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Abstract

This article aims to summarize recent and ongoing efforts to simulate continuous-variable
quantum systems using flow-based variational quantum Monte Carlo techniques, focusing for
pedagogical purposes on the example of bosons in the field amplitude (quadrature) basis.
Particular emphasis is placed on the variational real- and imaginary-time evolution problems,
carefully reviewing the stochastic estimation of the time-dependent variational principles and their
relationship with information geometry. Some practical instructions are provided to guide the
implementation of a PyTorch code. The review is intended to be accessible to researchers interested
in machine learning and quantum information science.

1. Introduction

Recent years have witnessed a profitable interchange between the fields of machine learning, quantum
many-body physics and quantum information science. This multidisciplinary interaction has been partially
facilitated by the discovery that artificial neural networks provide a powerful inductive bias for parametrizing
subsets of quantum many-body Hilbert space. Although the description of Hilbert-space vectors via neural
networks renders exact linear algebra operations prohibitive for this subset of quantum states, the existence
of efficient stochastic approximation algorithms [8, 30] called variational Monte Carlo (VMC) has enabled
neural-network-based quantum states (NQS) to accurately reveal properties of the ground state for quantum
spin systems, as well as to simulate their time evolution using a time-dependent variant of VMC (the
so-called t-VMC) [6, 7]. Since the inception of complex-valued restricted Boltzmann machines [8], the reach
of neural-network quantum states has grown to encompass a diversity of quantum systems, made possible by
the use of increasingly sophisticated (often multi-layered) architectures. Another driver of interaction is the
discovery of close analogies between VMC and variational quantum algorithms (VQAs). Recent work on
quantum information geometry in particular, Stokes et al [40] has clarified the connection between the
natural gradient descent in machine learning [2], stochastic reconfiguration VMC [38] and variational
imaginary-time evolution in quantum computing [45].

This tutorial paper is intended to serve as a self-contained review of flow-based VMC and t-VMC for
continuous-variable quantum systems. For the purpose of concreteness we frame the discussion around the
example of bosonic quantum systems, represented in the field amplitude basis. The field amplitude basis has
not been a traditional focal point of the VMC literature’, which has concentrated on non-relativistic systems
that are more interpretable in the Fock basis. The field amplitude basis is natural, however, in systems with
relativistic symmetry, where the regulated bosonic Hamiltonian is represented on an L*-space as a simple
Schrodinger operator. The simplicity of the Hamiltonian therefore also offers pedagogical advantages. A
possible computational advantage of the field amplitude basis is that it does not require artificially restricting
the allowed mode occupation numbers to finite range for its numerical implementation. In an effort to foster

3 See however [18, 19, 36, 39].
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further interactions between machine learning and variational quantum simulation, we chose to advance a
geometrical approach based on information geometry. This contrasts with previous work on variational
quantum simulation which focuses on Kahler geometry (see [17] for a review).

In a related parallel line of work, flow-based probabilistic neural networks have been applied to
investigate ground state properties of lattice-regulated Euclidean quantum field theories [23]. This approach
hinges on the existence of a quantum—classical mapping, under which properties of the ground state are
related to classical expectation values with respect to a Gibbs distribution with an intractable normalizing
factor. The aim of this approach is to accelerate, or eliminate, an otherwise expensive Markov chain Monte
Carlo sampler by approximating the Gibbs measure using normalizing flows. The work described in the
following aims to expand the applicability of flow-based methods to situations in which the
quantum-—classical mapping does not produce an efficiently-scaling sampling algorithm, which is understood
to be a symptom of a so-called sign/phase problem. It is important to emphasize that sign/phase problems
are not the only factors which can impact the quality of expectation values obtained via high-dimensional
sampling. Flows have also proven successful in the context of path integral methods for overcoming sampling
problems due to critical fluctuations at phase transitions, critical slowing down of Markov chains
[1, 11, 14, 23] and frustration effects due to disorder [46]. Although VQMC does not offer an obvious
advantage compared to path integrals in the absence of a sign/phase problem, one expects flow-based VQMC
to inherit the same sampling advantages of path integrals. Moreover, flows have also been explored for
addressing sign/phase problems within the path integral formalism by learning contour deformations [25].

It is illuminating to compare and contrast the approach advocated here with proposals in the quantum
computing literature for quantum field simulation. Like [22], we adopt the field amplitude basis, although
we remain agnostic about the form of the regulator since it does not alter the general structure of the
resulting Schrodinger operator (see [26] for a discussion of possibilities). The choice to focus on normalizing
flows is motivated by their exact sampling properties and potential to exploit distributed computing using
the embarrassing parallelism of Monte Carlo [33, 46].

In an effort to make the paper accessible to a wide audience we have chosen an exposition emphasizing
mathematical and numerical aspects, minimizing where possible, the necessary physics prerequisites.
Although a fully rigorous treatment is possible, mathematical rigor is not attempted in this work. Detailed
appendices have been included containing proofs of all relevant claims as well as additional physics
motivation. Although our target application is bosons, this paper can be read independently as a
self-contained review of VMC for continuous-variable quantum systems. The paper is organized as follows.
In section 3 we provide a brief refresher on normalizing flows, dynamics of isolated quantum systems and
time-dependent variational principles. Section 4 is devoted to explaining the geometry of quantum states and
of classical probability densities (information geometry). Time-dependent variational principles are then
reviewed in this context in section 5, explaining the role of normalization and holomorphy. The next section
specializes to the stochastic approximation of the time-dependent variational principles using VMC and
t-VMC, including a discussion of variance reduction. Section 7 comments on prospects and challenges for
modeling quantum states with symmetries using equivariant flows. In section 8 we sketch a worked example
in PyTorch [32] using normalizing flows to prepare bosonic ground eigenfunctions, showing improved
energy compared to optimized Gaussian states. Section 9 concludes with a discussion of future directions.

2. Notation

Let IP(RY) := LP(R%; C) denote the normed space of complex-valued, p-integrable functions with p > 1 and
norm || - [|,. Denote by (-|-) the L? inner product, with the convention chosen to be linear in the second
argument (anti-linear in the first argument). Denote by Diff(R?) the group of smooth bijections from R¢ to
itself with smooth inverse and binary operation given by composition. For random vectors X and Y, valued
in C™ and C", respectively define the covariance matrix by cov(X, Y) := E[XYT] — EX]E[Y]! € C"*", where
T denotes the conjugate transpose. Denote by S", §'} and §'} ,, respectively the real symmetric, symmetric
positive semi-definite and symmetric positive definite matrices and similarly denote the corresponding
complex Hermitian matrices as H",IH’} and H" , . The identity matrix is denoted by 1.

3. Preliminaries

Although a formulation of normalizing flows applicable to general Riemannian manifolds is possible [35]*,
the exposition is considerably simplified by restricting attention to flows defined on Euclidean spaces. The
starting point is to recall that the diffeomorphism group Diff(R?) acts naturally on the normed space

4 Indeed necessary for the description of nonlinear sigma-model field theories.
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IP(R9). In particular, a function ¢» € LP(R?) transforms under a diffeomorphism f € Diff(R9) to
f-1p € LP(RY) defined for all x € R? by,

(f- ) () = [det)yr (0)] 7 (£ () M
in such a way that the p-norm is preserved,
1f-llp =l [lp- (2)
The action of Diff(R?) is compatible with the group operation in the sense that for all f,g € Diff(R¢),
f-(g-4)=(fog)-¢. (3)

Specializing to p = 1, a normalized, non-negative (probability) density p € L!(IR¥) is carried under the
action of f to a normalized probability density f- p. The above observation has motivated the investigation of
normalizing flows for probabilistic modeling [16, 34]. The aim of this endeavor is approximate a complex,
multi-modal target probability density, starting from a simple normalized probability density p (such as a
multi-variate Gaussian), by choosing the diffecomorphism amongst a parametrized differentiable family of
invertible multi-layer neural networks. If € R" denotes the parameters indexing a family of
diffeomorphisms fg, then density estimation using normalizing flows is to be performed under the
hypothesis {py : € R"} where pg := fp - p.

The successful application of normalizing flows to density estimation tasks has motivated their
generalization to quantum applications. In particular, setting p = 2, normalized densities are replaced by
normalizable wavefunctions 1) € L?(R?) subject to the norm constraint || ||, = 1 and the diffeomorphism
group acts on the Hilbert space L>(R?) by unitary transformations [9, 44]. In particular, the linear operator
Ur: L*(R?) — L?(RY) defined for each diffeomorphism f € Diff(R?) by Uy: ¢ ~ f- 1) is unitary. This fact,
which follows immediately from (2) using the polarization identity, can also be seen as a consequence of the
following identity for all 1/, %" € L*(R%),

(WD 1U")) = (U () |[97). (4)

A differentiable family of unit-normalized L? functions 1y := fy - 1 is obtained by choosing a base
function 1) € L*(R?) satisfying || ||, = 1. Following von Neumann, the space of states for a quantum system
described via the Hilbert space L?(IR) is given by set of rank-1 orthogonal projection operators (projectors).
The projector P,, onto the complex line spanned by the unit vector 1/ € L*(R?) is a linear map defined for all
" € LH(RY) by Py : 90"+ (1 [1h") 1b. As we shall review in the subsequent sections, this projector viewpoint
of quantum states turns out to be the most natural one for discussing time-dependent variational principles.

The subject of this paper is isolated quantum systems whose dynamics is dictated by a known time-
independent Hermitian Hamiltonian operator H. If the system is initialized in the state P, then the
uninterrupted time evolution of the system is described by the sequence of projectors [0,00) > t+—
Pesp(—ikiyy- It is likewise instructive to consider the sequence of states [0,00) 3 = Peyp(— )y Which
correspond to unphysical evolution along the imaginary time axis. An important application of
imaginary-time evolution is to preparation of a ground eigenfunction, since the component ¢, of ¢ lying
orthogonal to the ground space experiences exponential damping relative to the parallel component ).

Given initial parameters 6, € R", a time-dependent variational principle is a proposed sequence of
parameters (6;),>0 such that (Py,, )i>o optimally describes the exact projector evolution (Peyp(—af)y, )0
where A denotes either H or iH, for imaginary- or real-time evolution, respectively. In practice, the sequence
of parameters is defined implicitly by a system of ordinary differential equations, which must be
approximated, leading to accumulation of error with evolution time, in addition to the systematic bias
originating in the finite capacity of the variational family. In the case of imaginary time evolution, error
accumulation is not of concern if the ultimate goal is preparation of a ground eigenfunction for a
Hamiltonian with bounded-below energy, since the Rayleigh-Ritz principle ensures that any trial
wavefunction provides an upper bound for the exact energy. Indeed energy optimization using
neural-network-based quantum states is an active field of research and a number of proposals have been put
forward including stochastic sign gradient descent [28] and Gauss—Newton [42].

4. Information geometry

Although we will ultimately be concerned with the geometry of quantum states, it is illuminating to first
consider the geometry of classical probability densities. Indeed, these notions will be seen to coincide for a

3
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wide family of quantum states. There is a natural distance metric on the set of normalized probability
densities called the Fisher—Rao distance. Given probability densities p,q € L' (R¥) the Fisher—Rao distance is
defined by

der(p,q) := arccos (<p1/2|q1/2>), (5)

where p'/? € L?(R?) denotes the pointwise square root. The Fisher—Rao distance is manifestly invariant
under arbitrary diffeomorphisms f € Diff(R?),

dFR(p7q) = dFR(fpvf q) (6)

In order to expose the Riemannian structure underling dgy, it is useful to consider a parametrized
differentiable family of probability densities { pp : @ € R"}. Define the symmetric positive semi-definite
information matrix I(9) € S’} for all § € R",

1(0) = I[po] := xﬂ‘%g [Vologpa(x) Valogpe(x)T] (7)
which is invariant under diffeomorphisms f € Diff(Rd),

1[f-po] = I[po]- (8)

In addition, the information matrix transforms as a covariant tensor under diffeomorphisms of the
parameter manifold. In particular, for a diffeomorphism ¢ € Diff(R"), define pg := py(¢) and then

1(0) = 1[po] = J5(8) "I(6(6))]4(6). 9)

The above observations concerning the information matrix are in accord with the fact that it provides the
coefficient matrix for the infinitesimal line element obtained by restricting the Fisher—Rao distance to the
parametric family,

1 n
din(po.porao) = § D L (0)d0"d6". (10)

Hyv=1

Although the information matrix is not a Riemannian metric tensor since it fails the requirement of
non-degeneracy, it is however, the pull-back of a Riemannian metric tensor on the infinite-dimensional
manifold of strictly positive probability densities’.

In passing to quantum state space, the natural distance function generalizes to Fubini-Study, which
assigns a distance between the projectors onto unit vectors 1,1’ € L*(R?) as follows,

drs (P, Py ) := arccos(| (¢ [¢))- (11)

The Fubini-Study distance inherits the diffeomorphism invariance of Fisher—Rao, and expands it to all
unitary transformations U : L*(R?) — L?(R9),

dFS(Pvaw/) :dFS(PU(lb)?PU(IZJ’)) (12)

Paralleling the discussion for probability densities above, now consider a differentiable family of
unit-normalized L? functions {1y : @ € R"} and define the quantum geometric tensor [5] for all § € R" as
the Hermitian positive semi-definite matrix G(¢) € H’, with components,

0o | OYg \ /Oy oo ) (o
a0 | 96v R AN
whose tensorial property is confirmed by elementary calculus. The quantum geometric tensor is manifestly
invariant under unitary transformations,

G (0) == Gy [te] := < 0¥

a¢9>7 1<pwr<n  (13)

5 The so-called the Fisher—Rao metric tensor, which is uniquely characterized by the requirement of diffeomorphism invariance [4]. The
Fisher—Rao distance is the geodesic distance function corresponding to the Fisher—Rao metric tensor.
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G[U(9)] = G[1bo] (14)

and is additionally invariant under a local phase transformation of the parametrized family which has no
classical analogue. In particular, for any differentiable function w : R" — R,

Glexp(iw(0))be] = Glts]. (15)

The real part of the quantum geometric tensor, g(#) := Re[G(0)] is necessarily a real symmetric positive
semi-definite matrix® g(¢) € S’,.. In direct analogy to the information matrix (7), the matrix g(6) is the
coefficient matrix for the infinitesimal line element obtained by restricting the Fubini—Study distance to the
parametric family

d%S(PdJe’Pweere) = Z glw(ﬂ)dﬂﬂdﬁy. (16)

pv=1

By an abuse of terminology, we will refer to g(6) as a metric tensor. In the special case when 1y (x) is
real-valued, classical and quantum information geometry coincide in the sense that

g[e] = iwé]- (17)

4.1. Unnormalized wavefunctions and holomorphy
It is often convenient to represent the unit-normalized family of functions 1y via another family of functions
Wy € L*(R?) whose normalization is unknown,

Wy (x)
V(o[ Tg)

If the quantum geometric tensor is expressed in terms of Wy one obtains the following useful expression,

B 1 (9\119 8\119 1 8\1’9
Guv(0) = < 007 > - (W[ Wy)2 < o0~ \I’9> <\I/0

<\Ifg | Wy > oor
In many important applications, the unnormalized function Wg is parametrized in terms of an even
number n = 2m of real parameters 8 = 6, @ 0, satisfying the following differential identities which
correspond to the Cauchy—Riemann equations for the components of the complex vector
z:=0,+i6, € C",

Vo(x) = (18)

0¥y
< <n.
09”>’ 1< u,v<n (19)

V@z Uy = iVel\I/.g, (20)
which is equivalent to the vanishing of the Wirtinger gradient of Wy with respect to z,

V¥ := = (Vg, +iVy,) ¥y = 0. (21)

N —

In this case the quantum geometric tensor and its real part are respectively given by,

[ ise) _RelS()] IS
0= Sal =[] e ) -

where S(z) € H} is the Hermitian postive semi-definite sub-block of the quantum geometric tensor
corresponding to the 6, axis, whose components can be expressed in terms of Wirtinger derivatives as

follows,
B 1 8\119 8‘119 1 6\Ij9
Sii(z) = (W[ Ty) < o7 | 0z > (Wy|Wyg)2 < a7z \I’9><\I/0

ov
‘.">, 1<ij<m (23)

6 Which, incidentally, equals four times the quantum Fisher information matrix for pure states.
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5. Time-dependent variational principles

With the above information-geometric preliminaries we are prepared to discuss variational principles.
Consider the evolution of the unit-normalized function 1y under the operator exp(—Adt) where A denotes
either the Hermitian Hamiltonian H or the skew-Hermitian operator iH and Jt > 0 denotes the evolution
time. The unconstrained evolution g — exp(—Adt)ty generically produces a function outside of the set
{19 }ocrr. Now consider the constrained evolution 1y — 150 induced by a parameter shift 60 € R". The
optimal shift should be chosen to minimize the Fubini—Study distance between the associated projectors [8].
Thus, given an initial parameter vector 6, € R" and a step size 0t > 0, define a sequence of parameter vectors
(6k)ken by the following iteration

Oky1 = O + 60y (24)
(59]( = argmin dFS (Pexp(—A(St)l/xgk ,P¢9k+59) . (25)
d0ER"

In the limit 6t — 0, the sequence approximates the solution of a system of ordinary differential equations
with initial condition §(0) = 6. In particular, for A= H and A = iH we obtain respectively [3, 40],

; —Re[F(6(1))]
6(1)0(r) = (26)
(00000 mewwn
where we have defined the following complex vector F(#) € C" for all § € R",
F(0) := (Vobe|Hipo) — (Voto|the) (va|Hbg) - (27)

The arguments leading to the above evolution equations are reviewed in appendix D. The same equations
are obtained by applying McLachlan’s variational principle to the Liouville-von Neumann equation
restricted to pure states [45]. McLachlan’s variational principle applied to the time-dependent Schrodinger
equation, however, yields a different set of evolution equations [29, 45]”. Using the fact that (1p|Hibg) € R
and (Vg1 |tg) € iR, it follows from (26) that the imaginary-time evolution equation coincides with
Riemannian gradient flow in the geometry induced by the Fubini-Study metric [40],

Q060 = —VLOW),  L(0) =3 (Wl ), @8)

which implies, as a trivial consequence of the positive semi-definiteness condition g(#) € S’} , that the energy
L(0) is non-increasing under imaginary-time evolution,

£(t) = —0(1)"g(6(1) (1) < 0. (29)

Furthermore, in the special case of real-valued 1)y, (17) implies that imaginary-time evolution is a special
case of natural gradient flow [2]. Finally, since g(0) is typically a degenerate metric as discussed in section 4
regularization is typically required in order to obtain a well-posed system of ordinary differential equations.

5.1. Unnormalized wavefunctions and holomorphy
In the case of unnormalized wavefunctions, the expression for F(6) becomes,
(VoUg|HUg) (VoUy|Ty) (Ty|HTyp)

FO =G0y (W) (gl ) (50

Suppose, in addition, that n = 2m is even and that the holomorphic constraints (20) are satisfied. Let us
overload the notation by denoting F(z) € C™ the subvector of F(#) € C" along the 6, axis. Then it follows
from (20) and (30) that,

F(0) = {_iF(ZJ . (31)

7 See [45, appendices A.2.2 and B.2.2] and [45, appendices A.1.2 and B.1.2] for the variational forms of the von Neumann and time-
dependent Schrodinger equation, respectively. Further clarification about these variational principles is presented in appendix A.

6
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It can then be shown that, under the holomorphic assumption, the evolution equation (26) reduce to the
following differential equations for the complex vector z € C"”,

. —F(z(t
ste(yet) = { ) e
—iF(z(t))
The instantaneous rate of change of the loss function £ under the evolution equation (32) is given by
b = {0 (1) S(2(0)) (1) 33

Recalling the Hermitian positive semi-definiteness of S(z) € H'}, the above equations imply that the energy is
non-increasing or conserved under the imaginary- or real-time evolution respectively.

6. Stochastic estimation

6.1. VMC and t-VMC

Now we discuss numerical solution of (26) using stochastic estimation, assuming an efficient algorithm to
compute x — [1g(x), Voo (x), (Htbp)(x)] and an efficient algorithm to generate unbiased samples according
to the probability density |1)¢(x)|>. Most literature on VMC and time-dependent VMC [6-8, 21] has focused
on the assumption of an efficient mapping x — [y (x), VoW (x), (H¥y)(x)] and approximate sampling
from the density |tg(x)|* using Markov Chain Monte Carlo®. Define the Born probability density

po(x) € [0,00), the wavefunction score og(x) € C" and the local energy ly(x) € C as follows,

Voihp(x) (Hip) (x)
po(x) == g (x)]?, og(x) i = ———, lg(x) i = —————. (34)
()=o), ao(x) = L = S
It is then a simple exercise to confirm that the quantities g(¢) and F(0), £(0) and VL(6) can be expressed
as the expectation values of random variables with respect to the Born probability density. In particular,

G(0) = cov(crg,ag)T, F(0) = cov(lg,o'@)T. (35)

The expressions (35) provide the basis for a stochastic approximate solution of (26) called stochastic
reconfiguration and t-VMC, respectively, which use Monte Carlo methods to approximate the covariances,
in combination with a suitable time-marching scheme (e.g. forward Euler). In the special case of
imaginary-time evolution, the algorithm is known as stochastic reconfiguration [38]. If, in addition ¢y € R
for all € R” then, stochastic reconfiguration becomes stochastic natural gradient descent for the objective

£(6).

6.2. Stochastic optimization and variance reduction
Stochastic reconfiguration can be understood as a special case of stochastic gradient-based optimization for
the objective £(6). To see this, let Ly (x) be any unbiased estimator for the loss function so that

L(O)=E [rj@(x)} : (36)

Then by the log-derivative trick,

B
1-=
2

VL) =E Kﬁg (x) ) Volog (x)} +E [veﬁg (x)} , (37)

where B € R"*" is an arbitrary matrix and we have used the fact that E[Vglog pg(x)] = 0. The canonical
estimator which has been pursued most widely in the literature corresponds to the local energy defined
in (34),

£l () .= %lg(x). (38)

8 See however [18, 36, 44] for continuum and [20, 37] for discrete quantum systems, respectively.
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The canonical estimator has a number of desirable properties including the fact the gradient of the
objective (37) becomes independent of the gradient of the estimator. Specifically, plugging (38) into (37) and
using Hermiticity of H we obtain,

VL(0) =ReE[(lg(x)1 — B)7g(x)], (39)

which coincides with stochastic reconfiguration for the choice of baseline B = E[lg(x)]. In addition, the
variance of the stochastic objective function using the canonical estimator is proportional to the quantum
variance of the Hamiltonian in the quantum state Py,

var(ly) := cov(ly,lg) = (Yo |Hebe) — (1pg|H*¢g), (40)

which follows from Hermiticity of H. The canonical estimator thus has the desirable property that its
variance approaches zero when 1y approaches any eigenfunction of H. This zero-variance principle is an
attractive feature of stochastic reconfiguration compared to other stochastic optimization problems, and can
be exploited when numerically approaching a ground eigenfunction. It turns out that the canonical
estimator is not the only estimator available in continuous-variable VMC, however, and we will discuss one
such alternative in the experiments section.

For normalized trial functions, it has been shown empirically [18, 20, 37, 44] that the stochastic
reconfiguration choice of baseline B = E[ly(x)] has reduced variance compared to vanishing baseline. In
order to better understand this variance reduction property, let us define the following gradient estimator
with arbitrary baseline B,

Vo.5(x) :== Re [(lp(x)1 — B)7g(x)]. (41)

Anticipating the variance-reduction property of the baseline, introduce a convex objective function for the
matrix B; namely, the total variation of the random vector Vy g,

V(B) :=tr [cov(V5)]. (42)

The stationary points of (42) describe a linear system of equations for the matrix B. In appendix B, it is
shown that the system can be solved under the ad-hoc assumption that Iy and o are statistically independent
under pg. In particular, one finds that B is an approximate multiple of the identity matrix, B =~ E[lp(x)]1.
This provides a heuristic justification for the variance reduction procedure utilized in [18, 20].

7. Additional comments on quantum flows

7.1. Group equivariant dynamics from flows
An attractive feature of normalizing flows is that they are compatible with group symmetries in the following
sense.

Lemma7.1. Let G < O(d,R) be an orthogonal matrix group and p : G — C* a one-dimensional
representation of G. Suppose that 0 # 1 € LP(R?) and f € Diff(R?) transform as

¥(gx) = p(g) ¥ (x), flgx) = gf(x), forallg € Gand x € RY. (43)
Then p is a unitary representation and f-) € LP(RY) transforms as
(f)(g0) =p(®) (f¥)(x),  forallge GandxeR". (44)

The proof is an elementary generalization of [31, lemma 1]. The above lemma has important
implications for quantum simulation because it enables to model a flexible family of normalized
G-equivariant functions using a simple normalized G-equivariant base function ¢» € L*(R¢) and a family of
G-equivariant diffeomorphisms. The set of such G-equivariant functions forms a Hilbert subspace of L?(R¢),
which is stable under real- or imaginary time evolution by a G-equivariant Hamiltonian H satisfying,

UgoH=Ho U, forall g € G, (45)

where the unitary operator U, acts on the Hilbert space as Uy (1)) = ¢ (¢~ 'x) for all b € L*(R) (recalling
that |detg| = 1). If combined with the time-dependent variational principle, the above construction enables
the approximation of real- or imaginary-time dynamics within the G-equivariant subspace of states. In other
words, flows can describe dynamically closed superselection sectors of the Hilbert space. This possibility was
recently investigated in [44] using the sign representation of a permutation subgroup G < O(d,R) for the
purpose of modeling spinless fermions.
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7.2. Universal approximation

Although universal approximation has been proven under the assumption of strict positivity [31],
complex-valued flows pose additional subtleties. In particular, as already noted in the context of
first-quantized fermions [44], normalizing flows cannot change the topology of the zero level set for the base
function and similarly for the level sets of complex phase. More precisely, the level sets are diffeomorphic,

Lo(modf-¢) = f(Ly(mod)), V0 € [0,27) : Lo(argf 1) = f(Lg(argv))), (46)

where mod denotes the complex modulus and L.(-) denotes the level set of a function corresponding to the
real value ¢ € R. Although the above identities pose an obstruction to universal approximation, this
limitation can be easily overcome in practice by promoting the base to a trainable function, or by multiplying
the output of the flow with a learnable complex phase.

8. Experiments

8.1. States and Hamiltonian
Let p = (1/i)V denote the momentum operator canonically conjugate to x and consider the following
Hamiltonian operator represented on a suitable subspace of the Hilbert space L?(R) by

H= % |:;:| -h |:;:| + %Z /\Ijklxixjxkxz, (47)
ijkl
where h e S¥ isa symmetric matrix, A;j are the components of a real tensor A € Rxdxdxd and . denotes
the standard inner product for Euclidean space R??. The physical significance of the above Hamiltonian is
that it describes an indefinite number of bosons occupying d possible modes’. Additional assumptions about
h and X are required to ensure the existence of a ground eigenfunction. If, for example A =0, then we require
h € S, to be symmetric positive definite. In this case, the exact ground eigenfunction is represented by a

family of trial functions ¢ € L*(R?) of the following Gaussian form'’,

1/4
dolx) = (deti) exp [—i(x—u>T<A+iB><x—u> , (48)

where the variational parameters are constrained to the manifold (u,A, B) € R x Si L X S?. Consider the
following block decomposition of the symmetric matrix h € S*

h h
h= [ = "P} , (49)
hPx hPP

where hy, = hfp and where hy, h,, € S? are symmetric.

The experiments focus on the problem of approximating a ground eigenfunction via the method of
natural gradient descent, using a non-canonical estimator of the gradient obtained using an adjoint
representation of the Hamiltonian, the details of which are deferred to appendix H. For simplicity, we
exemplify the method in the special case of hy, = 1 and h,, = 0, where it should be stressed that this example
is only for illustrative purposes since quantum Monte Carlo does not suffer from a sign-problem when
hy, = 0. In addition, since we are targeting the ground eigenfunction rather than the full imaginary-time
trajectory, we may employ any step size schedule consistent with decreasing energy. In particular, we
combined the natural gradient method with the Adam optimizer. In order to ensure boundedness of the
Hamiltonian from below, we chose the interaction tensor Ajx = 30;;6ui; for some symmetric positive
definite matrix u € S , . The resulting Hamiltonian has a unique ground space spanned by a strictly positive
eigenfunction [15, section 3.3]. By positivity of the ground function, if the Hamiltonian is G-equivariant for
some G < O(d,R), then it follows that the ground eigenfunction transforms in the trivial representation.
Thus, provided that G is a finite group of computationally tractable order, a trial function for the G-invariant
ground eigenfunction can be chosen as the square root of a mixture density formed by symmetrizing a
classical normalizing flow py as follows,

Po(x)* = é > palgx). (50)

geG

9 A motivating example from field theory is provided in appendix E.
10 See appendix C for an example in one dimension.
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Figure 1. A boxplot showing the energies found via normalizing flows and Gaussian state approximation (results shown for ten

random initializations). ‘NF’ and ‘NF-Symmetric’ refer to the unsymmetrized and symmetrized normalizing flows, respectively
(see (50)). The results labeled with ‘adiabatic’ are trained using adiabatic retraining, as described in appendix G.3. Although the
true ground state energy of these systems is unknown, a lower bound on the energies is plotted for comparison—the calculation
of this lower bound is described in appendix I.

In the experiments the matrices u and h,, were chosen randomly to reflect our agnosticism about the
nature of the regularization. It follows that the only remaining symmetry of the Hamiltonian is G = Z,,
whose non-trivial element is implemented by field space inversion x — —x. Since Z, is a finite group of order
2, the mixture density approach is computationally efficient in this case.

8.2. Experimental setup
Recall that under the above simplifications the Hamiltonian is specified by a symmetric matrix h,, € S¢ and
a symmetric positive-definite matrix u € S‘i - For each problem dimension d € {2,5,10,25,50,100} a
random Hamiltonian was selected by choosing the / and A parameters in (47) subject to the constraints
described in the previous subsection, specifically that & is a symmetric block diagonal matrix of the form
h = diag(hy, 1) with hy, symmetric negative definite'' and that Ay = 38;0,ui for symmetric positive
definite u € S | . The relevant matrix ensembles and sampling procedures are described in appendix G.2.
For each randomly selected Hamiltonian, the ground eigenfunction is approximated by representing it
using a Z,-symmetrical trial function of the form (50) where py was chosen to be a ReaNVP-based
normalizing flow [12] with variational parameters § € R”. Starting from random initialization, the
parameters 0 of the neural network were updated using stochastic natural gradient-based optimization of the
loss function (36), employing the adjoint representation of the Hamiltonian. Stochastic estimates of the
gradient on each iteration were obtained using PyTorch to back-propagate (36), without the use of baseline
adjustment. Additional details on the normalizing flow architecture and training procedure can be found in
appendix G.1. Following the recent work of [16], adiabatic retraining was also explored (appendix G.3 for
additional detail).
As a baseline, the results are compared to a real-valued Gaussian trial state (48), for which the variational
energy can be computed analytically (see appendix G.4). Optimization over the parameter manifold
(1,A) € RY x S4 | was performed using the Pymanopt toolbox [41].

11 ; d
That is, —hy € S++.

10
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Figure 2. From left to right: contours of the potential function and density plots from the corresponding optimized wave functions
for d =2 (unsymmetrized normalizing flows, symmetric normalizing flows, and Gaussian wave function approximation).

8.3. Results

The energies found via the normalizing flow approaches and the Gaussian approximation are shown in
figure 1. We can infer that the normalizing flow methods generally lead to lower estimates of the ground state
energy than the Gaussian state approximation. In addition, compared to unsymmetrized flows, symmetrized
flows with adiabatic retraining yield lower energies in higher dimensions. In figure 2, the potential function
and the approximations of the ground-state probability density found via normalizing flows or the Gaussian
wave approximation are visualized for problem dimension d = 2. Notice that while the symmetrized
normalizing flow is able to find the two expected modes for the given the potential function, the
unsymmetrized flow and Gaussian approximation collapse around one of the modes.

9. Discussion and future directions

In summary, flow-based parametrizations provide a promising class of trial wavefunctions for use in the
continuous-variable VMC, although a number of challenges remain to be solved. Let us conclude by
summarizing open problems. An obvious limitation of flow-based parametrizations is their lack of
holomorphy, which is required to ensure energy conservation during variational real-time evolution. It
would be very interesting to reconcile the holomorphic constraint with the exact sampling property of flows
in the continuum. Since VMC methods suffer from finite sampling effects, it will be interesting to undertake
finite-sample analysis of the different gradient estimators and to further explore variance reduction
strategies. It would also be interesting to better understand the approximation power of G-equivariant flows.

It will be natural to extend the experiments to address the sign-problem, including the determination of
ground states for non-stoquastic systems characterized by h,, 7 0, or real-time evolution. In particular, it
would also be interesting to numerically investigate the extent to which energy conservation is violated in
practice.

An important outstanding challenge is to find physical applications of the scheme which exhibit an
advantage compared to the best known algorithm. Aspirational targets include charged scalar fields at finite
chemical potential [43] or variational calculation of scattering [26].
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Appendix A. McLachlan’s variational principles

This section constructs an (admittedly contrived) example demonstrating the failure of McLachlan’s
variational principle for the time-dependent Schodinger equation. This example complements

11
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[45, section 4.2] which considered real time evolution of a single qubit. Consider the quantum simple
harmonic oscillator

H= %(p2+x2), (51)

initialized in the state given by projection onto the ground eigenfunction,

1 1,
Po(x) = —i/3 &P [—Zx } (52)
The exact projector dynamics under real-time evolution is clearly given by the trivial constant sequence
(Pay ) 1=0- Now consider the following normalized variational family

a

Yo(x) = (7>1/4 exp [—;(a—i—ib)xz} , (53)

™

parametrized in terms of @ := (loga, b) € R?, which ensures the positivity constraint a > 0. Recall that
variational Liouville-von Neumann equation and the variational time-dependent Schrodigner equation
(TDSE) are given, respectively by

g(0(1)0(r) = Im[F(8(1))], £(0(1))0(r) = Im[F(9(1))], (54)
where
/Oy g = o/ Ovg
Fu.(0) = <69ﬂ |H1p9> - <89#|¢0> (vo|Hybo) Fu(0) = <89#|H¢0> (55)
e[ (200|000 f0vg W]+ o e (200|200
gl“’(a) =Re |:<89'U’ aol, > <89“ 1/}9 ¢9 aep g,u.u(e) =Re aep‘ 80V ! (56)
In the example above we compute
1+a*+ b
(g|Htpg) = a2 (57)
- b
Im[F(0)] = ) +43(1+b2)1 (58)
16 16a?
2 0
Im[F(0)] = Lo | — [ } (59)
_% + 3(12;2 ) Tlﬁ + 11J6r:2
]
- - (60)
-1+ 1
~ i 0
ORI (61)
16a°
i 0 0 0
— |3 _
o=l 2] 2 .
i 0
— |8
-li 2] )
Putting the above pieces together we obtain the following variational Liouville-von Neumann equation
d [loga| 2b ]
dt[ b ]La2+b2_ (64)
and the following variational TDSE,
d [loga| 2b |
dt[ b ]_[1—;a2+b2_’ (65)

If the system (64) is initialized at the origin of the § = (loga, b) € R? coordinates, then it will clearly
reproduce the exact projector dynamics since the right-hand side of (64) vanishes. In contrast, it can be
verified that there is no choice of initialization which produces the exact projector under (65).

12
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Appendix B. Justification for choice of baseline

In this appendix argue that the stationary points of (42) are approximately solved by the stochastic
reconfiguration baseline. Starting from the definition of the loss function (42) and recalling that Vg (x) is
real-valued,

V(B) =tr [cov (V97B)] (66)

tr E[VQB )@ Vo.s(x )}fE[wB(x)}@E[%,B(x)}} (67)

=1tr

{
{

E [%,B(x)TwB(x)} —VLO)VL©O). (69)

E[ X) ® Vo.5(x )] —v,c(e)cwz:(e)} (68)

Now using the fact that the second term above is manifestly independent of B we obtain,

) B [V V() 70
=—2FE {V” ) ® Re [5(x )]} (71)
ZE[Re 79(x)] ® Re [Te(x)]} (72)

_2F [Re 00(x)] @ Re [o9 (+)] . (73)

Setting the gradient to zero we obtain,

BE [Re[ag(x)] @Re[ag(x)]} - E[Re@(x)ag(x)] ® Re[ag(x)]] (74)

Now the right-hand side is

B[ Relli(x)o0 (9] @ Relo ()] = 2B [ (B0)o0() + o ()73(3)) & Relorn ()] 75)
= 2 [l500() & Relos (9] + o (<)731x) © Relol)] 76)
,WEF )] [0(x) © Refo (x )]}+%E[zg(x)m[@(x)®Re[ag(x)]} (77)
= SE[(x)]E[(00(x) +75() @ Relo (<] 78)

- ]E[lg(x)]IE[Re[og(x)] ®Re[c79(x)]}, (79)

where in the third equality we have assumed that Iy and o¢y are approximately independent under py.
Plugging back into the right-hand side of (74) we find the approximate solution B =~ E[lp(x)]1.

Appendix C. Quadratic Hamiltonian in one dimension
In one problem dimension (d = 1) and in the limit of vanishing interaction potential,
m=3b] b il o
2[p] lho hyp) (P

where hychy, — (hyy)? > 0 and the ground eigenfunction is of the form (53) with

hychpp — (hyp)?

g= N T ) (81)
hPP
h
b= "2, (82)
hPP

13
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Appendix D. Derivation of time-dependent variational principles

In this section we review the derivation of (26), synthesizing the results of [3, 40]. In the following
summation over repeated indices is implied. Denote 1)y := e~ 4%1)5. Then

‘ <QZ9 er+59> ‘

argmindps(P; , Py, ,,) = argmax ——= = argmax
s0ER Vo TR shere |(Wolte) (Worsoltborse)l  soers

<J9\¢9+69>‘2, (83)

where we used the monotonicity of elementary functions and the normalization of 1y 59. We have

o (5[

(Yol to-+50) = (Poltbe) + < on

|? to quadratic order in the displacement gives,

) Oy | ~
Bl > * <aeu

So Taylor expanding | (¢g |1g-s6)

| olbosrso) = | Falbo) + [<¢9|w9> <

> <¢9|¢9>] 60"

) Oy ~ ~ 821/}6 1 627/)0 _ "
+ KE)G“ i ><¢9 89V> + §<¢9|%> <1//e 89“89”> +5 <80P«9V ¢9> <¢9¢9>}
x 06H56Y + - - (85)

Expanding the exponential e=4% in §¢ and neglecting cubic-order terms in the multi-variable Taylor
expansion in 66 and 6t,

)

(Golvos0) = |(Talvo) - 2Re | {502 o

A¢9> (Avpglibg) <89M

¢9>] 56" 5t — Re[Guw (0)]06% 660" +---

(86)
The first-order optimality condition 0 = 66% [{(1pg|19150)|?, at lowest order in 60 and dt, thus gives

g Oy
O:_Re[<8eﬂ

A +(A
o+ ol { o2
In the limit 6t — 0, neglecting higher order terms gives (26).

¢9>] 5t — Re[G,, (0)]66” + -+ - . (87)

Appendix E. Field theory motivation

In this section we use the heuristic arguments to motivate a Hamiltonian of the form (47). Consider the
Hamiltonian for a neutral scalar field with quartic self-coupling defined, for simplicity, on the compact
interval'? I = [0, L] with periodic boundary conditions

H= [ash(. ) = 3 m( 4+ + 0] + o) (58)

where the field amplitude and the momentum density satisfy [¢(x), 7(y)] = id(x — y) for x,y € I. If we now
expand the field operators ¢ and 7 using an orthonormal system of periodic real-valued functions (f; );en,

X) - Zg)ifi(x)v ﬂ(x) = Zﬁ—iﬁ(x)? (89)

ieN ieN

then we find that the operator-valued coefficients ¢A>,- and 7; satisfy the standard canonical commutation
relations [¢;, 7ij] = i0;. Substituting back into the Hamiltonian, using orthonormality and truncating the
infinite series using the dth partial sums, we obtain a regulated Hamiltonian which is represented on L?(R¢)
by the Schrodinger operator (47) with the following identifications

= S s [ = [eswswieie oo

Repeating the above analysis for a charged scalar field with nonzero chemical potential we obtain a similiar
Hamiltonian in which the off-diagonal blocks of h are nonzero.

12 Compactness is convenient because it avoids the possibility of spontaneous symmetry breakdown.
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Appendix E. Technical proofs
Proof of (3). Let f,g € Diff(R?) and v» € [P(RY). Then

(Fog) - 1h(x) = |detfgrop (x)| P (g o f 1 ()

= [det1 (7 () detp-1 ()] v (g o f 1)

= |detp1 ()] 7 | et (f " ()| P 0 (g

=f- (g ¥)x)

] Stokes et al

(91)

(92)

(93)

(94)

O

Proof of (4). Suppose that f € Diff(R?) and let y = f(x) denote the image of x € R?. By the inverse function

theorem, Jy-1 (y) = J(x) ™", so |detJ-1 (y)| = |detIf(x)|_1. Now (p =2 here)

Wiru") = [ 507 det ()]0 (57 )

/ dx|detJy(x)| ¥ (f(x)) |detJ(x)

_ /R dy[detx)] w0 ()

— (i)
Now by (3),

UlUp () =f-(f-4) = (fof (W) =

and likewise Up-1 (Uf(v))) = ¢ so Up1 = U;l.

(95)

(96)

(97)

(98)

(99)

O

Proof of (8). Recalling the definition (1) of f- pg (for p = 1) and using the fact that f € Diff(R9) is independent

of 0,

1f-pol = [ 5(f-p0) 3) (Voo po)5) Vologlspo) ']

- /R dx[detsy ()| po(F~' () [Valogpa(f ™ (x)) Valogpo (' (x))"]

= I[po]

Proof of (9). By the chain rule

logpy(x)

0 logp
9 14
oom et 80 ()

7]
Z 8911

— »(0)

logpg(x)

and thus

110] := ET) [Vologpy(x) Vologpa(x)']

Jo(0)"1(6(60))]4(6),

(100)

(101)

(102)

O

(103)

(104)

(105)

(106)
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Proof of (15). Let {/)vg = ¢ 4)y. Then

e |0 \ /e Do
<aeu aev><aeu aeﬁ ‘aav aev¢9> (107)
8’4[19 6’1/19 Ow Ow ,8&) 8¢9 81/)9
<aeu aev> aeuaev_laeu< 0 aev>+ aav<aeu 7’[’9> (108)
and
Oy Oy
<89“ 1/)9> = <89# W 1/J9> (109)
8% . Ow
:<w ¢9>‘laaw (110)
SO
o ~ | oy, o o Ow Bw o . Ow [ O
<ae§ w9>< 6 895>:<803 w9><¢" 56 >+a.9uaﬁ_ W@“) o6 >+’aev <693 ¢9>'
(111)
So
Dty | O Dy Do Dy | Db 0o Ay
(e )l ) = e ) (o) () o
O

Proof of (19) and (30). Details are provided only for (19) since (30) follows similarly. By the chain rule

Wy 1 0Ty 1 g  O(Wg|To) (113)
00— (Wy|Tp)l/2 | 001 2 (Wy|Wy) OO+ |°
So
Ot | g _ 1 OVg 1 Wy O(Up|Wp) |0Vp 1 Wy I(We|P)
oor | 00 (Wg|Wy) \ 00F 2 (Ty|Ty) OO 00v 2 (Uy|Wy) 0¥
(114)
_ 1 0y | 0Ty +1 1 O{(Tg|Tg) O{Ty|Tp) (115)
o <\I/9|\I/9> o6r | 96v 4<\Ifg|\1/9> oor o0v
1 1 0¥y O(Wy|Tg) 1 1 0Wg \ O(Tg|Ty)
z<qfe|\p9><aeu ‘I"’> 200 2 ey \" o ) aon (116)
and
[ " " g \ 1 A v ~ 10(Wg| V) v 0¥y 71(9(\1;9‘\1;”
aor | /N 00 | T (We|Wg)? [\Oor | 0/ 2 oer “loor / 2 aev |°
(117)
Expanding out one finds that the offending terms cancel and we obtain:
61&9 0y 81/19 " . g . 1 % 0¥y _ 1 8\119 v, o Vg
01 | 0¥ aon | ° 0100V |~ (Tg|Tg) \ 001 | 90¥ |~ (Wq|Tg)2 \ 00K 1 06v
(118)
O
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Proof of (32). Using (22) and (31) we obtain the following 6 = 6; & 6, decompositions,

[Re[S(z2)] 9_1 — Im[S(2)]6,

000 = o el (1)
— Re[F(0)] = :ﬁ;[[i(é))” (120)
Im[F(0)] = _IIEEEISZE)J (121)

Plug these expressions into the evolution equation (26) and consider a linear combination consisting of the 6,
rows superposed with an imaginary unit multiplying the 6, rows to obtain (32). O

Proof of (33). Taking the time derivative of the loss function £ defined in (28) and assuming that the holo-
morphic constraints (20) are satisfied we obtain,

L(0) =01V L(0)+ 607V, L(0) (122)

= 0T Re[F(z)] + 6 Im[F(z)] (123)

= Re[z'F(z)] (124)

_ {Re[zTS(z)z} (125)
Reliz'S(2)Z]

_ {fs(z)é . (126)

The first equality is the chain rule. The second equality used VL(0) = Re[F(0)] together with (31). The
third equality used z = 6, + i,. The fourth equality used (32) and the final equality used the fact that S(z) €
H'? is Hermitian positive semi-definite.

O

Proof of (35). Recalling our conventions for complex covariance matrices in section 2,
cov(79,7) = Elog ()00 (x)1] — Elorg ()| Elorg ()] (127)
cov(ag,o9)" = E[ag(x)o(x)"] — B[ (x)|Elog(x)]" (128)
= G(0). (129)

Similarly,

COV(le, og) = E[la (x)og (x)T] — E[la(x)]E[Jg (x)]T (130)
cov(lg,09)" = E[og(x)ls(x)] — E[og (x)]Ellp (x)] (131)
O
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Proof of (39). Starting from (37) we obtain,

V,C(Q) =E [ (ﬁg (x)]l — ]23) Vi logpe (x):| +E [Veﬁg (x)} (132)
- %IE (o ()1 — B) (T3(x) + 00(x))] + %]E [Vols ()], (133)
where we have used
Vologpe(x) = V;:J&()x) (134)
Vg (x) Ya(x) + Yo (x) Veta(x)
- bo) 13
=0g(x) + oo(x). (136)

Now

_ o [ YelHYe) () (Hio)(x) Voo (x)
E[Vglg(x)]—/wdxwe( ) [ Vo(x) VYo(x)  o(x) (137)

_ /R () Vo (Hio) () — E [l (1) ()] (138)
_ /R AxH0) (5) Voo (x) — B[l ()00 ()] (139)
_ | HYe) ) | Vovo(lx) R

= [ axtuato | B2 T gl 5)0, ) (140)
=E[lg(x)oo(x) — lo(x)oq(x)], (141)

where we have interchanged the order of operations of the gradient V with the Hamiltonian H and also used
the fact that H is Hermitian. Thus,

VL) = %E[ZG(X)W(X) +Ip(x)og(x)] — %BE[UG(JC) +5(x)] (142)

=ReE|[(ls(x) — B)7a(x)], (143)
Alternatively, starting from the definition of the loss function (28),

(Votbg|Hibg) + (Y9 HV 91g)

VL) = ! (144)
_ (Vo Hipp) er (Hp|Votbo) (145)
= %(V9¢9|H¢9> +cc (146)
_ %]E[lg (0)F7(x)] +c.c. (147)
=ERe [lp(x)79(x)], (148)

where we have used the product rule in the first equality, Hermiticity of H in the second equality and conjugate
symmetry of (-|-) in the third equality. O
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Proof of (46). By definition of the zero level set,

Lo(modf- 1) := {x € R?: |detJy1(x)|"/* mod+ (f ' (x)) = 0} (149)
={xeR?:mody(f '(x)) =0} (150)
=: (mod+ of ") ~'[{0}] (151)
= f((mod)~'[{0}]) (152)
= f(Lo(mod)), (153)

where the second equality used the fact that f is a diffeomorphism to divide out the everywhere nonzero
Jacobian factor |det/si(x)| > 0, the third equality is by definition of the pre-image and the fourth equality
follows from the property of pre-images under a composition of maps. By the same reasoning,

Lo(argf-¢) = {x € R :arge) (' (x)) = 6} (154)
=: (argyp of ) T'[{6}] (155)

= f((argy) ' [{6}]) (156)
=f(Lo(arg)) (157)

O

Proof oflemma 7.1. Starting with the expression ¢ (gx) = p(g)¥(x), taking the complex modulus, raising to
the pth power and integrating we obtain

| aslotear = ol | asoiap (158)
Now changing integration variables on the left-hand side,
derlg™)| | dsli)? = ol | dslio). (159)

Recalling that [[¢) ||, # 0 and that G is an orthogonal group we conclude |p(g)| = 1, as required for a one-
dimensional unitary representation. Recalling the definition (1) we obtain

(1) (gx) = |det1 ()] (£ (g9)). (160)

Now w(ffl( x)) =¥ (g (x ):pg ( F(x) )). In addition, as shown in [31], i (gx)| =
|det]f71(x)| and therefore (f-¥)(gx) = p(g) (f- ¥) (x).

O

Appendix G. Architecture and training details

In this section, additional details on the architecture and training procedure used for the experiments are
provided.
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Table 1. Ablation study on some of the different options for using the natural gradient (with or without the Adam optimizer and
changing the preconditioning terms ~y for the Fisher information matrix). Using the standard gradient with the Adam optimizer is also
considered. This ablation study uses the standard normalizing flow approach (no symmetrization or adiabatic retraining). The results
shown indicate the mean ending energy across ten runs using different random initializations, with the error bounds equal to two times
the standard error.

Dimension 2 5 10
Natural Gradient, v =1.0 —3.8440.53 —48.76 £4.77 —3.2440.42
Natural Gradient, v = 1.0, Adam —4.69 £ 0.02 —46.75+6.12 —7.58 +0.18
Natural Gradient, v =0.1 —4.384+0.29 —47.41 £5.15 —6.78 £0.59
Natural Gradient, v =0.1, Adam —4.69 £ 0.02 —50.12 £+ 3.06 —7.521+0.26
Standard Gradient, Adam —4.6840.02 —48.99+4.82 —7.464+0.26
Gaussian —4.394+0.39 —40.22 +7.64 —6.921+0.43
Dimension 25 50 100
Natural Gradient, v = 1.0 —35.78 £7.49 —28.38 £3.76 —75.854+2.95
Natural Gradient, v = 1.0, Adam —47.87 +3.43 —39.79£1.39 —79.43+2.17
Natural Gradient, v = 0.1 —46.63+2.93 —41.51+1.20 —80.11 +1.77
Natural Gradient, v = 0.1, Adam —48.29 4+ 3.46 —3991+1.75 —79.66 +2.54
Standard Gradient, Adam —45.98 +3.82 —40.97 £1.08 —76.514+3.18
Gaussian —42.53+2.77 —35.95+1.43 —72.834+4.00

Note: The bold indicates the best performance amongst the set of parameters varied.

G.1. Architecture and training procedure

The training procedure requires both sampling as well as calculating the log probabilities for a given sample.
As such, efficiency in both the forward and backward pass of a normalizing flow is desired, which motivates
the choice of ReaINVP [12] as the architecture for the flow. The architecture is modeled off the nflows
package [13] and built in PyTorch [32].

The normalizing flows are trained using natural gradient descent, using the Adam optimizer [24] applied
to natural gradient estimates. In the calculation of the Fisher information matrix, a preconditioning term ~y
of 0.1 is added to the diagonal in order to stabilize training. We start with an initial learning rate of 0.01—this
initial learning rate is decayed using a cosine decay schedule with no warm restarts [27]. The per-sample
gradients necessary for calculating the Fisher information matrix are calculated using the Backpack package
[10]. An ablation study comparing different optimization methods is shown in table 1.

G.2. Randomly generating Hamiltonians
In this subsection, we describe the process for selecting the matrices h,, and u which define the Hamiltonian.
The procedure for selecting u for dimension d is as follows:

e Select d eigenvalues uniformly randomly from the interval [0.1,2]. Let ¥ be a d x d diagonal matrix with
these eigenvalues along the diagonal.

e Sample a random matrix U from the Haar distribution over the orthogonal group in dimension d.

e Let u equal USUT.

The procedure for selecting h,, is identical, except in the final step, k., is set to be equal to —UXU”. This
ensures that u is positive definite and k., is negative definite, while maintaining bounds on the condition
number of each matrix. For each dimension d, we run each approach (normalizing flows, symmetric
normalizing flows, the normalizing flows approaches with adiabatic retraining, and Gaussian state
approximation) ten times using different random initializations.

G.3. Adiabatic retraining and flow-distance regularization

Following the recent work of [16], we investigate two methods for improving the final energy, namely
adiabatic retraining and flow-distance regularization. Adiabatic retraining involves varying the parameters of
the target objective in such a way that it interpolates between a relatively simple problem to a more
complicated problem. To implement this, the quadratic term in (47) is multiplied by a term «, where
ranges from 0 to 1 during training. Following [16], « is exponentially decayed—in other words, we let

—kt —k
e —e
i (161)
where k is a hyperparameter. Unlike [16], adiabatic retraining is used during the entire training procedure,

rather than for a interval in the middle of training.
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Hackett et al [16] also introduce flow-distance regularization, which imposes a penalty on the flow for
transforming samples z from the base distribution to significantly different outputs. This penalty is enforced
using a [, norm between samples from the base distribution and the outputs. The penalty is annealed to zero
by the end of training. Unlike Hackett et al we did not find a significant difference when using flow distance
regularization.

G.4. Gaussian state approximation

As a point of comparison for the normalizing flows approach, the energy of an optimal Gaussian wave
function (48) was estimated by optimizing over the variational parameters using Riemannian gradient
descent. Setting i = 39;j0xuix and h = diag(hy, 1) in the (47) and setting B= 0 in (48) we obtain,

(Yg|Hg) :i tr(A) + isum (hxx @Ail) + iz (diag (Ail) + Z,uQZ)Tu (diag (Ail) + 2u®2)

1 1 1
—&—Rsum (u@(A_1)®2> +5MT (hxx—i—zuA_l)u (162)

Appendix H. Loss function estimator

In this section we illustrate the adjoint loss function estimator ﬁg’d’ ) (x) as an alternative to the canonical

estimator £ (x) in the simple example of the harmonic oscillator Hamiltonian (51),

£l () 1= %za (x) (163)
- {‘ Jeg)) e ] How

, 2
L8V (x) :i [ ZZEX +x (165)

It should be noted that unlike the canonical estimator, the adjoint estimator does not exhibit the
zero-variance property, as described in section 6.2. For the example of the simple harmonic oscillator (51),
consider the variational class given by the family of wave functions (53), parametrized by a > 0 with b fixed to
zero (a =1 is the ground eigenfunction (52)). Figure 3 shows the variance of both estimators as a function of
the variational parameter a, showing clearly the zero-variance principle of the canonical estimator. Although
the adjoint estimator is subject to an irreducible quantum uncertainty, the standard error of the estimate can
be reduced to zero at the Monte Carlo rate of 1/4/N simply by increasing the number of samples N.
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Figure 3. A plot of the variance of the canonical and adjoint energy estimators ﬁg“") (x) and ﬁgdj) (x) for the simple harmonic
oscillator Hamiltonian (51) as a function of the variational parameter a in (53) with b =0 fixed.

Appendix I. Lower bounds on the energies

The lower bound on energies displayed in figure 1 is obtained using the following inequalities, which are
valid for a Hamiltonian operator of the form H = —1 V2 + V(x) acting on L*(R%),

w10 = | 4T o) (166
= [t [3Ive P+ Py (167)
> [ dislutoPv, (168)
RY
> V(Xmin), (169)

where in the second equality we used integration by parts and where X, denotes any classical minimizer of
V. Setting 1) equal to the unique ground eigenfunction we obtain the lower bound

>\rnin 2 V(xmin)- (170)

This is a non-trivial bound for our problem since V is a quartic polynomial whose optimization is
generically NP-hard. However, V(X ) can be estimated by performing numerical optimization with
multiple random restarts using the Adam optimizer with cosine decay learning rate; the loss curves from
these optimizations are shown in figure 4. Given the above lower bound, the relative error can be bounded as
follows,

. E — Ami E E E — Vix:
relative error = Gauss min _ Gauss +1 < Gauss +1= Gauss ( mm)

—Amin —Amin - V(xmin ) B - V(xmin ) ’

where the above inequality used (170) and the fact that Ayin, V(xmin) and Egauss are all negative. The results
are as follows:

(171)

d Max relative error
2 0.30
5 0.38
10 0.59
25 0.49
50 0.59
100 0.52

Granted, this is only an upper bound on the relative error, and thus the true error could be considerably
lower.
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Figure 4. Loss curves from the numerical optimization of V(xmin) with multiple random restarts.
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