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Abstract

Finding an analytical solution to the Schrédinger equation with power function superposition
potential is essential for the development of quantum theory. For example, the harmonic
oscillator potential, Coulomb potential, and Klazer potential are all classed as power function
superposition potentials. In this study, the general form of the power function superposition
potential was used to decompose the second-order radial Schrédinger equation with this
potential into the first-order Ricatti equation. Furthermore, two forms of the power function
superposition potential are constructed with an exact analytical solution, and the exact
bound-state energy level formula is obtained for these two potentials. Finally, the energy lev-
els of some of the diatomic molecules were determined through calculation. And our results
are actually consistent with those obtained by other methods.

Introduction

The potential in the form of V(r) = a;r'(i=0,+1,+2, - -) is known as power function potential.
When i = 0,-1,-2,- - -, V (1) is also referred to as inverse power function potential. Playing an
important role in quantum mechanics, power function potential is conducive to the study on
the structure of some microscopic particles and the interaction between them. For example,
harmonic oscillator potential and Coulomb potential are categorized into power function
potentials. When more complex microscopic particles are studied, a single power function
potential is unable to meet the requirements. However, a better effect can be achieved if the
potential function is the superposition of several power functions. The potential in the form of

n

V(r) = Z a,r' is called the power function superposition potential, which has attracted atten-
tion from many researchers [1-7] looking for the analytical solution of the Schrédinger equa-
tion with the power function superposition potential and the energy level of the quantum
system. It plays an important role in promoting the development of the quantum theory and
its application.

In this study, the general form of the power function superposition potential V(r) is used to
decompose the second-order Schrédinger equation with this potential into the first-order
Ricatti equation. Then, two forms of power function superposition potential with shape
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invariance are constructed, namely, precise analytical solution, and their energy eigenvalues
are calculated by using the supersymmetric quantum mechanics (SQM) [8-15].

The remainder of this paper is organized as follows. In the Materials and methods Section,
two power function superposition potentials with exact analytical solutions are constructed.
The shapes of these two potentials for several different diatomic molecules are presented. The
exact bound state energy level formula of these diatomic molecules is obtained. In the Results
and discussion Section, the energy eigenvalues of these diatomic molecules are calculated for
different radial quantum numbers (#,) and angular momentum quantum numbers ([), and
compare the results obtained with other methods [16,17]. Finally, a conclusion is drawn in the
Conclusion Section.

Materials and methods
1. Construction of two power function superposition potentials by SQM
The radial equation in a central field is expressed as

I(1+1)

r2

1d> 2u

=0 1)

where R(r) represents the radial wave function, y indicates the reduced mass, and angular
momentum quantum number [ =0, 1, 2, .. .. Given that y(r) = rR(r), then
d*y,(r) {Q,u I(1+1)

+ | (= Vi) -

dr?

[ =0 )

The potential function V(r) is taken as power function superposition, i.e.

4
Vir)=a "' 4+a ., +a,r’+a r'+a,+ar+ar +ar +ar = Z ar  (3)

i=—4

where the power range of r is just from—4 to 4. When the range is from—6 to 6 or from—8 to
8, the results are consistent.

When the radial quantum number #, = 0, it is assumed that the wave function satisfies the
following eigenequation, and the eigenvalue is 0. Therefore,

D () = |35 - V(D] ) =0 (@
where
V) =" B v -, )
It can be seen that
_ Zo(7)
v =20 ©)

Superpotential is defined as
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Also, the operator is defined as

A=+ Wi ®
d
A(I+1) =5 = WD 9)

Therefore, the operator D_(I) can be obtained as

D (I) = ;—:2 — V() =A_(I+1)A, ()

The Ricatti equation can be obtained as

W2(r,1) = W(r,]) = V_(r,]) = l(l; D +i—‘§[V(r) Ey]
I+ 1) ﬁ_ﬁia_ri_Em] (10)

i=—4

When the trial solution W(r,l) = B_,r~> + B_;r™* + B, + B,r + B,r*, it can be obtained

that
2u
B%Q = ?ﬂ_zl
u
B,B ,+B,=—a,
h

> 2u
B+ B’ +2B B, = Pl +I(1+1)
B.B +B B —ta

-2 —170 2 -1
h

2 2u

—B, +B?+2B ,B,+2B B, = 7 (a, — Ey)) (11)
M
—B,+B_ B, + BB, = F“l
2u

B} + 2B, =74,

U
BB, = Fa:a

2u

Bg = F%
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Since the coefficient a; (i =0, + 1, + 2, £3, + 4) of the potential function V(r) is independent
of the angular momentum quantum number , it is required that

B,=0 B,=0
B L \/<l+1)2+2'ua
=5 5) T329 1 1’ 2
p 2 2) " h
—a
B, = R or § B, =0 (12)
1 L 2+2u
2 2 hZai? B, = 2_5“2
h
B =0
B, B,=0

It can be seen from above that the power function superposition potential V(r) capable to
complete the above transformation takes only the following two forms

V(r)=a ,r>+a r' +a, (13)
or
V(r)=a ,r > +a,+a,r (14)
There are exact analytical solutions of three-dimensional Schrédinger equation with these
two power function superposition potentials. Among them, the first category such as Eq (13) is

effectively Coulomb potential plus an inverse quadratic power function, and the other category
such as Eq (14) is in essence harmonic oscillator potential plus an inverse quadratic potential

term.
When the radial quantum number #, = 0, their energy eigenvalues are expressed respec-
tively as
It a’
Ey=ay— - : 2 (15)
2h 1 l 1)\2 2u
s+ (143 e,
or

| n? 2n* (1 1\’ 2u
Ey = a, + ﬂﬂz‘F o §+\/<l+§> ti2he (16)

2. The shape of these two power function superposition potentials

The power function superposition potential is a useful model to explore the properties of
diatomic molecules. The coefficients of the potentials such as Eqs (13) and (14) can be calcu-
lated using the parameters listed in Table 1 for O,, HCl and CO diatomic molecules. The
parameters are derived from references [16-20].

where D, represents the dissociation energy, r, denotes the equilibrium internuclear separa-
tion and y refers to the reduced mass.

When r=r,, V(r) = -D,and d‘gf) = 0, the coefficients of the potential function V{(r) can be

obtained through calculation.
If V(r) = a_yr *+a_;r "+ay, it can be obtained that a_, =D, a_,=-2D,r,ag=0.
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Table 1. Reduced masses and spectroscopically determined properties of various diatomic molecules in the ground electronic state.

Parameter

0,

HCI CO
D, (ineV) 5.156658828 4.619061175 10.84514471
7, (in nm) 0.1208 0.12746 0.11282
u (in amu) 7.997457504 0.9801045 6.860586
https://doi.org/10.1371/journal.pone.0294851.t001
Table 2. The coefficients of the potential V(r) = a_t 2+a_yr +a,.
coefficient 0, HCI (¢f0)
a_s(in eV nmz) 0.075249266 0.075041506 0.138040824
a_i(in eV nm) -1.245848773 -1.177491075 -2.447098452
agy 0 0 0
https://doi.org/10.1371/journal.pone.0294851.t1002
Table 3. The coefficients of the potential V(r) = a_,r >+ag+a,r*.
coefficient 0, HCI Cco
a_(in eV nm?) 0.075249266 0.075041506 0.138040824
a,(in €V/ nm?) 353.3739493 284.3190019 852.0462326
ag(in eV) -15.46997648 -13.85718353 -32.53543413

https://doi.org/10.1371/journal.pone.0294851.t003

If V(r) = a_,r *+ag+a,r?, it can be known that a_,=D,j?

e'e?

D,
= r_ge’ ag = —3De.

According to the parameters listed in Table 1, the coefficients of these two potentials can be
calculated as shown in Tables 2 and 3, respectively, and their V(r)-r curve can also be drawn
as shown in Figs 1 and 2, respectively.

For the first potential, as r approaches zero, V(r) becomes infinite because of internuclear
repulsion. When r goes to infinity, V(r) is close to zero, i.e., the molecule is decomposed. For
the second potential, when r gets close to zero, it is similar to the first potential. When r
increases, the harmonic oscillator potential is dominant.

30
25
20
15

V(r)/eV

R

7/nm

........l...-o-

Fig 1. Shape of V(r) = a_,t 2 +a_yr " +a, for different diatomic molecules.
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Fig 2. Shape of V(r) = a_,r >+ag+a,r” for different diatomic molecules.

https://doi.org/10.1371/journal.pone.0294851.g002

3. Energy levels of the two power function superposition potentials

The energy eigenvalues of the two power function superposition potentials such as Eqs (13)
and (14) are calculated according to their shape invariance [21].
3.1 For the potential V(r) = a_r 2+a_yr "+ay. Let

10\* 2u 1
2—\/(14‘5) +F6172—§ (17)

where A refers to the generalized angular momentum quantum number for the potential func-
tion V(r). Eqgs (8) and (9) can be written as

o,
~
+
—
Ff=

7a4_

+1 (18)

o
)
=
NS

, d i+1 5Ha
AU+l =g+— T+i (19)

Since operators A. and A, are noncommutative operators, we can make

d?
D, =A (HA_(A+1) = FEi V. (r,4) (20)
It can be obtained that
G+1)(A+2) 2&a, Sa,
V. (r,4) = + + 3 21
) = T ()
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By substituting Eqs (15) and (17) into Eq (5), it can be obtained that

J+1) Ma B

V_ (r,2) = + + ‘ 22
7( ) rz r (;L+1)2 ( )
That is to say,
1o, 1 1
V.(i,A)=V (r,Ai+1)+—=a" — 23
L (r.2) (r ) h4a 1<(/1+1)2 (i +2) (23)

If%:z,al:f(ao)zf(z):A+1,R(u1)=;—ia’il( L 12),then

(A+1) (442)

V(o) = Vo(r,o) + R(e) (24)

According to the definition of shape invariance [21], the power function superposition
potential in the form of Eq (13) has shape invariance.

If a; = f () = A+i, then R(a,) = ;—i a’, (<z+1i)2 - m) According to the definition of
shape invariance [21], the energy level of the potential can be expressed as
h? ny ,an
E ,=E,+— R(o)=a ———— 25
2= Bt Y R = )

where n, represents radial quantum number.
By substituting Eq (17) into the above formula, the energy level formula of the potential can
be obtained as

2
pa’,

2 26)
o (JU+ D7+ a4, +1)

E ,=a,—

n?’v

3.2 For the potential V(r) = a_,r *+agta,r®. Still let

N\’ 2u 1
;\.\/(l+2> +§CL_2—§ (27)

where A represents the generalized angular momentum quantum number for the potential
function V(r). Eqs (8) and (9) can be written as

, d 21+1 2ua
A)=g -+ hfr (28)

d i+1 2,ua2r

AP+ =3+ s (29)
Considering the noncommutativity of the operators A- and A+, still let
d2
D, =A(2HA_(A+1) =g V. (r,A) (30)

PLOS ONE | https://doi.org/10.1371/journal.pone.0294851 November 28, 2023 7/12


https://doi.org/10.1371/journal.pone.0294851

PLOS ONE

Exact solution of three dimensional schrédinger equation with power function superposition potential

It can be obtained that

A+1)(A+2)

2ua,  2ua, 2 (31)

V+(r, A) = - (24+1) n’ + e

By substituting Eqs (16) and (27) into Eq (5), it can be known that

2ua,  2ua, 2

AMA+1

V()= AN gy gy, [P0 2 (32)

2 h h

That is to say,
) 2ua,

V.(r,A)=V_(r,A+1)+4 e (33)

Take oy = 4,00, = f (1)) = f(4) = A+ 1, R(0;) = 44/%%2, then
V. (r,o) = V_(r,0) + R(2,) (34)

According to the definition of shape invariance [21], it can be found out that the power
function superposition potential in the form of Eq (14) has shape invariance as well.

Let a; = f(at) = A+i and R(a;) = 4 /%52 According to reference [21], its energy level can be

determined through calculation.

R & 2h%a, [ . 3
E,,=E,+ _Z R(o;) = a, + : (/L + 2n, + _) (35)
' 2uiS K 2

where 7, represents radial quantum number.
Through Eq (27), the energy eigenvalue can be obtained as

2h%a 1\’ 2ua
E = 2 I+= ) 1 36
el a0+\/ " \/<+2> + E +2n, + (36)

Results and discussion

The energy eigenvalues with Eq (26) can be calculated using the parameters listed in Table 1
for O, HCl and CO diatomic molecules. The energy eigenvalues are detailed in Table 4 for the
different radial quantum number represented by #, and the angular momentum quantum
number denoted as I.

Similarly, Table 5 lists the energy eigenvalues obtained by using Eq (36) for O,, HCl and
CO diatomic molecules given different radial quantum numbers #, and angular momentum
quantum numbers L.

By comparing the data listed in Tables 4 and 6, it can be found out that there are differences
in the energy eigenvalues of the same three diatomic molecules as calculated by Eq (26) and Eq
(36), and that the difference gradually increases with the rise of quantum numbers, as shown
in Table 6. The implications of this are as follows. On the one hand, some potentials may be
suitable for study on the characteristics of some microscopic particles, but not for other parti-
cles. On the other hand, the effect of harmonic oscillator potential outweighs that of Coulomb
potential with the increase of quantum numbers.

Reference [16] used asymptotic iteration method (AIM) to calculate the energy eigenvalues
of some diatomic molecules. Reference [17] also calculated the energy eigenvalues of some
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Table 4. Energy eigenvalues (in V) for the various 1, and I quantum numbers for a few diatomic molecules by using Eq (26), where 7 = 1.054571817x107>%J s,
e=1.602176634x10""°C, lamu = 1.66053906660x10 >’ kg (from SI Brochure 9th edition of the SI Brochure, available on the BIPM web page: www.bipm.org).

n, 1

G G e e R R R W W W W NN N = = O

https://doi.org/10.1371/journal.pone.0294851.t1004

0,/eV HCl/eV CO/eV
0 -5.126358800 -4.541848670 -10.79431563
0 -5.066641679 -4.393729259 -10.69384082
1 -5.066292858 -4.391295181 -10.69337213
0 -5.007961982 -4.252739178 -10.59476237
1 -5.007619203 -4.250421300 -10.59430017
2 -5.006933786 -4.245793196 -10.59337591
0 -4.950295818 -4.118428126 -10.49705450
1 -4.949958943 -4.116219168 -10.49659869
2 -4.949285330 -4.111808458 -10.49568718
3 -4.948275256 -4.105210348 -10.49432021
0 -4.893619980 -3.990380802 -10.40069206
1 -4.893288873 -3.988274045 -10.40024251
2 -4.892626794 -3.984067324 -10.39934352
3 -4.891634014 -3.977774169 -10.39799534
4 -4.890310938 -3.969414739 -10.39619830
0 -4.837911919 -3.868213688 -10.30565046
1 -4.837586450 -3.866202923 -10.30520706
2 -4.836935644 -3.862187803 -10.30432036
3 -4.835959766 -3.856181097 -10.30299061
4 -4.834659212 -3.848201827 -10.30121815
5 -4.833034511 -3.838275121 -10.29900343

diatomic molecules using the exact quantization rule method (EQR). For the example of O,
we compared the energy eigenvalues of its bound states calculated using Eqs (26) and (36)
with the energy eigenvalues calculated using other numerical precision methods such as AIM
and EQR, as shown in Table 7.

It can be found that the results calculated by Eq (26) are basically the same as those calcu-
lated by the AIM and EQR methods. The reason for the slight differences is that some of the
parameters we use, such as atomic mass unit (amu), elemental charge (e), and reduced Planck
constant (h), are derived from the latest SI Brochure (9th edition of the SI Brochure, available
on the BIPM web page: www.bipm.org), but references [16,17] are not. If the same SI Brochure
is used, their calculated results are the same because their potential functions are the same. The
significant difference between the results calculated by Eq (36) and other results is due to their
different potential functions.

Conclusion

One of the key tasks of quantum mechanics is to find the exact analytical solution of the Schré-
dinger equation for any arbitrary l angular momentum quantum number within a given
potential. It can be further used to define the observables of the system. In this study, the gen-
eral form of the power function superposition potential is used to construct two different
power function superposition potentials with exact analytical solutions, which is based on the
supersymmetric quantum mechanics. The method proposed in this study is a generic one,
whose starting point is the general form of power function superposition potential.

Among these two potentials, one such as Eq (13) is actually Coulomb potential plus an
inverse quadratic power function, with Kratzer potential falling into this category, while the
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Table 5. Energy eigenvalues (in eV) for the various 1, and I quantum numbers for a few diatomic molecules by using Eq (36), where 7 = 1.054571817x107>%J s,
e=1.602176634x10""°C, lamu = 1.66053906660x10 >’ kg (from SI Brochure 9th edition of the SI Brochure, available on the BIPM web page: www.bipm.org).

n, 1 0,/eV HCl/eV CO/eV
0 0 -5.095835179 -4.463000904 -10.74318765
1 0 -4.974277415 -4.151536686 -10.53939319
1 1 -4.973919238 -4.148911890 -10.53891450
2 0 -4.852719651 -3.840072468 -10.33559872
2 1 -4.852361474 -3.837447672 -10.33512004
2 2 -4.851645158 -3.832200316 -10.33416269
3 0 -4.731161887 -3.528608250 -10.13180426
3 1 -4.730803710 -3.525983454 -10.13132557
3 2 -4.730087394 -3.520736098 -10.13036823
3 3 -4.729013012 -3.512870643 -10.12893229
4 0 -4.609604123 -3.217144032 -9.928009797
4 1 -4.609245946 -3.214519236 -9.927531108
4 2 -4.608529630 -3.209271880 -9.926573761
4 3 -4.607455248 -3.201406425 -9.925137821
4 4 -4.606022914 -3.190929539 -9.923223382
5 0 -4.488046359 -2.905679814 -9.724215333
5 1 -4.487688182 -2.903055018 -9.723736644
5 2 -4.486971866 -2.897807662 -9.722779297
5 3 -4.485897484 -2.889942207 -9.721343357
5 4 -4.484465150 -2.879465321 -9.719428918
5 5 -4.482675011 -2.866385850 -9.717036107
https://doi.org/10.1371/journal.pone.0294851.t005
Table 6. Difference (in eV) of energy eigenvalues calculated by Eq (26) and Eq (36).
n, 1 Difference for O, Difference for HCI Difference for CO
0 0 0.030523621 0.078847766 0.05112798
1 0 0.092364264 0.242192573 0.15444763
1 1 0.092373620 0.242383291 0.15445763
2 0 0.155242331 0.412666710 0.25916365
2 1 0.155257729 0.412973628 0.25918013
2 2 0.155288628 0.413592880 0.25921322
3 0 0.219133931 0.589819876 0.36525024
3 1 0.219155233 0.590235714 0.36527312
3 2 0.219197936 0.591072360 0.36531895
3 3 0.219262244 0.592339705 0.36538792
4 0 0.284015857 0.773236770 0.472682263
4 1 0.284042927 0.773754809 0.472711402
4 2 0.284097164 0.774795444 0.472769759
4 3 0.284178766 0.776367744 0.472857519
4 4 0.284288024 0.778485200 0.472974918
5 0 0.349865560 0.962533874 0.581435127
5 1 0.349898268 0.963147905 0.581470416
5 2 0.349963778 0.964380141 0.581541063
5 3 0.350062282 0.966238890 0.581647253
5 4 0.350194062 0.968736506 0.581789232
5 5 0.350359500 0.971889271 0.581967323
https:/doi.org/10.1371/journal.pone.0294851.t006
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Table 7. Comparison of the energy levels (in eV) for the various n, and I quantum numbers for diatomic molecule O, calculated using different methods.

n, 1 0O,(by Eq 26) 0O,(by Eq 36) 0O,(by AIM) 0O,(by EQR)
0 0 -5.126358800 -5.095835179 —5.126358625 —5.126358620071
1 0 -5.066641679 -4.974277415 -5.066641151 -5.066641146718
1 1 -5.066292858 -4.973919238 -5.066292323 —5.066292321402
2 0 -5.007961982 -4.852719651 -5.007961116 -5.007961110233
2 1 -5.007619203 -4.852361474 —-5.007618329 —-5.007618327191
2 2 -5.006933786 -4.851645158 —-5.006932904 —-5.006932902380
3 0 -4.950295818 -4.731161887 —4.950294624 —4.950294618656
3 1 -4.949958943 -4.730803710 —4.949957740 —4.949957739138
3 2 -4.949285330 -4.730087394 —4.949284119 —4.949284118344
3 3 -4.948275256 -4.729013012 —4.948274034 —4.948274032620
4 0 -4.893619980 -4.609604123 —4.893618469 —4.893618463868
4 1 -4.893288873 -4.609245946 —4.893287355 —4.893287353086
4 2 -4.892626794 -4.608529630 —4.892625268 —4.892625266816
4 3 -4.891634014 -4.607455248 —4.891632476 —4.891632475505
4 4 -4.890310938 -4.606022914 —4.890309388 —4.890309384483
5 0 -4.837911919 -4.488046359 —4.837910103 —4.837910098245
5 1 -4.837586450 -4.487688182 —4.837584627 —4.837584625235
5 2 -4.836935644 -4.486971866 —4.836933812 —4.836933811639
5 3 -4.835959766 -4.485897484 —4.835957923 —4.835957922172
5 4 -4.834659212 -4.484465150 —4.834657357 —4.834657353568
5 5 -4.833034511 -4.482675011 —4.833032637 —4.833032634174

https://doi.org/10.1371/journal.pone.0294851.t1007

other such as Eq (14) is effectively harmonic oscillator potential plus an inverse quadratic
potential term. From this, it can be inferred that any potential with an exact analytical solution,
plus an inverse quadratic potential term, has an exact analytical solution as well.

Furthermore, the shapes of these two potentials for several different diatomic molecules are
presented, and the exact bound state energy eigenvalues of these diatomic molecules are calcu-
lated for any / angular momentum quantum number bound by these two exactly solvable
potential. The results show that the effect of harmonic oscillator potential is more significant
than that of Coulomb potential with the increase of quantum number.
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