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Abstract

Finding an analytical solution to the Schrödinger equation with power function superposition

potential is essential for the development of quantum theory. For example, the harmonic

oscillator potential, Coulomb potential, and Klazer potential are all classed as power function

superposition potentials. In this study, the general form of the power function superposition

potential was used to decompose the second-order radial Schrödinger equation with this

potential into the first-order Ricatti equation. Furthermore, two forms of the power function

superposition potential are constructed with an exact analytical solution, and the exact

bound-state energy level formula is obtained for these two potentials. Finally, the energy lev-

els of some of the diatomic molecules were determined through calculation. And our results

are actually consistent with those obtained by other methods.

Introduction

The potential in the form of V(r) = airi(i = 0,±1,±2,� � �) is known as power function potential.

When i = 0,−1,−2,� � �, V (r) is also referred to as inverse power function potential. Playing an

important role in quantum mechanics, power function potential is conducive to the study on

the structure of some microscopic particles and the interaction between them. For example,

harmonic oscillator potential and Coulomb potential are categorized into power function

potentials. When more complex microscopic particles are studied, a single power function

potential is unable to meet the requirements. However, a better effect can be achieved if the

potential function is the superposition of several power functions. The potential in the form of

VðrÞ ¼
Xn

i¼� n

air
i is called the power function superposition potential, which has attracted atten-

tion from many researchers [1–7] looking for the analytical solution of the Schrödinger equa-

tion with the power function superposition potential and the energy level of the quantum

system. It plays an important role in promoting the development of the quantum theory and

its application.

In this study, the general form of the power function superposition potential V(r) is used to

decompose the second-order Schrödinger equation with this potential into the first-order

Ricatti equation. Then, two forms of power function superposition potential with shape
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invariance are constructed, namely, precise analytical solution, and their energy eigenvalues

are calculated by using the supersymmetric quantum mechanics (SQM) [8–15].

The remainder of this paper is organized as follows. In the Materials and methods Section,

two power function superposition potentials with exact analytical solutions are constructed.

The shapes of these two potentials for several different diatomic molecules are presented. The

exact bound state energy level formula of these diatomic molecules is obtained. In the Results

and discussion Section, the energy eigenvalues of these diatomic molecules are calculated for

different radial quantum numbers (nr) and angular momentum quantum numbers (l), and

compare the results obtained with other methods [16,17]. Finally, a conclusion is drawn in the

Conclusion Section.

Materials and methods

1. Construction of two power function superposition potentials by SQM

The radial equation in a central field is expressed as

1

r
d2

dr2
r þ

2m

ℏ2
ðE � VðrÞÞ �

lðl þ 1Þ

r2

� �

RlðrÞ ¼ 0 ð1Þ

where Rl(r) represents the radial wave function, μ indicates the reduced mass, and angular

momentum quantum number l = 0, 1, 2, . . .. Given that χl(r) = rRl(r), then

d2
wlðrÞ
dr2

þ
2m

ℏ2
ðE � VðrÞÞ �

lðl þ 1Þ

r2

� �

wlðrÞ ¼ 0 ð2Þ

The potential function V(r) is taken as power function superposition, i.e.

VðrÞ ¼ a� 4r
� 4 þ a� 3r

� 3 þ a� 2r
� 2 þ a� 1r

� 1 þ a0 þ a1r þ a2r
2 þ a3r

3 þ a4r
4 ¼

X4

i¼� 4

air
i ð3Þ

where the power range of r is just from—4 to 4. When the range is from—6 to 6 or from—8 to

8, the results are consistent.

When the radial quantum number nr = 0, it is assumed that the wave function satisfies the

following eigenequation, and the eigenvalue is 0. Therefore,

D� ðlÞw0;lðrÞ ¼
d2

dr2
� V� ðr; lÞ

� �

w0;lðrÞ ¼ 0 ð4Þ

where

V� ðr; lÞ ¼
lðlþ 1Þ

r2
þ

2m

ℏ2
VðrÞ � E0;l

� �
ð5Þ

It can be seen that

V� ðr; lÞ ¼
w@

0;lðrÞ
w0;lðrÞ

ð6Þ

Superpotential is defined as

Wðr; lÞ ¼ �
w0

0;lðrÞ
w0;lðrÞ

ð7Þ
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Also, the operator is defined as

AþðlÞ ¼
d
dr
þWðr; lÞ ð8Þ

A� ðlþ 1Þ ¼
d
dr
� Wðr; lÞ ð9Þ

Therefore, the operator D_(l) can be obtained as

D� ðlÞ ¼
d2

dr2
� V� ðr; lÞ ¼ A� ðl þ 1ÞAþðlÞ

The Ricatti equation can be obtained as

W2ðr; lÞ � W 0ðr; lÞ ¼ V� ðr; lÞ ¼
lðl þ 1Þ

r2
þ

2m

ℏ2
½VðrÞ � E0;l�

¼
lðl þ 1Þ

r2
þ

2m

ℏ2
½
X4

i¼� 4

air
i � E0;l�

ð10Þ

When the trial solution Wðr; lÞ ¼ B� 2r� 2 þ B� 1r� 1 þ B0 þ B1r þ B2r2, it can be obtained

that

B2
� 2
¼

2m

ℏ2
a� 4

B� 2B� 1 þ B� 2 ¼
m

ℏ2
a� 3

B� 1 þ B2
� 1
þ 2B� 2B0 ¼

2m

ℏ2
a� 2 þ lðl þ 1Þ

B� 2B1 þ B� 1B0 ¼
m

ℏ2
a� 1

� B1 þ B2
0
þ 2B� 2B2 þ 2B� 1B1 ¼

2m

ℏ2
a0 � E0;l

� �

� B2 þ B� 1B2 þ B0B1 ¼
m

ℏ2
a1

B2
1
þ 2B0B2 ¼

2m

ℏ2
a2

B1B2 ¼
m

ℏ2
a3

B2
2
¼

2m

ℏ2
a4

ð11Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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Since the coefficient ai (i = 0, ± 1, ± 2, ±3, ± 4) of the potential function V(r) is independent

of the angular momentum quantum number l, it is required that

B� 2 ¼ 0

B� 1 ¼ �
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ
1

2

� �2

þ
2m

ℏ2
a� 2

s

B0 ¼

m

ℏ2
a� 1

�
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ
1

2

� �2

þ
2m

ℏ2
a� 2

s

B1 ¼ 0

B2 ¼ 0

or

B� 2 ¼ 0

B� 1 ¼ �
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ
1

2

� �2

þ
2m

ℏ2
a� 2

s

B0 ¼ 0

B1 ¼

ffiffiffiffiffiffiffiffiffiffi
2m

ℏ2
a2

r

B2 ¼ 0

ð12Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

It can be seen from above that the power function superposition potential V(r) capable to

complete the above transformation takes only the following two forms

VðrÞ ¼ a� 2r
� 2 þ a� 1r

� 1 þ a0 ð13Þ

or

VðrÞ ¼ a� 2r
� 2 þ a0 þ a2r

2 ð14Þ

There are exact analytical solutions of three-dimensional Schrödinger equation with these

two power function superposition potentials. Among them, the first category such as Eq (13) is

effectively Coulomb potential plus an inverse quadratic power function, and the other category

such as Eq (14) is in essence harmonic oscillator potential plus an inverse quadratic potential

term.

When the radial quantum number nr = 0, their energy eigenvalues are expressed respec-

tively as

E0;l ¼ a0 �
m

2ℏ2

a2
� 1

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ 1

2

� �2
þ 2m

ℏ2 a� 2

q� �2
ð15Þ

or

E0;l ¼ a0 þ

ffiffiffiffiffiffiffiffiffiffi

ℏ2

2m
a2

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffi

2ℏ2

m
a2

s

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ
1

2

� �2

þ
2m

ℏ2
a� 2

s0

@

1

A ð16Þ

2. The shape of these two power function superposition potentials

The power function superposition potential is a useful model to explore the properties of

diatomic molecules. The coefficients of the potentials such as Eqs (13) and (14) can be calcu-

lated using the parameters listed in Table 1 for O2, HCl and CO diatomic molecules. The

parameters are derived from references [16–20].

where De represents the dissociation energy, re denotes the equilibrium internuclear separa-

tion and μ refers to the reduced mass.

When r = re, V(r) = −De and
dVðrÞ
dr ¼ 0, the coefficients of the potential function V(r) can be

obtained through calculation.

If V(r) = a−2r−2+a−1r−1+a0, it can be obtained that a� 2 ¼ Der2
e , a−1 = −2Dere, a0 = 0.
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If V(r) = a−2r−2+a0+a2r2, it can be known that a� 2 ¼ Der2
e , a2 ¼

De
r2e

, a0 = −3De.

According to the parameters listed in Table 1, the coefficients of these two potentials can be

calculated as shown in Tables 2 and 3, respectively, and their V(r)−r curve can also be drawn

as shown in Figs 1 and 2, respectively.

For the first potential, as r approaches zero, V(r) becomes infinite because of internuclear

repulsion. When r goes to infinity, V(r) is close to zero, i.e., the molecule is decomposed. For

the second potential, when r gets close to zero, it is similar to the first potential. When r
increases, the harmonic oscillator potential is dominant.

Table 1. Reduced masses and spectroscopically determined properties of various diatomic molecules in the ground electronic state.

Parameter O2 HCl CO

De (in eV) 5.156658828 4.619061175 10.84514471

re (in nm) 0.1208 0.12746 0.11282

μ (in amu) 7.997457504 0.9801045 6.860586

https://doi.org/10.1371/journal.pone.0294851.t001

Table 2. The coefficients of the potential V(r) = a−2r−2+a−1r−1+a0.

coefficient O2 HCl CO

a−2(in eV nm2) 0.075249266 0.075041506 0.138040824

a−1(in eV nm) -1.245848773 -1.177491075 -2.447098452

a0 0 0 0

https://doi.org/10.1371/journal.pone.0294851.t002

Table 3. The coefficients of the potential V(r) = a−2r−2+a0+a2r2.

coefficient O2 HCl CO

a−2(in eV nm2) 0.075249266 0.075041506 0.138040824

a2(in eV/ nm2) 353.3739493 284.3190019 852.0462326

a0(in eV) -15.46997648 -13.85718353 -32.53543413

https://doi.org/10.1371/journal.pone.0294851.t003

Fig 1. Shape of V(r) = a−2r−2+a−1r−1+a0 for different diatomic molecules.

https://doi.org/10.1371/journal.pone.0294851.g001
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3. Energy levels of the two power function superposition potentials

The energy eigenvalues of the two power function superposition potentials such as Eqs (13)

and (14) are calculated according to their shape invariance [21].

3.1 For the potential V(r) = a−2r−2+a−1r−1+a0. Let

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ
1

2

� �2

þ
2m

ℏ2
a� 2

s

�
1

2
ð17Þ

where λ refers to the generalized angular momentum quantum number for the potential func-

tion V(r). Eqs (8) and (9) can be written as

AþðlÞ ¼
d
dr
�
lþ 1

r
�

m

ℏ2 a� 1

lþ 1
ð18Þ

A� ðlþ 1Þ ¼
d
dr
þ
lþ 1

r
þ

m

ℏ2 a� 1

lþ 1
ð19Þ

Since operators A- and A+ are noncommutative operators, we can make

Dþ ¼ AþðlÞA� ðlþ 1Þ ¼
d2

dr2
� Vþðr; lÞ ð20Þ

It can be obtained that

Vþðr; lÞ ¼
ðlþ 1Þðlþ 2Þ

r2
þ

2 m

ℏ2 a� 1

r
þ

m2

ℏ4 a2
� 1

ðlþ 1Þ
2

ð21Þ

Fig 2. Shape of V(r) = a−2r−2+a0+a2r2 for different diatomic molecules.

https://doi.org/10.1371/journal.pone.0294851.g002
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By substituting Eqs (15) and (17) into Eq (5), it can be obtained that

V� ðr; lÞ ¼
lðlþ 1Þ

r2
þ

2m

ℏ2 a� 1

r
þ

m2

ℏ4 a2
� 1

ðlþ 1Þ
2

ð22Þ

That is to say,

Vþðr; lÞ ¼ V� ðr; lþ 1Þ þ
m2

ℏ4
a2

� 1

1

ðlþ 1Þ
2
�

1

ðlþ 2Þ
2

 !

ð23Þ

If a0 ¼ l; a1 ¼ f ða0Þ ¼ f ðlÞ ¼ lþ 1;Rða1Þ ¼
m2

ℏ4 a2
� 1

1

ðlþ1Þ2
� 1

ðlþ2Þ2

� �
, then

Vþðr; a0Þ ¼ V� ðr; a1Þ þ Rða1Þ ð24Þ

According to the definition of shape invariance [21], the power function superposition

potential in the form of Eq (13) has shape invariance.

If αi = fi(α0) = λ+i, then RðaiÞ ¼
m2

ℏ4 a2
� 1

1

ðlþiÞ2
� 1

ðlþiþ1Þ2

� �
. According to the definition of

shape invariance [21], the energy level of the potential can be expressed as

Enr ;l
¼ E0;l þ

ℏ2

2m

Xnr

i¼1

RðaiÞ ¼ a0 �
ma2
� 1

2ℏ2
ðlþ nr þ 1Þ

2
ð25Þ

where nr represents radial quantum number.

By substituting Eq (17) into the above formula, the energy level formula of the potential can

be obtained as

Enr ;l
¼ a0 �

ma2
� 1

2ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ 1

2

� �2
þ 2m

ℏ2 a� 2

q

þ nr þ
1

2

� �2
ð26Þ

3.2 For the potential V(r) = a−2r−2+a0+a2r2. Still let

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ
1

2

� �2

þ
2m

ℏ2
a� 2

s

�
1

2
ð27Þ

where λ represents the generalized angular momentum quantum number for the potential

function V(r). Eqs (8) and (9) can be written as

AþðlÞ ¼
d
dr
�
lþ 1

r
þ

ffiffiffiffiffiffiffiffiffiffi
2ma2

ℏ2

r

r ð28Þ

A� ðlþ 1Þ ¼
d
dr
þ
lþ 1

r
�

ffiffiffiffiffiffiffiffiffiffi
2ma2

ℏ2

r

r ð29Þ

Considering the noncommutativity of the operators A- and A+, still let

Dþ ¼ AþðlÞA� ðlþ 1Þ ¼
d2

dr2
� Vþðr; lÞ ð30Þ
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It can be obtained that

Vþðr; lÞ ¼
ðlþ 1Þðlþ 2Þ

r2
� ð2lþ 1Þ

ffiffiffiffiffiffiffiffiffiffi
2ma2

ℏ2

r

þ
2ma2

ℏ2
r2 ð31Þ

By substituting Eqs (16) and (27) into Eq (5), it can be known that

V� ðr; lÞ ¼
lðlþ 1Þ

r2
� ð2lþ 3Þ

ffiffiffiffiffiffiffiffiffiffi
2ma2

ℏ2

r

þ
2ma2

ℏ2
r2 ð32Þ

That is to say,

Vþðr; lÞ ¼ V� ðr; lþ 1Þ þ 4

ffiffiffiffiffiffiffiffiffiffi
2ma2

ℏ2

r

ð33Þ

Take a0 ¼ l; a1 ¼ f ða0Þ ¼ f ðlÞ ¼ lþ 1;Rða1Þ ¼ 4

ffiffiffiffiffiffi
2ma2

ℏ2

q

, then

Vþðr; a0Þ ¼ V� ðr; a1Þ þ Rða1Þ ð34Þ

According to the definition of shape invariance [21], it can be found out that the power

function superposition potential in the form of Eq (14) has shape invariance as well.

Let αi = fi(α0) = λ+i and RðaiÞ ¼ 4

ffiffiffiffiffiffi
2ma2

ℏ2

q

. According to reference [21], its energy level can be

determined through calculation.

Enr ;l
¼ E0;l þ

ℏ2

2m

Xnr

i¼1

RðaiÞ ¼ a0 þ

ffiffiffiffiffiffiffiffiffiffiffi

2ℏ2a2

m

s

lþ 2nr þ
3

2

� �

ð35Þ

where nr represents radial quantum number.

Through Eq (27), the energy eigenvalue can be obtained as

Enr ;l
¼ a0 þ

ffiffiffiffiffiffiffiffiffiffiffi

2ℏ2a2

m

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ
1

2

� �2

þ
2ma� 2

ℏ2

s

þ 2nr þ 1

0

@

1

A ð36Þ

Results and discussion

The energy eigenvalues with Eq (26) can be calculated using the parameters listed in Table 1

for O2, HCl and CO diatomic molecules. The energy eigenvalues are detailed in Table 4 for the

different radial quantum number represented by nr and the angular momentum quantum

number denoted as l.
Similarly, Table 5 lists the energy eigenvalues obtained by using Eq (36) for O2, HCl and

CO diatomic molecules given different radial quantum numbers nr and angular momentum

quantum numbers l.
By comparing the data listed in Tables 4 and 6, it can be found out that there are differences

in the energy eigenvalues of the same three diatomic molecules as calculated by Eq (26) and Eq

(36), and that the difference gradually increases with the rise of quantum numbers, as shown

in Table 6. The implications of this are as follows. On the one hand, some potentials may be

suitable for study on the characteristics of some microscopic particles, but not for other parti-

cles. On the other hand, the effect of harmonic oscillator potential outweighs that of Coulomb

potential with the increase of quantum numbers.

Reference [16] used asymptotic iteration method (AIM) to calculate the energy eigenvalues

of some diatomic molecules. Reference [17] also calculated the energy eigenvalues of some

PLOS ONE Exact solution of three dimensional schrödinger equation with power function superposition potential

PLOS ONE | https://doi.org/10.1371/journal.pone.0294851 November 28, 2023 8 / 12

https://doi.org/10.1371/journal.pone.0294851


diatomic molecules using the exact quantization rule method (EQR). For the example of O2,

we compared the energy eigenvalues of its bound states calculated using Eqs (26) and (36)

with the energy eigenvalues calculated using other numerical precision methods such as AIM

and EQR, as shown in Table 7.

It can be found that the results calculated by Eq (26) are basically the same as those calcu-

lated by the AIM and EQR methods. The reason for the slight differences is that some of the

parameters we use, such as atomic mass unit (amu), elemental charge (e), and reduced Planck

constant (ℏ), are derived from the latest SI Brochure (9th edition of the SI Brochure, available

on the BIPM web page: www.bipm.org), but references [16,17] are not. If the same SI Brochure

is used, their calculated results are the same because their potential functions are the same. The

significant difference between the results calculated by Eq (36) and other results is due to their

different potential functions.

Conclusion

One of the key tasks of quantum mechanics is to find the exact analytical solution of the Schrö-

dinger equation for any arbitrary l angular momentum quantum number within a given

potential. It can be further used to define the observables of the system. In this study, the gen-

eral form of the power function superposition potential is used to construct two different

power function superposition potentials with exact analytical solutions, which is based on the

supersymmetric quantum mechanics. The method proposed in this study is a generic one,

whose starting point is the general form of power function superposition potential.

Among these two potentials, one such as Eq (13) is actually Coulomb potential plus an

inverse quadratic power function, with Kratzer potential falling into this category, while the

Table 4. Energy eigenvalues (in eV) for the various nr and l quantum numbers for a few diatomic molecules by using Eq (26), where ℏ = 1.054571817×10−34J�s,

e = 1.602176634×10−19C, lamu = 1.66053906660×10−27 kg (from SI Brochure 9th edition of the SI Brochure, available on the BIPM web page: www.bipm.org).

nr l O2/eV HCl/eV CO/eV

0 0 -5.126358800 -4.541848670 -10.79431563

1 0 -5.066641679 -4.393729259 -10.69384082

1 1 -5.066292858 -4.391295181 -10.69337213

2 0 -5.007961982 -4.252739178 -10.59476237

2 1 -5.007619203 -4.250421300 -10.59430017

2 2 -5.006933786 -4.245793196 -10.59337591

3 0 -4.950295818 -4.118428126 -10.49705450

3 1 -4.949958943 -4.116219168 -10.49659869

3 2 -4.949285330 -4.111808458 -10.49568718

3 3 -4.948275256 -4.105210348 -10.49432021

4 0 -4.893619980 -3.990380802 -10.40069206

4 1 -4.893288873 -3.988274045 -10.40024251

4 2 -4.892626794 -3.984067324 -10.39934352

4 3 -4.891634014 -3.977774169 -10.39799534

4 4 -4.890310938 -3.969414739 -10.39619830

5 0 -4.837911919 -3.868213688 -10.30565046

5 1 -4.837586450 -3.866202923 -10.30520706

5 2 -4.836935644 -3.862187803 -10.30432036

5 3 -4.835959766 -3.856181097 -10.30299061

5 4 -4.834659212 -3.848201827 -10.30121815

5 5 -4.833034511 -3.838275121 -10.29900343

https://doi.org/10.1371/journal.pone.0294851.t004
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Table 5. Energy eigenvalues (in eV) for the various nr and l quantum numbers for a few diatomic molecules by using Eq (36), where ℏ = 1.054571817×10−34J�s,

e = 1.602176634×10−19C, lamu = 1.66053906660×10−27 kg (from SI Brochure 9th edition of the SI Brochure, available on the BIPM web page: www.bipm.org).

nr l O2/eV HCl/eV CO/eV

0 0 -5.095835179 -4.463000904 -10.74318765

1 0 -4.974277415 -4.151536686 -10.53939319

1 1 -4.973919238 -4.148911890 -10.53891450

2 0 -4.852719651 -3.840072468 -10.33559872

2 1 -4.852361474 -3.837447672 -10.33512004

2 2 -4.851645158 -3.832200316 -10.33416269

3 0 -4.731161887 -3.528608250 -10.13180426

3 1 -4.730803710 -3.525983454 -10.13132557

3 2 -4.730087394 -3.520736098 -10.13036823

3 3 -4.729013012 -3.512870643 -10.12893229

4 0 -4.609604123 -3.217144032 -9.928009797

4 1 -4.609245946 -3.214519236 -9.927531108

4 2 -4.608529630 -3.209271880 -9.926573761

4 3 -4.607455248 -3.201406425 -9.925137821

4 4 -4.606022914 -3.190929539 -9.923223382

5 0 -4.488046359 -2.905679814 -9.724215333

5 1 -4.487688182 -2.903055018 -9.723736644

5 2 -4.486971866 -2.897807662 -9.722779297

5 3 -4.485897484 -2.889942207 -9.721343357

5 4 -4.484465150 -2.879465321 -9.719428918

5 5 -4.482675011 -2.866385850 -9.717036107

https://doi.org/10.1371/journal.pone.0294851.t005

Table 6. Difference (in eV) of energy eigenvalues calculated by Eq (26) and Eq (36).

nr l Difference for O2 Difference for HCl Difference for CO

0 0 0.030523621 0.078847766 0.05112798

1 0 0.092364264 0.242192573 0.15444763

1 1 0.092373620 0.242383291 0.15445763

2 0 0.155242331 0.412666710 0.25916365

2 1 0.155257729 0.412973628 0.25918013

2 2 0.155288628 0.413592880 0.25921322

3 0 0.219133931 0.589819876 0.36525024

3 1 0.219155233 0.590235714 0.36527312

3 2 0.219197936 0.591072360 0.36531895

3 3 0.219262244 0.592339705 0.36538792

4 0 0.284015857 0.773236770 0.472682263

4 1 0.284042927 0.773754809 0.472711402

4 2 0.284097164 0.774795444 0.472769759

4 3 0.284178766 0.776367744 0.472857519

4 4 0.284288024 0.778485200 0.472974918

5 0 0.349865560 0.962533874 0.581435127

5 1 0.349898268 0.963147905 0.581470416

5 2 0.349963778 0.964380141 0.581541063

5 3 0.350062282 0.966238890 0.581647253

5 4 0.350194062 0.968736506 0.581789232

5 5 0.350359500 0.971889271 0.581967323

https://doi.org/10.1371/journal.pone.0294851.t006
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other such as Eq (14) is effectively harmonic oscillator potential plus an inverse quadratic

potential term. From this, it can be inferred that any potential with an exact analytical solution,

plus an inverse quadratic potential term, has an exact analytical solution as well.

Furthermore, the shapes of these two potentials for several different diatomic molecules are

presented, and the exact bound state energy eigenvalues of these diatomic molecules are calcu-

lated for any l angular momentum quantum number bound by these two exactly solvable

potential. The results show that the effect of harmonic oscillator potential is more significant

than that of Coulomb potential with the increase of quantum number.
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Table 7. Comparison of the energy levels (in eV) for the various nr and l quantum numbers for diatomic molecule O2 calculated using different methods.

nr l O2(by Eq 26) O2(by Eq 36) O2(by AIM) O2(by EQR)

0 0 -5.126358800 -5.095835179 −5.126358625 −5.126358620071

1 0 -5.066641679 -4.974277415 −5.066641151 −5.066641146718

1 1 -5.066292858 -4.973919238 −5.066292323 −5.066292321402

2 0 -5.007961982 -4.852719651 −5.007961116 −5.007961110233

2 1 -5.007619203 -4.852361474 −5.007618329 −5.007618327191

2 2 -5.006933786 -4.851645158 −5.006932904 −5.006932902380

3 0 -4.950295818 -4.731161887 −4.950294624 −4.950294618656

3 1 -4.949958943 -4.730803710 −4.949957740 −4.949957739138

3 2 -4.949285330 -4.730087394 −4.949284119 −4.949284118344

3 3 -4.948275256 -4.729013012 −4.948274034 −4.948274032620

4 0 -4.893619980 -4.609604123 −4.893618469 −4.893618463868

4 1 -4.893288873 -4.609245946 −4.893287355 −4.893287353086

4 2 -4.892626794 -4.608529630 −4.892625268 −4.892625266816

4 3 -4.891634014 -4.607455248 −4.891632476 −4.891632475505

4 4 -4.890310938 -4.606022914 −4.890309388 −4.890309384483

5 0 -4.837911919 -4.488046359 −4.837910103 −4.837910098245

5 1 -4.837586450 -4.487688182 −4.837584627 −4.837584625235

5 2 -4.836935644 -4.486971866 −4.836933812 −4.836933811639

5 3 -4.835959766 -4.485897484 −4.835957923 −4.835957922172

5 4 -4.834659212 -4.484465150 −4.834657357 −4.834657353568

5 5 -4.833034511 -4.482675011 −4.833032637 −4.833032634174

https://doi.org/10.1371/journal.pone.0294851.t007
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