization
is defined to be the rank of its underlying module this implies the claim. O

Refining what we wrote in the paragraph preceding Definition [2.8.4] the co-
evaluation maps of [CM2, §5] rely on the elements > (—1)l¢lef @ e; € (XT® X)),
i=1

and Y e;®ef € (X ®TX),,. Indeed, a basis of XV is also a basis of XV[1]. Only
—1

the Zy-degree of each basis element changes when passing from XV to X V[1].

Remark 2.8.6. As stated in |O, Proposition 3.3] hmfz - can be equipped with
the structure of a triangulated category whose shift functor is induced from the
functor in Corollary This is proven explicitly in [L, Theorem 5.1.1].
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2.9. Morphism categories for LG

We end this section by introducing the (co-)evaluation maps, cf. Definition
A.2.1} of [CM2) §5] for matrix factorizations of finite rank.

Proposition 2.8.7. Let = (z1,...,Zm), ¥ = (¥1,-..,Yn) be ordered sets of
variables, W € k[y], V' € k[z] be potentials and X € hmfy, ) wy)-v@). Let
{€;}icr, I some index set, be a basis of X,, with dual basis {e]};c;. Then the
following defines a coevaluation morphism:

coevy € HMFyar o v (@) vie) Txz v X gy X),
V= Z (_1>(l+1)|ej‘+s{a[€;]w/dX- [bT dx}ji-€; ®k y]€j>

(4,7)€I?

where b; < --- < b; and s are such that y A 6y, ... 60, = (—1)%6; ...0,,. Similarly,
there is a coevaluation map

coevx € HMFk[y o (w)-w () Ty X Oy X),
Hl s+n+n = *
v Z )ts+nt l{ayy dx .. a[?ﬁ’ dx }ij-€i®x)€]
(i,5)eI?

where by < --- < by and s fulfill y A 6y...0, = (—1)%¢;...6,. The following
formulas define evaluation maps:

&vx € HMFugy ) w(y)-w ) (X Oy X Tigy ),

[{8&1] ' agf]/dXA(x)}ijgdx}

ge;@ue = Y Y (=), 6, Resia i V.. oV
1Vt Y Im

>0 <<

evy € HMFk[m’,sc],V(az)—V(w’)(TX®k[y]X7 ]k[w],V)a

e; ®k h. €j — Z Z +l\e]|+n9 e Qil Resk[y]/k

>0 < <7y

for g € k[z], h € k[y], where A®) := (=1)"0,,dx ...0,,dx, dx = dz;...dx,
and AW .= Oy dx ...0y,dx, dy :=dy;...dy,. The symbol Resy/x [_—dx} is a
residue as in [CM2| §2.4.].

[{A(waﬁ/dx 0T dx }ihd y}
B, W, ... 0,,W

We only refer to [CM2, §2.4] for a general description of residues. We encounter
particularly simple cases in Section below. Furthermore, we note that the
assignments in Proposition define evx and evy on a basis. Indeed, according
to our observation preceding Remark if {e;}icr is a basis of X then {e]}ies
is a basis of X' or of TX.

2.9. Morphism categories for LG

The horizontal composition of LG is essentially given by the functor in Definition
2.6.10l However, according to the previous section for us to be able to define
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2. The bicategory LG

adjoints for 1-morphisms in £G we have to restrict the latter to a subcategory
of HMF. Yet the functor in Definition does not close on hmf. To wit, for
Y € HMFk[y,z],W(z)—V(y)7 X e HMFk[m,y],V(y)—U(m)a whenever X, ?:Ild Y, are not
the trivial module {0} and the set of variables y is not empty (Y ®pyX)m is not
a finite-rank k[x, zJ-module. This is in particular true even if both X € hmf and
Y € hmf. Generically the horizontal composition in £G is based on Y@k[y]X for
y#0,Y # {0} # X.

At this point [DM]| §12] comes to our rescue. Since [DM] relies on HMF being
idempotent complete, cf. [Borl, 1.6.5] for a discussion of this property, we present
one way to argue that HMF is idempotent complete. This in turn employs the
notion of coproducts which is defined e.g. in [McLj §II1.3]. First, we show

Lemma 2.9.1. HMF% i has countable coproducts.

Proof. Note that it is implicit in Proposition[2.7.3|that finitary coproducts exist in
HMFx w. This is equivalent to saying that binary coproducts exist in HMFg .
Indeed, for X € HMFx w, Y € HMFx w define the matrix factorization X @& Y
by

(XeY), =X, aY!. ic{0,1}, (2.9.1)
dX@Y(x + y) = dX($) + dY(:U) V(l’, y) € Xm X Ym7

such that dxgy is a Zs-odd module endomorphism of the free Zs-graded R-
module (X@®Y'),, which squares to W.id. Then X®Y € HMFx y. Also, it follows
from the definition of dygy that the inclusion maps from X,, respectively Y,, to
their coproduct X,, ® Y,, in Modg are compatible with the differentials. Since
they are Zs-even they are morphisms in HMFg . Moreover, for Z € HMFg v,
¢ € HMFg w(X, Z), ¥ € HMFg w (Y, Z) we define their sum ¢ + 1 by letting ¢
act non-trivially only on the summand corresponding to X, and similarly for ).
This yields a morphism in HMFz w (X @Y, Z) and it is unique with the property
that it makes the defining diagram of a coproduct of X and Y commute.
Representing the coproduct of matrix factorizations as in also PX; €

ieN
HMF% w for all matrix factorizations X; € HMFg w, i € N. To wit, @ (X;)., is a
ieN
free R-module with the Zy-grading (P (X;)m)’ = P(X;)!,, j € {0,1}. Similarly,
ieN ieN

iterating the differentials dx,, ¢ € N, assemble into a differential for this
Zo-graded module. The tuple of this differential and module hence constitutes a
matrix factorization in HMFx y,. This can be exhibited to satisfy the condition
on a coproduct as in the case of binary coproducts. O

Corollary 2.9.2. HMFyx  is idempotent complete.

Proof. According to [Nee, Proposition 1.6.8] this follows from Proposition m
together with Lemma [2.9.1] O

28



2.9. Morphism categories for LG

We move on to quote the result of [DM] as Theorem [2.9.3f To set the lat-
ter’s stage, let y = (y1,...,yn) be an ordered set of variables, k a field of
characteristic zero and V' € k[y] a potential. Recall the Jacobi ring Jacy :=
klyl/(8,,V,...,0,,V) from Definition 2.1.1] Consider the matrix factorization
Jy of (k[y],0) with underlying k[y]-module (Jy)® := Jacy, (Jv). := {0} and
differential 0. Given two further ordered sets of variables x, z, write

lay © KX, Y] = K[z, Y, 2], 1y kly] = k[z,y, 2],
lyz K[y, 2] = kX, Y, 2], tas: klz, 2] = K[z, Yy, 2]

for the canonical inclusions of rings. For

Y € hmfyy ) wiz)-viy), X € hmfyeyviy)-v@)

denote by Y ®ypy Jy @)X the matrix factorization

(t2,2) (g2 (V) Okl 2] (1 (V) Rklay 2] L,y (X))

of (k[z, z], W(z) — U(x)), where we use the notation of Notation [2.6.9]

Recall that an endomorphism e € C(Z, Z) of an object Z in some category C
is an idempotent if e o e = e. An idempotent e € C(Z, Z) is said to split if there
exists an object Z € C together with morphisms f € C(Z,Z) and g € C(Z, Z)
such that go f =eand fog=15.

Theorem 2.9.3. Setting Z := (Y ®upy Jv ®xyX)[n] there is an idempotent
ec hmfk[fc,z},w(z)_U(gc)(Z, Z) which splits to Y®k[y]X in HMFk[w,z],W(z)—U(m)‘

Remark 2.9.4. In [DM] it is not only proven that an idempotent e as in The-
orem [2.9.3] exists but also an explicit formula for e is displayed. This enables
e.g. [CMI] to compute the link homology defined in [KRI] for various links. In
[KR1] graded matriz factorizations of pairs (R, W) are used, where R is a Z-
graded ring and W € R a homogeneous element of even degree. These are matrix
factorizations as in Definition [2.2.1] whose underlying modules are additionally
Z-graded R-modules and whose differential has half the Z-degree of W. Such
graded matrix factorizations whose underlying module has finite rank are the
objects of a category hmf%w analogous to hmfr . As opposed to hmf which is
not idempotent complete hmf®" is, cf. [KST) Lemma 2.11]. In [CMI] a computer
implementation of an algorithm splitting idempotents in the latter category is
provided. Since the link homology of [KR1I] is defined in terms of tensor products
of graded matrix factorizations the code of J[CMI] can be used to compute this
homology.

In order to use Theorem [2.9.3|in our exposition of LG we introduce, mimicking
[,
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2. The bicategory LG

Definition 2.9.5. hmf%w is the full subcategory of HMF% y» whose objects are
direct summands in HMF% w of finite-rank matrix factorizations.

Remarks 2.9.6. Note that the notion of “direct sum” underlying Definition[2.9.5]
is that of a categorical biproduct. The latter is defined only up to isomorphism,
cf. [McLl, §VIIL.2]. Consequently, a direct summand in HMFg y of an object
Z € hmfrw is defined to be an object X € HMFg  such that there exists
an object Y € HMFg  satisfying Z = X © Y in HMFg y for some way of
representing the biproduct X @Y of X and Y. Since all such ways of representing
the biproduct are isomorphic this implies Z = X @Y in HMF% w for all possible
ways of representing X @ Y. Thus this yields a well-defined notion of direct
summand.

A remarkable aspect of this definition is that while the direct sum as defined
by of two matrix factorizations one of which has infinite rank is again of
infinite rank, it can be isomorphic in HMF% y to a finite-rank matrix factoriza-
tion. This is possible since isomorphisms in HMF¢ 1 need not be isomorphisms
of underlying modules as morphisms in HMF% y» are homotopy classes of mor-
phisms in MFg y-. Therefore, a matrix factorization in HMFx - of infinite rank
can be a direct summand in HMF% - of a finite-rank matrix factorization.

Also, we point out that hmf # hmf®. For example, [KMvB|, Example A.5] is
cited in the literature as demonstrating that hmf is not idempotent complete.
By definition, hmf® is idempotent complete and this property is preserved by
equivalences of categories. Therefore the two categories cannot be equivalent.

We repeatedly use restriction of scalars along ring isomorphisms for morphism
categories of LG below. This is enabled by

Lemma 2.9.7. Let R and S be commutative rings, W € Sand ¢ : R — S a
ring isomorphism. Then ¢, : hmf?w — hmf?é o-1(W) is an equivalence.

Proof. Applying restriction of scalars to the inclusion and projection morphisms
for direct summands of finite-rank matrix factorizations yields inclusion and pro-
jection morphisms for the matrix factorizations obtained via restriction of scalars.
Indeed, according to Corollary restriction of scalars is a functor on HMF
whereby it preserves the compositions of the inclusions and projections which are
morphisms in HMF. Moreover, restriction of scalars sends the 0-morphism which
multiplies with zero to the O-morphism. Next, recall that Lemma tells us
that the matrix factorizations obtained from finite-rank matrix factorizations by
restriction of scalars along ring isomorphisms are again finite-rank matrix fac-
torizations. Thus, applying restriction of scalars along a ring isomorphism to a
direct summand of a matrix factorization of finite rank yields a direct summand
of a finite-rank matrix factorization. This proves the claim on objects which
suffices as hmf® is a full subcategory of HMF. O]
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2.9. Morphism categories for LG

Since Theorem [2.9.3] tells us that
Z > TIm(e) ®Im(l —e) 2 (YR X) ® Im(1 —e)

we have that Y @y, X € hmf From this it follows that ® closes on

klz,z],W(z)-U(z)"
hmf®.

Corollary 2.9.8. Let V € k[y| be a potential. The functor described in Defini-
tion 2.6.10 descends to a functor

x hmf?

hmfyg Kol V(@) -U() — M 2w —v(a)-

kly,z],W(z)-V(y)

Proof. Let Z € hmfﬁw YV ()~ () Z € hmff[y AW (=) -V (m)" Then there are

X € hmfig g v(y)-v(@), X € hmfigy ) wiz)—vy),
Y € HMFy(z 4),v(y)-U(2), Ve HMFyy 21w (2)-v ()

such that X 2 Z®Y and X = Z @Y. This means that there are projection and
inclusion maps between X and Z respectively between X and Y and similarly
for their tilded versions. Taking these morphisms’ tensor products we get maps
showing that

Xy X = (ZRuy) Z) © (Z&xY) @ (Y Q) Z) @ (Y SxiyY).

Since Theorem m tells us that X ®k[y]X is a direct summand of a finite-rank
matrix factorization X € hmfk[ac 2],W(z)—U(=) this implies that also 7 ®k[y]Z is a
direct summand of X, ie. Z®k[y]Z € hmfﬁac AW (2)—U ()" O

Notation 2.9.9. We write ®yj,) for the functor in Corollary [2.9.8

We use Y Qyjy) X 1= @xy) (Y, X) and y @y  for the element of (Y Q) X)m
corresponding to z € X,, and y € Y,,. Sometimes we omit the index on ®.

Our motivation of the definition of hmf in Definition 2.8.4] above is that its
objects are precisely those matrix factorizations to which Definition [2.8.3|applies.
This defines matrix factorizations that [CM2] endows with the structure of adjoint
1l-morphisms in £G. Yet horizontal composition of matrix factorizations closes
on hmf® but not on hmf. Still, Theorem below tells us that adjunction
morphisms compatible with those for matrix factorizations in hmf can be defined
for all objects of hmf®.

We move on to define £G in the next section. Prior to this we include a table
with the categories of matrix factorizations we encounter above in order to help
the reader get an overview.
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2. The bicategory LG

Category ‘ Objects ‘ Morphisms X — Y
MFr w all matrix factorizations of (R, W) Modg (X, Yin)
HMFz w all matrix factorizations of (R, W) H) (MFrw(X,Y))

hmfry | finite-rank matrix factorizations of (R, W) | Hy _(MFzw(X,Y))
hmfy direct summands of finite-rank H) (MFrw(X,Y))
matrix factorizations of (R, W) in HMFg w

Table 2.1.: Some categories of matrix factorizations

2.10. The bicategory LG

In this section we define the bicategory £G combining the structures that we
present above.

There is one last prerequisite for £G which we introduce separately before
turning to the definition of the bicategory. Indeed, there is one structure of a
bicategory which we do not mention so far. Every bicategory is equipped with
natural isomorphisms witnessing that its horizontal composition is associative.
We now deal with these in the case of LG.

The setup of the next Lemma is the following. For every triple (A, B, C)
of categories we denote by a the functor (Ax B) x C' — Ax (B x (') which acts on
objects as ((a,b)c) — (a, (b,¢)) and acts analogously on morphisms. Moreover,
we refine the notation of Notation 2.9.9] as follows. Given four ordered sets of
variables x;, i € {1,2,3,4} together with potentials W; € k[x;] Vi, we write
Okl ] K[ws] ko] (758, 1) € {1,2,3,4} for the functor

Wy w0 W) -wa@s) X M0, 2w @),
described in Corollary [2.9.8

Lemma 2.10.1. There is a natural isomorphism

) — hmfﬁmr,mt],Wt(mt)*Wr(wT)

Qa1 ] K] Kwa] © (Oklas] ksl kza] X 1) = Oklz]Kasl ke © (1 X Okfe] klwa]klzs]) © O

with ((Z,Y), X)-component

(Z Oulws) Kws] Klwa] Y ) Okla] ko] Kza] X — £ Okla] kas] klwa] (Y Okfa] ko] k[ws] X )
(g ®k[w2,m3,w4] f) ®k[m1,w2,w4] e /g\®k[w1,m3,w4} (f ®k[w1,w2,m3] /é) (2101)

where e.g. g € Z,, and g := 1®y[z; 2,9 is an element of the module obtained from
Z, by extension of scalars along k[xs, 4] — k[xo, 3, 4] while § 1= 1 Qujzy.2, 9
is an element of the module obtained from Z,, by extension of scalars along
klxs, x4] — k[/z\zzl,wg,,azd. Similarly, for some f € Y,,, e € X,, we have the

elements f , €, f and € of the modules obtained by extension of scalars according
to the upper line in (2.10.1]).
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2.10. The bicategory LG

Proof. The prescription is a map in the homotopy category. Indeed, the
differentials of the matrix factorizations on both sides of act non-trivially
only as dx on x, as dy on y and as dz on z. Since sends x to z, y to y
and z to z, it follows that it commutes with the differentials. Moreover, it is an
invertible map of modules. Also, its inverse is compatible with the differentials

for the same reason as (2.10.1). Therefore, (|2.10.1)) is invertible as a morphism

in hmf®. Finally, it is natural in all three arguments. [

Notation 2.10.2. We write @ = g, 25252, f0r the natural isomorphism in

Lemma 2.10.1
The next proposition is essentially [CM2, Proposition 2.7].

Proposition 2.10.3. For k a field of characteristic zero the following defines a
bicategory.

1. Objects are pairs (&, W) of an ordered set of variables & = {z1,...,x,} for
some n € N and a potential W € k|z].

The category of morphisms from (x, V) to (y, W) is hmff[m’y]w(y)_v(x).
The horizontal composition is ®y,; from Corollary
The associators are o from Lemma 2.10.11

Unit 1-morphisms are I w) := Ixz,w, cf. Lemma )

AR AN e

Unitors are the maps A, p from Lemma [2.5.6

Proof. Let = (x1,...,2,). Then 5w is a matrix factorization of finite rank
2" cf. , and thus in particular I, wy € hmfye 2 w(z)-w (@) is @ I-morphism
in LG.

Lemma [2.6.11] shows that the unitors A and p are compatible with the dif-
ferentials. Moreover they are Zs-even maps. They are non-zero only on tensor
products of the 1-component of I with an arbitrary element of the other matrix
factorization. The Zy-degree of such a tensor product is the degree of the unspec-
ified element. The result of applying A respectively p to it is a scalar multiple of
this element and therefore has the same Zy-degree. Thus, A and p preserve the
Zo-degree when they are non-zero. Since 0 can be viewed as an element in either
Zo-degree they also preserve the Zs-degree in the other case. Therefore, both A
and p are 2-morphisms in £G.

Since the unitors Ax, px only alter the factor of X in their source by multiplying
it with a scalar they are natural with respect to maps ¢ : X — Y which in
particular are linear maps. That they are invertible in the homotopy category is
[CM2, Lemma 4.8].

We turn to the axioms on associators and unitors of a bicategory. The as-
sociators are defined as module maps which only rebracket tensor products of
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2. The bicategory LG

elements and compatibly change the rings over which these tensor products are
taken. They satisfy the pentagon axiom since both concatenations of
associators compared in this diagram yield the same bracketing of the same ten-
sor products. Furthermore, that the triangle axiom holds for the maps
a, A and p can be seen as follows. Either of the two 2-morphisms featuring in
this diagram projects the unit matrix factorization in the horizontal composite of
1-morphisms constituting its source to its 1-component. Moreover, scalars of this
matrix factorization become scalars in the ring over which the resulting tensor
product is taken. Thereby it gives the same result if these scalars are multiplied
with one or the other factor of the final tensor product. O

We use the following, which is not completely in line with the literature, cf. Re-

mark 2.10.51

Definition 2.10.4. The bicategory in Proposition [2.10.3]is the bicategory LG =
LGy of Landau-Ginzburg models.

Remark 2.10.5. There are two reasons why we write “essentially” in the line
preceding Proposition[2.10.3] On the one hand, [CM2] uses a more general notion
of “potential”, where k is allowed to be some commutative ring, cf. [CM2l Defini-
tion 2.4]. The setup we use is the one of [DM|, Theorem 12.4]. We do not see any
obstruction to lift the original work presented in this thesis to the framework of
[CM2]. However, we do not know of any publication to refer to showing explicitly
that the result of [DM] can be lifted to the more general level of [CM2] and prefer
not to provide the details here.

On the other hand, instead of taking hmff[w YLV () -V () B the category of
morphisms from (z, V) to (y, W) [CM2] uses hmfi’iy@k[gﬂ] Wel_1ey, Where ten-
sor products are over kE| The horizontal composition for these categories is
the one induced from the functors ®yp,; in Corollary [2.9.8 E via the equivalence
hmfﬁw’y] W) —V(z) — hmff[y@k[m] Wel-1ey Which we get by applying Lemma [2.9.7
to the canomcal 1somorphlsm of rings k[x, y] = k[y] ® k[x]. The unit matrix fac-
torization in [CMZ2] is the one obtained from 1, K[z, asin Lemmaby this same
restriction of scalars. Altogether, horizontal composition, unit 1-morphisms, uni-
tors and associators in the bicategory of [CM2] are induced from those in Propo-
sition by the same isomorphismsf}| Therefore, there is a strict 2-functor
from LG to the bicategory of [CM2] which is the identity on objects (and thereby
in particular biessentially surjective) and is locally given by isomorphisms from

2By minor abuse of terminology [CM2] refers to hmf® as idempotent closure hmf* of hmf in
HMF. In fact, hmf® and hmf“ are equivalent categories, cf. [M (2.3)].

3Note, that natural isomorphisms induced by equivalences of categories (not necessarily iso-
morphisms) are again natural isomorphisms. Indeed, they are given by composing (com-
binations of identity natural transformations and) the original natural isomorphism with
(combinations of identity natural transformations and) the natural isomorphisms witness-
ing the equivalence of categories.
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2.10. The bicategory LG

restriction of scalars (in particular it is locally an equivalence). In other words,
the bicategory of [CM2] is biequivalent to £G. We work with £G since it is the
bicategory we can more easily endow with a symmetric monoidal structure.
Other than the minimal difference of replacing k[z]® in by k[z', x] the
bicategory LG is the one described in |[M| §2.2]. That is based on k[z]°
manifests that we have defined the unit matrix factorization as the one obtained
from that in the bicategory of [CM2] via restriction of scalars along the isomor-

phism of rings k[x]® = k[z/, ] in (2.5.2)).

Continuing the considerations of Remark [2.10.5| shows that [CM2, Theorem
6.11] “essentially” is

Theorem 2.10.6. The bicategory £G has adjoints which coincide with the ma-
trix factorizations of Definition 2.8.3] for matrix factorizations of finite rank. In
the latter case the (co-)evaluation maps are those presented in Proposition m

Remark 2.10.7. Using these adjoints [CM2, Proposition 7.2] shows that LG is
graded pivotal. A bicategory with adjoints in the sense of Definition in
which for every 1-morphism its left and right adjoints coincide is called pivotal
if the chosen adjunctions satisfy additional equations which are depicted e.g. in
[CR3. ((2.12)]. LG cannot be pivotal since there are 1-morphisms X in £G for
which XT = ¢,(XV[m]) 2 ¢.(XV[n]) = TX. An example of such a 1-morphism
is X € LG((0,0), (z,2%)), d € N, given by X,, := k[z] ® k[z]f, where {1,0} is a
chosen basis of k[x]? as in I, cf. Lemma , and dy := z.0* + 24710 A ().
In this case XT 2 X can be verified by explicit computations.

As presented in [CM2, §7] it is however possible to keep track of the shifts
obstructing £G from being pivotal in a way that allows to calculate in LG as if
it was pivotal. £G being “pivotal up to shifts” makes it an instance of a graded
pivotal bicategory.

Since X[2] = X for all 1-morphisms X the above obstruction is not present in
the subbicategory of LG whose objects depend on an even number of variables.
Indeed, as mentioned in [CM2, Remark 7.3] this subbicategory of LG is pivotal.
This is not true for the subbicategory whose objects depend on an odd number
of variables as the canonical isomorphisms Y[1] ® X = (Y ® X)[1] =Y ® X]1],
cf. [CM2, (2.40),(2.41)] imply Y@ XT 2 YVeXY 2 (YVeXV)[1] = (X®Y)V[1] =
(X ® Y)! for 1-morphisms X and Y in this subbicategory whence it cannot be
pivotal.

Remark 2.10.8. In [CRI] so-called matriz bi-factorizations with underlying bi-
modules rather than modules are defined. This has the conceptual advantage that
bimodules can naturally be regarded as 1-morphisms in the bicategory Bimod
whose objects are rings and where 2-morphisms are intertwiners. Therefore, ma-
trix bi-factorizations can serve to motivate the horizontal composition of LG.

In some more detail, for k a field, R, S commutative k-algebras, W € S
and V € R [CRI] defines a matrix bi-factorization of (R, V') and (S, W) as a free
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2. The bicategory LG

Zo-graded S-R-bimodule X, together with a Zs-odd bimodule-endomorphism dx
such that d% (z) = W.x —2.V Vz € X;. Here an S-R-bimodule is called free if the
corresponding S ® R°P-module is free. Indeed, the relation between & ®; RP-
modules and S-R-bimodules extends to a functor from a category of matrix
bi-factorizations of (R, V') and (S, W) where morphisms are homomorphisms of
underlying bimodules to MFsg, r we,1-10,v. This is an equivalence. In fact,
one can proceed along the same lines as the above to construct a category of
matrix bi-factorizations corresponding to each entry in Table 2.1} In each case
the aforementioned equivalence carries over to the respective categories of matrix
factorizations and matrix bi-factorizations.

One can compose a matrix bi-factorization (Xj,dx) of (k[y],V) and (k[z],U)
with a matrix bi-factorization (Y3, dy) of (k[z], W) and (k[y], V) to get (Y, ®xy
Xy, dy Qyjy) 1 + 1 Oy dx), where the tensor products are those in Bimod. In
particular there is no extension or restriction of scalars involved. Moreover, this
induces the horizontal composition of £G via last paragraph’s equivalences of
categories. Similarly, the associators of Lemma [2.10.1| correspond to the asso-
ciators of the tensor product of bimodules. Hence, taking as unit 1-morphisms
and unitors those resulting from these equivalences applied to the respective mor-
phisms in LG, it follows as in Remark that there is a bicategory equivalent
to LG whose morphism categories consist of matrix bi-factorizations and their
morphisms. This is the bicategory described in [RC|. In [CR2] adjoints for those
I-morphisms of this bicategory corresponding to finite-rank matrix factorizations
are described via duals for free bimodules.
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3. A symmetric monoidal structure
on LG

In this chapter we endow L£G with further structure which turns it into a sym-
metric monoidal bicategory. The definition of the latter is included in Definition
A41l

Much of the symmetric monoidal structure on £G presented below is defined
in terms of unit matrix factorizations and the unitors. The major technicali-
ties involved in proving that our definitions satisfy the necessary conditions are
condensed into the coherence results presented in Section [3.1.2]

For earlier work on a symmetric monoidal bicategory of Landau-Ginzburg mod-
els using a different setting and a less explicit approach we refer to [McN]. Other
references anticipating our result are e.g. [C2, §2.4.4], [CM2, §9] and [CR2, §4].
It is also implicit in [KRI][]

3.1. The monoidal product

In this section we equip LG with a 2-functor LG x LG — LG.

Remark 3.1.1. By Remark the horizontal composition in £G can be
viewed as being inspired from the horizontal composition of Bimod. Similarly
we can let ourselves be guided by the following bicategory in defining a monoidal
product for LG. For k a commutative ring there is a bicategory whose objects are
k-algebras, 1-morphisms are bimodules and 2-morphisms are intertwiners. This
is denoted Alg(Mody) in [GPSl 8.9]. By the latter reference’s results this is a
monoidal bicategory with ®; as monoidal product (cf. also [SP1l, §3.8.4]). It is
the aim of this section to mimic this result for £G.

3.1.1. Two ingredients of the monoidal product

In this section we introduce two items which as we prove in Section below
are part of a 2-functor LG x LG — LG.

IThe figures [KR1, Figure 12, Figure 13| are string diagrams in the homotopy category h£G
of LG. The category h£G inherits a monoidal structure from the monoidal structure on the
bicategory £G which we define. This monoidal structure of h£G is the one depicted in the
figures.
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3. A symmetric monoidal structure on LG

The following is intended to make our exposition more readable. First, from
now on, k is a field of characteristic zero and for indices i € N we link potentials
and variables according to the following table, such that e.g. W € k[z],

ordered set of variables | z | z; |y |y |z |z | w | w; |0
number of variables nin |m|m;| 1l | L | k| k |O
potential WIiWw, |\ VIV, \U\|\U | T|T;, |0

Table 3.1.: Conventions for variables and potentials

Sticking to the conventions of Table we generally abbreviate e.g. (z, W) as
W. Moreover, we write tuples of ordered sets of variables to refer to the ordered
set whose first variables are those of the first entry in their order and so on,
e.g. (y,z) is the ordered set whose first m entries are those of y in their order
and whose next n variables are those of z in their order. For potentials which are
sums of potentialsﬂ the order of the summands mirrors the order of the variables,
e.g.

V+W=((y,z),V+W). (3.1.1)
For sums of potentials in which the same potential features more than once as
a summand we use a notation in line with that introduced in the paragraph
preceding Lemma [2.5.3] That is, we distinguish the variables corresponding to
the summands by adorning them with primes. For example W + W is to be
read as either W(z) + W(2') = ((2,2'),W(z) + W(2')) or W(2') + W(z) =
((2',2),W(2') + W(z)). In reading the individual potentials in a sum in which
some potentials feature more than once as objects in LG, we remove the primes
again. When we refrain from writing the polynomial ring in the index of hmf,
hmf® or HMF we mean the polynomial ring which only contains the variables
associated to the potential. In case the latter is a sum the variables are supposed
to be ordered according to the order of the summands of the potential, e.g.
hmf_y  w = hmfy, o) w_v. Moreover, we use

Notation 3.1.2. Suppressing variables according to Table and (3.1.1)) and
N
assuming z; N z; = () for i # j, let W = > "W, be an object of LG. Let o € Sy

=1
be a permutation and z, the list of variables obtained by reordering the blocks
zi, i € Ney, of entries of z according to o. Denote by ¢ : k[z,] — k[z] the
isomorphism of rings acting as the identity on elements. We write

LW, (W) - hmf};, — hmff,l(w)

for the functor of restriction of scalars along ¢ described in Lemma [2.9.7, Here
we assume that the order of the summands W; of p~!(W) reflects that of the

2That the sum of two potentials is a potential is proven as part [1| of Proposition [3.1.12|below.
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3.1. The monoidal product

sets z; in z,. Moreover, we suppress the rings in the indices of hmf as in the line
above Notation An example is v,y hmfy,, — hmfy, .

The first ingredient of the 2-functor of Section [3.1.3| comes in Definition [3.1.3]
Preparing the latter we note

(LG x LG)((V1, Va), (W1, Wa)) = LG(V1, Wh) x LG(Va, Wa)
= hmijVlJrV[ﬁ X hmfiBVfrWz
= hmf® x hmf®

—0+(=V1+W1) —(Va—W3)+0°

LGV + Vo, Wy + W) = hmf?vl—v2+wl+wgv

and that ®, cf. Notation is a functor

hmf% gy X hmES gy = S

Definition 3.1.3. The functor Oy, v,) w,,w,) is the composite

(LG x LG)((Vi, Va), (Wi, Wa)) =5 ity
L LG(Vi + Vi, Wi + W),

where [ := L Vot Wo—Vi4+W1,—Vi—Vot Wi+ Wo

Often we write O without index for the functor of Definition [3.1.3] Also, given
two 1-morphisms X, Y in £G we use YOX := 0O(Y, X).
The second gadget which we display in this section is

Lemma 3.1.4. Let 7, € {0,1} Vs € Ny, p,. Extending

O . O s 0 Ot @y 0Ot (3.1.2)

s Ynitng
k[z], 2}, z1, zo]-linearly yields an isomorphism Iy, w, — Iy, Oy, .
We postpone the proof in favor of a preparatory lemma.

Lemma 3.1.5. Let R be a commutative ring, W € R, X and Y matrix factoriza-
tions of (R, W) and ¢ € Modg (X, Vi) an isomorphism such that ¢ represents
a morphism 5 € HMFz w(X,Y). Then ¢! € Modg (Y, X,,) represents a mor-
phism ¢! € HMFx (Y, X).

Proof. Since ¢ has Zy-degree zero so does ¢~!. We need to show that ¢! is
dy x-closed. For this, act on ¢ o dx = dy o ¢ with ¢! from both sides. O

Note that hmfz 1 and hmf%w are full subcategories of HMF% 1y such that the
preceding lemma applies also to these categories.
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3. A symmetric monoidal structure on LG

Proof of Lemmal3.1.J, We show that Lemma defines a morphism in £G.
Once this is established it follows from Lemma that it is an isomorphism:
is one-to-one on basis elements and thus defines an isomorphism of un-
derlying modules. Recall our conventions from Table and suppose that
U =V +W such that x = (y, z). First, we rewrite the differential of Iy = Iy w,

cf. [@54), as

l

dr, _Z )05+ 5T (U) - 0, A ()

—Z — ) 9*+a[r] ). 0, A (=)

+ Z On i+ O (W) - Ogr A ().

Acting with this on a basis element 07" ...6;", cf. (2.5.5), yields using Notation

2.0.2)
m 'ril
5t Sr—1 1) Sy S
> (W = y)-(—1)F 600 651075 0, 077 .6}
r=1
r—1
Y,y Z: st S1 Sr—1 Sr41 S1
+ a[r} (V) . <_1)t_1 557,0 01 PR 07,_1 07: 0T+1 e 0[ )
n m—4r—1
Z s s —_— s .
3 (2 = 2D)-(=1) S TG OO Oy OO
r=1
m-g:—l
O (W) - (=1) & 00 03 O O OO,

Suppressing restriction of scalars this gets mapped by (3.1.2) to

m r—1

ZS S -~ S S
S (g — ). (1) a1 O30T 0, 0T 0 @y 06

r—1
+ O (V) . (C1)E G0 0505 6, 0 L O @y B 6)
n m+r—1
> s s s s
+ ) (2= 2)(=1) 5 TS O @O 0, gL
r=1
m+r—1

FOTE (W) (=1) &0 8, 0 00 O @ 05 g0, 0L 0)

T
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3.1. The monoidal product

m

S S Zst S s Sm s
= (0305 @y 05 LS (1) 0 L0t @ dyy, (056
= (dp, @5 1)(05 .. .05 @ 05 0%) + (1 @k dp, ) (0505 @ 057 .. 6%)
- (dIvDIW ° D(V,W))<9ngl s 0?)?

which proves that (3.1.2)) is compatible with the differentials. Here, the first
equality holds since by definition k[y’, y] acts on the first factor in IyyOIy and
k[2', z] acts on the second factor. O

3.1.2. Some coherence results

In this section we collect some lemmas which are essential for many proofs in the
following.

We start with Lemma(3.1.6|which makes a precise statement out of the idea that
a map between tensor products of matrix factorizations which merely permutes
the factors while multiplying with a minus sign for each pair of Zs-odd elements
whose order is exchanged is an isomorphism in L£G.

To set the stage for Lemma we note first, that if ¢.(X) is a module
obtained via restriction of scalars along a ring isomorphism ¢ from a free module
X then a basis of X is one of ¢.(X). Now let n € N and, neglecting brackets,
consider a functor

F:hmff, x - x hmfy — hmfy,

which is a composite of cartesian products of identities, functors of restriction
of scalars along ring isomorphisms, O and horizontal composition in £G. For
i € Ng, let X; € hmf}, have bases {e;;};es, for some index sets J;. Then
F(Xy,...,X,) =X has a basis

{e1j, @ ®en,,|di € Ji Vi € Ny}

where the brackets and tensor products are those dictated by F. For ¢ € S,, a
permutation denote by o also the induced functor

hmf?;l X - x hmff] — hmf@ailm P SERRIP hmf?;fl(n).
Let

G:hmf@_l(l) X« x hmf} )—)hmf%

(n
be a second functor composed of cartesian products of identities, functors of
restriction of scalars along ring isomorphisms, O and horizontal composition in
LG. A basis of (Goo)(Xy,...,X,) = X, is given by

{es 104,210, @+ @ €o-1(n), -1 lJo-1() € Jo-1(3) Vi € Nen},

where the brackets and tensor products are determined by G.
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3. A symmetric monoidal structure on LG

Lemma 3.1.6. Let F', G and o be functors as above such that

el:jl ® e ® enyjn = (_1)860'_1(1) ® tte ® eo'_l(n) (3.1.3)

Jo=1() Ja=Ln)’

where s = > ek ||ei |, defines a map n @ X,,, = (X,)n of modules.
(k1) k<l, o(l)<o(k)

Then 7 is a representative of the (X7, ..., X,)-component of a natural isomor-

phism F' — G oo.

Proof. The map 7 is an invertible module morphism of Zs-degree zero.

We show that 7 is natural in all X;, ¢ € N,,. To this end let ¢; € hmf%(Xi, Y:)
for i € N<,,. Since functors of restriction of scalars do not change the functions
underlying module maps we have

F(¢17awn):¢1®®¢na

where we assume the brackets and tensor products dictated by F. We observe
that under 7

Yi(e1) ® -+ @ Uplen) = (=1)"Yo-1(1)(€5-1(1)) @+ ++ @ Yo1(n) (€5-1(m) ),

where s is the one in since [¢;| = 0 such that |wl(ez)] = |e;| for all i € N,,.
For alle; € X, 1 € Ngn thls is the same as applying (|3 first and then acting
with

G(@/)g—l(l), - ,¢U—1(n)).

We move on to demonstrate that 7 is compatible with the differentials. On the
one hand, we have

dx,((=1)°es101) @ o-1(2) @ -+ ® €5-1(p)) (3.1.4)
=(=1)"dx, <1>( o=1(1) ® €o-1(2) @+ ++ @ €g-1(n)
+ (—1)S+‘e"_1(1>|6071(1) ® dXG_l(Q)(er1(2)) QD er-13) @ @ €r—1(n) + ...
+ (_1)s+\6071(1>|+-..+|€J*1(”*1)‘60__1(1) Q- Q er-1(n_1) ® dXUq(n) (eo'_l(n)>7
since the actions of d,,(y), ¢ some ring isomorphism, and dy on elements agree
for all matrix factorizations Y, and thus dx, is the sum over all ¢+ € N, of the

appropriate tensor product of dx, in the o (i)™ factor times the identity on all
others. On the other hand

dx(e1@e® - @e) =dx,(a) @ - Qe
+ (—1)‘6”61 Rdx,(e2) ez @+ Rey+ ...
+ (=D)lelttlenile, @@ e,y @ dx, (e,)
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which 7 sends to
(1) eo1(1) ® €-1(2) @ - - D dx, (1) @ -+ - ® €5-1(n) (3.1.5)
+ (=1 ele 1) ® egmro) ® - @ dx,(€2) @ @ €ty .-
+ (_1)sn+\el|+.-~+|en_1lea_l(1) ® €p-1(2) @+ ® dx,(en) @+ ® €o1(n)s
where s; = s+ > lei| + > leil, 7 € Ng,. Indeed, for each

(i<i)A(o(5)<a(i)) (G<i)Mo(i)<o(4))
J € Ng, this is precisely the change in s which results from replacing |e;| by

|dx;(e;)] = lej| + 1.

We compare the powers of (—1) in (3.1.4) and (3.1.5). In (3.1.4]) the summand

with dx, has
s+ > el
o(i)<o(1)

as the exponent of (—1) in its prefactor. This is exactly s;. The summand of
(3.1.4) which has dy, as one of its factors has

s+ Z lei| + Z leil + led]

(2<i)A(o(i)<o(2)) (i<2)A(0(2)<0(4))

as the exponent of its prefactor. This gives (—1)*2*l€l. This argument iterates
to show that and coincide. This holds for all e; € X, i € N<,,.
The preceding shows that 7 is a representative of a morphism in hmf};,. More-
over, since it is an isomorphism of underlying modules it follows from Lemma
that it is a representative of an isomorphism in hmf,. O

We exemplify a situation which does not meet the condition that (3.1.3|) defines
a module map. The functor F' is allowed to be O o (®k[m] X Qilz]):

(LG(U,Uy) x LG(Uy,U)) x (LG(U,Us) x LG(Us3,U)) — LG(Uy + Us, Uy + Us),
l.e.
(hmf%; g, x hmfSy, ) x (hmfZy < hmf®y ) — hmfSy 4,
such that
X = F(X1, Xa, X3, X1) = (X1 @) X2)O( X Qi) Xa ).

As permutation o we can take 1 +— 3, 2+ 2, 3+ 1, 4 — 4. Then we are free to
choose G = F. Hence we have

Xy = (Goo)(Xy, Xo, X3, Xy) = (X3 ) X2)O (X Q) Xa)-
At this point we cannot define a module map X — X, by

(€1, Okla] 62,j) ®x (e3,k Okla] eqr) " — " (es Okla] 62,j) ®x (€1, Okla] eq)
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3. A symmetric monoidal structure on LG

as for example below

(x.e1, kla] e2,j) Qx (esk Okla] eqr) = (e, Ok|a] T.€3;) ®x (€3 Okla] eq)
“ = 7 (e3k Oxla] T-€2,5) Dk (€1, Oulz] €4,1)
# (es kla] e2,) R (x.€1, Okla] eql),
(7.1, Okla) €2,j) Pk (€31 Px[z] €4)“ = 7 (€3 Oula] €2,5) Dk (T.€1,; O[a] €4,1)-

We say that in such a situation (3.1.3)) does not respect the tensor products.
The next Lemma |3.1.7]is a coherence result for the maps described in Lemma

0. 1.0l

Lemma 3.1.7. Two concatenations of isomorphisms of the form described in
Lemma [3.1.6] with the same source and target are equal.

Proof. Note that composing morphisms of the kind described in Lemma re-
sults in another morphism of that sort. First, composing the module maps yields
a morphism of modules. Secondly, the functions underlying the isomorphisms in
Lemma have the following effects: they move brackets, they change tensor
products and they permute factors at the expense of a prefactor of (—1) each time
the order of two Zs-odd elements is reversed. Composing two functions which
merely act in these ways gives another function of the same kind. Therefore it
suffices to show that two morphisms of the form described in Lemma with
equal source and target are the same.

Since we assume that the source and target of the two morphisms we compare
are equal they necessarily result in the same bracketing and the same tensor
products. Furthermore, as the order of factors agrees in both the domain and
the target the two maps as in (3.1.3]) yield the same sign prefactor. O

In Lemma [3.1.10] we extend the result of Lemma B.1.7 We show that two
morphisms with equal source and target composed not only of morphisms as in
Lemma[3.1.6] but also some specified other maps necessarily coincide. Some of the
other morphisms which we can allow are the following which reappear in Section

B.22

Lemma 3.1.8. Let X be a I-morphism in £G. There are canonical 2-isomorphisms
kx : X — [)0X, e~ 1®ceand ox : X — X0OI, e — e ® 1.

Proof. According to Lemma ({9,0))m = k and dj, ., = 0. Combining this
With ¢ _vs 1w, —040,-0-Vat04We = L—VotWa,—Vatw, = 1 We have djjox = 1 ®y dx and
dxor, = dx @1 for all 1-morphisms X in £G by Definition [3.1.3] Thus, the maps
kx and ox are compatible with the differentials dj,ox respectively dxay, and dx.

Since they are isomorphisms of underlying modules they are 2-isomorphisms in
LG by Lemma [3.1.5] m
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3.1. The monoidal product

Special cases of Lemma[3.1.§ are iy, = O,w) and o7, = Oqw0). Analogously
to how we refer to the factor of I in the target of an inverse unitor we say that
k and o create .

In our proof of Lemma we use the following fact.

Lemma 3.1.9. Let € be a category and a € €(A, B) as well as ¢ € €(C, D)
be two isomorphisms. Two morphisms b,0 € €(B, () are equal if and only if
coboa=col oa.

Proof. b=V < clocoboaoca =0V & coboa=col oa. O
Now we turn to our main coherence result.

Lemma 3.1.10. Let there be two 2-morphisms in £G composed via horizon-
tal and vertical composition in £G or O of morphisms as in Lemma [3.1.6, as
in Lemma or as in Lemma [3.1.8| unitors of LG, inverses of either of the
foregoing or functors of restriction of scalars as in Notation applied to the
aforementioned maps. If they share the same source and target they are equal.

Throughout the proof we do not explicitly say so when we refer not only to the
maps introduced in some lemma above but also to their inverses.

Proof. Call the two 2-morphisms to be compared ¢, and 5. Note that they have
source and target of the form X := F(Xy,...,X,,) € LG(W;, W) respectively
Y = F(Yi,...,Y,), where

F: hmf?ﬁl X e X hmf@m — hmf?WﬁWQ,

F: hmf%'?1 X - X hmf@n — hmfé_BlerW2

are composites of cartesian products of identities, functors of restriction of scalars
along ring isomorphisms, O and horizontal composition in £G. Indeed, every one
of the morphisms of which ¢; and ¢y can be composed has source and target of
such a form. Therefore also the sources and targets of 1 and 5 can be described
as X and Y above.

We distinguish two cases. First, we assume that there is at least one b € N,
such that Y, # I. This implies that there exists an a € N<,, such that X, # I.
Indeed none of the maps in Lemma [3.1.6] those in Lemma [3.1.4] the ones in
Lemma [3.1.§ or unitors “create” matrix factorizations other than unit matrix
factorizations. Neither do the maps obtained from these via restriction of scalars.
Thus, if Y}, # I then there has to be an a € N, with X, =Y},

By Lemma ©1 = @y if and only if for some isomorphisms 7, v we have
Yyo@ior = 770 pyov. Since we assume Y, # [, we can compose such an
isomorphism 7 by concatenating and using O or ®y—) (i.e. Qg for various sets

of variables @) out of maps as in Lemma [3.1.4] as in (3.1.3)), as in Lemma [3.1.8]

unitors or functors as in Notation |3.1.2| applied to either of those morphisms such
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3. A symmetric monoidal structure on LG

that all ¥; which are unit matrix factorizations are “removed” after projecting
to their 1-component. Similarly, we can create all X; which are unit matrix
factorizations from the other X, by some combination of inverse unitors, maps
as in Lemma as in , as in Lemma or functors of restriction of
scalars applied to such maps. Let v be an isomorphism of this kind. We argue
that this reduces v o ¢ o v and v o g 0 ¥ to 2-morphisms of the form described
in Lemma B3.1.6]

The maps yop;ov and yopsov are of the form of those described in Lemmal3.1.6
if their underlying functions are of the form . As the functions underlying
maps of matrix factorizations are not affected by functors of restriction of scalars
we do not consider such functors in showing that the functions underlying yop;ov
and v o w9 o v are of the form (3.1.3)).

Eventually, all factors of I featuring in intermediate stages of v o ¢y o v or
v 0y o v are projected to their 1-component. Therefore, the maps from Lemma
only contribute through 1 <+ 1 ®, 1. In particular, no signs can arise from
permuting factors of I with other matrix factorizations via the maps in Lemma
B.1.6 Also, according to Observation [2.5.10] once all factors of Iy, W # 0 are
projected to their 1-components, only the elements present before inverse unitors
are applied remain in the other factors. The same holds true for those I, created
and “removed” by the maps in Lemma [3.1.8, Therefore, the overall effect of both
v o ov and v o, or has to be of the form (3.1.3).

The above reduces yop;or and yopsov to maps as in Lemma such that
it follows from Lemma that they are equal. By Lemma this entails
Y1 = P2.

Next, assume that all X;, ¢ € No,, are unit matrix factorizations. Analogously
to the preceding case this implies that all Y}, j € N<,,, are unit matrix factoriza-
tions, too. Again we argue that we can compose p; and @, with isomorphisms
such that the functions underlying the resulting morphisms are equal. As before
this justifies that we do not consider functors of restriction of scalars for the rest
of the proof.

We show that there are isomorphisms v and v such that yop,ov = yopsor. We
choose v = \}'. Since all Y;, j € Ng,, are unit matrix factorizations we can use
unitors, maps as in Lemma , as in Lemma and as in Lemma (not
permuting factors but changing functors of restriction of scalars) or functors as in
Notation applied to such morphisms to build an isomorphism 7 : Y — «(I),
where ¢ is some functor as in Notation [3.1.2 Then there is an isomorphism
as in Lemma [3.1.6) (not permuting factors) such that y = //(p) o ¢po (1 ® 7), ¢/
a functor as in Notation is well-defined. Consequently, all Y;, j € N<,, are
projected to their 1-components. This entails that all X;, ¢ € N, are projected
to their 1-components, too. Moreover, it follows that v o y; ov and yo s 0v do
not feature any signs from maps as in Lemma [3.1.6 permuting factors.
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3.1. The monoidal product

Recall the formula (2.5.10) defining Ay

e Y D0 DG O O B

>0 11<--<9; j&€J

By the preceding both v o ¢ ov and v o ¢y 0 v act as

e; — Z Z {a[ZZlQ’ZQdX zz,zzdx}h TR 92'1'

>0 11<-<1

This shows v o 1 o v = 7y 0 g o v from which it follows with Lemma that
P1= P2 u

Lemma [3.1.10[ applies to all 2-morphisms which we define below. Thus, all
diagrams which have to commute for these maps to endow £G with the structure
we aim at commute by Lemma [3.1.10}

Remarks 3.1.11. As we show in Proposition below the maps in Lemma
3.1.4] are constraint 2-morphisms of a 2-functor. We can prove this independently
of this section’s lemmas. Then it follows from coherence for 2-functors, cf. [G]
Remark 3.1.6], that all diagrams containing only unitors and associators of LG or
their inverses as well as maps as in Lemma |3.1.4] or inverses thereof commute.

Using that the structure morphisms of £G are natural, many of the diagrams
appearing in the proofs that our definitions below endow LG with the desired
structure can be rearranged into subdiagrams which commute by this coherence
theorem. This already significantly simplifies the proofs. Yet only using coherence
for 2-functors one still has to prove that one can accommodate to functors of
restriction of scalars as in Notation [3.1.2| case-by-case.

Vice versa, as a special case, Lemma [3.1.10] verifies the coherence theorem as
applied to the two-functor which we introduce momentarily in Proposition |3.1.12]

3.1.3. The monoidal product

We get back to the purpose of this section: defining a 2-functor LG x LG — LG.
The notion of a 2-functor is recalled in Definition [AT.2

Proposition 3.1.12. Let k be a field of characteristic zero. The following defines
a 2-functor O : LG x LG — LG.

1. Its action on objects is Og : (LG X LG)o — LGo, (V. W)=V +W.
2. Its functors on morphism categories are
D(VLVZ),(WLWQ) : (f’g X ‘Cg)((‘/lv %)7 (Wb W2)) — ‘Cg(‘/l + ‘/27 Wl + W2>
of Definition B.1.3l
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3. A symmetric monoidal structure on LG

3. Its natural isomorphisms Oy, 17,),(v;,vs),(w1,w2) €xpressing compatibility with
horizontal composition are

LG LOXLG
U, + U, 4+va W 4w, © (O x 0) = Do O Uy Un), (Vi Vi), (Wi, W)

given by the ((Y1,Y2), (X1, X2))-component

(V10Y2) @ujy; o) (X10X2))m — (Y1 Ry X1)O(Y2 @xlyy) X2))m (3.1.6)
(f1 @k f2) Py ) (€1 R €2) = (=D)L @401 €1) @i (fo Oy €2)-

4. Its isomorphisms Oy, w,) on units are the morphisms Iy, 1w, — I, Olw,

of Lemma B.1.4l
In part [3| of Proposition [3.1.12| the assignment (3.1.6)) is intended to define

a module map by extending it linearly. We leave this comment implicit in the
following.

Definition 3.1.13. The 2-functor O described in Proposition|(3.1.12]is the monoidal
product for £LG. The 2-morphisms Oy, 1) (v1,vs),(w1,w2) 10 part 3] of Proposition
[B.1.12] are the tensorators.

Where the context allows to do so unambiguously, we do not write indices
on the components of 0. Note that according to this convention both the 2-
morphisms specified by and the maps O(w, w,) defined in part |4 of Propo-
sition are written as O.

Proof of Proposition|3.1.12. First, we prove that O is well-defined on objects.
Let (V,W) € LG?. Since (y)i[y] C (y, Z)ﬁ[y,z} and (z)i[z} C (y,z)i[y’z] we have

VeWiy We@in=V+We(y 2.,

Moreover, the canonical ring isomorphism k[y]®y k[z] = k[y, z] induces a k-linear
ring morphism

k[y}/(ayl‘/a <. ,8ymV) Bk k[z]/(GZIW, s aaan)
—kly, 2]/(0,,V,...,0,,V,0.,W,...,0,, W)

which sends a basis of the k-vector space (3.1.7) to a basis of the k-vector space
(3.1.8)), whereby (3.1.7) and (3.1.8)) are isomorphic k-vector spaces and

dimy(kly, 2]/(0,,V, ..., 0, V,0.,W,...,0,,W))
=dim(k[y]/(0,,V,...,0,,V) @k k[z]/(0,W,...,0,,W))
=dim(k[y]/(0,, V. ..., 0,,.V)) - dimy(k[z]/(0,, W, ..., 0., W)) < 0.

Therefore, V + W € LG.
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3.2. The remaining monoidal structure

That O, 0,),(vi,vs), (w1, ws) according to part [3] of Pr0p081t10 1 12 is a nat-
ural isomorphism is a special case of Lemma 3 Indeed, (3.1.6) defines a
k[xy, @2, 21, 25]-module map, where on both of its s1des klx;] C K] 151,332,,21722]
acts on X; and k[z,;] C k[z1, @a, 21, 22] acts on Y; for i € {1,2}. (3.1.6) respects
the tensor products since for ¢ € {1,2} these identify prefactors in k[y;| in front
of f; and e;, respectively, on both of its sides.

It is left to verify that the structure we have defined makes the required di-
agrams, cf. Definition commute. We begin with the diagrams involving
the unit 1-morphisms, cf. . To assure that O is compatible with the left
unitors we assert that the following two 2-morphisms coincide:

[V+W ®k[y,z] (XDY) )ﬂ/ X0OY and
O®1

]V+W ®k[y,z] (XDY) — ([VDIW) ®k[y,z] (XDY)
— (Iv @iy X)O(Tw @13z Y)
S )
This is a special case of Lemma(3.1.10, Analogously, it is a consequence of Lemma,
3.1.10| that O is compatible with right unitors.
That O is compatible with associators, cf. (A.1.3]), means that the following

compositions of 2-morphisms in which we omit indices on ® are identical for
suitably composable 1-morphisms X,., Y;, Z,, r € {0,1} in LG:

((Z102y) ® (Y10Y2)) ® (X10X,) == (£,0%,) ® (Y10Y2) ® (X10X5))
7,07,) @ ((Y1 @ X1)0(Ya ® X5))
Z1 @ (Y1 ® X1))0(Z @ (Y2 ® X))

(Z
(
(
L (2@ Y1)D(Z, @ Ya)) © (X10Xy)
((
(

]

o lé

]
®

((Z10%;) ® (Y10Y3)) ® (X10X5)
Z1®Y1) ®X1)0((Z: ® Ys) @ Xo)

71 ® (Y1 ® X1))0(Zs @ (Y2 ® X3)).
(3.1.9)

5]l

Note that according to their definition in the associators o are morphisms
of the kind described in Lemma [B.1.6] and the same is true for the tensorators.
Thus, all maps in (3.1.9)) are of that form. Hence it follows from Lemmathat
the two concatenations of 2-morphisms depicted above coincide, showing that O
is compatible with associators. This finishes our proof that O is a 2-functor. [

3.2. The remaining monoidal structure

In what follows we define the further data turning £G into a monoidal bicategory,
cf. Definition [A.3.1]
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3. A symmetric monoidal structure on LG

3.2.1. Associativity
Denote by 2 the strict 2-functor (LG x LG) X LG — LG X (LG x LG) which

acts on the level of objects, 1-morphisms and 2-morphisms by rebracketing as
e.g. (U V), W) (U, (V,W)). Before defining a pseudonatural transformation
a:00(0x1)— Oo(1x0O)o2A we consider the action of the two 2-functors
between which it interpolates on objects:

(Co(@Ox1)(U,V),W)=0(U+V),W)=U+V+W,(x,y,2)), (3.2.1)
(Oo(1xO)o)(U,V),W)=0U,(V+W))=U+V+W,(x,y,z)).

This shows that on objects both 2-functors agree. Therefore we have a distin-
guished choice for the component of @ on objects: the unit 1-morphism. Moreover,
we can use the unitors to define the components of a on 1-morphisms.

Remark 3.2.1. That (Oo(Ox1))o = (Do (1x0O)oA)g is a first instance where
we benefit from working with £G rather than the equivalent bicategory of [CM2]
which we mention in Remark [2.10.5] To wit, the equality of both lines in ([3.2.1)
hinges on the strict associativity of addition and of building nested ordered sets.
Had we in contrast e.g. allowed for tensor products in objects of LG and defined
OV, W) = (kly] @ck[z], V@, 1+ 1@k W) as suggested e.g. in [CR2, §4] it would
be more involved to define a since ®y is not strictly associative. Our approach
has been hinted at in [C2, §2.4.4].

Due to Lemma the following ingredient of a is well-defined.

Definition 3.2.2. Let X, Y and Z be 1-morphisms in £G. #x y,z is the following
2-isomorphism in £G which is natural in X, Y and Z:

XO(YOZ) = (XOY)OZ, e @ (f @ g) — (e @ f) @ g. (3.2.2)

Indeed, let X € LG(U,Us), Y € LG(Vi,Va) and Z € LG(Wi,Ws). Then
(3.2.2) defines a k[x1,y1, 21, T2, Yo, Z2]-module morphism: scalars in k[x;] C
k[x1, Y1, 21, T2, Yo, 22|, © € {1,2}, act on the first factor of both the source and
the target, scalars in k[y;], ¢ € {1, 2}, act on the second factor of both source and
target and those in k[z;], ¢ € {1,2}, act on the third factor.

We use this to state, recall Definition of a pseudonatural transformation,

Lemma 3.2.3. The following defines a pseudonatural transformation
a:00(0x1)—0o0(1lx0O)o
1. Its 1-morphism component is aw,vyw) = lvtviw.

2. Its 2-isomorphism component a((xy),z) is A(;Dy)mz o @xy,z © PXO(YDZ)-
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3.2. The remaining monoidal structure

Definition 3.2.4. The pseudonatural transformation a described in Lemma|3.2.3
is the associator for the monoidal product on L£G.

In the proof of Lemma [3.2.3] as well as in the following we frequently omit
indices on ®, I and morphisms of matrix factorizations.

Proof of Lemma[3.2.3. 1t follows from that the component of a in part
of Lemma has the correct source and target objects. Furthermore, the
component of a in part 2| of Lemma [3.2.3]is defined as a 2-isomorphism which is
natural in all three arguments. To wit, A and p are natural isomorphisms and
Oo(Ox1) as well as Oo (1 x O)o2 are functorial in all three arguments. We show
that the necessary diagrams, cf. and , commute, too. a respects
compositions since the following two concatenations of maps coincide by Lemma
0. 1. 10l

(X;0(V102)) @ (XOY02)) eI

% (X,0(¥i021) ® (XO(YDZ)) @ 1)
198 (x,0(102))) ® (XO(YDZ))
=4 (X,0(M02) @ (XOY)0Z)
2 (0MOZ) © (I ® (XOY)0Z))

1

‘S (X0(M0Z) e 1) @ (XDY)DZ)
2 (XiD(Vi02)) ® (XOY)02)
ﬂ;@% ((X1D}/1>DZI) ((XDY)DZ)

ML (T e ((X,0Y1)02)) @ (XOY)0Z)

L I e ((X107)02) @ ((XOY)O2))
D, 1o (X © X)D(1 @ Y))0(Z) © 2),
(X:0(MMDZ)) ® (XO(YOZ))) 1

CL2PREL (X @ X)0((Y @ Y)O(Zi @ 2) 0 1
5 (X190 X)0(M1®Y)0(Z ® Z))

2 (X, @ X)0(Y, @ Y)O(Z, © 2)

T (X @ X)OW @ Y)D(Z @ Z)).

Finally, we assert that a is compatible with units. This amounts to the se-
quences of maps below being equal

[ 1 CWON o107y @ 1 25 10(101) - (10001 2 [ © (I00)0]),
1®(0o(Ox1))
SN

[0 515101 [ @ ((Ionar).
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3. A symmetric monoidal structure on LG

Again, this is an instance of Lemma [3.1.10] O

According to Definition associators for the monoidal product on a bicat-
egory come as an adjoint equivalence. Therefore we need

Lemma 3.2.5. There is a pseudonatural transformation a= : Do (1 x O) oA —
Oo (O x 1), given by the following.

1. Its 1-morphism component a(’(U,V)W) is lyiviw.

2. Its 2-isomorphism component A(xy).2) is A;(lu(yuz) o 427)5%/2 O p(xoy)oz-

Proof. This is completely analogous to our proof of Lemma above. m

Before we show that a and a~ form an adjoint equivalence we inspect the
composite a~ o a, cf. Definition |A.1.7} This has the 1-morphism component
(a” oa)qwyyw) = (@) wv)w) @ aquy)w) = lusviw Oklay,z) lusviw.
Its associated 2-morphism is

@ o7 0% I (XO(YDZ)® I (3.2.3)

1®(A\~Loesop)
-

(XOY)DZ)@I® 1
I®l®(XOY)02).

This consists exclusively of morphisms to which Lemma applies.
The following lemma uses the notion of a modification, cf. Definition [A.1.5

Lemma 3.2.6. There are modifications

€:a” oa— logoxt), €uIw) =AM, 1 losaxoen = a0 a™, nuyvyw) = A7

€:aoa” = logaxopen, Euviw) =1, 1 los@x1) = @~ 0a, fuyyw) = A7
witnessing an adjoint equivalence of a and a~.

Proof. First we note that e(u,vyw) := Aris a 2-isomorphism from (a™oa) (w,v),w) =
I ® 1 to (loo@mxn))uyvyw) = I. It makes the square defining a modification,
cf. , commute since as displayed in (3.2.3) (a™ o a)(x,y),z) consists only of
morphisms to which Lemma |3.1.10| applies and thereby the whole square features
but such morphisms and commutes.

We can argue analogously that € vy w) == Ar, nqu,v),w) == )\1—1 and 7w,v),w) =
)\1—1 yield modifications.

e and 7 as well as their tilded versions are adjunction maps, cf. Definition[A.2.1]
We have

(1)o@ D)) wwm 1T 2 Telel 25 Ie1

which by Lemma [3.1.10]is the same as the identity 2-morphism. For 1 and € we
can iterate this reasoning. Therefore a and a~ form an adjoint equivalence. [
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3.2. The remaining monoidal structure

Note that the components of the modifications in Lemma [3.2.6|can be replaced
e.g by pr and its inverses according to Lemma [3.1.10]

Next we introduce a modification showing that the associators a satisfy the
pentagon axiom up to 2-isomorphisms.

Lemma 3.2.7. There is an invertible modification 7 : (10a) ca o (ad1) — aca
with (((7,U), V), W)-component

(170aqwvywy) @ aqru+vy,w) @ (are),v)Blw)

= (IrBysviw) @ Irqyuivew @ (IryupvBlw)
O®1x0O
Itiviviw @ Iryuiviw @ Irpuivew

A
— Iriuyviw @ Iryuiviw = aqro)v+w) @ A(r+U,v),w)-
Definition 3.2.8. The modification 7 of Lemma [3.2.7] is the pentagonator.

In proving Lemma [3.2.7] and later we use the following notation. Let X, Y be
matrix factorizations and ¢, ¢ be morphisms of matrix factorizations. Sometimes
we write XY := X0OY and ¢y := ¢Op. Moreover, we do not display bracketings
for ® where they are not essential for our arguments.

Proof of Lemmal[3.2.7]. By definition the prescription of Lemma yields in-
vertible 2-morphisms. We argue that they combine into a modification. Let X,
t € N<y be matrix factorizations. The upper left corner of the square whose com-
mutativity qualifies 7 as modification, cf. (A.1.7)), is (X1(X2(X3X4))) ® (la) ®
a ® (al). In the square’s lower right corner we have a ® a ® (((X1X2)X3)X4).
The two morphisms in between these matrix factorizations which label the edges
of the diagram are based on 2-morphism components of a and 7. It follows that
Lemma [3.1.10] applies to show that 7 is a modification. O

Note that Lemma [3.1.10] also applies to all maps obtained from 7 by taking
adjoints of its source or target 1-morphisms. Indeed, it applies to the morphisms
in Lemma which are the (co-)evaluation maps introduced by taking these
adjoints.

The following is the only one of the axioms of a monoidal bicategory which
involves but the structure maps with which we have equipped LG so far, cf. Def-

inition [AL3.1]

Lemma 3.2.9. O, a and 7 satisfy the associahedron equation, i.e. the identity
of pasting diagrams (A.3.1)=(A.3.2).

Proof. The 2-morphisms depicted in (A.3.1) and (A.3.2]) are composed solely of
morphisms to which Lemma [3.1.10] applies. O
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3. A symmetric monoidal structure on LG

3.2.2. Units

It remains to define the monoidal unit object and to prove that it satisfies the
necessary conditions. For this, we denote by 1 the bicategory consisting of a single
object x and only identity morphisms. Our following definition is anticipated in
[CR2, §4].

Definition 3.2.10. I : 1 — LG is the 2-functor with Io(x) := (0,0). The
monoidal unit object of LG is ((,0).

Note that Definition is well-defined as 0 € k = k[f)] is indeed a potential
according to Deﬁnitionsinee (@) = {0} and 0 € {0} = (0)?, dimy(k/{0}) =
dimg (k) = 1 < oo.

Next, we spell out the 2-functor O o (I x 1) = IO1, which is the source of the
pseudonatural transformation that we introduce in Lemma below.

101 :1 x LG — LG,
(I01)o :(*, (2, W)) = (2, W),
(IO (v, (wy (1 X LG)((+, V), (x, W) = LGV, W),
(1*7X) = IODXa (11*7¢) = 1[0D¢

()\IOXI)OD
(I01) 0, (v, (eowy S(L00Y) @ ([OX) P = L,O(Y @ X)
Heo,w)

(IDl)(*,W) Ty —— [0y

Denote by A : 1 x LG — LG the 2-functor which projects onto the second
component and recall the notation of Lemma (3.1.8]

Lemma 3.2.11. There is a pseudonatural transformation [ : 101 — A with
l(*,W) = IW and l(l*,X) = (1 X K:X) o )\;{1 o px.

Definition 3.2.12. The pseudonatural transformation [ : IOl — A in Lemma
3.2.11}is the left unitor for O.

Proof of Lemma|3.2.11] By definition, the 2-morphism components of [ are iso-
morphisms. Moreover, Lemma can be applied to these 2-morphisms. Sup-
pressing associators a the two 2-morphisms which have to be equal for [ to be
compatible with horizontal composition of 1-morphisms, cf. (A.1.5), are

YoX) ol —9 vy, (0X))
LB 1y @ (L0Y)) © (0X)

O, Iy ® (B(Y ® X)),

YoX) ol N e (Loy o X)).
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3.2. The remaining monoidal structure

These two morphisms are the same by Lemma [3.1.10}
The 2-morphism components of [ are compatible with units, cf. (A.1.6)), since
the following two 2-morphisms coincide by Lemma [3.1.10}

1 1
I @ Iy =5 Iy 2= Iy @ Iy ——"% 1 @ (IO 1w),

l

One may proceed completely analogously as to prove

Lemma 3.2.13. There is a pseudonatural transformation [~ : A — IO1 with
Loy = 1w and [y = A o px o (ky ®1).

Indeed, we have the following adjunction:

Lemma 3.2.14. There are modifications

€170l = looax), €ew) i=Any, n:la—= 1ol nuw) = AL}
E:lol™ = 1a, &) = Anys 7 looxy = 17 o, Tewy == Ag,)

witnessing that [ and [~ are adjoint equivalent.

Proof. The diagrams which have to commute in order to assert Lemma |3.2.14]
cf. (A.1.7), comprise only , k™1, «a, a=', A\, A71, p and p~'. Therefore they
commute by Lemma [3.1.10] [

In introducing the next gadget, we write P : LG x1 — LG for the projection to
the first component. The following is proven along the same lines as the foregoing.

Lemma 3.2.15. There are pseudonatural transformations r : Do (1 x I) — P
and r~: P — Oo (1 x I) with

T(Wx) 1= [W, T(X1,) = (1 & UX) o )\)_(1 o px

Ty = Iws T(x 1) = A opxo (o ®1).

These form an adjoint equivalence whose (co-)evaluations are all given in terms
of A, and )\I_‘;.

Definition 3.2.16. The pseudonatural transformation » : Do (1 x I) — P of
Lemma [3.2.15] is the right unitor for O.

We equip LG with the necessary modifications for [ and r to qualify as unitors.
We use the standard symbols for these modifications, cf. [Gl S| [SPT) [Sta]. This
conflicts with our use of the standard symbols for the structure isomorphisms of
a bicategory. However, the context allows to distinguish the maps. In particular,
while the components of the modifications are indexed by tuples of objects of
LG and * the structure morphisms are indexed by 1-morphisms in £G.
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3. A symmetric monoidal structure on LG

Lemma 3.2.17. The following prescriptions describe invertible modifications

Ailp®@(Ix1) = (I ®laxopen) o (@@ Laxiyx1),
A W) = AR © By
p:r®lox = (lo® (I x7)®1y)o(a® Laxixr),
Py = (Ow) @ 1y ) 0 /\;‘}+W7
pilo®@(rx1) = (1o® (1 x1)®1ly)o(a® laxnx),
[H(V) W) 7= P10y
Proof. The 2-morphisms displayed in defining A, p and p are invertible. In all
three cases the diagrams which show that these 2-morphisms are components of

modifications, cf. (A.1.7]), commute by Lemma 3.1.10| O

Theorem 3.2.18. LG together with O, a, 7, (0,0), I, \, , p, u as specified above
forms a monoidal bicategory.

Proof. Tt remains to show that A, i and p satisfy the necessary equations depicted

in (A.3.3) and (A.3.4). In both cases this follows from Lemma [3.1.10} O

3.3. The braiding, the syllepsis, and more

We begin by defining a braiding, cf. Definition [A.4.1] Then we introduce its
syllepsis and the two other modifications needed to define a symmetric monoidal
bicategory, cf. Definition Finally, we prove that these data satisfy the
conditions to make £G a symmetric monoidal bicategory.

3.3.1. The braiding

Before introducing a braiding for the monoidal product O on LG we point out
three special instances of Lemma [3.1.6| Recall our conventions from Table
and Notation B.1.21

Definition 3.3.1. Let Uy, Uy, V, Wy, W5 be potentials, U := Uy + Uy, W =
Wy + Wy, X € LGU,V) and Y € LG(V,W). Then there are the following
2-isomorphisms in £G which are natural in X and Y.

X1 L_U+W,—U+W2+W1(Y xky] X) — L—V+W,—V+W2+W1<Y) Qxly] X,
Xr U+ W,—Up =0+ (Y @xy) X) Z2Y Qupy) t—v4v,—tn—v1+v(X),

both specified by
[ @) e = f @y €. (3.3.1)

Indeed, the prescription f ®ypy) e = f ®xyjy € respects the tensor products in
the sense specified preceding Lemma [3.1.7. Thus, Lemma [3.1.6| applies.
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3.3. The braiding, the syllepsis, and more

Definition 3.3.2. Let y be some permutation of y, X € LG(U, (y,V)) and
Y € LG((y,V),W). Then tg,, or ¢ if the context specifies the index, is the
following canonical 2-isomorphism in £G which is natural in X and Y:

Y ®xig) L((wa),-U+V), (@3- U+V) (X) = L(G.2),-V+W)(g,2)-v+w) (V) Oy X
J @y e = f Qupy € (3.3.2)

The functors of restriction of scalars are precisely such that (3.3.2]) respects
the tensor products. Furthermore, the rings act in the same way on the modules

underlying both sides of (3.3.2)).

Remark 3.3.3. Note that there are no factors of (—1) in the formulas (3.3.1)),
specifying the actions of the isomorphisms of matrix factorizations in Def-
inition [3.3.1) and Definition [3.3.2| on elements of the underlying modules. Indeed,
according to the formula (3.1.3) the isomorphisms of matrix factorizations in
Lemma [3.1.6] multiply elements of the underlying modules with signs only if the
order of factors in tensor products of matrix factorizations is changed. But nei-
ther in Definition nor in Definition are the two factors in the respective
tensor products of matrix factorizations permuted.

Definition 3.3.4. For X € LG(V},W1), Y € LG(Vo,Wy), V :i= Vi + Vo, W =
Wy + W, the 2-isomorphism 3(x y) which is natural in X and Y is

vy viw,—vaw (YOX) = coviwyswy,—vw (XOY), (3.3.3)
y @z (1)l @y

That SB(x,y) in Definition is well-defined is ensured by the functors of

restriction of scalars. They are such that both sides of (3.3.3) are modules over

the same ring and the map (3.3.3)) is compatible with the action of the latter on
either side.

We move on to introduce the braiding in Lemma |3.3.5 Here we denote by

T: LG X LG — LG x LG the strict 2-functor which permutes the entries of the

tuples which are objects, 1- and 2-morphisms of LG x LG, e.g. (V,W) — (W, V).

Lemma 3.3.5. There is a pseudonatural transformation b: O — O o 7 given by
the following:

1. For U .=V + W set b(ww) = L—U+U,—U+W+V(IV+W)~

2. In the situation of Definition bix,y) is defined as

(YOX) ® b vy) — tovpvisw—viw(YOX) @ Iy (3.3.4)

-+ Ly viaw,—vaw (YOX)

Bix,v)
LoV Wi+ Wa,—v+w (X 8Y)

(A
— v+ Wa,—vaw (T 4w, ® (XTY))

i) L*W1*W2+W1+W2,*W1*W2+W<[W1+W2) ® (XDY)
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3. A symmetric monoidal structure on LG

= b, w,) ® (X3Y).

Definition 3.3.6. The pseudonatural transformation b in Lemma [3.3.5] is the
braiding for O.

Explicitly, our definition says that (bevw))n is a free kly', 2/, z, y]-module with
the same underlying set as (Iyyw)mn and the k[y', 2/, z, y]-action given by pre-
composing the action of k[y’, 2’, y, z] on (Iy 1w )., with the canonical ring isomor-
phism kly', 2/, z, y] = k[y/, 2/, y, z|. In particular every basis of (Iy 4w )m, e.g. the
one in , is a basis of (be,w))m. Moreover, by 18 dr,, .y interpreted as a
map of k[y', 2/, z, y]-modules rather than as map of k[y’, 2/, y, z]-modules.

We spell out the action of the 2-morphism b(xy) on a general basis element of
(YOX) ® bvy,vs) )m explicitly. For this let {e,}qer and { fy}res, I, J some index
sets, be bases of X, and Y,,, respectively. We have

(fo ®x €a) Ry 01 .. Otz 5 65 o 640 0-(fo P €a) (3.3.5)
B ’ e
,ﬂ) <_1)| aHfb‘(Sjl,O . 5jm1+m270'(6a ®k fb)

OL()\*l) e _
P (=)l Blg; o 65 g 0- A by (€0 @ fo)-

Using the formula (2.5.10)) for A™! and setting z = (21, 22), the last line of ({3.3.5))

becomes

(_1)|€a||fb‘5j170. . '5jm1+m2>0'z Z Z

>0 i1<--<qy (a’,b’)EIXJ
{8[Z,Ll7f dXDY e a[ZZ;T dXDY}ea/®fb/,ea®fb'9i1 e eil ®k[£] (ea/ ®k fb/)v

Note that independently of the 1-morphisms X or Y the composition (3.3.4)
is a 2-morphism to which Lemma [3.1.10| applies.

Proof of Lemma|3.53.5. First, by its definition, for all 1-morphisms X and Y the
map bx,y) is an isomorphism which is natural in X and Y. Indeed, 7, B(xy) and
x: are natural by definition. Also, that p is natural in t_y,_v;, 1w, —viw (Y DX)
implies that it is natural in both X and Y since ¢y, v, 1w —v+w(—0—) is func-
torial in both arguments. Similarly, Ay is natural in XOY and therefore in X
and Y since O is functorial in both arguments. Consequently +(A™!) is natural in
X and Y.

Secondly, b(x yy is compatible with compositions, cf. , since by Lemma
for X7 € LG(U,, V1), Y1 € LGV}, W;) and Xy € LG(Uy, Vo), Yy €
LG(V,, Ws) the following two concatenations in which we suppress associators
a for the horizontal composition ®y—j of £G result in the same morphism:

(Oor)®1
Em—

((YQDYl) ® (XZDXl)) ® b(U1,U2) ((YQ ® X2>D<Y1 ® Xl)) ® b(U17U2)

bow,wy) @ (Y1 ® X1)0(Ye ® Xy)),

b(Y1®X1»Y2®X2)
_—
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3.3. The braiding, the syllepsis, and more

1®b 1,322
(YaOY)) ® (X20X1)) ® by ) — iy

(YéDYVl} ® (b(Vl,Vz) ® (XlDXQ))
(b(Wl,Wz) ® (YlDY2)) ® (XIDX2>
1®0O

— b(W17W2) & ((YI ® XI)D(Yz X X2))

b(Y1»Y2)®1
—_—

Indeed, as 7, 8 and x are defined as special cases of Lemma bix,y) is a map
to which Lemma [3.1.10] can be applied.

Likewise, it follows from Lemma that b respects unit 1-morphisms, i.e.
that the following two composites of 2-morphisms agree, cf. (A.1.6)):

A -1 1
Iy v ® by = bvary 2= by @ Ivaw ~— by @ (IyOly),
Oor)®1 bty 1yy)
Iy v @ bv,wy Benet, (IwDOlyv) @ bvw) ~vtw, bovwy ® (IyOlw).
L]

Remark 3.3.7. The 1-morphism component of the braiding b of the potential
W =2V, N € N, cf. Examples , with itself is the matrix factorization

bw,wy = Lo oy o o N NN N (Tww), (3.3.6)

where we use indices rather than primes on the variables. This is unambigu-
ous since we consider a polynomial in a single variable. Applying ¢(Oqwwy) to
(3.3.6) yields ¢(IyOIy ). This is the matrix factorization which is assigned to
the “virtual crossing” in [KR2, (A.7)], where the isomorphism of categories ¢ is
left implicit. This matrix factorization features prominently in the complexes
of matrix factorizations [KR2, (A.53), (A.54)]. According to [KRI1, §10] these
complexes give a braided monoidal structure on a bicategory whose objects are
potentials and 1-morphisms are suitable complexes of matrix factorizations. The
2-morphisms of this bicategory are equivalence classes of homomorphisms of such
complexes.

3.3.2. Three modifications for a braided monoidal bicategory

According to the “algebraic” spirit of the definition of a braiding in [SP1] b is
an adjoint equivalence. However, as noted in [SPI, Remark 2.4] since we are
dealing with a symmetric monoidal bicategory, we need not specify an adjoint to
b separately. It is given by the same morphisms as b itself:

b :Oo7 =0, byyy =bwyv), by =byx)

Thus, it is enough to provide the following modification. As we verify later on
this satisfies the required conditions to simultaneously play the role of a syllepsis.
According to [SP1, Remark 2.4] this equivalently verifies that b and b~ form an
adjoint equivalence.
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3. A symmetric monoidal structure on LG

Lemma 3.3.8. Set U := V 4+ W. There is an invertible modification ¢ : 15 —
b~ o b with oy, defined as

Iviw =  t—vswivi—vro(cvtu—vswv (Tvaw))

(A
S pswrvi—vro (Twav @ tpro—orwav (Tvaw))

5 weviwrvew—viv(Twv) @ t_vv,—vrwv (Tvw)

= bw,v) ® bv,w)

- b(v,w) ® bv,w)-

Definition 3.3.9. The modification ¢ in Lemma [3.3.§8]is the syllepsis.

Proof of Lemma(3.3.8 The components of o are defined as isomorphisms which
makes ¢ invertible. It is a modification since the following two sequences of maps

are equal, where X € LG(V1,V3), Y € LG(W;, Ws), cf. (A.1.7):

(XDY) ® [V1+W1 ﬂ IV2+W2 ® (XDY)
L@) (b(W27V2) & b(V27W2)) ® (XDY)v

(XDY> ® Iy 4wy ﬁ (XDY) ® (b(Wl,Vl) ® b(VLWl))
b®1)oa 1t

o, (bwa,ve) @ (YOX)) ® bvswa)
(1®b)oc

b(W2,V2) ® (b(Vz,W2) ® (XDY))

a1

— (bwa,ve) @ by w)) @ (XOY).

This follows from Lemma [3.1.10] as also the components of o are 2-morphisms to
which this Lemma applies. O]

In introducing the final two modifications completing a symmetric monoidal
structure on LG we make use of the following 2-isomorphisms.

Definition 3.3.10. Set U; := W +V, Uy := V + W. Then the isomorphism
Twwy ettt —vervy (Loy) = bvwy 1s

(O)
vy —Us oy (L) == vy — 0, (Tw Oy

E
— LUptUs,—Ua+0; (Iv B )

(=)
— LUyt Us st (v 4w)

= bww)-
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3.3. The braiding, the syllepsis, and more

Set Th .= U4+ V+W, Ty .=V +U+W and T3 := U + W + V. Then the
iSOIIlOI‘phiSIIl fj(U7v7w)7(V7U7w) ST 4T —To+ T (IT1> — IT2 is

t((O(y,vyB1)oO W)
) . Saat \L—T1+T17—T2+T2((IUDIV)D]W)

= (IyOly)Oly

LT +T,~To+Ts (]Tl

1 1
O iow) O, Bl

74Ty

where the second isomorphism follows from Lemma [3.1.6, The isomorphism
AUV W) UWV) ¢ -1y ~Tor1s (I1y) = Iy B8

(10 By, wy)e0(y, )
) S Sl L—T1+T1,—T3+T3(IUD(IVDIW))
~ [yO(IwOly)

LTy 4Ty, T35+ T (]Tl

1 1
0wy (8 Byysy)

’IT37
where the second isomorphism is an instance of Lemma |3.1.6

The following completes a symmetric monoidal structure, cf. Definition [A.4.1]
on LG:

Lemma 3.3.11. There are invertible modifications R : acboa — (10b)oao(bO1)
and S:a” oboa” — (bO1)oa™ o (10b) with components R(w,v),w):

aqv,wy,u) @ bwvewy @ aquvy,w)
I
Iviwiv @ t_v—vwsvsviw—v—v-wiviw+v Lvsviw) @ Iusviw

Hv,w+u) @1 0wiv,w)

(IvOlwiv) @ t—v—v-w4+U+v+w—U—v-w+v+w+u Lvsviw) @ (Tu4vOlw)

LV —U- WV WU~V -W—U+V4+w+U Lv Otw_vswrv—v-waw+v Iwv))
Ot~V - WUV AW,—U -V —W+V+Ww+U Luv 4w )

OV WV UAW,—U—V - WUV 4w (L—v-vUv,—v-viv+u(Tusv ) Olw)
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3. A symmetric monoidal structure on LG

(181018

(IvOew-vywv,—v-wsw+vIwiv))
RtV W4 U+VAW,—V—U-W4+V1U+w Tuvew)) @ (b Olw)

‘ (10Sw,w)) @ A, v,w),(v,uw) ® 1

Ly Bbww)) @ Ivv+w ® (bwv)Blw)
I

(LvBbww)) ® aqv,o)w) @ (bw,yv)Blw)

and S(w,vyw):
Awoyvy @ bwrvw) © 4 vy w
I
Iwiviv @ t_v—v-wsv+v+w,—v—v-ww+u+v Lusvew) @ Tupviw

Ow+u,v) @1 0w, viw)

Iw+vB1v) @ t—v—v-wrv+v4w,—U—v-ww+u+v {vsviw) © (luOlyiw)

14

LfoW—V+W+U+V,7WfU7V+W+U+V(L7W7U+W+U,7U7W+W+U(IWJrU)D[V)
Rl V- WA U+VAW,~U~V—-W+WU+V {U+viw)
Rl WU+ W+V,—U—V-W4+U+V+w (Lo Oty _wiviw—v—wiw+v Lvew))
‘(21@@1)0(1@0
(tew—vswv—v-wrw+vUwiv)Bly)
RtV - WUV +W,—U-W —V+U+w+v Lurvew) @ (TyObw,wy)
‘ (Hw,w)B1) ® A u,v,wy,u,w,v) ® 1

(bww)B1v) @ Iyswv @ (IyObiyv,wy)
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3.3. The braiding, the syllepsis, and more

(bww)BIv) © gy, @ TuBbww))

where the unlabeled isomorphisms are instances of Lemma |3.1.6|

Using the basis (2.5.5)) for all unit matrix factorizations involved, in particular
also for the 1-morphism components of a and b, the action of Ry v)w) is given
on a general basis element by

O3 Lo @ Ot gl @ g

YmA4n+l l+m+n l+m+n
n l
> Qmetp D Omtntq
ail &2 _ =1 =1 Am+n41 Am+n+l JgOEm+1 Qmtn
(05 0 @y (1) Gorint | gmemigema | gemn)
1 m
Z IBT Z /Bl+s B
—1)r= = 1+1 Bi+m gB1 B pBitm+1 Bltm+n
@ (=1)y=r = g/ o IO S e RO A
Y1 Vi+m Yi+m+1 Yi+m+n
®(01 ...9l+m ®k01 ...en ).

Similarly, Sqw,v)w) acts as

O Lot @ O g @ g

Vntl+m l+m+n l+m+n
n l
D ap Y Anig
_ =1 =1 Qn+1 AUn+l nay Qp 4141 (o 7o
s (=15 T g gt g g geniem)
® (_1>T§15l“t§161+m“951 951051+m+1 0ﬂl+m+neﬂl+1 051+m
1 Y Vil o Yl4n l4+n+1 " Yl4+n+m

® (070 ... 00 @, 01 gl

Proof of Lemma([3.3.11. Since we have defined both R and S via components
which are compositions of isomorphisms, both R and S are invertible. We show
that they are modifications. For R, this means that the two sequences of maps
displayed momentarily are equal, cf. . In these we do not spell out brack-

etings and associators for the horizontal composition ® of £G. Also, we use
i=0"1®1)o(1®10).

(YO(Z0X)) @ aqvy,wi),vn) @ by vi+wy) @ aqw,,vi),wn)
ay,z),x)®1®1
(Vo W), U2) @ (YOZ)OX) @ b, vi+wy) @ aw,vi),wh)

1®bx,yoz)®1

A((Va,Ws),Uz) & b(Uz,V2+W2) ® (le(YDZ)) & a(u,,vi),wr)
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3. A symmetric monoidal structure on LG

1®1®a(x,y),2)

A((Va,Wa),Uz) & b(U2,V2+W2) @ A((Us, V), W) @ ((XDY>DZ)

(10 ®FR1)oio(0R1®O)®1

(Lv, O, W) ® a((v,00), W) ® (b(ua,ve) ) ® (XBY)OZ),
(YO(ZUX)) ® aqvi,wy),on) @ by viswn) @ aqu, vi),wy)
1®((1I05)® .7 ®1)oio(0®1®0))
(YDO(Z0X)) ® (Iv,Bbw, w)) © aqvi,un,m) @ (b Fw,)

(@o((A1op)Obx,z)0D) @11

(IV2Db(U2,W2)) ® (YD(XDZ)) ® a((vq,U1),W1) ® (b(U1,V1)DIW1)

1®ay,x),z)©1

(v, Ob(wy,w2)) @ a((va,0), W) @ (YOX)OZ) @ (bw,,vi)Bw,)

1®1® (0o (b(ny)D()\*l op))o0)

(v, Bbw,, ) @ ((va,02),W2) @ (b7, 1) Blws,) @ ((XOY)DZ).

These maps (including the associators not displayed) are equal by Lemma|3.1.10]
One can show analogously that the diagram exhibiting S as a modification,

cf. (A.1.7), commutes. O

3.3.3. The theorem

Theorem 3.3.12. LG equipped with the above structure is a symmetric monoidal
bicategory.

Proof. 1t remains to show that the data specified above fulfill the identities of
pasting diagrams

(AA1) = (A412), (A43) = (A44), (A45) = (A46), (AL7) = (A48)

and the equalities in (A.4.9)), (A.4.10) and (A.4.11). Note that all morphisms
which constitute the symmetric monoidal structure of £LG are maps to which
Lemma [3.1.10| applies. Moreover, the equations which these morphisms have to
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3.3. The braiding, the syllepsis, and more

satisfy do not include any other maps. Therefore it follows from Lemma [3.1.10
that they are satisfied. m
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4. Fully dualizable objects of LG

In this chapter we show that every object of the symmetric monoidal bicategory
LG specified in Chapter [3] is fully dualizable. Our definition of the structure
exhibiting every object of LG as dualizable adapts the discussion in [CR2, §4]
and is in accord with [KRIJ.EI The definition of a fully dualizable object in a
symmetric monoidal bicategory is included in Appendix [A.5]

We keep using the notation introduced at the beginning of Section [3.1.1], cf. Ta-
ble |3.1) and the surrounding text.

Definition 4.1. For (z, W) € LG its dual object (z, W)* € LG is (z, —W).

If W € k[z] is a potential it follows from Definition being indifferent to
the sign of W that so is —W € k[z]. Hence Definition [4.1]is well-defined.

To justify Definition we introduce (co-)evaluation 1-morphisms shortly.
First, however, we clarify objects of which categories these 1-morphisms are:

LGO(W, —W),0) = LG(W (2) — W(2),0) (4.1)

= hmfG—B(W(z)—W(z’))+O = hmfa—aW(z)—&—W(z’)’
»Cg(ov D(_W7 W)) = 'Cg(ov —W(Z) + W(Z/)) = hmf?W(z)JrW(z’)‘

Note that exemplifies that saying that a matrix factorization X is a 1-
morphism in £G(V, W) includes two pieces of information: X € hmf®,, 4w and
that X has source V and target W. Conversely, a given matrix factorization
X € hmf%, 4w can be viewed as a 1-morphism in £ in several ways, e.g. also as
X € LG(0,—V + W). To accommodate this we use the following notation. For
X € LG(V,W) we denote by Xy¢ € hmf®,, , its underlying matrix factorization
(not viewed as a 1-morphism and therefore without source and target objects).

Definition 4.2. The 1-morphism evy € LG(W (z) — W (2'),0) has (evy )ms :=
(Iw)me and coevy € LG(0, =W (z) + W (2')) has (coevw )ms := (Iw )mt.

We prepare for the cusp isomorphisms, cf. Definition [A.5.1] proving that coevy,
and evy exhibit W* as a dual object to W by introducing some isomorphisms
of matrix factorizations. The following Definition 4.3 and Definition [4.4] are well-
defined by Lemma [3.1.6]

!The figure [KRI, Figure 11] shows string diagrams for duals of objects in the homotopy
category of £LG. These duals are inherited from the duals of objects in £G which we define.
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4. Fully dualizable objects of LG

Definition 4.3. Let X1 c EQ(O, D(V, Wl)), XQ S EQ(Ul, Uz), Yé S EQ(Wl, WQ),
Y1 € LG(O(Us,, V),0) and define

X1 € LG(—V,W1) by (X1)mt := (X1)me and Yy € LG(Uz, —V) by (Y1)t := (Y1) mr.
Then Cy, x, v; x, is the following isomorphism in hmf® ULt Ws

(Y10Y2) ®ufan gza] (X20X1) = (Va2 ®ugzy) X1) Oy (Y1 Rufay] X2)
(g Ok h) ®k[m2,y,z1] (f Xk 6) = (_1)|g|\h|+|e|(\g\+|f|)(h ®k[z1] 6) ®k[y] (g ®k[m2] f)

The prescription defining Cy, x,.v;,x, respects the k[x;, zo]-module structures
since these are such that in both the source and target of Cy, x, v, x, scalars in
k[z;] multiply f and those in k[z5] multiply h. Moreover the assignment defining
Cy,.x,.v1.x, respects the tensor products in the sense introduced preceding Lemma

B.17

Definition 4.4. Let X; € EQ(Ul, Ug), Xy € EQ(O, D(Wl, V)), Y, € EQ(Wl, Wg),
Y, € LG(O(V,Us),0) and define

Xo € LG(=V,W1) by (Xo)mt = twy+vyswi (Xo)me),
Y, € LG(Uz, =V) by (YQ)mf =ty Uy —Us—v ((Y2)mf),

where we use Notation m Then é\yh X,,Y2,Xx; 18 the following isomorphism in
hmf%y; |y,

(3/153/2) ®k[z1,y,a:2] (X2DX1) — (}/1 ®k[z1] X2) ®k[y} (};2 ®k[sc2] Xl)
(g Xk h) ®k[z1,y,a:2] (f Xk 6) = (_1>|h|‘f|(9 ®k[Z1] f) ®k[y] (h ®k[mz] 6)'

The prescription defining é\yhx%y% x; is a module map since the functors of
restriction of scalars are such that scalars in k[x,] C k[x1, zo] multiply e while
those in k[zs] C k[x1, zo] multiply ¢ on both sides and also the tensor products
are respected.

There is one more ingredient of the cusp isomorphism in Lemma which we
introduce separately:

Lemma 4.5. The matrix factorizations ¢_w 4w (z),w(z)-w () (Iw) and I_y are
isomorphic in hmf%(z)fw(z,).

Proof. Rather than providing an explicit isomorphism we prove Lemma [4.5 using
some facts from the literature on matrix factorizations. The first of these is
that |[CRI1, §2.4], cf. [KR1, Proposition 23], exhibits unit matrix factorizations

Iy € LG(W, W) of the form

(I )t = ® Xi, X; = (k[z',z] @ k[2, 2]0;, (2 — 2]).0; + 6;]”2,(1/1/).91- A (=)
i=1

€ hmfl?[z',z},W( ’ ’

/ ’
EAEID) Zi,pziv--~7zn)7w(z1 »»»» ZisRitlseees 2n)?
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where @ = @), ,; and we use ¢ as in Lemma Since units in bicategories
are unique up to isomorphism there is an isomorphism Iy, = E//V This implies,
writing ¢ : k[z, 2| = k[2/, 2] for the canonical ring isomorphism,

n

Lw e w ) w () -wie () 2 Q) (w*(k[ZC z] & k[2, 2]0)), (4.2)

=1

(2 — 20).6; + 05 (W).0, A (—)),

where now @) = ®k[z,z’]’ A change of basis 1 — 1, 0; — ¥; :== —0;, i € N,
shows that the matrix factorization (4.2) is the same as
Qe (klz', 2] © K[2', 2]0;), — (2 — 2)).0; — 057 (W).0; A (=), (4.3)
i=1

where the differential is minus that of (4.2)). Via the canonical isomorphism of
k[z, z']-modules ¢, (k[2', z]) = k[z, 2] this is isomorphic to the matrix factoriza-

tion
n

Q) (klz, 2] © K[z, 210:, — (2 — 2).05 — 057 (W).0; A (). (4.4)
i=1
According to [KR2, Theorem 2.1] the matrix factorization (4.4)) is isomorphic to
one where the second summand of the differential is altered as long as it stays a
matrix factorization of the same potential. In particular, (4.4]) is isomorphic to

n

®(k[z, 2| @ klz, 2'[0;, (2 — 2:).97 + 5% (=W).0; A (—)). (4.5)
i=1
As (4.5) is lf:x//[/ this concludes our proof. n

In Lemma [4.6| we use the notion of duality for objects of a symmetric monoidal
bicategory as it is recalled in Definition [A.5.1]

Lemma 4.6. evy, and coevy, make W* the dual of W in LG.

Proof. Throughout the proof we omit brackets and associators for the horizontal
composition in £G as justified by Lemma [3.1.10] Recall the unitor pseudonatural
transformations for £G from Lemma [3.2.11] and Lemma [3.2.15] We show that
there is an isomorphism as in for evyy and coevyy:

l(*,w) ® (eVWDIW) X a(_(W,fW),W) ® (IWDC()eVW) ® T(_W,*)

:-[W ®k[z] (GVWD]W) ®k[z/’z//72///] IW—W+W ®k[z””,z””’,z”””} (IWmCOGVW) ®k[z] -[W

A®,
_t;(eVWDIW) ®k[z,z’,z”} -[W—W+W ®k[z’”,z””,z””’] (IWDCOGVW)

1A
© (GVWDII/V) ®k[z7z’,z”} (IWmCOGVW)

o

=
c
—(Iw ®x[z) Iw) @xz) Uw @z Iw) = Iw,
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4. Fully dualizable objects of LG

where the last isomorphism consists merely of structure morphisms of LG.
We move on to (A.5.2)):
T(_W’*) ® (I_WDGVW) ® a((_W’W),_W) ® (COGVWDI_W) ® l(;,—W)

=1_w ®xpz) {-wDevw) Qulzr 27 2 I_wiw-—w

®k[z””,z/””,z”””] (COGVWD]_W> ®k[z] I—W

>
2~

X
_>(_[_W\:|8VW) ®k[z,z’,z”] I—W—I—W—W ®k[z’”,z“”,z””’} (COGVWDI_W)

_
>

&)(I_W Devw) ®k[z,z’,z”] (COGVW D]_W)

c
—(Low Okfz] LW ()4 W (=), W (2/)-W (2) ((COCVI ) af))
Q=] (bew (z)+ W (2),W (2)=w (=) ((eVW )mt) Pk(z] L-w)
A®p
LW ()W (), W (2 W (2) (COVI )mt) Rk Lo (214 W ()W (2)-w (2) ( €V )me)

=1 w Rz I-w 2 Iy,

where the unlabeled isomorphism in the last line comes from applying Lemma[4.5]
to both factors of the horizontal composite separately, using that (coevy )ms =

(IW)mf = (eVW)mf. D

Combining Lemma [4.6| with the fact proven in [CM2| that every 1-morphism
in LG — and therefore in particular also coevy, and evy, — has both left and right

adjoints yields
Corollary 4.7. Every object of LG is fully dualizable.
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5. Extended 2d TQFTs in LG

In this chapter we apply the explicit symmetric monoidal structure on LG esta-
blished in Chapter [3]and the duals for objects of £G from Chapter [4] to determine
extended two-dimensional TQFTs with values in £G.

In Section we recall some background on the two-dimensional cobordism
hypothesis and its cousin for oriented bordisms. These motivate our subsequent
studies in LG and allow for the interpretations of our results: Corollary
states that every object of LG gives rise to a framed extended 2d TQFT while
according to Corollary precisely those objects of LG with an even number
of variables are the value of an oriented extended 2d TQFT Bord) — LG in
the positively oriented point. In Subsection we introduce a bicategory LG
which is closely related to £LG. We show that every object of LG gives rise to an
oriented extended 2d TQFT valued in LG. Subsection discusses an example
of such a TQFT realizing Khovanov and Rozansky’s prescriptions in [KR1, §9].

5.1. An account of extended 2d TQFTs
5.1.1. Framed extended 2d TQFTs

As we recall in the introduction the cobordism hypothesis formulated by John Baez
and James Dolan in [BD] classifies symmetric monoidal n-functors Bord™ — C.
Here C is an arbitrary symmetric monoidal n-category and Bordgr is a symmet-
ric monoidal n-category whose objects are disjoint unions of framed points, 1-
morphisms are framed 1-bordisms, i.e. 1-dimensional manifolds whose bound-
aries are determined by their source and target objects, 2-morphisms are framed
2-bordisms etc. up to equivalence classes of n-bordisms as n-morphisms. Such
functors are called fully extended n-dimensional TQFTs.

The cobordism hypothesis is formalized by Jacob Lurie in [Lu] using the lan-
guage of (0o, n)-categories. This inspires [P] to formulate a 2d version of the
cobordism hypothesis in terms of symmetric monoidal bicategories. This cobor-
dism hypothesis is proven through explicit computations in [P]. In this section
we give a non-technical account of this approach to the cobordism hypothesis and
some related work.

We start by sketching the definition of the unframed bordism bicategory Bords.
Throughout, unless specified differently, when we write manifold we implicitly
mean a smooth manifold. As a first approximation, the objects of Bord, are 0-
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5. Extended 2d TQFTs in LG

manifolds, its 1-morphisms are 1-bordisms and 2-morphisms are diffeomorphism
classes of 2-bordisms.

There is however an issue with horizontal composition of 1-bordisms. Indeed,
gluing 1-bordisms along a common boundary results in a well-defined topologi-
cal manifold which can be equipped with a smooth structure. But this smooth
structure is unique only up to a non-unique diffeomorphism. This is dealt with
in 1-categories of bordisms by taking diffeomorphism classes of bordisms as mor-
phisms. Since Bord, also involves 2-bordisms whose source and target are 1-
bordisms rather than diffeomorphism classes of such, this subtlety needs to be
solved differently to construct the bordism bicategory.

Roughly, objects of the bicategory Bordy are O-manifolds equipped with an
“Infinitesimal neighborhood of a 2-manifold” [P]. Similarly, 1-morphisms are
1-bordisms with such a 2-dimensional neighborhood and 2-morphisms are iso-
morphism classes relative to the boundary of 2-bordisms with a 2-dimensional
neighborhood. Horizontal and vertical composition are given by gluing which
can be defined using the 2-dimensional neighborhoods. The symmetric monoidal
structure of Bords comes from disjoint union. This has been worked out in [SP1,
§3.2.3] and is reviewed in [P} §4.1].

To state the cobordism hypothesis Bord, needs to be refined to a bicate-
gory of framed bordisms. Informally, this is achieved in [P] by equipping the
2-dimensional infinitesimal neighborhoods of 0-, 1- and 2-manifolds in Bord,
with framings, i.e. trivializations of the tangent bundles. Such a trivialization
is a linear isomorphism between the tangent space in each point and R? varying
smoothly with the base point. The framing of a bordism is required to be compat-
ible with the framings on its source and target. The resulting bicategory Bordg
has the framed versions of the objects and 1-morphisms of Bords as objects and
I-morphisms, respectively, and certain equivalence classes of framed 2-bordisms
as 2-morphisms. Horizontal and vertical composition are given by gluing, and
the symmetric monoidal structure comes from the disjoint union. We refer to [P,
Theorem 5.11] for the details.

On the “purely algebraic” side of the cobordism hypothesis we use the following
notation. Let B be a bicategory. We denote by K(B) the core of B[f This
is the 2-groupoid with the same objects as B, whose 1-morphisms are the 1-
equivalences in B and whose 2-morphisms are 2-isomorphisms in B. Moreover,
if B is a symmetric monoidal bicategory we write B for the subbicategory of B
built on its fully dualizable objects, cf. Definition [A.5.2]

In quoting the 2d cobordism hypothesis, [P, Theorem 8.1], we use the fol-
lowing notation. Let B, B be symmetric monoidal bicategories. We denote by
Fungym mon (B, B) the bicategory of symmetric monoidal 2-functors B — B, sym-
metric monoidal pseudonatural transformations and symmetric monoidal modifi-

LK (B) is referred to as the underlying groupoid of B in [P] and as its maximal subgroupoid
in [H].
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5.1. An account of extended 2d TQF'Ts

cations as it is defined in [SPI, §2.3]. Furthermore, we write pt™ for the positively
framed point.

Theorem 5.1.1. Let B be a symmetric monoidal bicategory. There is an equiv-
alence of 2-groupoids

Fungym men(Bordy, B) — K (B™) (5.1.1)
which acts on objects as Z — Z(pt™).

A framed extended 2d TQFTs valued in B is a symmetric monoidal 2-functor
Z Bordgr — B. Hence Theorem states that every fully dualizable object
B of B gives rise to a framed extended 2d TQFT, whose value in the positively
framed point is equivalent to B.

5.1.2. Oriented extended 2d TQFTs

Similarly to Theorem there is a version of the 2d cobordism hypothesis in
which the bordisms are equipped with orientations. This is [H, Corollary 5.9]. We
review this result in the following. First, we give an overview of the developments
that led to the proof of this cobordism hypothesis. This is intended to motivate
the structures we study subsequently, beginning with Definition [5.1.2]

As in the case of the 2d cobordism hypothesis for framed bordisms treated in
the preceding Section [5.1.1] also its oriented version uses low-dimensional higher
category theory to realize some ideas advocated in [Lu] concretely.

The first idea drawn from [Lu] is that there is an SO(2)-action on framed
2-manifolds rotating the framing pointwise which extends to an action on the
framed 2d bordism category. According to [Lu] precomposing with this action on
bordisms yields an SO(2)-action on the left hand side of (5.1.1]). This is predicted
to translate into an action of SO(2) on the right hand side of (5.1.1)). The intuition
that oriented manifolds correspond to fixed points of the SO(2)-action on framed
manifolds leads [Lu] to state that oriented TQFTs correspond to homotopy fixed
points of the S O(2)-actionﬂ on the algebraic side of the cobordism hypothesis.

The ideas outlined in the previous paragraph are worked out in [H] and [HV]
building also on [HSV]. Indeed, extending [HSV], [HV] defines the relevant kind
of action of SO(2) on symmetric monoidal bicategories. This allows for a detailed
description of the corresponding homotopy fixed point bicategory.

One particular SO(2)-action on the core of fully dualizable objects of an ar-
bitrary symmetric monoidal bicategory B is suggested in [Lul, cf. [SP2] and [P].
This is realized in [HV]. It is then proven in [H| that the bicategory of homotopy
fixed points under this action is equivalent to the bicategory Fungyy, mon(Bords', B)
of oriented extended 2d TQFTs with values in B. Here Bordj' is a bicategory of

2Homotopy fixed points generalize fixed points of group actions on sets to group actions on
(higher) categories.
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5. Extended 2d TQFTs in LG

oriented bordisms analogous to Bordg, cf. Section [5.1.1 which we describe below.
The proof in [H| uses that these TQFTs can be described explicitly thanks to a
presentation of Bordg' in terms of generators and relations worked out in [SP1].

Finally, [HV] also verifies that the particular action on the bicategory of homo-
topy fixed points used in the cobordism hypothesis indeed can be obtained from
an action on the framed bordism bicategory inspired by changing the framing.
This hinges on a presentation of the framed bordism bicategory detailed in [P].

We recall the definition of the relevant group actions on bicategories and touch
upon their bicategories of homotopy fixed points next. Thereafter we comment
on the bicategory of oriented bordisms in order to then state the cobordism
hypothesis for oriented 2d bordisms as it is proven in [HJ.

We start with [HSV) Definition 3.5]:

Definition 5.1.2. Let G be a topological groupf| The fundamental 2-groupoid
II,(G) of G is the monoidal bicategory whose objects are the points in G, with
paths in G as l-morphisms between their endpoints and homotopy classes of
homotopies between paths as 2-morphisms. The monoidal product is given by
the group multiplication (pointwise for paths and homotopies) and the monoidal
structure is trivial.

An action of a group G on a bicategory B in particular assigns an auto-
equivalence of B to each group element. In which sense this assignment is to
be functorial is formalized using the bicategory Aut(B) of auto-equivalences of
B, pseudonatural isomorphisms and invertible modifications. This bicategory is
monoidal via composition, cf. [HSV), Remark 3.7].

Definition 5.1.3. Let G be a topological group and B a bicategory. A G-action
on B is a monoidal 2-functor IIy(G) — Aut(B).

The data and conditions implicit in Definition are spelled out in [HSV]
Remark 3.8].

We are aiming at stating the oriented 2d cobordism hypothesis. Therefore we
are interested in SO(2)-actions. Thus, it is worth noting that II,(SO(2)) is par-
ticularly simple. Since SO(2) is topologically a circle, II(SO(2)) has just a single
equivalence class of objects. Furthermore m1(SO(2)) = Z and all homotopies be-
tween two given paths in SO(2) are homotopic. Altogether, II5(SO(2)) is equiv-
alent to a bicategory BZ with a single object, integer numbers as 1-morphisms
and solely identity 2-morphisms. 1-morphisms are composed by adding them.
The notation which we use for this bicategory is in line with that introduced in
Definition and immediately below Definition [5.1.6]

Similarly to our discussion in Remark — but one level higher on the
categorical ladder — since II3(SO(2)) and BZ are equivalent bicategories, the

3That SO(2) is regarded as a topological group in the oriented 2d cobordism hypothesis is
inspired by [Lul.
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monoidal structure on the former induces one on the latter bicategory such that
the two are monoidally equivalent. Since BZ only has identity 2-morphisms it
follows from an Eckmann-Hilton argument, cf. [BD| (5)] or [SP2, Example 2.5],
that the monoidal product of 1-morphisms in BZ necessarily agrees with their
composition.

Thus, specifying a monoidal 2-functor BZ — Aut(B) determines an SO(2)-
action on a bicategory B. Such an action is essentially given by the pseudonatural
equivalence of 15 assigned to the 1-morphism 1 in BZ, cf. [HV], Definition 4.1].

It can be inferred from [Lu, Remark 4.2.5] that the pseudonatural transfor-
mation defining the SO(2)-action on the core of fully dualizable objects of a
symmetric monoidal bicategory which is relevant for the oriented 2d cobordism
hypothesis has the following components:

Definition 5.1.4. Let B be a symmetric monoidal bicategory and X € B a fully
dualizable object. The Serre automorphism Sx of X is the 1-morphism in B
composed as

X S xe1® xoxox B xexeox B xo1 2 X,
where b is the braiding for the monoidal product on B, cf. Definition [A.4.1] r is
the right unitor for this product and r~ the latter unitor’s adjoint, cf. Definition
[A.3.1] The 1-morphism ev = evy is the evaluation morphism associated to X,
cf. Definition [A.5.1] and ev' is its right adjoint, cf. Definition The order
in which these 1-morphisms are composed is irrelevant by the coherence theorem
for bicategories, cf. e.g. [SP1l, §A.2].

Some details concerning this action can be found in [SP2, §§15-18]. That
the Serre automorphisms indeed assemble into a monoidal pseudonatural endo-
transformation of the identity 2-functor on the core of fully dualizable objects of
a symmetric monoidal bicategory is proven as [HV) Proposition 2.12].

Eventually, the oriented 2d cobordism hypothesis only features homotopy fixed
points of the SO(2)-action on the core of fully dualizable objects of a symmetric
monoidal bicategory by the Serre automorphism. Therefore, it is adequate to
recall the definition of a bicategory of homotopy fixed points next. However, we
do not provide the details here, cf. [HSV], Definition 3.9], since this definition
uses notions of the theory of tricategories which we do not need elsewhere in this
thesis. Rather than introducing these higher categorical objects we prefer to give
some impression of the line of thought leading to the definition of the bicategory
of homotopy fixed points by presenting its 1-categorical analogue.

We begin working towards the category of homotopy fixed points of a group
action on a category with the following analogue of Definition [5.1.2]

Definition 5.1.5. Let G be a discrete group. G is the monoidal category whose
objects are the elements of G and which has only got identity morphisms. The
horizontal composition of objects is the group operation.
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5. Extended 2d TQFTs in LG

Using this we proceed similarly as in Definition [5.1.3|

Definition 5.1.6. Let G be a finite group and C a category. A G-action on C is
a monoidal functor from G to the category of auto-equivalences of C.

Note that a G-action as in Definition [£.1.0 entails the same information as a
2-functor BG — Cat, * — C. Here BG is the delooping of G, i.e. the bicategory
with a single object * whose endomorphism category is G. By Cat we denote the
bicategory of categories.

The category of homotopy fixed points of an action BG — Cat is defined
as a bicategorical limit of this 2-functor, cf. [HSV] Definition 3.3]. Thus, it
suggests itself that the bicategory of homotopy fixed points of a group action
on a bicategory be defined as the trilimit of the trifunctor which is basically
given by the monoidal 2-functor defining the action, cf. [HV) (4.1)]. Unpacking
this definition and applying it to the SO(2)-action featuring in the oriented 2d
cobordism hypothesis yields the following, cf. [HV] Corollary 4.4].

Theorem 5.1.7. Let B be a symmetric monoidal bicategory. The bicategory
K(B)S0®) of homotopy fixed points of the SO(2)-action on K (B™) by the
Serre automorphism is equivalent to the following bicategory. Objects are pairs
(X, \x), where X € B and \x is a 2-isomorphism Sy — lx. l-morphisms
(X, \x) = (Y, Ay) are I-morphisms f € B(X,Y) compatible with the 2-morphisms
of the pseudonatural transformation determined by the Serre automorphism in
the sense that the diagram [HV], (4.14)] commutes. 2-morphisms are 2-isomor-
phisms in B.

If there is an isomorphism Sx — 1x we say that the Serre automorphism for
X is triwvializable.

This concludes the description of the algebraic side of the oriented 2d cobordism
hypothesis. We turn to the geometric part next.

Stating the 2d cobordism hypothesis for oriented TQFTs requires an oriented
bordism bicategory Bordy'. This is constructed in [SP1] similarly to the bicat-
egory of framed bordisms which we sketch in the previous Section p.1.1 In
this case the 2d “infinitesimal neighborhoods” are equipped with an orientation.
Again, these orientations have to be compatible with sources and targets of bor-
disms. Horizontal and vertical composition are once more given by gluing, and
the symmetric monoidal structure is based on disjoint union. In [SP1, Theorem
3.50] a generators-and-relations presentation of the resulting symmetric monoidal
bicategory Bordy' is given.

The presentation of Bordy" in [SPI, Theorem 3.50] enables [H] to explic-
itly show that the object assigned to the positively oriented point by a TQFT
Z : Bordy’ — B is fully dualizable and that its Serre automorphism is trivial-
izable. Vice versa, [H] shows that starting from a fully dualizable object in a
symmetric monoidal bicategory B whose Serre automorphism is trivializable one
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can construct an oriented 2d extended TQFT which sends the positively oriented
point to this object. Moreover, [H| proves similar relations between morphisms
of Fulgym mon(Bordy', B) and those of K (B). This is the content of [H, Theorem
5.5 and Theorem 5.8] which taken together result in [H, Corollary 5.9]. We quote
the latter as

Theorem 5.1.8. Let B be a symmetric monoidal bicategory. There is an equiv-
alence of bigroupoids

Fllsym mon(Bord$', B) = K (Bf)hS0(2)
Y 2

which acts on objects as Z +— Z(pt™), where pt™ denotes the positively oriented
point.

5.2. Framed and oriented extended 2d TQFTs
valued in LG

In this section we determine framed and oriented extended 2d TQFTs valued in
LG.

The results collected above immediately allow us to state which objects of
LG give rise to framed extended 2d TQFTs. To wit, in light of the cobordism
hypothesis Theorem [5.1.1} i.e. [P, Theorem 8.1], Corollary [4.7] entails

Corollary 5.2.1. Every object of LG determines a framed extended 2d TQFT
with values in LG.

Next, we show that every object of LG with an even number of variables gives
rise to an oriented extended 2d TQFT. We do so building on the results of [H] and
[HV] reviewed in Section . That is, we prove that the Serre automorphism
of an object of LG — which is well-defined since according to Corollary every
object of LG is fully dualizable — is isomorphic to the identity 1-morphism if and
only if the object has an even number of variables. By the work of [H| summarized
in Theorem it follows that precisely these objects of LG give rise to oriented
extended TQFTs. They are the latter’s value in the positively oriented point.

We first introduce an isomorphism of matrix factorizations in Definition [5.2.2]
which we utilize thereafter to arrive at the result we mention above. To set the
stage for Definition let

Xl S Lg(Ul) U2)7 X2 S £g(07 Wl + V)7 )/1 S Eg(Wlu W2>7 YQ € £g<U2 + ‘/70)7
Xy € LG(=V,W1) with (Xo)ms = twysvvew, (X2)u) and Yy € LG(Up, —V)

with (Y2)me := (Y2)me. Set furthermore Ty := —U; + Us + Wi + V and Ty =
—U; + Wy + Uy + V. The following is well-defined by Lemma [3.1.6]
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5. Extended 2d TQFTs in LG

Definition 5.2.2. Ty, x,.v,.x, is the isomorphism in hmf® Uy, given by

(YiOY3) ®kar arasy) 1137 (X10X2) — (Vi Qfaa) (X Qugy) V) s X1

(9 @k h) Ofz a0 (€ @ f) = (=D (g @4y (F @1y 1)) Oigaay € (5:2.1)

The prescription (5.2.1)) defines a map of k[x;, zo]-modules as elements of
k[xi] C k[x, zo] multiply e and scalars in k[z;] C k[®1, 25] multiply g on both
sides. Furthermore, the restriction of scalars on the left hand side is such that the

tensor products are respected in the sense introduced preceding Lemma |3.1.7]
Recall the Serre automorphism from Definition [5.1.4]

Lemma 5.2.3. The Serre automorphism Sy, € LG(W, W) is isomorphic to Iy,
if and only if n is even.

Proof. Recall the braiding b for the monoidal product on £G from Lemma [3.3.5
as well as the right unitor r and its adjoint r~ from Lemma|3.2.15, By definition,

using
Vii=-W(z)— W(z/) +W(z //) + W(z ///)
Vi i= W (z) ~ W(Z) + (") + (=)

and omitting indices on ® (and bracketings as well as associators for ® which are
not specified in the definition),

Sw = rw @ (IwBeviy) © (b DL w) @ (I B(ev)') @ 15y,
= Iy ® (IwOeviy) @ (v v (Tw+w) D _w) ® (IwD(eviy)") @ Iy
Starting with this and setting
U= —=W(z) = W(2") + W(2") + W(") + W(2") = W(z""),
U i= =W (2) = W() + W(Z") + W (") + W(2") - W ("),
Ty = -W(z) + W(z') + W(z") - W(z"),
Ty = =W(z) + W(z") + W(2') = W(2"),

we have the following chain of isomorphisms

Sw 22 (IyOevi) ® (tvi1s (Twaw) Ol w) @ (IwO(eviy))  (5.2.2)
= (IwOevw) @ to, v, (Tw4w O I_w) @ (I B(eviy)')
e, (IwBevy) @ twy,u, (Iwsw-w) @ (IwO(eviy)")
Lo (IwBeviy) @ vry 1, (Iwsw-w @ (IwD(evi)"))
B (I Deviy) ® vy, (I O(eviy))
RN (I @ ((evin)t ® &vip)) ® Ly
208 (evW)T ® evyy.
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5.2. Framed and oriented extended 2d TQFTs valued in LG

The second isomorphism in (5.2.2)) is an instance of Lemma [3.1.6, Indeed, ac-
cording to the definitions of the functors of restriction of scalars and O there is a
module map

(v vo (Tww ) B ) = (o0, Uw s w B LW ) )i, € Qi f e ®x f.

By Lemma this is an isomorphism 1) of matrix factorizations. The isomor-
phism in the second line of is1®yeI1.

To proceed we recall from Definition 4.2 that evy € LG(W(z) — W(2'),0) is
defined by (evyy)mt := (Iw)ms. Replacing Y5 in the setting of Definition by
evy shows that evyy € LG(W, W) is defined by (evy )ms = (ve)mf. This implies

evyy = Iy. Thus, post ﬁo\rg)osmg with p yields Sy = (evw)T
It remains to show (evy )t = Iy if and only if n is even. Replacing X5 in the

setting of Definition [5.2.2 by evl, shows that (evy )t € LG(W, W) is defined by

P

((GVW)T)mf = LW(z)—W(z’),—W(z’)+W(z)(((eVW)T)mf)' (523)

Moreover, (eviy)T € LG(0,W(z) — W( ")) = hmf,, W(z)-w(s 18 obtained from

eviy € LG(W (z) — W(2'),0) = hmf?, 2wz Via ((evw)me)” € hmf@ (=)
as

((evw)) s = tw o) wiznto.0rw(z)-wizn (((eviw)me) Y [2n]) (5.2.4)

= ((evw)me) "[2n] = ((evw )ume) "

Furthermore, (evyy )mt = (Iw)ms such that inserting (5.2.4)) in ((5.2.3)) and using
Iw € LG(W, W) we have

—_—

((eviw) D)t = tw(z)—wz—wzn+wz ((In)me) ) = (Tw) 0]t

This shows (evy)" = (Iw)'[n]. Since in every monoidal category with duals
for objects such as e.g. LG(W, W) duals are unique up to an isomorphism and
the unitors make the unit object dual to itself we have (Iy)! = Iy, cf. [CR2,
Remark 2.8 (iii)]. Thus, as shifting is a functor and hence maps isomorphisms

to isomorphisms (evy )T = Iy [n]. Therefore we have in total Sy, = Iy [n] which
implies Sy = Iy for n even and Sy 2 Iy for n odd. O

Therefore, according to our discussion in Section [5.1.2] we can state our result
as

Corollary 5.2.4. An object (z, W) € LG is the value of an oriented extended
two-dimensional TQFT in the positively oriented point if and only if z has an
even number of variables.
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5.3. On Khovanov and Rozansky’'s TQFT

Finally, we return to the original inspiration for this thesis. As alluded to in the
introduction, in [KRI §9] Khovanov and Rozansky claim to define an oriented
“2d TQFT with corners” which takes values in a bicategory very similar to £G.
In Subsection we define a bicategory LG which refines £G to mirror the
bicategory of [KR1, §9] even more closely. Subsequently, we show that indeed,
every object of LG gives rise to an oriented extended 2d TQFT valued in LG.
In Subsection we discuss one particular example of such a TQFT which
corresponds to the construction in [KRI) §9].

5.3.1. Oriented extended 2d TQFTs valued in LG

We begin by defining categories which serve as categories of morphisms for the
bicategory LG which we assemble thereafter. In the following we use the differ-
ential 6xy on MFz w(X,Y) from Lemma We write Hf | (MFrw(X,Y))
for the (full) dx y-cohomology of (MFz w (X,Y)) as opposed to just its degree
zero part as in Remark [2.6.3]

Lemma 5.3.1. Let R be a commutative ring, W € R. The following specifies a

&
category hmfy .

1. The set (ITI\rYf;fW)O of objects is (hmfy )o.

2. For all pairs X, Y of objects the set Hr\n/f;fW(X, Y') of morphisms is
HS (MFrw(X,Y)).

Ox,y

Composition is given by the composition of representatives of morphisms in
MFx w. Identity morphisms are the equivalence classes of the identities.

Proof. We show that the composition respects the equivalence classes in the
first argument. Omne can proceed analogously for the second argument. Let

1 be a representative of [¢] € Hr\n/f;fW(Y, Z) and ¢ be a representative of [¢] €

l;r\rﬁ;éBW(X, Y'), both of homogeneous Zo-degree. Let h € MFg (X, Y)¥lF1)mod2,
Then we have

(¢ + 6y.z(h))¢ = (¥ + dzh — (=1)"hdy )¢ = ¥¢ + dzh¢ — (1) hdy ¢
=+ dzhd — (=1)"hodx = o+ 0x 2(he).

]

As we intend to build a bicategory whose categories of morphisms are based

—— . D .
on categories of the form hmf |, we need to define candidates for the functors of
horizontal composition next. At this point we meet the situation discussed below
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— 0, ®
Remark [2.4.3] Morphisms in hmf  can have both even and odd Z,-degree.
Therefore we cannot define Zy-graded tensor product-functors satisfying ([2.4.1)

whose source is the cartesian product of two categories of the type }:;n/f.@. This
does not respect the composition of morphisms, cf. (2.4.4)).

We follow the solution to the mismatch in suggested in [KRI]. For
this it is useful to observe, that defining Z,-graded tensor products on cartesian
products of categories of matrix factorizations featuring both Zs-even and Z,-odd
morphisms is only obstructed by signs in front of morphisms. Led by [KRI] we
circumvent this issue by identifying each morphism of matrix factorizations with
its negative.

Remark 5.3.2. We comment on another, more conceptual way of dealing with
the discrepancy in signs in that lies outside the focus of this thesis, and
outside the author’s expertise. We parallel the reasoning underlying some of the
explanation in [C2, §2.4.5].

Presume a variant of a bicategory where in the source of the horizontal com-
position we replace the cartesian product by the tensor product of dg categories.
Let us call that a bicategory in this remark. The following results indicate that
there is a bicategory whose horizontal composition is given by Definition [2.4.6]

First, [BFK], Definition A.10] substantiates that there is a bicategory ngg of
the following form. Its objects are those of £G. The category of morphisms
from V to W consists of a certain kind of dg functors MFy — MFy, and the
corresponding natural transformations.

Next, according to [Dyc, Theorem 6.1}, there is a dg equivalence between a
category of a particular sort of dg functors MFy, — MFy, with the matching
natural transformations as morphisms and MF _y .. This suggests that there
is a bicategory similar to ngdg whose category of morphisms from V to W is
MF _y . It is reasonable that the horizontal composition is given by Definition
2.4.6] Imitating Chapter we expect to extract a bicategory whose categories

of morphisms are hmf
For every pair of objects X, Y, we have a Zs-action
Zoy — Aut(hmiy (X, V), 0 id, 1+ (=id : [¢] = [—¢]). (5.3.1)
We use this instantaneously.
Definition 5.3.3. The category hmf;faw is the following.
1. The set (hmfy,)o of objects is (hmfg 1y )o.

2. For all pairs X, Y of objects the set hmf;éi‘?,v(X, Y’) of morphisms is
}Tr\njf;éiew(X ,Y)/Zs, where we quotient by the Zs-action of (5.3.1)).
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5. Extended 2d TQFTs in LG

—— 0. ®
Explicitly, if ¢ represents a morphism in hmfy y,(X,Y), then ¢ and —¢ repre-
sent the same morphism in hmfy7, (X, Y).

The Zs-action is compatible with the composition of morphisms in hmf.’EB since
(=)o = —(vhop) = 1ho(—¢) are all representatives of the equivalence class
[ 0 ¢] € hmf>®(X, Z). Therefore, hmf;z’few is well-defined.

Next, we show that the functors for horizontal composition of morphisms in
LG induce functors on the categories hmf® @

Lemma 5.3.4. The functors ®yp, of Corollary [2.9.§] E induce functors ®yp, :
hmf'v+w X hmf'U+V —>hmf'U+W

Proof. Note that the functors of extension and restriction of scalars for MFx y

—— o, P
descend to hmfy y;, analogously to Lemma [2.6.5, Indeed, the latter’s proof does
not use that morphisms in HMF% 1 have Zy-degree zero. Moreover, neither of the
two kinds of functors changes the actions of module maps representing morphisms

in hmf;fiv on elements. Therefore they respect the equivalence classes under the
Zs-action . So it suffices to show that the tensor products are functors
on hmf*®. Let 7 and ¢ be module maps of homogeneous Zs-degree representing
morphisms in hmf*_ (Y, Y’) and hmf*_ (X, X’), respectively. Then ¢ @y ¢
represents an element of hmf*}; +W(Y ® X,Y'® X') since it is dygx,y e x/-closed:

(dy @1 +1Rdx) (Y ®@ @) = dyp @ ¢+ (=)l @ dxi¢p
( 1)\w\wdy®¢+(_ )\¢\+I¢\w®¢dX

= (=)l @ ¢)(dy @ 1) + (=D (Y @ ¢) (1 @ dx)
= (1) @ ¢)dyex.

For h € MF_y (Y, Y")(#lFmed2 “the following shows that the tensor product
respects the homological equivalence classes of morphisms in the first argument.

@ ¢~ +dyrh — (=1)"hdy) ® ¢
=)@ ¢+ dyh®¢—(—1)"hdy @ ¢
= @ ¢+ (dy' @ 1)(h®@ ¢) — (=1)"(h & ¢)(dy ® 1)
=@ ¢+ (dy ®1+1Qdx)(h®¢) — (1@ dx)(h® ¢)
— (=)MHRU(h @ ¢)(dy ® 1)
=) ® ¢ + dyrgx/(h @ ¢) — (=) (h @ dx¢) — (—1)" 9l (h @ ¢)(dy @ 1)
= ® ¢+ dygxi (h ® ¢) — (=1)"Pl(h @ ¢dx)
_ (—1)‘h‘+|¢‘(h ® ¢)<dy ® 1)
= ® ¢+ dyrgx (h @ ¢) — (1) (h @ ¢)dyex
=) ® ¢+ dygxyex(h® @).

dyox (Y ® ¢) =
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5.3. On Khovanov and Rozansky’s TQFT

An analogous computation verifies that the homological equivalence classes in the
second factor are respected. That the tensor products are compatible with the
Zo-equivalence classes is analogous to the compatibility of composition and the
Zsy-action. Finally, (2.4.4]) shows that @y : hmf'_’%'?JrW thﬂgﬂ/ — hmﬂ$+w is
compatible with the composition of morphisms and preserves identity morphisms.

O

We can now assemble the bicategory LG.
Lemma 5.3.5. There is a bicategory LG consisting of the following.
1. The set LG of objects is LGo.

2. For every pair (y,V), (z,W) of objects the category LG((y, V), (2, W)) of
morphisms is hmf'j‘? LW

3. For objects (x,U), (y,V), (z, W) of LG, the horizontal composition is given
by the functors

®uly) - hmfy gy x hmfy = hmfy

of Lemma [5.3.4]

4. Associators, unit 1-morphisms and unitors are those of LG.

Proof. Note that every 2-morphism in £G represents a 2-morphisms in LG and
2-isomorphisms in £G are representatives of 2-isomorphisms in LG. Thus, the
associators and unitors as defined in Lemma have 2-isomorphisms as com-
ponents. Furthermore, they are natural. The only possible obstruction to this
are signs coming from the rule . For the unitors no such signs can prevent
them from being natural since they project the unit matrix factorizations in their
sources to Zs-degree zero. For the associators no such sign issues can occur, since
the order of the factors of the tensor products of the source and target coincide.

The pentagon and triangle axioms, cf. (A.1.1]), (A.1.2]), are satisfied since they
hold in LG. O]

Since the 1-morphisms of LG coincide with those of £G one can define their
adjoints as in £G. As the surjection from 2-morphisms in £G to 2-morphisms
in LG respects the horizontal and vertical composition of 2-morphisms, also the
(co-)evaluation morphisms of £G induce such morphisms in LG. Hence, LG has
adjoints.

The symmetric monoidal structure on LG gives a symmetric monoidal structure
on LG. Moreover, since LGo = LG, 1-morphisms in £G are 1-morphisms in
LG, and every 2-morphism in £G determines a 2-morphism in LG, also the duals
of LG carry over to duals in LG.

We summarize these observations in
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5. Extended 2d TQFTs in LG

Proposition 5.3.6. Every 1-morphism in LG has adjoints and there is a sym-
metric monoidal structure on LG such that every object has a dual.

Remark 5.3.7. We pick up on Remark about a bicategory with horizon-

tal composition Hﬂl/f.@ ® l:ﬁl/f.@ — hmf . To establish that this bicategory is
monoidal, the functors ¢ in Lemma [3.1.6, which permute the factors in carte-
sian products of categories are to be replaced by graded versions which multiply
morphisms with a factor of (—1) for each pair of Zs-odd factors whose order
is reversed. For example, in Lemma [3.3.5] we have to replace the 2-functor
T: LG X LG — LG x LG which exchanges the order of the tuples of objects,
1- and 2-morphisms by a 2-functor which agrees with 7 on objects, but acts on
1- and 2-morphisms as the following functorsﬂ:

hmfy, @hmby. — hmfy @hmty , (¥, X) = (X,Y), ¢ @b s (=11 p e, .
(5.3.2)
This is necessary, e.g. for the morphisms Sxy) of Definition to represent

natural isomorphisms in Hn\l/f.@. To see this, let e € X,,, f € Y,,,, ¥ represent
Y] € Héy L (MF(Y;Y")) and ¢ represent [¢] € H;X o (MF(X, X")). Then we have

£ @ e 228 (LI 1) @y dle) 25y (—1)IHDHENHSI 5 ) @ 15( )

F e Bxt,yr (_1)|e\|f\e 2 f (—1)'¢"¢'¢®k¢; (_1)|6\|f\+|w||6|+|¢llwl¢(e)  U(f).

The factor of (—1)III’l on the second arrow in the lower line, which is essential
for the two lines to coincide, comes from (}5.3.2]).

Proceeding along the lines of the proof of Lemma [5.2.3, we get that for ev-
ery object W € LG the associated Serre automorphism satisfies Sy = Iy/[n].
Recall from Remark that we have an isomorphism ng(MF(IW, Iw)) =
H%I’I[I] (MF (Iw, Iw[1])). Under this isomorphism the identity 2-morphism on Iy is
sent to an isomorphism Iy = Iy [1] in H%I - (MF (I, I [1])). This isomorphism
is a 2-isomorphism in LG. Therefore, forﬂevery object of LG the corresponding
Serre automorphism is trivializable. Thus, by the 2d cobordism hypothesis for
oriented bordisms, Theorem [5.1.8, we have

Corollary 5.3.8. Every object of LG is the value of the positively oriented point
under an oriented extended 2d TQFT valued in LG.

Since LGy = LGo, Proposition implies that despite Corollary every
object of LG does determine an oriented extended 2d TQFT valued in LG.

4The functors (5.3.2)) are the natural choice for components of the well-known symmetric
braiding for the tensor product of dg categories, cf. [Ke, [T]. This features explicitly e.g. in
[Mo].
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5.3. On Khovanov and Rozansky’s TQFT

Remark 5.3.9. It is noteworthy that we are led to deviate from the philosophy
underlying Remark in order to get oriented extended 2d TQFTs (valued
in LG) that associate to the positively oriented point an object of £G with an
odd number of variables. Indeed, apparently it is not sufficient for all consid-
erations involving £G that H'(MF(X,Y)) can in principle be recovered from
H°(MF(X,Y)). Another hint of a similar nature is in [M]. There it is shown
to be useful to include the shift functor for matrix factorizations as part of the
data associated to LG by regarding £G as a superbicategory, a structure defined
in [M| Definition 2.6]. Arguably, it is also closer to the physical inspiration for
studying LG, to keep track of both Zs-even and Zs-odd morphisms of matrix fac-
torizations. To wit, from the quantum field theoretic point of view, the Zs-even
and Zy-odd morphisms are interpreted as bosons respectively fermions.

5.3.2. A TQFT a la Khovanov and Rozansky

In this section we discuss one explicit example of an oriented extended 2d TQFT
valued in LG. Namely, from now on we specialize to the potential (cf. Examples

71)
W =2"" €kl[z], meN

and present some details of its associated oriented extended 2d TQFT. We call
this TQFT Zkr and compare it with the construction in [KRI, §9]. To enable
this we first review the latter.

Remark 5.3.10. Recall from Remark that in [KR1] Khovanov and Rozan-
sky work with Z-graded matrix factorizations. Furthermore they consider matrix
factorizations over formal power series rings. We are not aware of any obstacles
to rephrasing our discussion below in those terms. Still we prefer to translate the
parts of [KRI] that are relevant to the following into statements concerning LG.

In summarizing the assignments in [KR1l, §9] and thereafter we adopt a piece
of notation deviating from our previous conventions. To wit, instead of primes
on variables as we use them above, in [KRI] the variables are indexed. This
is possible since the focus of this paper is on the potential ™! € k[z], which
depends only on a single variable.

We paraphrase the claim at the end of [KRI) §9] as saying that the following
assignments are those of an oriented extended 2d TQFT Zyp : Bords' — LG:

1. The positively oriented point pt* is assigned (z,2z™"1) and %(pt*) =
(2, —2z™t1).

2. An interval as e.g. those in (5.3.3)) is assigned the unit matrix factoriza-
tion I m+1 of (k[z],£2™"1). Tt is implicit that the signs can be chosen
consistently.

85



5. Extended 2d TQFTs in LG

3.

4.

To every circle Zxp assigns the matrix factorization A := ({0}@k(z]/(2™),0).

To several disjoint 1-manifolds 21\(; assigns the O-product, cf. Definition
3.1.3], of the associated matrix factorizations.

To the cup 2-bordism from the empty set to a circle Z} associates the
2-morphism in LG represented by the linear map ¢ : k — k[z]/(2™), 1 — 1.

To the cap 2-bordism from a circle to the empty set Z;{ associates the
2-morphism in LG represented by the linear map e : k[2]/(2™) — k, 2 —

1
ma1 5i,m—1 .

Consider the saddle 2-bordism (whose source and target we prefer to draw
without orientations)

m—+1 m—+1 m—+1 m—+1
zZ —Z zZ —Z
i 3 i 3 (5.3.3)

This is associated the Zs-even 2-morphism in LG which is represented by
the map 7 of matrix factorizations that is given by the following matricesﬂ
with respect to bases that are to be inferred from [KR1]:

( (;(@123 +eros + (24 — 23)7) 1) | (534

—e134 — €934+ (21 — 22)7) 1

-1 1
(%(—6123 —egga+ (21— 2)r)  3(—eiz — eroa + (23 — Z2)T)) ) .

Here r € k|[z1, 29, 23, 24] is an arbitrary polynomial of degree m — 2 and

e b q,s
Cijk = Z 2 2 2

(p,4,8)EN3, p+gq+s=m—1

To a 2-bordism obtained by gluing identity bordisms on intervals and saddle
bordisms along boundaries which are neither source nor target 1-bordisms,
Zxkr associates the horizontal composite of the associated maps in LG.

®We rescale the non-scalar entries of the matrices given in [KRI] by a factor of % This is
necessary for 7 to be closed with respect to the differential specified in [KR1] and therefore
for n to be a 2-morphism in LG.
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5.3. On Khovanov and Rozansky’s TQFT

9. To the gluing of 2-bordisms along source and target 1-manifolds Z;(; asso-
ciates the composition of maps in LG.

For later reference, we insert r = > 2232821 in the matrices

(4,4,k,1) ENA it j+k+1=m—2
(5.3.4]) representing the map n:

(e +erpa+ (za—z3)r) 1 _ (€103 + €124 + €124 — €123) 1
T(—e13a —€a + (21 — 2)7) 1 T(—€1310 — €34 + €134 — €931) 1

eroq 1
= , 5.3.5
(—6234 1) ( )

-1 1
(%(—6123 — €34 + (21 — 24)7) %(—6134 —e14 + (23 — 22)7")>

—1 1
=11 1
3(—€123 — €234 + €123 — €231)  5(—e€134 — €124 + €134 — €124)

_ ( -1 1 > (5.3.6)
—€234 —€124

Note the following consequence of the 2d cobordism hypothesis for oriented
bordisms. If there exists an oriented extended 2d TQFT Zkgr specified by the
above list of assignments, then it has to be equivalent to Zxgr. With this in mind,
we compare the assignments of Zxgr to those of Zkgr in the remainder of this
section. -

The TQFT Zkgr agrees with Zxg on 0-manifolds. Both assign (z,2™%1) to
the positively oriented point. As the negatively oriented point is the dual to the
positively oriented point in Bordy', it is mapped to (z, —2™%1) = (z,2™*1)* by
Zxr. This is in line with Z\:R. Since Z;L associates the O-product to disjoint
unions of 1-manifolds, it must map the disjoint union of points to Qg of their
corresponding objects in LG. Also this matches Zkg.

Next we assert that Zxr agrees with Zxgr on l-manifolds. Every connected
1-bordism with non-empty boundary is an interval. To each such 1-bordism Zkg
associates the unit matrix factorization of (k[z], £2™!). Since the TQFT Zkgr
respects unit 1-morphisms it also maps each interval viewed as identity 1-bordism
to this matrix factorization. Intervals regarded as 1-bordisms with the empty set
as either source or target object, cf. the right hand side of , are the (co-)
evaluation l-morphisms in Bordy'. They are called “elbows”. The TQFT Zkgr
associates the respective (co-)evaluation 1-morphisms in LG. Their underlying
matrix factorizations are unit matrix factorizations. As the specification of 2;;; in
[KR1] is not explicit about the source and target of matrix factorizations viewed
as l-morphisms, we can say that Zxgr coincides with % on all connected 1-
bordisms with nonempty boundary.
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To a circle the TQFT Zkr associates evyy ® eVJLV. This is dictated by viewing
the circle as the composition of two elbow 1-bordisms. As for the assignment
in part |3| of the specification of Zkr the situation is more intricate. In fact, our
way of reading [KR1I] suggests that we are to identify the matrix factorizations
A= ({0} @ k[2]/(2™),0) and (evyy @ evl, ). Indeed, we have the following

Lemma 5.3.11. There is an isomorphism in hmfﬁo
a: (eviy @ eviy )me — (k[2]/(2™) @ {0},0).
Proof. Inserting the definitions of evy, and eV}L,V, we have
(eVW &® eVTVV)mf - (eVW)mf ® (ev'{r/[/)mf == (-[W)mf ®k[z,z/] (IW)l\r/nfv

where as in the proof of Lemma we note that (evl, )ms = (evyy)Y; since the
source object of evy has an even number of variables. Next, we use a morphism
in HMF\y. .o specified in [CM2, (2.39)]:

(Iw )mt Ogzzr] (Tw o = (Modice o ((Tw )ams (Tw ) Oy vy ) - (5.3.7)
e® frs (g flg)e)

The differential d; 7 is as in Lemma . Note that the conditions for to be
an isomorphism mentioned in [CM2] are satisfied as (Iy ), is a free k[z, 2’|-module
of finite rank. Now we use that, e.g. by the proof of [CR1], Lemma 2.9], which car-
ries over directly to our setting, the 67 ;-cohomology of Modu. .1 ((Lw )m, (Lw)m)
is

H3, , (Modi: o (Iw)m, (Tw)m)) = (2] / (™), (5.3.8)

Héu (MOdk[Z,Z’](([W)ma (Iw)m)) = {0}.
Before spelling out the isomorphism of k-vector spaces (5.3.8) we note that
(Iw)m = k[2]° @ k[2]°0. This implies that the components ¢, i € {0,1} of
(0%, ¢") € Modupz. 1 (Iw )i, (Iw)m)°, cf. (2.2.1) for the notation, can be identified
with polynomials p; € k[z, 2’] for i € {0,1}. Under this identification the isomor-
phism (5.3.8) acts on a representative of [(¢, ¢)] € Hy,  (Modiz, /(7w ) (Iw)m))
as

(¢, ) = pla=sr. (5.3.9)
By (5.3.8), (Mody,./|(Iw)m, (Iw)m), 61,1) and (k[z]/(z™) & {0},0) are quasi-

isomorphic chain complexes of k-vector spaces. Hence the two chain complexes
are isomorphic in HMFy . This holds e.g. by [KR1l, Proposition 8] applied to
matrix factorizations of (k,0). In this case the notion of cohomology of matrix
factorizations of [KR1] reduces to ordinary cohomology of complexes of vector
spaces. Altogether, since HMFy, . is a subcategory of HMFy o, we have

(eviv @ eviy)mr = (k[2]/ (=) @ {0},0)

in HMFy o. Now (k[z]/(2™)@®{0},0) € hmfy ; and by Theorem evy Qevly, €
hmf . As hmfi; is a full subcategory of HMFy this concludes the proof. [
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5.3. On Khovanov and Rozansky’s TQFT

Since LG includes Zs-odd 2-morphisms we have that A = ({0} @k][z]/(z™),0) =
A[l] in LG. Thus it follows from Lemma |5.3.11] that the values of Zxg and Zkr
on the circle are isomorphic 1-morphisms in LG.

For later reference we assemble the isomorphism « from Lemma [5.3.11}

(evy ®xfz,21 evLV)mf — (Modk[w/]((lw)m, (Iw)m), 51’1) — (k[z]/(z™) @ {0},0).

2 Ve® fri {'HHO’ e/

(g — Za(zl)bf*(g).e) — Za+b’ e = f (5310)

We move on to compare part 4| of the specification of Z;;{ with Zgr. To the
disjoint union of 1-bordisms, the TQFT Zkgr associates the O-product of the
respective matrix factorizations. This is in line with Zkg.

The gluing of bordisms described in part [§ of our list above is their horizontal
composition in Bordy'. The TQFT Zkgr maps this to the horizontal composition
in LG. This agrees with %.

The gluing of bordisms described in part [9] of the above list is their concate-
nation as 2-morphisms in Bordy". This gets mapped to the composition of mor-
phisms of matrix factorizations by the TQFT Zkgr. This coincides with Z;{.

It is left to compare the 2-morphisms assigned to the “saddle”, “cup” and
“cap” 2-bordisms by Zxgr with the maps that Zxgr associates to these bordisms.

We start with the saddle 2-bordism. Its source as depicted on the left hand side
of is to be read as the identity bordism on the disjoint union of a positively
and a negatively oriented point. Its target is the horizontal composite (drawn
vertically) of first the evaluation elbow and then its adjoint, i.e. a reflected elbow.
Applying the TQFT Zkgr to this bordism yields, in the notation of Proposition
[2.8.7 the 2-morphism in LG represented by

COCVevyy * W (zg)—W(zs) — eVI,V X evyy

Recall the following formula from Proposition [2.8.7}

coevx(y) = Y (_1)<l+1>‘€jl+5{ag;r’dx...agﬁ’dx}ji.e;fék[y]ej, (5.3.11)

(4,4)€I?

where X € hmfiy, 200, un],V)-U@)s 1€itier, I some index set, is a basis of
X, with dual basis {e}};cr, and by < --- < b, and s are such that y A6, ...0, =
(—=1)°0; ...0). Specializing to X = evy € hmfy e, cf. Definition
[4.2] yields:

Cfo\&/ev‘y (fy) = Z (_1)(l+1)|f\+5{a[zb;]zldjw .. (9[zb’lz]/dlw}fe.e* Xk f (5312)
(e.f)€{1,0}2

Here we use the basis {1, 0} with degy, (1) = 0, degy,(0) = 1 for (evw )m = (Iw)m

as in Lemma m Furthermore, we note that the horizontal composition of eVLV

and evy is indeed eVLV ®y evy. Finally, we write z = (z4, 23).

1
Z4723L72£n+ +

89



5. Extended 2d TQFTs in LG

Now [, by < --- < by and s in (5.3.12) are specified by YAy, ... 0, = (—1)%6,05.
In the present case, the basis element v € (I_w ()4 w/(z))m can take four values,
v € {1,01,05,0,65}. Thus, we have the options

’y:]_:>b1:1,b2:27820, ’7201:>b1:27820,
’7:(92:>b1:1,821, ")/:9192:>ZIO,S:O.

To compute COeVey,, (7) We also need:

(23 — 24) — (23 — 2)

8[z1’]z d]W = ; 0+ 63’4,4/.0 AN (—) = 0" + 63,474/.6 AN (—),
24 — Ry
o s 25— 2y) — (25 — z4) .
O dry = (2 = 4) (,3 ) g +esya N (=)=0"Feszu.0N (=)
23 — 23
Here we write e344 = > 2328(2))¢ and similarly for ez 4. In

(a,b,c)EN3 a+b+c=m—1
line with we identify zy — 21, 2j — 24, 23 — 22, 2, — z3. Under this
identification we replace es 44 by €214 (note that esq = ej24) and ez sy .4 by easq
in the following.
We assemble coevey,, :

L Y (DO + easa0 A (2))(=07 + 1000 A (<))}, €" @ f

(e.)E{1,60}2
= e124.1" @ 1 + €934.0" @i 0,

91 — Z {9* + 6234.9 N (—)}fe.e* Xk f
(e.f)e{1,0}2
= e934.1" @1 0 4 0" @ 1,

br>— > {0 +embN (=)} e @ f

(e.)E{1,0}
= —e124.1" @ 0+ 0" R 1,
0162 Y (—D)Vlgpeet @ f = 1" @ 1 — 07 @y 0.

(e.)E{1,6}2

The matrix representing coevey,, with respect to the bases {1,665, —6;, 65} of
(Iw (z)-w(z))m and {1* @ 1, =0* ® 0,0* @ 1,1* ® 0} of (evl, @ eviy ) is

€124 1 0 0
—€934 1 0 0
o (5.3.13)
0 0 —ess —e124

This coincides with ([5.3.5)), (5.3.6]).
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5.3. On Khovanov and Rozansky’s TQFT

Remark 5.3.12. We can equivalently view the saddle bordism as the
coevaluation 2-morphism of the coevaluation 1-morphism of the negatively ori-
ented point, coeveey p Computing coeveeey_,, using the formula in Proposition
and representing it with respect to suitable bases we again get the matrix

G.3.13).

Next, we compare the 2-morphism € in part @ of the list defining ZI\(; t0 EVeyyy -
Indeed, the cap 2-bordism represents the evaluation of the evaluation elbow 1-
bordism of the positively oriented point. Thus, Zxr maps this 2-bordism to the
2-morphism in LG represented by €ve,,, . Recall the formula for

&y XX =1y,

X e £G(((z1,...,2m),U), ((y1,-..,yn),V)) a matrix factorization of finite rank,
p € k[z], from Proposition [2.8.7}

{o¥vd
p6j®k[w]€ HZ Z l+(M+1)IeJ|9 .0, Resk[z]/k[ [i] 0 TR T
X1 ) TN

1>041 <<

: 3y’y/dXA(w) bijpd x]

Adapting this to the case X = evy € LG(W (21) — W (z2),0) yields

1 . T
EVevyy VIV @k ,20] €V — Lo

{azl dlwazgdlw}ef P d Z:|

. et = (=D Resy,
P f ®k[ 2] © ( ) CPkLz) K az1VV7 _aZQW

As a first step to compute this, we have

(0.,d1, 0y, Yo :{ «9*—1—26121 m=a g A (— 9*+sz bblOA (— ))} f

—szmbbl,e:le

- Zaz“ Layme e=f=40
0, e# f

In the following calculation we use two of the main properties of residues, cf. [CM2),
§2.4]: they are linear as in (5.3.14) and they behave like residues from complex
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5. Extended 2d TQFTs in LG

analysis in the sense that we have the equality (5.3.15)) below.

m
—STb2 b 20 24 d 2y d 2y
b=0

NVevw (27 25 1® 1) = Resiz) i

(m+ 121", —(m + 1)z5"

m b m—b+c _b—1+d d d

= 2—2 Resk[z]/k [zl sz m il =2 (5314)
bh—0 (m + 1) R D)
- b

= —————— Om—brem—10b—1tdm— 5.3.15
bz;(er 1)z Om—brem—10b-L+dm—1 ( )

c+1

= —————Ocrdm_1, 5.3.16

(m+ 1)2 +d, 1 ( )

m
a—1_m—a _c ,d
STazyT 2T 25 25 dzp dz

N e d " a=0
ev 0 0 - R
Vevyy (21 25 0 @ 07) OBK(z]/k (m+ 1), —(m +1)23"
m a—1+c ,m—a-+d d d
a=0 (m+1) A2
m a
= iy Se e s
a=0
d+1
_ St 1. 5.3.17
(m+ 12 e

In view of Lemma |5.3.11| we pre-compose the map e that 2;(; associates to the
cap, cf. part |§| of our list, with the isomorphism «, cf. (5.3.10]), in order to
compare it with €vey,,. This yields

evyy ®k[zl,z2] GV}L/V — A[l] — IO
1
d

= —5c+d,m—1 .

22 e®er i 2T
m+ 1

To see that evey,, and € o a are not homotopic and therefore do not coincide as
2-morphisms in LG, we show that they induce different maps on cohomology,
cf. [Wel Lemma 1.4.5]. In light of (5.3.9) we see that € o o induces the map

2= (eoa)(zf(1R@1"+0®0%)) =€(22%) = mi—l—léa’ml
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5.3. On Khovanov and Rozansky’s TQFT

on cohomology. The map €ve,,, induces

a+1 5 n 5
(m+12 2" (m1)2 !
a—+ 2
m am—1-

29 Ve, (2{(1R 1" +0®6%)) =

Thus, we see that the maps which eoa and ev.,,, induce on cohomology disagree.

Therefore, we can say that the value that Zxgr takes on the cap 2-bordism differs
from the one of Zxr by an invertible scalar prefactor. -

Finally, we turn to the map ¢ in part |5 of our list specifying Zxg. This is
associated to the cup 2-bordism, which is the coevaluation of the coevaluation
1-bordism of the positively oriented point. Hence we compute

CO€Veoevyy - Lo — coev&, & coevyy.

The corresponding formula in Proposition [2.8.7]is

yi S0 (=D)Elekefgmeg e 9r et @iy e,

(i,9)€I?

where X € hmfyj, . o0, un]V(y)—U(@) With a basis {e;}icr, I some index set, of

X, ete. cf. below (5.3.11)). In the case of X = coevy, this reduces to

ONVeoery ()= > (D)o per@f= Y (-)lewe=1"01-60"®90.
(e,f)€{1,9}2 66{179}

To compare this with the specification of % we need to cOMpPOSe COEVepeyy, With
an isomorphism

a : coevly, @ coevyy — (k[2]/(2™) @ {0},0)

in hmfy . To get @ we can replace the isomorphism in [CM2) (2.39)] by that in
[CM2, (2.37)] in our proof of Lemma|5.3.11] This introduces an additional minus
sign in the formula (5.3.10)) if e = f = 0. Thus, we get the map a:

(coev&/ ®(z,2/] COBVWY )mf — (MOdk[z,z’]((IW)m: (Iw)m); 51,1) — (k[z]/(2™) ©{0},0).

0, e f
2V ® f (g — z“(z’)be*(g).f) = 20 e =f=1*
(9 —=(2Pe'(g).f) s~ == f
Composing €oeVeeey,, With @ leaves us with the k-linear map 1 +— 2. This is

simultaneously the map it induces on cohomology. This shows that the map ¢
in part |5 of our list above is not the same 2-morphism in LG as & 0 co0eVeeyy, -

93



5. Extended 2d TQFTs in LG

Hence we can say that Z;(; disagrees from Zxg on the cup 2-bordism by a factor
of 2.

We summarize the results of this subsection. Denote by Zxg : Bordy® —
LG the oriented extended 2d TQFT determined by Zxgr(pt*) = (z,2™™!). The
assignments in [KR1), §9], which we refer to as Zxr, coincide with Zxg on objects
as well as on 1- and 2-bordisms which do not involve the circle. The two rules
disagree on the circle by a 2-isomorphism «. Taking this into account Zkg still
differs from Zxg on the cap and cup 2-bordisms by invertible scalar prefactors.

We end by discussing some consequences of our findings summarized in the
preceding paragraph. The value of an oriented extended 2d TQFT on the circle is
dictated by what it assigns to the elbow 1-bordisms and the natural isomorphisms
expressing how it is compatible with the horizontal composition of bordisms. For
Zxr the latter isomorphisms are identities, as is the case for Zxr. Since Zkr
also agrees with Zxgr on the elbow 1-bordisms, Zxr needs to be modified by the
2-isomorphism « in order to potentially describe an oriented extended 2d TQFT.

According to the classification of oriented extended 2d TFQTs in [SP1] the
2-morphisms associated by such a TQFT to the cap and cup 2-bordisms need to
satisfy relations which also involve the maps associated to the saddle 2-bordism,
cf. [SP1l, Figure 3.13]. Since Zkg is an oriented extended 2d TQFT it satisfies
these relations. As Zkgr agrees with Z;L on all ingredients of these relations
except the cap and cup 2-bordisms, it follows that Zxgr can only satisfy these
relations if it is adjusted by the invertible scalar prefactors in which it differs
from Zkggr on the cap and cup 2-bordisms. Thus, Zxr needs to be modified
by these prefactors in order to define an oriented extended 2d TQFT “up to
composing the 2-morphism associated to the circle with a 2-isomorphism”.
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We assume the reader is familiar with the definition of a category, of a functor
and of a natural transformation. The higher categorical notions needed in the
body of the thesis are summarized below. We mostly follow [SP1, §2.3, Appendix
A, Appendix C]. All the diagrams below are adapted from there.

Notation A.0.1. Let € be a category. We denote the set of objects of € as €p.
For an object C' € €y we also write C' € €. For A, B objects of €, we denote the
set of morphisms from A to B in € by €(A, B).

A.1. Bicategories, 2-functors, and more

Given three categories A, B, € denote by a : (A x B) x € — A x (B x €) the
functor which acts on objects as ((A, B),C) — (A, (B,(C)) and analogously on
morphisms.

Definition A.1.1. A bicategory B consists of
1. a collection Bg of objects A € B,

2. for every pair A, B of objects a category B(A, B) whose objects are called
1-morphisms (from A to B) and whose morphisms are called 2-morphisms,

3. for every triple A, B, C' of objects a functor
®A,B,C : B(B,C) X B(A,B) — B(A, C)
called horizontal composition,

4. for every object A a distinguished 1-morphism 14 € B(A, A) called the unit
1-morphism,

5. for all quadruples A, B, C, D of objects natural isomorphisms

aaBc,D : ®aBDpo (®pc,p X 1au,p) = @acp o (1acp) X @apc)oa

referred to as associators,
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A. Some higher categorical notions

6. for all pairs A, B of objects natural isomorphisms

MEB @4 pp(lp, —) — 15,8y Pt @aan(—,14) — 15(4,B)

called unitors

such that the diagrams depicting the pentagon identity, cf. (A.1.1), and the tri-
angle identity, cf. (A.1.2)), commute for all suitably composable 2-morphisms f,
g, h, k.

In the diagrams relevant to Definition we suppress ® in the composition
of 1-morphisms and indices as well as superscripts on « and .

(kh)(gf)
((kh)g) / \ (h(g.))
a®id d®a
(k(hg))f k((hg) f)
\a/ (A.1.1)
(g1)f - g(1f)
pk AA
2 (A.1.2)

Definition A.1.2. Let B and B’ be two bicategories. A 2-functor F : B — B’
consists of

1. a function Fop : Bo — B,
2. for every pair A, B of objects in B a functor
Fap : B(A, B) = B(Fo(A), Fo(B)),
3. for every triple A, B, C of objects in B a natural isomorphism

Fapc: ®glo(A),Fo(B),FO(C) o(Fpo X Fap)— Faco ®g,3,07

4. for every object A in B an isomorphism Fj : 1?«“;(,4) — Fa(15)

such that the diagrams (A and commute for all objects A and B in
B and suitably composable 1 morphlsrns f , g, hin B.
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In the diagrams depicting the axioms on a 2-functor we write FA := Fp(A)
for A € B and similarly for 1- and 2-morphisms. Furthermore, as in most of this
thesis, we suppress indices on the components of 2-functors.

(Fh®Fg ®Ff

Fh® (Fg® Ff) Fheg)® Ff
ith®Fl lF
Fhe F(g® f) F((h®g)® f)
F< ®f)> (A.1.3)
(Ff)® (15p) (1%
ide®F7 \ / FA®1de
(Ff)® (F13) Fl"” Ef)
F(f®18) 1B®f

(A.1.4)

Remark A.1.3. 2-functors according to Definition are referred to as “ho-
momorphisms” in [SP1]. A 2-functor F': B — B’ is called strict if Fy and F g ¢
are identities for all objects A, B, C' of B.

Definition A.1.4. Let B, B’ be bicategories and F, G be 2-functors B — B'. A
pseudonatural transformation v : F' — G consists of

1. for every object A of B a 1-morphism vy € B'(F(A),G(A)),

2. for every pair A, B of objects of B a natural isomorphism

vap:Gap(—) ?F vy = v F Fyp(—)

such that the diagrams (A.1.5) and (A.1.6) commute for all objects A, B, C' of
B and 1-morphisms f € B(A, B), g € B(B,C).
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Gg® f)®@va
Gg,f ®V I/gf
(GgRGf)®@va ve ® F(g® f)
aof idl/c ®Fg,f
Gg® (Gf @va) ve @ (Fg@ Ff)
ing ® Vg CYB/
Gg® (v ® Ff) (ve ® Fg) @ Ff
l\ %X;ld}?‘f
y Va \([)B/)_l
Gi® idW\ /dm ® Fy!
(G15) @ va s o va® (F15)
A (A.1.6)

Definition A.1.5. Let B, B’ be bicategories, F', G be 2-functors B — B’ and v,
7 be pseudonatural transformations F' — G. A modification m : v — T consists
of a 2-morphism my : v4 — 74 for every A € B such that the diagram (A.1.7)
commutes for all objects A, B of B. A modification is invertible if its components
are 2-isomorphisms.

id®mgy
Gf@I/A—>Gf®TA

| E

VB@Ff—‘)TB(gFf
mp @1 (A.1.7)

2-functors can be composed as follows.
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Definition A.1.6. Let A,B and C be bicategories, F': A — Band G : B — C
be 2-functors. The composite G o F': A — C is defined to be the 2-functor with
components

1. the function (G o F)o := Go o Fo : Ao — Co,

2. the functor
(GoF)ap:=Gru)rm o Fas: A(A,B) = C((Go F)(A),(Go F)(B)),

a
3. the natural transformations 1(gom)(a) 4, G(1pay) ), (G o F)(1,)
and

G ra).armyarce © (Gre)re) X Grayrm) © (Fee x Fap)
lGF(A),F(B),F(C) ® (Fpc x Fap)
Gra),r(c) © ®I€(A),F(B)7F(C) o(Fpc x Fap)
lGF(A),F(C) o Fapc

Gray,rc) © Faco ®j§,B,C .

Pseudonatural transformations can be composed according to

Definition A.1.7. Let B, B’ be bicategories, F', G and H be 2-functors B — B’
and v : F' — G, 7 : G — H be pseudonatural transformations. The composite
Tov: F — H is the pseudonatural transformation with components

1. the 1-morphism 74 ® v, for every A € B
2. the natural isomorphism H(—) ® (tov)4 — (Tov)p ® F(—) given by

1
Hip® (T4 ®@v4) SN (Hap ®Ta) @va —r (T8 @ Gap) ®va

/

TB® (Gap QVa) —— B ® (v ® Fap) — (T8 @ vp) ® Fap.

o

For modifications there are the following compositions

Definition A.1.8. Let B, B’ be bicategories, F' and G 2-functors B — B/, v, o,
7 pseudonatural transformations F' — G, m a modification from v to ¢ and n a
modification from o to 7. The wertical composite n o m is the modification from
v to T given by (nom)s = mnygomy for all A € B. Let there be a third 2-functor
H : B — B, pseudonatural transformations v, ¢ from G to H and a modification
m from v to o. The horizontal composite of m and m is the modification m ® m
from v o v to o o 0 with components (m ® m)s = ma ® my for all A € B.
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According to [Gl, §6.3.1] for every pair of bicategories B, B’ one obtains a bicat-
egory Bicat(B, B') whose objects are 2-functors, 1-morphisms are pseudonatural
transformations and 2-morphisms are modifications.

We end our exposition of background on bicategories with two notions of equiv-
alence.

Definition A.1.9. Let B be a bicategory and A, B objects of B. A and B are
equivalent if there are 1-morphisms f € B(A, B), g € B(B,A) together with
2-isomorphisms f ® g = 1, go f = 14.

Definition A.1.10. Let B, B’ be bicategories. A 2-functor F' : B — B’ is an
equivalence of bicategories if the following conditions are satisfied.

1. For every object B € B’ there exists an object A € BB such that F(A) is
equivalent to B in B'.

2. For all objects A, B of B the functor Fs 5 : B(A, B) — B'(F(A), F(B)) is

an equivalence, i.e. essentially surjective and fully faithful.

If for a 2-functor F': B — B’ for all objects A, B of B the functor Fy4 p is an
equivalence we say that F'is locally an equivalence.

A.2. Adjoints in bicategories

Let B be a bicategory, A, B objects of B.

Definition A.2.1. An adjunction in B is quadruple (f, g, ev, coev) consisting of
two l-morphisms f € B(A, B), g € B(B, A) and two 2-morphisms ev : g® f — 14,
coev : 1g — f ® g such that the following two equalities are satisfied:

Ago(ev@1)oa o (l®coev)op,’ =1, (A.2.1)
pf0(1®ev)oao(coev®1)o)\;1:1f_

In this case we say that f is right adjoint to g, respectively g left adjoint to f and
call ev and coev the evaluation respectively coevaluation map (for the adjunction
of f and g).

Definition A.2.2. A bicategory B has adjoints if for every 1-morphism f in B
there is an adjunction in which f is the right adjoint and an adjunction in which
f is the left adjoint. We say that B is a bicategory with adjoints if B has adjoints
and for every l-morphism f there are chosen adjunctions in which f is the left
adjoint respectively the right adjoint.

Definition A.2.3. An adjoint equivalence is an adjunction (f,g,ev,coev) in
which both ev and coev are 2-isomorphisms.
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A.3. Monoidal bicategories

Given three bicategories A, B and C denote by 20 : (Ax B)xC — Ax (BxC) the
2-functor which acts as ((4, B),C) — (A, (B, C)) on objects and analogously on
morphisms. Also, we write 1 for the bicategory with a single object * and only
identity morphisms.

Recall from Appendix that for every pair of bicategories B, B’ there is a
bicategory Bicat(B, B') of 2-functors, pseudonatural transformations and modi-
fications. Therefore we can consider adjoints for pseudonatural transformations
in the sense of Definition [A.2.1]

The axioms on the structure of a monoidal bicategory are represented by past-
ing diagrams below. We illustrate how to read them by an example and refer
to [SP1, §A.4] for more details. Let B be a bicategory. We can consider the
following diagram in B:

ai

A D E

as ds

Here the vertices are labeled by objects of B, the edges by 1-morphisms and the
faces by 2-morphisms. This diagram represents a 2-morphism in B(A, C') from
boay to eodsoay, namely (f® 1,,) o (1, ® a).

Definition A.3.1. A monoidal bicategory B consists of
1. a bicategory B,
2. a 2-functor O : B x B — B called monoidal product,

3. an adjoint equivalence (a,a™, ev,, coev,) in which the pseudonatural trans-
formation
a:00(@x1)—=0o(1x0O)o

is called associator,

4. an invertible modification 7 called pentagonator as displayed in the fol-
lowing diagram, where we suppress the 2-functor O writing e.g. AB for
Oo(A, B) for objects A, B of B and similarly for morphisms:
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(AB)(CD)

a

-
(AB)C)D \

5. an object I called monoidal unit, which determines the 2-functorI: 1 — B
by I(x) := 1,

6. two pseudonatural transformations [ : Oo (I x idg) — idg called left unitor
and r : Oo (idg x I) — idg called right unitor which come with the data of
adjoint equivalences (I,1~, ev;, coev;) and (r,r~, ev,, coev,),

7. three invertible modifications A, p, p called 2-unitors as in the following
diagrams:

(IA)B

= A I(AB)

Ip

such that the identity of pasting diagrams (A.3.1)=(A.3.2) holds and the equali-
ties in (A.3.3)) and (A.3.4]) below are satisfied.
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A.3. Monoidal bicategories

In the diagrams showing the axioms for a monoidal bicategory we do not depict
2-morphism components of O as the coherence theorem for 2-functors assures that
there is a unique way to insert these, cf. |G, Remark 3.1.6].

A((B(CD)E) 1a4a

A(B((CD)E))
Yt(lBa)
A(B(C(DE)))
laa
A((BC)(DE))
alp N o7
a X
((A(BC))D)E

(alD 1E\
(((AB)C)D)E (AB)(C(DE))
(BC))(DE)
alDE\ a

(A.3.1)
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A((B(CD))E) 1aa
a A(B((CD)E))
\1/1(1}3!1)
(A(B(CD)))E
A(B(C(DE)))
(laa)lg
N
alg a
=
(A((BC)D))E a
:>7T11E
((AB)(CD))E
alp X}
(AB)((CD)E)
alp
((A(BC))D)E 1A%
(alp)ly\ b
((AB)C)D)E (AB)(C(DE))
((AB)C)(DE)

(AD)C)D —2 (AI)( C’D)
rlep

u
A(I(CD) =

laa [N
[/4‘(”D

(A(IC)D ——— A((IC)D)

7

alp

H

(AB)(ID) — 2% A(B(ID))
[ \ 1gl)
(ABYDD 7 laa 11Au A(BD)

/ (rlp)

(A(BD))D ——— A((BI)D)
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(A)C)D —2, (AI)(CD)

\Tlc YCD

p 1y, (AC)D —— %, A(CD)

Al)ln A(“D
A(IC)D ———— A(IC)D
(AB)(I

[ YBZ VUBI

(ABY)D —5 (AB)D —— %, A(BD)

P_111
(1ar)1 1a(rlp)
A(B

I) D—>A(BI

alp

(A.3.2)

(A.3.3)

(A.3.4)



A.4. Symmetric monoidal bicategories

A.4. Symmetric monoidal bicategories

Let (B,0,a, 7, I,l,r, A, p, t) be a monoidal bicategory. We denote by 7 : Bx B —
B x B the 2-functor which acts on objects as (A, B) — (B, A) and similarly
on morphisms. Furthermore, we stick to the notational conventions used in the
diagrams in Definition[A.3.1] In particular, we write AB for the monoidal product
of two objects A and B of B and we do not display components of the monoidal
product 2-functor O.

In the diagrams depicting the axioms on the structure morphisms of a sym-
metric monoidal bicategory below, we use indices on modifications as follows.
Let F', G, H and K be 2-functors which all share the same source and target
bicategories. Let the following be pseudonatural transformations:

c:F—-G, d:G—-K,e:F—H, f:H—K.

Assume that ¢~ and f~ are pseudonatural transformations left adjoint to ¢ and f,
respectively. Then [SP1l Proposition A.30] states that there is a bijection between
the modifications d® ¢ - f®e and f~- ® d — e ® ¢. Given a modification
m : d®c — f®e we denote the modification obtained from m under the
preceding bijection by m; for some j € N. The number in the index carries no
information. Since the correspondence between modifications d ® ¢ — f ® e and
[~ ®d— e®c™ is bijective, m; is determined unambigously by m and knowing
that m; is obtained from m using the given adjunctions.

Definition A.4.1. A symmetric monoidal bicategory is a monoidal bicategory B
equipped with

1. an adjoint equivalence (b, b~, evy, coevy) in which the pseudonatural trans-
formation b: O — Oo 7 is called braiding,

2. two invertible modifications
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such that the identities of pasting diagrams

(AA1) = (A412), (A43) = (A44), (AA5) = (A46), (AL7) = (A48)

are satisfied and the equalities (A.4.9), (A.4.10) and (A.4.11]) below hold.

A(BC))D

/\BC

((AB)C
(AB)(CD) A(B(CD))
(b1c)1p
a’ b
blep

((BAYC)D oW
B(CD))A
(B(AC))D
_1 a
((AC)D B(C(DA))
1Ba
B(A( CD) B((CD)A (A.4.1)
(A(BC))D
alp b1D “
(blc)1p
Rlip
((BAYC)D ((BC)D
\xo (B(CA)D (BC (AD (140
)16
(B(AC))D o\ B((CA)D) B(C(AD)) g AM (BCO)(DA)

\ X& 1pa &6)/A /1

((AC)D UhBR . B(C(DA))
lBll

—>

B(A(CD)) B((CD)A) (A.4.2)
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(BO)D)
laa a~
ym
. = (ABO))
(AB)(CD) ((AB)O)D X
X b
b\ =

7 S

blo
(b (A.4.3)
A((BC)D)
e, /
1a(1pb)
%%
148 Laa
A(B(DC)) D(A(BC))
174 7r4_1
Laa™ 10 (O “aoB)0) (AD)(BC) 47 a”
y &
A(BD)C) 7§ q- =\ (ADB)C ((AD)B)C /?z a” (DA)(BO)
N 7
a” QP:"/' alo \&)Jo) /L
(A(BD))C \US He (DA)B
((4B)D)C (A.4.4)
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A((CcD)B) [ (A(CD))B

-

lAb blB

TS

A(B(CD)) (CD)A)B
1Aa/ \alB
A((BC)D) a a (C(DA)B
a f b 2 a
(AB)(CD) (CD)(AB)

(A(BC))D C((DA)B)
a " 1p a a lca™
((AB)C)D 0 R1 C(D(AB))
blp 1cb
_

(C(AB))D @  C((AB)D)

(A4.5)
A((CD)B) a (A(CD))B
-
A(B(CD)) TR 115> «ecoyas
14 / A(C(BD)) m ((cA)D)B @7 alp
N 0 d] &
a(blp - ¢ - 1ob)l
A((BC)D) ) / a NP O@ a \ (_,_> (C(DA)B
A((BC)D) (C(AD))B
(AC)(BD) (CA)(DB)
a a T3 1 00b “a!|a
ASS
(A(CB))D " C((AD)B) A
(A(BC))D \XDQ ((AC)B)D C(A(DB)) 0(61) C((DA)B)
-1 1 _
@ D\ 1 S1p , (CA)(BD) f1c8S o
C(D(AB))

<
((AB)C)D >
2, / \ &
blp
(pin. od(eo)
Na~ lca

(C(AB))D a C((AB)D)

(A.4.6)

108



A.4. Symmetric monoidal bicategories

B(CA) o~ (BC
B(AC) \ (CB)A
(BA)C c(B4)
b 1cb
b = Ra
(AB)C C(AB)
\ / o
A(CB) o (A (AA47)
B(CA) A) o= (B
/ - \ oma
(BA)C n C(BA)
bl b\ 1cb
(AB)C \ : C(AB)
A(BC) U S (©A)B
A(CB) a- (AC)B (A.4.8)
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b b
ABC) N ( A(BC) /@\ (BC)A
o1
a b, a
4 syt
(AB)C
1gb~
‘72110 11303
(BA)C a B(AC) B(AC) (A.4.9)
b
(AB)C ™\, C(AB) (AB)C /\ C(AB)
Y Ry!
(CA)B = A(BC) (CA)B
140~
1A0'2 03
A(CB) A(CB) (AC)B A A 10)
AB ’ BA  AB ’ BA
N p! ALy
1 1
b b= b b
784 0 XY
BA AB BA AB
b b (A.4.11)

A.5. Duals in monoidal bicategories

Some background on duals in monoidal bicategories can be found e.g. in [P} §2,83].

Definition A.5.1. Let B be a monoidal bicategory and A € B. An object A* € B
is called right dual to A if there are (co)evaluation 1-morphisms evy : ADA* — [
and coevy : [ — A*OA together with cusp isomorphisms

[ ® (evaOl) ® ¢~ ® (10coevy) @1~ — 1y, (A5.1)
r® (10evy) ® a ® (coevaOl) @ 17 — 1 4. (A.5.2)

Analogously to Definition one can define left duals for objects of a
monoidal bicategory. In a symmetric monoidal bicategory every right dual A*
of an object A is simultaneously a left dual to A. Indeed, evs ® b respectively
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b ® coevy serve as the necessary 1-morphisms. Since we are only concerned with
symmetric monoidal bicategories, we adapt the convention that we refer to the
right dual A* of an object A as the dual object to A.

Definition A.5.2. Let B be a symmetric monoidal bicategory. An object A €
B is fully dualizable if it has a dual object such that both the evaluation and
coevaluation 1-morphism have both left and right adjoints.
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Zusammenfassung

Diese Arbeit bestimmt gerahmte und orientierte erweiterte zweidimensionale to-
pologische Quantenfeldtheorien (TQFTSs) mit Werten in der Bikategorie der Lan-
dau-Ginzburg Modelle £G. Diese Bikategorie ist zum Beipiel in der Knotenthe-
orie, String-Theorie und homologischer mirror symmetry von Bedeutung. Ins-
besondere ist diese Arbeit durch eine Verdffentlichung zu homologischen (oder
kategorifizierten) Knoteninvarianten inspiriert.

Zunéachst wiederholen wir die Definition der Bikategorie mit Adjungierten £G.
Grob sind deren Objekte Polynome mit einer isolierten Singularitat im Ursprung.
Die Kategorie von Morphismen zwischen zwei Polynomen dieser Art ist eine Ho-
motopiekategorie von Matrixfaktorisierungen ihrer Differenz. Wir stellen £G ein-
schliellich mancher Details dar, die in der Literatur nicht erwahnt werden.

Daraufhin arbeiten wir eine explizite symmetrisch monoidale Struktur auf
LG heraus. Das monoidale Produkt zweier Objekte ist im Wesentlichen die
Summe zweier Polynome. Fiir die Morphismen, die Teil der symmetrisch monoi-
dalen Struktur sind, spielen die Identitats-1-Morphismen in £G und deren Un-
itoren eine entscheidende Rolle. Auflerdem sind Funktoren zur Einschriankung
von Skalaren entlang von Ring-Isomorphismen von grofler Bedeutung.

Im dritten Abschnitt des Hauptteils dieser Arbeit definieren wir das Duale
eines Objektes in LG, im Wesentlichen das negative des Polynoms. Auf den
Identitats-1-Morphismen in £G aufbauend, bestimmen wir Coevaluations- und
Evaluations-Morphismen fiir diese Duale. Als Folgerung daraus ergibt sich, dass
jedes Objekt von LG vollstandig dualisierbar ist.

Bevor wir uns den letzten Untersuchungen dieser Arbeit zuwenden, erinnern
wir an die bikategorielle Cobordismus-Hypothese und ihr Analogon fiir orientierte
Bordismen. Aus der erstgenannten Cobordismus-Hypothese folgt zusammen mit
dem Fazit des vorangegangenen Kapitels, dass jedes Objekt eine gerahmte er-
weiterte TQFT mit Werten in LG festgelegt. Danach zeigen wir, dass genau fiir
jene Objekte von LG, die durch Polynome in einer geraden Anzahl von Variablen
geben sind, der zugehorige Serre-Automorphismus trivialisierbar ist. Folglich
bestimmen diese Objekte orientierte erweiterte TQFTs mit Werten in £G. Let-
ztlich definieren wir eine Bikategorie LG, die £G sehr ahnlich ist. Insbesondere
hat sie die gleichen Objekte und 1-Morphismen. Im Gegensatz zu £G hat LG
2-Morphismen sowohl geraden als auch ungeraden Grades (wobei jeder dieser
Morphismen mittels einer Z,-Wirkung mit minus sich selbst identifiziert wird).
Das ermoglicht, dass jedes der Objekte eine orientierte erweiterte 2d TQFT mit
Werten in LG bestimmt. Wir geben ein Beispiel einer solchen TQFT an, das eng
an unsere knotentheoretische Inspiration angelehnt ist.

Zur starken Vereinfachung unserer Beweise, fiithren wir diese auf wenige Koha-
renz-Resultate zuriick. In diesen wiederum verallgemeinern wir bekannte Koha-
renz-Resultate derart, dass sie zusétzlich die Auswirkungen von Funktoren zur
Einschrankung von Skalaren entlang von Ring-Isomorphismen einschlieflen.
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