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Abstract

I present precision two-loop corrections of O(MeV) mass splittings in electroweak multiplets.

These are relevant for both collider phenomenology and dark matter and can affect particle

lifetimes by up to 40%. I then show that a commonly used iterative procedure to compute

radiatively-corrected pole masses can lead to very different mass splittings than a non-iterative

calculation at the same loop order. I show that this has significant phenomenological impact,

leading to the conclusion that the iterative procedure should not be used for computing pole

masses in situations where electroweak mass splittings are phenomenologically relevant.

I then consider global fits to minimal extensions of the Standard Model. Using the GAMBIT

package I present a comprehensive study of the scalar singlet dark matter scenario. I then

present a follow up global fit including theoretical constraints from physics at high energy

scales, and also apply this to a generalisation of the scalar singlet model. I show that solutions

exist which stabilise the electroweak vacuum, remain perturbative up to high scales and satisfy

current experimental constraints. However, such solutions are only found in a small region of

the parameter space soon to be probed by direct detection experiments.

Finally I present a detailed comparison of four statistical sampling algorithms. I subject a

nested sampler (using the MultiNest package), a Markov Chain Monte Carlo (using the GreAT

package), an ensemble Monte Carlo sampler and a differential evolution sampler to a battery

of statistical tests. For this I use a realistic physical likelihood function, based on the scalar

singlet model of dark matter. I examine the performance of each sampler as a function of its

adjustable settings, and the dimensionality of the sampling problem. I evaluate performance

on four metrics: optimality of the best fit found, completeness in exploring the best-fit region,

number of likelihood evaluations, and total runtime.
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Preface

This thesis is based on work from seven papers with a range of themes [1–7]. I have split it into

two semi-independent parts each with an introduction to the relevant theory and literature.

Chapter 1 is a general introduction to both parts and covers dark matter searches, beyond the

Standard Model (SM) theories (1.2) and global fits (1.3).

The theme of Part I is precision mass calculations in the context of electroweak multiplet

mass splittings. In Chapter 2 I present an introduction to precision mass calculations, which is

most relevant to Chapters 3, 4 and 5. I also present an introduction to renormalisation group

flow which is relevant in both Parts I and II. I develop these concepts by way of example with

a simple ϕ4 theory. It is assumed that the reader is familiar with quantum field theory and

Feynman rules. As such an introduction is necessarily not original research, I follow notation

and style used in existing accounts of renormalisation in the ϕ4 theory, such as that given in

Ref. [8] and a lecture course by Prof. Arttu Rajantie at Imperial College London in the spring

of 2015. However, I have extended existing examples by including the cubic scalar interaction

term, which ultimately increases the complexity of the two-loop mass calculation and enables us

to compare with the result presented as an example in Ref. [9] and in the software documented

in Appendix C.

The theme of Part II is global fits with a focus on constraints from renormalisation. Since

an introduction to global fits is presented in Section 1.3, the introductory material for this part

(presented in Chapter 6) is focused primarily on vacuum stability. The presentation of this

subject uses various notation and derivations from Refs. [10–15]. This is followed by global fits

to two different dark matter models in Chapter 7. Finally, I present an in-depth comparison of

four modern statistical sampling algorithms, which are an essential part of phenomenological

dark matter studies, in Chapter 8.

Contributions

Research from the following papers is included in this thesis (in order of appearance)

• Ref. [1] – J. McKay and P. Scott, Two-loop mass splittings in electroweak multiplets:
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• Ref. [2] – J. McKay, P. Scott, and P. Athron, Pitfalls of iterative pole mass calculation

in electroweak multiplets. Submitted to Eur. Phys. J. C (2018) [arXiv:1710.01511].
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1 Introduction

1.1 Dark matter

The study of the Universe and the largest structures within it has revealed a significant defi-

ciency in the Standard Model (SM) of particle physics at the smallest of scales. Cosmological

observations imply the existence of a gravitationally-interacting particle, or family of particles,

that do not interact electromagnetically. In such a way this form of matter is effectively dark,

having no direct electromagnetic signature. Dark matter has never been observed directly and

little is known about the details of this significant piece of the cosmological puzzle.

For ordinary matter the story is very different. The physical properties are well understood,

such as the mass, the spin and the strength of interactions with other fields (be these matter or

radiation fields). Even the theoretical framework is well established. The electroweak theory

proposed by Glashow, Weinberg and Salam in the 1970s [17–19] has developed into the SM

of the electromagnetic, weak and strong interactions constructed from a set of underlying

symmetries (see Figure 1.1 for the particle content of the SM). These symmetric properties

have enabled phenomenologists to not only make experimental predictions but to help shape

the design and scientific goals of experiments like the Large Hadron Collider (LHC), resulting

in an efficient and targeted search for the Higgs particle and certain beyond the SM physics

scenarios.

Dark matter is far more elusive. Through experiment we can exclude possible masses

and types of particles, and we can figure out which theories break down when dark matter is

required, and which ones explain it automatically. Before discussing more about how we can

exclude potential dark matter models, let us review the little we know about what dark matter

is.

Assuming a standard Λ cold dark matter (ΛCDM) cosmology (an asymptotically flat

Friedmann-Lemaître-Robertson-Walker universe with a cosmological constant, Λ, and cold

(non-relativistic) dark matter) the analysis of the power spectrum of the anisotropies in the

cosmic microwave background (CMB) temperature by the Planck satellite measures the dark

matter density to be 26.8% of the total mass-energy content of the Universe [20].

From the indirect observations of a dark matter like particle we can postulate certain

properties that it must have. For example dark matter is a popular means of explaining the

formation of the largest bounded structures, the galaxies and clusters of galaxies and the
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filamentary and wall-like superclusters and voids between them [21]. These structures, which

originated from perturbations in the early universe, would not have formed by our present

epoch if there was not some additional form of matter and no modifications to our theories of

gravity. These indirect “observations” of dark matter through gravitational interactions could

also be explained by a non-particle explanation such as modified gravity, which postulates that

general relativity is no longer applicable on cosmological scales. However such descriptions are

also not totally sufficient; for example galaxy cluster models using modified gravity still require

some component of dark matter to match observation [22]. In any case, for dark matter

to explain structure formation it must be non-relativistic, i.e. cold at the time of structure

formation [23] (and thus could be warm when formed but have cooled sufficiently as the Universe

expanded). If dark matter particles were relativistic, like SM neutrinos or photons, then they

would not “clump” due to gravitational attraction in the necessary way to match observations

of cosmological structure.

There are various candidates for a slowly moving particle with the right density. The least

exotic of these are axions and weakly interacting massive particles (WIMPs), the latter being

the most popular, and the type I will focus on in this work. WIMPs are massive particles

which interact with the SM with a strength comparable to that of the weak force. These

particles would have been present in the early universe when it was in thermal equilibrium,

that is, matter would have existed in equilibrium with radiation, constantly being created and

annihilating back to photons and other SM particles. As the Universe expanded and cooled the

dark matter would no longer have been thermally produced resulting in a freeze-out. Because

no substantial production would have occurred since this freeze-out, this it what would lead to

the relic density of dark matter observed today. The self-annihilation cross section of a WIMP

is of the approximate value required to thermally produce the correct amount of dark matter

in the early universe, resulting in the relic density we see today [24–26]. This coincidence is

known as the “WIMP miracle”. I will introduce models with WIMP candidates in Section 1.2.

1.1.1 Experimental searches for dark matter

There are many ways to go about an experimental search for dark matter. One of the most

common techniques is to try to detect the nuclear recoil from an extremely rare interaction

of dark matter and a nucleon. Such an event would be considered a direct detection [27, 28].

Depending on what one postulates dark matter to be, other experiments can be designed,

such as the search for radiation appearing within in a shielded cavity [29, 30]. This would

indicate that an axion-like particle had made it through the shielded walls and then converted
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Figure 1.1: The particle content of the SM (left) is missing a dark matter component, which
could consist of a family of additional fields.

into a single photon upon interacting with the magnetic field inside the cavity. Even more

elaborate experiments can be designed to find stranger types of dark matter. For example,

an existing network of correlated atomic clocks in global positioning systems can be used to

detect the passage of dark matter in the form of topological defects. These defects have a

large spatial extent, and would give transient changes resulting in desynchronisation of the

clock network [31]. The list of dark matter experiments is as long and diverse as the possible

dark matter theories and a detailed review is well beyond the scope of this work. Instead, we

will focus on a small number of techniques that have the most constraining power for WIMP

models.

In recent years direct detection has provided some of the fastest developing constraints

on WIMP dark matter. In these experiments observers can place limits on the cross-section

between dark matter and nucleons when no interaction events are seen. At the current time

a cross-section of 7.7 × 10−47 cm2 is ruled out at the 90% confidence level (for a dark matter

particle of mass ∼ 35 GeV) [32]. This represents an extremely high sensitivity of detection,

and with it increasingly complex design requirements. Some of the latest direct detection

experiments use noble gases in liquid form as a scintillating material (a material which exhibits

luminescence when excited, which in this case occurs via the nuclear recoil producing collisions

with other atoms which subsequently become excited and scintillate) to form a target for

potential dark matter. For each value of the WIMP-nucleon cross-section, there is an expected

number of interaction events per unit volume per unit time. Thus larger detectors are being

built to improve the limits which can be reached, until eventually reaching the point where the

sensitivity is so high that solar neutrinos are detected. This neutrino floor [33–36] poses another

challenge in the search for WIMPs through direct detection. One possible way of overcoming

this is through directional information. Although not possible with current experiments, future

detectors may be able to use this information to distinguish between recoils from solar neutrinos
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and dark matter [37,38].

Creating an environment for the detection of dark matter on the Earth can be challenging

and expensive. However, there are locations in the Universe where the density of dark matter

is expected to be high, creating far more suitable “laboratories” than we could ever create on

the surface of the Earth. In a location like the centre of the Milky Way, high densities can lead

to dark matter self-annihilation or decay resulting in an increased flux of the products of these

processes [39]. Such a test is independent of the gravitational dark matter interactions, except

for how one may postulate the distribution of dark matter in the first instance. For many WIMP

models, a high density of dark matter self-annihilating would be seen as a peak in a spectrum

of gamma radiation above the expected astrophysical background, the details of which would

be dependant on the mass, the typical energy of the particles and the couplings of the theory

(which control the annihilation branching fractions of dark matter to SM final states). Another

location where dark matter could accumulate is the interior of the Sun. Dark matter particles

from the galactic halo can be captured in the Sun if after scattering on solar nuclei they lose

enough energy so that they cannot escape the gravitational potential. Eventually a sufficient

density of captured dark matter self-annihilating in the interior of the Sun could produce a

source of high energy neutrinos, detectable here on Earth with experiments like IceCube [40,41]

or Super-Kamiokande [42]. This class of experiments is known as indirect detection, and there

are numerous other forms that we do not discuss here. Indeed there is evidence for a γ-ray

excess from the galactic centre compared to that expected from diffuse astrophysical emission

alone [43]. While there are other explanations for this excess, such as from an astrophysical

source (for example see Abazajian et al. [44]), the possibility that all or part of the observed

emission excess is from dark matter annihilation has not yet been excluded.

Back on the Earth there is one environment where it may be possible to produce and

observe WIMP dark matter. This is in one of the detectors of the LHC. If dark matter is

coupled to an SM field, then when the corresponding particle is produced in the detector, the

dark matter would form a viable decay channel of the SM field if it is light enough such that

this is kinematically allowed. This is known as an invisible decay channel. An invisible decay

could be “observed” as a missing energy in the detector when an SM particle apparently decays

to nothing. The non-observation of such decays at the LHC places limits on the parameter

values for a range of dark matter models. It is also possible to directly produce dark matter

along with other particles, in a proton-proton collision. Such an event could be seen as a jet

of some observable particles, and missing energy associated with the dark matter.

Two of the models we will study have a dark matter candidate that is part of an electroweak
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multiplet. While the neutral component of the multiplet is the dark matter candidate, there

are also charged components which can be produced in a collider experiment. Fortunately the

charged components are only slightly heavier, such that their decay lifetime is much less than

the age of the Universe. Consequently, the production of the charged particles in a collider

would result in a track which then disappears. For the models we consider, this track is of the

length that it would be contained entirely within the detector and thus give a striking signal. In

Chapter 3 we will present the most precise theoretical calculation to date of the decay lifetimes

of these charged particles in two different dark matter models.

1.1.2 Theoretical constraints on dark matter

Augmenting the SM with a new form of matter can have additional theoretical benefits. It is

generally accepted that the SM is either not complete and/or not valid over all energy scales.

The Planck scale, at an energy of MPl = 1.22 × 1019 GeV, is believed to be an upper limit for

the validity of the SM, albeit a very generous limit. At the Planck scale quantum effects of

gravity would become relevant and the quantum field theoretic framework used to build the

SM becomes inadequate for describing the non-renormalisable1 gravitational interactions.

The stability of the electroweak vacuum is one reason to question the validity of the SM

at high energies. In the universe we live in the Higgs field has a non-zero vacuum expectation

value. The fact that the Higgs field has non-zero value in its vacuum state results in the

spontaneous breaking of the SU(2)L × U(1) gauge symmetry. This symmetry breaking is an

essential feature of the SM. However, the parameters of the SM, and in turn the Higgs potential,

are scale-dependent. If at high energies the dominant parameter defining the Higgs potential

is negative then there exists a second, high energy, global minimum. As a result the minimum

at the electroweak scale, which the field currently occupies, would not be absolutely stable.

While it may have a lifetime far exceeding the current age of the Universe, eventually quantum

tunnelling to the lower energy state will occur. The Higgs field tunnelling from its current

electroweak vacuum this global minimum would have catastrophic results. Whether or not this

poses a problem would be difficult to determine were it not for the finite age of the Universe,

which we can compare to the expected lifetime of such a false vacuum and determine if our

universe is indeed in an unlikely state.

Decades before the discovery of the Higgs boson theorists began placing constraints on

the fermion and Higgs masses that are required for absolute vacuum stability [45, 46]. Of the

fermionic masses particular attention was given to the top quark, as the coupling associated

1Renormalisation refers to the process of removing unphysical divergences in the calculation of physical
quantities in a quantum field theory. I will introduce some key aspects of renormalisation in Chapter 2.
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with this field is orders of magnitude larger than other SM couplings, making its effect on the

high energy Higgs potential the most significant. The discovery of a Higgs boson with a mass

of 125.66 ± 0.3 GeV [47–49] has created increased interest in the study of vacuum stability.

With this mass the quartic Higgs coupling does become negative before the Planck scale, such

that the electroweak vacuum is not an absolutely stable state. If we assume the SM is correct

up to the Planck scale, then the lifetime of the current electroweak vacuum does indeed exceed

the lifetime of the Universe rendering it metastable. Yet we still have the problem that there

is a non-zero probability of decay, such that a transition to the true vacuum is at some point

inevitable. In addition, if new physics does become necessary before the Planck scale this may

dramatically decrease or increase the lifetime of the false vacuum. For example, Branchina and

Messina [50,51] introduce new terms into the SM Lagrangian, suppressed by 1/MPl (thus only

having effect at high energies), and show that such high energy physics could indeed reduce

the lifetime of the electroweak false vacuum down to a fraction of a second.

In some dark matter models the new fields can stabilise the vacuum and completely remove

the problem. I will demonstrate this by way of example in Sections 6.5.2 and 6.5.3. On the other

hand, including new particles into a theory can also create theoretical problems. If the particle

content changes then the perturbative nature of the theory can be broken at certain energy

scales. While this could indicate that the perturbative computational framework that we use

is simply a poor description for nature, it certainly is an important consideration. In Chapters

2 and 6 I develop the necessary theoretical background in vacuum stability and violation of

perturbation theory. This is followed by a new study of these phenomena in Section 6.5 and

Chapter 7 where I combine these considerations with the various experimental constraints that

have already been discussed here.

1.2 Beyond the Standard Model

Dark matter is not the only reason to pursue physics beyond the SM. There are numerous

shortcomings in the SM that can be addressed in alternative theories. For example: The

baryon asymmetry problem is the observation that there is significantly more matter than

anti-matter in the Universe, which indicates that there must have been some strong charge-

parity (CP) violating process occurring in the early universe. However, the SM has insufficient

violation of CP and baryon or lepton number to explain the excess of matter over antimatter.

Neutrino masses must be non-zero in order to be consistent with the discovery of flavour

oscillations yet do not naturally appear in the SM framework. Flavour oscillations require the

mixing of neutrino flavour and mass states, which is not possible if the mass is zero. While
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neutrino masses are not automatically generated in the SM they can be put in either through

the addition of sterile neutrinos or through the see-saw mechanism [52] involving right-handed

neutrinos with a Majorana mass matrix. The hierarchy problem is associated with the smallness

of the Higgs mass. Since the Higgs is a scalar particle large radiative corrections to its mass are

not prevented by any symmetry, thus if the Planck mass represents the scale of new physics,

there is no reason to expect it to be any less than this, yet instead we see a seemingly highly

tuned value of only ∼ 125 GeV.

Supersymmetry has been one of the most popular candidates for an alternative to the SM

over the last 30 years. In particular the minimal supersymmetric SM (MSSM) has been the

focus of many studies, for a review see Ref. [53]. Supersymmetry is based on an underlying

symmetry between fermions and bosons, the two fundamental types of particles, which is broken

at observable energy scales. The MSSM contains supersymmetric pairs for all SM particles,

some of which become possible WIMP candidates. We will introduce one of these scenarios,

the wino limit of the MSSM, in Section 1.2.2. Supersymmetric models are also capable of

resolving the hierarchy problem [54–57] and the issue of electroweak vacuum stability [58].

While supersymmetry may address many of the shortcomings of the SM at once, evidence of

any supersymmetric extension to the SM has not yet been found through experiment.

Postulating the existence of a unified theory is not the only option for beyond SM physics.

Instead we can study minimal extensions to the SM. The phenomenological impact of a small

number of new degrees of freedom can give important insights into the nature of dark matter.

If the SM is indeed the low-energy limit of some unified theory, then dark matter must still be

a part of this limit and understanding how to describe it is essential. In this section I review

three unique ways of introducing a dark matter degree of freedom into the SM, and finally I

discuss how we can put these to the test against the latest experimental data in Section 1.3.

1.2.1 Higgs portal dark matter

Particles which do not carry a charge associated with any of the SM gauge groups are said

to be in the hidden sector of the corresponding Lagrangian. If the SM fields interact with

the hidden sector then this would enable experimentalists to explore the structure of this new

physics by observing visible phenomena. Higgs portal models are open to such a study. The

structure of a general Higgs portal model is one in which the hidden sector is coupled only to

itself and the Higgs. Observations of SM processes which proceed via the Higgs field, such as

decays to and from the hidden sector, can shed light on physics beyond the SM.

When attempting to construct a particle theory for dark matter one can choose to make
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various simplifying assumptions. One such assumption is the number of dark matter particles

the theory must describe. If we are to introduce a new dark matter particle into the SM,

one may ask what prevents us from adding more. For example, there is nothing to prevent a

hierarchal structure of dark matter particles, like that of the leptons and quarks in the SM. In

this section I will introduce a model with one new additional field.

One of the simplest WIMP models is the scalar singlet scenario, consisting of the SM and

an additional massive real scalar field S [59–61]. This real, spin-less, Klein-Gordon field is

the most minimal way to add a dark matter degree of freedom into the SM. To explain the

relic dark matter density with the necessary properties we require that this field describe at

least a metastable WIMP. The simplest way to achieve this is by demanding the stable case in

which the real scalar field, S, is symmetric under the Z2 transformation S → −S. In this case

the renormalisable terms for a real singlet scalar S, permitted by the Z2, gauge and Lorentz

symmetries, are [62]
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From left to right, these are: the bare S mass, the Higgs-portal coupling, the S quartic self-

coupling, and the S kinetic term. Because S never obtains a vacuum expectation value (VEV),

the model has only three free parameters: µ2
S, λhS and λS. After electroweak symmetry breaking

(EWSB) (see Section 6.1), the portal term induces h2S2, v0hS
2 and v2

0S
2 terms, where h is

the physical Higgs boson and v0 = 246 GeV is the VEV of the Higgs field. The additional S2

term leads to a tree-level singlet mass
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While the scalar singlet model is the most minimal extension to the SM it meets many

requirements for being an adequate description of dark matter. For a scalar mass less than a few

TeV the values of the couplings λS and λhS necessary to explain the dark matter relic density

are sufficiently small to conserve perturbativity (see Section 6.4). The only renormalisable

interaction with the SM is through the S2♣H♣2 term, and thus this model is classed as a “Higgs

portal”. It is through this term that is it possible to have thermal production of dark matter

in the early Universe. This portal coupling also provides annihilation signals [63–65], potential

for direct detection and h → SS decays [66]. For certain model parameters the scalar is also

able to stabilise the electroweak vacuum. The scalar field in this model can also feature in

theories of inflation [67–69] and baryogenesis [70–72].

The dominant constraints on the scalar singlet scenario come from direct detection exper-

iments and the requirement to produce no more than the observed relic abundance of dark



1.2. Beyond the Standard Model 27

matter. Constraints from XENON100 and WMAP were applied to this model in Ref. [73],

and similar data was used for an early global fit in Ref. [74]. The most recent comprehensive

studies were presented in Refs. [75–77]. In these studies the authors placed limits on the rate

of dark matter annihilation in dwarf spheroidal galaxies using the Fermi Large Area Telescope

(LAT) analysis of gamma rays in the direction of 15 dwarf spheroidal galaxies using six years

of Pass 8 data [78]. They constrained the decay width of the Higgs to invisible (dark matter)

particles by the non-observation of this process at the LHC [79–81]. Finally they used the

most recent, and projected, limits for direct detection (including the LUX experiment [82] and

projections for XENON1T and DARWIN) to place constraints on the dark matter nucleon

cross-section along with the Planck relic density measurement [83] to give a constraint on dark

matter annihilation at the time of recombination [83–85].

Numerous other studies have considered this model with respect to the galactic excess

observed by the Fermi satellite [64,77,86–88]. Such a signal of gamma rays, above what would

be expected from typical astrophysical processes, has been interpreted as a signal from the

annihilation of dark matter [43, 44, 89–93]. However, if the scalar singlet is to explain such a

signal then the portal coupling would have to large. This would result in a low thermal relic

abundance, thus requiring the dark matter to be produced non-thermally to give the necessary

density [75]. This would require some additional production mechanism, not available in the

theory as is. In such a case, the WIMP miracle and the predictive nature of the theory is

ruined. In regions of the parameter space where the relic abundance is under populated, we

will assume that there exists another species of dark matter such as axions, and that the scalar

singlet is only a sub-component of the total abundance. This is not a significant problem for

prospects of detection, as we show in Chapter 7, as the most sensitive experiments are able to

probe models with scalar singlets constituting less than a hundredth of a percent of the total

dark matter.

The scalar singlet model still has viable regions of parameter space yet to be excluded, with

the dark matter phenomenology driven predominantly by mS and λhS. The viable solutions

known to exist [75,76] are in a number of regions:

1. the resonance region around mS ∼ mh/2, where couplings are very small (λhS < 10−2)

but the singlet can nevertheless constitute all of the observed dark matter,

2. the resonant “neck” region at mS = mh/2, with large couplings but an extremely small

relic S density, and

3. a high-mass region with order unity couplings.



1.2. Beyond the Standard Model 28

The XENON1T experiment is expected to place strong constraints on these regions [94, 95],

leaving only large values of λhS at which the theory begins to become non-perturbative [75]

and a small part of the resonance region at mS ∼ mh/2.

The parameter λS remains relevant when considering dark matter self-interactions (e.g.

Ref. [96]) and the stability of the electroweak vacuum. In the SM, the measured values of the

Higgs and top quark masses indicate that the electroweak vacuum is not absolutely stable,

but rather meta-stable [97]. This means that although the present vacuum is not the global

minimum of the scalar potential, its expected lifetime exceeds the age of the Universe. Although

this is not inconsistent with the existence of the current vacuum, one appealing feature of scalar

extensions of the SM is that the expected lifetime can be extended significantly, or the stability

problem solved entirely, by making the current vacuum the global minimum. The stability of

the electroweak vacuum has been a consideration in many studies of scalar singlet extensions

to the SM [67, 98–108]. In Section 6.5.2 I will demonstrate in more detail how the addition of

a scalar singlet into the SM can prevent the Higgs potential from having a global minimum at

high energies.

The symmetry group for S need not be Z2, instead we will also consider a complex scalar

singlet charged under Z3. In this scenario the singlet transforms as S → e2πi/3S. This is

particularly interesting because, due to a cubic S3 term, it is the simplest dark matter theory to

have semi-annihilations [109–111].2 This is the process of two dark matter particles annihilating

to an SM plus a dark matter particle. The permissible terms with S charged under Z3 are
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where S† denotes the Hermitian conjugate. Unlike the Z2 model, the scalar is no longer a

self-adjoint field. Instead, we have both an S∗ and S particle, which both contribute to the

relic abundance (as will be discussed in detail in Section 7.3.3).

This scalar singlet model has been studied significantly less than the Z2 stabilised scenario.

It has been studied in the context of neutrino masses in Ref. [112] and in a phenomenological

dark matter study in Ref. [102]. The latter is particularly relevant as they include constraints

from vacuum stability and perturbativity along with the relic density, Higgs invisible width

and direct detection. They show that singlet masses below ∼ 53 GeV are ruled out by LHC

searches for invisible Higgs decays, and that due to the semi-annihilation process this model can

avoid direct detection constraints at parameter values where the equivalent Z2 model would

2It is also possible to have an S3 term in a model where the scalar is not charged under any Zn symmetry.
However, such a model also requires some tuning to keep the dark matter sufficiently metastable so that its
lifetime is long compared to the age of the Universe.
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be ruled out. However, due to a limit on µ3 from vacuum stability, semi-annihilations are

also limited. So eventually all viable regions of the parameter space will be probed by direct

detection experiments, such as XENON1T [102] in the near future. In Chapter 7 we will build

on the study in Ref. [102] by performing a global fit including various other constraints and

nuisance parameters, along with the latest direct and indirect detection limits.

1.2.2 Weakly interacting dark matter

Electroweak multiplets, charged under the SM SU(2)L gauge group, can provide a viable

explanation for the observed relic abundance. Such extensions require no new gauge groups,

simply the addition of a multiplet. Here I will review two popular fermionic multiplet extensions

of the SM, one with a triplet and one a quintuplet. In both cases an essential feature of these

models is the mass splitting between the charged and neutral multiplet components. If such a

splitting did not exist then the charged components would be stable, and the multiplet would

not make a suitable dark matter candidate. It is the details of this mass splitting that motivate

our study of these models, presented in Chapters 3 and 4. We will also consider the effect of

an electroweak multiplet on the stability of the electroweak vacuum in Section 6.5.3.

The wino limit of the MSSM

The first electroweak multiplet extension we consider is a Majorana fermionic triplet with

hyper-charge Y = 0. However, the simple case of the SM augmented by an SU(2)L triplet

does not provide a stable dark matter candidate. This is because the new triplet would couple

through a Yukawa operator with the Higgs and SM lepton doublet, giving the dark matter a

very short decay lifetime [113]. Such an operator can be forbidden if an additional symmetry

is introduced. This is the case in the R-parity3 conserving MSSM, where the new multiplet

is a supersymmetric field, and thus has an R-parity opposite to the SM particles. There-

fore, if the neutral component of the triplet is also the lightest supersymmetric particle (LSP)

not only is this particular decay channel forbidden, but the dark matter is stable within the

supersymmetric spectrum.

We will focus on the limit of the MSSM which is phenomenologically equivalent to the SM

plus an electroweak triplet. The relevant supersymmetric particles we need for this construction

are the neutralinos and charginos. The four neutralinos are linear combinations of the two

neutral Higgsinos (the bino and neutral wino). The two charginos (each with ± charge) are

3In supersymmetry R-parity is a postulated (although in some unified theories it can be naturally occurring
structure [114]) discrete Z2 symmetry between the supersymmetric particles and their SM partners. SM particles
have R-parity +1 and supersymmetric partners −1.
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linear combinations of the charged winos and charged Higgsinos. The wino limit of the MSSM

is when the LSP is a neutralino that is pure wino (that is, the linear combination is 100%

wino), and the next-to-lightest supersymmetric particle (NLSP) is also a pure wino chargino.

Thus the LSP and NLSP constitute the neutral and charged components of the triplet, and as

supersymmetric particles have R-parity of −1. In addition, we take the limit where the rest

of the supersymmetric spectrum is sufficiently massive to be decoupled, leaving only the LSP

and NLSP.

In terms of the commonly used SUSY parameters the wino limit corresponds to M2 ≪
M1,M3, µ. This choice makes the lightest neutralino and chargino mass eigenstates pure winos.

Together, they constitute an SU(2)L triplet χ with hypercharge Y = 0, coupled to the SM via

the electroweak sector. The MS renormalised Lagrangian is

L = LSM +
1

2
χ (i /D − M̂)χ (1.4)

where LSM is the SM Lagrangian, M̂ is the degenerate MS tree-level mass of the triplet and

/D is the SU(2)L covariant derivative. Expanding out the covariant derivative gives
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where sW = sin(θ) and cW = cos(θ) are the sine and cosine of the Weinberg angle respectively.

The triplet couples to the SM via the electroweak gauge bosons, Wµ and Zµ, and the photon,

Aµ. From Eq. (1.5) we can see that the chargino and neutralino have the same mass parameter.

However, after radiative corrections are included we obtain slightly different physical masses

given by M+
pole and M0

pole for the chargino and neutralino respectively. We will present a

calculation of these physical masses, and the subsequent mass splitting in detail in Chapter 3.

The pure-wino scenario is phenomenologically different to the Higgs portal models discussed

in Section 1.2.1 and thus has different prospects for discovery. Pure-wino dark matter has been

studied extensively [115–122]. In this limit, a wino of mass of ∼ 3 TeV would give the correct

relic abundance [115,116]. If one allows for the scenario that the wino is not 100% of the relic

abundance, or that there is some non-thermal mechanism that operates to produce a larger

value after thermal freeze-out, then the restriction on the mass can be relaxed.

If wino-like charginos are produced at the LHC then there is the potential for an observable

charged track within the collider. This is the result of the small mass splitting between the

charged and neutral components and the process χ+ → Xχ0, where X is either a pion, an elec-

tron+neutrino or muon+neutrino pair. The charged particle would be short-lived, producing a

track about 6 cm in length [118]. Searches for these tracks have already been made [123–128].
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The ATLAS [129] and CMS [130] detectors have excluded wino dark matter up to masses of

270 GeV and 260 GeV respectively, with estimates for future colliders able to discover wino dark

matter up to masses of 3 TeV [131,132].

In the pure-wino case the coupling to the Higgs bosons vanishes, so the scattering cross-

section of the wino dark matter and nucleons is generated only by loop processes, and is on

the order of 10−46 − 10−48cm2 [120, 133]. For a TeV mass particle, this is well beyond the

reach of current direct detection experiments and only just above the neutrino floor. However,

as shown in Ref. [119], if the wino dark matter is produced thermally and equal to the relic

abundance then it is well constrained with indirect gamma-ray searches from the Galactic centre

from Cherenkov telescopes such as the High Energy Stereoscopic System (HESS) [134] and in

future the Cherenkov Telescope Array [135]. They show that thermally produced wino dark

matter with mass in the range ∼ 1.6 TeV to ∼ 3.1 TeV is excluded by HESS. Therefore, indirect

gamma-ray searches have much greater prospects for the discovery of wino-dark matter.

There is a rich phenomenology and subsequent analysis of wino-like dark matter models. For

example Ref. [122] considers combinations of wino and Higgsino dark matter. They show that

a scenario where the wino-Higgsino gives the correct relic abundance is strongly constrained

by combinations of direct and indirect detection, with the parameter space completely ruled

out for one class of models (µ > 0), and only a small region remaining for another (µ < 0).

A discussion of the phenomenology of these models is beyond the scope of this thesis. Indeed,

wino-like dark matter is still a viable model and the study of electroweak mass splittings

presented in Chapters 3 and 4 is relevant to a range of similar models.

Minimal dark matter

The second model that we consider is the minimal dark matter (MDM; [113, 136]) fermionic

quintuplet with zero hyper-charge. In general, MDM refers to a class of dark matter models,

each consisting of the SM plus a different electroweak multiplet with some minimal set of

quantum numbers and charges under the SM gauge groups. Most models in this class are ruled

out due to either direct detection or stability of the dark matter (for example, the electroweak

triplet which requires the introduction of an additional symmetry to be a stable dark matter

candidate). Although a fermionic seven-plet also satisfies these requirements, it has a Landau

pole (a breakdown of perturbation theory – see Section 2.3 for a detailed explanation) at scales

of ∼ 108 GeV [137], and thus is not an ideal model unless used as a low energy effective field

theory.

The MDM quintuplet remains phenomenologically viable. This fermionic SU(2)L quin-

tuplet χ with hyper-charge Y = 0 is coupled to the SM via the SU(2)L gauge sector. The
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quintuplet contains neutral, charged and doubly-charged components. Analogous to the triplet

case, the Lagrangian is

L = LSM + cχ (i /D − M̂)χ, (1.6)

where /D is the SU(2)L covariant derivative, M̂ is the MS renormalised tree-level quintuplet

mass and c is 1/2 (1) if χ0 is Majorana (Dirac). Expanding out the derivative and setting

c = 1/2 gives
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As with the triplet, the quintuplet couples only to the photon and W and Z bosons at tree-level.

We will express the physical masses of the neutral, charged and doubly-charged components

as M0
pole, M

+
pole and M++

pole respectively.

The quintuplet is expressed in tensor representation as [138]
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where the relative signs are chosen such that χ is isospin self-conjugate [139]. This is the

representation I use to implement this model in SARAH [140–143] for the studies presented in

Chapter 3 and Section 6.5.3. In this representation the mass term is given by

χCχ ≡ χC
ijkl

χ
i′j′k′l′

ϵii
′

ϵjj′

ϵkk′

ϵll
′

(1.9)

where ϵij is the Levi-Civita symbol.

Like the previous two models we have considered, MDM is constrained from various cor-

ners from direct and indirect detection, collider constraints and the relic density. For a mass

of ∼ 9.6 TeV the neutral component of the quintuplet gives the measured dark matter relic

abundance [113, 144]. We can relax this constraint by producing the dark matter either non-

thermally or considering alternative particles to make up the observed relic abundance.

Disappearing track searches, like those for wino dark matter are also relevant for the MDM

scenario. The constraints on the MDM mass from the 8 TeV ATLAS and CMS results depend

on the nature of the neutral component. If it is a Dirac fermion, then masses below 267 GeV are

excluded, and if it is Majorana this limit extends to 293 GeV [145]. Ref. [145] also estimates that

with a 14 TeV high-luminosity LHC run, Majorana MDM with a mass of up to 524 GeV could
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be discovered, as could Dirac MDM with a mass of up to 599 GeV. The Dirac case is obtained

by pairing an additional chiral multiplet with the winos [146]. These new fields modify the

couplings to the Higgs doublets in the EWSB sector and result in different prospects compared

with the Majorana case [147].

MDM is yet to be ruled out by direct detection experiments. In this model the tree-level

coupling of dark matter to nucleons is zero; thus interactions with nucleons must proceed via

one-loop processes. The cross-section for a ∼ 9 TeV mass MDM particle is calculated to be

∼ 1.2 × 10−44 cm2. Although this is larger than that for wino-dark matter it is at a much

higher mass and thus remains out of the reach of current experimental limits. However, such a

value is within reach of future experiments such as XENON1T [148]. Indirect detection offers

the greatest prospects for discovering MDM. Definite predictions are available for the fluxes

of galactic positrons, anti-protons and gamma-rays [144, 149] which can be tested in future

experiments [113].

The MDM model is also theoretically appealing as the effect of the new multiplet stabilises

the electroweak vacuum by increasing the running of the electroweak gauge coupling [100].

Although this results in the model becoming non-perturbative at a lower scale than the SM, it

at least remains perturbative until the Planck scale [150]. I will demonstrate this with a new

calculation in Section 6.5.3.

1.3 Global fits

There are a multitude of both experimental and theoretical constraints on the nature of physics

beyond the SM. I have already discussed some of the most important constraints already, and in

Section 1.2 introduced two types of model which can explain some or all of the relic abundance

of dark matter. These are just two examples of the many possible alternatives to the SM. For

most theories there is a set of free parameters, such as the portal coupling and the mass in the

scalar singlet scenario. The allowed values of these parameters are determined by experimental

and theoretical constraints. Combing as many of these as possible in a statistically consistent

manner is the process of a global fit.

When given a set of experimental constraints one may approach the problem in various ways.

For the sake of example we consider the experimental limits on the scalar singlet model, in

the low mass region. The best experimental constraints come from the relic density (excluding

all parameter points that predict more than the measured abundance of dark matter), direct

detection, the Higgs invisible width and the Fermi-LAT experiment. We will discuss these

limits and a global fit in detail in Chapter 7.
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Once a combined likelihood function is constructed it must be sampled in an appropriate

way. An effective sampling algorithm will explore the allowed region of the multi-dimensional

parameter space and find the points with the best likelihoods as well as constructing detailed

contouring around these points. I will discuss statistical sampling algorithms in Section 1.3.1

and Chapter 8.

The combined likelihood can be studied using techniques from both frequentist and Bayesian

statistics. Let us first consider the frequentist approach. For a given model with parameters

Θ and data D we define the likelihood P (D♣Θ) ≡ L(Θ) (the model dependence is left implicit,

since all probabilities we consider are conditional on it). The likelihood is a measure of how

well the model with parameters Θ predicts the data. If the maximum likelihood is Lmax then

we define the likelihood ratio Λ(Θ) ≡ L(Θ)/Lmax. To present the results in a lower dimensional

subspace we must profile the likelihood by maximising it over directions in the parameter space.

A profile likelihood for the scalar singlet model is given in the right panel of Figure 1.2. In this

case, the sampled parameter space is 15 dimensional, so for each mS by λhS bin (for this plot

we take ∼ 100 bins in each dimension) the profile likelihood is simply the maximum likelihood

in that bin.

If the parameter space is appropriately sampled, then we can form confidence regions by

taking all points within a certain likelihood of the best-fit. We then apply Wilks’ theorem

[151] which states that under certain regularity conditions the test statistic −2 log Λ will be

distributed as χ2 with degrees of freedom given by the number of remaining parameters not

profiled out. Using the χ2 cumulative distribution function we can obtain the value of Λ which

gives a particular confidence interval,

Λ = exp

⎦

−Γ−1
⎤

ρ,
d

2

⎣⎢

(1.10)

where d is the dimensionality of the space we have profiled in, Γ−1 is the inverse of the reg-

ularised lower incomplete gamma function, and ρ is the desired confidence level. In two di-

mensions the one and two σ regions (ρ = 0.683 and 0.954) correspond to Λ = 0.317 and 0.046

respectively. These confidence regions are indicated by white contours on the right panel of

Figure 1.2.

There are some notable advantages in using a combined likelihood global fit approach. The

model under consideration often has more parameters which influence the experimental limits,

such as the exact choice of the Higgs mass or the local density of dark matter. Yet the exclusion

plot is only valid for one choice of these additional parameters unless some profiling is done

consistently for all included limits. Additionally, in a typical overlaid exclusion plot we gain no

information in the allowed region (usually beyond the one or two sigma exclusion bounds of all
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the experiments), although some points may be favoured more than others. However, encoding

these limits into a likelihood function allows the experiments to still have some influence on

the parameter space beyond these boundaries. As every experiment is different, the gradient of

the likelihood within the allowed region will be different. In general, the point in the middle of

the allowed region will not be the best-fit. As we see in Figure 1.2, the best-fit point (indicated

by a white star) is closer to the boundary excluded by the Fermi-LAT experiment.

If an appropriate sampling algorithm is used (see Section 1.3.1) then we can also make

inferences using Bayesian statistics. For this we need to determine the probability distribution

function (PDF) of the parameters given the data and the model, P (Θ♣D). This is a conditional

probability on the parameters in light of the data, as opposed to the likelihood L(Θ) which

is the probability that the model predicts the data, without any information about the data

before-hand.

We also define a prior, π(Θi) = P (Θi) which is a measure of our initial knowledge about

the posterior PDF for each parameter, Θi, given the model. If we have no a-priori information

about a parameter, then a flat prior is appropriate. However, if for example we are dealing with

couplings that are expected to be small (but not exactly zero or negative), then a logarithmic

prior is more suitable. In other cases the prior can be even more well informed, such as a

Gaussian prior when one is already aware of the variance and mean of a given parameter. The

total prior is the product of the prior for each parameter, such that π(Θ) = ΠN
i=1π(Θi) where

N is the number of free parameters.

The posterior probability is then given by Bayes’ theorem

P (Θ♣D) =
L(Θ)π(Θ)

∫

π(Θ′)L(Θ′) dN Θ′ (1.11)

where the denominator is a normalising factor known as the Bayesian evidence. Since the

Bayesian evidence is independent of the parameters, this normalising factor can be ignored for

parameter estimation problems. A properly converged Markov Chain Monte Carlo (MCMC)

sampling method would give a set of samples distributed according to the posterior distribution.

In many cases we are interested in the posterior distribution in a lower dimensional subspace

of the full parameter space. For this we marginalise over, or integrate out, the parameters

that are not of interest. If Ω ⊂ Θ is an M dimensional subset of the parameters, and ΩC the

complement in Θ of dimension N − M , then the marginalised posterior with respect to the

parameters Ω is

P (Ω♣D) =

∫ ∫

. . .

∫

P (Ω,ΩC ♣D) dΩC
1 dΩC

2 . . .dΩC
M−N . (1.12)

For an example of a marginalised posterior see Figures 7.6 and 7.7 in Chapter 7.
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The normalising Bayesian evidence factor is important for model comparison studies. It is

effectively an average of the likelihood over the prior volume. As a result a simpler theory with

a smaller parameter space will have a greater evidence than a more complicated one, unless

the complicated theory is significantly better at explaining the data. This effect can be seen

between modes in a parameter space, with a finely tuned mode (many parameters with a small

acceptable range) penalised over a larger mode with a greater average likelihood.

The use of Bayesian inference in high energy physics has traditionally been limited to

cosmological studies [152, 153]. On the other hand frequentist statistics are more common in

particle physics, see for example the likelihood analyses in Refs. [154–161]. To some extent

this is a representation of the kind of data available in each field. The frequentist uses many

repeated measurements to form a probability from the frequency of an event occurring, whereas

the Bayesian will update their prior knowledge based on, sometimes limited, new data. Likewise

there is only one universe to sample from, but a particle collision can be repeated many times

over. The issue of prior dependence in some models can also result in a preference for a

frequentist likelihood analysis [161]. However, with increased computing power and modern

sampling algorithms Bayesian statistics have become common in studies of supersymmetric

[162–167] and non-supersymmetric models [5] (also see Chapter 7).

By the nature of the way a composite likelihood analysis is constructed there is significant

scope for reusability and flexibility in the method. For many likelihoods, the result may depend

on only a few model predictions. For example, a direct detection likelihood can be based

primarily on the nucleon-dark matter cross-sections and dark matter mass. Therefore, the

likelihood function is model independent and need not be rewritten for every new analysis

of every new model. In addition, many likelihoods can be gleaned from existing software

and included in the composite likelihood. Software packages have been developed to perform

likelihood analysis using pieces from existing codes, such as SuperBayes [168] and MasterCode

[154, 159, 169–178] for studies of supersymmetric models and more recently HEPfit [179–181]

for various beyond SM analyses. However, these packages do not take full advantage of the

potential for reusable model-independent likelihood functions.

In Chapter 7 we will present a global fit to two variants of the scalar singlet model using

the Global and Modular Beyond the SM Inference Tool (GAMBIT). The GAMBIT software

[4, 6, 16, 182–184] was developed to perform global fits in the most flexible and modular way,

enabling new models and constraints to be included as efficiently as possible using model-

independent likelihood functions. GAMBIT has also been used for global fits of the constrained

MSSM (CMSSM) [160], two variants of the non-universal Higgs mass (NUHM) model [160]
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and the MSSM with parameters defined at the weak scale [161]. The GAMBIT software is the

most comprehensive global fitting package available, with an extensive backend library to other

software packages, user-friendly code and detailed documentation. The GAMBIT software and

results are also fully open source and available at https://gambit.hepforge.org/.

1.3.1 Statistical sampling algorithms

The method used to sample the composite likelihood in a global fit depends on the nature of the

model, the constraints and the desired statistical results. In this section I will review the current

status of sampling algorithms in global fits and in Chapter 8 present a detailed comparison of

the four sampling algorithms available in the first release of the GAMBIT package.

Given a model and likelihood function with undetermined free parameters, the most naive

yet straightforward analysis is a grid search over all reasonable parameter values. Although

computationally time consuming, this method has been used to explore regions of the parameter

space of the constrained CMSSM and other supersymmetric models [185,186]. However, there

are problems with such an approach; a grid search is computationally slow and the areas of

interest may be small, even compared to the size of the grid spacing, resulting in either dense

searches in irrelevant areas of the parameter space, or fast searches that may miss important

regions. The speed of such a search scales with the number of parameters, N , as pN where p

is the number of points in each dimension of the parameter space. While this is adequate for

initial explorations of two or three dimensional parameter spaces, for models with more free

parameters the time taken becomes excessive.

Another simple method that has been used in global fits is random sampling (see for example

Refs. [102, 187–190]). In the most basic form this type of sampling makes no use of previous

samples to adapt future steps, and has the risk of wasting computer time to sample regions

of the parameter space that are strongly excluded. It can also result in biased results if the

prior is not carefully chosen. Although this can be improved after each scan by choosing better

prior distributions (such as a logarithmic prior for couplings that are known to be small), it

is computationally time consuming and obtaining well defined confidence intervals requires a

huge amount of points to be sampled.

For a frequentist analysis we are interested in locating the maximum likelihood point and

defining a confidence interval around it. A sufficiently fine grid search would eventually get

close to the maximum, but at the cost of sampling the entire parameter space. The random

sampler would only find the maximum, or the even the mode containing it, by chance. In both

cases, it is possible to entirely miss the maximum likelihood, especially when it is at a finely

https://gambit.hepforge.org/
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tuned set of parameter values. Therefore it is impossible to make reliable statistical statements

or comparisons between models. Instead we can make use of optimisation routines which use

information from the likelihood to direct their next step and will only stop once reaching a

particular convergence criterion. The stricter this convergence criterion, the more confident we

can be that the algorithm has located the true maximum.

Genetic algorithms are efficient at optimisation in large parameter spaces (see for example

Ref. [191]). This class of methods starts from a set of randomly generated “individuals” and

iteratively evolves these in “generations”. For each step a set of “best individuals” is cho-

sen probabilistically, such that those with poor likelihoods may still be evolved to the next

generation. This evolution continues until reaching an optimal state which satisfies certain

convergence criteria (such as a measure of the fractional improvement in the population over

a set number of steps).

Differential evolution (DE; [192–195]) is an optimisation routine which has similarities to

genetic algorithms and the Nelder-Mead simplex method [194]. It performs extremely well in

parameter spaces with multiple modes and high dimensionality (as we demonstrate in Chapter

8 and in Ref. [6]). DE iteratively evolves an initial population by using a form of vector addition

between the population members. In such a way the population performs a highly adaptive

random walk, with the direction and step-size controlled by the population members. The

DE mutation tends to evolve the population along contours, with the members having similar

likelihood values, and those with the worst improving quickly. This is known as contour

matching [196] and results in very well sampled contours. An implementation of DE has been

used in the first GAMBIT global fits [5,160,161] via the Diver package [6]. See Ref. [6] for more

details on DE in general and the Diver algorithm.

The likelihood samples obtained in grid searches and random sampling are not necessarily

distributed in a statistically meaningful way. Even in an optimisation routine, the aim is

to locate the maxima and sample the associated modes, yet this sampling is biased towards

locating the peak of the distribution. For a Bayesian analysis we need to properly sample the

posterior distribution. This is achieved by algorithms that perform an effective random walk

with a proposal distribution based on previous samples. In such a way, the sample chain will

eventually be distributed according to the posterior distribution. The following algorithms are

designed to efficiently sample the posterior as well perform some degree of optimisation.

For a large parameter space an MCMC analysis is an efficient method for finding and sam-

pling the distribution of maximum likelihood modes. When applied to a multidimensional

parameter space the time taken for an MCMC scan scales approximately linearly with the



1.3. Global fits 40

number of dimensions, a significant advantage over a grid search. MCMC is effectively a so-

phisticated random walk algorithm that uses the likelihood of the previous step to evaluate if

a new step is in the direction of increasing likelihood. It also has the capability to occasionally

take steps in directions of lower likelihood and thus avoid becoming trapped in local extrema.

MCMC has been in use since the 1950s when it was introduced by N. Metropolis, A. Rosen-

bluth, M. Rosenbluth, A. Teller and E. Teller [197], who applied the method to the simulation

of simple fluids. Monte Carlo methods have become very popular in physical applications,

with the MCMC method being particularly useful when dealing with the multidimensional

parameter spaces encountered in complicated systems, such as the CMSSM [163]. The effi-

ciency of standard MCMC routines can suffer from a poor choice of proposal distribution. The

GreAT [198] and T-Walk [6] MCMC packages used in the first GAMBIT global fit to the scalar

singlet model [5] overcome this by using adaptive proposal distributions. This is done partic-

ularly effectively in the T-Walk package, which is an ensemble MCMC, where the proposal is

based on multiple concurrent MCMC chains.

Nested sampling is another algorithm which can be applied to the testing of models with

large multidimensional parameter spaces. This method, developed in 2004 by John Skilling

[199], has already been utilised in a number of studies of beyond SM theories [191, 200–202].

The evaluation of the Bayesian evidence, the denominator in Eq. (1.11), requires a challenging

multidimensional numerical integration. The nested sampling algorithm, implemented using

software such as MultiNest [203], is a type of Monte Carlo method which is intended as a stochas-

tic integrator designed to efficiently perform this integration but also perform a maximisation

as a by-product. For each new point the likelihood must be greater than the likelihood of the

worst current live point (from a set of evolving live points). In such a way the method simul-

taneously produces useful information on the posterior distribution and obtains the maximum.

The nested sampling implemented in MultiNest is particularly efficient, having a higher accep-

tance rate than a standard MCMC method, because the algorithm uses an elliptical boundary

containing the current set of points at each stage in order to restrict the region around the

current posterior peak from which a new sample could be drawn. In distributions with multiple

posterior peaks this method can be generalised to multiple elliptical regions, known as clustered

nested sampling. Nested sampling is yet another powerful statistical tool available for the study

of beyond SM theories.

With the number of different sampling algorithms available it is often desirable to use more

than one to study a parameter space. ScannerBit is a GAMBIT module which provides an

interface between scanning algorithms and the rest of the global fit package. In GAMBIT 1.0.0
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there are four statistical sampling algorithms available via ScannerBit. There are two MCMC

routines (T-Walk and GreAT [198]), a nested sampling algorithm (MultiNest [203]) and the DE

scanner, Diver. In addition to being able choose a range of algorithms for a particular problem,

each algorithm has a number of parameters with which it can be tuned. These typically

control the size of the initial population and the stopping criteria. In Chapter 8 I present an

exploration of the performance of the four major scanners available in GAMBIT 1.0.0, when

applied to a physically realistic likelihood function. The modularity of the scanner interface

allows consistent comparison between both the algorithms themselves, and between different

choices of algorithm settings.
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2 Renormalisation

2.1 Introduction

In classical field theories cut-off scales naturally appear, such as the scale of atomic distances

in thermodynamics. At such a scale the continuum description breaks down, yet this is usually

not a problem as there is no need to go beyond the cut-off. In a quantum field theory there

is no well defined cut-off. The only well motivated limit is the scale at which unknown short-

scale physics may become relevant, such as some scale of fundamental graininess of spacetime

resulting from quantum gravitational fluctuations. Additionally in a classical theory the scale of

the cut-off, such as the mass of the atoms in the medium, can become relevant in the calculation

of physical quantities like the speed of sound. Ultra-violet (UV) divergences arise in quantum

field theories as a result of an apparent analogous dependence on this unknown high energy

(or short-distance) cut-off scale in the calculation of physical quantities. Fortunately, through

the technique of renormalisation, this scale need not have a physical interpretation. For a

renormalisable quantum field theory all physical quantities are independent of the cut-off scale

and are thus divergence free.

This can be achieved through a re-parameterisation of the bare masses, couplings and the

field itself. In a renormalised theory it is always possible to combine these new parameterisa-

tions and obtain expressions for physical quantities that are independent of the cut-off scale.

This process is the renormalisation. In this chapter I will work in renormalised perturbation

theory where this renormalisation process occurs more automatically but is less explicit than

in a direct re-parameterisation. In this formalism counter-term couplings absorb the infinite

but unobservable shifts between bare parameters and physical observables.

In renormalised perturbation theory physical quantities are expressed as a perturbative

series in the couplings, with divergences appropriately dealt with at each order. They are

divergence free, but are generally not representative of the true physical value. Radiative cor-

rections are required to account for missing higher order terms in the theory. These corrections

involve consideration of the many possible ways to achieve the same physical process involv-

ing intermediate interactions consisting of various vertices and loops. For example, a physical

electron is not a single particle in the vacuum, instead it is surrounded by a photon cloud – its

radiation field. The electron itself is continuously interacting with this radiation field, emitting

and reabsorbing photons. These interactions change the energy of the system and must be
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accounted for when calculating the physical mass and charge of the electron.

To develop an understanding of renormalisation we will work with a simple scalar field

theory, known as ϕ4 theory, in four dimensions. This model consists of a single scalar field, ϕ,

with a mass m and two self-interactions; a quartic interaction with coupling strength λ and

cubic interaction of strength g. The bare Lagrangian is

L =
1

2
(∂µϕB)2 − 1

2
m2

Bϕ
2
B − gB

3!
ϕ3

B − λB

4!
ϕ4

B (2.1)

where mB is the bare mass parameter, gB and λB are the bare couplings for the cubic and

quartic interactions respectively and ϕB is the bare field. This theory contains four divergent

amplitudes, one for the vacuum energy shift, and one associated with each interaction vertex.

These are absorbed into the unobservable bare parameters (the bare mass, the two bare cou-

plings and a field strength parameter). So we now need to redefine the field and couplings

in terms of renormalised parameters, with these divergences appropriately absorbed. This is

achieved by the rescaling

ϕB = Z
1/2
ϕ ϕ, m2

B =
1

Zϕ
(m2 + δm), gB =

1

Z
3/2
ϕ

(g + δg), λB =
1

Z2
ϕ

(λ+ δλ) (2.2)

and δZ = Zϕ − 1, such that the Lagrangian becomes

L =
1

2
(∂µϕ)2 − 1

2
m2ϕ2

− g

3!
ϕ3 − λ

4!
ϕ4 +

1

2
δZ(∂µϕ)2 − δm

2
m2ϕ2 − δg

3!
ϕ3 − δλ

4!
ϕ4 .

(2.3)

This Lagrangian is now written in terms of the physical mass and couplings. The new terms,

δZ , δm, δg and δλ, are counter-terms which have absorbed the infinite shifts between the bare

and physical parameters. These counter-terms are not simply added to the Lagrangian, instead

they have been split out of the original bare Lagrangian. We can use Eq. (2.3) to determine

the Feynman rules for each vertex which are given in Figure 2.1.

Now we must choose a renormalisation scheme. The counter-term couplings and their

associated amplitudes contain divergent and finite pieces. The scheme determines exactly what

finite pieces are subtracted and consequently the precise physical interpretation of the resultant

finite parameters. The renormalisation scheme is fixed by a set of renormalisation conditions,

with these conditions specified at a given energy scale. Ultimately, physical quantities such

as cross-sections, branching ratios and masses should be independent of the renormalisation

scheme.

One popular renormalisation scheme is the on-shell scheme. In this scheme the renormali-

sation condition is that the two-point correlation function, or propagator, (see Section 2.2 for
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p
=

i

p2 − m2 + iϵ
= i(p2δZ − δm)

= −iλ = −iδλ

= −ig = −iδg

Figure 2.1: The Feynman rules for the ϕ4 theory given by the Lagrangian in Eq. (2.3) and the
propagator for a scalar field [8]. The small circle indicates an interaction vertex and the large
black circle with a grey cross indicates a counter-term vertex.

details) and its derivative with respect to the external momentum squared have a pole at some

experimentally measured value. One natural choice for this value would be m2. Thus, m in

Eq. (2.3) can be interpreted directly as the physical mass and the counter-term cancels any

finite contributions from radiative loop corrections (up to some order in λ and g). While this

scheme gives a physically sensible meaning to the Lagrangian parameters, it is not the most

common in modern quantum field thoery calculations. Another scheme is minimal subtraction,

where the counter-terms are such that they remove only the divergent part. A variant of this

scheme is modified minimal subtraction, or MS, where finite terms that are always accompa-

nied by divergent pieces are also subtracted, for ultimately tidier results. In this scheme m in

Eq. (2.3) is only the physical mass to leading order as counter-terms do not compensate for

the radiative corrections, so these must be explicitly added on. I will use henceforth use the

MS scheme.

In Section 2.2 I will go through a two-loop mass calculation, and in turn determine the

one-loop, and where necessary two-loop order counter-term couplings. In Section 2.3 I will

then demonstrate the concept of renormalisation group using the ϕ4 theory.

2.2 Precision mass calculations

The physical mass of a particle is necessarily independent of the renormalisation scheme and en-

ergy scale. In an experiment, the physical mass corresponds to a pole in a scattering amplitude,
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⟨Ω♣Tϕ(x)ϕ(y) ♣Ω⟩ = + + . . .

Figure 2.2: The two-point correlation function for an interacting field theory is given by the
free-field Feynman propagator (left) and any subsequent one particle irreducible loop diagrams
with two external legs.

where this amplitude contains the Fourier transform of the propagator for that particle.

The propagator is the amplitude for a particle, or field excitation, to propagate from x to

y and is expressed as ⟨Ω♣Tϕ(x)ϕ(y) ♣Ω⟩, where ⟨Ω♣ is the ground state of an interacting theory

(or ⟨0♣ in a free theory) and T is the time ordering operator. At the zeroth order (tree-level)

in perturbation theory there is only one such process, represented by the leftmost diagram in

Figure 2.2. Mathematically this is given by the free-field Feynman propagator, which for a

scalar field is

⟨0♣Tϕ(x)ϕ(y) ♣0⟩ =

∫

d4p

(2π)4

ie−ip·(x−y)

p2 −m2 + iϵ
(2.4)

for a particle of mass m, external momentum p and ϵ → 0. In an interacting theory we must

also consider radiative corrections. The first loop amplitude (the second diagram in Figure 2.2)

is constructed as

∫

d4p

(2π)4
e−ip·(x−y) i

p2 −m2 + iϵ
[−iΣ(p)]

i

p2 −m2 + iϵ
(2.5)

where we have a propagator for each external leg and −iΣ(p) represents the amplitude of

the loop process. For the next step we need the notion of a one particle irreducible diagram

(1PI). A 1PI diagram is one which can not be split into multiple subsequent diagrams, linked

only by one propagator. Then −iΣ(p) can represent the sum of all amplitudes corresponding to

1PI diagrams of the same order in perturbation theory. To complete the two-point correlation

function, we must also include strings of consecutive 1PI diagrams, such that the Fourier

transform of the total two-point function becomes (omitting the iϵ in the denominator)

∫

d4x ⟨Ω♣Tϕ(x)ϕ(0) ♣Ω⟩ e−ip·x =
i

p2 −m2

+
i

p2 −m2
[−iΣ(p)]

i

p2 −m2

+
i

p2 −m2
[−iΣ(p)]

i

p2 −m2
[−iΣ(p)]

i

p2 −m2

+ . . .

(2.6)
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Since Σ(p) commutes with i we are able to express this sum as a geometric series (this turns

out to also be possible for propagators with momentum-dependent numerators)

∫

d4x ⟨Ω♣Tϕ(x)ϕ(0) ♣Ω⟩ e−ip·x =
i

p2 −m2

[

1 +

⎤

Σ(p)

p2 −m2

⎣

+

⎤

Σ(p)

p2 −m2

⎣2

+ . . .

]

=
i

p2 −m2 − Σ(p)

(2.7)

so the pole of the propagator is given by p2 = m2 + Σ(p). The pole mass of a scalar field

is therefore defined as mpole = p such that p =
√

m2 + Σ(p), where Σ(p) is known as the

self-energy. Computing the physical mass mpole can be done via iteration (see Section 4.3.1),

or through an approximation (see Sections 3.3 & 4.4.1). In Chapter 4 we investigate the

phenomenological implications of choosing either of these methods.

The above procedure can be repeated for other types of fields. For a Dirac fermion, χ, the

free-field Feynman propagator is

⟨0♣Tχ(x)χ(y) ♣0⟩ =

∫

d4p

(2π)4

ie−ip·(x−y)

/p−m+ iϵ
(2.8)

which after working through the same steps as for the scalar field theory gives a Dirac fermion

pole mass mpole = p for p = m+ Σ(p).

Finally we need to define the pole mass for a vector field. The self-energy of a vector field,

Σµν(p2), can be separated into a transverse and a longitudinal piece as

Σµν(p2) = ΣT (p2)

⎤

gµν − pµpν

p2

⎣

+ ΣL(p2)
pµpν

p2
(2.9)

where the T and L denote the transverse and longitudinal polarisations respectively. Only the

transverse part of the self-energy appears in the propagator because the Ward identity for a

non-abelian vector field implies that pµΣµν(p2) = 0 and thus the self-energy must be of the

form (p2gµν − pµpν)Σµν(p2) [8]. So following the same treatment as above gives a pole mass

m2
pole = m2 − ReΣT (m2

pole) (2.10)

where m is the MS tree-level mass parameter.

As Σ(p) is a perturbative quantity, it is generally expressed as

Σ(p) = Σ(1)(p) + Σ(2)(p) + . . . (2.11)

where Σ(n)(p) is the sum of all 1PI diagrams involving n loops. In a valid perturbation theory

the magnitude of the terms will decrease with n such that the perturbative series is conver-

gent. Subsequently the theoretical error in the mass decreases with the loop order. One-loop
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self-energies are usually relatively simple and can even be computed automatically for some the-

ories with tools such as SARAH [140–143]. Two-loop self-energies are much more complicated,

with potentially hundreds of diagrams to consider, and thus often require some simplifications

to obtain tractable results. However, for comparison with precision experimental mass mea-

surements two-loop self-energies can be essential. For example, the theoretical error in the

full two-loop SM Higgs mass calculation, with some leading order three-loop contributions,

in Ref. [204] gives a theoretical error of ∼ 100 MeV on the mass. This is not much less than

the current ∼ 400 MeV uncertainty on the experimentally measured mass [205]. With the ex-

perimental uncertainty expected to become ∼ 50 MeV (Table 1-27 in Ref. [206]) at the LHC,

and even less at future e+e− colliders, self-energies at three-loop and beyond could become

necessary. The need for two-loop masses is not limited to the Higgs. In Chapter 3 we will

demonstrate how two-loop self-energies can result in changes to the decay lifetime of a charged

electroweak multiplet component by up to 40%. The required precision in Eq. (2.11) will ul-

timately depend on the physical problem and the sensitivity of the experimental constraints.

For this work we will not go beyond the two-loop level.

2.2.1 One-loop self-energy in ϕ4 theory

In this section I present a calculation of the one-loop self-energy, Σ(1)(p2), for the ϕ4 theory.

Here Σ(n)(p2) =
∑

i Σ
(n)
i +

∑

i Σ
(nc)
i is the sum of the individual amplitudes with n-loops, Σ

(n)
i ,

and the corresponding n-loop order counter-term amplitudes Σ
(nc)
i . The index i is used to

number the individual diagrams and corresponding amplitudes.

k

The first diagram to consider is given on the left and has an am-

plitude

−iΣ(1)
1 = − iλ

2

∫

d4k

(4π)2

i

k2 −m2
(2.12)

where I have included a symmetry factor of 1/2 (the diagram is symmetric under an interchange

of the two ends of the lines making the loop) and the coupling −iλ comes from Feynman rules in

Figure 2.1. To evaluate this integral I apply the technique of dimensional regularisation. This

involves computing a Feynman amplitude as an analytic function of spacetime dimensionality

D, and then taking the limit D → 4, which should be finite for observable quantities. I will

not derive the details of dimensional regularisation here as these can be found in almost any

introduction to quantum field theory, such as Ref. [8]. I apply this technique by replacing the

integrand in the divergent integral, Eq. (2.12), with a D = 4 − 2ϵ dimensional integration and
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a scaling factor µ2ϵ, such that

∫

d4k

(2π)4
[k2 −m2]−1 → µ2ϵ

∫

dDk

(2π)D

1

k2 −m2

= −µ2ϵ i

(4π)
D
2

⎤

1

m2

⎣1− D
2

Γ

⎤

2 −D

2

⎣

= −µ2ϵ −i
(4π)2

m2
(

m2
⎡−ϵ

Γ (ϵ− 1) (4π)ϵ

=
im2

(4π)2

(

1

ϵ
+ 1 − γ + log

4πµ2

m2

)

+ O(ϵ)

=
im2

(4π)2

(

1

ϵ
+ 1 − log

m2

Q2

)

+ O(ϵ)

(2.13)

where I have used the identity for the integral in Minkowski space from Eq. (A.44) of Ref. [8]

in the second line, Γ is the Gamma function, γ ≈ 0.5772 is the Euler-Mascheroni constant

and µ and Q are the regularisation and renormalisation scales respectively. These two scales

can in principle be independent, yet as discussed earlier, in the MS renormalisation scheme,

we set the renormalisation conditions such that the results are more compact. So for now

I set Q2 = 4πe−γµ2 as the renormalisation condition in the last equality in Eq. (2.13). In

this case the counter-term would only need to be of the form 1
ϵ , as I can absorb Q into the

general expressions for integrals. More generally (and equivalently) I could use a counter-term

proportional to

1

ϵ
+ log

4πµ2

Q2
− γ (2.14)

as will be necessary in Section 2.3 where I require µ and Q to be treated as independent.

Therefore I choose to express counter-terms in the more general form of Eq. (2.14).

Now I will write Σ
(1)
1 (Eq. (2.12)) in terms of a basis integral. Basis integrals are a stan-

dardised set of integrals that can be evaluated using computer programs such as the Two-loop

Self-energy Integral Library (TSIL) [9]. Although Σ
(1)
1 (Eq. (2.12)) is straight forward to eval-

uate, two-loop integrals are not, and often require numerical techniques. So in general I will

use basis integrals and make use of the existing numerical tools to evaluate these. For the

amplitude from Eq. (2.12) we need the A integral, given by

A(m2) = m2

(

log
m2

Q2
− 1

)

(2.15)

such that

Σ
(1)
1 =

κλ

2

(

A(m2) − m2

ϵ

)

+ O(ϵ) (2.16)

where κ ≡ 1/(16π2). This is not yet finite in the limit of small ϵ, but once we include the

counter-terms we will be able to obtain a finite result for the renormalised mass.
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k

p− k

The next diagram to consider is given on the left. This has an

amplitude

−iΣ(1)
2 = −g2

2

∫

d4k

(2π)4

i

k2 −m2

i

(p− k)2 −m2
(2.17)

where I have included a symmetry factor of 1/2 and two factors of −ig, one from each vertex.

This integral also depends on the external momentum, p. Before applying dimensional regu-

larisation I use the technique of Feynman parameter integration to express the integral in a

simpler form. Using the identity

1

AB
=

∫ 1

0

dx

[A+ (B −A)x]2
(2.18)

we have

−iΣ(1)
2 =

g2

2

∫

d4k

(2π)4

∫ 1

0

dx

[(k − px)2 − ∆]2
(2.19)

where ∆ = x(1 − x)p2 + m2. We can then translate the integration measure dk → dk′ where

k′ = k − px, and make the shift k → k + px to give

−iΣ(1)
2 =

g2

2

∫

d4k

(2π)4

∫ 1

0

dx

[k2 − ∆]2
. (2.20)

Applying dimensional regularisation gives

∫

d4k

(2π)4
[k2 − ∆]−2 → µ2ϵ

∫

dDk

(2π)D

1

[k2 − ∆]2

= µ2ϵ i

(4π)
D
2

1

∆2− D
2

Γ

⎤

4 −D

2

⎣

=
i

(4π)2

(

1

ϵ
+ log

Q2

∆

)

+ O(ϵ) .

(2.21)

Now I will make use of another one-loop basis integral

B(p2,m2
1,m

2
2) =

∫ 1

0
dx log

Q2

(1 − x)m2
1 + xm2

2 − x(1 − x)p2 − iϵ
+ O(ϵ) (2.22)

where I will henceforth omit the explicit p2 dependence on the LHS. The amplitude can now

be written as

Σ
(1)
2 = −1

2
κg2

⎤

B(m2,m2) +
1

ϵ

⎣

+ O(ϵ) . (2.23)

Finally we must consider the two-point counter-term diagram,

which has an amplitude

−iΣ(1c)
1 = i(p2δZ − δm). (2.24)
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We now need to remove the divergent terms from (2.16) and (2.23) by determining the

appropriate values for the counter-term couplings, δm and δZ . The full one-loop self-energy,

including counter-terms, is

Σ(1) =
1

2
κλ

(

A(m2) − m2

ϵ

)

− 1

2
κg2

⎤

B(m2,m2) +
1

ϵ

⎣

+δm−δZp
2 + O(ϵ) . (2.25)

Demanding that the divergent part, of order 1/ϵ, is zero gives the condition on the counter-

terms

0 = − 1

2ϵ
κ
(

λm2 + g2
⎡

+ δm − δZp
2 (2.26)

which gives two independent equations by seperating into a momentum dependent and inde-

pendent part. Solving this system of two equations we find

δm = κ δ
(1,1)
m + O(κ2) =

κ

2

(

g2 + λm2
⎡

(

1

ϵ
+ log

4πµ2

Q2
− γ

)

+ O(κ2) (2.27)

δZ = κ δ
(1,1)
Z + O(κ2) = O(κ2) (2.28)

where δi,k has a coefficient order i in κ and a divergence of order 1/ϵk and we have used the

general form for the counter-term as given in Eq. (2.14) (this is possible since we can in principle

include any finite part in the count-term coupling). We also allow for high order terms, O(κ2),

which are required to cancel divergences from amplitudes above the one-loop order, which we

will determine in Section 2.2.4. In this section I have presented a simple example of a one-

loop self-energy calculation, in Section 3.3.1 we work through a more complicated one-loop

self-energy using the same techniques.

2.2.2 Basis integrals

In Section 2.2.1 I used basis integrals to express one-loop amplitudes in a standardised form.

Not only does this make the expressions more tractable but the evaluation is straight forward,

with various software packages having at least some implementation of the A and B integrals.

Because the UV divergences are associated with the integrals themselves, basis integrals are

generally expressed with the divergent part included. Indeed, we could have saved some work

by referring immediately to these integrals in their full form. I will use the basis integrals as

defined in Ref. [9], where the integrations are performed in Euclidean space (and thus have a

different sign on the mass terms appearing in the denominator). For A and B we have

A(x) = C

∫

dDk
1

[k2 + x]
= −x

ϵ
+A(x) + ϵAϵ(x) + O(ϵ2) (2.29)

B(x, y) = C

∫

dDk
1

[k2 + x][(k − p)2 + y]
=

1

ϵ
+B(x, y) + ϵBϵ(x, y) + O(ϵ) (2.30)
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where C = (2πµ)2ϵ

π2 , Aϵ(x) and Bϵ(x, y) are defined by Ref. [9] to be

Aϵ(x) = x

[

−1 − ζ(2)/2 + log
x

Q
−
⎤

log
x

Q

⎣2

/2

]

(2.31)

Bϵ(x, y) = ζ(2)/2 +
1

2

∫ 1

0
dt

⎦

log

⎤

tx+ (1 − t)y − t(1 − t)s

Q

⎣⎢2

(2.32)

and ζ is the Riemann zeta function. With these definitions one can immediately extract the

divergent piece once the amplitude is reduced to the form of a known basis integral. In general

we will use boldface type for divergent basis integrals, and standard type for the finite piece.

This standardised form for integrals appearing in self-energy calculations is essential when

working with two-loop amplitudes. In Section 2.2.3 I will write down the two-loop self-energy

for the ϕ4 theory using basis integrals which can be evaluated numerically using the TSIL

software package.

I will use the same notation for the basis integrals as Ref. [9],

S(x, y, z) = C2

∫

ddk

∫

dDq
1

[k2 + x][q2 + y][(k + q − p)2 + z]
(2.33)

I(x, y, z) = S(x, y, z)♣s=0 (2.34)

T(x, y, z) = −S(x′, y, z) (2.35)

U(x, y, z, u) = C2

∫

ddk

∫

dDq
1

[k2 + x][(k − p)2 + y][q2 + z][(q + k − p)2 + u]
(2.36)

M(x, y, z, u, v) = C2

∫

ddk

∫

dDq
1

[k2 + x][q2 + y][(k − p)2 + z][(q − p)2 + u][(k − q)2 + v]
(2.37)

where a prime denotes a derivative with respect to that argument, s = −p2 and once again

we omit the explicit dependence on the external momentum in the function arguments on the

LHS. Each one of these integrals represents a possible two-loop topology, in the case of a simple

scalar propagator and no momentum-dependent couplings. Because of this there are a range

of symmetries in the arguments to each integral, which we will make use of at evaluation time

(see Ref. [9] for more details).

Following the notation used for the TSIL software, the basis integrals can be expanded out

into finite and divergent pieces (terms of order one or higher in 1/ϵ) as [9]

I(x, y, z) = I(x, y, z) +
(x+ y + z)

2ϵ2
+Aϵ(x) +Aϵ(y) +Aϵ(z) (2.38)

− [A(x) +A(y) +A(z) − (x+ y + z)/2] /ϵ+ O(ϵ)

S(x, y, z) = S(x, y, z) − (x+ y + z)

2ϵ2
+Aϵ(x) +Aϵ(y) +Aϵ(z) (2.39)

+ [A(x) +A(y) +A(z) − (x+ y + z)/2 + s/4] /ϵ+ O(ϵ)

T(x, y, z) = T (x, y, z) +
1

2ϵ2
− [A(x)/x+ 1/2]

ϵ
+

(A(x) −Aϵ(x))

x
+ O(ϵ) (2.40)

U(x, y, z, u) = U(x, y, z, u) +
1

2ϵ2
+ [B(x, y) + 1/2] /ϵ+Bϵ(x, y) + O(ϵ) . (2.41)
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In many cases there is some manipulation required to express the amplitude in the form of

one of these basis integrals. This process becomes more involved with momentum-dependent

couplings and higher loop order, so in most cases an algorithm is used to reduce these tensor

integrals into the scalar basis integrals introduced here. Two-loop propagator integrals can be

reduced to simpler basis integrals using the recurrence algorithm proposed by Tarasov [207,208].

The TARCER software package [209] is an implementation of the complete set of Tarasov’s

recurrence relations with some additional extensions.

Another method to simplify multi-loop integrals is reduction by integration-by-parts identi-

ties (IBP) [210]. These IBP relations are based on an application of the divergence theorem to

loop integrals with propagators raised to integer powers. Combining complicated multi-loop in-

tegrals in such a way to take advantage of IBP relations requires sophisticated algorithms, such

as Laporta’s algorithm [211] or Baikov’s method [212]. The FIRE software package [213, 214]

makes use of Laporta’s algorithm, the s-bases algorithm [215] and other techniques to efficiently

implement IBP relations to multi-loop integrals.

In Section 2.2.3 I will apply TARCER [209] to some integrals appearing at two-loop in

the ϕ4 theory, although equivalent results can also be achieved using simple identities (I will

make reference to these when applicable). In the much more complicated two-loop calculation

presented in Chapter 3 we use both TARCER and FIRE [214] to reduce amplitudes to an

expression involving only the basis integrals presented in this section.

2.2.3 Two-loop self-energy in ϕ4 theory

There are nine loop diagrams and five counter-term diagrams for the self-energy of the ϕ4

theory at two-loop order. I will demonstrate how the basis integrals introduced in Section 2.2.2

can be used to efficiently write down these amplitudes, determine the total UV divergence, and

subsequently derive the appropriate counter-term couplings.

This calculation is implemented as a quick-start example in the Mass Builder software,

documented in Appendix C. Where necessary I use the result of a TARCER [209] reduction,

for consistency with the Mass Builder output. The diagram numbering, given by i in Σ
(2)
i ,

is equivalent to the numbering system in the Mass Builder implementation which is originally

determined by FeynArts [216].
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k1k1

p− k1

k2

The first two-loop diagram is given on the left and has an ampli-

tude

Σ
(2)
1 =

κ2λg2

4
C2
∫

dDk1 dDk2
1

(

k2
1 + x

)2
[(p− k1)2 + x]

(

k2
2 + x

)

=
κ2λg2

4
A(x)B(x′, x) (2.42)

where x ≡ m2 and B(x′, y) = d
dxB(x, y). Because of the derivative

term this is not the most fundamental representation. Making use

of the relationship [9]

B(x′, y) =

[

(3 −D)(s− x+ y)B(x, y) + (2 −D)¶A(y) + (s− x− y)A(x)/2x♢
]

s2 + x2 + y2 − 2sx− 2sy − 2xy
(2.43)

and taking x = y then substituting this along with Eqs. (2.29), (2.30) and (2.43), and setting

D = 4 − 2ϵ gives

Σ
(2)
1 =

g2κ2λ

4x(4x− s)

[

−2(A(x))2 − 2xA(x)B(x, x) − 4x2B(x, x) + 2xAϵ + 2x2Bϵ(x, x)

1

ϵ

(

2xA(x) + 2x2B(x, x) − 2x2
⎡

⎢

+ O(ϵ) (2.44)

which is the fully reduced form for this amplitude. For the remaining diagrams we will not

present the working to this final stage, as in most cases this would just be a repetition of

Eqs. (2.29) through (2.41). We will also not write out the integral form, instead going straight to

the basis integrals as defined in Eqs. (2.33) through (2.37). However, we retain the momentum

labels on the Feynman diagrams so it is easy to see what basis integral is required.

The next two diagrams are

p − k1k2

p−k1−k2

k1

k2p − k1

p−k1−k2

k1

from which we can use Eq. (2.36) to immediately write down the amplitudes as

Σ
(2)
2 = Σ

(2)
3 = κ2g2λU(x, x, x, x, x). (2.45)

k2k1

p − k2p − k1

k
1
−

k
2

The next diagram, given on the left, represents the “master” inte-

gral (Eq. (2.37)) which has no divergences and is given by

Σ
(2)
4 = −κ2 g

4

2
M(x, x, x, x, x)

= −κ2 g
4

2
M(x, x, x, x, x) + O(ϵ).

(2.46)
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p − k1p − k1

p−k1−k2

k1

k2

The fifth diagram, given on the left, is equivalent to a derivative

with respect to the second mass argument of Eq. (2.36)

Σ
(2)
5 =κ2 g

4

2
U(x, x′, x, x) (2.47)

although this is not the most fundamental representation.

To reduce this further one can use Eq. (3.22) of Ref. [217] and Eq. (2.38) of Ref. [9] (given the

complexity and length of these expression, I refer the motivated to reader to the given reference

rather than reproducing it here). We obtain a more compact expression by making use of the

TARCER software package. The result is

Σ
(2)
5 = −κ2 g4

12x2

[

3(3D − 8)x(2x− p2)

p2(4x− p2)
S(x, x, x) − 4x(x− p2)(9x− p2)

p2(4x− p2)
T(x, x, x)

+
3(D − 2)x(2x− p2)

p2(4x− p2)
I(x, x, x) + 2(D − 2)A(x)B(x, x)

−x(Dp2 + 2(D − 9)x)

4x− p2
U(x, x, x, x)

]

.

(2.48)

k1 k1

k2
The sixth diagram is given on the left and has an amplitude

Σ
(2)
6 = −κ2λ

2

4
A(x)A(x′) (2.49)

where A(x′) can be further reduced with the result

A(x′) =
(D − 2)

2x
A(x) (2.50)

(which one can verify using Eqs. (2.15), (2.29) and (2.31)) to give

Σ
(2)
6 = −κ2 λ

2

8x
(D − 2)[A(x)]2 . (2.51)

The final three diagrams to consider are given below.

k1

p− k1

k2

p− k2

k1

k2

k1 + k2 k1 + k2

k1

k2

p− k1 − k2

The first on the left is expressed using Eq. (2.30)

Σ7 = κ2 g
2λ

4
[B(x, x)]2 (2.52)
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the middle diagram is given by the derivative of Eq. (2.34) with respect to the third mass

argument

Σ
(2)
8 = −κ2 g

2λ

4
I(x, x, x′) (2.53)

which can be further reduced using TARCER to give

Σ
(2)
8 = −κ2 g

2λ

12x
(D − 3)I(x, x, x). (2.54)

Finally, the right-most diagram is given by Eq. (2.33) as

Σ
(2)
9 = −κ2λ

2

6
S(x, x, x). (2.55)

Counter-term diagrams

k1 k1

p− k1

The first two-loop counter-term diagram is given on the left. This

diagram involves a correction to the internal scalar propagator,

with an amplitude

Σ
(2c)
1 = κ2 δ(1,1)

m g2B(x′, x) (2.56)

which after using Eq. (2.43) becomes

Σ
(2c)
1 = κ2 δ

(1,1)
m g2

2x(4x− p2)
[(D − 2)A(x) + 2(D − 3)B(x, x)] (2.57)

where we have set δ
(1,1)
Z = 0 from Eq. (2.28) and neglect O(κ3) terms in δm.

The next three counter-term diagrams are given below.

k1

p− k1

k1

p− k1

k1

The first on the left is given by

Σ
(2c)
2 = −κδλ

2
A(x) (2.58)

and the following two, which are mathematically equivalent are given by

Σ
(2c)
3 = Σ

(2c)
5 = κ2g δgB(x, x) . (2.59)
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k1 k1

The final amplitude, coming from the counter-term diagram on the

left, is

Σ
(2c)
4 = κ2iλδ(1,1)

m A(x′) (2.60)

which after using Eq. (2.50) becomes

Σ
(2c)
4 = κ2λδ(1,1)

m

(D − 2)

4x
A(x). (2.61)

2.2.4 The total finite mass correction

The two-loop mass correction is obtained by combining all the amplitudes computed in Sections

2.2.1 and 2.2.3 and cancelling all divergences by a careful choice of counter-term couplings.

The full self-energy up to two-loop order, Σ = Σ(1) + Σ(2), is

Σ =
2
∑

i=1

Σ
(1)
i +

9
∑

i=1

Σ
(2)
i + Σ

(1c)
1 +

5
∑

i=1

Σ
(2c)
i (2.62)

and it is required that Σ has no terms of order one or higher in 1/ϵ. To impose this constraint

we must first add higher order terms to the two-point counter-term such that the corresponding

amplitude is

Σ
(1c)
1 = κ

(

δ(1,1)
m + p2δ

(1,1)
Z

⎡

+ κ2
[(

δ(2,1)
m + p2δ

(2,1)
Z

⎡

+
(

δ(2,2)
m + p2δ

(2,2)
Z

⎡]

(2.63)

where δi,k has a coefficient order i in κ and a divergence of order 1/ϵk. The results for δ
(1,1)
m and

δ
(1,1)
Z were given in Eqs. (2.27) and (2.28) respectively. Two equations are formed by setting

the coefficients of 1/ϵ and 1/ϵ2 of Σ (Eq. (2.62)) equal to zero, which gives

0 = 24
(

δ(2,1)
m + p2δ

(2,1)
Z

⎡

+ λ(15g2 + λp2 + 6λx)

+ (3gλ− 2κδg)B(x, x) +
(

2δλ − 3κλ2
⎡

A(x) (2.64)

0 = −8δgg − 4δλx+ 8
(

δ(2,2)
m + p2δ

(2,2)
Z

⎡

+ 5g2λ+ 2λ2x . (2.65)

We can split Eq. (2.64) in three by separating into the coefficients of A(x), B(x, x) and the

remainder. This gives three independent equations

0 = 2δλ − 3κλ2 (2.66)

0 = 3gλ− 2κδg (2.67)

0 = 24
(

δ(2,1)
m + p2δ

(2,1)
Z

⎡

+ λ(15g2 + λp2 + 6λx). (2.68)

Finally we seperate Eqs. (2.65) and (2.68) into a momentum-dependent and independent part

to give an additional two equations. Now we can solve for the following counter-term couplings
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(including the results from Eqs. (2.27) and (2.28))

δλ =
κ

ϵ̂

3λ2

2
(2.69)

δg =
κ

ϵ̂

3gλ

2
(2.70)

δ(1,1)
m =

1

2ϵ̂

(

g2 + λm2
⎡

(2.71)

δ
(1,1)
Z = 0 (2.72)

δ(2,1)
m =

1

ϵ̂

⎤

−5

8
λg2 − 1

4
λ2m2

⎣

(2.73)

δ
(2,1)
Z =

1

ϵ̂

(

−λ2

24

)

(2.74)

δ(2,2)
m =

1

ϵ̂2

⎤

7

8
λg2 +

1

2
λ2m2

⎣

(2.75)

δ
(2,2)
Z = 0 (2.76)

where 1/ϵ̂ = 1/ϵ + log
(

4πµ2/Q
)

− γ. With these counter-term couplings all divergences are

removed. The resultant self-energy is

Σ(1)(p2) =
1

2
λA(x) − 1

2
g2B(x, x) (2.77)

Σ(2)(p2) = −1

2
g4M(x, x, x, x, x) − 1

2
g4V (x, x, x, x) + λg2U(x, x, x, x)

−1

6
λ2S(x, x, x) +

1

4
λg2B(x, x)B(x, x) +

1

4
λ2A(x) [A(x)/x+ 1] (2.78)

−1

2
λg2A(x)B(x′, x) − 1

4
λg2I(x′, x, x) ,

where I have used the more compact form of some amplitudes. This is the same result as

given in Ref. [9] where this serves as an example calculation in the TSIL package. This result

is numerically equivalent to the less compact, but further reduced, expression that is obtained

using the Mass Builder package to complete the entire calculation that we have done here.

This concludes our brief introduction to precision mass calculations. These concepts form

the theoretical background for the research presented in Chapters 3, 4 and 5.

2.3 The renormalisation group

The second concept I will introduce is the renormalisation group. If one keeps the cut-off, Λ, in

bare renormalisation theory it is enlightening to follow the Wilsonian approach to renormalisa-

tion, interpreting this as a physically meaningful quantity. By choosing a new cut-off, Λ′, and

integrating out the momenta between Λ and Λ′ an effective Lagrangian, L′, can be obtained.

When loop calculations are performed, one must then only integrate up to the new cut-off Λ′,

with the additional high energy physics now encoded in the effective Lagrangian. By making
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the range of this integration infinitesimally small the integrating out process becomes a con-

tinuous transformation. Combining this with an appropriate rescaling we obtain a flow in the

space of all possible Lagrangians. This continuously generated transformation is historically

known as the renormalisation group, although it lacks some formal properties of a group, such

as invertibility of the integrating out process [8].

In renormalised perturbation theory the cut-off is taken to infinity from the beginning, so

it is not as immediately clear how a group of possible theories can be constructed. When the

dependence on the cut-off scale is removed through renormalisation of masses and couplings a

set of constraints must be applied. These renormalisation conditions are set at some energy

scale, Q. In the MS scheme that we used in Section 2.2 the renormalisation conditions are

imposed through the counter-term couplings, with the scale dependence explicitly entering in

the definition of the basis integrals, such as the Q in Eq. (2.15).

The choice of the renormalisation scale, Q, is physically irrelevant, and in an infinite order

calculation would have no consequence. However, in a perturbative field theory it is through the

choice of this scale that the renormalisation group is manifest. In this section I will introduce

the Callan-Symanzik Equation and develop the concept of running couplings. I will show how

all quantities in a quantum field theory are scale dependent, which has important consequences

for popular dark matter theories, and will form the basis for the likelihoods used to constrain

models in Chapter 7.

2.3.1 The Callan-Symanzik equation

In Section 2.2 I introduced the two-point correlation function. This function can be generalised

to an n-point correlation, or Green’s function. Let G(n)(x1, . . . , xn) be the connected n-point

function in renormalised perturbation theory,

G(n)(x1, . . . , xn) = ⟨Ω♣Tϕ(x1) . . . ϕ(xn) ♣Ω⟩ , (2.79)

which represents all four-point diagrams except those where the propagators are not connected

(for example, a diagram with two parallel propagators and no interactions). The dependence

on Q only enters when we remove the cutoff by rescaling the fields and introducing renormalised

parameters. The effect of this renormalisation process on the Green’s functions is a scaling by

the field strength renormalisation Z

⟨Ω♣Tϕ(x1) . . . ϕ(xn) ♣Ω⟩ = Z−n/2 ⟨Ω♣Tϕ(x1) . . . ϕ(xn) ♣Ω⟩bare . (2.80)

The bare Green’s functions are independent of the renormalisation scale. However, the renor-

malised functions could be defined at any scale Q, and are functions of the rest of the renor-
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malised parameters. Therefore, when the renormalisation scale is shifted by an amount δQ,

there must be a corresponding shift in the renormalised parameters such that the bare Green’s

functions remain fixed. Again using the ϕ4 theory as an example, we can consider G(n) as a

function of Q, λ, g and m. In this case the requirement of a constant bare Green’s function

with respect to Q gives us the Callan-Symanzik equation [218,219]

⎤

∂

∂ logQ
+ βλ

∂

∂λ
+ βg

∂

∂g
+ γ2m

2 ∂

∂m2
+ nγϕ

⎣

G(n)(x1, . . . , xn;m,λ, g,Q) = 0 (2.81)

where for i ∈ ¶λ, g♢ we have

βi ≡ ∂i

∂ logQ

\

\

\

\

B

, (2.82)

γϕ ≡ 1

2Z

∂Z

∂ logQ

\

\

\

\

B

, (2.83)

γ2 ≡ 1

m2

∂m2

∂ logQ

\

\

\

\

\

B

, (2.84)

and B denotes that the bare parameters are to be kept fixed when taking the partial derivatives.

Here the β are known as beta functions and γϕ the anomalous dimension. So we have seen

that the Callan-Symanzik equation tells us that there exist functions β, γϕ and γ2 of the

renormalised parameters which compensate for changes in the renormalisation scale Q such

that the bare Green’s function is fixed.

2.3.2 The beta function in ϕ4 theory

The function βi(λ, g,m) for i = λ, g is of particular interest for particle phenomenology. It

tells us how a coupling, and thus the strength of an interaction, changes with respect to the

scale at which the physics is being studied. In this section I will demonstrate how to compute

the beta functions in the ϕ4 theory directly from the counter-term couplings derived in Section

2.2.4.

The most direct way to compute the beta functions is by demanding that a perturbative

expression for an appropriate Green’s function satisfies the Callan-Symanzik equation. As

we found for the two-point function in Section 2.2.1, the renormalisation scale dependence

originates in the counter-terms that cancel the logarithmic divergences, and thus the β and γ

functions are related to these counter-terms.
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Taking Eq. (2.2) and making the Q dependence explicit we have

Z(Q) = 1 + δZ(Q) (2.85)

λ(Q) = Z(Q)2λB − δλ(Q) (2.86)

g(Q) = Z3/2(Q)gB − δg(Q) (2.87)

m2(Q) = Z(Q)m2 − δm2(Q) (2.88)

applying the definitions in Eqs. (2.82), (2.83) and (2.84) gives, to leading order in the pertur-

bative couplings,

γϕ =
1

2

∂δZ

∂ logQ
+ O

⎤

δZ
∂δZ

∂ logQ

⎣

(2.89)

βλ = 4λγϕ − ∂δλ

∂ logQ
+ O

⎤

δλ
∂δZ

∂ logQ

⎣

(2.90)

βg = 3gγϕ − ∂g

∂ logQ
+ O

⎤

δg
∂δZ

∂ logQ

⎣

(2.91)

γ2 = 2γϕ − ∂δm2

∂ logQ
+ O

⎤

δm2 ∂δZ

∂ logQ

⎣

. (2.92)

Now we are ready to determine the values of these functions from the counter-terms derived

earlier. Since we know the counter-terms must cancel divergences in the Green’s functions, we

can express these in the form

δZ = Aγϕ

(

1

ϵ
+ log

4πµ2

Q2
− γ

)

(2.93)

for some constant Aγϕ
. Therefore

∂δZ

∂ logQ
= −2Aγϕ

(2.94)

and then from comparison with Eq. (2.89) we have

Aγϕ
= −γϕ. (2.95)

Comparing this result with Eq. (2.28) (working to one-loop order for this example) we find

that γϕ = 0. Similarly, for the β and γ2 functions we find

Aβλ
=
βλ

2
− 2λγϕ (2.96)

Aβg =
βg

2
− 3

2
gγϕ (2.97)

Aγ2
= m2

⎤

γ2

2
− γϕ

⎣

(2.98)
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and thus after comparison with Eqs. (2.69) and (2.70) we have

βλ =
3λ2

16π2
(2.99)

βg =
3gλ

16π2
(2.100)

γ2 =
1

16π2

(

λ+
g2

m2

)

(2.101)

up to leading order in the perturbative couplings. Now consider the β function for λ. This

function tells us how the coupling λ changes with respect to the energy scale. If λ(Q) is known

for some reference scale Q, then at some other renormalisation scale p we have

λ(p) =
λ(Q)

1 − 3λ(Q)
16π2 log (p/Q)

(2.102)

so we can immediately see that the coupling λ grows for large p. In the limit p → Q exp
(

16π2

3λ(Q)

⎡

the coupling becomes undefined; this is known as a Landau pole. Before the Landau pole is

reached, the coupling is sufficiently large that perturbation theory breaks down. If this happens

at a energy scale p where the theory is expected to be valid, then either something is wrong

with the theory or it implies that our computational framework is inadequate. We will discuss

this further in Section 6.4 and use it as a constraint on new physics models in Chapter 7.

In this introduction we worked up to one-loop order, but in general an RGE can be expressed

as

dλ

d logQ
=

1

16π2
β

(1)
λ +

1

(16π2)2β
(2)
λ +

1

(16π2)3β
(3)
λ + . . . (2.103)

where we separate the differential equation into contributions from diagrams involving one

internal loop, two internal loops and so on.

The couplings in the SM all have corresponding beta functions like those we found in the ϕ4

theory. These are known as renormalisation group equations (RGEs) and parameters are said

to run with respect to the renormalisation scale. In the SM parameters are generally defined

at a reference scale around the top quark mass, and then run using RGEs up to scales as high

as the Planck scale. The reference scale is chosen to minimise the magnitude of missing higher

order terms, which would be of order O(µ−mt) where mt is the top mass (or whichever is the

largest mass involved in the calculation).



3 Two-loop mass splittings in electroweak multiplets:

winos and minimal dark matter

3.1 Introduction

Dark matter as the lightest component of an electroweak multiplet remains a viable explanation

for the observed relic abundance. One feature of this type of dark matter model is the potential

for a striking signature in the form of a disappearing charged track in a collider experiment. This

is due to an order 100 MeV radiatively-induced mass difference between the neutral multiplet

component, and the heavier charged components. The exact length of such a track is extremely

sensitive to the value of this mass difference.

At the lowest order in perturbation theory, all components of an electroweak multiplet have

the same mass. After electroweak symmetry breaking, radiative corrections from massive gauge

bosons push the physical masses of the charged components slightly above that of the neutral

component [220, 221]. In many phenomenological studies, a one-loop calculation of this mass

splitting is considered sufficient to give reasonable constraints on physical observables. However,

as we will show, due to the strong dependence on the mass splitting, two-loop corrections can

result in up to a 40% change in the lifetime of a charged multiplet component, and should be

included when comparing theory with experiment.

In this chapter we compute two-loop mass splittings for multiplets in two phenomenologi-

cally relevant models, both of which are introduced in Section 1.2.2. The first is the wino in

the minimal model of R-parity conserving supersymmetry, a Majorana fermionic electroweak

triplet. We focus specifically on the scenario where the lightest supersymmetric particle (LSP)

is a pure wino (neutralino), corresponding to the neutral component of the triplet. In this

scenario the next-to-lightest supersymmetric particle (NLSP) is also a pure wino (chargino),

corresponding to the charged component. The rest of the supersymmetric spectrum is suffi-

ciently massive to be decoupled. In this limit, a wino of mass ∼ 3 TeV would give the correct

relic abundance [115, 116]. This model and the radiatively-induced mass splitting have been

studied extensively [128,221], including calculation of radiative corrections to the mass splitting

at two-loop order [118]. We refine the existing calculations by treating light quarks as massive,

and by using input parameters computed using a full model spectrum. We compare to existing

results based on massless light quarks and simple threshold corrections.

63
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The second model that we consider is the minimal dark matter (MDM; [113,136]) fermionic

quintuplet, introduced in Section 1.2.2. In general, MDM refers to a class of dark matter

models, each consisting of the SM plus a different electroweak multiplet with some minimal set

of quantum numbers and charges under the SM gauge groups. Most models in this class have

been ruled out [137], although the fermionic quintuplet with zero hypercharge is still viable.

This model has a weakly-interacting massive particle, which for a mass of ∼ 9 TeV gives the

expected dark matter relic abundance [113,144]. The quintuplet contains neutral, charged and

doubly-charged components. This is the first two-loop calculation of the splitting between the

masses of these components.

The proper lifetime of a charged component, τ , which we will express in units of (mm/c), is

on the order of nanoseconds to picoseconds for the models considered here. This corresponds

to disappearing track lengths on the millimetre to centimetre scale, or more precisely about

6 cm [118] for the wino limit of the MSSM. This is the motivation for many disappearing-track

searches [123–128]. See Section 1.2.2 for more details on the phenomenology of these models.

The calculation of two-loop radiative corrections is a computationally challenging task,

which has been significantly simplified with the introduction of modern tools. Even at the

most rudimentary level, determining all possible topologies is non-trivial, let alone simplifying

and evaluating the resulting integrals. Fortunately, FeynArts [216], FeynCalc [222,223], TARCER

[209], FIRE [214], FeynHelpers [224] and TSIL [9] have made each step of this process far more

achievable than in the past.

The computational difficulty of the two-loop mass calculation is significantly greater for the

MDM quintuplet model than for a triplet, due to the ∼ 300 additional amplitudes that must be

considered compared to the triplet. We overcome this by using a new computational framework

that is almost completely automated. This framework effectively makes the generalisation from

a triplet to quintuplet trivial, and in the future can be extended to make two-loop calculations

achievable with even more diagrams.

Although precision two-loop self-energy corrections are essential for accurately constraining

the lifetimes of charged multiplet components, the values of the input parameters used for these

calculations are equally important. Due to the scale dependence of parameters in perturbative

quantum field theory, all quantities entering into a precision mass calculation are subject to

potentially large uncertainties.

Consistently computing all masses and couplings in a theory such as the MSSM is rather

involved. The physical masses must be correctly matched to corresponding running masses,

which depend on the renormalisation scale. Similarly, the couplings, which appear in the
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Lagrangian of the theory, are scale-dependent quantities. Because different quantities of the

calculation are defined at different scales, threshold corrections must be applied to match some

low-energy theory, such as QCD, to the high energy theory of interest, such as the MSSM.

In our example, input parameters such as the running masses of the light quarks and leptons

are defined in the low-energy effective QCD theory, but we are interested in determining the

values of running parameters at some higher scale Q, so that we can use them as inputs to our

two-loop self-energy calculations for the electroweak multiplet components. To achieve this, it

is necessary to numerically solve a set of ordinary differential RGEs with boundary conditions

defined across a hierarchy of scales, and perform the appropriate matching.

Spectrum generators are software packages that are designed to do all this in a consistent

and precise way. A number exist for the MSSM [225–230]. There are also packages intended

to compute precision masses for specific states, such as FeynHiggs [231] and SUSYHD [232],

which compute Higgs masses. However, these packages are hardcoded to a specific model,

and a specific parameterisation of that model. In this study, we consider both a specific limit

of the MSSM, and a non-supersymmetric theory. We therefore use tools that can create a

spectrum generator from a Lagrangian, providing a consistent approach across both models.

A major part of computing a spectrum is obtaining the analytical forms of the RGEs and

the radiatively-corrected masses, threshold and tadpole corrections. It is then the part of the

spectrum generator to use numerical techniques to solve and evaluate those functions. We use

SARAH [140–143] to produce two-loop RGEs and one-loop masses and threshold corrections,

and then use FlexibleSUSY1 [234, 235] to generate a spectrum generator for the MDM and

MSSM models. We link the spectrum generator to our self-energy calculations, in order to

provide precision running masses and couplings.

In Section 3.2 we detail the input parameters used. We then describe our calculation

methods in Section 3.3, our results in Section 3.4, and summarise in Section 3.5. We give explicit

expressions for the one-loop self-energies and counter-term couplings required for computing

two-loop mass splittings in Appendix A.

3.2 Input parameters

The models used and parameter definitions are detailed in Section 1.2.2. Here we briefly define

the additional SM input parameters and ranges.

In this study, we use a fully-computed model spectrum to obtain the input parameters

for our self-energy calculations. To generate the spectrum, we therefore require a full set of

1FlexibleSUSY also uses some code pieces from SOFTSUSY [230,233].
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Table 3.1: Input parameters and 3σ uncertainties used for the calculations in this study (unless
stated otherwise). Except for the renormalisation scale, the ranges and central values come
from the latest Particle Data Group tables [236].

Parameter Values

Electromagnetic coupling 1/αMS
SM (mZ) 127.940(42)

Top pole mass mt 173.34(2.28) GeV

Higgs pole mass mh 125.5(1.6) GeV

W pole mass mW 80.385(15) GeV

Z pole mass mZ 91.1876(21) GeV

Electron pole mass me 0.5109989461(31) MeV

Muon pole mass mµ 105.6583745(24) MeV

Tau pole mass mτ 1776.86(12) MeV

Down quark mass mMS
d (2 GeV) 4.80(96) MeV

Up quark mass mMS
u (2 GeV) 2.30(46) MeV

Strange quark mass mMS
s (2 GeV) 95(15) MeV

Charm quark mass mMS
c (mc) 1.275(75) GeV

Bottom quark mass mMS
b (mb) 4.18(9) GeV

Strong coupling αMS
S (mZ) 0.1181(11)

Renormalisation scale Q mt/2 − 2mt

SM input parameters. These are given in Table 3.1. The central values and experimental

uncertainties are from the latest Particle Data Group tables [236]. We quantify the parametric

sensitivity of the mass splitting to each of these uncertainties by varying one parameter at

a time, and holding the rest fixed. We show the results of this exercise in Table 3.2, at a

phenomenologically relevant value of the degenerate mass for each model.

The renormalisation scale Q (see Sections 2.2.1 and 2.3) is an important input parameter

in our calculation. This is the scale to which all mass parameters and couplings are run,

and where the self-energies, and subsequent pole masses, are evaluated. The range of this

parameter should reflect the scale of missing logarithmic corrections in the calculation, which

are of the form log(m/Q)/(16π2)3 for some mass m2. When using a non-iterative method

for computing the multiplet mass splitting, we find that the dominant missing logarithmic

corrections come from masses near the electroweak scale. Contributions from the multiplet

itself, with masses around the TeV scale, are cancelled. We will demonstrate this in detail in

Chapter 4 (alternatively see Ref. [2]). Therefore, for this calculation it is sufficient to vary

the renormalisation scale around the mass of the top quark. We therefore choose the range

mt/2 ≤ Q ≤ 2mt.

2The renormalisation scale dependent terms of this form would be cancelled in a three-loop order calculation.
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3.3 Method

To determine the mass splitting we must compute the physical, or pole, masses of the multiplet

components to a fixed order in perturbation theory. See Section 2.2 for an introduction to pole

mass calculations in perturbative quantum field theory.

The definition of a pole mass is the complex pole of the two-point propagator. For a

fermion the propagator has a denominator given by the one-particle irreducible effective two-

point function

Γ2 = /p− M̂ + ΣK(p2)/p+ ΣM (p2) (3.1)

which is the fermion equivalent to the denominator of the scalar propagator derived in Eq. (2.7).

Here pµ is the four-momentum of the particle, M̂ is the tree-level MS mass and /p = γµpµ.

The self-energy, which we express as Σ(p2) = ΣM (p2) + /pΣK(p2), is in general a function of

the external momentum, the renormalisation scale and any relevant masses or couplings in the

theory.

The pole mass is obtained by demanding Γ2 = 0. This can be achieved by setting p2 = M2
pole

(and /p = Mpole), and solving the resulting implicit expression for the pole mass

Mpole = Re

[

M̂ − ΣM (M2
pole)

1 + ΣK(M2
pole)

]

. (3.2)

In Chapter 4 we will solve Eq. (3.2) iteratively and show that this results in unwanted scale-

dependent logarithms in the result. Alternatively, one can take advantage of the perturbative

nature of this expression to write down an explicit result for the pole mass that preserves a

fortunate cancellation of the scale-dependent logarithms.

We will make an expansion around the tree-level mass, M̂ , to second order in the pertur-

bative coupling α. For this derivation we set O
(

Σ(n)
⎡

= αn. Demanding that the self-energies

are evaluated at the tree-level mass requires the use of the Taylor expansion

Σ
(1)
M

\

\

\

p2=M2
pole

= Σ
(1)
M + 2M̂(Mpole − M̂)Σ̇

(1)
M + O

(

α3
⎡\

\

\

p2=M̂2
, (3.3)

where Σ
(n)
X = Σ

(n)
X (p2) and Σ̇ is the derivative of Σ with respect to the external momentum

squared. The second term on the RHS of Eq. (3.3) still includes Mpole, so we use the relation

Mpole − M̂ = −MpoleΣ
(1)
K (M2

pole) − Σ
(1)
M (M2

pole) + O(α2)

= −MpoleΣ
(1)
K (M̂) − Σ

(1)
M (M̂) + O(α2),

(3.4)

which comes directly from demanding Γ2 be equal to zero (from Eq. (3.1)), and the second line

follows from Eq. (3.3). An error of order α2 is acceptable for this difference, as it appears in
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the final expression as the coefficient of Σ̇
(1)
K , so will contribute to a total error of order α3. To

remove the remaining Mpole on the right-hand side of Eq. (3.4), we use the same expression

within itself (effectively iterating once by hand) to obtain

Mpole − M̂ = −M̂Σ
(1)
K (M̂) − Σ

(1)
M (M̂) + O(α2). (3.5)

We then substitute this expression into Eq. (3.3) to give

Σ
(1)
M

\

\

\

p2=M2
pole

= Σ
(1)
M − 2M̂(M̂Σ

(1)
K + Σ

(1)
M )Σ̇

(1)
M + O

(

α3
⎡\

\

\

p2=M̂2
. (3.6)

For the two-loop self-energy functions, we can immediately take Σ
(2)
M (M2

pole) = Σ
(2)
M (M̂2) +

O
(

α3
)

, as the derivative terms will be of higher order. Similar relations hold for Σ
(1)
K and Σ

(2)
K .

Finally, we can express the pole mass valid to order α2 as

Mpole =
[

M̂ − Σ
(1)
M − Σ

(2)
M − M̂Σ

(1)
K − M̂Σ

(2)
K

+(Σ
(1)
M + M̂Σ

(1)
K )(Σ

(1)
K + 2M̂ Σ̇

(1)
M + 2M̂2Σ̇

(1)
K ) + O

(

α3
⎡]

p2=M̂2
,

(3.7)

which is the method of pole mass calculation we will use in this chapter.

For this study we use the Feynman-’t Hooft (ξ = 1) gauge for all calculations.3 One-loop

mass splittings computed in the Landau (ξ = 0), Feynman-’t Hooft and Fried-Yennie (ξ = 3)

gauges can also be found in Ref. [2] and Appendix A (which are used in Chapter 4).

3.3.1 Electroweak triplet one-loop self-energies

The one-loop self-energies for the wino and MDM models are analogous, for MDM it is simply

the same calculation in a larger representation. In this section we review the techniques used

to compute the one-loop mass splitting in an electroweak triplet by hand, although in practice

we use an automated process along with the two-loop self-energies, as detailed in Section 3.3.2.

The neutral component has two radiative corrections, due to the processes χ0 → W± +χ∓.

The corresponding Feynman diagrams are given in Figure 3.1. The sum of these two amplitudes

is

iΣχ0(/p) = 2g2
∫

d4k

(2π)4

γµ(/p+ /k + M̂)γν (−gµν)

[(p+ k)2 − M̂2](k2 −m2
W )

. (3.8)

where g =
√

4πα/sW . The numerator of the loop integral can be simplified as

−γµ(/k + /p+ M̂)γνgµν = −γµ(/k + /p+ M̂)γµ

= (D − 2)(/k + /p) −DM̂

3The gauge parameter ξ is introduced in the fixing of a gauge theory. Because a gauge field is free to transform
under the gauge transformation operator to an infinite number of physically equivalent field configurations, a
functional integral over such a field is poorly defined. Gauge fixing eliminates this ambiguity so that each
field configuration is counted only once. Physical results are independent of the exact fixing used, which is
parameterised by ξ, as long as the choice is consistent across all parts of the calculation.
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χ0 χ0
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χ+ χ+

Z
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Figure 3.1: The one-loop corrections to the propagator for the neutral (top row) and charged
(bottom row) components of an electroweak triplet.

using the identities

γµ/aγ
µ = (2 −D)/a

γµγµ = DI
(3.9)

where I is the identity matrix in D dimensions.

Now we use the Feynman parameter integral from Eq. (2.18) to simplify the denominator

1

(k2 −m2
W )[(p+ k)2 − M̂2]

=

∫ 1

0

dx

(k′ − ∆)2

where k′ = k + px and we have defined ∆ ≡ −x(1 − x)p2 − x(m2
W − M̂2) + m2

W . Translating

the integration measure
∫

d4k →
∫

d4k′ (and henceforth omitting the prime on k′) gives (after

substituting k → k − px in the numerator)

iΣχ0(/p) = 2g2
∫

d4k

(2π)4

∫ 1

0
dx

(D − 2)[/k + /p(1 − x)] −DM̂

(k2 − ∆)2
. (3.10)

Since the denominator of the loop integral is now symmetric with respect to k we can discard

all terms of odd order in k to give

iΣχ0(/p) = 2g2
∫

d4k

(2π)4

∫ 1

0
dx

(D − 2)(1 − x)/p−DM̂

(k2 − ∆)2
. (3.11)

Next we apply dimensional regularisation, following the same procedure as in Eq. (2.21), such

that in the limit of small ϵ we have
∫

d4k

(2π)4
(k2 − ∆)−2 → i

(4π)2

(

1

ϵ
+ log

Q2

∆

)

+ O(ϵ). (3.12)

We are now ready to calculate the integral for iΣχ0(/p). Setting D = 4 − 2ϵ in the numerator

we have

iΣχ0(/p) = 2g2 i

(4π)2

∫ 1

0
dx
[

(2 − 2ϵ)(1 − x)/p− (4 − 2ϵ)M̂
]

⎤

1

ϵ
+ log

Q

∆

⎣

. (3.13)
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After some simplification and evaluation of the straight forward integrals over x we find

iΣχ0(/p) =2g2 i

(4π)2

⎦

2M̂ − /p+ 2/p

⎤

− 1

2ϵ
+

∫ 1

0
dxx log

∆

Q2

⎣

(3.14)

+(2/p− 4M̂)

⎤

1

ϵ
−
∫ 1

0
dx log

∆

Q2

⎣⎢

(3.15)

which can be expressed as

iΣχ0(/p) =2g2 i

(4π)2

[

2M̂ − /p+ (2/p− 4M̂)B(M̂2,m2
W ) − 2/pB1(m2

W , M̂2)
]

(3.16)

where B1 is given by

B1(m2
1,m

2
2) ≡ 1

2ϵ
−
∫ 1

0
dxx log

∆′

Q2
(3.17)

for ∆′ ≡ −x(1 − x)p2 − x(m2
1 −m2

2) +m2
1 [237]. From Eq. (B.9) of Ref. [237] we have

B1(m2
W , M̂2) ≡ 1

2p2

[

A(M̂2) − A(m2
W ) + (p2 +m2

W − M̂2)B(M̂,m2
W )
]

(3.18)

which when substituted into Eq. (3.16) gives the self-energy in Eq. (A.2) of Appendix A.1.1 in

terms of the A and B basis integrals.

The charged component has three one-loop corrections represented as Feynman diagrams

in the bottom row of Figure 3.1. The total amplitude for all three contributions is

iΣχ−(/p) = (sW g)2
∫

d4k

(2π)4
γµ (/p− /k + M̂)γν (−gµν)

[(p− k)2 − M̂2](k2)

+ g2
∫

d4k

(2π)4
γµ (/p− /k + M̂)γν (−gµν)

[(p− k)2 − M̂2](k2 −m2
W )

+ (cW g)2
∫

d4k

(2π)4
γµ (/p− /k + M̂)γν (−gµν)

[(p− k)2 − M̂2](k2 −m2
Z)
.

(3.19)

The calculation of this amplitude is very similar to that for the neutral component, so we will

not repeat it here. The counter-terms for both the charged and neutral components are trivial

to compute, both with amplitudes
(

/p δχ,Z + δχ,M

⎡

.

3.3.2 Details of two-loop self-energy calculation

In the wino limit of the MSSM and the MDM quintuplet model there are about 200 and 500

two-loop diagrams respectively. The generic two-loop topologies are given in Figures 3.2 and

3.3, and counter-term diagrams of two-loop order in Figure 3.4. We determine the counter-

term couplings from the one-loop self-energies of the electroweak gauge bosons and electroweak

multiplets given in Appendix A.1. In this subsection, we describe our automated process for

calculating self-energies at two loops.
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Figure 3.2: Two-loop diagrams involving only the gauge bosons and multiplet fermions. Solid
lines indicate multiplet fermions (χ0, χ±, χ±±) and wiggly lines electroweak vector bosons
(W±, Z, γ).

Figure 3.3: Two-loop diagrams formed by reinserting the 1-loop gauge boson self-energy into its
own propagator. Solid lines indicate fermions (χ0, χ±, χ±±, q, l, ν), wiggly lines electroweak
vector bosons (W±, Z, γ), dashed lines scalars (Higgs and Goldstone bosons) and dotted lines
indicate ghosts.

Figure 3.4: Two-loop counter-term diagrams. Small circles with crosses indicate counter-term
insertions. Solid lines indicate multiplet fermions (χ0, χ±, χ±±) and wiggly lines electroweak
vector bosons (W±, Z, γ).

A complete self-energy calculation (at any order) requires the construction of a symbolic

amplitude, followed by its numerical evaluation. In general, interfaces between tools are suf-

ficient for generating symbolic amplitudes at both one and two-loop level. For one-loop cal-

culations, the evaluation step can be performed with various existing tools: FeynHelpers [223]

provides analytic one-loop amplitudes for this purpose, and other codes do this by making

use of the LoopTools package [238] (e.g. SARAH [143] interfaced to either SPheno [229] or

FlexibleSUSY [234,235]).

The interface between the tools available for generic two-loop calculations is only complete

up to the stage of the symbolic amplitude. The necessary conversions exist between FeynArts,

FeynCalc and TARCER, but the final step of numerical evaluation requires significant user
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intervention. The TSIL library provides numerical, and in some cases analytical, solutions for

the basis integrals that appear in two-loop self-energies. However, in order to make use of these,

one must construct a C++ interface to call the TSIL libraries and then use them to evaluate

the amplitudes. Although the TSIL functions are extremely user-friendly, making use of them

from a symbolic Mathematica expression provided by one of the other tools is highly non-

trivial. There is therefore no automated method for obtaining numerical implementations of

two-loop amplitudes. Given that there can be hundreds or even thousands of such amplitudes,

this makes the final step of the calculation an arduous process. By completely automating

the generation of this C++ interface with a new software framework, we have been able to

dramatically simplify the process of computing two-loop self-energies. This framework has also

been used to generate two-loop amplitudes used in Chapter 4 (Ref. [2]) and is documented in

Appendix C.

Our method also makes it possible to split the calculation of many loop diagrams into

manageable pieces. Simultaneously computing O(10) different amplitudes (of distinctly differ-

ent masses and/or topologies) with symbolic tools like FeynCalc takes an extremely long time,

as FeynCalc attempts to symbolically simplify the amplitudes. On the other hand, keeping

track of all terms on a diagram-by-diagram basis is a serious task by any manual or even

semi-automated method. By completely automating the whole process, we are instead able

to keep track of all terms, and simply evaluate them independently and numerically. On a

modest computing setup, this is the only way to obtain a result in a feasible timeframe without

additional user intervention.

We calculate the amplitudes either one diagram at a time, or in selected groups, using Fey-

nArts, FeynCalc and FIRE, run from C++ via the Wolfram Symbolic Transfer Protocol (WSTP).

We decompose the resultant symbolic amplitudes into lists of coefficients to be applied to basis

integrals, and keep a master list of all the basis integrals required.

The algorithm begins by evaluating the finite part of the amplitude A. It then computes

the coefficients ¶C1, C2, . . .♢ of every possible basis integral ¶B1,B2, . . .♢. For the non-zero Ci,

it then constructs a trial amplitude of the form

Atrial = C1B1 + C2B2 + . . . (3.20)

and checks the difference A−Atrial for the presence of basis integrals with non-zero coefficients,

in order to identify any cross-terms that have been double-counted in the first step. From the

set of basis integrals ¶Bi,Bj , . . .♢ with non-zero coefficients at this stage, the algorithm then

creates new ‘compound basis integrals’ Bij = BiBj , and presents them to Mathematica as unified

objects. We can then instruct Mathematica to extract new coefficients Cij for the compound
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basis integrals. The final amplitude is then

Atrial = C1B1 + C2B2 + . . .

− 1

2
C12(B1B2) − 1

2
C21(B2B1) − . . .

+ C11(B1B1) + C22(B2B2) + . . .

where Cij is the coefficient of BiBj in the original amplitude A. We convert these coefficients

into C++ format, and generate numerical routines for evaluating both them and the relevant

basis integrals.

This automated framework is fully generic, allowing numerical routines to be generated for

two-loop diagrams in almost any FeynArts model file. The only limitations are computational:

problems involving over ∼ 1000 diagrams require long runtimes to generate the amplitudes,

and produce large amounts of generated code. Other features include:

• automatic determination of one-loop counter-term couplings for two-point diagrams (us-

ing the one-loop self-energies),

• optimisation of the evaluation of the two-loop basis integrals, by automatically determin-

ing which integrals can be evaluated in symmetry groups, and

• flexibility and reusability of precomputed amplitudes (by separating the symbolic calcu-

lations from the final code generation).

This framework is publicly available as Mass Builder and is documented in Appendix C.

For the calculations in this chapter, we use FeynCalc 9.2.0 [222,223] and FeynArts 3.9 [216]

to obtain symbolic amplitudes, and reduce them to basis integrals with FIRE 5 [214] (via

FeynHelpers 1.0.0 [224]) and TARCER 2.0 [209]. We evaluate the basis integrals using TSIL

1.41 [9] and analytical forms from the literature [237]. This is all achieved via the Mass Builder

interface.

3.3.3 Check for divergence free-result

It is important to confirm that the pole masses are free of non-physical divergences. UV

divergences can be regulated using dimensional regularisation by computing in D = 4 − 2ϵ

dimensions and using modified minimal subtraction. Using both the symbolic amplitudes and

a numerical implementation, we have confirmed that the individual pole masses are free from

any poles in ϵ when the appropriate counter-terms are included.
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Infra-red (IR) divergences arise from the zero mass of the photon. To regulate these diver-

gences, we retain an explicit mass mγ for the photon throughout the calculation, and take the

limit mγ → 0 in the evaluation. IR-divergent diagrams exist at two-loop order, but their diver-

gences are cancelled by the derivative of the one-loop self-energies in the two-loop expansion

of the pole mass (Eq. (3.7)). The proof of this cancellation is given in Ref. [118] for the wino

model. The analogous result holds identically for the MDM quintuplet, so we do not repeat

the details here.

We also encounter ‘fictitious’ IR divergences in our numerical implementation. These can

arise from including a non-zero photon mass when attempting to evaluate non-IR divergent

diagrams. We nonetheless include this mass for all diagrams as, in some cases, taking a zero

photon mass before the tensor integral reduction causes the tensor integrals to reduce to basis

integrals that are not available in current mathematical libraries. Using a regulator mass en-

ables the reduction to proceed further, giving a result in terms of the basis integrals introduced

in Section 2.2.2. The price to pay for this convenience is an apparent IR singularity in the

result: the amplitude picks up O(1/m2
γ) terms. However, the sum of the coefficients of these

terms is numerically equivalent to zero for every diagram (i.e. to within a small factor of the

floating-point machine accuracy times the largest individual coefficient). We therefore always

see numerically that these terms cancel, even if the integral reduction fails to cancel them sym-

bolically. We take care in our evaluation step to explicitly check for the numerical cancellation,

and to then remove the terms before taking the limit mγ → 0, as the latter would otherwise

cause numerical cancellation errors between the O(1/m2
γ) terms to blow up and dominate the

result.

Also, because the basis integral T (x, y, z) is not defined for small x, in the limit of mγ → 0

we make the replacement T (x, y, z) ≡ T (x, y, z) − B(y, z) log
(

x/Q2
)

[9]. This will cancel with

other terms of the form A(x)B(y, z) = x
[

log
(

x/Q2
)

− 1
]

B(y, z) in the amplitude, and because

T (0, y, z) is finite, will give a total that is IR safe.

3.3.4 Spectrum calculation

We use FlexibleSUSY 1.7.4 [234, 235] to create a spectrum generator, based on output from

SARAH 4.8.0 [140–143]. This provides two-loop RGEs, one-loop threshold and tadpole cor-

rections and one-loop self-energies for all fields. Because the spectrum generator requires a

tree-level parameter prior to computing the loop-corrected EWSB conditions, the Higgs pole

mass is an output rather than an input parameter. Thus we also employ a simple iterative

procedure to determine the correct input value for the Lagrangian Higgs mass parameter µ,
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such that the observed Higgs pole mass is produced.

For two-loop mass calculations, it is important to consider threshold corrections when

matching the SM to the wino or MDM model. These corrections include the determination

of MS masses consistent with a specified physical pole mass (particularly important for the

W and Z bosons), and matching the MS gauge couplings in the SM to the model containing

additional fermions. The relevant threshold correction for the electroweak coupling is

α(Q) = αSM(Q)

[

1 − XαSM(Q)

3π
log

(

M̂(Q)

Q

)]−1

, (3.21)

where X = 2 for the wino model and X = 10 for the MDM quintuplet. FlexibleSUSY applies

this correction and does the mass matching, iteratively, at Q = mZ .

For the one-loop calculation, we do not need to apply threshold corrections, as they are of

the next loop order. If we did include them, it would introduce higher order terms resulting in a

spurious logarithmic increase or decrease in the mass splitting. When calculating one-loop mass

splittings, we therefore use pole masses in place of the MS masses, and neglect the threshold

corrections to the gauge couplings. This is consistent with the method of Ref. [118]. However

for two-loop calculations, if these corrections are not applied, then important cancellations do

not occur between the threshold corrections and the self-energies, resulting in a similar spurious

logarithmic increase or decrease in the mass splitting.

From the computed spectrum we extract the couplings andMS masses for the gauge bosons,

Higgs and quarks at a common scale Q. This scale is not necessarily the scale used for the

matching in Eq. (3.21). Since the gauge couplings run independently from the values set at

the matching scale we recompute α at Q using

α =
g2g′ 2

4π(g′ 2 + g2)
. (3.22)

where g′ =
√

4πα/cW . This preserves the required tree-level relations that are necessary to

retain the proper cancellations between parts of the self-energies of the charged and neutral

multiplet components. We also compute the Weinberg angle as θW = arccos(mW /mZ) and the

Higgs vacuum expectation value v0 = 2 sin(θW )mW /
√

4π.

3.4 Results

3.4.1 The wino limit of the MSSM

As electroweak mass splittings have already been studied at the two-loop level in the wino

limit of the MSSM [118, 239], we are able to compare our results to the previous ones, and in
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Table 3.2: The effect of uncertainties in input parameters on the mass splitting and decay
lifetime in the wino and MDM models. The effect on the decay lifetime is taken to be the
difference between the upper and lower lifetimes normalised by the mean of the upper and
lower values, expressed as a percentage.

Wino model (M̂ = 3 TeV) MDM (M̂ = 9.6 TeV)
Change in Change in Change in Change in

Parameter ∆M (MeV) lifetime (%) ∆M+ (∆M++) (MeV) lifetime (%)

1/αMS
SM (mZ) 0.0919 0.310 0.101 (0.402) 0.348 (0.209)

mt 0.192 0.647 0.175 (0.699) 0.604 (0.364)

mh 0.0124 0.0417 0.0170 (0.0680) 0.0588 (0.0354)

mW 8.22 × 10−8 2.77 × 10−7 4.60 × 10−9 (1.85 × 10−8) 1.59 × 10−8 (9.65 × 10−9)

mZ 0.00936 0.0316 0.00467 (0.0187) 0.0162 (0.00974)

me 8.23 × 10−6 2.78 × 10−5 2.04 × 10−5 (8.15 × 10−5) 7.05 × 10−5 (4.24 × 10−5)

mµ 3.69 × 10−9 1.25 × 10−8 9.87 × 10−9 (3.95 × 10−8) 3.41 × 10−8 (2.06 × 10−8)

mτ 3.55 × 10−6 1.20 × 10−5 3.37 × 10−6 (1.35 × 10−5) 1.16 × 10−5 (7.01 × 10−6)

mMS
d (2 GeV) 1.85 × 10−4 0.000623 0.000845 (0.00338) 0.00292 ( 0.00176 )

mMS
u (2 GeV) 3.09 × 10−4 0.00104 0.00477 (0.0191) 0.0165 (0.00994 )

mMS
s (2 GeV) 8.47 × 10−5 0.000286 0.00100 (0.00402) 0.00348 (0.00209 )

mMS
c (mc) 0.00176 0.00595 0.00170 (0.00679) 0.00587 (0.00354 )

mMS
b (mb) 0.000754 0.00255 0.00195 (0.00780) 0.00674 (0.00406 )

αMS
S (mZ) 0.00224 0.00759 0.00436 (0.0174) 0.0151 (0.00908)

Q 0.304 1.03 0.242 (0.969) 0.839 (0.505)

muon+neutrino pair.

The decay width for the pion channel in an electroweak multiplet with total weak isospin

j, with eigenstates χI where I ∈ ¶−j,−j + 1, . . . , j − 1, j♢, is given by [150]

ΓχI+1
π = Γ

(

χI+1 → χIπ
+
⎡

= T 2
+

G2
F ∆M3V 2

udf
3
π

π

√

1 − m2
π

∆M2
, (3.25)

where T+ =
√

j(j + 1) − I(I + 1), fπ = 130.2 ± 1.7 MeV, ♣Vud♣ = 0.97417 ± 0.00021 [236, 241]

and mπ is the pion mass. T 2
+ is equivalent to (n2 − 1)/4 for I = 0, for a representation of

dimension n, as given in Ref. [113], however for the MDM case we will need this more general

expression. For wino dark matter we have j = 1 and I = 0 to give Γ(χ+ → χ0π+).

For ∆M ≈ 170 MeV > mπ the pion decay is the dominant channel, with a 97.7% branching

fraction [113]. The other kinematically-allowed channels are the electron-neutrino and muon-

neutrino ones, which have widths

Γχ+

e = T 2
+

G2
F ∆M5

15π2
(3.26)

and Γχ+

µ = 0.12Γχ+

e . The expected lifetime of the charged component is thus τ = (Γχ+

e +Γχ+

µ +

Γχ+

π )−1. The large step in the decay lifetime in Figure 3.6 is where ∆M > mπ and the pion

channel opens, and the smaller step is due to the muon channel opening. These can be seen

clearly as branching fractions in Figure 3.7.
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The most phenomenologically interesting mass range for pure wino-like neutralino dark

matter is M̂ ∼ 3 TeV, as this would give the correct dark matter relic abundance [115,116]. For

this value and assuming Q = mt, the two-loop mass splitting is 164.5 MeV, compared to the

one-loop value of 167.5 MeV. This difference in mass splitting represents a 9.7 % increase in the

decay lifetime of the chargino when going from the one-loop to the two-loop calculation. For

other masses, this ratio can be larger, depending on the dominant decay channel. For example,

for a wino of 70 GeV mass, the one and two-loop mass splittings are 142.3 MeV and 145.5 MeV

respectively, with a increase in the lifetime of 40.1%. Thus, although the difference in the mass

splittings is approximately the same (∼ 3 MeV), as we can see in Figure 3.7, this mass value is

exactly where the pion channel opens up, so the effect on the lifetime in this range is far more

significant.

We now offer an updated fit, using the latest values in Table 3.1, two-loop RGEs and

non-zero light quark masses,

∆M

1 MeV
= −413.7 + 305.7

(

ln
M0

pole

1 GeV

)

− 60.96

(

ln
M0

pole

1 GeV

)2

+5.429

(

ln
M0

pole

1 GeV

)3

− 0.182

(

ln
M0

pole

1 GeV

)4

. (3.27)

This fit is valid over the range 100 GeV ≤ M0
pole ≤ 4 TeV. The effect of including light quark

masses is a small positive shift in ∆M , and 2-loop RGEs a smaller negative shift, with a total

difference of approximately −0.03%.

3.4.2 The MDM quintuplet

The MDM quintuplet has two mass splittings. The first, ∆M+ ≡ M+
pole −M0

pole, is analogous

to ∆M in the wino model, with a one-loop value of O(170) MeV. The second, ∆M++ ≡
M++

pole −M0
pole, between the neutral and doubly-charged component, has a value of O(670) MeV

at one loop. In this section we present the first analysis of these mass splittings at the two-loop

level and the subsequent decay lifetimes of the charged components. In Section 3.4.3 we discuss

the differences between the charged/neutral component mass splitting in the MDM and wino

models.

In Figure 3.8 we present the two-loop mass splittings between the neutral and charged

(left panel) and the neutral and doubly-charged (right panel) components. The dominant

uncertainty, resulting from the choice of renormalisation scale, is indicated by the dark shaded

regions at one loop (dark green) and two loops (red), where Q has been varied continuously

between mt/2 and 2mt. Once again we see a significant reduction in the uncertainty at the
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two-loop level, at least for moderate and large multiplet masses; at lower multiplet masses

(M̂ ≲ 100 GeV), the two-loop uncertainty grows due to the additional electroweak-scale logs

introduced at the two-loop level, just as in the triplet case. The light-green band is the naive

estimate of the missing two-loop contribution, where we use Eq. (3.24) for ∆M+, and multiply

this by a factor of four for ∆M++, based on the generic charge-dependent pre-factors for

one-loop electroweak mass splitting in Eq. (4) of Ref. [239].

In Table 3.2, we also give a detailed presentation of the uncertainties entering into the

two-loop calculation in the MDM model. Again, we consider the effect of each uncertainty

individually. As in the wino case, the parameter with the largest effect on the mass splitting is

the renormalisation scale, but its effect is greatly reduced by going to two loops (Figure 3.8).

The top mass and electromagnetic coupling are again responsible for an O(0.1) MeV uncertainty

in the mass splittings. All other parameters have negligible impacts on the splittings. Including

the masses of light quarks results in a +0.0125 MeV change in ∆M+ and a +0.0499 MeV change

in ∆M++, which translate into 0.0432% and 0.0258% reductions in the respective lifetimes of

the charged and doubly-charged states. As with the triplet, although finite light quark masses

affect ∆M , the uncertainties on those masses have little impact – and the strong coupling has

some influence via the calculation of the spectrum (on the order of 0.01%).

In Figure 3.9 we plot the decay lifetimes of the charged and doubly-charged components.

The lifetime of the charged component can be computed using Eqs. (3.25) and (3.26) with

j = 2 and I = 0; the calculation is the same for the doubly-charged component, but with

I = 1 instead. The doubly-charged component has an additional decay channel via the process

χ++ → χ+K+, where K+ is a kaon. We take the partial decay width to the kaon channel to

be

ΓK+ = T 2
+

G2
F ∆M3V 2

usf
3
K+

π

√

1 − m2
K+

∆M2
, (3.28)

where fK+ = 155.6 ± 0.4 MeV, ♣Vus♣ = 0.2248 ± 0.0006 [236,241] and mK+ is the kaon mass.

The most phenomenologically interesting mass for MDM is M̂ ∼ 9.6 TeV, as this would

give the correct dark matter relic abundance [144]. For this value the two-loop mass splittings

are ∆M+ = 163.6 MeV and ∆M++ = 654.3 MeV, which can be compared with the one-loop

values of 168.3 MeV and 673.4 MeV respectively, for a choice of Q = mt. This difference in

mass splitting represents a 15.5% change in the decay lifetime of the charged component when

going from the one-loop to the two-loop calculation, and a 9.78% change in the decay lifetime

of the doubly-charged component. Like in the wino model, this ratio will be larger at different

mass values, depending on the dominant decay channel. One important new feature in this
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In the MDM model, for multiplet masses ≳ 1 TeV we see a decrease in the two-loop mass

splitting. In the two-loop wino result, and in the one-loop case for both models, we see a

constant mass splitting in the limit of large M̂ . In the one-loop case, this can be seen directly

from the difference of the one-loop self-energies (given in Appendix A), and the fact that we

do not apply threshold corrections (as they are technically of higher loop order). If we were

to include threshold corrections to the one-loop result, we would see a similar decrease in the

mass splitting for large M̂ , as we would be introducing extra logarithmic terms with nothing

to cancel them.

In the wino model the constant mass splitting at large M̂ is the result of a cancellation

between these threshold corrections and one specific set of diagrams. These are specifically

the corrections to the gauge boson propagators coming from the new multiplet fermions. The

diagrams that contribute to the gauge boson propagators are are all those in Figure 3.3 and

the first counter-term diagram in Figure 3.4. Ref. [239] asserts that this cancellation occurs

exactly for all SU(2)L multiplets, and therefore goes on to ignore threshold corrections and the

influence of the multiplet fermions on the gauge boson propagator. Our calculations show that

this cancellation does indeed occur for the triplet, but that the resulting logarithmic terms do

not perfectly cancel in the quintuplet case. The fact that the mass splitting is almost flat in

the large M̂ limit indicates that most of the logs have cancelled (as e.g. neglecting threshold

corrections results in a clear logarithmic increase in the splitting with increasing M̂) – but

some small residual term of the form − log
(

M̂/Q
⎡

remains.

To illustrate this point, we can construct a partial two-loop mass-splitting calculation with

the terms responsible for the residual logarithms excluded. First, we construct two-loop am-

plitudes by neglecting threshold corrections and excluding all contributions to the gauge boson

self-energy, i.e. all diagrams in Figure 3.3 and the first in Figure 3.4. In Figure 3.11, we plot

the resulting partial two-loop mass splittings in each model as ‘Partial Two-loop no ΠV V ’,

along with the one-loop results. We see that the results are indeed identical at large M̂ . We

can also see that this incomplete subset of diagrams misses some important cancellations of

scale-dependent logarithmic terms, as the uncertainty from scale dependence is much larger in

the partial two-loop splitting compared to the full two-loop result.

To investigate further, we next exclude only those diagrams where the multiplet fermions

contribute to the gauge boson propagator, i.e. the versions of the top left-most diagram in

Figure 3.3 with χ fermions in the upper loop. Continuing to neglect threshold corrections,

we then recompute the corresponding counter-term (the first in Figure 3.4) with the same

contributions removed from the gauge boson propagator, and recompute the mass splitting.
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3.5 Conclusions

We have presented a two-loop calculation of mass splitting in electroweak multiplets, in the

wino limit of the MSSM and in the MDM fermionic quintuplet model. In the wino model,

we showed that our calculation is in agreement with the previous two-loop calculation. We

improved on the previous calculation by using two-loop RGEs and including finite masses for

light quarks.

We also presented the first complete two-loop calculation of the splitting in the MDM

quintuplet model, showing that it is not constant in the limit of large multiplet masses. This

is contrary to the triplet case, and the naive expectation from the one-loop result. This result

comes from the influence of the additional heavy fermions on the gauge boson self-energies, and

subsequently the two-loop self-energies of the multiplet. As the mass of the multiplet increases,

so does its effect on the mass splitting through these diagrams.

The two-loop corrections that we present here are phenomenologically relevant, resulting in

a ∼ 10% change in the lifetime of the charged components in both models. This is in agreement

with previous calculations for wino dark matter [118]. It is similarly important to include the

two-loop radiative corrections presented here when considering disappearing track searches for

MDM.



4 Pitfalls of iterative mass calculations

4.1 Introduction

A fermionic multiplet coupled to the SM via the electroweak gauge sector is only a viable dark

matter candidate because of the radiately induced mass splittings between the charged and

neutral components. In Chapter 3 we computed the value of this mass splitting to two-loop

order in two multiplet models, the wino limit of the MSSM and MDM. Both of these models and

their phenomenology are discussed in Section 1.2.2. Radiatively-induced mass splittings are

not only relevant for fermionic multiplets. For instance, a theory with a massive spin-one vector

field consisting of a charged and neutral component will also have a mass splitting of similar

magnitude to the fermionic case [3] (also see Chapter 5). Again, this is phenomenologically

essential for the neutral component of the vector field to be a viable dark matter candidate.

The lifetimes of charged components in a detector are extremely sensitive to the mass

splitting within the multiplet. In the wino limit of the MSSM, two-loop contributions increase

the lifetime of the charged component by up to 40% [1, 118], as demonstrated in Chapter 3.

This is because the lifetime goes as the fifth power of the mass splitting. We discuss this further

in Section 4.5. Therefore, it is important that the mass splitting used in any phenomenological

study is as precise as possible.

To calculate the mass splitting we must determine the physical mass of the multiplet com-

ponents up to a particular order in perturbation theory. The physical mass can be computed

via two equivalent methods, detailed in Section 4.3, which differ only by partial higher order

corrections beyond the formal precision of the calculations. The first is an iterative approach

for finding the pole mass. This approach has been applied in spectrum generators produced

by SARAH/SPheno [142,143,225], and FlexibleSUSY 1.7.4 [234], which can provide a spectrum

generator in any model. The iterative method has the advantage that it allows one to use

simple expressions that can be used for self-energies of any order, making it more straightfor-

ward to extend to higher orders. The second approach replaces the pole mass in the implicit

expression with the running scheme-dependent mass, by performing a perturbative expansion,

yielding an explicit expression which is truncated at the desired order. The latter is the only

method previously used to estimate mass splittings in electroweak multiplets [118,136,145,242].

In Section 4.3 we show that both approaches give equivalent values for the pole mass, with any

differences between the results from the two approaches smaller than the uncertainty on the

87
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mass itself. However, in Section 4.4 we demonstrate that the resultant mass splittings show a

significantly larger dependence on the renormalisation scale in the iterative approach than in

the non-iterative method.

The large variation in the iterative mass splitting is due to logarithmic terms dependent on

the renormalisation scale, which result from a large mass hierarchy. While the physical pole

mass should in principle be independent of the renormalisation scale, at the lowest orders of

perturbation theory there are order-GeV variations (for a ∼ TeV-mass particle) with respect

to the choice of renormalisation scale. Nevertheless, a one-loop mass splitting of ∼ 170 MeV is

often stated without an uncertainty [136, 145, 242]. This apparent level of precision originates

from an exact cancellation of scale-dependent logarithms that occur between the mass functions

in the non-iterative method. As a result, the only scale-dependence enters through the input

parameters.

We show that this cancellation does not hold when using the iterative method. If computing

the mass spectrum with a renormalisation scale set to the mass of the top quark, we find a

mass splitting that differs on the order of 100 MeV from the non-iterative result for a ∼ TeV-

mass multiplet. However, by varying the renormalisation scale we are able to account for the

large hierarchy and reconcile the computational methods, albeit with a large uncertainty on

the iteratively-computed mass splitting. We also identify the origin of this difference as a

remarkable transformation of the difference of one-loop functions in the large mass limit.

In perturbation theory a typical solution to an unacceptable uncertainty at one level of

precision is to move to the next order. We show that the uncertainty in the splitting predic-

tion from the non-iterative approach is improved at two-loop order, as one would normally

expect for a quantity that is not accidentally small, and find reasonable agreement with similar

calculations in the literature [118, 239]. In Chapter 3 and Ref. [1] we computed full two-loop

self-energies using the non-iterative method for a range of different electroweak multiplet mod-

els, and discuss the improvements of our non-iterative two-loop calculation over those in the

literature. In this chapter and Ref. [2], we compare the results of the iterative and non-iterative

calculations. The iterative procedure for calculating the pole mass has not previously been car-

ried out at two loops, as it leads to infrared divergences. However, by using a regulator mass for

the photon, one can safely employ the iterative method. However, the iterative method also re-

quires self-energies defined off-shell, which are not straightforward to obtain for some diagrams.

Here we consider only a subset of diagrams, which suffice to demonstrate and understand the

problem with the iterative calculation. We show that with this partial two-loop self-energy

calculation, the mass splitting exhibits a remarkably similar behaviour to the one-loop case,
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especially in the large mass limit.

We compute self-energies for this study using FeynCalc 9.2.0 [222,223] and FeynArts 3.9 [216],

reducing them to basis integrals with FIRE 5 [214] (via FeynHelpers 1.0.0 [224]) and TARCER

2.0 [209]. We evaluate the basis integrals using TSIL 1.41 [9] and analytical forms from the

literature [237]. To compute the running of the input parameters, and to cross-check the mass

calculations, we generate one-loop RGEs and self-energies with SARAH 4.8.0 [140–143] and

solve them using FlexibleSUSY1.7.4 [234]. We have also used SARAH/SPheno [142,143,225] to

verify the main results.

4.2 Model and parameters

For this investigation, we use a simple electroweak triplet extension of the SM. However, our

findings apply to any other model with an equivalently-induced mass splitting, such as the

wino limit of the MSSM, or models with more multiplet components. This model consists of a

Majorana fermionic SU(2)L triplet χ with zero hypercharge, coupled to the SM via the SU(2)L

gauge fields. The MS renormalised Lagrangian is

L = LSM +
1

2
χ (i /D − M̂)χ, (4.1)

where /D is the SU(2)L covariant derivative, M̂ is the degenerate tree-level MS multiplet mass

and LSM is the SM Lagrangian. At zeroth order in perturbation theory (i.e. tree-level), the

charged and neutral components have the same mass, M̂ .

We give the full one-loop self-energies in a general gauge (parameterised by ξ) in Appendix

A.2. The self-energies are functions of M̂ , the MS masses of the SM gauge bosons m̂W and

m̂Z , and the SU(2)L gauge coupling g. The self-energy functions and the input MS parameters

also depend on the renormalisation scale Q. We use SARAH [143] to generate one-loop RGEs

and threshold conditions, and FlexibleSUSY [234] to compute the spectrum of couplings and

MS running masses at the required scale.

The most relevant input parameters are the physical masses mW = 80.404 GeV and mZ =

91.1876 GeV, and the coupling α−1
SM(mZ) = 127.934. For applying threshold corrections and the

renormalisation group running we also require additional low energy inputs, which we take to be

mt = 173.34 GeV, and fix all other parameters to the default values used in FlexibleSUSY, which

are kept up to date. These have a marginal impact on the renormalisation group evolution, so

we omit the details.

We evaluate the self-energies in Appendix A.2 in the Landau (ξ = 0), Feynman-’t Hooft

(ξ = 1) and Fried-Yennie (ξ = 3) gauges. We have also reproduced our results in the Feynman-
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’t Hooft gauge using self-energies computed both with SARAH (4.8.0) and by hand. We evaluate

the Passarino-Veltman functions appearing in the self-energies with TSIL [9], making additional

checks using LoopTools [238], and when possible with the integrated analytical forms from

Ref. [237].

4.3 Pole mass calculations

In this section we outline two common methods for the computation of a physical pole mass to a

fixed order in perturbation theory. The definition of a pole mass is the complex pole of the two-

point propagator, which for a fermion has a denominator given by the one-particle irreducible

effective two-point function in Eq. (3.1), where pµ is the four-momentum of the particle, M̂

is the tree-level MS mass and /p = γµpµ. The self-energy, Σ(p2) = ΣM (p2) + /pΣK(p2), is in

general a function of the renormalisation scale and any relevant masses or couplings in the

theory.

4.3.1 The iterative pole mass

The pole mass is obtained by demanding Γ2 = 0. This can be achieved by setting p2 = M2
pole,

and solving the resulting implicit expression for the pole mass

Mpole = Re

[

M̂ − ΣM (M2
pole)

1 + ΣK(M2
pole)

]

, (4.2)

iteratively until the desired convergence is reached. Equivalently, one can solve

Mpole = M̂ − ΣM (M2
pole) −MpoleΣK(M2

pole). (4.3)

We will refer to this definition as the iterative pole mass.

4.3.2 The explicit pole mass

In practice it is not always possible to use the iterative definition of the pole mass. In such a

case, one may obtain an explicit expression for Mpole by making an expansion by hand in the

perturbative coupling, around the tree-level mass, as we demonstrated up to two-loop order in

Section 3.3. For the second method of pole mass calculation we will use Eq. (3.7). We refer to

this as the explicit, or non-iterative, pole mass.

Truncating Eq. (3.7) to first order in α gives a simple expression for the one-loop pole

mass. However, the two-loop result requires expressions for the derivatives of the one-loop

functions. In general these are not simple to obtain and implement, making the iterative
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approach, Eq. (4.2), more attractive. On the other hand, as we will discuss in Section 4.4.4, it

is not always possible to obtain two-loop self-energies defined away from p2 = M̂2, making the

use of Eq. (3.7) mandatory.

In Figure 4.1, we present the one-loop pole masses for the charged, M+
pole, and neutral,

M0
pole, components of the electroweak triplet. Due to the scales involved, we present the pole

masses in terms of their ratios to the tree-level mass. We show pole masses computed for

Q = mt/2, 2mt, M̂/2, M̂ and 2M̂ . We obtain uncertainty bands by smoothly varying the

renormalisation scale continuously between min¶M̂/2,mt/2♢ and max¶2M̂, 2mt♢. There is

a large variation in both the iterative and non-iterative pole masses as the renormalisation

scale is changed. Any discrepancy between the two methods is small, however, relative to the

magnitude of this uncertainty. There therefore appears no reason to favour one method over

the other, at the level of pole masses themselves. However, as we will show in Section 4.4, the

non-iterative pole mass produces remarkably different results when the difference between the

charged and neutral masses is considered instead.

4.4 The mass splitting

In Figure 4.2 we present the mass splitting ∆M ≡ M+
pole −M0

pole as a function of the degenerate

tree-level mass M̂ . We compute the iterative pole masses, and resultant mass splittings, at

renormalisation scales Q = mt/2, 2mt, M̂/2, M̂ and 2M̂ . For each value of M̂ , we again

determine an uncertainty band by varying the renormalisation scale continuously between

min¶M̂/2,mt/2♢ and max¶2M̂, 2mt♢, and taking the uncertainty to encompass the minimum

and maximum mass splittings determined in each computational method.

For very large values of the renormalisation scale, the iterative mass splitting reaches a

maximum at some value of M̂ , before suddenly dropping to negative values at larger M̂ . An

example of this can be seen in the Q = M̂ and Q = 2M̂ curves in Figure 4.2, shown in

blue and orange, respectively. In such cases, we consider the result too unreliable, as negative

values of the mass splitting are unphysical (they would lead to charged dark matter and violate

the classical argument discussed in Section 4.6). At a given value of M̂ , we therefore do not

include data for values of Q leading to ∆M < 0 when computing the uncertainty band. We

note however that it is still very important to consider values of Q > M̂/2 for establishing the

upper bound on the iterative mass splitting, with values closer to M̂/2 remaining close to the

non-iterative result at larger and larger mass scales.
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4.4.1 The explicit mass splitting

The weak dependence of the explicit mass splitting on the renormalisation scale can be under-

stood by a symbolic calculation in the limit M̂ ≫ mZ,W . The one-loop self-energies are given in

terms of Passarino-Veltman (PV) [243,244] functions B(p2,M2,m2) ≡ B(M2,m2) (making the

dependence on p2 explicit) and A(M2), defined in Eqs. (2.29) and (2.30) respectively. When

using the explicit pole mass Eq. (3.7) truncated to one-loop order (O(g2)) these functions are

evaluated at M = M̂ , m = m̂Z,W and p2 = M̂2 ≫ m. In this case the limits are given by [118]

B(M̂, M̂ ,m) =
1

ϵ̂
− log

(

M̂2

Q2

)

+ 2 − π
m

M̂
+ O

(

m2

M̂2
log

M̂2

m2

)

(4.4)

A(M̂)

M̂2
= log

(

M̂2

Q2

)

− 1 +
1

ϵ̂
, (4.5)

where 1/ϵ̂ = 2/(4−D)−γ+log(4π) is cancelled by the appropriate counter-terms (see Appendix

A.2) and D = 4−2ϵ is the spacetime dimension. With the use of these limits the mass splitting

becomes

lim
M̂≫mZ

∆M =
g2

8π
(mW − c2

WmZ) ≈ 165 MeV, (4.6)

which agrees with Ref. [113]. Here cW = cos(θ) is the cosine of the Weinberg angle and we

have taken m̂W = mW and m̂Z = mZ since threshold corrections to these masses are of next

loop order. In Eq. (4.6), all logarithms of the form log(mX/Q), where mX ∈ ¶M̂, m̂W , m̂Z♢,

have cancelled exactly, leaving the only renormalisation dependence coming from the gauge

coupling.

4.4.2 The iterative mass splitting

We find that the iterative mass splitting is highly dependent upon the chosen renormalisation

scale. Although it is not possible to write down an analytical expression analogous to Eq. (4.6)

that would be at all tractable, we can show that the limits used in Eqs. (4.4) and (4.5) do not

hold in the iterative case.

When the iterative pole mass has converged to Mpole, it can be expressed as a function of

the self energy evaluated at p2 = M2
pole. The self energy then becomes not only a function of

M̂ , but also an implicit function of Mpole. Making the approximation Mpole ≡ M+
pole ≈ M0

pole,

and neglecting all terms which become small in the limit M̂ ≫ mZ (i.e. terms of order one or
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until a critical point is reached. If r < 1 then a turn-over occurs, beyond which the curve

asymptotically approaches zero. If r > 1, then there is a rapid increase, followed by a sudden

sign change, and then the curve asymptotically approaches zero from below. This effect can

be seen in the excursion to negative ∆M of the large-Q curves in Figure 4.2. The mass scale

at which the critical point is reached depends on the magnitude of ♣1 − r♣; values of r closer

to one follow the ∼ 170 MeV limit to larger values of M̂ . In the analogous case of radiative

mass splittings, r = Mpole/M̂ , which one would expect to be close to unity unless there are

extremely large radiative corrections (which may indicate that unphysical large logarithms are

present).

Consider the yellow curves in Figures 4.1 and 4.2, corresponding to Q = M̂/2. Of the scales

we consider, this is the best choice of renormalisation scale in terms of minimising unwanted

logarithmic corrections, as it interpolates the large mass hierarchy. As we see in Figure 4.1,

this indeed corresponds to a ratio of pole and tree-level masses close to unity at large M̂ . In

turn, this corresponds to a value of r ∼ 1 for large M̂ in Figure 4.3, and thus a suppression of

the deviation from the ∼ 170 MeV limit. The yellow curve on Figure 4.2 illustrates the same

behaviour, running closest to the non-iterative result.

This is further verified by considering the other curves in Figure 4.2. For Q at the lower end

of the scale, at mt/2, the turn-over occurs for relatively small M̂ . At the other end of the range

for Q, where we consider cases with Q ∝ M̂ , once the constant of proportionality becomes

sufficiently large a critical point is reached where the turn-over occurs at smaller values of M̂ ,

as can be seen between the Q = M̂ and Q = 2M̂ results. This behaviour is consistent with

the idea that this is the result of large logarithms of the form log(m̂W,Z/Q), log
(

M̂/Q
⎡

and

log
(

M̂pole/Q
⎡

, which contribute to a large self energy, and are not cancelled in the iterative

calculation. Thus, it is sensible that for the intermediate value of Q ≈ M̂/2 the iterative mass

splitting is in much closer agreement with the non-iterative result, as logarithms from both

ends of the hierarchy are better controlled.

4.4.3 Gauge choice

As physical observables, the pole masses and mass splitting should be entirely independent

of the gauge choice. For the non-iterative method we see that this is indeed the case, with

consistent results in all three gauges (ξ = 0, 1, 3).2 This can be seen in both Figure 4.1 and

a general r. However, due to the complex nature of the function involved obtaining such an analytic expression
was not possible in this study.

2The running of the MS gauge boson masses is not relevant for a one-loop calculation, as the contribution
from running is of higher loop order. We find that the gauge dependence of the running couplings has little
effect. For the calculations discussed in this subsection, we therefore use Feynman gauge for all running, and
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from the analytical form of the self-energies with the condition that p2 = M̂2, in which case

the dependence on the gauge parameter is completely removed. For example, for the neutral

component with p2 = M̂2 we have

κ−1Σ0(M̂2) =
2g2

M̂

(

A(m̂W ) −A(M̂) − (m̂W + 4M̂)B(M̂, M̂ , m̂W ) + M̂2
⎡

(4.9)

which is clearly gauge independent. Therefore the on-shell condition guarantees that the pole

masses, and subsequent mass splittings, are gauge independent.

In the iterative method the self-energies must be evaluated off-shell with p2 ̸= M̂2. In this

case the self-energies are dependent on the gauge parameter, as can be seen in the expressions

in Appendix A.2. In Figure 4.1 this gauge dependence is apparent in the numerical results,

with a slight enlargement in the uncertainty band in the Landau gauge, and an even larger

uncertainty in the Fried-Yennie gauge (ξ = 3). Subsequently in Figure 4.2 we see that the

iterative mass splittings are also gauge dependent

Given that the iterative pole mass is gauge dependent it is not surprising we get unexpected

results when computing the mass splitting. As a physical observables, the pole mass should be

exactly gauge independent at each loop order. However, this is only true when the self-energy

is defined on-shell. This further strengths the case for using the non-iterative method.

4.4.4 The two-loop mass splitting

With such a large uncertainty in the one-loop mass-splitting, it is of interest to compute

the radiative corrections at the next order. We have computed full two-loop amplitudes for

the charged and neutral multiplet components in the Feynman-’t Hooft gauge using the non-

iterative method; the details of this calculation were presented in Chapter 3 and Ref. [1].

Without the condition p2 = M̂2, which is imposed in the non-iterative calculation only, the

basis integral reduction fails to produce reliable results, encountering a singularity at p2 = M̂2

for certain diagrams. Therefore, we are able to obtain a full two-loop result only with the

non-iterative method. However, in the interests of investigating the behaviour of the iterative

calculation at two loops, we have produced a partial two-loop amplitude that can be solved

iteratively, based on a combination of diagrams that gives a finite self-energy. By considering

this subgroup of two-loop topologies, we obtained a self-energy valid at both p2 ̸= M̂2 and p2 =

M̂2. The classes of diagrams that we used for this partial two-loop amplitude are summarised

in Figure 4.4; the full set of two-loop diagrams can be found in Figures 3.2, 3.3 and 3.4.

As shown in Ref. [118], the two-loop amplitude contains IR divergent terms for p2 = M̂2.

These divergences cancel with the derivative of the one-loop amplitude when the pole mass is

only change the gauge choice for the self-energies.
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Figure 4.4: Two-loop diagrams contributing to the partial self-energy. Small circles with crosses
indicate counter-term insertions. Solid lines indicate multiplet fermions (χ0, χ±) and wiggly
lines electroweak vector bosons (W±, Z, γ). Figure from Ref. [2].

computed using the non-iterative method (Eq. (3.7)). In both the iterative and non-iterative

case, we regulate this divergence by using a fictitious – but small – mass for the photon,

causing the divergences to cancel numerically. We have verified that the mass splitting is

indeed independent of the exact choice for sufficiently small values of the regulator mass. For

the iterative case there is no such cancellation, but the amplitude is IR-safe anyway because

p2 ̸= M̂2. By using a regulator mass even in the iterative calculation, however, we avoid any

problem associated with the IR divergence at the first step of the iteration, when p2 = M̂2.

In the left panel of Figure 4.5, we begin by comparing the non-iterative mass splitting

in the one-loop, partial two-loop and full two-loop calculations. The uncertainty of the full

two-loop amplitude due to scale dependence is much smaller than that of the one-loop result.

This confirms findings in the literature, and shows that these cancellations in the non-iterative

approach allow the precision of the splitting to improve with the addition of the higher-order

contributions, as one would normally expect. In the limit of large M̂ , the only remaining

Q-dependence of the one-loop and full two-loop results comes from renormalisation of the SM

input parameters.3 Similarly, for solutions at fixed Q and large M̂ , there is also a very small

dependence on M̂ , seen as a slight decrease in the mass difference with increasing M̂ ; this is

due to the influence of the value of M̂ on the renormalisation of the SM input parameters. This

can be confirmed by comparison with the left panel of Figure 3.11, where the pink band which

is indeed flat for large M̂ corresponds to exactly the same result but without any threshold

corrections applied to the input parameters.

On the other hand, the partial two-loop amplitude shows a relatively large uncertainty,

dominated by the results where Q is chosen to be some multiple of M̂ . Because even the

3The large M̂ limit of the two-loop mass splitting is slightly larger than the result in Ref. [118] due to the
choice of input parameters.
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loop result. For Q = M̂/2 we again see that the iterative mass splitting tracks the ∼ 170 MeV

limit reasonably well. However for Q > M̂/2, the partial two-loop splitting extends to very

large values (as large as 1 GeV for Q > M̂/2), much greater than the iterative one-loop mass

splitting. Because we are restricted to a subset of two-loop diagrams that we know in the non-

iterative case to result in an increased scale-dependence compared to the one-loop result, some

increase in the scale-dependence can be expected in the iterative calculation when going from

one loop to the partial two-loop result. Indeed, it is from the solutions for which Q ∝ M that

we see the large increase in the uncertainty of the explicit mass splitting, so it is not surprising

that these solutions lead to a larger uncertainty in the iterative result as well. For Q chosen

independently from M̂ (Q = mt/2, 2mt), the iterative partial two-loop calculation does show

slightly less sensitivity to the renormalisation scale than the one-loop result. This can be seen

by comparing the area bounded by the red and black curves in the right panels of Figs. 4.2

and 4.5. This suggests that if we were also able to control the uncertainty for solutions with

Q ∝ M by including the missing diagrams, then the overall uncertainty of the iterative result

could be reduced somewhat compared to the one-loop version.

Similarly, the delay of the turnover of the mass splitting to higher multiplet masses, when

going from one loop to two, indicates that the two-loop corrections do partially compensate

for the large logarithms in M̂/Q responsible for the deviation of the iterative result from

the non-iterative one. However, the asymptotic behaviour for large M̂ and Q = mt/2, 2mt

remains the same as in the one-loop iterative result, indicating that this compensation is far

from complete. Even with two-loop contributions included, the iterative calculation does not

exhibit the cancellation that occurs in the non-iterative case. This suggests that higher-order

corrections cannot completely ‘cure’ the scale-dependence of the one-loop iterative calculation,

even if they can reduce the effect.

4.5 Phenomenological implications

The precise value of the mass splitting is most relevant in the calculation of the dark matter

relic density, and the decay lifetime of the charged component. We briefly discuss the possible

effect of erroneous mass splittings entering into these calculations, in the case that one was

to accidentally use an iterative result without being aware of the pitfalls of this method (such

a situation may arise if a spectrum generator is used and results passed to other programs

without checks in between).

As the typically-assumed ∼ 170 MeV mass splitting is still relatively small compared to the

actual pole masses, it has sometimes simply been neglected when calculating the dark matter
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see here that the uncertainty in the one-loop iterative pole mass calculation results in a huge

uncertainty in the decay lifetime. Indeed the width in Eq. (3.26) has a quintic dependence on

the mass splitting.

4.6 Conclusions

In a model where a fermionic multiplet is required to be 100% of the observed thermal relic

abundance of dark matter, the multiplet mass must be of the TeV scale. Therefore we have

M̂ ≫ m̂W,Z and the calculation of the pole mass involves a large mass hierarchy. Due to the

mathematical form of the non-iterative (or explicit) pole mass, large logarithms of the form

log(mX/Q), where mX ∈ ¶M̂, m̂W , m̂Z♢, associated with this hierarchy, cancel out when taking

the difference of the charged and neutral components. Therefore the only renormalisation scale

dependence in the mass splittings comes from the input parameters, such as the gauge coupling

and running MS masses.

In the iterative method this cancellation is spoiled. In order to obtain a reasonable esti-

mate of the uncertainty on the resulting mass splitting, such that the iterative and explicit

results are consistent, we must vary Q over the entire mass hierarchy. Despite the fact that

both the iterative and explicit pole masses show almost identical variance with respect to the

renormalisation scale, only the difference of the iterative masses suffers from a similarly large

uncertainty. This is the result of cancellations not occurring in the iterative case, due to the

nature of the procedure. Any renormalisation scale dependence in the explicit mass splitting

is cancelled out perfectly.

The iterative method of calculating a pole mass is a natural choice for a computer program.

As demonstrated in Section 4.3, it uses the least approximations and is straightforward to

implement at any loop order. As seen in Figure 4.1, the choice of either iterative or non-iterative

calculation is typically not consequential for pole masses themselves, so it is understandable that

publicly-available spectrum generators have made different choices over which approach to use.

Of particular relevance here, SARAH/SPheno [142,143,225] spectrum generators use an iterative

procedure for all pole masses, with no alternative option, whereas FlexibleSUSY [234] enables

the user to select either high precision (iterative), or medium/low precision (non-iterative).

Although the FlexibleSUSY names for these options imply that the iterative method is more

precise, we can see from Figure 4.2 that this is certainly not always the case for differences

between pole masses.

We have reproduced the large uncertainty in the mass splitting using pole masses computed

with both FlexibleSUSY and SPheno with the iterative method. We have also reproduced the
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non-iterative result using FlexibleSUSY’s low precision mode.

Finally, we have demonstrated that the iterative pole masses are not gauge independent.

Although there is no tension between the uncertainty bands of the pole masses in each gauge,

we expect this quantity to be exactly gauge independent, which it is clearly not. This brings

into question the validity of the iterative method in general, as we show at least in this example

that self-energies defined off-shell have an explicit dependence on the gauge parameter.

A pertinent question is if one must consider the uncertainty arising from the iterative

result when using calculations of electroweak mass splittings for doing phenomenology. On

the basis of our investigations in this chapter, we argue that this is not necessary. Due to

fortunate cancellations, the explicit method is able to predict the mass difference while being

free from logarithmic terms containing explicit scale dependences. From a physical point of

view, with this method we are able to minimise the sensitivity of the final result to non-

physical renormalisation-scale effects. In addition, we have found that the iterative pole masses

are gauge dependent which is inconsistent from a physical point of view. Furthermore, a

finite mass splitting is predicted by a classical effect – the Coulomb energy. Ref. [136] shows

agreement between the classical prediction and the value derived from the self-energies in Eq.

(4.6). Relying on a classical argument alone is of course not sufficient to safely disregard the

large uncertainty of the iterative result. By understanding however that the origin of this

uncertainty lies in scale dependence, and that this can be safely removed by performing the

explicit calculation, we can safely conclude that the explicit result is indeed accurate to within

its own error margin, and should therefore be adopted as such for phenomenological analyses.



5 Mass splittings in a vector multiplet

To conclude Part I we will briefly consider electroweak mass splitting in a vector multiplet. In

Chapter 4 we demonstrated how an iterative pole mass calculation can result in the cancellation

of scale dependent logarithms being spoiled, leading to a large renormalisation scale dependence

in the mass splitting. In this chapter we will show that computing a mass splitting using an

iterative pole mass is not the only way to spoil the fortuitous cancellation of such terms.

We will compute electroweak mass splitting in a vector dark matter (VDM) model, the

phenomenology of which is discussed in Ref. [3]. Like the fermionic models considered in

Chapters 3 and 4, this model features an essential mass splitting between components of the

multiplet. However, because the vector propagator has a different form to the fermionic one,

the linear subtraction of logarithms is spoiled and consequently the result is more sensitive to

changes in the renormalisation scale.

The model is constructed as an extension of the SM by a new massive iso-triplet vector

boson Vµ charged under SU(2)L. We impose an additional Z2 symmetry in order to avoid a

cubic V vertex. The corresponding Lagrangian is

L = LSM − Tr ¶DµVνD
µV ν♢ + Tr ¶DµVνD

νV µ♢ − g2

2
Tr ¶[Vµ, Vν ] [V µ, V ν ]♢

−igTr ¶Wµν [V µ, V ν ]♢ + M̃2Tr¶VνV
ν♢ + a

(

H†H
⎡

Tr¶VνV
ν♢ (5.1)

where Dµ is the SU(2)L covariant derivative in the adjoint representation, H is the SM Higgs

doublet, LSM represents the SM Lagrangian, a is a new dimensionless coupling and M̃ is a

Lagrangian mass parameter for the vector field. Note that, compared to the model in Ref. [245],

we allow for couplings to the Higgs scalar field H. Due to the Z2 symmetry, the new vector

boson does not mix with the gauge bosons when the Higgs field acquires a VEV, so the EWSB

is unchanged from the SM. The tree-level MS mass, M̂V , of the new vector boson is given by

M̂2
V = M̃2 +

1

2
av2

0 (5.2)

where v0 = 246 GeV is the usual VEV acquired by the Higgs field. Therefore this model has

two free parameters: M̂V and a.

We define the physical masses for the charged and neutral components of the vector multi-

plet as M+
pole and M0

pole respectively. These pole masses are given by p2 satisfying Eq. (2.10),

p2 = M̂2
V − Σi

V (p2) , (5.3)

104
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where Σi
V is the real and transverse part of the self-energy for the charged (i = +) or neutral

component (i = 0) of the multiplet. Equivalently, up to one-loop order, the pole masses are

given by

M i
pole =

√

M̂2
V − Σi

V (M̂2
V ) . (5.4)

The mass splitting between the physical masses of the charged and neutral components can be

written by expanding Eq. (5.4)

M i
pole = M̂V







√1 − Σi(M̂2
V )

M̂2
V

= M̂V

∞
∑

n=0

(−1)n

(

1
2

n

)(

Σi(M̂2
V )

M̂2
V

)n

, (5.5)

and taking the difference

∆M = M+
pole −M0

pole = M̂V

∞
∑

n=1

(−1)n

(

1
2

n

)[(

Σ+(M̂2
V )

M̂2
V

)n

−
(

Σ0(M̂2
V )

M̂2
V

)n]

. (5.6)

For a consistent one-loop result we truncate the expansion to the first term, which appears at

order g2 in the gauge couplings.

We compute the self-energies in the Feynman-’t Hooft gauge at one-loop order. We do not

perform any sophisticated spectrum generation for this brief study, instead using a one-loop

solution for the running of the gauge coupling and neglecting the higher order effect from the

running of the other parameters. The one-loop, O(g2), mass splitting is obtained from the first

term in the expansion in Eq. (5.6),

∆M =
g2

12 (16π)2M̂3
V

[

f(mW ) + g(mW ) − c2
W (f(mZ) − g(mZ))

+5(m2
W − c2

W M̂2
Z)(A(M̂V ) − 2M̂2

V ) + 30s2
W M̂4

V B(M̂V , 0)
]

(5.7)

where

f(x) = −(30M̂4
V + 26M̂2

V x
2 − 5x4)B(M̂V , x) (5.8)

g(x) = (12M̂2
V − 5x2)A(x) (5.9)

and A and B are defined in Eqs. (2.15) and (2.22) respectively. To evaluate the mass splitting

for M̂V ≫ mW ,mZ , we use the limits from Eqs. (4.4) and (4.5), to give

∆M =
5g2(mW − c2

WmZ)

32π
≈ 217.3 MeV (5.10)

This result is of the same order of magnitude as we found for a fermionic multiplet in Eq. (4.6)

and is independent of M̂V in the large M̂V limit. A plot of the full expression in Eq. (5.7) as a

function of M̂V is presented in Figure 5.1 (black solid curve), where we see that the asymptotic

constant value is reached for masses above ∼ 500 GeV.
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In fact, as seen in Eq. (A.100), the next-to-leading terms in the series (O(gn) for n > 2)

explicitly contain the term log
(

M̂V /Q
⎡

. The dotted lines in Figure 5.1 show the results for

Q = mZ/2, 2mZ , M̂V /2, M̂V and 2M̂V . This allows us to identify the theoretical uncertainty

with the green region, and estimate the error in the range 5 − 10 %. However, this is only a

naive estimate for the uncertainty in the one-loop result, and should be considered along with

an estimate of the magnitude of missing two-loop corrections, such as in Eq. (3.24).

The resultant sensitivity of ∆M to Q is not as severe as in the case of an iteratively

computed pole mass that we demonstrated in Chapter 4. This is because we do not return the

value of the pole mass back into the basis integrals, and thus avoid the sensitive nature of the

B basis integral, which magnifies the problem in the iterative calculation. However, this result

further demonstrates that the fermionic mass splitting indeed involves a fortuitous cancellation

of these scale dependent terms.
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6 The physics of vacuum stability

6.1 Introduction

The Higgs field is an essential feature of the SM of particle physics. Yet it is not simply the

existence of this field that is so essential, it is the mechanism of EWSB that gives rise to particle

masses and the observed structure of the electroweak sector. If the VEV that the Higgs field

gains through EWSB were orders of magnitude different, then the masses of SM particles would

likewise be very different.

At the electroweak scale the SM is a combination of broken and unbroken symmetries. The

breaking of the SU(2)L×U(1) symmetry occurs when the Higgs field, H, gains a non-zero VEV.

While the Higgs potential is rotationally invariant under the SU(2)L ×U(1) gauge groups, the

solution of the minimisation condition is not. Instead we have an infinite set of equivalent

solutions, connected by SU(2)L ×U(1) transformations. This is analogous to the solution of a

planet moving in a spherical orbit around a star; although the potential is rotationally invariant

(ignoring other planets), once the orbit has been chosen to lie in a given plane, the rotational

invariance is broken in one of the angular directions. This phenomenon, where the solution

violates the symmetry of the original equation, is called spontaneous symmetry breaking.

The Higgs mechanism is an example of spontaneous symmetry breaking. First we introduce

the Higgs field, which transforms nontrivially under the SU(2)L ×U(1) gauge group. We then

find that the VEV of this field is non-zero such that the vacuum state is not invariant under

SU(2)L × U(1) and the gauge symmetry is broken.

The SM Higgs potential is given by

V (H) = −µ2♣H♣2 + λ♣H♣4, (6.1)

where H is the Higgs field, µ is the Lagrangian Higgs parameter and λ is the quartic coupling.

If µ2 > 0 and λ > 0 the field value at the minimum of the potential, or VEV, is v0 =
√

µ2/2λ.

The excitation of the physical Higgs field, h, is then a perturbation around this minimum state,

H =

∏

ˆ

∐

G+

v0 + h√
2

+ iG0

⎞

ˆ

ˆ
(6.2)

where G+ and G0 are Goldstone bosons, which correspond to the longitudinal polarisations of

the W and Z bosons. Substitution of Eq. (6.2) into the potential gives the terms in h to be

V (h) =
m2

h

2
h2 + λv0h

3 +
λ

4
h4 (6.3)
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where mh =
√

2µ is the tree-level Higgs mass parameter and I have dropped a constant term

and terms for the Goldstone bosons as they are not relevant for our discussion here. For the

study of vacuum stability we are interested in the high energy behaviour of Eq. (6.3) when

h ≫ v0. So we can safely neglect all other terms and write an effective potential as [11,15,97]

Veff(h) ≈ 1

4
λ(Q)h4 (6.4)

where Q ∼ O(h) is the renormalisation scale and I have made the scale dependence of λ

explicit. The electroweak VEV can then be taken as approximately zero, and consequently

V (v0) ≈ 0. Eq. (6.4) demonstrates how the electroweak vacuum stability can be compromised.

If the running quartic coupling becomes negative for some value of the renormalisation scale,

Q′, then V (Q′) < V (v0) and a more energetically favourable second minimum exists (or the

potential can drop off to infinitely low energies).

I will classify and discuss the physical effect of this phenomenon in Section 6.2. In Section

?? I present the details of the likelihood calculation for electroweak vacuum decay. This

is followed by a brief discussion of perturbativity and unitarity in Section 6.4, which is an

essential consideration when studying vacuum stability. Finally in Section 6.5 I present a brief

study of vacuum stability in the SM (6.5.1), the Z2 scalar singlet model (6.5.2) and the MDM

model (6.5.3).

The techniques developed in this chapter will be applied to a global fit of the Z2 and Z3

scalar singlet dark matter models in Chapter 7.

6.2 Classifying stability

If λ(Q) in Eq. (6.4) becomes less than zero at high energies there exists a second minimum

to the Higgs potential. Except for the finely tuned case of degenerate minima, the potential

energy at this second minimum would be much lower than at the electroweak scale minimum.

Therefore, the electroweak vacuum is no longer absolutely stable, even though there is a large

potential barrier between it and the high energy minimum. If a second minimum does exist,

then it is due to this large potential barrier that the decay lifetime from the electroweak vacuum

is sufficiently large to allow the Universe to exist, before quantum tunnelling to the lower energy

state occurs.

If the Higgs field did tunnel through the barrier to the global minimum, at any point

in spacetime, a bubble of low energy vacuum would form. This is the processes of bubble

nucleation. After nucleation, this bubble would propagate outwards at very nearly the speed

of light [246] converting all space in its future light-cone into this low energy state. Since the
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nature of EWSB is essential to the SM, if the vacuum expectation value of the Higgs field were

to change by orders of magnitude, this would have catastrophic results. Additionally, if it is

found that vacuum decay is highly likely in the SM, then clearly something is wrong with the

theory itself given the fact that such an event has not already occurred.

However, even if the quartic Higgs coupling is negative at some energy before the Planck

scale the electroweak vacuum state may still be very stable, to the extent that we should

not be concerned about a bubble nucleation suddenly occurring, or question why one hasn’t

occurred in the past 13 billion years. We will now formalise the difference between such a case

and one where the vacuum is almost certain to have decayed already, and discuss the physical

interpretation of each.

Based on the nature of Eq. (6.4), Isidore et al. [247] define a lower bound, λmin, on the

value of the running quartic coupling in order to classify stability. If ΛB is the energy scale at

which λ attains its minimum value, then the vacuum is metastable so long as λ(ΛB) > λmin.

Instead of applying a cut-off we will develop a likelihood function for vacuum decay in Section

??. Alternatively, if we are only interested in absolute stability, we could demand λ(Q) > 0

for all Q. In Ref. [248] three-loop RGE running was used to place a lower bound on the Higgs

mass by finding the value of mh such that

λ(Q0) = βλ(Q0) = 0 (6.5)

for some renormalisation scale Q0 (the value of Q0 is irrelevant, it is the fact that this model has

a degenerate minimum that matters). Since this condition depends only on the behaviour of λ,

it is based on the effective tree-level potential in Eq. (6.4). The resulting lower bound on the

Higgs mass (given in Eq. (2.5) of Ref. [248]) is 129.35 GeV for αS = 0.1184 and mt = 171.3 GeV.

We could also take into account the full structure of the effective potential at two-loop (or

higher) order to classify vacuum stability. The full two-loop effective potential is given by Ford

and Jack [249] and has been used by Degrassi et al. [97] to place a lower bound on the Higgs

mass for absolute stability. From Eq. (2) of Ref. [97] we get a bound on the Higgs mass of

129.40 GeV (for αS = 0.1184 and mt = 171.3 GeV). This differs by less than ∼ 0.1 GeV from the

bound obtained using RGE running, the effective potential in Eq. (6.4) and the condition in

Eq. (6.5) given in Ref. [248]. This is well within both experimental and theoretical uncertainties.

For a precise study of the Higgs potential at high energies Casas, Espinosa and Quiros [13]

define an effective quartic coupling λeff(Q) = λ(Q) + ∆λ(Q) in order to account for radiative

corrections. They then take h = Q as is the standard practice [14, 15, 250] based on the scale

invariance of the effective potential (see Ref. [12] for a detailed discussion), and obtain the
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potential

Veff(h) =
λeff(h)

4
h4 ≈ λ(Q)

4
Q4 (6.6)

for which the approximation on the right is equivalent to taking h = Q in the potential from

Eq. (6.4) in the first instance. So, although ∆λ(Q) is known up to two-loop level [13, 250], we

will use the tree-level result as calculation of this effective coupling is beyond the capabilities of

the computational tools we employ and it does not offer a significant improvement in precision.

Masina [14] claims that the simplifications leading to the right hand side of Eq. (6.6) result

in negligible impact on the determination of vacuum stability (see Ref. [248] for a detailed

discussion). Only for more precise studies would determination of the full effective potential

be necessary.

There are three possible cases for electroweak vacuum stability, outlined below.

• Stable: If λ(Q) > 0 for all Q < MPl then the electroweak vacuum is the only minimum

of the Higgs potential (up to MPl) and is therefore absolutely stable.

• Metastable: If there exists a Q0 < MPl such that λ(Q0) < 0 and the lifetime of the

electroweak vacuum state is longer than the age of the Universe.

• Unstable: If there exists a Q0 < MPl such that λ(Q0) < 0 and the lifetime of the

electroweak vacuum state is less than the age of the Universe.

The distinction between metastability and instability will become clear when we consider the

nature of the transition probability function in Section ??. We will see that there is a specific

value of the minimum quartic coupling at which the tunnelling probability changes from zero

to unity in an almost step function manner.

The case of two degenerate minima forms the boundary between metastability and stability.

This occurs when Eq. (6.5) is satisfied for some Q0. To compare the height of the potential at

the VEV and at Q0 Ref. [14] uses a re-parameterisation of the Higgs potential such that

V (H) = −m2
h♣H♣2 + λ

(

H2 − v2
0

2

)2

(6.7)

which compared with Eq. (6.1) is simply shifted by a constant. Therefore if λ(Q0) < 0 for any

Q0 < MPl then the electroweak minimum is “higher” than the new high energy minimum, and

is thus a less energetically favoured state. The case when λmin = 0 exactly at the Planck scale

has gained some particular attention. Shaposhnikov and Wetterich [251] used the condition

that βλ(MPl) = λ(MPl) = 0 as a means of predicting the Higgs mass, although this has since

been ruled out for the experimentally measured values of the Higgs and top quark masses [252].
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In our study of vacuum stability we do not focus on trying to construct a model that admits

this finely tuned case of two degenerate vacua. However, we make use of this case in the sense

that it forms our definition of the boundary between metastability and absolute stability.

Cases, Espinosa and Quiros [13] use a different terminology in the study of vacuum stability

than what I have developed here. They refer to a model as “safe” if either (a) the potential has

no high energy minimum (so the quartic Higgs coupling is always positive) or (b) the minimum

occurs for Q > Λc where Λc is a cut-off beyond which the SM is no longer valid. This type

of analysis does not allow for the case of metastability, and instead rules out a model as soon

as a second vacuum appears, whether this be a high energy metastable vacuum, degenerate

with the electroweak vacuum or a global stable minimum1. Because this analysis also uses the

concept of a variable cut-off, any model can still be valid as long as Λc is sufficiently small.

We will use this approach in part of our analysis in Chapter 7, where we take Λc = MPl.

This results in only models with an absolutely stable vacuum being allowed, which is certainly

more theoretically appealing than the situation of metastability and may thus be considered

interesting.

The physical interpretation of a Higgs potential with two minima versus an absolutely stable

single minimum has implications during the early evolution of the Universe. One may ask how

the Higgs potential came to be in the electroweak vacuum in the first place, rather than the

global minimum. Indeed, for the electroweak vacuum to be in a metastable state particular

conditions must be satisfied [246]. After the grand unified transition (from some unified gauge

group such as SO(10)) the Universe must go into the correct SU(3) ×SU(2)L ×U(1) invariant

vacuum and remain there until the electroweak phase transition, after which it must move to

the false minimum rather than the global minimum. In order to confirm that the Universe

goes into the correct vacuum at the grand unified phase transition we would need to know the

parameters of the grand unified theory [246] such as the timescales and size of the potential

barrier separating the correct SU(3) × SU(2)L × U(1) invariant vacuum from the unbounded

region. Although we do not know these parameters, the barrier is larger and the timescale

for decay much shorter [246] than that associated with the barrier between the global and

metastable minima after electroweak symmetry breaking, and thus this condition is satisfied

so long as metastability of the electroweak vacuum is satisfied.

Finally we are left with the condition that after the Universe cools it passes through the

1If λ(Q) becomes sufficiently small (of order O(10−5)) but non-zero at its minimum then the potential
develops an inflection point. However the resulting minimum in the Higgs potential is higher than the electroweak
one, and thus is itself metastable. If bubble nucleation did occur to this less energetically favoured state it would
have to be on the time scale comparable to the required change in energy with respect to the uncertainty principle
and would not then propagate outwards through the Universe. Therefore this is clearly not a scenario we are
concerned about.
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electroweak phase transition and must go into the metastable minimum, and not the global

one. Sher [246] argues that “in most cases” the barrier between the global and metastable

minima is, even at zero temperature, larger than the SU(3) × SU(2)L × U(1) vacuum energy,

and thus by energy conservation a transition to the true vacuum (the global minimum) is

prohibited (if the final state is found to be metastable, not transitioning over 13 billion years,

then the tunnelling probability through this same barrier would be negligible over this much

shorter time scale). In cases in which the barrier is lower than the SU(3) × SU(2)L × U(1)

vacuum at zero temperature, it will still be much higher at the temperatures relevant for this

phase transition. Thus the only situation where the field could “roll over the hill” into the

true vacuum is when the electroweak phase transition occurs at a very low temperature, which

requires mh < 1 GeV [246], which we can confidently rule out [47,48].

6.3 The likelihood of false vacuum decay

In order to calculate the likelihood of the Higgs vacuum decaying to a lower energy state we

need to solve the problem of quantum tunnelling through an arbitrary potential. To begin with

we need to be able to solve the time-independent Schrödinger equation in a one dimensional

potential which depends arbitrarily on the position. For this purpose we will introduce the

WKB method (an initialism for Wentzel, Kramers and Brillouin who developed the formalism

in 1926) for finding approximate solutions to linear differential equations of the same form as

the Schrödinger equation.

The time-independent Schrödinger equation for a particle in a one-dimensional potential

V (q) with position q is

d2ψ

dq2
= −

⎤

p(q)

ℏ

⎣2

ψ (6.8)

where ψ = ψ(q) is the wave function, p(q) ≡
√

2m(E − V (q)) and E is the energy of the

particle. Taking p(q) to be real we assume a general solution for the wave function as

ψ(q) = exp

⎤

if(q)

ℏ

⎣

(6.9)

where f(q) is some complex function (and thus there is no need to include an arbitrary pre-factor

in this general solution). We can then expand f(q) in powers of ℏ such that f(q) =
∑∞

i=0 ℏ
ifi(q).

Taking derivatives of Eq. (6.9) and substituting into Eq. (6.8) gives

i
∞
∑

i=1

ℏ
i d2fi−1

dq2
−

∞
∑

i=0

∞
∑

j=0

d2fi−1

dq2

d2fj−1

dq2
ℏ

i+j + p2 = 0 (6.10)
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Figure 6.1: The potential barrier V in the example in Eq. (6.13). This is similar to the problem
of a square barrier except now we have an arbitrary function defining the top of the barrier.

(where p(q) = p and f(q) = f). Separating Eq. (6.10) into powers of ℏ and solving gives a

leading order solution of the form

ψ(q) ≈ 1
√

♣p(q)♣
exp

⎤

i

ℏ

∫

p(q) dq

⎣

(6.11)

where a solution to Eq. (6.8) would be given by a linear combination of positive and negative

complex exponentials of this form.

Since we are interested in quantum mechanical tunnelling we need to consider the case of

E < V (q), and thus take p(q) to be pure imaginary. So we can write p(q) = ir(q) where r(q) is

real, and thus i♣p(q)♣ = i♣r(q))♣ = ir(q) = p(q) so we find that the wave function is now a real

exponential

ψ(q) =
1

√

♣p(q)♣
exp

⎤

±1

ℏ

∫

p(q) dq

⎣

. (6.12)

To obtain an approximate expression for tunnelling through an arbitrary potential V (q) we

will study the simplified case of a rectangular potential with an arbitrary top given by V (q)

as depicted in Figure 6.1. Solving the Schrödinger equation in the usual way, and using our

result from Eq. (6.12), we obtain the wave function

ψ =

∏

⎪

⎪

⎪

⎪

⨄

⎪

⎪

⎪

⎪

⋃

Aeikq +Be−ikq q < a

C√
♣p(q)♣

e
1
ℏ

∫

p(q) dq + D√
♣p(q)♣

e− 1
ℏ

∫

p(q) dq a < q < b

Feikq q > b

. (6.13)

where A, B, C, D and F are constants. If the potential barrier is very wide or high then the

probability of tunnelling is small and we may take the coefficient of the exponentially growing

term, C, to be negligible (or in the case of an infinite barrier this would necessarily be exactly
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zero). The probability of tunnelling is given by the ratio of the incident wave amplitude, A,

and the transmitted wave amplitude F both squared,

T =
♣A♣2
♣F ♣2 . (6.14)

We can use the exponential decay of the wave function between the entry, a, and exit, b, points

inside the potential as an estimate of the ratio of ♣A♣/♣F ♣ and thus

T ≈ e−B/ℏ (6.15)

where B =
∫ b

a ♣p(q)♣ dq.

If we consider the case that all points in space have the same probability of bubble nucleation

then we have the rate of bubble nucleation per unit volume per unit time of

Γ ≈ Γ0e
−SE/ℏ, (6.16)

where Γ0 depends on the size of the past light-cone and SE is determined by the shape and

size of the potential barrier.

The WKB method presented here is a simplification of the situation where the particle

enters a sloping potential such that the energy E is equal to V at the barrier, making the

wave function in Eq. (6.12) discontinuous. Such a situation requires the “patching" of a new

wave function over a linearised potential at the barrier. However, for our purposes we need not

write down an exact wave function across the barrier, instead we need only the probability of

decay. The result in Eq. (6.16) is the starting point for Coleman’s 1977 [10] derivation of the

tunnelling probability for a barrier potential in four-dimensional spacetime (see also Kolb and

Turner [11] for a detailed review following the same method) which I present in the following

section.

6.3.1 The bounce solution for potential barrier penetration

The relevant potential we wish to consider for particle/cosmological applications is that of a

false, or meta-stable, minimum separated from a global true minimum by a potential barrier.

We begin with the simple case of a physical particle moving in such a potential, and the gener-

alisation of this to multiple dimensions. Consider a particle in a multidimensional spacetime,

with a position q⃗ and Lagrangian

L =
1

2
˙⃗q · ˙⃗q − V (q⃗) (6.17)

which lives in a potential, V (q⃗), with a meta-stable minimum at q⃗0 and an escape point at σ⃗,

for simplicity we take the zero of energy such that V (q⃗0) is zero. In the multidimensional case
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the escape point lies on a surface of zeros, and σ⃗ is taken to be the point for which the path

integral in Eq. (6.16),

B = 2

∫ σ⃗

q⃗0

ds (2V )1/2, (6.18)

is a minimum, where (ds)2 ≡ dq⃗ · dq⃗. Coleman calculates this “path of least resistance” by

solving the analogous Euler-Lagrange variational problem

δ

∫

ds[2(E − V )]1/2 = 0 (6.19)

with V → −V , E = 0 and with a transformation to Euclidean time τ = −it. This gives the

Euclidean equations of motion

d2q⃗

dτ2
− ∂V

∂q⃗
= 0 (6.20)

1

2

dq⃗

dτ
· dq⃗

dτ
− V = 0 (6.21)

which correspond to the Euler-Lagrange equation for the imaginary-time version of Hamilton’s

principle, δ
∫

dτLE = 0 where,

LE =
1

2

dq⃗

dτ
· dq⃗

dτ
+ V. (6.22)

From Eq. (6.21) we find

∫ σ⃗

q⃗0

ds (2V )1/2 =

∫ σ⃗

q⃗0

ds
dq⃗

dτ
=

∫ σ⃗

q⃗0

√

dq⃗ · dq⃗
dq⃗

dτ
· dq⃗

dτ
(6.23)

=

∫ 0

−∞

√

dq⃗

dτ
· dq⃗

dτ

dq⃗

dτ
· dq⃗

dτ
dτ dτ =

∫ 0

−∞
dτ

dq⃗

dτ
· dq⃗

dτ
(6.24)

=

∫ 0

−∞
dτ

1

2

dq⃗

dτ
· dq⃗

dτ
+ V =

∫ 0

−∞
dτ LE (6.25)

where we have applied the boundary conditions

lim
τ→−∞

q⃗ = q⃗0 (6.26)

and q⃗ = σ⃗ at τ = 0. Coleman invokes time translation invariance to arbitrarily choose the time

τ = 0 for when the particle is at the stable point σ⃗, in which case ˙⃗q
\

\

\

0
= 0. After this time the

particle motion is just the time reversal of that from −∞ to zero, so the particle bounces off

Σ, at σ⃗, when the Euclidean time is zero (τ = 0) and returns to q⃗0 asymptotically as τ → ∞.

This is the origin of the name “bounce” motion, and B in Eq. (6.16) is the total Euclidean

action of the bounce,

B =

∫ ∞

−∞
dτ LE ≡ SE , (6.27)

so to find B we must find the solution of this imaginary-time equation of motion subject to

the boundary conditions given above.
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6.3.2 Quantum tunnelling in field theory

The previous discussion of a particle moving in imaginary time to tunnel through a potential

barrier can be translated to field theory following Coleman’s derivation [10]. The tunnelling of

the field from a meta-stable state at ϕ = q0 to the global minimum, which we will denote by

σ, occurs through the nucleation of bubbles of this energetically favoured phase. This bubble

then expands outwards at the speed of light, causing the surrounding vacuum to decay to the

lower energy global minimum.

The Euclidean (imaginary-time) equation of motion for a quantum field is [10]

(

∂2

∂τ2
+ ∇

2

)

ϕ− dV (ϕ)

dϕ
= 0 (6.28)

analogous to Eq. (6.20). This equation of motion corresponds to the solution which minimises

the action

SE =

∫

dτ d3x

[

1

2

⎤

∂ϕ

∂τ

⎣2

+
1

2

(

∇⃗ϕ
⎡2

+ V

]

. (6.29)

Since we want the action, and coefficient B, to be finite we impose the condition

lim
♣x⃗♣→∞

ϕ(x) = q0 (6.30)

which results in a finite Lagrangian density (as V (q0) = 0) and q0 thus becomes a stationary

point. The physical origin of this condition is also clear if we consider that if a quantum

fluctuation creates a bubble at some point in spacetime, at a great distance (♣x♣ → ∞) from

this point the vacuum still remains in the initial meta-stable state, q0.

For bubble nucleation in flat four-dimensional spacetime we can take ϕ to be a function of

ρ =
(

τ2 + ♣x⃗♣2
)1/2

only, as there exists an O(4) symmetry, giving the Euclidean equation of

motion

d2ϕ

dϕ2
+

3

ρ

dϕ

dϕ
=

dV

dϕ
(6.31)

for which the boundary conditions can be combined into the single requirement that limρ→∞ ϕ(ρ) =

q0 and finally the action becomes

B = SE = 2π2
∫ ∞

0
ρ3dρ

[

1

2

⎤

dϕ

dρ

⎣2

+ V

]

. (6.32)

To understand how the solution given here corresponds to quantum tunnelling we again turn

to the analogy of a particle moving in a potential, in this case a potential −V (see Figure 6.2)

subject to a velocity dependant retarding force given by the second term in Eq. (6.31) with

the “time” given by ρ. To begin with the “particle” is released from rest (ρ → 0) at a position
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ϕe called the “escape point”. Coleman shows that if this escape point is chosen correctly then

as ρ → ∞ the particle will come to rest exactly at the stationary point ϕ = 0, this is achieved

through a simple argument of undershoot and overshoot and invoking continuity and the mean

value theorem to imply a solution. Therefore with the appropriate choice of initial conditions

this Euclidean equation of motion does indeed correspond to a bounce motion as required for

quantum tunnelling. Once this solution for ϕ(ρ) is obtained we can substitute this into the

Euclidean action Eq. (6.32) and obtain the required coefficient B.

6.3.3 The likelihood of Higgs vacuum decay

The process outlined in the previous section for a simple scalar field can be applied to the

quartic Higgs potential, even with the use of the approximation V (h) ≈ λ(h)h4. In this case

the Euclidean equation of motion is

d2h

dρ2
− 3

ρ

dh

dρ
− dV (h)

dh
= 0 (6.33)

with the boundary conditions dh
dρ

\

\

\

0
= 0 and h → v ≈ 0 as ρ → ∞. If we perform this calculation

at tree-level we can obtain an approximation for the coefficient B, so taking λ(h) = λ, λ < 0

we have a solution [247]

h(r) =

√

2

♣λ♣
2R

ρ2 +R2
(6.34)

where R is a dimensional factor associated with the size of the bounce. This can be a relevant

quantity such as the height of the barrier, or the change in renormalisation scale between

adjacent minima; we shall use the latter. From Eq. (6.32) we then obtain the action

SE =
8π2

3 ♣λ♣ . (6.35)

The validity of the approximation V ≈ λh4/4, with λ < 0, is not immediately evident, as

h = 0 is an unstable maximum, and indeed any value of h > 0 is unstable. However, as stated

in Ref. [247], the bounce solution is not a constant field configuration, so requires a non-zero

kinetic energy. Because of this, the required bounce solution is suppressed even in the absence

of a potential barrier, and thus this is still a valid approximation [253].

Now that we have an expression for SE we need to determine the pre-factor in Eq. (6.16).

The explicit form of this pre-factor, Γ0, was first calculated in Ref. [254] by taking account of

one-loop quantum corrections. Yet because the exponential in Eq. (6.16) dominates, the value

of Γ0 need only be an approximation, so we follow the analysis of Ref. [246] and determine it

by a dimensional reasoning.
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Figure 6.2: The potential V of the original problem (top) is inverted (bottom) in the equation
of motion corresponding to Eq. (6.32), and is used here to illustrate quantum mechanical
tunnelling. The equation of motion in Eq. (6.31) describes a “particle" moving in the inverted
potential −V from a release point ϕe subject to a time-dependent friction force. If the point
ϕe is chosen appropriately the particle will roll to rest at ϕ = 0 at infinite Euclidean time.

If we take the Planck constant and the speed of light to be unity (ℏ = c = 1), then the rate of

decay per unit time per unit volume, Γ, has units of [time−1.length−3] = [length]−4 = [energy]4.

Thus Γ0 must have units of [length]−4 or [energy]4. The characteristic scale relevant in this

problem is the width or height of the potential barrier, so we set Γ0 ≈ Λ4
B = 1/R4 and define

ΛB to be the energy at which λ(µ) is at a minimum.2

Eq. (6.16) gives the rate of decay per unit time per unit volume, Γ. As we are ultimately

interested in the probability of the Universe having decayed in our past light cone, we multiply

Γ by the volume of the past light cone ∼T 4
U , where TU is the age of the Universe.3 Thus we

obtain a predicted number of decays in the our past light cone

s ≈ ΓT 4
U = (TU ΛB)4e−SE , (6.36)

2If the minimum value of the running quartic coupling λmin < 0 is achieved at energy scales higher than
MPl, but λ(MPl) < 0, we take λmin = λ(MPl).

3This can be computed more rigorously for a standard FLRW cosmology, see Ref. [255], however to the level
of detail required here this result is equivalent.
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which can be expressed as

s ≈
⎤

e140 ΛB

MPl

⎣4

exp

(

− 8π2

3 ♣λ(ΛB)♣

)

(6.37)

where λ(ΛB) is the minimum value of the quartic Higgs coupling and we have expressed the

age of the Universe as TU ≈ ℏe140/MPl.
4

The arguments used to arrive at Eq. (6.37) were based only on dimensional analysis. Al-

though this quantity is now dimensionless it cannot be immediately interpreted as a probability,

instead it should be interpreted as the expected value for the random variable k, where k is

the number of decay events that occurred in the time given (in this case ≈ 10 billion years).5

To model the probability that the Universe has actually decayed in the given time interval, we

use a Poisson likelihood L(k♣s) = (sk/k!)e−s. Because we want the likelihood that no decay

has occurred in our past light-cone, we calculate the probability that k = 0, which is given by

L = exp

[

−
⎤

e140 ΛB

MPl

⎣4

exp

(

− 8π2

3 ♣λ(ΛB)♣

)]

. (6.38)

The likelihood given by Eq. (6.38) is typically either extremely small or exactly one, being

extremely sensitive to the value of λ(ΛB). This results in an almost step-function transition

from a metastable to an unstable universe when model parameters are varied.

The likelihood in Eq. (6.38) is difficult to study due to its double exponential behaviour.

In order to understand the implications of this likelihood function we will focus on − log L in

the SM. In Figure 6.3 we plot the base-10 logarithm of this quantity to again improve clarity,

thus this also can be interpreted as the logarithm of the expected number of decay events. As

we can see, even after taking two logarithms the likelihood has a steep gradient over the top

mass range 172 ≲ mt ≲ 180 GeV where the stability of the electroweak vacuum changes from

absolutely stable through to unstable.

Figure 6.3 gives an indication of the effect the vacuum stability likelihood will have on a

global scan. Although the vacuum is metastable for all top masses in the range 172 ≲ mt ≲ 178

GeV, the negative log likelihood is extremely small. On first inspection of L one could assume

that in most cases up to mt ≈ 178 GeV one could not distinguish between an absolutely stable

state and a metastable state using L alone, and this is indeed true. However, once we begin

taking logarithms, some distinction can be made between a metastable state and a stable one

4Eq. (6.37) may be expressed in different units. For example, Ref. [246] expresses the age of the Universe
in “units of the electroweak scale”, as Tu ≈ e101, where the mass of the Z boson is set as mz = 1. Similarly
Ref. [15] expresses the age in what would equivalently be called “units of the Planck scale”, but leave the original
factor of MPl in the expression for the expected number of decays; this is the style we follow.

5By a decay event we mean the decay of the Universe at our position due to a decay at some point in our
past light cone, and thus a decay of the observable Universe. Of course, more than one decay event does not
physically make sense, so all situations where k ≥ 1 are effectively equivalent – the Universe has decayed to the
true vacuum.
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Figure 6.3: The likelihood in Eq. (6.38) transformed to log10(− log(L)) as a function of the top
mass at mh = 125.66 ± 0.3 GeV (with 1σ bounds given) and αS(mZ) = 0.1184 in the SM.

for almost all top masses in the range of metastability. It is through a negative log likelihood

that such an observable will enter our likelihood analysis and thus there is some value to be

had even within the stable/metastable region of the parameter space.

Finally, it is of interest to compute the expected lifetime of the electroweak vacuum. From

Eq. (6.36) we can obtain a decay rate by dropping a factor of TU ,

r =

(

e140

MPl

)3

Λ4
Be

−SE (6.39)

such that the expected lifetime is given by τ = r−1. Converting this from natural units into

years gives
τ

yr
=

1

3.16 · 107

⎤

GeV

r

⎣⎤

ℏ

GeV s

⎣

= 2.09 · 10−32
⎤

GeV

r

⎣

. (6.40)

6.4 Perturbativity and unitarity

Vacuum instability is the result of the quartic Higgs coupling becoming negative at large scales.

In Section 6.5 I will demonstrate how this can be counteracted by a positive contribution to

the running of this parameter. However, this can result in the coupling becoming so large that
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perturbation theory breaks down. Likewise, any modifications to the SM from new physics can

cause any other coupling in the theory to become too large as well. In the worst case scenario,

the coupling becomes extremely large as it approaches a Landau pole, as demonstrated in

Section 2.3.1, at which point it becomes undefined. In this section I will briefly discuss how to

quantify this and use it as a constraint on potential models.

The eigenvalues of the scattering matrix can give a bound on the couplings, such that

unitarity (S†S = 1, where S is the scattering matrix) is conserved (see Ref. [256] for a general

prescription of such an analysis in a ϕ4 like theory). The exact upper bound for couplings

before they violate such a condition varies depending on the requirements of the study. In

most cases only an approximation is required, since once the coupling has already become

large, it will continue to rapidly increase (and may approach a Landau pole). Ref. [67] places

an upper bound on perturbative couplings by demanding that one-loop processes have a smaller

amplitude than tree-level ones. Naively, this can be approximated with the constraint ξ < 4π,

where ξ is a generic coupling adjusted by the symmetry factors for how it will appear in a

Feynman amplitude. For example, we can express the potential for the scalar singlet model

from Eq. (1.1) in terms of adjusted couplings, λ′
hS

and λ′
S as [67]

V =
1

4
λ′

hSS
2♣H♣2 +

1

4!
λ′

SS
4 (6.41)

which gives the constraint on the original couplings as λS < 2π/3 and λhS < 2π.

However, it has been shown that these kind of naive constraints can be too weak, and

that perturbation theory can break down at much lower coupling values [257]. It is difficult

to determine exactly when perturbation theory has broken down, as one requires higher order

results. In general we expect a quantity to have a smaller renormalisation scale dependence

at two-loop than at one-loop. If this renormalisation scale dependence does not reduce with

loop-order, then it is a sign perturbation theory has broken down. Fortunately such a rigorous

constraint isn’t necessarily required; in Ref. [258] a larger two-loop mass correction than the

one-loop is used as an indicator that the perturbative couplings have become too large.

An application of detailed constraints on perturbative unitarity is applied to a Georgi-

Machacek model (the SM extended by one real and one complex scalar SU(2)L triplet) in

Ref. [259]. These constraints include tree-level unitarity constraints derived from the scattering

matrix, with one of the most restrictive being that the counter-term of a coupling be no greater

than π. For a generic quartic coupling this implies an upper bound of some factor times
√
π.

In the studies presented in Section 6.5 and Chapter 7 we will focus only on perturbativity

violation (and not unitarity violation). For this constraint we use the perturbativity require-

ment that no coupling becomes larger than
√

4π. Given that this is similar to other constraints
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used in the literature, and that once a coupling is above this value it will quickly grow any-

way (at least in the models that we study), we consider this a reasonable upper bound for

perturbativity.

6.5 Vacuum stability in physical models

6.5.1 The Standard Model

The stability of the SM electroweak vacuum in the absence of new physics up to the Planck

scale has been studied extensively [50, 97, 246, 255, 260, 261] (also see references within and

[45, 46, 262–264]). As the nature of the electroweak vacuum could affect the evolution of the

Universe on a cosmological scale studies have also been made with the SM coupled to gravity

in a curved spacetime [265–267].

Examples of the most recent calculations of vacuum stability in the SM are those of Degrassi

et al. [97] and Masina [14] using three-loop RGEs [268] and two-loop threshold corrections to

the quartic Higgs coupling at the weak scale. Before these results the state of the art was two-

loop RGEs and one-loop threshold corrections at the weak scale, see Refs. [13, 247, 269–275].

The analysis I present here will use two-loop RGEs and one-loop threshold corrections, yet the

aim is not to produce the most state-of-the-art SM results, instead I am interested in validating

a versatile tool for vacuum stability analysis that can easily be extended to other models not

currently within reach of such high precision analyses. For this analysis I use FlexibleSUSY [234]

to solve the RGEs which are derived using SARAH [141, 143]. These are then used in my own

vacuum stability functions which locate the minimum of the quartic coupling, classify stability

and determine quantities such as the likelihood of decay and expected age of the Universe.

Unlike other vacuum stability studies, which may require manual calculation of complicated

RGEs, this method will enable us to easily repeat such a study for any model (supersymmetric

or not) compatible with FlexibleSUSY and SARAH. I will demonstrate this by computing the

stability of the electroweak vacuum in the scalar singlet and MDM models in Sections 6.5.2

and 6.5.3 respectively.

To understand how the problem of vacuum stability arises in the SM it is instructive to

consider the beta function for the quartic Higgs coupling. The one-loop beta function is given

by [276–278]

β
(1)
λ =12λ2 −

⎤

9

5
g2

1 + 9g2
2

⎣

λ+
9

4

⎤

3

25
g4

1 +
2

5
g2

1g
2
2 + g4

2

⎣

− 12y4
t + 12y2

t λ (6.42)
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where g1 and g2 are the SM gauge couplings and I have neglected the lepton, up-type and down-

type Yukawa couplings except for the top quark coupling yt. It is common practice to neglect

all other Yukawa couplings except for yt =
√

2mt/v as done by Masina [14]; this is reasonable

as the top coupling is two orders of magnitude larger than the other Yukawa couplings. Even

with these simplifications there is no closed form analytic solution to the one-loop beta function

in Eq. (6.42) yet numerical solutions are readily available for this and higher-loop order RGEs

for all SM parameters, with public codes available for this purpose [279]. For now we are

interested in a qualitative description simply by considering the leading order behaviour of the

one-loop RGE in Eq. (6.42) as a function of the renormalisation scale Q.

To determine how λ is affected by radiative corrections we must consider quantum processes

which involve the interaction of four Higgs particles. The tree-level process is simply four Higgs

particles interacting at a single vertex. The next order then involves diagrams with one internal

loop, of which there are many. I draw the two SM process with the greatest contributions in

Figure 6.4 (a) and (b). In (a) there are two vertices in which four Higgs particles interact, and

in (b) four vertices where a Higgs interacts with two top quarks. The dominant contributions

to the running of λ are

β
(1)
λ ≈ 12λ2 − 12y4

t + 12y2
t λ . (6.43)

From Eq. (6.43) we can understand how to place bounds on the Higgs mass for the SM to

remain perturbative. If the Higgs mass is large then λ as determined by solving the EWSB

conditions becomes too large, or non-perturbative, at increasingly lower energies. For example

if we demand that the SM be perturbative up to the Planck scale then this puts an upper bound

of approximately 180 GeV on the Higgs mass. This upper bound does not necessarily mean

the Higgs mass is unphysical above it, instead it means we either require a new theory above

the energy at which it becomes non-perturbative, or we do not have the necessary theoretical

framework to deal with the problem.

On the other hand Eq. (6.43) can give a lower bound on the Higgs mass if we require that

λ is at no energy negative below the Planck scale. Unlike the upper bound this is based on

a physical consequence of having too small a Higgs mass. If the Higgs mass, and in turn the

value of λ (at some low energy reference scale where the EWSB conditions are solved) is too

small, then the dominant term in Eq. (6.43) is the top coupling which drives the beta function

negative. For absolute stability of the electroweak vacuum (λ(Q) > 0 for all Q < MPl) this

gives a constraint of mh ≳ 130 GeV [97].

In the left panel of Figure 6.5 I show the running of λ(Q) in the SM. The regions of

metastability and instability with respect to the minimum value of λ(Q) are indicated with
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values for the top and Higgs masses are extremely close to the boundary of instability.

6.5.2 Scalar singlet dark matter

The scalar singlet model (see Section 1.2.1) provides an example of how an additional scalar

particle coupled to the Higgs field can influence the running of the quartic coupling. The beta

function for the quartic Higgs coupling in the scalar singlet model gains a contribution from loop

corrections which enables us to relax the lower bound on the Higgs mass for absolute vacuum

stability. In particular, at the one-loop level the beta function gains a positive contribution

from the loop in Figure 6.4 (c) such that [64,98]

βλ = βSM
λ + 2λ2

SH (6.44)

due to the coupling, parametrised by λhS, of the Higgs field to the scalar singlet in Eq. (1.1).

The full two-loop RGEs which differ from the SM ones are given in Appendix B.1. As Khan and

Rakshit show [103] for a minimally coupled scalar singlet, using three-loop SM beta functions

with one-loop scalar singlet corrections6, it is possible to choose values of λhS such that λ

remains positive all the way up to the Planck scale. This analysis neglects the possibility of

a second minimum forming in the S direction of the potential, which is possible when µ2
S < 0

and λhS is sufficiently large [64].

In the left panel of Figure 6.6 I show the running of the quartic Higgs coupling for λhS = 0.5

and mS = 1.3 TeV. We can see that the addition of a scalar singlet does indeed improve the

stability compared to the SM. In the right panel of Figure 6.6 I show the expected lifetime of

the electroweak vacuum from Eq. (6.40). The positive contribution from the scalar field in the

beta function, Eq. (6.44), extends the stability and metastability bounds to larger top masses,

such that the measured values for the Higgs and top mass are now positioned well within the

stable region.

I used the requirement of absolute vacuum stability to choose the benchmark point of

λhS = 0.5 and mS = 1.3 TeV. However, this point also satisfies the most recent experimental

constraints and is within one standard deviation of the maximum likelihood point located in

Ref. [5]. For the vacuum to be stabilised the portal coupling λhS must be sufficiently large,

and it turns out that a large part of the viable parameter space does not actually have an

absolutely stable electroweak vacuum. In Chapter 7 we will present a global fit and locate all

6This is to some extent inconsistent as the scalar singlet corrections should also be considered at the same
loop order as the SM corrections. If there are interesting cancellations between the singlet sector and the SM at
one-loop, then this would be lost at the higher order with such a set up. Although in this case it appears there
is no serious implications from this choice.
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in the scalar singlet model, with the measured values being well within the stable region. We

also note that although the altered running of g2 causes the quartic coupling to remain positive

for smaller values of mh, it also has the effect of preventing it reaching a Landau pole before

the Planck scale for larger values of mh.

Although the perturbative region in Figure 6.7 is extended up to larger values of mh than in

the SM this is only because we do not study the running couplings above the Planck scale. In

fact, the addition of the SU(2)L quintuplet actually results in the SM Landau pole shifting from

∼ 1040 GeV to a few orders of magnitude above the Planck scale. Therefore if we had demanded

the spectrum be perturbative to higher scales then eventually all of the allowed region would be

invalidated, while the SM would survive. However, the location of the Landau pole in the MDM

model for the measured values of mh and mt is phenomenologically interesting as it indicates

the presence of new physics much closer to the scale where gravitational physics is expected

to become relevant. Additionally the existence of a Landau pole much lower than in the SM

also creates tension for proponents of an SM that remains weakly coupled with gravity even

above the Planck scale [280] (and thus should then be renormalisable well beyond this scale).

I find with a full two-loop analysis (including Yukawa coupling evolution) a Landau pole scale

of 8.8 × 1021 GeV (with M0
pole = 9.6 TeV) which agrees well with the value of 4.0 × 1021 GeV

from Ref. [150].



7 The status of scalar singlet dark matter

7.1 Introduction

In this chapter we present a series of global fits to the scalar singlet dark matter model using

the GAMBIT global fitting package1. For these studies we assign the scalar field a charge under

either the Z2 or Z3 symmetry group to make it a stable dark matter candidate. The details of

these models and a brief review of the latest phenomenological studies is given in Section 1.2.1.

We begin with a comprehensive global fit to the Z2 model in Section 7.4, which is based

on the results presented in Ref. [5]. In this fit, in addition to the two scalar singlet parameters

we vary a total of 13 nuisance parameters characterising the dark matter halo distribution, the

most important SM masses and couplings, and the nuclear matrix elements relevant for the

calculation of direct search yields. We improve on the constraints in Refs. [75,76] by including

the most recent direct detection likelihood from LUX [285] as well as improved likelihoods

for the PandaX [286], SuperCDMS [287] and XENON100 [288] experiments, all implemented

via the DarkBit [182] interface to DDCalc. We also include IceCube limits on dark matter

annihilation to neutrinos in the core of the Sun [283, 289]. In this fit we do not compute the

RGE running of the couplings and as a result neglect the UV properties of the theory. We also

set the quartic scalar singlet coupling, λS, to zero as it has little phenomenological impact at

low energies.

In Section 7.5 we present results from a study of the UV properties of the Z2-stabilised

scalar singlet model. We repeat the global fit presented in Ref. [5] (and Section 7.4) but fix the

light quark masses and the Fermi constant as these parameters have little phenomenological

impact. Subsequently we allow λS to be free and compute a fully solved model spectrum with

RGE running up to the Planck scale. Additional constraints from electroweak vacuum stability

are included.

We further generalise the analysis of the Z2 model to a UV-scale study of Z3-stabilised scalar

singlet dark matter in Section 7.6. This symmetry group introduces new phenomenology due

to an additional cubic S coupling and the associated semi-annihilation channel. It has been

shown [102] that this semi-annihilation channel can open up regions of the parameter space that

1GAMBIT enables the user to incorporate existing software via a backend system. We used the following
external codes to produce the results presented in this chapter: Diver [6], MultiNest 3.10 [203] and GreAT [198]
(efficient sampling); FlexibleSUSY 2.0.1 [234, 235] and SARAH [141–143, 281] (renormalisation group evolution
for vacuum stability calculation); DDCalc 1.0.0 [182] (direct detection), nulike 1.0.4 [282,283] (neutrino indirect
detection), gamLike 1.0.0 [182] (gamma-ray indirect detection) and DarkSUSY 5.1.3 [284] (Boltzmann solver).

131
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would be otherwise ruled out by direct detection. However, vacuum stability considerations

limit the magnitude of the coupling responsible for this channel. Semi-annihilations can also

have some effect on indirect detection constraints. As shown in Ref. [111] semi-annihilations can

effect the injection spectrum of light particles when dark matter annihilates through a portal,

like in the Z3 scalar singlet model. Therefore, as direct and indirect detection constraints

continue to get stronger a detailed study this type of scalar singlet dark matter is indeed

relevant.

In Section 1.2.1 we describe the model and corresponding Lagrangians that we study in

this chapter. We present details of the input parameters, associated ranges, and our methods

for sampling the parameter space in Section 7.2. We give details of the physics and likelihood

functions in Section 7.3 (we also present a more in-depth discussion of vacuum stability in

Chapter 6). In Sections 7.4, 7.5 and 7.6 we present the results, and make comparisons to

previous studies in Section 7.7. Finally, we make some conclusions in Section 7.8.

The input files, samples and best-fit benchmarks for the Z2 global fit in Section 7.4 are

publicly accessible from Zenodo [290], with the equivalent available for the other fits in the

near future. The results presented in Sections 7.5 and 7.6 are, due to limited computing

resources, only preliminary and do not include all nuisance parameters. However, they are

to the best of our knowledge entirely representative of the final results which will appear in

Ref. [7].

7.2 Input parameters and sampling

7.2.1 Parameters and nuisances

For the first global fit we will consider only the direct phenomenological implications of the

scalar singlet, without considering renormalisation of the theory, running couplings or vacuum

stability. In this sense, the first global fit that we will present treats the scalar singlet as an

effective field theory at the scale of the scalar mass. In a second study, we will go on to examine

the implications of considering the scalar singlet as a UV-complete theory. We will refer to

these global fits as the fixed-scale and the UV-scale studies respectively. The input parameters

and the required ranges are necessarily different for each of these studies.

A summary of all the parameter ranges that we scan over in these fits is presented in

Tables 7.1 and 7.2. Table 7.1 gives the singlet model parameters, along with the scanning

priors that we use. We carry out two main types of scan: one over the full range of masses

from 45 GeV to 10 TeV, intended to sample the entire parameter space, and another centred on
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lower masses at and below the Higgs resonance mS ∼ mh/2, in order to obtain a more detailed

picture of this region.

Even in an effective field theory one must be able to compute perturbative expressions,

such as pole masses and loop corrected scattering cross-sections. So for the fixed-scale scans

we choose to limit the portal coupling to a value of 10. This is a very generous limit and as

such gives the reader the freedom to invoke their own choice of upper bound when interpreting

the results. For the UV-scale studies we need to demand perturbativity as part of the likeli-

hood analysis (by invalidating points deemed non-perturbative). Therefore we choose a more

conservative value on the upper bound for dimensionless couplings of
√

4π. As discussed in

Section 6.4 this is roughly the same as the choice made in other studies [67,259].

In addition to the scalar singlet parameters, we also consider the effects of varying a number

of SM, astrophysical and nuclear parameters within their allowed experimental uncertainties.

Table 7.2 gives the full ranges of all the nuisance parameters we consider, along with their

central values. We allow for ±3σ excursions from the best estimates of the nuclear couplings.

For the local dark matter density, we scan an asymmetric range about the central value,

reflecting the log-normal likelihood that we apply to this parameter (Section 7.3.6). Detailed

references for the central values and uncertainties of these parameters can be found in Ref. [182].

The central values of the up and down quark masses come from the 2014 edition of the

PDG review [291]; we allow these parameters to vary by ±20% in our fits, so as to encompass

the approximate 3σ range of correlated uncertainties associated with the mass ratio likelihoods

implemented in PrecisionBit [4]. The central value and ±3σ scan range for the top quark pole

mass come from Ref. [292], and for all other SM nuisance parameters from Ref. [291].

Given the large impact that the Higgs mass can have on the phenomenology of this model,

we scan an extended range for this parameter in the fixed-scale scan where the input parameter

is directly interpreted as the physical mass. The allowed range for mh covers more than

±4σ around the central value quoted in the 2015 update to the PDG review [293] (mh =

125.09±0.24 GeV; see Section 7.3.6). In the UV study, where we include renormalisation of the

input masses, the Higgs pole mass is traded for the MS mass. The physical pole mass is then

computed from the input parameters (see discussion in Section 7.3.1), so we must provide a

large range for this parameter as this relationship is affected by radiative corrections from the

scalar singlet mass. Therefore, the relationship between mMS
h and the pole mass is not constant

throughout the parameter space. In both cases the resultant value for mh is constrained by

the same likelihood function, described in Section 7.3.6.

We include the local dark matter density and nuclear matrix elements as nuisance param-
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Table 7.1: Scalar singlet model parameters varied in our fits, along with their associated ranges
and prior types. The MS masses are used in the UV studies where we compute the pole mass,
mS, for each point. For the fixed-scale global fit mS is input directly as the pole mass.

Parameter Minimum Maximum Prior

λhS 10−4 10 log
λS 10−4 10 log

mS (full-range scan) 45 GeV 10 TeV log

mS (low-mass scan) 45 GeV 70 GeV flat

mMS
S (full-range scan) 45 GeV 10 TeV log

mMS
S (low-mass scan) 45 GeV 70 GeV flat

µ3 (Z3 model only) 0 GeV 4 TeV flat

eters because of their impacts on direct detection and capture of singlet particles by the Sun.

The strong coupling, Higgs VEV (determined by GF ), Higgs mass and quark masses all en-

ter into the cross-sections for annihilation and/or scattering of S [75]. The electromagnetic

coupling does not impact our fit beyond its own nuisance likelihood, but has a small effect on

renormalisation of other parameters and is therefore most important in the study of vacuum

stability. We assign flat priors to all nuisance parameters in Table 7.2, as they are all sufficiently

well constrained that their priors are effectively irrelevant.

We performed the fixed-scale global fit as a standalone study first [5] and included 13 nui-

sance parameters. These were all parameters in Table 7.2 except for mMS
h (using mh instead).

From this first fit we determined that variation of the light quark masses (bottom, charm,

strange, down and up) and the Fermi coupling did not have any significant effect on the re-

sults. So in total we have a 15-dimensional parameter space for the fixed-scale scans of the

Z2 model and 10 and 11 parameters for the (preliminary) UV scans of the Z2 and Z3 models

respectively.

The reduction in the total number of nuisance parameters in the UV-scale study is also

intended to counter-act the increased computational requirements for this global fit. The

likelihood is significantly more demanding of computer resources due to the need to solve the

RGEs and compute pole masses, and as a result takes longer to compute. We have also replaced

the relatively small prior on the Higgs pole mass with a much less constrained MS mass in order

to effectively sample around observed Higgs mass at all points in the scalar singlet parameter

space. Therefore, although we have less nuisance parameters in these global fits, they actually

require more computational resources than the fixed-scale study.
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Table 7.2: Names and ranges of SM, halo and nuclear nuisance parameters that we vary
simultaneously with scalar singlet parameters in our fits. The columns Fixed-scale and UV-
scale indicate if the nuisance parameter was included (✓) or not included (×) in the fixed-scale
and UV-scale studies respectively. We assign a flat prior to all these parameters.

Parameter Value(±Range) Fixed-scale UV-scale

Local dark matter density ρ0 0.2–0.8 GeV cm−3 ✓ ✓

Nuclear matrix el. (strange) σs 43(24) MeV ✓ ✓

Nuclear matrix el. (up + down) σl 58(27) MeV ✓ ✓

Strong coupling αMS
s (mZ) 0.1185(18) ✓ ✓

Electromagnetic coupling 1/αMS(mZ) 127.940(42) ✓ ✓

Fermi coupling × 105 GF,5 1.1663787(18) ✓ ×
Higgs pole mass mh 124.1–127.3 GeV ✓ ×
Higgs MS mass mMS

h 130(50) GeV × ✓

Top pole mass mt 173.34(2.28) GeV ✓ ✓

Bottom quark mass mMS
b (mb) 4.18(9) GeV ✓ ×

Charm quark mass mMS
c (mc) 1.275(75) GeV ✓ ×

Strange quark mass mMS
s (2 GeV) 95(15) MeV ✓ ×

Down quark mass mMS
d (2 GeV) 4.80(96) MeV ✓ ×

Up quark mass mMS
u (2 GeV) 2.30(46) MeV ✓ ×

7.2.2 Scanning procedure

Although many of the directions in the parameter space are well constrained, efficient sampling

still requires sophisticated scanning algorithms. We explore the parameter space primarily

with two different scanning packages interfaced via ScannerBit: a differential evolution sampler

Diver, and an ensemble Markov Chain Monte Carlo (MCMC) known as T-Walk [6]. The use

of these two packages enables both a frequentist (through efficient optimisation) and Bayesian

(through posterior sampling) statistical analysis and thus both serve a purpose in this study.

These algorithms are also particularly well suited for large multimodal and multidimensional

distributions.

T-Walk allows efficient and accurate calculation of the Bayesian posterior distribution for

the target model. The package can also be used for frequentist studies if the sampling density

is amplified by a judicious choice of run parameters. However, T-Walk is far less efficient at

sampling the profile likelihood in high-dimensional spaces than Diver [6]. Because we vary up

to 15 parameters in total, we use Diver to produce high-quality profile likelihoods. Having

identified all likelihood modes, and therefore all possible locations that might meaningfully

contribute to the posterior, we then use T-Walk to produce posterior distributions, checking

that it does not fail to locate any of the modes identified by Diver.

For the fixed-scale global fit we also combine our results with those from a more traditional
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MCMC, GreAT, and the nested sampling algorithm MultiNest [203]. These are also interfaced

to ScannerBit [6]. Although it is not typically necessary to combine results from four different

algorithms, here we demonstrate the power of the GAMBIT package, which allows us to use a

range of scanning procedures on the same composite likelihood, in order to produce the most

robust results possible.

As discussed in Section 1.2.1, the scalar singlet parameter space features a viable region

at mS ≈ mh/2. In this region, the annihilation of singlet dark matter to SM particles via

s-channel Higgs exchange is resonantly enhanced, and a lower portal coupling is required to

achieve the observed relic density. However, obtaining detailed samples of this region while also

sampling over a large mass range is difficult, even when using a logarithmic prior on the mass.

To properly sample this region, we run a second scan with each sampler, using a flat prior

over the range mS ∈ [45, 70] GeV. For the fixed-scale global fit we also carry out an additional

specially focused low-mass scan with Diver in the “neck” region of the resonance, in order to

obtain well-sampled contours in the most localised part of the allowed parameter space. We

do this by excluding all points outside the range mS ∈ [61.8, 63.1] GeV.

For the UV-scale studies of the Z2 and Z3 models we perform identical scans with and with-

out the requirement that the vacuum be absolutely stable. With this additional requirement,

any point which has a metastable vacuum (such as the SM) is ruled out completely. Although

such models are not physically invalid, the ability to make the electroweak vacuum absolutely

stable is phenomenologically appealing and often cited as an advantage of this model, therefore

we are interested in investigating the effect such a requirement has on the parameter space. We

do not perform a scan over the low mass range with this additional constraint as it is almost

entirely ruled out (except for the very top of the neck region). For these studies we only use the

Diver package, but complete results including posterior sampling with T-Walk will be available

in Ref. [7].

The convergence criteria, population size and chain details are controlled by various settings

for each sampler. The settings that we use for the global fits in these studies are presented

in Table 7.3. We chose these settings after extensive testing [6], to give the most stringent

convergence and best exploration possible with each scanner and region. To a certain extent,

some of these settings are overkill for the problem at hand, and the same physical inference

could be achieved with less samples. For the fixed-scale study, the scans that we present here

took only 26 000 core hours in total to compute, and the scan that dominates most of the

contours (the full-range Diver scan) took just 3 hr on 10 × 24-core nodes, i.e. around 700

core hr. The UV-scale fits were run on a different computing set up, using 200 processes for
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Table 7.3: Parameters of each sampler for carrying out global fits of the scalar singlet model
in this study.

Scanner Parameter Full range Low mass

MultiNest nlive 20,000 20,000
tol 10−4 10−5

Diver NP 50,000 50,000
convthresh 10−4 10−5

T-Walk chain_number 512 512
sqrtR − 1 0.01 0.01

GreAT nTrialLists 17 17
nTrials 20,000 10,000

approximately 70 hours in total, or about 14,000 core hours. Compared to the time required

to compute fits that include direct LHC simulations [160,161,183], the additional sampling we

do here, particularly in the fixed-scale fits, costs practically nothing – and noticeably improves

the resolution of our results. We refer the reader to Ref. [6] for further details of the scanners,

their settings and underlying algorithms.

The profile likelihoods that we present in Section 7.4 for the fixed-scale study are based on

the combination of all samples from all scans, which contain 5.7×107 valid samples altogether.

The posteriors that we show come exclusively from the T-Walk scans. For the UV-scale studies

in Sections 7.5 and 7.6 we use a total of 2.6 × 107 and 3.5 × 107 samples for the Z2 and Z3

models respectively.

We compute and plot profile likelihoods and posteriors using pippi [294], obtaining profile

likelihoods by maximising the log-likelihood in parameter bins over all other parameters not

shown in a given plot, and posteriors by integrating the posterior density over the parameters

not shown in each plot. We compute confidence regions and intervals by determining the appro-

priate iso-likelihood contour relative the best-fit likelihood for one or two degrees of freedom,

corresponding to one and two dimensional plots, respectively. We compute Bayesian credible

regions and intervals as parameter ranges containing the relevant posterior mass according to

the maximum posterior density requirement. Further details can be found in Ref. [294].

7.3 Physics framework & likelihood details

7.3.1 The renormalised model spectrum

In order to compute the running of the couplings in the UV-scale global fits we need a con-

sistently renormalised quantum field theory. In the case of the scalar singlet model, where

the scalar field can have a mass much heavier than the SM masses, we also need to per-
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form appropriate matching between effective field theories. For this purpose we use Flexi-

bleSUSY 2.0.1 [234, 235] via the SpecBit [4] interface from GAMBIT [16]. FlexibleSUSY uses

SARAH [140–143] and parts of SOFTSUSY [230,233], along with higher order corrections from

various sources [97, 204, 232, 255, 295–299]. SpecBit can then evolve the MS parameters to

higher scales, using the two-loop RGEs of FlexibleSUSY, in order to test vacuum stability and

perturbativity.

The value of the quartic Higgs coupling is of particular interest in this study, as the running

of this parameter determines the stability of the electroweak vacuum. The value of this coupling

at high energy scales (such as MPl) is sensitive to the initial value which is usually set near

the electroweak scale where the theory is defined. This initial value is determined by the

physical masses of the theory and the other dimensionless couplings. So it is imperative that a

consistent scheme is used to determine this initial value. Therefore we use the HiggsEFT mode

of FlexibleSUSY to achieve a consistent matching between the SM and the scalar singlet model,

along with full one-loop pole masses and two-loop RGE running.

In Section 7.2 we described the input parameters but not the renormalisation scale at which

they are defined. Since the MS masses and couplings are scale dependent quantities this is an

important consideration. When using the HiggsEFT framework within FlexibleSUSY we must

match the SM to the scalar singlet model at the scale of new physics, which in this case is mS

(unless mS < mt in which case we use mt). Since the physical pole mass mS is an output of the

spectrum calculation, we will use mMS
S ∼ mS as the scale of new physics. It is then natural to

define the MS scalar mass, mMS
S , and the couplings λhS, λS (and in the Z3 case µ3 as well) at

this scale. Because of the way FlexibleSUSY works, this is also the scale where all pole masses

are computed and the EWSB conditions are solved. Therefore, we must also input the MS

Higgs mass at this scale (choosing a fixed value near the electroweak scale is more natural for

this parameter yet because it must be run to mMS
S before the pole mass is computed, this

adds an additional level of complexity and would require increasing our already large prior on

mMS
h ).2

With the model spectrum generated using FlexibleSUSY, the Higgs pole mass is calculated

using full one-loop self-energies obtained from SARAH [141, 143] along with partial two-loop

corrections. Thus we obtain the Higgs pole mass as an output rather than an input parameter,

and scan the parameter space by varying the input MS mass mMS
h . Since the value of the

scalar singlet mass can have a significant impact on the relationship between mMS
h (mMS

S ) and

mh, we allow mMS
h to vary from 80-180 GeV. This is sufficient to provide a suitable value of

2Note that with this set up our model definitions for SingletDM_running and Higgs_running (the model
names used within GAMBIT) are different to that given in [16] where the input scale is mZ .
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mMS
h such that a 125 GeV pole mass can be achieved throughout the scalar singlet parameter

space, with all other points penalised using a Gaussian likelihood centred on the experimentally

measured Higgs mass of mh = 125.09 ± 0.24 GeV based on the 2015 PDG result [293].

7.3.2 Vacuum stability and perturbativity

In Section 6.2 we classified the electroweak vacuum as either absolutely stable, metastable

or unstable and defined conditions for each case. To determine which class of stability the

electroweak vacuum is in we use the likelihood function in Eq. (6.38), which is based on a cal-

culation of quantum mechanical tunnelling through an arbitrary potential barrier. See Section

?? for the details and derivation of this function.

Since the dominant contribution from the scalar singlet model to the running of λ is always

positive the electroweak vacuum can only become more stable than it is in the SM. As the

likelihood of vacuum decay even in the metastable SM is extremely small, the effect of going

from a metastable vacuum to an absolutely stable one has a negligible impact on the composite

likelihood. However, since the scenario of absolute stability is phenomenologically appealing,

we repeat the global fit with the strict condition of invalidating all points which are metastable.

In the Z3 model we have an additional constraint on the µ3 parameter. If µ3 is large

enough it is also possible to form Z3-breaking minima which would be degenerate with, or

more energetically favourable, than the SM vacuum. This can be avoided by placing an upper

bound on the µ3 parameter. We take the constraint given in Ref. [102] for an absolutely stable

SM vacuum as an upper limit on µ3

maxµ3 = 2
√

λSmS . (7.1)

This constraint can be relaxed slightly by allowing for the possibility of a Z3-breaking minimum

with a lower potential energy than the SM vacuum, but an SM vacuum with a decay half-life

longer than the age of the Universe. See Ref. [102] for this calculation. We do not consider this

possibility as part of our interest in studying scalar singlet dark matter, particularly in this

global fit, is the appeal of removing metastability from the SM. Therefore, adding additional

metastability is not in our immediate interests.

We will also require that the scalar singlet couplings remain positive, such that the scalar

singlet potential is bounded from below and we can isolate our study of the electroweak vacuum

to the Higgs dimension only. This analysis neglects the possibility of a second minimum forming

in the S direction of the potential, which is possible when µ2
S < 0 and λhS is sufficiently

large [64]. However, we will not consider such an effect in this study. Due to the nature of the
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RGEs for the dimensionless scalar couplings, λhS and λS, these couplings only grow with scale.

However, when mS is less than mt it is also possible to achieve negative couplings, λhS and λS,

when the spectrum is run down from the top mass. If this does occur then we invalidate the

points such that the scalar potential remains bounded from below.

We let ΛP denote the scale where the dimensionless couplings become larger than our upper

bound for perturbativity of
√

4π ≈ 3.54. If ΛP < mS then we invalidate the point, otherwise

we record the scale ΛP for later analysis.

There is an important caveat to our definition of vacuum stability and how we apply

this as a constraint on the parameter space. In many cases, increasing the values of the

dimensionless couplings in the scalar singlet sector (λhS and λS), results in the theory becoming

non-perturbative at energy scales as low as the electroweak scale. Since perturbation theory is

no longer trusted in this case, we cannot compute the running of the quartic Higgs coupling to

the typical scales of instability, so our analysis does not encounter a minimum and thus renders

the electroweak vacuum “stable”. Thus, such a point would pass the test for stability. This

caveat is acceptable, because such a model would be severely penalised for the extremely low

scale at which perturbativity is broken, as given by ΛP . Yet it is important to consider the

order in which we apply these constraints when interpreting the results in Sections 7.5 and 7.6.

With this set up our analysis is similar to that in Ref. [102]. Although we do not consider

negative portal couplings in the rest of this study, we do so here in order to make a comparison

with Ref. [102] and thus validate our computational method. In Figure 7.1 we plot the logarithm

(base 10) of the scale at which either perturbativity or the additional constraint 2
√
λλS +λhS >

0 (required for negative λhS to maintain a scalar potential bounded from below [102]), is violated

in the Z3 model. The latter is responsible for the saw-tooth shape of the contours for negative

λhS and immediately rules out the black region before any running is performed. This gives

a near identical result to that presented in Figure 2 of Ref. [102], so we can be confident that

our RGE running and spectrum generation is consistent with this previous work.

7.3.3 Relic density

In the early universe the scalar dark matter would have been in thermal equilibrium with the

SM particles. That is, the annihilation processes in the top two rows of Figure 7.2 would have

occurred at equal rates in both directions. As the Universe expanded and cooled the density of

the scalar fields reduced and these forward annihilation reactions became extremely rare. As a

result the remaining dark matter became frozen out of thermal equilibrium. We compute the
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Figure 7.2: The diagrams for annihilation, semi-annihilation, scalar-nucleon scattering and
Higgs invisible decays in the Z3 scalar singlet model. Here N denotes nucleons, f are SM
fermions and V SM gauge bosons. Except for the semi-annihilation processes, the equivalent
diagrams apply in the Z2 scenario but with S∗ replaced with S.

is made up of equal amounts of both S∗ and S. This is because each annihilation processes

requires both an S and S∗, and the semi-annihilation process can occur both via SS → S∗h and

S∗S∗ → Sh with equal probability. So we do not need to track the individual densities of the

particles, and can thus simplify the analysis. Therefore, compared with the case of Majorana

dark matter in Eq. (7.2) we include a factor of 1/2 and treat S and S∗ as the same particle.
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Including semi-annihilation, this gives [102]

dnS

dt
+ 3HnS = − ⟨σvrel⟩

(

n2
S − n2

S,eq

⎡

− 1

2
⟨σvrel⟩SS→hS

(

n2
S − nSnS,eq

⎡

,

(7.3)

where ⟨σvrel⟩ is the thermally averaged self-annihilation cross-section without semi-annihilations,

and ⟨σvrel⟩SS→hS is the equivalent for the semi-annihilation channel. We define a semi-

annihilation fraction

α =
1

2

⟨σvrel⟩SS→hS

⟨σvrel⟩ + 1
2⟨σvrel⟩SS→hS

(7.4)

which we will record for each sampled point.

For the fixed-scale study of the Z2 model we obtain thermally-averaged annihilation cross-

sections using analytic expressions given in Ref. [75] and solve Eq. (7.2) numerically using the

Boltzmann solver of DarkSUSY [284] in order to obtain the relic density, ΩSh
2. For the UV-scale

study of the Z2 and Z3 models, which were done concurrently, we adopt a different approach

because an analysis of semi-annihilations is required in the Z3 case. We use micrOMEGAs to

compute the ΩSh
2 with the settings fast = true and Beps =1e-5. This is computationally slower,

yet is able to deal with the case of semi-annihilations.

We implement the relic density likelihood as an upper limit only, permitting models where

the thermal abundance makes S a fraction of dark matter. Comparing with the relic abun-

dance measured by Planck [83] (ΩDMh
2 = 0.1188 ± 0.0010, at 1σ), we compute a marginalised

Gaussian upper limit likelihood as described in Sec 8.3.4 of Ref. [16]. Models that predict less

than the measured relic density are assigned a likelihood contribution equal to that assigned

to models that predict the observed value exactly. Models predicting more than the measured

relic density are penalised according to a Gaussian function centred on the observed value.

We adopt the DarkBit default value of 5% for the theoretical uncertainty on the relic density

prediction, adding it in quadrature to the experimental uncertainty on the observed value.

For models that under-populate the observed relic density, we rescale all direct and indirect

signals to account for the fraction of dark matter that is detectable using the properties of the

S boson. This is internally consistent from the point of view of the model, and conservative in

the sense that it suppresses direct and indirect signals in regions where the thermal abundance

is less than the Planck measured value.

7.3.4 Direct and indirect detection

Scalar singlet dark matter is strongly constrained by direct detection experiments. These ex-

periments place limits on the dark matter-nucleon scattering cross-section. The corresponding
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tree-level processes are represented in the bottom left diagrams of Figure 7.2. In the case of

scalar singlet dark matter this cross-section is parameterised by the portal coupling, λhS, and

the scalar mass, mS.

We apply direct detection constraints using the DarkBit interface to the DDCalc [182] im-

plementations of various experimental limits. The dominant limits applied in this study come

from the LUX [82,285] and PandaX [286] experiments, with other limits also imposed based on

SuperCDMS [287] and XENON100 [288]. For the UV studies we also included the newly avail-

able results from the XENON1T experiment [32] which were not available when the fixed-scale

scans were presented in Ref. [5].

For a given experiment, the likelihood for observing N direct detection events, given a

predicted number of signal events Np, is given by the Poisson likelihood

L(N ♣Np) =
(b+Np)N e−(b+Np)

N !
(7.5)

where b is the expected number of background events in the analysis region. We model detector

efficiency and acceptance effects by interpolating between values in pre-calculated tables con-

tained in DDCalc. The likelihood in Eq. (7.5) is then obtained by recasting the experimental

results contained in DDCalc [182] for each experiment.

Constraints can also be placed on the dark matter annihilation cross-section by searching

for anomalous gamma-ray emission in dwarf spheroidal galaxies. As such emission has not

been detected we can infer limits on the annihilation cross-section. The effect of the particle

physics model on the flux of gamma rays is quantified with the factor

Φi =
∑

j

⟨σv⟩0,j

8πm2
S

∫ Emax,i

Emin,i

dE
dNγ,j

dE
, (7.6)

for an energy bin of width ∆Ei ≡ Emax,i −Emin,i, where dNγ,j/dE is the differential gamma-ray

multiplicity for single annihilations into final state j, and ⟨σv⟩0,j ≡ σvj ♣v→0 ≡ σvj ♣s→4m2
S

is the

zero-velocity limit of the partial annihilation cross-section into final state j.

We use a combination of analytic expressions from Ref. [75] and micrOMEGAs to compute

the annihilation and semi-annihilation cross-sections for direct and indirect detection. The

zero temperature annihilation cross-section for scalar singlet particles to SM states, ⟨σv⟩0, is

given by the processes (at tree-level) in the top two rows of Figure 7.2 for the Z3 model, and

equivalently the Z2 model with S = S∗. For the Z2 model the S particle is Majorana and thus

the calculation of ⟨σv⟩0 would include a symmetry factor of 1/2! to avoid double counting initial

states. In the Z3 model annihilation requires both an S and a S∗ so there is no such symmetry

factor. Consequently, the cross-section must be a factor of two larger for the same processes in
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the Z3 model, with the rest of the calculation being identical. With this consideration we can

reuse the results for the annihilation rates in the Z2 model for the Z3 model.

However we must also consider the number density. In the Z2 model the annihilation rate

is proportional to ⟨σv⟩0n
2
S . Because an annihilation in the Z3 case requires both S and S∗,

the rate is proportional to ⟨σv⟩0nSnS∗ = ⟨σv⟩0n
2
total/4 since the relic density is made up of

equal parts S and S∗. Therefore, using the same computational framework as the Z2 model

we can compute annihilation rates in the Z3 model if we rescale by a factor of two to account

for the symmetry factor, and a factor of 1/4 to account for the number density. The effective

cross-sections for annihilation to SM final states in the Z3 model are therefore a factor of two

smaller than in the Z2 model. We compute these by rescaling the Z2 cross-sections down by a

factor of two. We obtain the semi-annihilation cross-section directly from micrOMEGAs, with

there being no equivalent in the Z2 model.

With the necessary cross-section computed we then obtain the predicted spectrum dNγ/dE

for each model point by using a Monte-Carlo showering simulation, detailed in Ref. [182]. This

is then used to compute a combined likelihood for all the dwarf spheroidals in the Fermi-LAT

Pass 8 analysis of the six-year dataset [78]. The details of this likelihood are given in Ref. [5].

The dark matter-nucleon cross-section can also be constrained by the neutrino indirect

detection constraints from the IceCube search for annihilation in the Sun [289, 301]. The 79-

string results are implemented in our composite likelihood using the DarkBit interface to the

nulike package [282, 283]. We obtain the predicted neutrino spectrum that would be observed

at the Earth using WimpSim [302] yield tables contained in DarkSUSY [284]. WimpSim uses

PYTHIA 6.400 [303] to perform an event-based full three-flavour Monte Carlo simulation of

dark matter annihilation in the Sun, followed by a model of neutrino propagation to the Earth,

including effects of neutrino oscillations and interactions. Although neutrino indirect detection

places stronger bounds on spin-dependent scattering cross-sections, which the scalar singlet

model does not have, it can still place weak bounds on the spin-independent cross-sections.

Indeed this constraint provides limits stronger than SuperCDMS and almost as strong as

XENON100 direct detection limits.

7.3.5 Higgs invisible width

If mS < mh/2 then the decay channels h → SS in the Z2 or h → SS∗ in the Z3 model are

kinematically allowed. The decay products from this process would be entirely invisible at a

hadron collider, so they would be identified as a missing contribution to the total decay width.

We use a tree-level result for the decay of the Higgs to scalar fields. The corresponding diagram
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is given in the bottom left of Figure 7.2. For a model with a Z3 charged scalar the decay width

of the Higgs to invisible final states is

ΓZ3

h→SS∗ =
λ2

hS
v2

0

16πmh

(

1 − 4m2
S/m

2
h

⎡1/2
(7.7)

where v0 is the Higgs VEV. In the Z2 model the final states are identical so we must include a

symmetry factor of 1/2 to avoid double counting,

ΓZ2

h→SS
=

1

2
ΓZ3

h→SS∗ . (7.8)

From Eqs. (7.7) and (7.8) we can infer that constraints on the Higgs invisible width are able

to exclude regions of the parameter space at large λhS and, due to conservation of energy, at

sufficiently small values of mS.

For the case of SM-like couplings, the 95% confidence level upper limit on the Higgs invisible

width from LHC and Tevatron data is presently at the level of 19% [79]. We use the DecayBit [4]

implementation of the complete invisible Higgs likelihood, based on an interpolation of Figure

8 of Ref. [79]. This gives a constraint on the mS < mh/2 region of the scalar singlet parameter

space for portal couplings that would produce invisible decay widths identifiable with the

current experimental limits.

7.3.6 Additional likelihoods

We also implement simple likelihoods for the well-constrained nuisance parameters via Preci-

sionBit [4]. For the Higgs mass, the top quark mass and the strong coupling we use Gaussian

likelihoods based on experimental results. In the fixed-scale study of the Z2 model, we constrain

the strong coupling with a likelihood based on the measurement αs(mZ) = 0.1185±0.0005 (MS

scheme), as obtained from lattice QCD [291]. In the UV-scale studies we use the updated value

of αs(mZ) = 0.1181±0.0011 from Ref. [236]. For the Higgs mass we use mh = 125.09±0.24 GeV

and for the top quark mt = 173.34 ± 0.76 GeV, both based on the 2015 PDG result [293].

Finally, we implement a likelihood for the local dark matter density with a central value of

ρ̄0 = 0.4 GeV cm−3 (e.g. [304]). We use a log-normal distribution for the likelihood of ρ0, with

an uncertainty of σρ0
= 0.15 GeV cm−3,

Lρ0
=

1√
2πσ′

ρ0
ρ0

exp

(

− ln(ρ0/ρ̄0)2

2σ′2
ρ0

)

, (7.9)

where σ′
ρ0

= ln(1 + σρ0
/ρ0). More details can be found in Ref. [182].
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Figure 7.3: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters
λhS and mS. Contour lines mark out the 1σ and 2σ confidence regions. The left panel shows the
resonance region at low singlet mass, whereas the right panel shows the full parameter range
scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of
the allowed regions corresponding to solutions where S constitutes 100% of dark matter are
indicated in orange. Figure from Ref. [5].

7.4 The status of the low energy Z2 model

7.4.1 Profile likelihoods

The results for our 15-dimensional fixed-scale study of the Z2 model are presented as two-

dimensional profile likelihoods with respect to the scalar mass and portal coupling in Figure

7.3, and in terms of some key observables in Figures 7.4 and 7.5. The one-dimensional profile

likelihoods for each parameter are shown in red in Figure 7.6.

The viable regions of the parameter space agree well with those identified in the most recent

comprehensive studies [75,76]. We find that the low mass resonance region, a well-known feature

from previous studies, is still allowed. In this region the dominant annihilation channel is to a

bottom quark pair via s-channel Higgs exchange. However, it is heavily constrained by direct

detection from lower masses, indirect detection from higher masses, Higgs invisible width from

above and the relic density from below. There also exists a narrow “neck” region directly on

the resonance, which is constrained by the Higgs invisible width from lower masses and direct

detection from higher masses.. The width of this region is set by a number of things:

1. the actual separation between the areas allowed by the invisible width and direct detection

constraints, which press in from mS < mh/2 and mS > mh/2 respectively,
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Figure 7.5: Profile likelihoods of nuclear scattering (left) and annihilation (right) cross-sections
for the scalar singlet model, scaled for the singlet relic abundance and plotted as a function
of the singlet mass. Here we rescale the nuclear and annihilation scattering cross-sections
by f ≡ ΩS/ΩDM and f2, in line with the linear and quadratic dependence, respectively, of
scattering and annihilation rates on the dark matter density. Contour lines mark out the 1σ
and 2σ confidence regions. The best-fit (maximum likelihood) point is indicated with a white
star. Figure from Ref. [5].

also slightly enhanced by additional λ3
hS

and λ4
hS

terms in ⟨σv⟩0,hh, which are responsible for

the “kink” seen in the border of the grey regions at mS ∼ 600 GeV in the left and right panels

of Figure 7.4.

By using the relic density as an upper limit, all points for which ΩSh
2 ≤ ΩDMh

2 are assigned

a null log-likelihood contribution and treated the same as those with ΩSh
2 = ΩDMh

2. However,

by consistently rescaling the local dark matter density as well as that in dwarf spheroidal

galaxies, the direct and indirect detection likelihoods are not flat within this allowed region.

In contrast to overlaid exclusion plot studies, like the example in the left panel of Figure 1.2,

we gain additional information with some points favoured more than others. In addition, with

this self-consistent rescaling of the predicted relic density, the excluded areas do not follow the

familiar curve that readers may be familiar with. This can be seen in the first two panels of

Figure 7.4. This rescaling is clear when we present the same two-dimensional profile likelihood

with respect to cross-sections rescaled by the appropriate power of ΩS/ΩDM in Figure 7.5,

together with the experimental constraints from Fermi-LAT, LUX and PandaX.

Were we to instead restrict our fits to only those models that reproduce all of the dark

matter via thermal production to within the Planck uncertainties, we would be left with a

narrow band along a small number of edges of the allowed regions we have found. These edges
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are indicated with orange annotations in Figures 7.3 and 7.4. At high singlet masses, the

value of the late-time thermal cross-section corresponding to this strip is equal to the canonical

‘thermal’ scale of 10−26 cm3 s−1. At low masses, this strip runs along the lower edge of the

resonance “triangle” only, as indirect detection rules out models with ΩSh
2 = 0.119 near the

vertical edge (at mS = 62 GeV).

In Figure 7.4, we also show in grey the regions corresponding to Higgs-portal couplings

above our maximum considered value, λhS = 10. This gives an indication of how this prior

affects the preferred regions with respect to other quantities. It is of note that for large values

of the scalar mass, this λhS = 10 upper limit has an important constraining role. For these

large coupling values the annihilation cross-section is so high, and the relic density so low, that

constraints from direct and indirect signals are essentially absent. Therefore, it is certainly

worthwhile to perform a proper perturbative study to investigate the effect of a more robust

constraint on the magnitude of the portal coupling.

7.4.2 Best-fit point

Our best-fit point is located within the low-mass resonance region, at λhS = 6.5 × 10−4,

mS = 62.51 GeV. This point has a combined log-likelihood of log(L) = 4.5664, shown broken

down into its various likelihood components in the second column of Table 7.4. To put this into

context, we also provide the corresponding likelihood components of a hypothetical ‘ideal’ fit,

which reproduces positive measurements exactly, and has likelihood equal to the background-

only value for those observables with only a limit. The overall combined ideal likelihood is

log(L) = 4.673, a difference of ∆ ln L = 0.107 with respect to our best-fit. The best-fit above

the resonance is at λhS = 9.9, mS = 132.5 GeV, with log(L) = 4.540, ∆ ln L = 0.133.

Interpreting ∆ ln L defined this way is somewhat fraught, as we do not know its distribution

under the hypothesis that the best-fit is correct. However, its definition is almost identical to

half the “likelihood χ2” of Baker & Cousins [305], which is known to follow a χ2 distribution

in the asymptotic limit. Our ∆ ln L differs from half the likelihood χ2 only in that some of

the components of the ideal likelihood come from the likelihood of a pure-background model,

rather than from setting all predictions to their observed values. Assuming that 2∆ ln L follows

a χ2 distribution, estimating the effective number of degrees of freedom would still be difficult,

4Note that the likelihoods have dimension of one over the dimensions of the data. For mass likelihoods,
the dimension is GeV−1. The local dark matter density likelihood has dimensions of GeV−1 cm−3, the Higgs
invisible width likelihood has dimensions of [width]−1 =GeV−1. The Fermi coupling likelihood has dimensions
of GeV2. The direct detection likelihoods, Fermi-LAT likelihood and the vacuum stability likelihood are all
dimensionless since in these cases the “data” are counts. The relic density, the electromagnetic and strong
coupling likelihoods are dimensionless since these quantities are dimensionless. Finally, the IceCube neutrino
likelihood has dimensions of degrees−ntot where ntot = 2990 is the number of events used in the analysis.
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as our likelihoods include many upper limits and Poisson terms, some of which have already

been conditioned on the background expectation, and some of which have not. The difference

between the ideal and the best-fit likelihood does nonetheless give some indication of the degree

to which the singlet dark matter model can simultaneously explain all data in a consistent way,

and how much worse it does than the ideal model. In this sense, it gives information similar in

character to the modified p-value method known as CLs [306–308], which was explicitly designed

for excluding models that gave poorer fits than the background model, by conditioning on the

background. Were one to approximate the distribution of 2∆ ln L as χ2 with e.g. 1–2 effective

degrees of freedom, this would correspond to a rough p value of between 0.6 and 0.9 in both

the resonance and the high-mass region – a perfectly acceptable fit.

Next we consider parameter combinations where the singlet constitutes the entire observed

relic density of dark matter, by restricting discussion to points with ΩSh
2 within 1σ of the

Planck value ΩDMh
2 = 0.1188 ± 0.006 (the uncertainty includes theoretical and observational

contributions added in quadrature). In this case, the best-fit occurs at the bottom of the

resonance, at λhS = 2.9 × 10−4, mS = 62.27 GeV. This point has log(L) = 4.431, which

translates to ∆ ln L = 0.242 compared the ideal model. In the high-mass region, the best-fit

point able to reproduce the entire observed relic density is at λhS = 3.1, mS = 9.79 TeV, and

has log(L) = 4.311 (∆ ln L = 0.362). If we were to approximate the distribution of 2∆ ln L as

χ2 with 1–2 degrees of freedom, this would correspond to p values of between 0.5 and 0.8 for the

resonance point, and between 0.4 and 0.7 for the high-mass point. Again, these would suggest

that the fit is perfectly reasonable. This indicates that there is no significant preference from

data for scalar singlets to make up either all or only a fraction of the observed dark matter.

The four best-fit points and the corresponding relic densities are presented in Table 7.6.

7.4.3 Bayesian posteriors

By using multiple scanning algorithms in our fits, we are also able to consider marginalised

posterior distributions for the singlet parameters. In Figure 7.6, in blue we also plot one-

dimensional marginalised posteriors for all parameters, from our full-range posterior scan with

the T-Walk sampler.5 The one-dimensional posterior for mS shows that although the full-range

scan has managed to detect the resonance region, this area has been heavily penalised by its

small volume in the final posterior, arising from the volume effect of integrating over nuisance

parameters to which points in this region are rather sensitive, such as the mass of the Higgs.

5We choose T-Walk for this rather than MultiNest, as we find that MultiNest biases posteriors towards
ellipsoidal shapes; see [6] or Chapter 8 for more details and example posterior maps for this same physical
model.
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∆ ln L
Likelihood contribution Ideal Z2 UVZ2 SVZ2 UVZ3 SVZ3

Relic density 5.989 0 0 0.001 0 0
LUX Run I 2015 −0.640 0 0 0.059 0.001 0.027
LUX Run II 2016 −1.467 0.001 0.001 0.119 0.001 0.054
PandaX 2016 −1.886 0.001 0 0.076 0.001 0.033
SuperCDMS 2014 −2.248 0 0 0 0 0
XENON100 2012 −1.693 0 0 0 0 0
XENON1T 2017 −0.360 - 0.001 0.239 0.003 0.109
IceCube 79 0.000 0 0 0.008 0 0
γ rays (Fermi-LAT dwarfs) −33.244 0.105 0.105 0.149 0.105 0.131
Higgs invisible width 0.000 0 0 0 0 0
Hadronic elements σs, σl −6.115 0 0 0 0 0
Local dark matter density ρ0 1.142 0 0 0.012 - -
GFermi 24.920 0 - - - -
αEM 3.350 0 0 0 0 0
αs(0.1184) 6.500 0 - - - -
αs(0.1181) 5.894 - 0.001 0 0 0
Higgs mass 0.508 0 0 0 0 0
Top quark mass −0.645 0 0 0 0 0
Bottom quark mass 2.588 0 - - - -
Charm quark mass 2.770 0 - - - -
Light quark masses 4.844 0 - - - -
Vacuum stability 0.000 - 0 0 0 0

Total 0.107 0.108 0.633 0.110 0.340

Table 7.4: Contributions to the ∆ log-likelihood at the best-fit point, compared to an ‘ideal’
case for various analyses of scalar singlet DM. The first is the fixed-scale study of the Z2

model (Z2), with best-fit λhS = 6.5 × 10−4, mS = 62.51 GeV. The next two are the UV-
scale fit to the Z2 model with metastability of the electroweak vacuum allowed (UVZ2, with
best-fit λhS = 3.2 × 10−4, mS = 62.50 GeV) and with the constraint of absolute stability
(SVZ2, with best-fit λhS = 2.0, mS = 3968.4 GeV). The fourth and fifth are the UV-scale fits
to the Z3 model with metastability of the electroweak vacuum allowed (UVZ3, with best-fit
λhS = 4.6 × 10−4, mS = 62.48 GeV) and with the constraint of absolutely stability (SVZ3, with
best-fit λhS = 5.2 × 10−2, mS = 143.0 GeV). The ideal is defined as the central observed value
for detections, and the background-only likelihood for exclusions. Note that each likelihood is
dimensionful, so its absolute value is less meaningful than any offset with respect to another
point (see Section 8.3 of Ref. [16] for more details of the normalisation used). Dashes indicate
that this likelihood was not evaluated.

The penalty is sufficiently severe that this region drops outside the 2σ credible region in the

mS-λhS plane. We therefore focus only on the high mass modes in the righthand panel of

Figure 7.7, where we show the posterior from the full-range scan.

Because it is restricted to the resonance region, the low-range scan (left panel of Figure

7.7) shows the expected relative posterior across this region. The fact that the resonance is so

strongly disfavoured in the full-range posterior scan is an indication of its heavy fine-tuning, a

property that is naturally penalised in a Bayesian analysis. This mode of the posterior accounts
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Figure 7.7: Marginalised posterior distributions of the scalar singlet parameters, in low-mass
(left) and full-range (right) scans. White contours mark out 1σ and 2σ credible regions in the
posterior. The posterior mean of each scan is shown as a white circle. Grey contours show
the profile likelihood 1σ and 2σ confidence regions, for comparison. The best-fit (maximum
likelihood) point is indicated with a grey star. Figure from Ref. [5].

3 TeV, and the 2σ region above λhS ∼ 1, mS ∼ 1 TeV.

7.5 The status of the Z2 model at UV scales

7.5.1 Profile likelihoods

In this section we present results for a global fit to a Z2 scalar singlet model with a full

spectrum calculation and RGE running up to the Planck scale. These results are based on

three separate global fits. The most general fit consists of a scan over the full range of mS with

both a metastable and stable electroweak vacuum permitted (the case of vacuum instability

is excluded with an extremely poor likelihood from Eq. (6.38)). For this fit, and all others in

this section, we require that the dimensionless couplings are in the perturbative regime (which

we define to be less than
√

4π) up to the maximum of mMS
S or mt, i.e. we demand that

ΛP > max(mMS
S ,mt). The profile likelihoods for this fit are presented in the top left panels of

Figures 7.8 and 7.9 in the mS, λhS and mS, λS parameter spaces respectively.

We then perform another global fit over the full singlet mass range, with the additional

constraint of absolute vacuum stability. The corresponding profile likelihoods are presented

in the top right panels of Figures 7.8 and 7.9 in the mS, λhS and mS, λS parameter spaces

respectively. Finally, we perform a fit over the low mass range mS ∈ ¶45, 70♢ GeV, focusing on

the resonance aroundmS ∼ mh/2. Since all points in this region are metastable, we only present
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results without the additional restriction of absolute vacuum stability. The corresponding

profile likelihoods are presented in the left panels of Figure 7.10.

The restriction of ΛP > max(mMS
S ,mt) results in a reduction in the volume of the allowed

region, compared to the allowed regions presented in Section 7.4. Because any point with an

input value of λhS, λS >
√

4π violates the perturbativity condition before any running is even

performed, our profile likelihoods have an upper limit at
√

4π with respect to λhS and λS, in

contrast to the more generous restriction of 10 in Section 7.4. The excluded points at large

values of mS and λhS are due to a non-perturbative Higgs quartic coupling, as a result of large

loop corrections from the scalar sector driving up the value of this coupling. We also note that

the location of the allowed region is different, which is to be expected given that this later study

includes a slightly more constraining direct detection likelihood (XENON1T) and an updated

central value for αS .

If we demand that the electroweak vacuum be absolutely stable then the parameter space is

further reduced (see the right panels of Figures 7.8 and 7.9). We find that values of λhS ≳ 0.2

are required to stabilise the electroweak vacuum. As a result the low-mass resonance mode

around mS ∼ mh/2 is almost entirely ruled out (such that we omit a detailed scan over this

mass range), except for a few points in the neck region at sufficiently large λhS ≳ 0.2. This

leaves the high mass modes centred on approximately 100 GeV and 1 TeV, where λhS is large

enough to stabilise the vacuum. This preference for larger values of λhS is as we would expect,

as a large value of λhS is required to prevent the Higgs quartic coupling becoming negative.

The profile likelihood of the scalar quartic coupling, λS, is reasonably uniform over the

prior range. This is not surprising given that λS has little phenomenological impact in this

model (and thus why it was not included in the analysis of Section 7.4 and Ref. [5]). However,

it can have an important role in stabilising the electroweak vacuum, but on the other hand

can become too large and violate perturbativity. The role of λS in vacuum stability will be

discussed in the next section.

7.5.2 Scale of non-perturbativity and vacuum stability

We compute the scale at which perturbativity is violated for each point in the UV-scale global

fits and present this in the lower panels of Figures 7.8, 7.9 and the right panels of 7.10. Since we

run the couplings up to a maximum value of 1 × 1020 GeV, points with ΛP equal to this value

are to be interpreted as being valid to at least this scale (although this is phenomenologically

irrelevant as anything above the Planck scale raises questions regarding quantum gravitational

effects). We plot the value of ΛP only within the 2σ contours, as determined by the profile
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Figure 7.8: The profile likelihood (top) and scale of perturbativity violation (bottom) with
respect to mS and λhS for the Z2 scalar singlet model with the requirement that ΛP >
max(mMS

S ,mt) only (left) and with the additional requirement of absolute vacuum stabil-
ity (right). White contour lines mark out the 1σ and 2σ confidence regions. The best-fit
(maximum likelihood) point is indicated with a white star.

likelihood. The value of ΛP at each bin in the two-dimensional plot corresponds to the point in

that bin with the maximum likelihood. Therefore since we maximise with respect to L rather

than ΛP , there can exist points with a larger value for ΛP in the same bin that have a slightly

worse L, but are not outside 2σ of the best-fit. To get an idea of how high ΛP can be, beyond

what is shown in these plots, in Figure 7.11 we present the profile likelihood when a cut is

placed such that all points satisfy the requirement ΛP > 1015 GeV. As we have not performed

a separate scan with this requirement, instead cutting out points from the original scans, the

sampling is not exceptional.

When we allow metastability of the electroweak vacuum, regions with ΛP near or beyond

the Planck scale are found in both the low mass resonance mode (at mS ∼ mh/2) and the mode
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Figure 7.9: The profile likelihood (top) and scale of perturbativity violation (bottom) with
respect to mS and λS for the Z2 scalar singlet model with the requirement that ΛP >
max(mMS

S ,mt) only (left) and with the additional requirement of absolute vacuum stabil-
ity (right). White contour lines mark out the 1σ and 2σ confidence regions. The best-fit
(maximum likelihood) point is indicated with a white star.

at large λhS and mS ∼ 1 TeV. The values of ΛP for these fits are presented in the lower left

panels of Figures 7.8 and 7.9 and the right panels of Figure 7.10. The mode at mS ∼ 100 GeV

is much worse off due to the large values of λhS rendering the spectrum invalid at scales well

below 1010 GeV.

There is a rough correlation between λhS and ΛP in most of the high mass mode (at

mS ∼ 1 TeV), such that we can control the amount of parameter space allowed by making a

choice of what ΛP is considered acceptable. With direct detection limits constraining this mode

from below, and perturbativity from above, the point where it is entirely ruled out depends

only on how low one is willing to let ΛP be, until eventually ΛP = max(mt,m
MS
S ) is reached.

When we demand that the electroweak vacuum be absolutely stable, and consider the values
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Figure 7.10: The profile likelihood (left panels) and scale of perturbativity violation (right

panels) for the Z2 scalar singlet model with the requirement that ΛP > max(mMS
S ,mt) and

metastability of the electroweak vacuum allowed. White contour lines mark out the 1σ and 2σ
confidence regions. The best-fit (maximum likelihood) point is indicated with a white star.

of ΛP in the remaining parameter space, the competing interests from vacuum stability and

perturbativity become evident. Indeed, the requirement of vacuum stability is even more severe

than direct detection on the lower parts of the high mass contours. It also has the additional

effect of completely ruling out the resonance mode for values of λhS ≲ 0.2.

The rough correlation between λhS and ΛP is broken for the small λhS tip of the high mass

mode. Instead we see ΛP decrease rapidly for smaller values of λhS. This is because a non-

zero value of λS can either help stabilise the electroweak vacuum or simply make the model

non-perturbative below the scale of vacuum instability (thus rendering it “stable” – see the

discussion in Section 7.3.2). In the former case, this stabilisation occurs as a higher order effect

since λS does not appear directly in the one-loop RGE for the Higgs quartic coupling. Instead,

λS appears in the RGE for λhS in such a way that larger values drive up the value of λhS, which
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Stable Relic
vac. ΛP (GeV) density λS λhS mS (GeV) ΩSh2 log(L) ∆ ln L

∼ ≥ 1020 ≤ 2.55 × 10−3 3.17 × 10−4 62.50 0.04995 −34.87 0.107
✓ 2.6 × 104 ≤ 1.55 × 10−4 2.03 3968 0.1043 −35.40 0.633
✓ 1.0 × 1015 ≤ 5.49 × 10−4 0.724 1999 0.1080 −35.94 1.173
✓ 1.1 × 1015 ✓ 1.29 × 10−3 0.717 2026 0.1129 −36.00 1.254

Table 7.6: Details of the best-fit points for the UV-scale study of the Z2 scalar singlet model,
with different conditions on the model. Points with a singlet relic density within 1σ of the
Planck observed value (ΩSh

2 ∼ ΩDMh
2) are indicated with a tick in the third column, otherwise

we allow for the case where singlet particles may be a sub-dominant component of dark matter,
ΩSh

2 ≲ ΩDMh
2. Best-fits have an absolutely stable (indicated by a tick in the first column)

or metastable electroweak vacuum. We omit the values of the nuisance parameters, as they do
not deviate significantly from the central values of their associated likelihood functions.

in turn results in an increase in the running of the Higgs quartic coupling. Since this is a much

weaker effect, larger values of λS are required to stabilise the vacuum than λhS. However, the

necessarily large values of λS result in the spectrum rapidly becoming non-perturbative. This

can be seen on the lower panels of Figure 7.9, with larger values of λS having a very low ΛP .

The competing interests of vacuum stability and perturbativity become more problematic

when we consider what choice of ΛP is reasonable. The metastability of the electroweak

vacuum in the SM is the result of the quartic coupling becoming negative near the grand

unified theory (GUT) scale (∼ 1015 GeV). Therefore, if we are concerned about vacuum stability,

then we would generally also be concerned about the perturbativity of our theory to at least

this scale (although some may view a strongly coupled theory as less problematic than a

metastable vacuum). In the allowed region of our parameter space we have been able to

stabilise the electroweak vacuum, but in many cases this results in the model violating our

condition on perturbativity at scales well below the GUT scale. To then allow these points as

viable would be somewhat contradictory. Fortunately, limiting the parameter space to points

with ΛP > 1015 GeV doesn’t completely rule out the model, as we can see in Figure 7.11. We

will find a point in this model that does remain perturbative up to the typical instability scales,

and is confirmed to have a stable electroweak vacuum in the next section, and show that this

still gives a good fit to the data.

7.5.3 Best-fit point

The best-fit point for our UV study of the Z2 model is located at λS = 2.55×10−3, λhS = 3.17×
10−4 and mS = 62.50 GeV. This is located in the low mass resonance region, the electroweak

vacuum is metastable (with a minimum Higgs quartic coupling at ∼ 3 × 1013 GeV) with a

lifetime of ∼ 1.3 × 10108 years and the model is perturbative up to at least 1020 GeV. The mass
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at this point is within 0.01 GeV of the best-fit found for the fixed-scale study in Section 7.4, and

the portal coupling is approximately a factor of two smaller. Given that the profile likelihood

is reasonably uniform with respect to λhS around the best-fit, this difference in λhS is not

surprising. The similarity between this best-point and that found in Section 7.4 is expected

since the constraint ΛP > max(mMS
S ,mt), and the consideration of λS, do not have a significant

effect on the phenomenology at small values of the dimensionless couplings. Indeed, we find

that log(L) = −34.87 and ∆ ln L = 0.107 (see Table 7.4), the same ∆ ln L as the best-fit in the

fixed-scale study.

When the constraint of absolute vacuum stability is imposed the location of the best-fit

necessarily moves away from the resonance region where λhS is too small to stabilise the vacuum.

For this fit we find a best-fit point at λS = 1.55×10−4, λhS = 2.03 and mS = 3968 GeV. In this

case we find log(L) = −35.40 and ∆ ln L = 0.633, which demonstrates a slight penalty over the

metastable case. Although the vacuum is stable at this point, the scale where the couplings

enter the non-perturbative regime is reduced to ∼ 26 TeV. Therefore it is not of particular

phenomenological interest. Indeed, this is an example of a point where the couplings are so

large that we are unable to compute the spectrum to the typical scale of vacuum instability,

so the point is classified as stable.

By excluding all samples with ΛP < 1015 GeV we can find points which have a stable

vacuum and are more phenomenologically interesting. The profile likelihood and value of ΛP

within the allowed region with this additional requirement is presented in Figure 7.11. We find

a best-fit point that is absolutely stable and has ΛP = 1.0 × 1015 GeV. This point is located at

λS = 5.49×10−4, λhS = 0.724 and mS = 1999 GeV. It has log(L) = −35.94 and ∆ ln L = 1.173,

with the largest contributions coming from the XENON1T and LUX Run II 2016 likelihoods.

This corresponds to a likelihood ratio Λ = 0.34, which places this point outside 1σ but within 2σ

of the overall best-fit point (that is, the metastable point at λhS = 3.17×10−4, λS = 2.55×10−3

and mS = 62.50 GeV). Therefore a model with an absolutely stable vacuum and perturbative

couplings up to at least the GUT scale is in some mild tension with direct detection limits. As

XENON1T gains more exposure, this model will either be detected or the tension will grow.

Finally we consider a point with a relic density within 1σ of the Planck measured value,

with a stable vacuum and that is perturbative to at least 1015 GeV. This point is located at

λS = 1.292 × 10−3, λhS = 0.7174 and mS = 2026 GeV. This point has a likelihood log(L) =

−36.0 and ∆ ln L = 1.254.

The four best-fit points, the corresponding relic densities and the scale of perturbativity

violation are presented in Table 7.6.
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Figure 7.11: The profile likelihood (left) and scale of perturbativity violation (right) for the Z2

scalar singlet model with the requirement of a stable electroweak vacuum and ΛP > 1015 GeV.
White contour lines mark out the 1σ and 2σ confidence regions. The best-fit (maximum
likelihood) point is indicated with a white star.

Following the same reasoning as in Section 7.4.2 we obtain an approximate p-value for these

best-fit points by interpreting ∆ ln L as half the “likelihood χ2” of Baker & Cousins [305]. We

again obtain an approximate p-value range by assuming either one or two degrees of freedom.

For the best-fit point with metastability allowed we find p ≈ 0.6−0.9. The best-fit with vacuum

stability required has p ≈ 0.3 − 0.5. Both the model that is perturbative up to 1015 GeV and

has an absolutely stable vacuum, and the model with the same requirements and a relic density

within 1σ of the Planck value, have p ≈ 0.1 − 0.3. Therefore in each case we find the p-value

to be acceptable, although requiring the UV properties of perturbativity and vacuum stability

has a notable impact on the value.

7.6 The status of the Z3 model at UV scales

7.6.1 Profile likelihoods

In this section we present a UV-scale study of the Z3 scalar singlet model with a fully com-

puted spectrum and vacuum stability considerations. We present the profile likelihood, scale

of perturbativity (ΛP ) and semi-annihilation fraction (α) in the top, middle and lower panels

respectively of Figure 7.12 in the mS and λhS parameter space and Figure 7.13 in the mS and

µ3 parameter space, for scans over the full range of mMS
S . On the left panels we present the

results from fits with the requirement that ΛP > max(mMS
S ,mt) and a metastable vacuum

allowed, and on the right we add the additional requirement of absolute vacuum stability. For
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each bin on these plots we display the value of α and ΛP for the point with the maximum

likelihood.

In Figure 7.14 we present the results from a focused scan over the low mass range, with

the profile likelihood on the left panels and the scale of perturbativity on the right. The

semi-annihilation fraction is approximately zero everywhere in this mode so we omit the cor-

responding plot for α. As in the Z2 model, the requirement of absolute vacuum stability rules

out all points in the low mass resonance region except the top of the neck, so we do not present

a focused scan with this requirement.

The phenomenologies of the Z2 and Z3 models are notably different. In the λhS, mS

parameter space (Figure 7.12) there is one large mode at high masses, instead of two separate

modes as in the Z2 case (Figure 7.8). The distribution of this mode is also very different,

extending to much smaller values of λhS for mS ∼ 100 GeV, and only resembling the shape of

the corresponding region in the Z2 model for mS on the TeV scale.

The extent of the high mass mode with respect to λhS can be understood by considering the

fraction of semi-annihilation present for the model at each point. In the lower panel of Figure

7.12 we plot the semi-annihilation fraction, α, within the 2σ confidence regions. The region of

the mode that is ruled out in the Z2 model has α ≈ 1, corresponding to a model where the

semi-annihilation channel dominates. When α is large, semi-annihilation plays a greater role

in achieving the correct relic density in the early universe, so the same relic abundance can be

reached with a smaller value of the portal coupling. Therefore, the bound from ΩSh
2 ≤ ΩDMh2

can be avoided until much lower values of λhS, by invoking a large amount of semi-annihilation.

Likewise since the relic density is lower, and we consistently rescale the local dark matter

density, the reduced relic density combines with a lower value for the portal coupling (and

thus scattering cross-section) to allow the model to more easily evade the direct detection

constraints.

In Figure 7.13 we present the profile likelihood, scale of perturbativity and semi-annihilation

fraction with respect to mS and µ3. The allowed region is constrained by the vacuum stability

condition on the maximum value of µ3 in Eq. (7.1), particularly at small singlet masses. The

semi-annihilation fraction is proportional to µ3λ
2
hS
/m6

S at leading order [102], which agrees

with the observation that α is largest for smaller masses (for mS ≳ 100 GeV) and large portal

couplings, since the dependence on µ3 is relatively weak. Instead, it is the dependence on λhS

and mS which dominates. However, in the resonance mode, with mS ∼ mh/2, µ3 and thus the

semi-annihilation are strongly constrained by Eq. (7.1).
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Figure 7.12: The profile likelihoods (upper), scale of perturbativity violation (middle) and
fraction of semi-annihilation (lower) with respect to λhS and mS for the Z3 scalar singlet model
with (right panels) and without (left panels) the requirement of an absolutely stable electroweak

vacuum. In both cases we have the requirement that ΛP > max(mMS
S ,mt) . White contour

lines mark out the 1σ and 2σ confidence regions. The best-fit (maximum likelihood) point is
indicated with a white star.
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Figure 7.13: The profile likelihoods (upper), scale of perturbativity violation (middle) and
fraction of semi-annihilation (lower) with respect to µ3 and mS for the Z3 scalar singlet model
with (right panels) and without (left panels) the requirement of an absolutely stable electroweak

vacuum. In both cases we have the requirement that ΛP > max(mMS
S ,mt). White contour

lines mark out the 1σ and 2σ confidence regions. The best-fit (maximum likelihood) point is
indicated with a white star.
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Figure 7.14: The profile likelihood (left) and scale of perturbativity violation (right) for the Z3

scalar singlet model with the requirement that ΛP > max(mMS
S ,mt) with respect to mS and

λhS (upper) and mS and µ3 (lower). White contour lines mark out the 1σ and 2σ confidence
regions. The best-fit (maximum likelihood) point is indicated with a white star.

7.6.2 Scale of non-perturbativity and vacuum stability

The results of our global fit with the requirement of an absolutely stable vacuum are presented

as profile likelihoods for the Z3 scalar singlet model in the right panels of Figures 7.12 and

7.13 for scans over the full scalar mass range. The parameter space opened up by the semi-

annihilation channel, which extends the high mass modes to lower values of λhS, is not entirely

compromised by the constraint of absolute vacuum stability. Although the lower tip is lost,

vacuum stability is still achieved to a value of λhS ∼ 0.04. This is almost an order of magnitude

smaller than the equivalent fit in the Z2 model.

However, when we consider the scale of perturbativity violation we find that it is extremely

low throughout this high mass mode, such that the stability of the vacuum is phenomenologi-
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Stable Relic
vac. ΛP (GeV) density λS λhS mS (GeV) µ3 (GeV) ΩSh2 log(L) ∆ ln L

∼ ≥ 1020 ≤ 2.38 × 10−3 4.60 × 10−4 62.48 0.7230 0.04695 −36.02 0.108
✓ 238 ≤ 3.54 5.33 × 10−2 62.48 540.3 0.002991 −36.25 0.340
✓ 2.0 × 1015 ≤ 0.235 0.841 2309 961.3 0.1081 −37.43 1.52
✓ 2.6 × 1017 ✓ 0.204 0.775 2183 517.6 0.1128 −37.67 1.76

Table 7.7: Details of the best-fit points for the UV-scale study of the Z3 scalar singlet model,
with different conditions on the model. Points with a singlet relic density within 1σ of the
Planck observed value (ΩSh

2 ∼ ΩDMh
2) are indicated with a tick in the third column, otherwise

we allow for the case where singlet particles may be a sub-dominant component of dark matter,
ΩSh

2 ≲ ΩDMh
2. Best-fits have an absolutely stable (indicated by a tick in the first column)

or metastable electroweak vacuum. We omit the values of the nuisance parameters, as they do
not deviate significantly from the central values of their associated likelihood functions.

cally irrelevant for these points. The value of ΛP is given in the middle panels of Figures 7.12

and 7.13. We find that ΛP is much less than 1010 GeV throughout most of this high mass mode.

As discussed in Section 7.3.2, these points are considered “stable” only because we are not able

to run the quartic Higgs coupling to the typical scales of instability due to perturbation theory

breaking down.

In Figure 7.15 we present the profile likelihood when a cut is placed such that all points

satisfy the requirement Λ > 1015 GeV. As we have not performed a separate scan with this

requirement, instead cutting out points from the original scans, the sampling is not exceptional.

However, we will find a point in this model that does remain perturbative up to the typical

instability scales, and is confirmed to have a stable electroweak vacuum in Section 7.6.3, and

show that this still gives a good fit to the data.

The reason large couplings are required in the high mass mode is related to the semi-

annihilation that is responsible for opening up this part of the parameter space in the first place.

In the Z3 model there is a large mode in the likelihood at high couplings and masses ≳ 100 GeV.

This mode is dominated by points with large fractions of semi-annihilation. However, this in

turn requires that the coupling µ3 is large, of order ≳ 0.1 − 1 TeV. On the other hand, this

implies that λS must be large to satisfy Eq. (7.1). So although we have a large area of the

parameter space available due to this new semi-annihilation channel in the Z3 model, it is

limited in phenomenological appeal due to the perturbativity violation resulting from the large

couplings required. Such an observation would not have been possible if we simply studied this

model as a low energy effective field theory, and unlike in the Z2 model where many points

survive our test of perturbativity, the situation is somewhat more serious here.
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Figure 7.15: The profile likelihood (left) and scale of perturbativity violation (right) for the Z3

scalar singlet model with the requirement of a stable electroweak vacuum and ΛP > 1015 GeV.
White contour lines mark out the 1σ and 2σ confidence regions. The best-fit (maximum
likelihood) point is indicated with a white star.

7.6.3 Best-fit point

The best-fit point in the Z3 model, with metastability allowed, it is at λS = 2.38 × 10−3,

λhS = 4.6×10−4, mS = 62.48 GeV and µ3 = 0.7230 GeV. This point has a lifetime of ∼ 1.3×10108

years, and minimum Higgs quartic coupling at ∼ 3 × 1013 GeV. The semi-annihilation fraction

at this point is α = 0. For this point we find log(L) = −36.02 and ∆ ln L = 0.108. This is

only slightly worse than the equivalent best-fit in the Z2 model, which is more likely the result

of sampling than a phenomenological difference, since semi-annihilations are effectively zero in

the resonance mode.

With the additional constraint of absolute vacuum stability the best-fit is located at λS =

3.54, λhS = 5.33×10−2, mS = 143.0 GeV and µ3 = 540.3 GeV. In this case the semi-annihilation

fraction is α = 0.986. This point has a log(L) = −36.25 and ∆ ln L = 0.340, compared to the

equivalent point in the Z2 model this represents a factor of two improvement, which has been

possible due to the semi-annihilation channel. However, ΛP at this point is only 238 GeV, due

to the large value of λS. Therefore, like the point located with these conditions in the Z2 model,

it is not phenomenologically interesting given this very low ΛP .

If we also demand that ΛP ≥ 1015 GeV then we find a point with an absolutely stable

vacuum, ΛP = 2.0 × 1015 GeV and α = 0.0128. The profile likelihood and value of ΛP within

the allowed region with this additional requirement is presented in Figure 7.15. This point

is located at λS = 0.235, λhS = 0.841, mS = 2309 GeV and µ3 = 961.3 GeV. This point has

log(L) = −37.43 and ∆ ln L = 1.52, with the dominant contributions coming from the most



7.7. Comparison to existing results 168

recent direct detection limits (LUX 2016 and XENON1T). This corresponds to a likelihood

ratio Λ = 0.24, which places this point outside 1σ but within 2σ of the overall best-fit point for

the Z3 model. Thus, as in the Z2 model, we again see mild tension between direct detection

limits and the requirement for the model to be absolutely stable and perturbative to at least

the GUT scale.

Finally we consider a point that is perturbative to at least 1015 GeV, has a stable electroweak

vacuum and has a singlet relic density within 1σ of the Planck measured value. The best-fit

point under these requirements is located at λS = 0.204, λhS = 0.775, mS = 2183 GeV and

µ3 = 517.6 GeV. This point has ΩSh
2 = 0.1128 and ΛP = 2.6 × 1017 GeV. This point has

log(L) = −37.67 and ∆ ln L = 1.76.

The four best-fit points, the corresponding relic densities and the scale of perturbativity

violation are presented in Table 7.6.

Following the same reasoning as in Section 7.4.2 we obtain an approximate range for p-values

by assuming either one or two degrees of freedom. For the best-fit point with metastability

allowed we find p ≈ 0.6 − 0.9. The best-fit with vacuum stability required has p ≈ 0.4 − 0.7

and the model that is perturbative up to 1015 GeV and has an absolutely stable vacuum has

p ≈ 0.1 − 0.2. The additional requirement of the relic density being equal to the Planck

measured value gives the same range of p ≈ 0.1 − 0.2. Thus, except for the metastable point

which is the same, these models have slightly worse p-values than the corresponding points in

the Z2 model, despite the semi-annihilations opening up a large region of parameter space. We

note that the Z2 model is not a simple sub-model of Z3 model, in that we would not expect

µ3 = 0 to be equivalent to the Z2 scenario. Even with µ3 = 0 RGE running can result in a

non-zero value at other scales, so the difference in phenomenology not only comes from the

relative factors of two in the annihilation cross-sections and Higgs invisible width, but also

from differences in the spectrum calculation (masses and running couplings).

7.7 Comparison to existing results

The most recent study of the scalar singlet model with a Z2 symmetry and a wide range of

experimental constraints was that of Beniwal et al. [76]. This study is an ideal candidate with

which to compare our results, in order to check for consistency and determine the impacts of the

newest experimental constraints. There are two important differences in the ingredients of our

study and that of Beniwal et al. [76]. First, we include stronger dark matter direct detection

constraints from LUX [285] and PandaX [286], which exclude a large part of the parameter

space. Second, we scan many relevant nuisance parameters, whereas previous studies have
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taken them as fixed. The effect of this can be seen along the boundaries of the confidence

intervals, where the viable regions are always at least as large in a scan where the nuisances

are allowed to vary as in one where they are fixed.

Considering these differences, we see consistency between the results in Section 7.4 and

this existing study. In particular this is seen in Figure 7.3 and Figure 4 of Beniwal et al. [76],

both in the low and high-mass parts of the λhS, mS parameter space. The increased size of

the allowed region resulting from the variable nuisance parameters is evident along all contour

edges. The behaviour of the stronger direct detection constraint is also visible, in the top left

corner of the triangular part of the allowed region in the left panel of Figure 7.3, and on the

right side of the “neck”. In the high-mass area of the parameter space (right panel of Figure

7.3), we also see LUX and PandaX cutting a large triangular region into the allowed parameter

space, essentially separating the high-mass solutions into two separate likelihood modes.

The role of semi-annihilations in the Z3 charged scalar singlet model has been studied in

Ref. [111]. They show that semi-annihilations can dominate over ordinary annihilation in some

parts of the parameter space, as we have demonstrated in Figure 7.12, with some points having

α ≈ 1. In Ref. [112] Z3 scalar singlet dark matter is considered as a mechanism of generating

radiatively induced neutrino masses, although no study of the dark matter phenomenology is

presented. The Z3 symmetry has also been studied in other scenarios which are not directly

relevant here, such as dark matter stabilised through spontaneous symmetry breaking and GUT

models [309,310].

The most relevant phenomenological study of the scalar singlet model with a Z3 symmetry

is presented by Belanger et al. [102]. Opportunities for direct comparison with this study are

limited since they use flat priors, a random sampling algorithm (and thus risk missing viable

solutions) and do not allow for a scalar singlet which under populates the relic abundance.

However, we can compare Figure 7.13 with Figure 6 of Ref. [102], where we see the same

behaviour with respect to the bound on µ3 coming from Eq. (7.1) and the distribution of α

within the allowed region. We also locate an allowed region at mS ∼ 1 TeV which has solutions

valid up to GUT scale, analogous to that given in Figure 7 of Ref. [102]. Finally, we have also

verified that we can reproduce Figure 2 of Ref. [102] using our computational set-up in Figure

7.1.

7.8 Conclusions

The extension of the SM by a scalar singlet stabilised by a Z2 or Z3 symmetry is still a

phenomenologically viable dark matter model, whether one demands that the singlet constitutes
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all of dark matter or not. However, the parameter space is being continually constrained by

experimental dark matter searches. This is evident in the global fit that we have presented

in Section 7.4, combining some of the latest experimental results and likelihoods to provide

an extremely stringent constraint on the parameter space of this model. Direct detection

experiments will fairly soon probe the entire high-mass region of the model, with XENON1T

expected to access all but a very small part of each of the high-mass islands [75]. The resonance

region will prove more difficult, though some hope certainly exists for ton-scale direct detection

to improve constraints from the low-mS direction, and for future colliders focussed on precision

Higgs physics to probe the edge of the region at λhS ∼ 0.02.

In Section 7.5 we have shown that it is still possible to stabilise the electroweak vacuum

through the addition of a scalar singlet field charged under a Z2 symmetry. Since the high

energy minimum in the SM exists around the GUT scale, if we are to argue that this minimum

should be removed, then we should also expect the model to remain perturbative to at least

this scale. Otherwise, we could argue that GUT scale physics is irrelevant from the beginning.

With this additional consideration, the viable parameter space is significantly reduced to a small

mode at scalar masses of ∼ 2 TeV. By placing the additional requirement of perturbativity up

to high scales we find a viable solution that is still an acceptable fit to the experimental data,

even for a model that constitutes all of the dark matter, although this will soon be heavily

constrained by direct detection experiments.

The generalisation to a scalar singlet with a Z3 symmetry opens up a large region of the

parameter space that was excluded by direct detection experiments in the Z2 model. This

is due to the semi-annihilation channel allowing the same relic density to be achieved with a

lower annihilation cross-section. However, the additional constraint of pertubativity up to at

least 1015 GeV compromises this semi-annihilation channel. This is because semi-annihilations

require a large λS coupling, which in turn results in the dimensionless couplings becoming

large at low renormalisation scales. So, although semi-annihilations can open up the scalar

singlet parameter space, the viable solutions are severely limited by the requirement that the

theory remain perturbative up to high scales. However, even with the requirements of absolute

vacuum stability, perturbativity to at least 1015 GeV and that the scalar constitutes all of the

dark matter relic density, we are still able to find a viable solution.



8 Comparison of statistical sampling methods

8.1 Introduction

Statistical sampling algorithms are a fundamental part of global likelihood analyses. The choice

of algorithm and the implementation can significantly affect the quality of the results. In some

cases, a poorly sampled likelihood function can result in incorrect inferences. An inefficient

sampling method could also result is wasted computing resources. On the other hand, if care

is taken to choose the best algorithm for the parameter space, and to implement it correctly,

outstanding results can be obtained with maximal computing efficiency. In this chapter we

present an exploration of the performance of the four major scanners available in GAMBIT

1.0.0, when applied to a physically realistic likelihood function.

By offering the capacity to vary the scanning algorithm and its operating parameters –

whilst keeping all other aspects of a scan identical – ScannerBit [6] provides a unique testbed

for comparing sampling algorithms. The modularity of the scanner interface allows consistent

comparison between both the algorithms themselves, and between different choices of algorithm

parameters. The scanners available via this interface are MultiNest [203], a nested sampling

algorithm, Diver, a differential evolution algorithm [6], GreAT an MCMC sampler [198] and

T-Walk an ensemble MCMC sampler [6]. See Section 1.3.1 for a review and discussion of these

sampling algorithms in the context of particle phenomenology.

This investigation is intended to reveal the strengths and weaknesses of different sampling

algorithms with respect to typical user requirements. These requirements can be quite varied,

and may include the choice of statistical approach (frequentist or Bayesian), the time taken for

a scan to converge, the reliability of the results, or some combination of the three. However,

for any thorough investigation, the user should typically take advantage of the unique flexi-

bility offered by ScannerBit to employ a range of algorithms, statistical methods, and scanner

parameters in order to obtain the most complete and robust sampling possible.

For this demonstration, we work with the Z2 scalar singlet dark matter model introduced

in Section 1.2.1. We study the model at a fixed scale and do not perform any RGE running.

This model has two parameters beyond the SM: the Higgs portal coupling λhS, and the singlet

Lagrangian mass parameter µS . We present the results in the effective parameter space of λhS

and mS, where the physical singlet mass mS is given by Eq. (1.2). The likelihood and posterior

are both multimodal and highly degenerate across several orders of magnitude in the values of

171
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these parameters.

To investigate how performance scales with dimensionality, we introduce additional param-

eters that enter into the combined likelihood function. These parameters are well constrained

by unimodal likelihood functions, but still create a significant challenge for any sampling al-

gorithm due to the increase in the dimensionality of the parameter space. In particular, we

carry out detailed tests in two, seven and 15 dimensions, and one scan with each sampler for

dimensionalities between two and 15. We list the free parameters for each scan in Table 8.1.

For all test scans, we apply a logarithmic prior to the singlet parameters λhS and mS, and flat

priors to the additional parameters.

In the following, we only show full results from the 15-dimensional scans. Increasing the

dimensionality of the problem across this particular parameter space does not substantially

shift the location nor shape of the final likelihood with respect to λhS and mS. As a result, the

best-fit point and regions of maximum likelihood remain similar. For comparison, in Appendix

D we give additional detailed results in two dimensions. The inclusion of additional parameters

does significantly increase the runtime for the scanning algorithms, and degrades their ability

to locate the maximum likelihood point. Note that choosing a more complicated model, with

more complicated parameters in the “higher” dimensions, would only increase the required

computing time, making such an extensive comparison study infeasible. We refer the interested

reader to the studies on supersymmetric models in Refs. [160,161] for applications of Diver and

MultiNest to higher-dimensional multimodal parameter spaces.

The dominant physical constraints on the model that we consider here come from exper-

iments searching for dark matter via direct and indirect detection, the observed limit on the

thermal relic abundance of dark matter, and constraints on the rate of invisible Higgs decays

at the LHC. We also apply the constraint λhS < 10, as larger values would violate perturba-

tivity and are therefore not physically interesting. More details on the model can be found

in Chapter 7 and Refs. [5, 16, 59–61, 66, 74–77]. Here our test function consists of the same

likelihood components as in Ref. [5] and the fixed-scale study in Chapter 7. Although this is

a simple, well-studied extension of the SM, the parameter space is still sufficiently non-trivial

that it constitutes an illustrative test of scanner performance.

In Sections 8.2–8.5 we discuss the most appropriate choices of settings for MultiNest, Diver,

T-Walk and GreAT, respectively. In order to make comparisons, we require fair metrics with

which to compare the outcomes of scans. We first look at the best value of the log-likelihood

found in each scan, which is crucial for the correct normalisation of the profile likelihood

(Figures 8.1, 8.2, 8.6 and 8.9). The results of this test favour algorithms primarily intended
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Figure 8.1: Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and
MultiNest scanners, for a range of convergence tolerances and a fixed number of working points.
Tolerances correspond to the parameter tol for MultiNest and the parameter convthresh for
Diver. Working points correspond to the parameter Nlive for MultiNest and the parameter NP

for Diver. Figure from Ref. [6].
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Figure 8.2: Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and
MultiNest scanners, for different numbers of working points and fixed convergence tolerances.
Working points correspond to the parameter Nlive for MultiNest and the parameter NP for
Diver. Tolerances correspond to the parameter tol for MultiNest and the parameter convthresh

for Diver. Figure from Ref. [6].
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Table 8.1: Parameters, ranges and central values of the test scans of this section, for each scan
dimensionality. The ranges for most SM parameters correspond to ±3σ variations around the
2014 PDG central values [291]. For the Higgs, the range is ±4σ about the 2014 central value
(which encompasses the 2015 4σ range [293]). For the up and down quark masses, we take the
central values from the 2014 review, and scan over a range of ±20% around the central values.
This is intended to capture the ±3σ range implied by the likelihoods in PrecisionBit [4], which
deal with correlated mass-ratio measurements. The nuclear couplings also incorporate a range
of ±3σ around the best estimates. The dark matter density has an asymmetric range about
the central value, as the likelihood that we apply to this parameter is log-normal rather than
Gaussian. We refer the reader to Refs. [5, 75] for further details and references on the central
values and uncertainties associated with the local density and nuclear parameters.

Parameter Values

Scalar pole mass mS [45, 104] GeV
Higgs portal coupling λhS [10−4, 10]

Varied in 7 and 15-dimensional scans

Electromagnetic coupling 1/αMS(mZ) 127.940(42)

Strong coupling αMS
s (mZ) 0.1185(18)

Top pole mass mt 173.34(2.28) GeV

Higgs pole mass mh 125.7(1.6) GeV

Local dark matter density ρ0 0.4+0.4
−0.2 GeV cm−3

Varied in 15-dimensional scans

Nuclear matrix el. (strange) σs 43(24) MeV

Nuclear matrix el. (up + down) σl 58(27) MeV

Fermi coupling × 105 GF,5 1.1663787(18)

Down quark mass mMS
d (2 GeV) 4.80(96) MeV

Up quark mass mMS
u (2 GeV) 2.30(46) MeV

Strange quark mass mMS
s (2 GeV) 95(15) MeV

Charm quark mass mMS
c (mc) 1.275(75) GeV

Bottom quark mass mMS
b (mb) 4.18(9) GeV

as optimisers, whilst disadvantaging those mainly designed to map the likelihood function or

posterior. We therefore also compare the visual quality of the profile likelihood maps (Figures

8.3, 8.5, 8.7 and 8.10), and the corresponding posterior maps (Figures 8.4, 8.8 and 8.11). This

is a more qualitative approach, better suited for algorithms intended to explore the parameter

space.

We also make some additional comparisons between the four sampling algorithms. In the

first two of these tests, we are interested in the relative performance as a function of parameter

space dimensionality (Section 8.6) and the total CPU time required to complete a scan (Section

8.7). Here, we focus mostly on the value of the best-fit log-likelihood and the time taken to

achieve it. These sections are most relevant for evaluating profile likelihood performance; in

Section 8.8, we instead focus on the specific merits of different algorithms for mapping the

Bayesian posterior. We discuss the overall implications of these results in Section 8.9.
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Figure 8.3: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the MultiNest scanner with a selection of difference tolerances (tol) and
numbers of live points (nlive). The maximum likelihood point is shown by a white star. Figure
from Ref. [6].

We performed all tests using a high-performance computing cluster, taking advantage of

the ability to run GAMBIT in parallel across multiple processors. In the interests of making

sensible use of computing resources and time, we ran the two-dimensional scans on a single

24-core compute node, using 24 MPI processes. For the seven- and 15-dimensional scans, we

used 10 nodes, for a total of 240 MPI processes. For the scans where we compare performance

with respect to dimensionality, a consistent computing environment is required; here we used 5

nodes for all scans, corresponding to 120 MPI processes.1 The two-dimensional profile likelihood

and marginalised posterior maps that we show in this chapter were produced with pippi [294],

1Although GAMBIT is also able to use OpenMP threads for further (likelihood-level) parallelisation within
individual MPI processes [16], here we limit ourselves to distributed-memory parallelisation with MPI, seeing as
this is the form of parallelisation employed by the scanning algorithms.
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Figure 8.4: Marginalised posterior probability density maps from a 15-dimensional scan of
the scalar singlet parameter space, using the MultiNest scanner with a selection of difference
tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly only applies
to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot,
rather than to the same iso-posterior density level (i.e. the transition from red to purple is
designed to occur at the edge of the 1σ credible region, and so on). The posterior mean is
shown with a grey bullet point. Figure from Ref. [6].



8.2. MultiNest 178

using 150 bins in each dimension.

8.2 MultiNest

MultiNest’s ability to accurately evaluate the evidence and map the posterior is directly affected

by the number of live points used in a scan, with more live points increasing the chance of finding

all relevant modes of the posterior. On the other hand, more live points means more likelihood

evaluations, and requires greater computing resources. The overall duration of the scan is also

influenced by the stopping criterion, which is given by the tolerance on the final evidence (the

estimate of the largest evidence contribution that can be made with the remaining portion of

the posterior volume). The sampling parameters that we vary are therefore the number of live

points (Nlive, nlive) and the tolerance (tol).

We perform runs with 2000, 5000, 10 000 and 20 000 live points, and tolerances of 10−4,

10−3, 10−2 and 10−1. The values of the best-fit log-likelihoods achieved for scans using these

parameters are shown in Figures 8.1 and 8.2. In Figure 8.3, we present a selection of the profile

likelihoods from MultiNest scans in the full 15-dimensional parameter space; in Figure 8.4 we

give corresponding marginalised posterior maps.

We see consistent best fits from all scans when tol ≤ 10−3. A sufficiently small tolerance

appears to provide a good best-fit value over a large range of nlive values. On the other hand,

even with larger values of nlive, setting tol too large will still negatively impact the quality

of the best-fit point; even with 20 000 live points we still see a poor best-fit likelihood if the

tolerance is greater than 10−3. The number of live points has a more significant impact on

the sampling of the parameter space, as can be seen in Figures 8.3 and 8.4. In these plots, a

significant difference in the quality of both profile likelihood and posterior sampling is evident

even between runs done with 2000 and 5000 live points.

On the basis of these results, we recommend an upper bound on the tolerance of 10−3 if

MultiNest is to be relied upon for obtaining the appropriate normalisation for profile likelihoods.

The number of live points required will depend on the desired quality of the resultant profile

likelihood or posterior contours, and the dimensionality of the parameter space. In Figure 8.3,

it is clear that in 15 dimensions a value of at least 20 000 for nlive is required to give fine-grained

sampling of the profile likelihood. Because in most cases one is interested in a global fit over

many parameters, we recommend a value of 20 000 live points as the lower limit. We note

however that this may be reduced somewhat if dealing with a lower-dimensional parameter

space, or if one is only interested in mapping the posterior at a lower resolution (less bins) than

we have employed here.
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Figure 8.5: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the Diver scanner with a selection of difference convergence thresholds
(convthresh) and population sizes (NP). The maximum likelihood point is shown by a white
star. Figure from Ref. [6].

8.3 Diver

Diver is a differential evolution optimisation package that is also highly effective at sampling

parameter spaces. The size of the evolving population is determined by the NP parameter, and

the threshold for convergence is controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000, 10 000 and 20 000, and convthresh values

of 10−4, 10−3, 10−2 and 10−1. Although these parameters have different definitions to nlive

and tol in MultiNest, we take advantage of the similarity in the appropriate ranges for these

and plot the scan results on the same axes in Figures 8.1 and 8.2. We see that a convthresh

value of less than 10−3 gives consistent results for the best-fit log-likelihood at all values of NP.
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In two dimensions, both MultiNest and Diver are able to find roughly the same or equiva-

lently good best-fit points. The differences in the algorithms become evident in seven and 15

dimensions however, where Diver consistently outperforms MultiNest for equivalent parameter

values. This is somewhat expected, given that Diver is designed as an optimisation routine,

whereas MultiNest is intended to compute the Bayesian evidence and sample the posterior dis-

tribution. In two dimensions, the sampling is dense enough that MultiNest has been able to

locate the best-fit point, but in higher dimensions the task is more suited to an optimisation-

specific routine. Because the maximum likelihood is located in the low-mass region in both

two, seven and 15 dimensions, it is indeed a result of poor sampling that MultiNest has not

located the same best fit that Diver has achieved (see Appendix D for equivalent plots for two

dimensional scans). We return to this discussion in Section 8.9.

In Figure 8.5, we investigate the ability of Diver to accurately map the contours of the

profile likelihood. We see that both the convthresh and NP settings are relevant in reproducing

the desired contours. A convthresh of 10−3 appears appropriate in 15 dimensions, along with

an NP value of at least 20 000. However, these requirements become less stringent in a lower-

dimensional parameter spaces (see Appendix D for examples in two-dimensions), where they

can be reduced by at least an order of magnitude whilst still achieving a suitable mapping of

the profile likelihood.

From these tests, we recommend similar settings as for MultiNest for similar parameters: for

a detailed picture of the profile likelihood a value of 20 000 is recommended for NP (although this

can be reduced for lower dimensional parameter spaces), and to consistently find the best-fit

point an upper bound of 10−3 is recommended for the convthresh convergence tolerance.

8.4 T-Walk

T-Walk is an ensemble MCMC algorithm. The primary parameters of interest are the number

of chains used during the scan and the stopping criterion. The latter is controlled by the

parameter sqrtR, which is the square root of the Gelman-Rubin R statistic, where 1 is perfect.

For comparison with other scanners, we define the equivalent tolerance of T-Walk scans as tol

≡ sqrtR − 1. The chain_number is bounded below by 1 + projection_dimension + the number of

MPI processes in use (see the T-Walk documentation in Ref. [6]). For two dimensions, we have

a lower limit of 27 (24 + 2 + 1), and therefore perform tests with 27, 54, 81 and 108 chains. For

higher-dimensional scans, the increase in the number of MPI processes requires larger chain

numbers, so we choose 256 and 512. We consider tol values of 0.3, 0.1, 0.03 and 0.01.
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The best-fit log-likelihoods from scans using various T-Walk settings are given in Figure 8.6.

In two dimensions, we hold the tolerance fixed and investigate the effect of varying the chain

number. We see no notable trend with chain number, for either of the tolerance values. For the

seven and 15-dimensional scans, we therefore instead focus on varying the tolerance for a fixed

number of chains. This reveals the expected trend: smaller tolerances result in improvements

to the best-fit log-likelihoods. A significant improvement seems to occur when tol ≲ 0.1. We

also notice no significant difference between the scans with 256 and 512 chains, consistent with

what we saw in the two-dimensional scans.

In Figure 8.7, we show a selection of profile likelihood maps of the 15-dimensional scalar

singlet parameter space. We immediately see that smaller tolerances are preferable for a de-

tailed sampling, and doubling the number of chains has no notable impact on the quality of

the sampling. In Figure 8.8, we show a selection of the marginalised posterior maps of the

15-dimensional scalar singlet parameter space achieved by T-Walk. Here we see that whilst

the main posterior modes appear to be better explored with smaller values of tol, leading to

smoother, better-converged posterior contours, the presence of the minority mode at low mass

would seem to be more evident in scans using a higher tolerance. This may appear counter-

intuitive; why should poorer sampling apparently do better at uncovering small regions such

as this? In reality, this region has been sampled more carefully in the scans with lower tol

values, despite appearing less prominently in the posterior maps. That the sampling in these

regions is better at lower tolerances can be seen from Figure 8.7, where lower tolerances pick

up better-fit points in this region. Nevertheless, the additional samples retrieved in runs with

lower tolerances provide a steadily more accurate indication of relative posterior weights of each

of these modes, gradually leading the low-mass solution to become reweighted and disfavoured

in the better-sampled posterior maps of Figure 8.8.

Recommending parameters for the T-Walk algorithm is difficult, due to the sensitivity of

the convergence to the tol = sqrtR − 1 parameter. However, values less than ∼ 0.1 appear

to be safe for the scans we have conducted here. Increasing the number of chains above the

minimum value does not appear to result in any improvement in the quality of the best-fit, nor

in the overall sampling. As starting values for a study using the T-Walk scanner, we therefore

recommend setting tol < 0.1 and leaving chain_number at the default (minimum) value.

8.5 GreAT

The Grenoble Analysis Toolkit (GreAT [198]) is a traditional Metropolis-Hastings MCMC able

to sample parameters in parallel using multiple independent chains. The number of chains is
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Figure 8.6: Top row: Best-fit log-likelihoods for two-dimensional scans using the T-Walk al-
gorithm, as a function of the number of chains used, for two different convergence tolerances
(tol). Middle and bottom panels: Best-fit log-likelihoods as a function of convergence tolerance
(tol), for T-Walk scans in seven and 15 dimensions with a fixed number of chains. Figure from
Ref. [6].
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Figure 8.7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet param-
eter space, using the T-Walk scanner with various numbers of chains and different tolerances.
The maximum likelihood point is shown by a white star. Figure from Ref. [6].

controlled by the nTrialLists parameter, and the number of points to run each chain for is

controlled by nTrials. No other convergence criteria are available.

For all dimensionalities, we consider nTrials values of 100, 200, 500, 1000, 2000, 5000 and

10 000. For scans in Ndim = 7 or 15 dimensions, we test nTrialLists values of Ndim, Ndim + 1

and Ndim + 2. For the two-dimensional scans, we consider a larger range, setting nTrialLists

to 2, 4, 24 and 48. We plot a selection of these results in Figure 8.9.

In two dimensions, we see that more chains result in some improvement in the reliability

of the algorithm in uncovering competitive values of the best-fit likelihood. Unsurprisingly,

Figure 8.9 also illustrates a tendency for longer chains to uncover slightly better fits. These

trends are both borne out substantially more strongly in seven and 15 dimensions. Visual

inspection of the profile likelihood maps in Figure 8.10 indicates that beyond nTrials of about
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Figure 8.8: Marginalised posterior probability density maps from a 15-dimensional scan of the
scalar singlet parameter space, using the T-Walk scanner with various numbers of chains and
different tolerances. The second to rightmost panel is from a 512-chain scan with a tolerance
of 0.1. Note that the colourbar strictly only applies to the rightmost panel, and that colours
map to the same enclosed posterior mass on each plot, rather than to the same iso-posterior
density level (i.e. the transition from red to purple is designed to occur at the edge of the 1σ
credible region, and so on). The posterior mean is shown with a grey bullet point. Figure from
Ref. [6].
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parameter. Figure from Ref. [6].



8.5. GreAT 186

★

GAMBIT 1.0.0

−3

−2

−1

0

lo
g
1
0
λ
h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT

nTrialLists: 17

nTrials: 20,000

Prof. likelihood

★

GAMBIT 1.0.0

−3

−2

−1

0

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/
L
m
a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

GreAT

nTrialLists: 17

nTrials: 10,000

Prof. likelihood

★

GAMBIT 1.0.0

−3

−2

−1

0

lo
g
1
0
λ
h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT

nTrialLists: 15

nTrials: 10,000

Prof. likelihood

★

GAMBIT 1.0.0

−3

−2

−1

0

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/
L
m
a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

GreAT

nTrialLists: 17

nTrials: 2,000

Prof. likelihood

Figure 8.10: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTrialLists) and
chain lengths (nTrials). The maximum likelihood point is shown by a white star. Figure from
Ref. [6].

1000, these improvements in best-fit likelihood with increasing numbers of chains do not come

with any substantial impact on the overall quality of sampling across the rest of the parameter

space. We do notice a small runtime improvement, however. For example, two two-dimensional

scans, each with 10 000 samples per chain, took 119 min to complete with nTrialLists = 48, but

165 min with nTrialsLists = 4. The best-fit log-likelihoods returned by the two scans were equal

to the third significant figure. This timing difference reflects the improvement in acceptance

that can be achieved when GreAT is able to draw on many different chains for constructing its

correlation matrix.

In Figure 8.11, we show the posterior maps resulting from the final set of independent

samples returned by GreAT after its thinning process. Clearly, none of the scans we have run
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Figure 8.11: Marginalised posterior ratio maps from a 15-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTrialLists) and
chain lengths (nTrials). Note that the colourbar strictly only applies to the rightmost panel,
and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at
the edge of the 1σ credible region, and so on). The posterior mean is shown with a grey bullet
point. Figure from Ref. [6].
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produce enough independent samples for a convergent map of the posterior, at least at the

relatively high bin resolution that we employ for these tests.

For all scans, we observe that a minimum value between 1000 and 10 000 for nTrials is

required in order to achieve a consistent value for the best-fit log-likelihood. We also notice that

very low values (below ∼ 1000) map the profile likelihood rather poorly. The value of nTrialLists

appears to be less crucial to the quality of the result; in general, values of Ndim + 1 and above

appear to give relatively stable results when coupled with nTrials ≳ 10 000. Substantially longer

chains (nTrials ≫ 10 000) would probably be required to obtain high-resolution posterior maps.

8.6 The effect of dimensionality on performance

We have studied scanner performance in detail for two, seven and 15-dimensional parameter

spaces, by increasing the number of nuisance parameters; each additional parameter adds an

additional Gaussian component to the likelihood, and modifies the existing components. We

now fix the computing configuration and scanner parameters (or apply a consistent scaling

with dimensionality, where appropriate), and carry out scans for every possible dimensionality

from two to 15. The results of these tests are presented in Figure 8.12. The scanner settings

we use for these tests are:

Diver: NP = 20 000, convthresh = 10−3

MultiNest: nlive = 20 000, tol = 10−3

T-Walk: chain_number = number of MPI processes + Ndim + 1, tol = sqrtR − 1 = 0.05

GreAT: nTrials = 2000, nTrialsList = Ndim + 1

To reach convergence, GreAT requires significantly more likelihood evaluations for a larger

number of dimensions. Although this is undoubtedly in part due to the increased number of

chains used in higher dimensions, even with this increased number of evaluations, the best-

fit log-likelihood is not competitive with that achieved by either Diver or MultiNest. If we

demanded that all scanners must achieve the same quality of best fit, then it is clear that

GreAT would require an even greater number of function evaluations to achieve this. Judging

from the quality of best fit, the decrease in the number of evaluations required for convergence

by GreAT in higher dimensions is clearly the result of spurious early convergence, rather than

any increase in performance.

Diver performs extremely well at all dimensionalities, out-performing the other three scan-

ners in terms of quality of best fit at Ndim ≥ 10. It also achieves this using a consistent number
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Figure 8.12: Best-fit log-likelihood (left) and number of likelihood evaluations (right) as a func-
tion of dimensionality, for all four scanning algorithms, using a fixed computing configuration
and scanner settings. Figure from Ref. [6].

of likelihood evaluations across the full dimensionality range. MultiNest is able to achieve a

competitive best-fit log-likelihood up until Ndim ∼ 10, however this comes with a steady in-

crease in the number of evaluations with respect to dimensionality. T-Walk runs for a consistent

number of likelihood evaluations across all dimensions, despite the required increase in number

of chains, yet the best-fit deteriorates significantly with respect to dimensionality, in much the

same way as it does with GreAT. The ensemble version of the MCMC algorithm implemented

by T-Walk essentially provides the same best-fit performance as the regular MCMC (GreAT),

but with a significant improvement in efficiency with increasing dimension. Overall, at least in

this parameter space, Diver appears to be the scanner of choice for larger dimensions.

8.7 Scanning efficiency

The number of likelihood evaluations required to reach convergence is not the only reasonable

metric for scanner efficiency. In general the number of evaluations is used as a proxy for

time, as the likelihood evaluations are generally expected to be the bottleneck in most scans

– but it is also illustrative to look directly at actual runtime. The efficiency of a scanner

can be degraded by poor use of parallel processing capabilities, or by complicated calculations

performed between likelihood evaluations. This can lead to a divergence between the apparent

performance assessed purely by number of function evaluations, and the true walltime needed.

We therefore record the actual CPU time used for all scans, and compare with the total number
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Figure 8.13: The real time required as a function of likelihood evaluations for two- (upper-left),
seven- (upper-right) and 15-dimensional (lower) scans. Figure from Ref. [6].

of likelihood evaluations in Figure 8.13.2

Figure 8.13 shows that dimensionality has a significant impact on the relative efficiency

per likelihood evaluation of each algorithm. For two-dimensional scans, we see that T-Walk

performs the least efficiently, while the other algorithms are reasonably similar. However, in

the higher-dimensional parameter spaces, the efficiency of the nested sampling in MultiNest

becomes comparable to the MCMC in T-Walk, whereas GreAT and Diver remain relatively

efficient. The reduction in performance by MultiNest in higher dimensions is probably due to

the complicated calculations required to perform its ellipsoidal sampling of multi-dimensional

modes. These calculations must be performed between each generation of live points. Another

potential cause of the performance reduction in T-Walk and MultiNest is the intrinsic level of

parallelisability of their algorithms, relative to the other scanners. For problems with larger

numbers of parameters, we observe that the most efficient sampling algorithms are GreAT and

2Here we use 24 processes for the two dimensional scans, and 240 processes for the seven and 15-dimensional
scans, so time comparisons should not be drawn between the two-dimensional plots and the seven/15-dimensional
ones.
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Figure 8.14: The best-fit likelihood achieved by each scanner within a given time limit, for two
(upper-left), seven (upper-right) and 15-dimensional (lower) scans. Figure from Ref. [6].

Diver, with both exhibiting the lowest average latency between likelihood evaluations.

In Figure 8.14, we summarise the overall performance of the algorithms in terms of time and

fit quality at each dimensionality. We bin all completed test scans logarithmically in the total

convergence time, and for each sampler, choose the scan in each bin with the best fit. There are

no Diver points in the longer bins, simply because the longest Diver scans took less time than

the longest scans with other samplers. Diver clearly outperforms the other algorithms in high

dimensions by this metric as well, finding a better fit in a shorter runtime than the other three

algorithms. It is also important to note the vertical scales in Figure 8.14, where the likelihood

values span a much wider range in seven and 15 dimensions than in two. On close inspection

however, we can see even in two dimensions that Diver and MultiNest obtain better fits in less

time than either T-Walk or GreAT.

We also notice that in higher dimensions, although T-Walk takes less evaluations than

GreAT, both take a similar amount of runtime to reach convergence, suggesting that T-Walk’s

reduced sampling is offset by additional algorithmic complexity requiring more extended cal-
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culations between samples.

8.8 Posterior sampling

Figures 8.4, 8.8 and 8.11 show the posterior sampling abilities of T-Walk, MultiNest and GreAT,

respectively. The best-quality posterior in T-Walk took 9 hr, while in MultiNest the best poste-

rior we show took over 21 hr. The highest-quality GreAT posterior we show took even longer,

and is clearly a poorer result than what was achieved by T-Walk and MultiNest.

Comparing the quality of the posterior maps achieved by T-Walk and MultiNest reveals

some interesting trends. Firstly, despite taking less than half the runtime, the best posterior

map returned by T-Walk appears to have given a better-converged map of the posterior than

the best effort by MultiNest.

We can also see a distinct tendency for the shapes of the contours returned by Multi-

Nest to erroneously ‘smooth away’ sharper features in the posterior, which are mapped far

more carefully and accurately by T-Walk. This is most likely due to the ellipsoidal sampling

method intrinsic to MultiNest, which biases the algorithm towards finding new live points within

elliptically-shaped regions encompasing its current population of points. This makes it rather

easy for the algorithm to miss sharp features in the posterior, such as the low-coupling tip of

the highest-mass mode in the scaler singlet parameter space, which would protrude beyond the

approximate contour defined by the bounding ellipsoids in MultiNest.

We also see that posterior maps become poorer for shorter scans with both T-Walk and

MultiNest, but in quite distinct ways. In MultiNest, a scan performed with too few live points or

too high a tolerance will give a poorly-sampled posterior with few favoured regions, essentially

because the algorithm has only managed to locate the most dominant modes of the posterior

at the outset. In contrast, a poorly-converged T-Walk scan, particularly one with a large tol

value, will typically instead result in a map that includes all relevant modes across the parameter

space, but with their relative contributions poorly determined, such that they appear alongside

a number of other, spurious, favoured regions. When inspecting a posterior map, particularly

from brief scans, it is important to be aware of these differences between the algorithms.

8.9 Discussion

We have investigated the performance of the four major samplers available in ScannerBit as part

of GAMBIT 1.0.0, over a range of algorithmic settings and parameter space dimensionalities. In

Table 8.2, we summarise our recommended values for the two most important settings of each
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Table 8.2: The recommended starting parameters for each scanner available in GAMBIT 1.0.0.
Here Ndim is the dimensionality of the scan and NMPI is the number of (distributed-memory)
parallel processes available to GAMBIT.

Scanner Parameter Recommendation

MultiNest nlive 2 × 104

tol 10−3

Diver NP 2 × 104

convthresh 10−3

T-Walk chain_number Ndim +NMPI + 1
sqrtR < 1.01

GreAT nTrialLists Ndim + 1
nTrials 104

scanner. These are intended as starting values that will give reasonably robust results. However,

every parameter space is different and publication quality results may require significantly more

stringent settings, in order for final results to be sufficiently robust. See Sections 8.3–8.5 for

more detailed recommendations.

We are also able to make detailed comparisons between the four scanning algorithms. In

Sections 8.6 and 8.7 it became evident that differential evolution, as implemented in Diver,

consistently out-performs the other algorithms in the computation of profile likelihoods. This

becomes particularly clear in high dimensions, where Diver leads the other algorithms in like-

lihood mapping, the quality of the best fit found, and overall efficiency.

The true best-fit point for this likelihood is located in the low-mass region, regardless of

the number of additional free parameters. The scanners did not always locate this point, and

in many cases located a best-fit in one of the high-mass modes. Although locating this point

in two dimensions is less challenging (see Appendix D), once the dimensionality is increased,

only Diver (with most stringent convergence criteria) was able to successfully locate the best fit

in the low-mass mode. All other scans converged to a best fit in a completely different mode,

demonstrating the value of using alternative algorithms to fully understand the parameter

space.

For careful mapping of the posterior, we find that T-Walk is the most effective algorithm,

followed by MultiNest and GreAT. T-Walk manages to sample the posterior distribution at

higher resolution in less time than the other two scanners, and avoids the ellipsoidal biases

that appear to afflict MultiNest. For computing low-resolution posteriors however, MultiNest

has the advantage that it requires less parameter tuning than T-Walk, and can more quickly

identify which are the most relevant posterior modes.

In many cases, having both Bayesian and frequentist interpretations of results is desirable.

This makes it necessary to use a sampler able to effectively sample the posterior, such as
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MultiNest or T-Walk. However, our tests show that this is best performed after the likelihood

function has been carefully mapped with another sampler, in order to find all modes. For

example, in Figure 8.3, MultiNest has completely missed the likelihood mode at low mass. This

mode was successfully found by all three of the other samplers. If MultiNest were to be used

exclusively, then this region Ů which contains best-Ąt points degenerate with those in the

other modes Ů would be completely unexplored. However, with the knowledge gained from

the other scanners, a localised study can be performed using MultiNest around the low-mass

region (a technique used in Ref. [5]), in order to correctly evaluate the full posterior. In this

way, the ability to use complementary scanners signiĄcantly improves the statistical robustness

of results.

For lower-dimensional problems where both posterior distribution and proĄle likelihood are

required, MultiNest could potentially be used solo, to save repeating analyses with multiple

scanners. We Ąnd that it is able to locate all modes when scanning only the two-dimensional

parameter space, and that it is reasonably efficient compared with the other algorithms. In

general though, relying on only a single sampling algorithm is risky.

The two MCMC-based scanners available in GAMBIT 1.0.0, T-Walk and GreAT, provide the

user with a somewhat more traditional class of sampling methods. Although these algorithms

are demonstrably less effective scanners in higher-dimensional proĄle likelihood problems, they

may suit lower-dimensional studies better.

Notably, our tests here are based on only one physical problem; although this is intended as

a realistic example, no single example could ever represent the full diversity of problems that

might be encountered. Other parameter spaces and likelihood functions may therefore reveal

different trends to those we have observed with the scalar singlet model.

8.10 Conclusions

We compared the performance of the four main sampling algorithms interfaced to ScannerBit

in GAMBIT 1.0.0: Diver, MultiNest, T-Walk and GreAT. We found that for proĄle likelihood

analysis at low dimensionality, Diver and MultiNest outperform T-Walk and GreAT, and provide

roughly equivalent performance to each other. At higher dimensions (10 and above), Diver

substantially outperforms the other three algorithms on all metrics. This is to some extent

because Diver is an optimisation routine intended only for frequentist studies, and thus does

not sample the posterior. T-Walk provides a more accurate, timely and complete mapping

of the Bayesian posterior than MultiNest, although MultiNest identiĄes the primary posterior

mode more quickly.
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As the particle nature of dark matter has not yet been identiĄed, the number of experiments,

and the models to be tested, continue to grow. Dealing with numerous, often complicated,

experimental constraints is made manageable with the processes of global Ąts. At the same

time, it is imperative that the precision of the theoretical predictions is not less than that

of the experimental measurements. It is in the renormalisation of a theory that the desired

theoretical precision is controlled, so pursuing higher order results and being aware of potential

pitfalls are essential. In this thesis I have approached both global Ąts and renormalisation in

the context of dark matter phenomenology.

In Chapter 3 I presented precision mass calculations in the wino limit of the MSSM and in

the MDM model. For the wino model I showed consistency with previous calculations [118] and

improved on these by including the effect of light quark masses. I presented the Ąrst two-loop

calculation for electroweak mass splittings in the MDM model. I also made a detailed analysis

of the uncertainties in the calculation from all parameters involved, and showed that the effect

of including two-loop mass splittings can be up to 40% in the decay lifetime of the charged

multiplet components compared to the one-loop result.

The precision mass calculations in Chapter 3 represent the Ąrst application of the Mass

Builder software. Although all the tools exist to compute and evaluate two-loop self-energies,

the non-trivial execution and organisation of these calculations, and the linking of the separate

parts make such a task excessively difficult. I present a new tool which removes the obstacle

of computing and then organising hundreds of two-loop amplitudes, and writing the resulting

code to evaluate them. From a few simple input Ąles, the necessary programs are called in

the appropriate ways, and the resultant code is automatically generated. This has allowed

us to not only replicate the results in Ref. [118] but to quickly generalise them to a higher

dimensional multiplet without any signiĄcant extra work. Even if one is only interested in

one-loop calculations, Mass Builder offers an organised framework to carry them out, and was

used to produce all one-loop results in Chapter 4. A full user guide and details of the program

itself are given in Appendix C.

The Mass Builder software offers the ability to quickly obtain professional and reliable nu-

merical implementations of one and two-loop self-energies. With this software publicly avail-

able, it may be used in future to compute precision masses in a range of models. Although in

principle there is no limit to the number of diagrams that can be computed for a particular

195
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calculation, the time taken to compute and then compile the resultant generated code becomes

excessive for more than a thousand diagrams. However, there are various ways the Mass Builder

algorithm could be optimised to make signiĄcant improvements in this regard. In many cases

there are multiple diagrams that are near identical, with the same type of particles and the

same types of couplings, with the only differences being the mass parameters. Identifying these,

and computing only one generic diagram would save a huge amount of time. Although simple

in principle, this is technically difficult to implement and was not necessary for the problems

we have dealt with here. Other improvements could be made by automatically computing

two-loop counter-terms, which currently requires a manual approach. In any case, Mass Builder

offers a new avenue for tackling the monumental task of computing full two-loop amplitudes.

As the need to quickly analyse new models and to make more precise predictions increases,

spectrum generator tools are becoming more common in dark matter phenomenology. However,

these tools often carry out calculations in the background, relying on theoretical assumptions

with subtle implications of which the user may be unaware. In Chapter 4 I made an in-depth

investigation into the effect of performing mass calculations iteratively and then using these

precision masses for a mass splitting prediction. This iterative method, which is widely used

in spectrum generators, is highly sensitive to the renormalisation scale and would, for a typical

scale choice around the electroweak scale, lead to a near zero mass splitting. While it is easy

to see that something is wrong with this result, it is difficult to reconcile this with the fact

that iteratively computed masses are entirely valid, and often considered more precise than

the alternative methods. Only through a detailed investigation do we properly understand the

subtle differences behind this issue.

The computation of precision masses is only one aspect of the search for dark matter.

In the second part of this thesis I performed several global Ąts to scalar singlet dark matter

models, using a range of constraints. These included both the latest experimental constraints

and considerations of electroweak vacuum stability and perturbativity. In such a way I placed

strong limits on the parameter space of two variants of the scalar singlet dark matter model.

The metastability of the SM, with such proximity to the situation of catastrophic instability

(as seen in Figure 6.5), suggests that there is a theoretical problem with the model. Although,

this may be argued against on the grounds that the expected lifetime of the Universe is still

signiĄcantly longer than necessary. However, it is hard not to agree with this notion when it

becomes apparent that the addition of a dark matter candidate, a known missing part of the

SM, can make the vacuum completely stable. Putting these ideas together is an extremely

satisfying result. Thus when we are left with having to include dark matter without this
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additional theoretical bonus, the model loses some of the initial appeal. Apart from a tiny part

of the parameter space, this is the situation we have found for scalar singlet dark matter.

It has already been shown [102] that scalar singlet dark matter charged under a Z3 symmetry

opens up a larger parameter space than the Z2 model. This is the result of the cubic scalar

singlet coupling and the associated semi-annihilation channel. I verify this fact in Section 7.6

and place strong constraints on what remains of the allowed region. However, despite the

increase in the size of the allowed region, this model performs worse under the requirement of

a stable electroweak vacuum and perturbativity up to the GUT scale. If these constraints are

relaxed, the scalar singlet with a Z3 symmetry model may survive longer than the Z2 model, as

direct detection constraints become stronger in the future. Although eventually the parameter

space in both models will be severely restricted.

If we add the additional requirement that the scalar singlet constitutes all of the dark

matter relic abundance, then we can still Ąnd viable solutions in both the Z2 and Z3 models.

These models, with scalar singlet masses of ∼ 2 TeV, are already slightly penalised by the latest

direct detection likelihoods, although not sufficiently so to rule them out completely. However,

these Ąndings give us a clear prediction for where future direct detection experiments may Ąnd

scalar singlet dark matter in the not too distant future.

An essential part of global Ąts is the statistical sampling algorithm that is used. In a multi-

dimensional and multi-modal parameter space, which even the simple scalar singlet model

admits, it is important to use an efficient and reliable method. In addition, we must be

conĄdent that the convergence criteria and number of population points used are sufficient to

properly sample the contours and to Ąnd all modes, including the best-Ąt point. In Chapter

8 I provide the most thorough comparisons to date of statistical sampling algorithms applied

to the scalar singlet scenario. I test and compare each scanner using a variety of metrics in

parameter spaces with dimensions between two and 15. The result of this is a set of guidelines

for the use of the four sampling algorithms available in GAMBIT 1.0.0, along with a detailed

understanding of the strengths and pitfalls of each algorithm. This information is extremely

relevant for anyone pursuing global Ąts using any of the four sampling algorithms, or algorithms

which have similar methodology and control parameters. The effort to constrain dark matter

is ongoing but the results presented here offer both precise things to look for, in the way

of disappearing track searches and heavy scalar singlets in direct detection, and a signiĄcant

reduction in the available parameter space of scalar singlet dark matter. Further to this, the

techniques developed and used throughout this process will help accelerate the search for the

most important missing ingredient in the SM of particle physics.
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A One-loop self-energies and counter-term couplings

A.1 Winos and minimal dark matter

Here we present the one-loop self-energies and counter-term couplings required for the compu-

tation of the two-loop mass splittings in Chapter 3. The two-loop multiplet self-energies are

omitted, but a C++ computer code with the self-energies expressed in the form described in

Section 3.3.2, as coefficients of basis integrals, is available as part of the Mass Builder package

(see Appendix C).

One-loop self-energies for the multiplet components are presented in Sections A.1.1 for the

wino limit of the MSSM, and Section A.1.2 for the MDM model. Counter-term couplings for

the new two and three-point vertices are provided in Sections A.1.1 and A.1.2 for the wino and

MDM models, respectively.

To compute the two-loop amplitudes in the left-most diagram of Figure 3.4, we need to

determine the counter-term couplings for the gauge boson propagators. This is achieved by

computing the one-loop gauge boson self-energies and setting the counter-term couplings such

that the UV divergences cancel. In both the wino limit of the MSSM and MDM, the self-

energies of the electroweak gauge bosons are given by the SM contribution plus an additional

one or two diagrams from the new multiplet. Let the self-energy of the gauge bosons be

ΠV1V2
= ΠV1V2,SM + ΠV1V2,χχ + δZ,V1V2

(p2 − m̂2
V ) − δM,V1V2

(A.1)

where Vi ∈ ¶W,Z, γ♢, ΠV V,SM is the SM contribution, m̂V is the boson mass when V1 = V2

or zero otherwise and δZ,V1V2
, δM,V1V2

are counter-term couplings. The SM part, ΠV V,SM ,

which consists of the contributions from other gauge bosons, fermions, ghosts and Goldstone

bosons can be found in multiple sources (see for example Refs. [118, 237, 239]), so we do not

reproduce them here. The contributions to the gauge boson self-energies from the new multiplet

components are presented in Sections A.1.1 and A.1.2, respectively, for the wino and MDM

models. We also provide the full counter-term couplings, including the SM contributions, for

the gauge bosons in Sections A.1.1 and A.1.2.

The self-energies are written in terms of the one-loop A and B basis integrals, deĄned in

Eqs. (2.29) and (2.30), but with the Mass Builder normalisation which is deĄned in Eqs. (C.2)

and (C.3).

Throughout this appendix, the separation of fermion self-energies into the form Σ(p2) =

223
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ΣK(p2)/p + ΣM (p2) is manifest in the form of the coefficients. All self-energies are in the

Feynman-Št Hooft (ξ = 1) gauge and we deĄne κ ≡ 1/(16π2).

A.1.1 Wino model

Neutral component

The self-energy of the neutral component χ0 is

κ−1Σ0(p2) =C0
Aχ

A(M̂) + C0
AW

A(m̂W ) + C0
BχW

B(M̂, m̂W ) + C0
0 , (A.2)

with coefficients

C0
Aχ

= −2g2

p2 /p (A.3)

C0
AW

=
2g2

p2 /p (A.4)

C0
BχW

=
2g2

p2

(

p2 + M̂2 − m̂2
W

⎡

/p− 8g2M̂ (A.5)

C0
0 =

(

−2g2 + δχ,Z

⎡

/p+
(

4g2 + δχ,M

⎡

M̂. (A.6)

Charged component

The self-energy of the charged component χ+ is given by

κ−1Σ+(p2) =C+
Aχ

A(M̂) + C+
AW

A(m̂W ) + C+
AZ

A(m̂Z)

+ C+
Bχγ

B(M̂, 0) + C+
BχW

B(M̂, m̂W ) + C+
BχZ

B(M̂, m̂Z) + C+
0 ,

(A.7)

with coefficients

C+
Aχ

= −2g2

p2 /p (A.8)

C+
AW

=
g2

p2 /p (A.9)

C+
AZ

=
g2 cos2(θW )

p2 /p (A.10)

C+
Aγ

=
g2 sin2(θW )

p2 /p (A.11)

C+
BχW

=
g2

p2

(

p2 + M̂2 − m̂2
W

⎡

/p− 4g2M̂ (A.12)

C+
Bχγ

=
sin2(θW )g2

p2

(

p2 + M̂2
⎡

/p− 4g2M̂ sin2(θW ) (A.13)

C+
BχZ

=
cos2(θW )g2

p2

(

p2 + M̂2 − m̂2
Z

⎡

/p− 4g2M̂ cos2(θW ) (A.14)

C+
0 =

(

−2g2 + δχ,Z

⎡

/p+
(

4g2 + δχ,M

⎡

M̂. (A.15)
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Gauge bosons

The multiplet contributions are given by

ΠZZ,χχ =
e2 cot2(θW )

36π2
Π(M̂) (A.16)

Πγγ,χχ =
e2

36π2
Π(M̂) (A.17)

ΠW W,χχ =
g2

36π2
Π(M̂) (A.18)

ΠZγ,χχ =
e2 cot2(θW )

36π2
Π(M̂), (A.19)

where

Π(m) ≡ 3(p2 + 2m2) B(p,m,m) − p2 − 6 A(m) + 6m2. (A.20)

Counter-term couplings

The counter-terms δZ and δM required to cancel divergences arising from B and A are

δχ,Z =
4g2

ϵ̂
(A.21)

δχ,M = −16g2

ϵ̂
, (A.22)

where 1/ϵ̂ ≡ 2/(4 −D) − γE + log(4π) and γE is the Euler-Mascheroni constant.

Additional one-loop counter-terms are required to control divergences in the two-loop self-

energies. These are the counter-terms for the gauge-multiplet three-point vertices,

δχ0χ0Z =
g3

4π2ϵ̂
(A.23)

δχ0χ+W =
δχ+χ+γ

sin(θW )
=
δχ+χ+Z

cos(θW )
= − g3

2π2ϵ̂
. (A.24)

The gauge boson counter-term couplings are

δZ,W W = − 13g2

96π2ϵ̂
(A.25)

δM,W W =
g

32π2ϵ̂

[

−
∑

i

cim
2
i + 13m̂2

W − 6m̂2
Z cos(2θW )

]

(A.26)

δZ,ZZ =
g2

96π2ϵ̂

[

54 sin2(θW ) − 41 sec2 θW + 28
]

(A.27)

δM,ZZ = −g sec2(θW )

96π2ϵ̂

[

3
∑

i

cimi + m̂2
W

(

55 − 47 sec2 θW − 15 cos 2θW

)

]

(A.28)

δZ,γγ = −9g2 sin2 θW

16π2ϵ̂
(A.29)

δM,γγ = 0 (A.30)

δZ,Zγ =
g2 tan θW

96π2ϵ̂
(14 − 29 cos 2θW ) (A.31)

δM,Zγ = −g2m̂2
Z

8π2ϵ̂
sin θW cos θW (A.32)
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where the summation is over all SM quarks and leptons, with

mi ∈ ¶m̂u, m̂c, m̂t, m̂d, m̂s, m̂b, m̂e, m̂µ, m̂τ ♢ (A.33)

and ci = 3 for quarks and 1 for leptons.

A.1.2 Minimal dark matter

Neutral component

The self-energy of the neutral component, χ0, is

κ−1Σ0(p2) =C0
Aχ

A(M̂) + C0
AW

A(m̂W ) + C0
BχW

B(M̂, m̂W ) + C0
0

(A.34)

where the coefficients are given by

C0
Aχ

= −6g2

p2 /p (A.35)

C0
AW

=
6g2

p2 /p (A.36)

C0
BχW

=
6g2

p2

(

p2 + M̂2 − m̂2
W

⎡

/p− 24g2M̂ (A.37)

C0
0 =

(

−6g2 + δZ

⎡

/p+
(

12g2 + δM

⎡

M̂. (A.38)

Charged component

The self-energy of the charged component, χ+, is

κ−1Σ+(p2) =C+
Aχ

A(M̂) + C+
AW

A(m̂W ) + C+
AZ

A(m̂Z)

+ C+
Bχγ

B(M̂, 0) + C+
BχW

B(M̂, m̂W ) + C+
BχZ

B(M̂, m̂Z) + C+
0 ,

(A.39)

where the coefficients are given by

C+
Aχ

= −6g2

p2 /p (A.40)

C+
AW

=
5g2

p2 /p (A.41)

C+
AZ

=
g2 cos2(θW )

p2 /p (A.42)

C+
Aγ

=
g2 sin2(θW )

p2 /p (A.43)

C+
BχW

=
5g2

p2

(

p2 + M̂2 − m̂2
W

⎡

/p− 20g2M̂ (A.44)

C+
Bχγ

=
sin2(θW )g2

p2

(

p2 + M̂2
⎡

/p− 4g2M̂ sin2(θW ) (A.45)

C+
BχZ

=
cos2(θW )g2

p2

(

p2 + M̂2 − m̂2
Z

⎡

/p− 4g2M̂ cos2(θW ) (A.46)

C+
0 =

(

−6g2 + δχ,Z

⎡

/p+
(

12g2 + δχ,M

⎡

M̂. (A.47)
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Doubly charged component

The self-energy of the doubly charged component, χ++, is

κ−1Σ++(p2) =C++
Aχ

A(M̂) + C++
AW

A(m̂W ) + C++
AZ

A(m̂Z)

+ C++
Bχγ

B(M̂, 0) + C++
BχW

B(M̂, m̂W ) + C++
BχZ

B(M̂, m̂Z) + C++
0 ,

(A.48)

where the coefficients are given by

C++
Aχ

= −6g2

p2 /p (A.49)

C++
AW

=
2g2

p2 /p (A.50)

C++
AZ

=
4g2 cos2(θW )

p2 /p (A.51)

C++
Aγ

=
4g2 sin2(θW )

p2 /p (A.52)

C++
BχW

=
2g2

p2

(

p2 + M̂2 − m̂2
W

⎡

/p− 8g2M̂ (A.53)

C++
Bχγ

=
4 sin2(θW )g2

p2

(

p2 + M̂2
⎡

/p− 16g2M̂ sin2(θW ) (A.54)

C++
BχZ

=
4 cos2(θW )g2

p2

(

p2 + M̂2 − m̂2
Z

⎡

/p− 16g2M̂ cos2(θW ) (A.55)

C++
0 =

(

−6g2 + δχ,Z

⎡

/p+
(

12g2 + δχ,M

⎡

M̂. (A.56)

Gauge bosons

The contributions from the MDM quintuplet to the gauge bosons self-energies are

ΠZZ,χχ =
5e2 cot2(θW )

36π2
Π(M̂) (A.57)

Πγγ,χχ =
5e2

36π2
Π(M̂) (A.58)

ΠW W,χχ =
5g2

36π2
Π(M̂) (A.59)

ΠZγ,χχ =
5e2 cot2(θW )

36π2
Π(M̂), (A.60)

where Π is given in Eq. (A.20).

Counter-term couplings

The counter-terms δχ,Z and δχ,M are given by

δχ,Z =
12g2

ϵ̂
, (A.61)

δχ,M = −48g2

ϵ̂
. (A.62)
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Additional counter-terms for the gauge-multiplet three-point vertices are required to control

divergences in the two-loop self-energies. They are

δχ0χ+W +

√
3

=
δχ++χ+W +

√
2

= − g3

π2ϵ̂
(A.63)

δχ++χ++γ

2 sin(θW )
=

δχ++χ++Z

2 cos(θW )
=
δχ+χ+γ

sin(θW )
=
δχ+χ+Z

cos(θW )
=

g3

π2ϵ̂
. (A.64)

We determine these terms by demanding that the two-loop self-energy be free of UV divergences

(i.e. free of any poles in ϵ or ϵ2).

The gauge boson counter-term couplings are

δZ,W W = − 15g2

32π2ϵ̂
(A.65)

δM,W W =
g

32π2ϵ̂

[

−
∑

i

cim
2
i + 15m̂2

W − 2m̂2
Z cos(2θW )

]

(A.66)

δZ,ZZ = − g2

96π2ϵ̂

[

43 cos(2θW ) + 41 sec2 θW − 39
]

(A.67)

δM,ZZ = −g sec2(θW )

96π2ϵ̂

[

3
∑

i

cimi + m̂2
W

(

70 − 47 sec2 θW + 62 cos2 θW

)

]

(A.68)

δZ,γγ = −43g2 sin2 θW

48π2ϵ̂
(A.69)

δM,γγ = 0 (A.70)

δZ,Zγ =
g2

96π2ϵ̂
(41 tan θW − 43 sin 2θW ) (A.71)

δM,Zγ = −g2m̂2
Z

8π2ϵ̂
sin θW cos θW , (A.72)

where the summation is over all SM quarks and leptons given in Eq. A.33.

A.2 One-loop self-energies for an electroweak triplet in

general gauge

In this section we present the one-loop self-energies used to produce the results in Chapter 4.

These are the self-energies for the charged and neutral components of the electroweak triplet

in a general gauge, parameterised by the gauge parameter ξ. These results reduce to those

presented in section A.1.1 for ξ = 1.

The self-energy of the charged component χ+ is given by

κ−1Σ+(p2) =C+
Aχ

A(M̂) + C+
AW

A(m̂W ) + C+
AZ

A(m̂Z) + C+
AW ξ

A(ξm̂W )

+ C+
AZξ

A(ξm̂Z) + C+
Bχγ

B(M̂, 0) + C+
BχW

B(M̂, m̂W )

+ C+
BχW ξ

B(M̂, ξm̂W ) + C+
BχZξ

B(M̂, ξm̂Z) + C+
BχZ

B(M̂, m̂Z) + C+
0 ,

(A.73)
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with coefficients

C+
Aχ

=
g2

2p2

[

(ξ2
− 1) cos(2θ) − ξ2

− 3
]

/p (A.74)

C+
AW

=
g2

2p2

(

2m̂2
W + M̂2

− p2
)

/p (A.75)

C+
AZ

=
g2 cos2(θ)

2p2

(

2m̂2
Z + M̂2

− p2
)

/p (A.76)

C+
AW ξ

=
g2

2p2

(

p2
− M̂2

)

/p (A.77)

C+
AZξ

=
g2 cos2(θ)

2p2

(

p2
− M̂2

)

/p (A.78)

C+
Bχγ

= −
g2 sin2(θ)ξ2

p2

(

p2 + M̂2
)

/p − g2 sin2(θ)
(

ξ2 + 3
)

M̂ (A.79)

C+
BχW

= −
g2

2m̂2
W p2

[

p2
(

p2
− 2M̂2 + m̂2

W

)

+ M̂4 + M̂2m̂2
W − m̂4

W

]

/p − 3g2M̂ (A.80)

C+
BχZ

= −
g2 cos2(θ)

2m̂2
Zp2

[

p2
(

p2
− 2M̂2 + m̂2

Z

)

+ M̂4 + M̂2m̂2
Z − m̂4

Z

]

/p − 3g2 cos2(θ)M̂ (A.81)

C+
BχW ξ

= −
g2

2m̂2
W p2

[

p2
(

2M̂2
− p2 + m̂2

W ξ2
)

− M̂4 + M̂2m̂2
W ξ2

]

/p − g2M̂ξ2 (A.82)

C+
BχZξ

= −
g2 cos2(θ)

2m̂2
Zp2

[

p2
(

2M̂2
− p2 + m̂2

Zξ2
)

− M̂4 + M̂2m̂2
Zξ2
]

/p − g2 cos2(θ)M̂ξ2 (A.83)

C+
0 =

⎭

g2

2

[(

ξ2
− 1
)

cos(2θ) − ξ2
− 3
]

+ δZ

}

/p +
(

4g2 + δM

)

M̂. (A.84)

The self-energy of the neutral component χ0 is

κ−1Σ0(p2) =C0
Aχ

A(M̂) + C0
AW

A(m̂W ) + C0
AW ξ

A(ξm̂W ) + C0
BχW

B(M̂, m̂W )

+ C0
BχW ξ

B(M̂, ξm̂W ) + C0
0

(A.85)

with coefficients

C0
Aχ

= −2g2

p2 /p (A.86)

C0
AW

=
g2

m̂2
W p2

(

M̂2 − p2 + 2m̂2
W

⎡

/p (A.87)

C0
AW ξ

= − g2

m̂2
W p2

(

M̂2 − p2
⎡

/p (A.88)

C0
BχW

= − g2

m̂2
W p2

(

−2M̂2p2 + m̂2
W p2 + p4 + M̂4 + M̂2m̂2

W − 2m̂2
W

⎡

/p− 6g2M̂ (A.89)

C0
BχW ξ

=
g2

m̂2
W p2

(

−2M̂2p2 − m̂2
W ξ2p2 + p4 + M̂4 − M̂2m̂2

W ξ2
⎡

/p− 2g2ξ2M̂ (A.90)

C0
0 =

(

−2g2 + δZ

)

/p+
(

4g2 + δM

)

M̂. (A.91)

The separation of the self-energy into the form Σ(p2) = ΣK(p2)/p + ΣM (p2) is manifest in

the form of the coefficients presented above. The counter-terms δZ and δM required to cancel

divergences arising from B and A are

δZ =
4g2ξ2

ϵ̂
, (A.92)

δM = −4g2(ξ2 + 3)

ϵ̂
. (A.93)
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A.3 One-loop self-energies in the vector dark matter model

Here we present the one-loop self-energies for the vector dark matter model used in section

5. The one-loop self-energies of the charged and neutral components of the vector Ąeld V are

given by

Σ+
V,Z =

19g2

6(16π2)

[

4 − 57
(

−c2
W B(m̂Z ,MV ) + B(m̂W , M̂V ) − B(M̂V , 0)

⎡]

+ δZ (A.94)

Σ+
V,M =

g2

6(16π2)

[

16
((

c2
W M̂2

V +m2
W

⎡

B(m̂Z , M̂V ) + (M̂2
V + m̂2

W )B(m̂W , M̂V )

+M̂2
V s

2
W B(M̂V , 0)

⎡

+ 7c2
W A(m̂Z) + 14A(M̂V ) + 7A(m̂W ) + 20(M̂2

V + m̂2
W )
]

a

16π2
(A(m̂H) + 2A(m̂W ) + A(m̂Z)) − a2m̂2

W

π2
B(m̂H , M̂V ) + δM (A.95)

Σ0
V,Z =

g2

9(16π2)

[

2 + 57B(m̂W , M̂V )
]

+ δZ (A.96)

Σ0
V,M =

g2

3(16π2)

[

7A(M̂V ) + 7A(m̂W ) + 2
(

M̂2
V + m̂2

W

⎡(

5 + 8B(m̂W , M̂V )
⎡]

a

16π2
(A(m̂H) + 2A(m̂W ) + A(m̂Z)) − a2m̂2

W

π2
B(m̂H , M̂V ) + δM . (A.97)

We check that the one-loop divergences are canceled by the corresponding counter-terms. The

required counter-terms are

δZ =
19g2

3(16π2)ϵ̂
(A.98)

δM =
a2s2

W

π2ϵ̂
m̂2

W +
a

16π2ϵ̂

(

m̂2
H + 2m̂2

W + m̂2
Z

⎡

− 3g2

16π2ϵ̂

[

M̂2
V + m̂2

W

]

. (A.99)

A.3.1 Large M̂V limit mass splitting series expansion

The one-loop mass splitting is given by the Ąrst term of the series expansion in Eq. (5.6). In

the limit of large M̂V we have computed the next seven terms of this series, up to order g16.

The series expansion can be represented as

∆M = 5(mW − c2
WmZ)

∞
∑

n=0

(−1)n2

cn

16n

(

g2(n+1)

π(2n+1)

)(

1
2

n

)(

42 log

(

M̂2
V

Q2

)

− 103

)n

(A.100)

where we have veriĄed that it is convergent for the Ąrst eight terms, with corresponding coef-

Ącients

cn =

⎭

1

16
,

1

4(32)
,

1

4(33)
,

2

36
,

5

38
,

4

39
,

28

312
,

64

314

}

. (A.101)



B Renormalisation group equations

B.1 Scalar singlet dark matter

The RGEs used in Section 6.5.2 which are different to the SM RGEs are given here up to

two-loop order.

β
(1)
λS

= 2
(

9λ2
S + λ2

SH

⎡

(B.1)

β
(2)
λS

= −4

5

(

10λ3
SH − 15g2
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2
SH + 15λ2

SHy
2
d + 15λ2
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2
u + 255λ3

S + 25λSλ
2
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− 3g2
1λ

2
SH + 5λ2
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2
e

⎡
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The top Yukawa coupling changes from the SM as

β(2)
yt

= β
(2)
yt,SM +

1

4
λ2

SH (B.7)

and we omit the changes to the other Yukawa couplings.
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Abstract

Mass Builder is designed to build, up from the level of a model Ąle, a C++ computer code

to evaluate renormalised masses. This is achieved by generating the necessary Mathematica

and C++ scripts to interface with the existing tools, along with sophisticated intermediary

sorting. In doing so it provides a new interface between the symbolic amplitudes provided by

FeynArts [216], FeynCalc [222,224], reduced by TARCER [209] and FIRE [214] and the numerical

evaluation of these amplitudes using TSIL [9].

C.1 Introduction

The interface between the tools available for generic two-loop calculations is only complete

up to the stage of a symbolic amplitude. Between FeynArts [222, 224], FeynCalc [222, 224]

and TARCER [209] exists the necessary conversions, yet the Ąnal step of numerical evaluation

requires signiĄcant user intervention. However, for one-loop calculations this process is available

with various existing tools. The recently released FeynHelpers [224] serves this purpose by

providing analytic one-loop amplitudes, and other existing codes have been able to do this

by making use of the LoopTools package [313], such as SARAH [142, 143] interfaced to either

SPheno [229] or FlexibleSUSY [234].

The TSIL [9] libraries provide numerical, and in some cases analytical, evaluation of the

basis integrals which appear in a two-loop self-energy. However, in order to make use of

these one must construct a C++ interface to call the TSIL libraries and then evaluate their

amplitude. Although the TSIL functions are user-friendly, making use of them from a symbolic

Mathematica expression is non-trivial. Therefore we provide Mass Builder which is designed

to automate this task by generating the C++ interface and automatically managing the whole

computation process.

In addition to providing an automated framework we are also able to split the calculation

of many loop diagrams into manageable pieces. The computation of O(10) amplitudes simul-

taneously using tools such as FeynCalc results in extremely long run times as simpliĄcations are

attempted at the symbolic level. On the other hand, keeping track of all terms on a diagram

by diagram basis is a serious task by any manual or even semi-automated method. We offer an

232
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alternative; by completely automating this process we are able to keep track of all terms and

evaluate them numerically, which on a modest computing set up is the only way to achieve this

task without additional user intervention.

Mass Builder has successfully been used to compute full two-loop self-energies in the minimal

dark matter quintuplet model (MDM) and the wino limit of the minimal supersymmetric

standard model (MSSM) [1]. It has also been used for a study of the pitfalls of using an

iterative procedure for computing electroweak mass splitting [2]. All routines used to produce

the results in these studies are available with the Mass Builder distribution. This includes

additional code with an interface to the FlexibleSUSY spectrum generator to provide the most

precise and consistent input parameters.

C.1.1 Installation

Mass Builder can be downloaded from https://github.com/JamesHMcKay/Mass_builder.git. Before

beginning the following programs are required

• Mathematica 9.0

• FeynCalc 9.2 including a patched distribution of FeynArts 3.9 and TARCER 2.0

• TSIL 1.41

• cmake 3.4.0.

For additional functionality and use of the routines to generate the results appearing in Refs. [1]

and [2] FlexibleSUSY 1.7.4 is also required. See Section C.5 for details on how to install these

packages. I have tested the Mass Builder C++ code using gcc versions 4.8.4, 5.2.0 and 5.5.0.

The Mass Builder executable is built using cmake with the following commands

mkdir build

mkdir output

cd build

cmake -DTSIL_PATH=/path/to/tsil-1.41/ ..

make

The main executable is now located in the root directory.

C.1.2 Quick start guide

This section provides a minimalistic example to demonstrate the core features of this program

and test the installation has been successful. The example uses a simple scalar Ąeld theory

https://github.com/JamesHMcKay/Mass_builder.git
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with Lagrangian,

L = −1

2
m2ϕ2 − g

3!
ϕ3 − λ

4!
ϕ4 (C.1)

for which I provide a FeynArts model Ąle and the necessary Mass Builder input Ąles in the

models/Scalar/ directory.

Generate FeynArts diagrams

It is important to check the diagrams that are involved in a self-energy calculation and assign

a consistent numbering system to identify each process. FeynArts has the capability to produce

the relevant Feynman diagrams which we store in the folder models/<model>/FA_diagrams/. All

relevant two-loop self-energy diagrams are generated using the commands

mkdir models/Scalar/FA_diagrams

./mass_builder -f -m Scalar -p S[1]

while the one-loop and counter-term diagrams can be generating by specifying additional Ćags

-l 1 and -c respectively.

Compute amplitudes

Next we compute the amplitudes and extract the coefficients and required basis integrals,

storing these for later use. This is achieved with the commands

mkdir output

mkdir models/Scalar/output

./mass_builder -a -m Scalar

which will tell Mass Builder to compute all diagrams in the default list models/Scalar/diagrams.

txt.

Alternatively, if only a few diagrams are required one may enter

./mass_builder -a -m Scalar -p S[1] -d 1

to compute the Ąrst two-loop diagram, for example. Additional Ćags may also be entered here,

such as -c for counter term diagrams or -l 1 to use one loop order instead (two-loop is the

default setting). One may also specify an alternative list rather than the default one using the

Ćag -i followed by the path to the list Ąle.

Next we need to solve for the one-loop counter-term couplings. This is done automatically

using the command

./mass_builder -b -m Scalar -p S[1]
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This will solve for the counter-term couplings d1M and d1Z to give the result which is automat-

ically written into the Ąle models/Scalar/couplings.txt1.

Generate code and evaluate

Once the amplitudes have been computed and stored in the Mass Builder format of basis

integrals and coefficients the next step is to generate the TSIL interface. This is conveniently

separate from the previous step because computing the amplitudes is time consuming, so this

is only done once. In such a way the generation of code can be done repeatedly, using different

combinations of diagrams, without the need to recompute them.

Mass Builder keeps track of all diagrams which have been computed so we can easily generate

the code for every available diagram using the command

./mass_builder -g -m Scalar

alternatively one may use their own custom list by adding the additional Ćag -i followed by

the path to the list Ąle. If code has previously been generated then one must Ąrst run ./scripts

/clean.sh before the above step, otherwise existing incompatible Ąles will be detected by the

cmake system.

Next the generated C++ code must be compiled using the same commands used to make

Mass Builder

cd build

cmake .

make

cd ..

Now we are Ąnally able to compute the total amplitude using the command

./mass_builder -e -i models/Scalar/input.txt

where we must explicitly enter the path to an input Ąle which contains values for the masses

and couplings. This will return the self-energy

One loop self-energy of particle S1 = -0.0316688

Two loop self-energy of particle S1 = 2.91938e-05

where the particle name has been converted to a simpliĄed form, which is the name appearing

in the generated output Ąlenames.

1We provide additional high-order counter-term couplings, which are not as trivial to compute, in this file
as well. However, these are not required for computing the finite part of the two-loop self-energy. Instead these
are only required when checking that the amplitude are divergence free.
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Table C.1: The deĄnitions, required input and default values for command line Ćags used when
calling Mass Builder. Input Ćags must be followed by a string, number or path to an input
Ąle. All option Ćags control boolean parameters; use of the Ćag will result in the parameter
switching to the opposite value from the default.

Input DeĄnition Default value
Run mode flags (specify one and only one)

-a Compute amplitudes
-g Generate TSIL interface code
-e Evaluate self-energies
-f Generate diagrams from FeynArts

-b Solve for one-loop counter-term
Input flags (must be followed by string or integer)

-m m Specify the model null

-p p1 Specify a particle in FeynArts style null

-q p2 Second particle for mixing amplitudes p1

-d n Specify diagram number null

-i file Provide an input list for mode -a diagrams.txt

-i file Provide an input list for mode -g output/avail_diagrams.txt

-i file Provide an input list for mode -b output/avail_diagrams.txt

-l n Work at n-loop order 2

-r input Set restrictions for FeynArts model null

-k n Extract terms of order ϵn 0

Option flags

-o Optimise TSIL interface false

-c Use counter term diagrams false

-w Print value of each diagram false

-t Use FIRE for tensor reduction true

expole Ignore terms proportional to 1/mγ true

onshell Set p2 ≡ mass2 before computing true

We also provide detailed output in the Ąle LaTeX_table.tex written to the modelŠs output

directory. The columns of this Ąle are particle name, loop order (with a Şc" suffix if a counter-

term diagram), diagram number and amplitude in GeV.

C.2 Full user guide

C.2.1 Command line interface

The user interface to Mass Builder is via the command line, where all modes of functionality

are available depending on the chosen input Ćags. These Ćags are either run mode Ćags, input

Ćags or option Ćags. The input Ćags, deĄnitions and default values are given in Table C.1.

One and only one run mode Ćag must be given. Additional inputs must be speciĄed

depending on the run mode. The requirement can be met in multiple ways, as detailed in Table

C.2. These Ćags are always followed by a string, number or path to an input list (following
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Table C.2: The minimum combinations of input Ćags for each run mode and the resultant
behaviour. Each input Ćag must be speciĄed by the appropriate input, either a string, integer
or path to an input Ąle.

Input Ćags Resulting behaviour

-a -m Compute all diagrams listed in diagrams.txt

-a -m -i Compute all diagrams in the speciĄed input list
-a -m -p -d Compute speciĄed diagram
-g -m Generate code for all available diagrams
-g -m -i Generate code for diagrams in speciĄed input list
-f -m -p Produce FeynArts Feynman diagrams for speciĄed particle
-e -i Evaluate self-energy
-b -m -p Solve for one-loop counter-term

the format given in section C.2.2). Option Ćags control boolean parameters and they are not

followed by an input, instead their use results in the parameter switching from the default

value, as speciĄed in Table C.1.

Restrictions can be speciĄed with the -r Ćag, such as excluding certain particles from a

model. This Ćag will add the text following the Ćag exactly as is into the FeynArts function

InsertFields[ . . . Restrictions -> {input} . . . ]. This will imply the desired restriction onto

the possible set of diagrams generated. This should be used consistently across all commands

as the number of allowed diagrams will change, and thus so will the numbering of each diagram.

The -k Ćag is used to extract the O(ϵn) part of the amplitude, given an input n. By default

n = 0 returns the Ąnite amplitude. The total self-energy should be divergence free and use of

n < 0 should give a zero amplitude when all counter-terms are appropriately set. Use of n > 0

will give unreliable results as we do not carry through all terms of order O(ϵm) where m > 0

in our calculations.

The option expole will exclude all terms which have a Ąctitious IR divergence in the Ąnal

numerical evaluation. The option onshell controls if the external momentum is set equal to the

mass before the amplitude is computed in FeynCalc and the tensor integral reduction is carried

out. This is set to true by default as this is the standard practice and is necessary for some

reductions to proceed to the most fundamental basis integrals.

The -o Ćag invokes optimisation of the generated TSIL interface, see Section C.3.2 for

details. The -w Ćag will put a std::cout statement for every two-loop amplitude computed at

runtime for detailed inspection of each contribution to the total self-energy, as may be useful

for identifying large contributions and diagnostics.



C.2. Full user guide 238

C.2.2 Input

All model speciĄc input is stored in the directory models/<model_name>/. The required input Ąles

are

• <model_name>.mod Ű FeynArts model Ąle

• masses.txt Ű list of masses and identiĄers

• couplings.txt Ű list of couplings

• diagrams.txt Ű list of diagrams to compute

which are all stored in the directory models/<model_name>/.

The Ąle masses.txt can contain either one or two columns. The Ąrst, and required, column

must contain a list (in no particular order) of the masses exactly as they appear in the FeynArts

model Ąle. The second column, which is highly recommended, should contain a unique identiĄer

for each mass in the corresponding row. For example a typical masses Ąle would be

# masses.txt

MWp wp

MWm wm

MZ z

MA a

MChi c

where the shortened identiĄer makes the resulting generated code easier to read. With this is

mind one could replace wm and wp with single character identiĄers.

If a mass is set to zero in the FeynArts model Ąle, with the line Mass -> 0, and the user

does not wish to replace this with a Ąnite mass for the purposes of the calculation, then the

following line must be used in masses.txt

# masses.txt

null n

where n can be any identiĄer as long as it is unique in the list. No further reference to null or n

is required in the input Ąle at the numerical evaluation step as Mass Builder will automatically

assign zero to any null terms appearing in the TSIL interface code.

The Ąle couplings.txt is a list of all parameters (except the masses speciĄed in masses.txt)

exactly as they appear in the FeynArts model Ąle. This is essential for the generated code

to have declarations for these parameters and for the user input header to contain options

for setting these couplings at runtime via an input Ąle. These parameters can be left free



C.2. Full user guide 239

and set at runtime or deĄned in terms of other parameters. These derived couplings and the

corresponding relationships must be speciĄed Ąrst in the list, followed by undeĄned parameters,

as in the example below. The couplings Ąle would typically look like

# couplings.txt

d1 (g*g/2+lambda*Ms*Ms/2)

dlambda 0

lambda

g

where the counter-term couplings are set to be d1 = g2/2 + λM2
S/2 and dλ = 0 and the other

couplings are left free to be set at run time. In this case Ms must be listed in the masses.txt Ąle.

Any value or relationship deĄned in the second column of the couplings.txt Ąle will override

user input at runtime.

Finally diagrams.txt is a list of diagrams to compute. This Ąle contains at least two columns,

the Ąrst speciĄes the particle name in FeynArts format (such as S[1]) and the second the

corresponding diagram number (to obtain a list of diagrams for each particle in pdf output see

section C.1.2. An optional column may be added to specify the loop order and if this is to

be a counter term diagram (if these options are not set globally with the appropriate Ćags at

runtime). Including all columns this Ąle would look like

# diagrams.txt

F[5] 1 2

F[5] {1,2,3} 1

F[6] 2 2c

which will tell Mass Builder to compute the Ąrst two-loop diagram for the particle F[5], the Ąrst,

second and third one-loop diagrams for the same particle, and the second two loop counter term

diagram for particle F[6]. Grouping diagrams together can increase the speed if the diagrams

are of a similar topology and contain the same masses on internal legs. If the grouping results

in a large number of different masses in the calculation, or combinations of very different

topologies, it can excessively increase runtime. All numbers are in reference to the numbers

given with the diagrams as listed in the pdf output from ./mass_builder -f -p <particle> -m <

model>. The Ąle which may be provided at runtime with the -i option follows exactly the same

format.

There are two additional input Ąles one may place in the model directory when a FeynArts

model contains notation for the couplings and masses that is not supported by Mass Builder

by default. The types of notation not supported are functions, that have not been deĄned in

the generated code, such as Mass[i] where i is an index. Another function that often appears
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in patched FeynArts model Ąles is FCGV["x"]. This occurs when FeynCalc symbols are wrapped

to avoid clashes with symbols from FeynArts . These can be dealt with by including a list

named FCGV.txt in the model directory containing all values of x in one column, and the chosen

replacement name in the other.

C.2.3 Output

All output from the amplitude calculation is stored in the directory models/<model_name>/output

(this empty directory must be created manually before calculation). For typical usage the

contents of the output directory is not important as this is an intermediate step between com-

putation of the amplitudes and the generated C++ interface to TSIL.

Between computing the amplitudes and generating the code Mass Builder stores the neces-

sary information for each diagram in models/<model>/output/. This information is split into four

text Ąles

• basis_integrals_tag.txt list of required basis integrals

• coeff_integrals_tag.txt list of coefficients of the basis integrals in C++ form

• coeff_products_tag.txt list of coefficients of the products in C++ form

• summation_tag.txt the amplitude as a sum of basis integrals and coefficients

and a Mathematica data Ąle

• math_data_tag.mx stores full divergent amplitude for later recall within Mathematica

where tag encodes the particle name, diagram and loop order (and if this is a counter-term

diagram). When necessary the output is written in C++ style for simple implementation into

the Ąnal code.

The Mathematica data Ąle is essential if one wishes to repeat a calculation using the full

amplitude. This is necessary for the computation of the tree-level counter-term, where Mass

Builder collects all relevant amplitudes for the particle in question and then sums these together

before extracting the divergent piece. In the other Ąles we only store information on the Ąnite,

O(ϵ), part of the amplitude. Thus no information is lost from the original calculation.

C.2.4 Interface to external routines

The self-energies are available to external functions via the data structure. This is useful for

including the results into other routines, or doing further manipulations to the self-energies. We
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provide example source codes to demonstrate different levels of complexity for communicating

with the TSIL interface. Scalar.cpp is the most basic example of retrieving the one and two-

loop self-energies. MSSM.cpp computes pole masses and compares these via different methods of

calculation. VDM.cpp will do the same for a vector dark matter model. EW_triplet.cpp will do the

same again, yet it also includes manually created expressions for the derivatives of the one-loop

self-energies. This demonstrates how one may add additional integrals by hand that make use

of the TSIL libraries.

All example routines are located in the folder examples/ and are compiled with make <name>

where <name> is the source Ąle name. Note that for each example the corresponding self-energies

must be generated Ąrst, otherwise a null result will be returned. It is straight forward to add

similar routines following the syntax used in CMakeLists.txt for additional targets.

C.3 Algorithm details and code structure

C.3.1 Computing the amplitudes

We calculate the amplitudes either one diagram at a time, or in selected groups, using FeynArts,

FeynCalc and FIRE, run from C++ via the Wolfram Symbolic Transfer Protocol (WSTP). We

decompose the resultant symbolic amplitudes into lists of coefficients to be applied to basis

integrals, and keep a master list of all the basis integrals required. We convert these coefficients

into C++ format, and generate numerical routines for evaluating both them and the relevant

basis integrals. The details of this algorithm are given in Section 3.3.2.

Basis integral labelling

A priori we have no information on the basis integrals required for a particular problem. For an

amplitude involving multiple particles there are on order hundreds of possible non-degenerate

permutations of basis integrals. Thus, when an amplitude is evaluated in Mathematica we have

no generic way of identifying the integrals we need to use to reconstruct the result in the form

of an integral times a coefficient. So I begin with all possible non-degenerate basis integrals,

and quickly determine which ones have a non-zero coefficient in the resulting amplitude. The

computational time required for this process is negligible and is achieved through the use of

the Coefficient[ Amplitude, Integral ] Mathematica routine. Therefore we use this Şbrute force"

method to reliably determine the basis integrals we require without any notable computational

penalty.
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During this procedure, and in the resultant generated C++ code, we need a unique identiĄer

for each basis integral. However, if the input masses are strings of more than one character,

for example mHp, mA0, and mW, then the obvious way to name the basis integral, F (mHp,mHp,mA0,mA0

,mW) would be F_mHpmHpmA0mA0mW which along with being difficult to read can led to ambiguous

labelling of integrals. For example if one choose the mass labelling to be (H−, H0, χ) = (mHm,mH

,m) then we easily have the degeneracy J(mH,m,mHm) =J_mHmmHm= J(mHm,mH,m). When dealing with

hundreds of possible permutations it is important to avoid such possibilities, however unlikely

they may seem.

To overcome this we assign a unique single character identiĄer to each mass in the routine

set_id. This will check for user input, which is the recommend action, or in the absence of

this input it will attempt to assign a unique identiĄer to each mass. However, this alone is

not sufficient as the original FeynArts model Ąle, and subsequent expressions will contain the

original masses, so we must retain this information along with the unique identiĄer for each

basis integral. Therefore we create a C++ map to map the short name, using the identiĄers, to

a simple class of type Bases which holds the following information

class Bases

{

public:

string type = "";

string e1 = " ", e2 = " ", e3 = " ", e4 = " ", e5 = " ";

string coefficient = "";

string short_name = "";

Bases() {}

<constructors>

};

where we also we provide a constructor for each number of elements (masses). For example

the basis integral V (mHp,mA0,mA0,mW) is initialised as

Bases base("V",mA0,mA0,mW);

which we then save in std::map<std::string, Bases> to the integrals short name.

This set up signiĄcantly simpliĄes the entire algorithm, as we no longer need to pull apart

basis integral identiĄers, such as F_abcde character by character to reconstruct and print out

the integral in a useful form for either FeynCalc or TSIL, and indeed this would not be possible

if any of the identiĄers were not a single character. This also enables a huge Ćexibility in the

mass labelling; in practice one may use whatever name one prefers for the masses without

sacriĄcing Ąnal code readability.
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C.3.2 The TSIL interface

The generated C++ interface to TSIL is organised on a diagram by diagram basis. However,

during the generation of this code the basis integrals required for all diagrams in the chosen

set are amalgamated and reduced to a minimal set. This set is evaluated in one function and

made globally available to the rest of the functions in the script.

The basis integrals are evaluated using the TSIL libraries. The function used, and the

corresponding computation time required, depends on the integral required. In the most general

case the TSIL_Evaluate function is called with 5 mass parameters which will evaluate most of the

possible basis integrals. This is also the most time consuming method, however it is required

for any of the M or V integrals. Therefore, when we need to call this function we should

make sure to also extract any other basis integrals we require to minimise the number of calls

required.

In general the possible basis integrals available from each TSIL_Evaluate call forms a set of

over 30 elements, owing largely to the symmetries between integrals, each of which is extracted

using a unique identifying string. As there is no additional computation overhead for extracting

these integrals once they are already calculated, if we must use TSIL_Evaluate for a M or V

integral, then we should simultaneously extract all other required integrals that are useful for

our problem.

While each call to TSIL_Evaluate can compute over 30 integrals, conversely for each basis

integral there are multiple arguments that can be passed to the evaluate routine to get the

same integral out. Thus we want to Ąnd the optimal parameters to pass to TSIL_Evaluate to get

the maximum number of useful integrals out of it.

We provide a class capable of taking an input list of basis integrals, and providing a correctly

formatted set of calls to the TSIL libraries which minimises the computational time required.

This signiĄcantly increases the time required to generate the code (up to a couple of minutes),

due to the huge sorting problem involved, yet will save time if many TSIL_Evaluate calls are

going to be required. To invoke this option the Ćag -o must be passed along with the generate

call. An example of generated output is

TSIL_SetParameters (&bar,mc2, ma2, ma2 , mc2 , mc2, Q2);

TSIL_Evaluate (&bar, s);

Fcaacc = TSIL_GetFunction (&bar,"M");

Jcaa = TSIL_GetFunction (&bar,"Svzy");

Jccc = TSIL_GetFunction (&bar,"Svxu");

Taca = - TSIL_GetFunction (&bar,"Tzvy");

Tcaa = - TSIL_GetFunction (&bar,"Tvzy");
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Tccc = - TSIL_GetFunction (&bar,"Tvux");

Vaacc = - TSIL_GetFunction (&bar,"Uyuvz");

Vcaac = - TSIL_GetFunction (&bar,"Uyuzv");

Vccca = - TSIL_GetFunction (&bar,"Uxzvu");

where all integrals evaluated here have been explicitly requested by the user input. This is

signiĄcantly more efficient than the naive case where each integral is evaluated one at a time

using the full Ąve parameter TSIL_SetParameters input.

The generated code, located in src/self_energy.cpp takes the following structure

TSIL_COMPLEXCPP <basis integral declarations> ;

TSIL_REAL <mass declarations>;

TSIL_REAL <coupling declarations>;

void DoTSIL(TSIL_REAL s,TSIL_REAL Q2)

{

//TSIL basis integral evaluations

}

void init(Data data)

{

//set couplings and masses from data

}

TSIL_COMPLEXCPP diagram_1()

{

TSIL_COMPLEXCPP C = Coefficient;

return + C * basis_integral;

}

TSIL_COMPLEXCPP diagram_2()

{

TSIL_COMPLEXCPP C = Coefficient;

return + C * basis_integral;

}

void Self_energy::run_tsil (Data &data)

{

TSIL_COMPLEXCPP SE_particle = diagram_1() + diagram_2();

data.SE["particle"] = real(SE_particle);

}
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where we have one subroutine to call TSIL and compute the basis integrals, and a subroutine

for each diagram, where the subroutine names will encode the particle name, diagram number

and loop order (and if it is a counter term diagram or not). The routine run_tsil will Ąll the

self-energy map for each available particle (in practice we have a map for both the one and two

loop self-energies separately, SE_1 and SE_2).

Along with the above source code a header Ąle, data.hpp, is also generated in the include/

directory to hold the model data. This header contains a class deĄnition of type Data which

is designed to manage the input and output of information from the self-energy calculator.

This class contains declarations for each coupling deĄned in couplings.txt, and for each mass

in masses.txt. It also holds a vector of strings with the name avail_part containing the short

names of all particles for which amplitudes are available, along with two maps of type map<

std::string,double> SE_1 and SE_2 which hold the names of the particles and the one-loop and

two-loop self-energies respectively. Finally, it includes the functions which read the runtime

input of values for the couplings and masses relevant for this model. By dynamically updating

this class when generating the self-energy interface we enable user input of these quantities and

a dynamic mapping interface to other functions in the code.

Before code is generated self_energy.cpp is a skeleton necessary for the rest of Mass Builder

to compile successfully. If self_energy.cpp or data.hpp becomes corrupted and the rest of the

code no longer compiles, which is likely if couplings.txt is missing a variable name, then the

skeleton code can be restored by simply running scripts/clean.sh.

The diagrams available to be included in the generated TSIL interface are registered in models

/<model>/output/avail_diagrams.txt which is updated each time a new diagram is computed (it

is also checked for duplicate entries, so no diagram, particle, and type combination appears

twice). However, if using the -i option with the generate code mode, then it is possible for

duplicate diagrams to appear (we choose not to override this possibility to avoid unnecessary

interference with user input).

C.3.3 Management of divergences

The amplitudes produced by TARCER are expressed in terms of divergent basis integrals. In

a consistent Ąeld theory these divergences should be accounted for by divergent counter-term

diagrams. Mass Builder offers the ability to compute counter-term diagrams and also compute

the analytical form of the two-point tree-level counter-term coupling. Since the tree-level

counter-term is the only counter-term of one-loop order, we only need to solve one equation to

demand no divergences of order 1/ϵ. To automatically compute this coupling one Ąrst needs
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to compute all the one-loop amplitudes, and then use the -b Ćag followed by the model and

particle identiĄer, then the Ąle couplings.txt is automatically updated with the new counter-

term coupling.

Three and four-point vertex counter-terms, and higher order terms in the two-point cou-

plings, must be determined via a different method. This can be done by computing one-loop

corrections to the vertex, or by computing the two-loop self-energy and demanding that it

be divergence free. We use the latter approach as we already compute the self-energies, with

example Mathematica routines in the scripts directory.

The TSIL package provides the evaluation of the Ąnite parts of the basis integrals. However,

these basis integrals are not the only Ąnite contributions to the amplitude. For example, if the

divergent piece of the basis integral is of order 1/ϵ and the basis integral had a coefficient

containing a term linear in ϵ, then this leading divergence becomes a Ąnite contribution that

must be included. Thus we must appropriately take D = 4 − 2ϵ and be careful not to loose

any Ąnite contributions.

There are some minor differences between the basis integral notation in the TSIL and

TARCER packages. The notation used in Mass Builder for the Ąnite piece of the basis integrals

is a combination of these and is related to the TSIL integrals deĄned in Ref. [9] as

Ax ≡ −iA(x) (C.2)

Bxy ≡ iB(x, y) (C.3)

Kxyz ≡ I(x, y, z) (C.4)

Jxyz ≡ S(x, y, z) (C.5)

Txyz ≡ −T (x, y, z) (C.6)

Vuxzy ≡ −U(x, y, z, u). (C.7)

These relationships are used to convert the numerical result from the TSIL integrals, which we

evaluate in the DoTSIL routine, into the form appearing in the amplitudes.

The divergences appearing in the amplitudes as poles in ϵ should arise exclusively from UV

divergences. If the theory contains IR divergent amplitudes, for example due to a massless

gauge boson, then this should be regulated throughout the calculation using a Ąctitious mass

parameter, mγ . This parameter should remain in the calculation until the numerical evaluation,

where one can take mγ → 0. In some cases taking mγ = 0 exactly may result in unexpected

behaviour, in which case it is sufficient to choose smaller and smaller values until a limit is

reached.
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The basis integral T (x, y, z) is not deĄned for small x, so when x is small or zero (such

as x = m2
γ) we make the replacement T (x, y, z) ≡ T (x, y, z) − B(y, z) log

(

x/Q2
)

[9]. This will

cancel with other terms in the amplitude of the form A(x)B(y, z) = x
[

log
(

x/Q2
)

− 1
]

B(y, z),

and because T (0, y, z) is Ąnite, will give a total that is IR safe. This step is necessary even

for light quark masses on the eV scale, but generally only when there is a large scale hierarchy

present (such as a large external momentum and other masses). If a mass is expected to be

small, such as mγ then it can be given a special status within the Mass Builder package. This

replacement then happens automatically during the construction of the amplitude. By default

this occurs for any masses with the labels in the set ma,mf,md,mu,ms,mb,mc,mm,ml,me. This can be

changed by locating the array massesSmall appearing in bases.cpp and utils.cpp.

It is also possible to encounter ŚĄctitiousŠ IR divergences. These can arise from including a

Ąnite photon mass when attempting to evaluate non-IR divergent diagrams. In this case the

amplitude may contain O(1/m2
γ) terms. However, the sum of the coefficients of these terms

is numerically equivalent to zero (i.e. to within a small factor of the Ćoating-point machine

accuracy times the largest individual coefficient). We therefore always see numerically that

these terms cancel, even if the integral reduction fails to cancel them symbolically. Thus when

mγ → 0, the error from the machine precision eventually becomes huge and looks like a physical

divergence. This is currently avoided by separating the amplitude into an O(1/m2
γ) part and

the remainder. Then at evaluation the coefficient of the O(1/m2
γ) is checked to see if the sum

is sufficiently less than the magnitude of the largest component. If it is, then this term is

automatically ignored. It is possible to force all terms of O(1/m2
γ) to be ignored (the default

behaviour), effectively overriding this check, by using the runtime Ćag expole. In this case

caution must be used to be sure that it is indeed a fake divergence and not a physical one.

C.3.4 Runtime

The calculation of the amplitudes depends on the performance of the tools we are using. The

time taken depends strongly on the type of two-loop topology and the number of unique mass

parameters. We Ąnd run times range from less than a minute to several hours. Time can be

reduced by grouping similar diagrams, and leaving the most complex diagrams to be computed

individually. However, due to the way Mathematica carries out the symbolic calculations, a

poor choice of grouping may result in the calculation taking signiĄcantly longer than it would

for the sum of the amplitudes alone.

The numerical evaluation of the amplitudes is on the order of seconds but can be reduced

using the optimisation method described in section C.3.2. This optimisation routine can take
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some time to complete, and increases dramatically when more masses are present, yet is ad-

vantageous when many evaluations of the amplitudes are required. For example with the

optimisation routine employed we reduced the numerical evaluation of 123 two-loop diagrams

and Ąve one-loop diagrams from 5.7 seconds to 1.7 seconds. In this instance the optimisation

routine took under two minutes to complete. Thus after only 26 evaluations the optimisation

has been worthwhile. The generation of the TSIL interface code is, excluding the optimisation

calculation, effectively instantaneous.

C.4 Conclusion

I have introduced a program designed to organise and simplify the use of two-loop tools for

the calculation of self-energies. Although entirely an interface tool, this program makes the

calculation of multiple two-loop diagrams an accessible task even on modest computing set

ups.

This program provides a central structure for carrying out and storing the results of long

calculations. By producing an automatically generated interface to the TSIL libraries we enable

maximum Ćexibility for the userŠs choice of precomputed amplitudes to include in a calculation.

The TSIL interface provides an automated method of organising basis integrals into sets

which can be evaluated using a single TSIL call, a task near impossible by hand, thus taking

advantage of the structure of the TSIL libraries to speed up the calculation of the amplitude.

This is especially useful when one is switching between sets of amplitudes to compute, with the

optimal combination of evaluation routines changing each time. Even as a standalone feature,

this is useful to those who have already obtained a list of required basis integrals from elsewhere

and intend to write their own TSIL interface.

C.5 Installing required packages

FeynCalc, FeynArts and TARCER

The easiest way to install FeynCalc , FeynArts , TARCER and FeynHelpers is via the automated

installation method. Open a Mathematica notebook or kernel session and enter

Import["https://raw.githubusercontent.com/FeynCalc/feyncalc/master/install.m"]

InstallFeynCalc[]

Import["https://raw.githubusercontent.com/FeynCalc/feynhelpers/master/install.m"]

InstallFeynHelpers[]

(being careful to avoid any spaces which appear in the link when copy-pasting this) when

requested to install the latest version of FeynArts say yes, as this will automatically patch the
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FeynArts installation. If you do not follow this method then it is not possible to run FeynArts

and FeynCalc in the same session (as we need to do) as many function names are identical

between the packages, so to avoid name shadowing follow the recommend method. For more

information see the FeynCalc wiki https://github.com/FeynCalc/feyncalc/wiki.

Check if TARCER has been loaded with the following input

./MathKernal

$LoadPhi = True;

$LoadTARCER = True;

$LoadFeynArts = True;

<< FeynCalc/FeynCalc.m

if TARCER has not been loaded this will give an error and advise the user to run

GenerateTarcerMX

which will generate the required Ąles. All packages within Mathematica are now set up.

TSIL

The Two-loop Self-energy Integral Library (TSIL) can be installed anywhere (Mass Builder will

request the path at conĄguration). It is available from http://www.niu.edu/spmartin/TSIL/. Mass

Builder has been tested with version 1.41.

FlexibleSUSY

To reproduce the results in Refs. [1, 2] the code provided in the mass_splittings directory

can be used. See the documentation in this directory for more details. This code also

requires the FlexibleSUSY libraries to be installed. FlexibleSUSY can be downloaded from

https://flexiblesusy.hepforge.org/. Mass Builder has only be tested with version 1.7.4 and is

not expected to work with version 2.0 and above. Once FlexibleSUSY is installed (in a different

location the Mass Builder package) the models provided in the extras/flexiblesusy/ directory

should be placed in the appropriate places in the FlexibleSUSY root directory, and then installed

using the commands

./createmodel --name = "EW_triplet MDM"

./configure --with-install-dir=<mass_builder_root_directory>/flexiblesusy/ --with-models=

"MDM EW_triplet" --disable-librarylink

make install-src

and then the Ćag -DFS=true must be used with cmake before using the make target splittings

to build the required program.

https://github.com/FeynCalc/feyncalc/wiki
http://www.niu.edu/spmartin/TSIL/
https://flexiblesusy.hepforge.org/


D Scanner comparisons in a two-dimensional param-

eter space

The scanner comparisons presented in Chapter 8 are based on about 16 separate scans for

each scanner in two, seven and 15 dimensions. We also included results from 52 more scans

to cover each dimensionality between two and 15. However, for clarity we only displayed two-

dimensional proĄle likelihoods for the 15-dimensional scans (Figures 8.3Ű8.5, 8.7, 8.8, 8.10 and

8.11). In this section we present the equivalent plots to these for the two-dimensional scans.

In some cases, where the optimal settings depends strongly on dimensionality, we have chosen

different sampler settings in two than in 15 dimensions, so as to allow a meaningful comparison.

D.1 MultiNest & Diver

The proĄle likelihoods for MultiNest and Diver are presented in Figures D.1 and D.3 respectively.

The marginalised posterior for MultiNest is given in Fig. D.2. For both MultiNest and Diver,

we present scans with the same settings as used for the 15-dimensional equivalent (Figures 8.3,

8.4 and 8.5).

The quality of the proĄle likelihood is dramatically better in the two-dimensional scans than

in the 15-dimensional equivalents. Although MultiNest did not sample the low-mass region at

all in 15 dimensions, it has been well sampled in two. The maximum likelihood point is located

in the low-mass mode in all scans presented in Figs. D.1 and D.3. This is in good agreement

with the analysis in Figs. 8.1 and 8.2, in which the maximum likelihood was easily achieved in

two dimensions with less stringent scanner settings.

The marginalised posteriors in Fig. D.2 show some qualitative differences to their 15-

dimensional counterparts in Figure 8.4. The primary difference is that the low-mass region

shows in two dimensions, but not in 15. This is because in two dimensions, the low-mass

region does not suffer from the same Ąne-tuning penalty (imposed by the integration over the

nuisance parameters) as in 15 dimensions. This penalty is due to the dependence of the exact

location and shape of the low-mass region on the values of the 13 nuisance parameters included

in the 15-dimensional scan. This reduces the ratio of the posterior mass of the low-mass mode

to the posterior mass of the high-mass mode in the 15-dimensional scan.
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Figure D.1: ProĄle likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the MultiNest scanner with a selection of difference tolerances (tol) and
numbers of live points (nlive). The maximum likelihood point is shown by a white star. Figure
from Ref. [6].
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Figure D.2: Marginalised posterior probability density maps from a two-dimensional scan of
the scalar singlet parameter space, using the MultiNest scanner with a selection of difference
tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly only applies
to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot,
rather than to the same iso-posterior density level (i.e. the transition from red to purple is
designed to occur at the edge of the 1σ credible region, and so on). The posterior mean is
shown with a grey bullet point. Figure from Ref. [6].
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Figure D.3: ProĄle likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the Diver scanner with a selection of different convergence thresholds
(convthresh) and population sizes (NP). The maximum likelihood point is shown by a white star.
Figure from Ref. [6].
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Figure D.4: ProĄle likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the T-Walk scanner with various numbers of chains and different toler-
ances. The maximum likelihood point is shown by a white star. Figure from Ref. [6].
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Figure D.5: Marginalised posterior probability density maps from a two-dimensional scan of
the scalar singlet parameter space, using the T-Walk scanner with various numbers of chains
and different tolerances. Note that the colourbar strictly only applies to the rightmost panel,
and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at
the edge of the 1σ credible region, and so on). The posterior mean is shown with a grey bullet
point. Figure from Ref. [6].

D.2 T-Walk

The proĄle likelihoods and marginalised posteriors for two-dimensional T-Walk scans are pre-

sented in Figs. D.4 and D.5, respectively. We use different T-Walk settings compared to Figs.

8.7 and 8.8. This is primarily dictated by the dimensional dependence of the optimal number

of chains, chain_number, as discussed in Section 8.4. We Ąnd that values of tol ∼ 0.1 cause very

rapid convergence in two dimensions, even before any meaningful sampling can occur. This

behaviour can be seen in the right-most plot of Figure D.4, where tol = 0.03. We therefore

use different settings, more appropriate for the two-dimensional parameter space.

We Ąnd that T-Walk samples the proĄle likelihood very well in two dimensions when tol ≲

0.01. The number of chains appears to have less inĆuence on the quality of the sampling, but

dramatically increases the runtime. The scans of the two left-most plots in Figure D.4 took

∼ 4 hours (chain_number = 54) and ∼ 18 hours (chain_number = 108).

Although the sampling of the proĄle likelihood is much more complete in these two-



D.3. GreAT 253

★

GAMBIT 1.0.0

−3

−2

−1

0

lo
g
1
0
λ
h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT

nTrialLists: 4

nTrials: 20,000

Prof. likelihood

★
GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT

nTrialLists: 4

nTrials: 10,000

Prof. likelihood

★

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT

nTrialLists: 2

nTrials: 1000

Prof. likelihood

★

GAMBIT 1.0.0

−3

−2

−1

0

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/
L
m
a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

GreAT

nTrialLists: 4

nTrials: 1000

Prof. likelihood

Figure D.6: ProĄle likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTrialLists) and
chain lengths (nTrials). The maximum likelihood point is shown by a white star. Figure from
Ref. [6].
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Figure D.7: Marginalised posterior ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTrialLists) and
chain lengths (nTrials). Note that the colourbar strictly only applies to the rightmost panel,
and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at
the edge of the 1σ credible region, and so on). The posterior mean is shown with a grey bullet
point. Figure from Ref. [6].

dimensional scans than in the 15 dimensional case, there is no signiĄcant improvement in

the marginalised posteriors (Fig. D.5). However, we do see that the low-mass region appears

within the two-sigma contours (as discussed in Section D.1).

D.3 GreAT

The proĄle likelihoods and marginalised posteriors for GreAT scans in a two-dimensional pa-

rameter space are presented in Figs. D.6 and D.7, respectively. The scanner settings in these

plots are equivalent to those in Figs. 8.10 and 8.11, except for nTrialLists, which is set to

Ndim = 2 or Ndim + 2 = 4.

The two left-most plots of Fig. D.6 clearly show that these settings are excessive for

sampling the proĄle likelihood in two dimensions. Even though all panels in Fig. D.6 exibit well-

sampled proĄle likelihoods, one can make an optimal choice when considering the computing

time taken. From left to right, the scans took ∼ 5 hr, 3 hr, 8 min and 17 min. Only in the



D.4. Summary 254

quickest two scans does some degradation of the contours and sampling begin to appear. In

contrast to the quality of the proĄle likelihood, we see in Fig. D.7 that even with a long scan,

in two dimensions the marginalised posterior is not well sampled by GreAT.

D.4 Summary

We have presented proĄle likelihoods and marginalised posteriors for scans of a two-dimensional

parameter space, directly comparable to the 15-dimensional case presented in Chapter 8. These

plots show that the inclusion of the additional 13 nuisance parameters does not signiĄcantly al-

ter the joint proĄle likelihood of λhS and mS. We Ąnd that sampling performance is signiĄcantly

improved, demonstrating that although the additional 13 parameters are well constrained by

unimodal likelihoods, their inclusion creates a signiĄcant challenge for the sampling algorithms.
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