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Abstract

I present precision two-loop corrections of O(MeV) mass splittings in electroweak multiplets.
These are relevant for both collider phenomenology and dark matter and can affect particle
lifetimes by up to 40%. I then show that a commonly used iterative procedure to compute
radiatively-corrected pole masses can lead to very different mass splittings than a non-iterative
calculation at the same loop order. I show that this has significant phenomenological impact,
leading to the conclusion that the iterative procedure should not be used for computing pole
masses in situations where electroweak mass splittings are phenomenologically relevant.

I then consider global fits to minimal extensions of the Standard Model. Using the GAMBIT
package I present a comprehensive study of the scalar singlet dark matter scenario. I then
present a follow up global fit including theoretical constraints from physics at high energy
scales, and also apply this to a generalisation of the scalar singlet model. I show that solutions
exist which stabilise the electroweak vacuum, remain perturbative up to high scales and satisfy
current experimental constraints. However, such solutions are only found in a small region of
the parameter space soon to be probed by direct detection experiments.

Finally I present a detailed comparison of four statistical sampling algorithms. I subject a
nested sampler (using the MultiNest package), a Markov Chain Monte Carlo (using the GreAT
package), an ensemble Monte Carlo sampler and a differential evolution sampler to a battery
of statistical tests. For this I use a realistic physical likelihood function, based on the scalar
singlet model of dark matter. I examine the performance of each sampler as a function of its
adjustable settings, and the dimensionality of the sampling problem. I evaluate performance
on four metrics: optimality of the best fit found, completeness in exploring the best-fit region,

number of likelihood evaluations, and total runtime.



Contents

Abstract

List of Figures
List of Tables
Preface
Acknowledgements

1 Introduction
1.1 Darkmatter . . . . . . . .. L
1.1.1 Experimental searches for dark matter . . . . . . .. ... .. ... ...
1.1.2 Theoretical constraints on dark matter . . . . . . . . ... ... ... ..
1.2 Beyond the Standard Model . . . . . . .. .. .. oo oo
1.2.1 Higgs portal dark matter . . . . . ... ... .00
1.2.2  Weakly interacting dark matter . . . . . . . . ... ...
1.3 Global fits . . . . . . . . o

1.3.1 Statistical sampling algorithms . . . . . .. ... ... ... ... . ...

I Electroweak radiative mass splittings

2 Renormalisation
2.1 Introduction . . . . . . . . ..
2.2 Precision mass calculations . . . . ... ... oo
2.2.1 One-loop self-energy in ¢* theory . . . . . . ... ... ... .......
2.2.2 Basisintegrals . . . . .. ... e
2.2.3 Two-loop self-energy in ¢% theory . . . . . . .. .. .. ... ... ....

2.2.4 The total finite mass correction . . . . . . . . . . ... ...

10

13

17

18

19
19
20
23
24
25
29
33
38

42

43
43
45
48
51
53
o7



Contents 6

2.3

The renormalisation group . . . . . . . . . ..o 58
2.3.1 The Callan-Symanzik equation . . . . . . ... ... ... ... ..... 59
2.3.2 The beta function in ¢4 theory . . . . . .. .. .. ... .. ... .... 60

3 Two-loop mass splittings in electroweak multiplets: winos and minimal

dark matter 63
3.1 Introduction . . . . . . . . .. 63
3.2 Input parameters . . . . . . . .. L 65
3.3 Method . . . . . . e 67
3.3.1 Electroweak triplet one-loop self-energies . . . . . ... ... ... ... 68
3.3.2  Details of two-loop self-energy calculation . . . .. ... ... ... ... 70
3.3.3 Check for divergence free-result . . . . . .. ... ... ... .. ..... 73
3.3.4 Spectrum calculation . . . . . ... oo 74

3.4 Results. . . . . . e 75
3.4.1 The wino limit of the MSSM . . . . . .. ... ... ... ... ..... 75
3.4.2 The MDM quintuplet . . . . . ... ... ... 80
3.4.3 Differences between triplet and quintuplet models . . . . . .. ... .. 82

3.5 Conclusions . . . . . . . L 86
4 Pitfalls of iterative mass calculations 87
4.1 Introduction . . . . . . . . . L 87
4.2 Model and parameters . . . . . . . .. ... 89
4.3 Pole mass calculations . . . . . . .. ... 90
4.3.1 The iterative pole mass . . . . . . . ... Lo 90
4.3.2 The explicit polemass . . . . . . . . .. L Lo 90

4.4 The mass splitting . . . . . . . . .. L 92
4.4.1 The explicit mass splitting . . . . . . . . .. .. ..o 94
4.4.2 The iterative mass splitting . . . . . . . .. ... Lo 0oL 94
4.4.3 Gaugechoice . . . . . .. L 96
4.4.4 The two-loop mass splitting . . . . . . ... ... .. 0oL 97

4.5 Phenomenological implications . . . . . .. ... o Lo 100
4.6 Conclusions . . . . . . . . . e 102

5 Mass splittings in a vector multiplet 104



Contents 7
IT Global fits 108
6 The physics of vacuum stability 109
6.1 Introduction . . . . . . . . . . .. 109
6.2 Classifying stability . . . . . . . .. . . 110
6.3 The likelihood of false vacuum decay . . . . . . . . .. ... ... ..., 114
6.3.1 The bounce solution for potential barrier penetration. . . . . . . .. .. 116

6.3.2 Quantum tunnelling in field theory . . . . . . ... ... ... ... 118

6.3.3 The likelihood of Higgs vacuum decay . . . . . . . .. ... ... .... 119

6.4 Perturbativity and unitarity . . . . . .. ..o oo 122
6.5 Vacuum stability in physical models . . . . . ... ..o 124
6.5.1 The Standard Model . . . . . . . ... ... 124

6.5.2 Scalar singlet dark matter . . . . . . ... ..o 127

6.5.3 Minimal dark matter . . . . . . ... ..o o 128

7 The status of scalar singlet dark matter 131
7.1 Introduction . . . . . . . . . L 131
7.2 Input parameters and sampling . . . . . . . .. ... 132
7.2.1 Parameters and nuisances . . . . . . .. ..o 0o oo 132

7.2.2  Scanning procedure . . . . . ... Lo 135

7.3 Physics framework & likelihood details . . . . . . . ... . ... ... ... ... 137
7.3.1 The renormalised model spectrum . . . . . ... ... ... ... .... 137

7.3.2 Vacuum stability and perturbativity . . . . .. ... ... ... ... 139

7.3.3 Relicdensity . . . .. .. . ... 140

7.3.4 Direct and indirect detection . . . . . . . ... oo 143

7.3.5 Higgs invisible width . . . . . . . ... ... oo 0oL 145

7.3.6 Additional likelihoods . . . . . . . . .. ... ... ... ... 146

7.4 The status of the low energy Zs model . . . . . . .. .. .. ... L. 147
7.4.1 Profile likelihoods . . . . . . . .. . ... ... 147

7.4.2 Best-fit point . . . ... 150

7.4.3 Bayesian posteriors . . . . . .. . ... Lo o 151

7.5 The status of the Zs model at UV scales . . . . . . . . . . .. ... ... .... 154
7.5.1 Profile likelihoods . . . . . . . . ... 154

7.5.2  Scale of non-perturbativity and vacuum stability . . . . . ... ... .. 155

7.5.3 Best-fitpoint . . . . ... ... 159



Contents

7.6 The status of the Z3 model at UV scales . . . . . ... ... .. .. .......
7.6.1 Profile likelihoods . . . . . .. .. ... ... ...
7.6.2 Scale of non-perturbativity and vacuum stability . . .. ... ... ...
7.6.3 Best-fitpoint . . . . ...

7.7 Comparison to existing results . . . . . . . .. ... L.

7.8 Conclusions . . . . . . . . .

8 Comparison of statistical sampling methods
8.1 Imtroduction . . . . . . . . . . L
8.2 MultiNest . . . . . o
8.3 Diver . . . L
8.4 T-Walk . . . . . e
8.5 GreAT . . .
8.6 The effect of dimensionality on performance . . . . . . ... .. ... ... ...

8.7 Scanning efficiency
8.8 Posterior sampling
8.9 Discussion . . . . .

8.10 Conclusions . . . .

9 Conclusion

Bibliography

A One-loop self-energies and counter-term couplings

A.1 Winos and minimal dark matter . . . . . . . . . . . ... .. ... ...

A.1.1 Wino model

A.1.2 Minimal dark matter . . . . . . . . ...

A.2 One-loop self-energies for an electroweak triplet in general gauge . . ... ...

A.3 One-loop self-energies in the vector dark matter model . . . . . . .. ... ...

A.3.1 Large My limit mass splitting series expansion . . . ... ... ... ..

B Renormalisation group equations

B.1 Scalar singlet dark matter . . . . . . . . ... ...

C Mass Builder Documentation

C.1 Introduction. . . .
C.1.1 Installation

161
161
165
167
168
169

171
171
178
179
180
181
188
189
192
192
194

195

198

223
223
224
226
228
230
230

231
231



C.1.2 Quick start guide . . . . . . . .. 233

C.2 Fulluser guide . . . . . . . . . . . 236
C.2.1 Command line interface . . . . . . . . . . ... L. 236
C.2.2 Input . .. .. 238
C.2.3 Output . . . . . . . . e 240
C.2.4 Interface to external routines . . . . . . . . ... ... ... 240

C.3 Algorithm details and code structure . . . . . . .. .. ... ... .. ...... 241
C.3.1 Computing the amplitudes . . . . . .. ... ... ... ... ...... 241
C.3.2 The TSIL interface . . . . . . . . . . . . . 243
C.3.3 Management of divergences . . . . . . . . . ... 245
C.3.4 Runtime . . . . . . . L 247

C.4 Conclusion . . . . . . . . 248

C.5 Installing required packages . . . . . . . . . . .. e 248

Scanner comparisons in a two-dimensional parameter space 250

D.1 MultiNest & Diver . . . . . . . . . 250

D.2 T-Walk . . . . . e e e 252

D.3 GreAT . . . o e 253

D.4 Summary . . . . ... 254



List of Figures

1.1
1.2

2.1
2.2

3.1

3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11

4.1

4.2

4.3
4.4

The particle content of the SM. . . . . . . . . . . ... ... ... ... ....... 21
Example of an overlaid exclusion plot compared with a profile likelihood. . . . . . 34
The Feynman rules for the ¢* theory. . . . . . ... ... ... .. .. ....... 45
The two-point correlation function for an interacting field theory. . . . . . . . . .. 46
The one-loop corrections to the propagator for the components of an electroweak

triplet. . . . Lo 69
Two-loop diagrams involving only the gauge bosons and multiplet fermions. . . . . 71
Two-loop diagrams formed by reinserting the one-loop gauge boson self-energy into

its own propagator. . . . . . .. L. Lo 71
Two-loop counter-term diagrams. . . . . . . . . . . . . ... 71

The two-loop mass splitting in the wino model with and without light quark masses. 76

The two-loop mass splitting and decay lifetime of the chargino in the wino model. 7
Branching fractions in the wino limit of the MSSM. . . . . . ... ... ... ... 78
The two-loop mass splittings in the MDM model. . . . . . . . ... ... ... ... 82
The decay lifetimes of the charged and doubly-charged components in the MDM

model. . . . L 83
Branching fractions in the MDM model. . . . . . ... ... ... ... ... .. 83
The one-loop, partial two-loop and extended partial two-loop mass splittings in the

wino limit of the MSSM and the MDM model. . . . . . . .. .. ... .. ..... 85

The ratio of the one-loop pole mass to the tree-level mass for the neutral and charged

components of the electroweak triplet. . . . . . . ... ... ... ... ... .... 91
The one-loop mass splitting AM = M;;le — Mgole as a function of the degenerate

Mass M. . . . 93
The values Egs. (4.7) and (4.8) as a function of M for different choices of 7. . . . . 95
Two-loop diagrams contributing to the partial self-energy. . . . . . . . . ... ... 98



List of Figures 11

4.5

4.6

5.1

6.1
6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

The splitting AM = M7 M?P  as a function of the degenerate mass M at

pole — ““pole
one-loop and two-loop order, for the non-iterative and iterative methods. . . . . . 99
The lifetime of the charged component of an electroweak triplet x™, as a function

of the degenerate multiplet mass M. 101

The one-loop radiatively induced mass splitting between the charged and neutral

components of the vector multiplet in the VDM model. . . . . . . ... ... ... 106

The potential barrier V' with an arbitrary function defining the top of the barrier. 115
The potential V' corresponding to the bounce solution of a particle tunnelling
through a potential barrier. . . . . . . . . ..o oo 120
The vacuum stability likelihood transformed to log;q(—1log(L)) as a function of the
tOP MASS. . . . . . . e e e e e e 122
The dominant loop contributions to the one-loop beta function for the quartic Higgs
coupling in the SM and scalar singlet model. . . . . . .. .. ... ... .. .... 126
The quartic Higgs coupling A as a function of the renormalisation scale and the
expected lifetime of the Universe as a function of m; and my, in the SM. . . . . . . 126
The quartic Higgs coupling A\ as a function of the renormalisation scale and the

expected lifetime of the Universe as a function of m; and my in the scalar singlet

The quartic Higgs coupling A\ as a function of the renormalisation scale and the

expected lifetime of the Universe as a function of m; and my, in the MDM model. . 129

The scale of perturbativity violation in the scalar singlet model with mg = 90.7 +
2070 \ns| GEV. o o o 141
The diagrams for annihilation, semi-annihilation, scalar-nucleon scattering and Higgs
invisible decays in the Zj3 scalar singlet model. . . . . . . .. .. ... ... ... 142
Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters
Aps @nd Mg, . . . L L e e e e e e e e 147
Profile likelihoods for the scalar singlet model, in various planes of observable quan-
tities against the singlet mass. . . . . . . . .. .. Lo o Lo 148
Profile likelihoods of nuclear scattering and annihilation cross-sections for the scalar
singlet model, scaled for the singlet relic abundance and plotted as a function of the
singlet mass. . . ... L L oL 149
One-dimensional profile likelihoods and posterior distributions of the scalar singlet

parameters, and all nuisance parameters varied in our fits. . . . . . .. .. ... .. 153



List of Figures 12
7.7 Marginalised posterior distributions of the scalar singlet parameters. . . . . . . .. 154
7.8 The profile likelihood and scale of perturbativity violation for the UV-scale study

of the Zg scalar singlet model. . . . . . . . . ... .. oo 156
7.9 The profile likelihood and scale of perturbativity violation for the UV-scale study

of the Zs scalar singlet model. . . . . . . . . ... ... ... ... ... ... 157
7.10 The profile likelihood and scale of perturbativity violation for the UV-scale study

of the Zs scalar singlet model. . . . . . . ... ... o o 158
7.11 The profile likelihood and scale of perturbativity violation for the UV-scale study

of the Zs scalar singlet model for Ap > 10" GeV and a stable vacuum. . . . . . . . 161

7.12 The profile likelihood, scale of perturbativity violation and fraction of semi-annihilation
for the UV-scale study of the Zs scalar singlet model. . . . . . .. ... ... ...
7.13 The profile likelihood, scale of perturbativity violation and fraction of semi-annihilation
for the UV-scale study of the Zs scalar singlet model. . . . . . .. ... ... ...
7.14 The profile likelihood, scale of perturbativity violation and fraction of semi-annihilation
for the UV-scale study of the Zs scalar singlet model. . . . . ... ... ... ...
7.15 The profile likelihood and scale of perturbativity violation for the UV-scale study

of the Zs3 scalar singlet model for Ap > 10" GeV and a stable vacuum. . . . . . . .

8.1 Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and Multi-
Nest scanners. . . . . . . . . .. oL e
8.2 Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and Multi-
Nest scanners. . . . . . . . . ..o e
8.3 Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the MultiNest scanner. . . . . . . .. . ... ... oL,
8.4 Marginalised posterior probability density maps from a 15-dimensional scan of the
scalar singlet parameter space, using the MultiNest scanner. . . . . . . .. ... ..
8.5 Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the Diver scanner.. . . . . . . . . ... ... ... ... ....
8.6 Best-fit log-likelihoods for scans using the T-Walk algorithm. . . .. .. .. .. ..
8.7 Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the T-Walk scanner. . . . . .. ... ... ... ........
8.8 Marginalised posterior probability density maps from a 15-dimensional scan of the
scalar singlet parameter space, using the T-Walk scanner. . . . . .. ... ... ..

8.9 Best-fit log-likelihoods for scans using the GreAT sampler. . . . . . . .. .. .. ..

163

164

185



8.10

8.11

8.12

8.13
8.14

D.1

D.2

D.3

D.4

D.5

D.6

D.7

Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the GreAT sampler. . . . . . . . ... ... ... ... .....
Marginalised posterior ratio maps from a 15-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler. . . . ... ... ... ... .......
Best-fit log-likelihood and number of likelihood evaluations as a function of dimen-
sionality, for all four scanning algorithms. . . . . . . . ... ... ... ...
The real time required for scans as a function of likelihood evaluations. . . . . ..

The best-fit likelihood achieved by each scanner within a given time limit. . . . . .

Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet pa-
rameter space, using the MultiNest scanner. . . . . . . ... ... ... ... ...
Marginalised posterior probability density maps from a two-dimensional scan of the
scalar singlet parameter space, using the MultiNest scanner. . . . . . ... ... ..
Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet pa-
rameter space, using the Diver scanner.. . . . . . . . . .. .. Lo L.
Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet pa-
rameter space, using the T-Walk scanner. . . . . . .. ... ... .. ... .....
Marginalised posterior probability density maps from a two-dimensional scan of the
scalar singlet parameter space, using the T-Walk scanner. . . . . .. ... ... ..
Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet pa-
rameter space, using the GreAT sampler. . . . . . .. ... ... ... ...
Marginalised posterior ratio maps from a two-dimensional scan of the scalar singlet

parameter space, using the GreAT sampler. . . . .. .. ... ... ... ......

List of Tables

3.1

3.2

Input parameters and 3o uncertainties for study of two-loop mass splittings for the
wino limit of the MSSM and MDM. . . . . ... ... ... ... .. ........
The effect of uncertainties in input parameters on the mass splitting and decay

lifetime in the wino and MDM models. . . . . . . . . . . . ... ...

13



List of Tables 14
7.1 Scalar singlet model parameters varied in our fits, along with their associated ranges

and prior types. . . . . .. L L e 134
7.2 Names and ranges of SM, halo and nuclear nuisance parameters that we vary in our

fits. . e 135
7.3 Parameters of each sampler for carrying out global fits of the scalar singlet model

in thisstudy. . . . . . . . L 137
7.4 Contributions to the A log-likelihood at the best-fit point. . . . . . . . ... .. .. 152
7.5 Details of the best-best-fitfit points and posterior means for the fixed-scale study of

the Zg scalar singlet model. . . . . . . . ... Lo o 153
7.6 Details of the best-fit points for the UV-scale study of the Zy scalar singlet model. 159
7.7 Details of the best-fit points for the UV-scale study of the Z3 scalar singlet model. 166
8.1 Parameters, ranges and central values for the test scans. . . . . . .. .. ... ... 175
8.2 The recommended starting parameters for each scanner available in GAMBIT 1.0.0. 193
C.1 The definitions, required input and default values for command line flags used when

calling Mass Builder. . . . . . . .. oo 236

C.2

The minimum combinations of input flags for each run mode and the resultant

behaviour. . . . . . . L e



Preface

This thesis is based on work from seven papers with a range of themes [1-7]. T have split it into
two semi-independent parts each with an introduction to the relevant theory and literature.
Chapter 1 is a general introduction to both parts and covers dark matter searches, beyond the
Standard Model (SM) theories (1.2) and global fits (1.3).

The theme of Part I is precision mass calculations in the context of electroweak multiplet
mass splittings. In Chapter 2 I present an introduction to precision mass calculations, which is
most relevant to Chapters 3, 4 and 5. I also present an introduction to renormalisation group
flow which is relevant in both Parts I and II. I develop these concepts by way of example with
a simple ¢* theory. It is assumed that the reader is familiar with quantum field theory and
Feynman rules. As such an introduction is necessarily not original research, I follow notation
and style used in existing accounts of renormalisation in the ¢* theory, such as that given in
Ref. [8] and a lecture course by Prof. Arttu Rajantie at Imperial College London in the spring
of 2015. However, I have extended existing examples by including the cubic scalar interaction
term, which ultimately increases the complexity of the two-loop mass calculation and enables us
to compare with the result presented as an example in Ref. [9] and in the software documented
in Appendix C.

The theme of Part II is global fits with a focus on constraints from renormalisation. Since
an introduction to global fits is presented in Section 1.3, the introductory material for this part
(presented in Chapter 6) is focused primarily on vacuum stability. The presentation of this
subject uses various notation and derivations from Refs. [10-15]. This is followed by global fits
to two different dark matter models in Chapter 7. Finally, I present an in-depth comparison of
four modern statistical sampling algorithms, which are an essential part of phenomenological

dark matter studies, in Chapter 8.
Contributions
Research from the following papers is included in this thesis (in order of appearance)

e Ref. [1] — J. McKay and P. Scott, Two-loop mass splittings in electroweak multiplets:
winos and minimal dark matter. Phys. Rev. D 97 (2018) 055049
[arXiv:1712.00968].

e Ref. [2] — J. McKay, P. Scott, and P. Athron, Pitfalls of iterative pole mass calculation
in electroweak multiplets. Submitted to Eur. Phys. J. C (2018) [arXiv:1710.01511].
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e Ref. [3] — A. Belyaev, G. Cacciapaglia, J. McKay, D. Marin and A. R. Zerwekh, Minimal

Spin-one Isotriplet Dark Matter. In preparation.

e Ref. [4] - GAMBIT Models Workgroup: P. Athron, C. Baldzs, et. al., SpecBit, DecayBit
and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates
and precision observables. Eur. Phys. J. C 78 (2018) 22
[arXiv:1705.07936].

e Ref. [5] — GAMBIT Collaboration: P. Athron, C. Baldzs, et. al., Status of the scalar
singlet dark matter model. Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931].

e Ref. [6] - GAMBIT Scanner Workgroup: G. D. Martinez, J. McKay, et. al., Compar-
ison of statistical sampling methods with ScannerBit, the GAMBIT scanning module.
Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959).

e Ref. [7] — J. McKay, P. Scott and J. Cornell, Vacuum stability and perturbativity in

global fits to Zo and Zs scalar singlet dark matter. In preparation.

My contributions were as follows. For Refs. [1,2] I designed the studies and carried out all
aspects of the calculation, produced the results, and wrote the bulk of the manuscripts. My
coauthors were involved in discussions throughout, interpretation of results and revision of the
manuscripts. For Ref. [3] I contributed a section regarding electroweak mass splittings and
precision electroweak observables, performing the necessary calculations and presentation of
results. I developed the software and method which is used for the precision mass calculations
in Refs. [1-3]. This software is publicly available and documented in Appendix C.

For Ref. [5] I made use of the GAMBIT [16] software to run the global fits. This involved
the management of numerous test scans, debugging and presentation of the results. I wrote
parts of and helped revise the manuscript. For Ref. [6] I wrote a large section of the paper
regarding the comparison of scanning algorithms (which appears in Chapter 8) and did all
associated work such as planning the study, managing the scans and presenting the results.
For Ref. [4] I wrote a section on vacuum stability and developed the corresponding extensions
to the GAMBIT software. I used this extension in the study presented in Ref. [7] and Chapter
7. I designed Ref. [7] as an extension to Ref. [5] incorporating various aspects of the original
study. I also carried out the study and wrote the bulk of manuscript.

I have also made contributions to the first release of the GAMBIT software [16]. These
include the implementation of models, work on the spectrum generator interface and extensive

testing and bug fixing as well as the vacuum stability contributions documented in Ref. [4].
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1 Introduction

1.1 Dark matter

The study of the Universe and the largest structures within it has revealed a significant defi-
ciency in the Standard Model (SM) of particle physics at the smallest of scales. Cosmological
observations imply the existence of a gravitationally-interacting particle, or family of particles,
that do not interact electromagnetically. In such a way this form of matter is effectively dark,
having no direct electromagnetic signature. Dark matter has never been observed directly and
little is known about the details of this significant piece of the cosmological puzzle.

For ordinary matter the story is very different. The physical properties are well understood,
such as the mass, the spin and the strength of interactions with other fields (be these matter or
radiation fields). Even the theoretical framework is well established. The electroweak theory
proposed by Glashow, Weinberg and Salam in the 1970s [17-19] has developed into the SM
of the electromagnetic, weak and strong interactions constructed from a set of underlying
symmetries (see Figure 1.1 for the particle content of the SM). These symmetric properties
have enabled phenomenologists to not only make experimental predictions but to help shape
the design and scientific goals of experiments like the Large Hadron Collider (LHC), resulting
in an efficient and targeted search for the Higgs particle and certain beyond the SM physics
scenarios.

Dark matter is far more elusive. Through experiment we can exclude possible masses
and types of particles, and we can figure out which theories break down when dark matter is
required, and which ones explain it automatically. Before discussing more about how we can
exclude potential dark matter models, let us review the little we know about what dark matter
is.

Assuming a standard A cold dark matter (ACDM) cosmology (an asymptotically flat
Friedmann-Lemaitre-Robertson-Walker universe with a cosmological constant, A, and cold
(non-relativistic) dark matter) the analysis of the power spectrum of the anisotropies in the
cosmic microwave background (CMB) temperature by the Planck satellite measures the dark
matter density to be 26.8% of the total mass-energy content of the Universe [20].

From the indirect observations of a dark matter like particle we can postulate certain
properties that it must have. For example dark matter is a popular means of explaining the

formation of the largest bounded structures, the galaxies and clusters of galaxies and the
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filamentary and wall-like superclusters and voids between them [21]. These structures, which
originated from perturbations in the early universe, would not have formed by our present
epoch if there was not some additional form of matter and no modifications to our theories of
gravity. These indirect “observations” of dark matter through gravitational interactions could
also be explained by a non-particle explanation such as modified gravity, which postulates that
general relativity is no longer applicable on cosmological scales. However such descriptions are
also not totally sufficient; for example galaxy cluster models using modified gravity still require
some component of dark matter to match observation [22]. In any case, for dark matter
to explain structure formation it must be non-relativistic, i.e. cold at the time of structure
formation [23] (and thus could be warm when formed but have cooled sufficiently as the Universe
expanded). If dark matter particles were relativistic, like SM neutrinos or photons, then they
would not “clump” due to gravitational attraction in the necessary way to match observations
of cosmological structure.

There are various candidates for a slowly moving particle with the right density. The least
exotic of these are axions and weakly interacting massive particles (WIMPs), the latter being
the most popular, and the type I will focus on in this work. WIMPs are massive particles
which interact with the SM with a strength comparable to that of the weak force. These
particles would have been present in the early universe when it was in thermal equilibrium,
that is, matter would have existed in equilibrium with radiation, constantly being created and
annihilating back to photons and other SM particles. As the Universe expanded and cooled the
dark matter would no longer have been thermally produced resulting in a freeze-out. Because
no substantial production would have occurred since this freeze-out, this it what would lead to
the relic density of dark matter observed today. The self-annihilation cross section of a WIMP
is of the approximate value required to thermally produce the correct amount of dark matter
in the early universe, resulting in the relic density we see today [24-26]. This coincidence is

known as the “WIMP miracle”. I will introduce models with WIMP candidates in Section 1.2.

1.1.1 Experimental searches for dark matter

There are many ways to go about an experimental search for dark matter. One of the most
common techniques is to try to detect the nuclear recoil from an extremely rare interaction
of dark matter and a nucleon. Such an event would be considered a direct detection [27,28].
Depending on what one postulates dark matter to be, other experiments can be designed,
such as the search for radiation appearing within in a shielded cavity [29,30]. This would

indicate that an axion-like particle had made it through the shielded walls and then converted
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Figure 1.1: The particle content of the SM (left) is missing a dark matter component, which
could consist of a family of additional fields.

into a single photon upon interacting with the magnetic field inside the cavity. Even more
elaborate experiments can be designed to find stranger types of dark matter. For example,
an existing network of correlated atomic clocks in global positioning systems can be used to
detect the passage of dark matter in the form of topological defects. These defects have a
large spatial extent, and would give transient changes resulting in desynchronisation of the
clock network [31]. The list of dark matter experiments is as long and diverse as the possible
dark matter theories and a detailed review is well beyond the scope of this work. Instead, we
will focus on a small number of techniques that have the most constraining power for WIMP
models.

In recent years direct detection has provided some of the fastest developing constraints
on WIMP dark matter. In these experiments observers can place limits on the cross-section
between dark matter and nucleons when no interaction events are seen. At the current time

2 is ruled out at the 90% confidence level (for a dark matter

a cross-section of 7.7 x 10747 cm
particle of mass ~35GeV) [32]. This represents an extremely high sensitivity of detection,
and with it increasingly complex design requirements. Some of the latest direct detection
experiments use noble gases in liquid form as a scintillating material (a material which exhibits
luminescence when excited, which in this case occurs via the nuclear recoil producing collisions
with other atoms which subsequently become excited and scintillate) to form a target for
potential dark matter. For each value of the WIMP-nucleon cross-section, there is an expected
number of interaction events per unit volume per unit time. Thus larger detectors are being
built to improve the limits which can be reached, until eventually reaching the point where the
sensitivity is so high that solar neutrinos are detected. This neutrino floor [33-36] poses another
challenge in the search for WIMPs through direct detection. One possible way of overcoming

this is through directional information. Although not possible with current experiments, future

detectors may be able to use this information to distinguish between recoils from solar neutrinos
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and dark matter [37,38].

Creating an environment for the detection of dark matter on the Earth can be challenging
and expensive. However, there are locations in the Universe where the density of dark matter
is expected to be high, creating far more suitable “laboratories” than we could ever create on
the surface of the Earth. In a location like the centre of the Milky Way, high densities can lead
to dark matter self-annihilation or decay resulting in an increased flux of the products of these
processes [39]. Such a test is independent of the gravitational dark matter interactions, except
for how one may postulate the distribution of dark matter in the first instance. For many WIMP
models, a high density of dark matter self-annihilating would be seen as a peak in a spectrum
of gamma radiation above the expected astrophysical background, the details of which would
be dependant on the mass, the typical energy of the particles and the couplings of the theory
(which control the annihilation branching fractions of dark matter to SM final states). Another
location where dark matter could accumulate is the interior of the Sun. Dark matter particles
from the galactic halo can be captured in the Sun if after scattering on solar nuclei they lose
enough energy so that they cannot escape the gravitational potential. Eventually a sufficient
density of captured dark matter self-annihilating in the interior of the Sun could produce a
source of high energy neutrinos, detectable here on Earth with experiments like IceCube [40,41]
or Super-Kamiokande [42]. This class of experiments is known as indirect detection, and there
are numerous other forms that we do not discuss here. Indeed there is evidence for a y-ray
excess from the galactic centre compared to that expected from diffuse astrophysical emission
alone [43]. While there are other explanations for this excess, such as from an astrophysical
source (for example see Abazajian et al. [44]), the possibility that all or part of the observed
emission excess is from dark matter annihilation has not yet been excluded.

Back on the Earth there is one environment where it may be possible to produce and
observe WIMP dark matter. This is in one of the detectors of the LHC. If dark matter is
coupled to an SM field, then when the corresponding particle is produced in the detector, the
dark matter would form a viable decay channel of the SM field if it is light enough such that
this is kinematically allowed. This is known as an invisible decay channel. An invisible decay
could be “observed” as a missing energy in the detector when an SM particle apparently decays
to nothing. The non-observation of such decays at the LHC places limits on the parameter
values for a range of dark matter models. It is also possible to directly produce dark matter
along with other particles, in a proton-proton collision. Such an event could be seen as a jet
of some observable particles, and missing energy associated with the dark matter.

Two of the models we will study have a dark matter candidate that is part of an electroweak
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multiplet. While the neutral component of the multiplet is the dark matter candidate, there
are also charged components which can be produced in a collider experiment. Fortunately the
charged components are only slightly heavier, such that their decay lifetime is much less than
the age of the Universe. Consequently, the production of the charged particles in a collider
would result in a track which then disappears. For the models we consider, this track is of the
length that it would be contained entirely within the detector and thus give a striking signal. In
Chapter 3 we will present the most precise theoretical calculation to date of the decay lifetimes

of these charged particles in two different dark matter models.

1.1.2 Theoretical constraints on dark matter

Augmenting the SM with a new form of matter can have additional theoretical benefits. It is
generally accepted that the SM is either not complete and/or not valid over all energy scales.
The Planck scale, at an energy of Mp; = 1.22 x 10 GeV, is believed to be an upper limit for
the validity of the SM, albeit a very generous limit. At the Planck scale quantum effects of
gravity would become relevant and the quantum field theoretic framework used to build the
SM becomes inadequate for describing the non-renormalisable! gravitational interactions.

The stability of the electroweak vacuum is one reason to question the validity of the SM
at high energies. In the universe we live in the Higgs field has a non-zero vacuum expectation
value. The fact that the Higgs field has non-zero value in its vacuum state results in the
spontaneous breaking of the SU(2)r x U(1) gauge symmetry. This symmetry breaking is an
essential feature of the SM. However, the parameters of the SM, and in turn the Higgs potential,
are scale-dependent. If at high energies the dominant parameter defining the Higgs potential
is negative then there exists a second, high energy, global minimum. As a result the minimum
at the electroweak scale, which the field currently occupies, would not be absolutely stable.
While it may have a lifetime far exceeding the current age of the Universe, eventually quantum
tunnelling to the lower energy state will occur. The Higgs field tunnelling from its current
electroweak vacuum this global minimum would have catastrophic results. Whether or not this
poses a problem would be difficult to determine were it not for the finite age of the Universe,
which we can compare to the expected lifetime of such a false vacuum and determine if our
universe is indeed in an unlikely state.

Decades before the discovery of the Higgs boson theorists began placing constraints on
the fermion and Higgs masses that are required for absolute vacuum stability [45,46]. Of the

fermionic masses particular attention was given to the top quark, as the coupling associated

'"Renormalisation refers to the process of removing unphysical divergences in the calculation of physical
quantities in a quantum field theory. I will introduce some key aspects of renormalisation in Chapter 2.
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with this field is orders of magnitude larger than other SM couplings, making its effect on the
high energy Higgs potential the most significant. The discovery of a Higgs boson with a mass
of 125.66 + 0.3 GeV [47-49] has created increased interest in the study of vacuum stability.
With this mass the quartic Higgs coupling does become negative before the Planck scale, such
that the electroweak vacuum is not an absolutely stable state. If we assume the SM is correct
up to the Planck scale, then the lifetime of the current electroweak vacuum does indeed exceed
the lifetime of the Universe rendering it metastable. Yet we still have the problem that there
is a non-zero probability of decay, such that a transition to the true vacuum is at some point
inevitable. In addition, if new physics does become necessary before the Planck scale this may
dramatically decrease or increase the lifetime of the false vacuum. For example, Branchina and
Messina [50,51] introduce new terms into the SM Lagrangian, suppressed by 1/Mp; (thus only
having effect at high energies), and show that such high energy physics could indeed reduce
the lifetime of the electroweak false vacuum down to a fraction of a second.

In some dark matter models the new fields can stabilise the vacuum and completely remove
the problem. I will demonstrate this by way of example in Sections 6.5.2 and 6.5.3. On the other
hand, including new particles into a theory can also create theoretical problems. If the particle
content changes then the perturbative nature of the theory can be broken at certain energy
scales. While this could indicate that the perturbative computational framework that we use
is simply a poor description for nature, it certainly is an important consideration. In Chapters
2 and 6 I develop the necessary theoretical background in vacuum stability and violation of
perturbation theory. This is followed by a new study of these phenomena in Section 6.5 and
Chapter 7 where I combine these considerations with the various experimental constraints that

have already been discussed here.

1.2 Beyond the Standard Model

Dark matter is not the only reason to pursue physics beyond the SM. There are numerous
shortcomings in the SM that can be addressed in alternative theories. For example: The
baryon asymmetry problem is the observation that there is significantly more matter than
anti-matter in the Universe, which indicates that there must have been some strong charge-
parity (CP) violating process occurring in the early universe. However, the SM has insufficient
violation of CP and baryon or lepton number to explain the excess of matter over antimatter.
Neutrino masses must be non-zero in order to be consistent with the discovery of flavour
oscillations yet do not naturally appear in the SM framework. Flavour oscillations require the

mixing of neutrino flavour and mass states, which is not possible if the mass is zero. While
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neutrino masses are not automatically generated in the SM they can be put in either through
the addition of sterile neutrinos or through the see-saw mechanism [52] involving right-handed
neutrinos with a Majorana mass matrix. The hierarchy problem is associated with the smallness
of the Higgs mass. Since the Higgs is a scalar particle large radiative corrections to its mass are
not prevented by any symmetry, thus if the Planck mass represents the scale of new physics,
there is no reason to expect it to be any less than this, yet instead we see a seemingly highly
tuned value of only ~ 125 GeV.

Supersymmetry has been one of the most popular candidates for an alternative to the SM
over the last 30 years. In particular the minimal supersymmetric SM (MSSM) has been the
focus of many studies, for a review see Ref. [53]. Supersymmetry is based on an underlying
symmetry between fermions and bosons, the two fundamental types of particles, which is broken
at observable energy scales. The MSSM contains supersymmetric pairs for all SM particles,
some of which become possible WIMP candidates. We will introduce one of these scenarios,
the wino limit of the MSSM, in Section 1.2.2. Supersymmetric models are also capable of
resolving the hierarchy problem [54-57] and the issue of electroweak vacuum stability [58].
While supersymmetry may address many of the shortcomings of the SM at once, evidence of
any supersymmetric extension to the SM has not yet been found through experiment.

Postulating the existence of a unified theory is not the only option for beyond SM physics.
Instead we can study minimal extensions to the SM. The phenomenological impact of a small
number of new degrees of freedom can give important insights into the nature of dark matter.
If the SM is indeed the low-energy limit of some unified theory, then dark matter must still be
a part of this limit and understanding how to describe it is essential. In this section I review
three unique ways of introducing a dark matter degree of freedom into the SM, and finally I

discuss how we can put these to the test against the latest experimental data in Section 1.3.

1.2.1 Higgs portal dark matter

Particles which do not carry a charge associated with any of the SM gauge groups are said
to be in the hidden sector of the corresponding Lagrangian. If the SM fields interact with
the hidden sector then this would enable experimentalists to explore the structure of this new
physics by observing visible phenomena. Higgs portal models are open to such a study. The
structure of a general Higgs portal model is one in which the hidden sector is coupled only to
itself and the Higgs. Observations of SM processes which proceed via the Higgs field, such as
decays to and from the hidden sector, can shed light on physics beyond the SM.

When attempting to construct a particle theory for dark matter one can choose to make
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various simplifying assumptions. One such assumption is the number of dark matter particles
the theory must describe. If we are to introduce a new dark matter particle into the SM,
one may ask what prevents us from adding more. For example, there is nothing to prevent a
hierarchal structure of dark matter particles, like that of the leptons and quarks in the SM. In
this section I will introduce a model with one new additional field.

One of the simplest WIMP models is the scalar singlet scenario, consisting of the SM and
an additional massive real scalar field S [59-61]. This real, spin-less, Klein-Gordon field is
the most minimal way to add a dark matter degree of freedom into the SM. To explain the
relic dark matter density with the necessary properties we require that this field describe at
least a metastable WIMP. The simplest way to achieve this is by demanding the stable case in
which the real scalar field, S, is symmetric under the Zs transformation S — —S. In this case
the renormalisable terms for a real singlet scalar S, permitted by the Zs, gauge and Lorentz

symmetries, are [62]
_ e by g Ly gt g o
Lz, = 2#55 + 2)\h55 |H|* + 4)\35 + QGMSG S. (1.1)

From left to right, these are: the bare S mass, the Higgs-portal coupling, the S quartic self-
coupling, and the S kinetic term. Because S never obtains a vacuum expectation value (VEV),
the model has only three free parameters: 2, A5 and Ag. After electroweak symmetry breaking
(EWSB) (see Section 6.1), the portal term induces h25?%, vohS? and v3S? terms, where h is
the physical Higgs boson and vy = 246 GeV is the VEV of the Higgs field. The additional S?

term leads to a tree-level singlet mass

1
ms = \/ P2 + iAhSU% : (1.2)

While the scalar singlet model is the most minimal extension to the SM it meets many
requirements for being an adequate description of dark matter. For a scalar mass less than a few
TeV the values of the couplings Ag and A\,s necessary to explain the dark matter relic density
are sufficiently small to conserve perturbativity (see Section 6.4). The only renormalisable
interaction with the SM is through the S?|H|? term, and thus this model is classed as a “Higgs
portal”. It is through this term that is it possible to have thermal production of dark matter
in the early Universe. This portal coupling also provides annihilation signals [63-65], potential
for direct detection and h — SS decays [66]. For certain model parameters the scalar is also
able to stabilise the electroweak vacuum. The scalar field in this model can also feature in
theories of inflation [67-69] and baryogenesis [70-72].

The dominant constraints on the scalar singlet scenario come from direct detection exper-

iments and the requirement to produce no more than the observed relic abundance of dark
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matter. Constraints from XENON100 and WMAP were applied to this model in Ref. [73],
and similar data was used for an early global fit in Ref. [74]. The most recent comprehensive
studies were presented in Refs. [75-77]. In these studies the authors placed limits on the rate
of dark matter annihilation in dwarf spheroidal galaxies using the Fermi Large Area Telescope
(LAT) analysis of gamma rays in the direction of 15 dwarf spheroidal galaxies using six years
of Pass 8 data [78]. They constrained the decay width of the Higgs to invisible (dark matter)
particles by the non-observation of this process at the LHC [79-81]. Finally they used the
most recent, and projected, limits for direct detection (including the LUX experiment [82] and
projections for XENONIT and DARWIN) to place constraints on the dark matter nucleon
cross-section along with the Planck relic density measurement [83] to give a constraint on dark
matter annihilation at the time of recombination [83-85].

Numerous other studies have considered this model with respect to the galactic excess
observed by the Fermi satellite [64,77,86-88]. Such a signal of gamma rays, above what would
be expected from typical astrophysical processes, has been interpreted as a signal from the
annihilation of dark matter [43,44,89-93]. However, if the scalar singlet is to explain such a
signal then the portal coupling would have to large. This would result in a low thermal relic
abundance, thus requiring the dark matter to be produced non-thermally to give the necessary
density [75]. This would require some additional production mechanism, not available in the
theory as is. In such a case, the WIMP miracle and the predictive nature of the theory is
ruined. In regions of the parameter space where the relic abundance is under populated, we
will assume that there exists another species of dark matter such as axions, and that the scalar
singlet is only a sub-component of the total abundance. This is not a significant problem for
prospects of detection, as we show in Chapter 7, as the most sensitive experiments are able to
probe models with scalar singlets constituting less than a hundredth of a percent of the total
dark matter.

The scalar singlet model still has viable regions of parameter space yet to be excluded, with
the dark matter phenomenology driven predominantly by mg and Apg. The viable solutions

known to exist [75,76] are in a number of regions:

1. the resonance region around mg ~ my /2, where couplings are very small (Apg < 10_2)

but the singlet can nevertheless constitute all of the observed dark matter,

2. the resonant “neck” region at mg = my,/2, with large couplings but an extremely small

relic S density, and

3. a high-mass region with order unity couplings.
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The XENONIT experiment is expected to place strong constraints on these regions [94, 95],
leaving only large values of Apg at which the theory begins to become non-perturbative [75]
and a small part of the resonance region at mg ~ mp, /2.

The parameter Ag remains relevant when considering dark matter self-interactions (e.g.
Ref. [96]) and the stability of the electroweak vacuum. In the SM, the measured values of the
Higgs and top quark masses indicate that the electroweak vacuum is not absolutely stable,
but rather meta-stable [97]. This means that although the present vacuum is not the global
minimum of the scalar potential, its expected lifetime exceeds the age of the Universe. Although
this is not inconsistent with the existence of the current vacuum, one appealing feature of scalar
extensions of the SM is that the expected lifetime can be extended significantly, or the stability
problem solved entirely, by making the current vacuum the global minimum. The stability of
the electroweak vacuum has been a consideration in many studies of scalar singlet extensions
to the SM [67,98-108]. In Section 6.5.2 I will demonstrate in more detail how the addition of
a scalar singlet into the SM can prevent the Higgs potential from having a global minimum at
high energies.

The symmetry group for S need not be Zo, instead we will also consider a complex scalar
singlet charged under Zs. In this scenario the singlet transforms as S — €27/3S. This is
particularly interesting because, due to a cubic S term, it is the simplest dark matter theory to
have semi-annihilations [109-111].? This is the process of two dark matter particles annihilating

to an SM plus a dark matter particle. The permissible terms with S charged under Z3 are
_Lloaie Ly gz Ly stey2 o Lo gaugt 4 M8 g3 o ots
Lz, = 5”55 S+ 5)%55 S|H|* + Z)\S(S S)” + 5%53 ST+ ?(S + 51°) (1.3)

where ST denotes the Hermitian conjugate. Unlike the Zo model, the scalar is no longer a
self-adjoint field. Instead, we have both an S* and S particle, which both contribute to the
relic abundance (as will be discussed in detail in Section 7.3.3).

This scalar singlet model has been studied significantly less than the Zs stabilised scenario.
It has been studied in the context of neutrino masses in Ref. [112] and in a phenomenological
dark matter study in Ref. [102]. The latter is particularly relevant as they include constraints
from vacuum stability and perturbativity along with the relic density, Higgs invisible width
and direct detection. They show that singlet masses below ~ 53 GeV are ruled out by LHC
searches for invisible Higgs decays, and that due to the semi-annihilation process this model can

avoid direct detection constraints at parameter values where the equivalent Zo model would

2Tt is also possible to have an S® term in a model where the scalar is not charged under any Z, symmetry.
However, such a model also requires some tuning to keep the dark matter sufficiently metastable so that its
lifetime is long compared to the age of the Universe.
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be ruled out. However, due to a limit on p3 from vacuum stability, semi-annihilations are
also limited. So eventually all viable regions of the parameter space will be probed by direct
detection experiments, such as XENONIT [102] in the near future. In Chapter 7 we will build
on the study in Ref. [102] by performing a global fit including various other constraints and

nuisance parameters, along with the latest direct and indirect detection limits.

1.2.2 Weakly interacting dark matter

Electroweak multiplets, charged under the SM SU(2); gauge group, can provide a viable
explanation for the observed relic abundance. Such extensions require no new gauge groups,
simply the addition of a multiplet. Here I will review two popular fermionic multiplet extensions
of the SM, one with a triplet and one a quintuplet. In both cases an essential feature of these
models is the mass splitting between the charged and neutral multiplet components. If such a
splitting did not exist then the charged components would be stable, and the multiplet would
not make a suitable dark matter candidate. It is the details of this mass splitting that motivate
our study of these models, presented in Chapters 3 and 4. We will also consider the effect of

an electroweak multiplet on the stability of the electroweak vacuum in Section 6.5.3.

The wino limit of the MSSM

The first electroweak multiplet extension we consider is a Majorana fermionic triplet with
hyper-charge Y = 0. However, the simple case of the SM augmented by an SU(2);, triplet
does not provide a stable dark matter candidate. This is because the new triplet would couple
through a Yukawa operator with the Higgs and SM lepton doublet, giving the dark matter a
very short decay lifetime [113]. Such an operator can be forbidden if an additional symmetry
is introduced. This is the case in the R-parity® conserving MSSM, where the new multiplet
is a supersymmetric field, and thus has an R-parity opposite to the SM particles. There-
fore, if the neutral component of the triplet is also the lightest supersymmetric particle (LSP)
not only is this particular decay channel forbidden, but the dark matter is stable within the
supersyminetric spectrum.

We will focus on the limit of the MSSM which is phenomenologically equivalent to the SM
plus an electroweak triplet. The relevant supersymmetric particles we need for this construction
are the neutralinos and charginos. The four neutralinos are linear combinations of the two

neutral Higgsinos (the bino and neutral wino). The two charginos (each with + charge) are

3In supersymmetry R-parity is a postulated (although in some unified theories it can be naturally occurring
structure [114]) discrete Zy symmetry between the supersymmetric particles and their SM partners. SM particles
have R-parity +1 and supersymmetric partners —1.
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linear combinations of the charged winos and charged Higgsinos. The wino limit of the MSSM
is when the LSP is a neutralino that is pure wino (that is, the linear combination is 100%
wino), and the next-to-lightest supersymmetric particle (NLSP) is also a pure wino chargino.
Thus the LSP and NLSP constitute the neutral and charged components of the triplet, and as
supersymmetric particles have R-parity of —1. In addition, we take the limit where the rest
of the supersymmetric spectrum is sufficiently massive to be decoupled, leaving only the LSP
and NLSP.

In terms of the commonly used SUSY parameters the wino limit corresponds to Ms <
My, M3, . This choice makes the lightest neutralino and chargino mass eigenstates pure winos.
Together, they constitute an SU(2), triplet x with hypercharge Y = 0, coupled to the SM via

the electroweak sector. The M .S renormalised Lagrangian is
1_ . N
CZCSM+§X(ZZD—M)X (1.4)

where Lgn is the SM Lagrangian, M is the degenerate M .S tree-level mass of the triplet and
P is the SU(2) covariant derivative. Expanding out the covariant derivative gives
17 . ~ . A~
L =Lsm+ 5x°(id = M)X" +xT(id — M)x* w5
1.5
+g (XJWNXJF) (swA, +cewZ,)+g (x+'yuxo) Wi +h.e.
where sy = sin(f) and ¢y = cos(6) are the sine and cosine of the Weinberg angle respectively.
The triplet couples to the SM via the electroweak gauge bosons, W, and Z,,, and the photon,
A,. From Eq. (1.5) we can see that the chargino and neutralino have the same mass parameter.
However, after radiative corrections are included we obtain slightly different physical masses

given by MT —and MS

pole for the chargino and neutralino respectively. We will present a

ole
calculation of these physical masses, and the subsequent mass splitting in detail in Chapter 3.

The pure-wino scenario is phenomenologically different to the Higgs portal models discussed
in Section 1.2.1 and thus has different prospects for discovery. Pure-wino dark matter has been
studied extensively [115-122]. In this limit, a wino of mass of ~3TeV would give the correct
relic abundance [115,116]. If one allows for the scenario that the wino is not 100% of the relic
abundance, or that there is some non-thermal mechanism that operates to produce a larger
value after thermal freeze-out, then the restriction on the mass can be relaxed.

If wino-like charginos are produced at the LHC then there is the potential for an observable
charged track within the collider. This is the result of the small mass splitting between the
charged and neutral components and the process Y™ — X, where X is either a pion, an elec-

tron+neutrino or muon-+neutrino pair. The charged particle would be short-lived, producing a

track about 6 cm in length [118]. Searches for these tracks have already been made [123-128].
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The ATLAS [129] and CMS [130] detectors have excluded wino dark matter up to masses of
270 GeV and 260 GeV respectively, with estimates for future colliders able to discover wino dark
matter up to masses of 3 TeV [131,132].

In the pure-wino case the coupling to the Higgs bosons vanishes, so the scattering cross-
section of the wino dark matter and nucleons is generated only by loop processes, and is on
the order of 10746 — 10=*8cm? [120, 133]. For a TeV mass particle, this is well beyond the
reach of current direct detection experiments and only just above the neutrino floor. However,
as shown in Ref. [119], if the wino dark matter is produced thermally and equal to the relic
abundance then it is well constrained with indirect gamma-ray searches from the Galactic centre
from Cherenkov telescopes such as the High Energy Stereoscopic System (HESS) [134] and in
future the Cherenkov Telescope Array [135]. They show that thermally produced wino dark
matter with mass in the range ~ 1.6 TeV to ~ 3.1 TeV is excluded by HESS. Therefore, indirect
gamma-ray searches have much greater prospects for the discovery of wino-dark matter.

There is a rich phenomenology and subsequent analysis of wino-like dark matter models. For
example Ref. [122] considers combinations of wino and Higgsino dark matter. They show that
a scenario where the wino-Higgsino gives the correct relic abundance is strongly constrained
by combinations of direct and indirect detection, with the parameter space completely ruled
out for one class of models (¢ > 0), and only a small region remaining for another (1 < 0).
A discussion of the phenomenology of these models is beyond the scope of this thesis. Indeed,
wino-like dark matter is still a viable model and the study of electroweak mass splittings

presented in Chapters 3 and 4 is relevant to a range of similar models.

Minimal dark matter

The second model that we consider is the minimal dark matter (MDM; [113,136]) fermionic
quintuplet with zero hyper-charge. In general, MDM refers to a class of dark matter models,
each consisting of the SM plus a different electroweak multiplet with some minimal set of
quantum numbers and charges under the SM gauge groups. Most models in this class are ruled
out due to either direct detection or stability of the dark matter (for example, the electroweak
triplet which requires the introduction of an additional symmetry to be a stable dark matter
candidate). Although a fermionic seven-plet also satisfies these requirements, it has a Landau
pole (a breakdown of perturbation theory — see Section 2.3 for a detailed explanation) at scales
of ~108 GeV [137], and thus is not an ideal model unless used as a low energy effective field
theory.

The MDM quintuplet remains phenomenologically viable. This fermionic SU(2); quin-
tuplet x with hyper-charge Y = 0 is coupled to the SM via the SU(2); gauge sector. The
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quintuplet contains neutral, charged and doubly-charged components. Analogous to the triplet

case, the Lagrangian is
L =Ly +ex (iP — M) x, (1.6)

where P is the SU(2), covariant derivative, M is the MS renormalised tree-level quintuplet
mass and c is 1/2 (1) if x° is Majorana (Dirac). Expanding out the derivative and setting
c=1/2 gives
1— N — N E— N
£ =Lsu+ 5x°(0d = M)X" + X (i = M)x" +xTH(id — M)x**

+ 9 (Tt + 27X ) (sw Ay + ew Z,) (1.7)

+g (\/ngvuxo + \/§X++WX+) W +he..
As with the triplet, the quintuplet couples only to the photon and W and Z bosons at tree-level.

We will express the physical masses of the neutral, charged and doubly-charged components

as Mgolev Mg&e and M;Lo{; respectively.
The quintuplet is expressed in tensor representation as [138]
1 1
_ At Lt 1
Xun =X 0 X T X 0 X T X
1 (1.8)

X990 = _ﬁxi v Xogge =X

where the relative signs are chosen such that y is isospin self-conjugate [139]. This is the
representation I use to implement this model in SARAH [140-143] for the studies presented in

Chapter 3 and Section 6.5.3. In this representation the mass term is given by
Cyv — uC il jgl Kk 1
XCX - Xcijk‘lxi’j/k"lleu 6]] € € (19)

where € is the Levi-Civita symbol.

Like the previous two models we have considered, MDM is constrained from various cor-
ners from direct and indirect detection, collider constraints and the relic density. For a mass
of ~9.6 TeV the neutral component of the quintuplet gives the measured dark matter relic
abundance [113,144]. We can relax this constraint by producing the dark matter either non-
thermally or considering alternative particles to make up the observed relic abundance.

Disappearing track searches, like those for wino dark matter are also relevant for the MDM
scenario. The constraints on the MDM mass from the 8 TeV ATLAS and CMS results depend
on the nature of the neutral component. If it is a Dirac fermion, then masses below 267 GeV are
excluded, and if it is Majorana this limit extends to 293 GeV [145]. Ref. [145] also estimates that
with a 14 TeV high-luminosity LHC run, Majorana MDM with a mass of up to 524 GeV could
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be discovered, as could Dirac MDM with a mass of up to 599 GeV. The Dirac case is obtained
by pairing an additional chiral multiplet with the winos [146]. These new fields modify the
couplings to the Higgs doublets in the EWSB sector and result in different prospects compared
with the Majorana case [147].

MDM is yet to be ruled out by direct detection experiments. In this model the tree-level
coupling of dark matter to nucleons is zero; thus interactions with nucleons must proceed via
one-loop processes. The cross-section for a ~9TeV mass MDM particle is calculated to be
~1.2 x 107* cm?. Although this is larger than that for wino-dark matter it is at a much
higher mass and thus remains out of the reach of current experimental limits. However, such a
value is within reach of future experiments such as XENONI1T [148]. Indirect detection offers
the greatest prospects for discovering MDM. Definite predictions are available for the fluxes
of galactic positrons, anti-protons and gamma-rays [144, 149] which can be tested in future
experiments [113].

The MDM model is also theoretically appealing as the effect of the new multiplet stabilises
the electroweak vacuum by increasing the running of the electroweak gauge coupling [100].
Although this results in the model becoming non-perturbative at a lower scale than the SM, it
at least remains perturbative until the Planck scale [150]. I will demonstrate this with a new

calculation in Section 6.5.3.

1.3 Global fits

There are a multitude of both experimental and theoretical constraints on the nature of physics
beyond the SM. I have already discussed some of the most important constraints already, and in
Section 1.2 introduced two types of model which can explain some or all of the relic abundance
of dark matter. These are just two examples of the many possible alternatives to the SM. For
most theories there is a set of free parameters, such as the portal coupling and the mass in the
scalar singlet scenario. The allowed values of these parameters are determined by experimental
and theoretical constraints. Combing as many of these as possible in a statistically consistent
manner is the process of a global fit.

When given a set of experimental constraints one may approach the problem in various ways.
For the sake of example we consider the experimental limits on the scalar singlet model, in
the low mass region. The best experimental constraints come from the relic density (excluding
all parameter points that predict more than the measured abundance of dark matter), direct
detection, the Higgs invisible width and the Fermi-LAT experiment. We will discuss these
limits and a global fit in detail in Chapter 7.



1.3. Global fits 34

GAMBIT 1.0.0

[]1.0
Scalar singlet . Scalar singlet ]
0 lusion Limit Direct N -
Exclusion limits deieeion Prof. likelihood —0.8
2} 0 —_
<
< < 1™
: : ‘
i g

50 55 60 65
mg (GeV)

Figure 1.2: Left: Experimental exclusion limits for the scalar singlet dark matter model in
an overlay plot; the allowed region is white. The confidence limits are provided in numerical
form by Ref. [76] and replotted here. Right: The combined profile likelihood for the scalar
singlet dark matter model using a range of experimental constraints and nuisance parameters,
data taken from Ref. [5], see Chapter 7 for more information on this global fit. The white star
indicates the best-fit likelihood and the white contour lines mark out the 1o and 20 confidence
regions. Note that the constraints and nuisance parameters used in the exclusion plot and
the profile likelihood differ, so the result is not identical. In particular, the direct detection
constraints on the right panel are stronger, cutting off the upper left corner of the allowed
region.

One of the most direct ways to understand the combined constraining power of these ex-
periments is to produce an overlaid exclusion plot, like on the left panel of Figure 1.2. This
gives a clear picture of what part of the parameter space is ruled out by each experiment. This
information is particularly valuable when considering how improved experimental limits will
constrain the remaining parameter space and where attention (and experimental funding) is
best placed. However, exclusion plots have various drawbacks. Before discussing these let us
consider an alternative approach.

The experimental limits shown in the left panel of Figure 1.2 can be expressed as a likelihood
function. For example, a likelihood function for the Higgs invisible width, L;,,, would penalise
models with detectable invisible decays at the LHC such that L;,,. = 0. On the other hand,
when the invisible decay width is so small it would not have been detected with the current
level of precision, the likelihood would be the ideal value Li,, = 1. A combined log-likelihood
is constructed from each constraint, such that the total is log £ = > ,log £;. The likelihood
functions can depend on all the parameters of the model and additional parameters which

effect the experiment itself, such as the local density of dark matter.
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Once a combined likelihood function is constructed it must be sampled in an appropriate
way. An effective sampling algorithm will explore the allowed region of the multi-dimensional
parameter space and find the points with the best likelihoods as well as constructing detailed
contouring around these points. I will discuss statistical sampling algorithms in Section 1.3.1
and Chapter 8.

The combined likelihood can be studied using techniques from both frequentist and Bayesian
statistics. Let us first consider the frequentist approach. For a given model with parameters
© and data D we define the likelihood P(D|®) = £(©) (the model dependence is left implicit,
since all probabilities we consider are conditional on it). The likelihood is a measure of how
well the model with parameters © predicts the data. If the maximum likelihood is L.« then
we define the likelihood ratio A(0©) = £(0)/Lmax. To present the results in a lower dimensional
subspace we must profile the likelihood by maximising it over directions in the parameter space.
A profile likelihood for the scalar singlet model is given in the right panel of Figure 1.2. In this
case, the sampled parameter space is 15 dimensional, so for each mg by Apg bin (for this plot
we take ~ 100 bins in each dimension) the profile likelihood is simply the maximum likelihood
in that bin.

If the parameter space is appropriately sampled, then we can form confidence regions by
taking all points within a certain likelihood of the best-fit. We then apply Wilks’ theorem
[151] which states that under certain regularity conditions the test statistic —2log A will be
distributed as y? with degrees of freedom given by the number of remaining parameters not
profiled out. Using the x? cumulative distribution function we can obtain the value of A which

gives a particular confidence interval,

A = exp {—rl (,0, ;l)] (1.10)

where d is the dimensionality of the space we have profiled in, I'"! is the inverse of the reg-
ularised lower incomplete gamma function, and p is the desired confidence level. In two di-
mensions the one and two o regions (p = 0.683 and 0.954) correspond to A = 0.317 and 0.046
respectively. These confidence regions are indicated by white contours on the right panel of
Figure 1.2.

There are some notable advantages in using a combined likelihood global fit approach. The
model under consideration often has more parameters which influence the experimental limits,
such as the exact choice of the Higgs mass or the local density of dark matter. Yet the exclusion
plot is only valid for one choice of these additional parameters unless some profiling is done
consistently for all included limits. Additionally, in a typical overlaid exclusion plot we gain no

information in the allowed region (usually beyond the one or two sigma exclusion bounds of all
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the experiments), although some points may be favoured more than others. However, encoding
these limits into a likelihood function allows the experiments to still have some influence on
the parameter space beyond these boundaries. As every experiment is different, the gradient of
the likelihood within the allowed region will be different. In general, the point in the middle of
the allowed region will not be the best-fit. As we see in Figure 1.2, the best-fit point (indicated
by a white star) is closer to the boundary excluded by the Fermi-LAT experiment.

If an appropriate sampling algorithm is used (see Section 1.3.1) then we can also make
inferences using Bayesian statistics. For this we need to determine the probability distribution
function (PDF) of the parameters given the data and the model, P(0|D). This is a conditional
probability on the parameters in light of the data, as opposed to the likelihood £(©) which
is the probability that the model predicts the data, without any information about the data
before-hand.

We also define a prior, 7(0;) = P(0;) which is a measure of our initial knowledge about
the posterior PDF for each parameter, ©;, given the model. If we have no a-priori information
about a parameter, then a flat prior is appropriate. However, if for example we are dealing with
couplings that are expected to be small (but not exactly zero or negative), then a logarithmic
prior is more suitable. In other cases the prior can be even more well informed, such as a
Gaussian prior when one is already aware of the variance and mean of a given parameter. The
total prior is the product of the prior for each parameter, such that 7(0) = IIY.,7(6;) where
N is the number of free parameters.

The posterior probability is then given by Bayes’ theorem

£(©)7(©)
[#(0)L(©)dNe

P(6|D) = (1.11)

where the denominator is a normalising factor known as the Bayesian evidence. Since the
Bayesian evidence is independent of the parameters, this normalising factor can be ignored for
parameter estimation problems. A properly converged Markov Chain Monte Carlo (MCMC)
sampling method would give a set of samples distributed according to the posterior distribution.
In many cases we are interested in the posterior distribution in a lower dimensional subspace
of the full parameter space. For this we marginalise over, or integrate out, the parameters
that are not of interest. If Q C © is an M dimensional subset of the parameters, and Q€ the
complement in © of dimension N — M, then the marginalised posterior with respect to the

parameters {2 is
P(Q|D):// . ./P(Q,Qﬂp)dﬂ?dﬂ? A0S (1.12)

For an example of a marginalised posterior see Figures 7.6 and 7.7 in Chapter 7.
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The normalising Bayesian evidence factor is important for model comparison studies. It is
effectively an average of the likelihood over the prior volume. As a result a simpler theory with
a smaller parameter space will have a greater evidence than a more complicated one, unless
the complicated theory is significantly better at explaining the data. This effect can be seen
between modes in a parameter space, with a finely tuned mode (many parameters with a small
acceptable range) penalised over a larger mode with a greater average likelihood.

The use of Bayesian inference in high energy physics has traditionally been limited to
cosmological studies [152,153]. On the other hand frequentist statistics are more common in
particle physics, see for example the likelihood analyses in Refs. [154-161]. To some extent
this is a representation of the kind of data available in each field. The frequentist uses many
repeated measurements to form a probability from the frequency of an event occurring, whereas
the Bayesian will update their prior knowledge based on, sometimes limited, new data. Likewise
there is only one universe to sample from, but a particle collision can be repeated many times
over. The issue of prior dependence in some models can also result in a preference for a
frequentist likelihood analysis [161]. However, with increased computing power and modern
sampling algorithms Bayesian statistics have become common in studies of supersymmetric
[162-167] and non-supersymmetric models [5] (also see Chapter 7).

By the nature of the way a composite likelihood analysis is constructed there is significant
scope for reusability and flexibility in the method. For many likelihoods, the result may depend
on only a few model predictions. For example, a direct detection likelihood can be based
primarily on the nucleon-dark matter cross-sections and dark matter mass. Therefore, the
likelihood function is model independent and need not be rewritten for every new analysis
of every new model. In addition, many likelihoods can be gleaned from existing software
and included in the composite likelihood. Software packages have been developed to perform
likelihood analysis using pieces from existing codes, such as SuperBayes [168] and MasterCode
[154,159,169-178] for studies of supersymmetric models and more recently HEPfit [179-181]
for various beyond SM analyses. However, these packages do not take full advantage of the
potential for reusable model-independent likelihood functions.

In Chapter 7 we will present a global fit to two variants of the scalar singlet model using
the Global and Modular Beyond the SM Inference Tool (GAMBIT). The GAMBIT software
[4,6,16,182-184] was developed to perform global fits in the most flexible and modular way,
enabling new models and constraints to be included as efficiently as possible using model-
independent likelihood functions. GAMBIT has also been used for global fits of the constrained
MSSM (CMSSM) [160], two variants of the non-universal Higgs mass (NUHM) model [160]
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and the MSSM with parameters defined at the weak scale [161]. The GAMBIT software is the
most comprehensive global fitting package available, with an extensive backend library to other
software packages, user-friendly code and detailed documentation. The GAMBIT software and

results are also fully open source and available at https://gambit.hepforge.org/.

1.3.1 Statistical sampling algorithms

The method used to sample the composite likelihood in a global fit depends on the nature of the
model, the constraints and the desired statistical results. In this section I will review the current
status of sampling algorithms in global fits and in Chapter 8 present a detailed comparison of
the four sampling algorithms available in the first release of the GAMBIT package.

Given a model and likelihood function with undetermined free parameters, the most naive
yet straightforward analysis is a grid search over all reasonable parameter values. Although
computationally time consuming, this method has been used to explore regions of the parameter
space of the constrained CMSSM and other supersymmetric models [185,186]. However, there
are problems with such an approach; a grid search is computationally slow and the areas of
interest may be small, even compared to the size of the grid spacing, resulting in either dense
searches in irrelevant areas of the parameter space, or fast searches that may miss important
regions. The speed of such a search scales with the number of parameters, N, as p" where p
is the number of points in each dimension of the parameter space. While this is adequate for
initial explorations of two or three dimensional parameter spaces, for models with more free
parameters the time taken becomes excessive.

Another simple method that has been used in global fits is random sampling (see for example
Refs. [102,187-190]). In the most basic form this type of sampling makes no use of previous
samples to adapt future steps, and has the risk of wasting computer time to sample regions
of the parameter space that are strongly excluded. It can also result in biased results if the
prior is not carefully chosen. Although this can be improved after each scan by choosing better
prior distributions (such as a logarithmic prior for couplings that are known to be small), it
is computationally time consuming and obtaining well defined confidence intervals requires a
huge amount of points to be sampled.

For a frequentist analysis we are interested in locating the maximum likelihood point and
defining a confidence interval around it. A sufficiently fine grid search would eventually get
close to the maximum, but at the cost of sampling the entire parameter space. The random
sampler would only find the maximum, or the even the mode containing it, by chance. In both

cases, it is possible to entirely miss the maximum likelihood, especially when it is at a finely
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tuned set of parameter values. Therefore it is impossible to make reliable statistical statements
or comparisons between models. Instead we can make use of optimisation routines which use
information from the likelihood to direct their next step and will only stop once reaching a
particular convergence criterion. The stricter this convergence criterion, the more confident we
can be that the algorithm has located the true maximum.

Genetic algorithms are efficient at optimisation in large parameter spaces (see for example
Ref. [191]). This class of methods starts from a set of randomly generated “individuals” and
iteratively evolves these in “generations”. For each step a set of “best individuals” is cho-
sen probabilistically, such that those with poor likelihoods may still be evolved to the next
generation. This evolution continues until reaching an optimal state which satisfies certain
convergence criteria (such as a measure of the fractional improvement in the population over
a set number of steps).

Differential evolution (DE; [192-195]) is an optimisation routine which has similarities to
genetic algorithms and the Nelder-Mead simplex method [194]. Tt performs extremely well in
parameter spaces with multiple modes and high dimensionality (as we demonstrate in Chapter
8 and in Ref. [6]). DE iteratively evolves an initial population by using a form of vector addition
between the population members. In such a way the population performs a highly adaptive
random walk, with the direction and step-size controlled by the population members. The
DE mutation tends to evolve the population along contours, with the members having similar
likelihood values, and those with the worst improving quickly. This is known as contour
matching [196] and results in very well sampled contours. An implementation of DE has been
used in the first GAMBIT global fits [5,160,161] via the Diver package [6]. See Ref. [6] for more
details on DE in general and the Diver algorithm.

The likelihood samples obtained in grid searches and random sampling are not necessarily
distributed in a statistically meaningful way. KEven in an optimisation routine, the aim is
to locate the maxima and sample the associated modes, yet this sampling is biased towards
locating the peak of the distribution. For a Bayesian analysis we need to properly sample the
posterior distribution. This is achieved by algorithms that perform an effective random walk
with a proposal distribution based on previous samples. In such a way, the sample chain will
eventually be distributed according to the posterior distribution. The following algorithms are
designed to efficiently sample the posterior as well perform some degree of optimisation.

For a large parameter space an MCMC analysis is an efficient method for finding and sam-
pling the distribution of maximum likelihood modes. When applied to a multidimensional

parameter space the time taken for an MCMC scan scales approximately linearly with the
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number of dimensions, a significant advantage over a grid search. MCMC is effectively a so-
phisticated random walk algorithm that uses the likelihood of the previous step to evaluate if
a new step is in the direction of increasing likelihood. It also has the capability to occasionally
take steps in directions of lower likelihood and thus avoid becoming trapped in local extrema.
MCMC has been in use since the 1950s when it was introduced by N. Metropolis, A. Rosen-
bluth, M. Rosenbluth, A. Teller and E. Teller [197], who applied the method to the simulation
of simple fluids. Monte Carlo methods have become very popular in physical applications,
with the MCMC method being particularly useful when dealing with the multidimensional
parameter spaces encountered in complicated systems, such as the CMSSM [163]. The effi-
ciency of standard MCMC routines can suffer from a poor choice of proposal distribution. The
GreAT [198] and T-Walk [6] MCMC packages used in the first GAMBIT global fit to the scalar
singlet model [5] overcome this by using adaptive proposal distributions. This is done partic-
ularly effectively in the T-Walk package, which is an ensemble MCMC, where the proposal is
based on multiple concurrent MCMC chains.

Nested sampling is another algorithm which can be applied to the testing of models with
large multidimensional parameter spaces. This method, developed in 2004 by John Skilling
[199], has already been utilised in a number of studies of beyond SM theories [191,200-202].
The evaluation of the Bayesian evidence, the denominator in Eq. (1.11), requires a challenging
multidimensional numerical integration. The nested sampling algorithm, implemented using
software such as MultiNest [203], is a type of Monte Carlo method which is intended as a stochas-
tic integrator designed to efficiently perform this integration but also perform a maximisation
as a by-product. For each new point the likelihood must be greater than the likelihood of the
worst current live point (from a set of evolving live points). In such a way the method simul-
taneously produces useful information on the posterior distribution and obtains the maximum.
The nested sampling implemented in MultiNest is particularly efficient, having a higher accep-
tance rate than a standard MCMC method, because the algorithm uses an elliptical boundary
containing the current set of points at each stage in order to restrict the region around the
current posterior peak from which a new sample could be drawn. In distributions with multiple
posterior peaks this method can be generalised to multiple elliptical regions, known as clustered
nested sampling. Nested sampling is yet another powerful statistical tool available for the study
of beyond SM theories.

With the number of different sampling algorithms available it is often desirable to use more
than one to study a parameter space. ScannerBit is a GAMBIT module which provides an

interface between scanning algorithms and the rest of the global fit package. In GAMBIT 1.0.0



1.3. Global fits 41

there are four statistical sampling algorithms available via ScannerBit. There are two MCMC
routines (T-Walk and GreAT [198]), a nested sampling algorithm (MultiNest [203]) and the DE
scanner, Diver. In addition to being able choose a range of algorithms for a particular problem,
each algorithm has a number of parameters with which it can be tuned. These typically
control the size of the initial population and the stopping criteria. In Chapter 8 I present an
exploration of the performance of the four major scanners available in GAMBIT 1.0.0, when
applied to a physically realistic likelihood function. The modularity of the scanner interface
allows consistent comparison between both the algorithms themselves, and between different

choices of algorithm settings.
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2 Renormalisation

2.1 Introduction

In classical field theories cut-off scales naturally appear, such as the scale of atomic distances
in thermodynamics. At such a scale the continuum description breaks down, yet this is usually
not a problem as there is no need to go beyond the cut-off. In a quantum field theory there
is no well defined cut-off. The only well motivated limit is the scale at which unknown short-
scale physics may become relevant, such as some scale of fundamental graininess of spacetime
resulting from quantum gravitational fluctuations. Additionally in a classical theory the scale of
the cut-off, such as the mass of the atoms in the medium, can become relevant in the calculation
of physical quantities like the speed of sound. Ultra-violet (UV) divergences arise in quantum
field theories as a result of an apparent analogous dependence on this unknown high energy
(or short-distance) cut-off scale in the calculation of physical quantities. Fortunately, through
the technique of renormalisation, this scale need not have a physical interpretation. For a
renormalisable quantum field theory all physical quantities are independent of the cut-off scale
and are thus divergence free.

This can be achieved through a re-parameterisation of the bare masses, couplings and the
field itself. In a renormalised theory it is always possible to combine these new parameterisa-
tions and obtain expressions for physical quantities that are independent of the cut-off scale.
This process is the renormalisation. In this chapter I will work in renormalised perturbation
theory where this renormalisation process occurs more automatically but is less explicit than
in a direct re-parameterisation. In this formalism counter-term couplings absorb the infinite
but unobservable shifts between bare parameters and physical observables.

In renormalised perturbation theory physical quantities are expressed as a perturbative
series in the couplings, with divergences appropriately dealt with at each order. They are
divergence free, but are generally not representative of the true physical value. Radiative cor-
rections are required to account for missing higher order terms in the theory. These corrections
involve consideration of the many possible ways to achieve the same physical process involv-
ing intermediate interactions consisting of various vertices and loops. For example, a physical
electron is not a single particle in the vacuum, instead it is surrounded by a photon cloud — its
radiation field. The electron itself is continuously interacting with this radiation field, emitting

and reabsorbing photons. These interactions change the energy of the system and must be
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accounted for when calculating the physical mass and charge of the electron.

To develop an understanding of renormalisation we will work with a simple scalar field
theory, known as ¢* theory, in four dimensions. This model consists of a single scalar field, ¢,
with a mass m and two self-interactions; a quartic interaction with coupling strength A and

cubic interaction of strength g. The bare Lagrangian is

1 1 9B AB
L= 5(0u88)" = 5mboE — 370k — 3795 (2.1)

where mp is the bare mass parameter, gg and Ap are the bare couplings for the cubic and
quartic interactions respectively and ¢p is the bare field. This theory contains four divergent
amplitudes, one for the vacuum energy shift, and one associated with each interaction vertex.
These are absorbed into the unobservable bare parameters (the bare mass, the two bare cou-
plings and a field strength parameter). So we now need to redefine the field and couplings
in terms of renormalised parameters, with these divergences appropriately absorbed. This is

achieved by the rescaling

1 1 1
o =270, mh=(m*+0n), g8=—75(9+0) Ap=_0+6N) (22
Zy z; Z5

and 0z = Zy — 1, such that the Lagrangian becomes

L= S0 — yms? s
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This Lagrangian is now written in terms of the physical mass and couplings. The new terms,

07, 0m, 04 and 0y, are counter-terms which have absorbed the infinite shifts between the bare

and physical parameters. These counter-terms are not simply added to the Lagrangian, instead

they have been split out of the original bare Lagrangian. We can use Eq. (2.3) to determine
the Feynman rules for each vertex which are given in Figure 2.1.

Now we must choose a renormalisation scheme. The counter-term couplings and their
associated amplitudes contain divergent and finite pieces. The scheme determines exactly what
finite pieces are subtracted and consequently the precise physical interpretation of the resultant
finite parameters. The renormalisation scheme is fixed by a set of renormalisation conditions,
with these conditions specified at a given energy scale. Ultimately, physical quantities such
as cross-sections, branching ratios and masses should be independent of the renormalisation
scheme.

One popular renormalisation scheme is the on-shell scheme. In this scheme the renormali-

sation condition is that the two-point correlation function, or propagator, (see Section 2.2 for
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Figure 2.1: The Feynman rules for the ¢* theory given by the Lagrangian in Eq. (2.3) and the
propagator for a scalar field [8]. The small circle indicates an interaction vertex and the large
black circle with a grey cross indicates a counter-term vertex.

details) and its derivative with respect to the external momentum squared have a pole at some

2. Thus, m in

experimentally measured value. One natural choice for this value would be m
Eq. (2.3) can be interpreted directly as the physical mass and the counter-term cancels any
finite contributions from radiative loop corrections (up to some order in A and g). While this
scheme gives a physically sensible meaning to the Lagrangian parameters, it is not the most
common in modern quantum field thoery calculations. Another scheme is minimal subtraction,
where the counter-terms are such that they remove only the divergent part. A variant of this
scheme is modified minimal subtraction, or M S, where finite terms that are always accompa-
nied by divergent pieces are also subtracted, for ultimately tidier results. In this scheme m in
Eq. (2.3) is only the physical mass to leading order as counter-terms do not compensate for
the radiative corrections, so these must be explicitly added on. I will use henceforth use the
MS scheme.

In Section 2.2 T will go through a two-loop mass calculation, and in turn determine the

one-loop, and where necessary two-loop order counter-term couplings. In Section 2.3 I will

then demonstrate the concept of renormalisation group using the ¢* theory.

2.2 Precision mass calculations

The physical mass of a particle is necessarily independent of the renormalisation scheme and en-

ergy scale. In an experiment, the physical mass corresponds to a pole in a scattering amplitude,
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QTo(x)p(y) ) = ———4¢—— + + .

Figure 2.2: The two-point correlation function for an interacting field theory is given by the
free-field Feynman propagator (left) and any subsequent one particle irreducible loop diagrams
with two external legs.

where this amplitude contains the Fourier transform of the propagator for that particle.
The propagator is the amplitude for a particle, or field excitation, to propagate from z to
y and is expressed as (Q| To(x)o(y) |Q), where (2] is the ground state of an interacting theory
(or (0] in a free theory) and T is the time ordering operator. At the zeroth order (tree-level)
in perturbation theory there is only one such process, represented by the leftmost diagram in
Figure 2.2. Mathematically this is given by the free-field Feynman propagator, which for a
scalar field is
dp ie~(@-y)

2.4
(2m)4 p? — m?2 +ie (24)

01 T6()0(y)[0) = |

for a particle of mass m, external momentum p and € — 0. In an interacting theory we must
also consider radiative corrections. The first loop amplitude (the second diagram in Figure 2.2)

is constructed as

dp . i i
A ) D -
/ (277)46 p? —m? +ie =iz @)l p? —m? +ie (2:5)

where we have a propagator for each external leg and —i¥(p) represents the amplitude of
the loop process. For the next step we need the notion of a one particle irreducible diagram
(1PI). A 1PI diagram is one which can not be split into multiple subsequent diagrams, linked
only by one propagator. Then —i3(p) can represent the sum of all amplitudes corresponding to
1PI diagrams of the same order in perturbation theory. To complete the two-point correlation
function, we must also include strings of consecutive 1PI diagrams, such that the Fourier
transform of the total two-point function becomes (omitting the ie in the denominator)

i

[t @I To()o(0)[0) e =

2 —m2
) 7
+ 2 .2 [—’iE(p)] 2 2
g im g im i (2:6)
+ 22— m? [—i%(p)] 2 —m2? [—i%(p)] 22— m?

+ ...
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Since ¥(p) commutes with ¢ we are able to express this sum as a geometric series (this turns

out to also be possible for propagators with momentum-dependent numerators)

/d% (Q T(x)p(0) |2 e 77 = M [1 + (pffpr)n?) * (M)Z T ] (2.7)

;
- p?2—m?—3(p)

so the pole of the propagator is given by p?> = m? + X(p). The pole mass of a scalar field
is therefore defined as mpole = p such that p = /m? + X(p), where X(p) is known as the
self-energy. Computing the physical mass mpele can be done via iteration (see Section 4.3.1),
or through an approximation (see Sections 3.3 & 4.4.1). In Chapter 4 we investigate the
phenomenological implications of choosing either of these methods.

The above procedure can be repeated for other types of fields. For a Dirac fermion, x, the
free-field Feynman propagator is

dip ie~ P (@=y)
(2m)tp —m +ie

O 7X@ o) = [ 23)

which after working through the same steps as for the scalar field theory gives a Dirac fermion
pole mass mpole = p for p = m + X(p).
Finally we need to define the pole mass for a vector field. The self-energy of a vector field,
YH(p?), can be separated into a transverse and a longitudinal piece as
o) = 510 (9 - )+ sheh B (2:9)
p p
where the T and L denote the transverse and longitudinal polarisations respectively. Only the
transverse part of the self-energy appears in the propagator because the Ward identity for a
non-abelian vector field implies that p,>*" (p?) = 0 and thus the self-energy must be of the

form (p?g — pupy)EH (p?) [8]. So following the same treatment as above gives a pole mass

mlge = m? — ReXT(m2,,) (2.10)

where m is the M S tree-level mass parameter.

As X(p) is a perturbative quantity, it is generally expressed as
S(p) =2V (p) + 2@ (p) + ... (2.11)

where £(?) (p) is the sum of all 1PI diagrams involving n loops. In a valid perturbation theory
the magnitude of the terms will decrease with n such that the perturbative series is conver-

gent. Subsequently the theoretical error in the mass decreases with the loop order. One-loop
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self-energies are usually relatively simple and can even be computed automatically for some the-
ories with tools such as SARAH [140-143]. Two-loop self-energies are much more complicated,
with potentially hundreds of diagrams to consider, and thus often require some simplifications
to obtain tractable results. However, for comparison with precision experimental mass mea-
surements two-loop self-energies can be essential. For example, the theoretical error in the
full two-loop SM Higgs mass calculation, with some leading order three-loop contributions,
in Ref. [204] gives a theoretical error of ~100MeV on the mass. This is not much less than
the current ~ 400 MeV uncertainty on the experimentally measured mass [205]. With the ex-
perimental uncertainty expected to become ~50MeV (Table 1-27 in Ref. [206]) at the LHC,
and even less at future eTe™ colliders, self-energies at three-loop and beyond could become
necessary. The need for two-loop masses is not limited to the Higgs. In Chapter 3 we will
demonstrate how two-loop self-energies can result in changes to the decay lifetime of a charged
electroweak multiplet component by up to 40%. The required precision in Eq. (2.11) will ul-
timately depend on the physical problem and the sensitivity of the experimental constraints.

For this work we will not go beyond the two-loop level.

2.2.1 One-loop self-energy in ¢* theory

In this section I present a calculation of the one-loop self-energy, E(l)(pZ), for the ¢* theory.

Here ©(™) P?) =3 Egn) +> Egnc) is the sum of the individual amplitudes with n-loops, Zgn),
(nc)

and the corresponding n-loop order counter-term amplitudes X; The index 7 is used to

number the individual diagrams and corresponding amplitudes.

The first diagram to consider is given on the left and has an am-

k plitude

@

2 d*k i

(D) __ R
2 2 J (4m)? k? —m?

(2.12)
where I have included a symmetry factor of 1/2 (the diagram is symmetric under an interchange
of the two ends of the lines making the loop) and the coupling —i\ comes from Feynman rules in
Figure 2.1. To evaluate this integral I apply the technique of dimensional regularisation. This
involves computing a Feynman amplitude as an analytic function of spacetime dimensionality
D, and then taking the limit D — 4, which should be finite for observable quantities. I will
not derive the details of dimensional regularisation here as these can be found in almost any
introduction to quantum field theory, such as Ref. [8]. I apply this technique by replacing the

integrand in the divergent integral, Eq. (2.12), with a D = 4 — 2¢ dimensional integration and
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a scaling factor ¢, such that
d*k dPk 1
12 _ 21 % /
/ o~ =0T | aapE

ey () ()
a (4m)z \m? 2

= —p* (4;32m2 (mz)76 I'(e—1)(4m)° (2.13)

im?

L1y t10g
=—— |- - 0
(4m)2 \ € 7 &

2

a ) +O(>e)

m?2

2 2
= (ZZLmT)Q (1 +1—log22> + O(e)
where I have used the identity for the integral in Minkowski space from Eq. (A.44) of Ref. [§]
in the second line, I' is the Gamma function, v ~ 0.5772 is the Euler-Mascheroni constant
and p and @ are the regularisation and renormalisation scales respectively. These two scales
can in principle be independent, yet as discussed earlier, in the M S renormalisation scheme,
we set the renormalisation conditions such that the results are more compact. So for now
I set Q% = 4me 7p? as the renormalisation condition in the last equality in Eq. (2.13). In
this case the counter-term would only need to be of the form %, as I can absorb () into the
general expressions for integrals. More generally (and equivalently) I could use a counter-term
proportional to
1 A7
- + log Q/;

as will be necessary in Section 2.3 where I require p and @) to be treated as independent.

—y (2.14)

Therefore I choose to express counter-terms in the more general form of Eq. (2.14).

Now I will write Zgl) (Eq. (2.12)) in terms of a basis integral. Basis integrals are a stan-
dardised set of integrals that can be evaluated using computer programs such as the Two-loop
Self-energy Integral Library (TSIL) [9]. Although 2(11) (Eq. (2.12)) is straight forward to eval-
uate, two-loop integrals are not, and often require numerical techniques. So in general I will
use basis integrals and make use of the existing numerical tools to evaluate these. For the

amplitude from Eq. (2.12) we need the A integral, given by

2
A(m?) = m? <log % - 1) (2.15)
such that
2
=t = %A (A(mQ) - ”é) + O(e) (2.16)

where x = 1/(1672). This is not yet finite in the limit of small €, but once we include the

counter-terms we will be able to obtain a finite result for the renormalised mass.
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The next diagram to consider is given on the left. This has an

amplitude

i

2/ 27r4k2—m2(p k)2 —m?

—in! (2.17)

p—k
where I have included a symmetry factor of 1/2 and two factors of —ig, one from each vertex.
This integral also depends on the external momentum, p. Before applying dimensional regu-
larisation I use the technique of Feynman parameter integration to express the integral in a

simpler form. Using the identity

1 1 dx
AB /0 [A+ (B — Al (2.18)

we have

4 1
—ixnV = / 4k / de . (2.19)
2 0 [(k—px)?—A]

where A = (1 — z)p? + m?. We can then translate the integration measure dk — dk’ where

k' = k — pz, and make the shift k — k + px to give

4 1
(D) d*k / dx
i) =L / e (2.20)

Applying dimensional regularisation gives

d*k dPk 1
/W[kQ — A7 ,“26/ 2m)D k2 — A2

9 0 1 r 4—-D
=L (470% AZ-D 9 (2.21)

i 2
:(47r)2<1+logi>+(’)(e).

Now I will make use of another one-loop basis integral

Q2
B2, m?, / dz 1
(p my m2 T 10g (1 o w)ml + .fUm% — w(l —_ ,jU)p — 1€

where I will henceforth omit the explicit p?> dependence on the LHS. The amplitude can now

+0()  (222)

be written as

1 1
24 =~ g (Blm®,m?) + 2 ) +0(0) (2:23)

Finally we must consider the two-point counter-term diagram,

which has an amplitude

—in{) = i(p265 — 6m). (2.24)
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We now need to remove the divergent terms from (2.16) and (2.23) by determining the
appropriate values for the counter-term couplings, §,, and §z. The full one-loop self-energy,

including counter-terms, is
1 2\ 1 1
»(1) — 5 (A(mz) _ m) _i,ﬁﬁ (B(mQ,mQ) + ) +6m—02p° + Ole) . (2.25)
€ €
Demanding that the divergent part, of order 1/e, is zero gives the condition on the counter-

terms

__ 1 2, 2 2
0= —5c" ()\m +g ) + O — dzp (2.26)

which gives two independent equations by seperating into a momentum dependent and inde-

pendent part. Solving this system of two equations we find
(1,1) 2 K ( 9 o\ (1 A7 ? )
O =Kom + O(Kk?) = (g + Am ) — +log —v | +O(k*) (2.27)
2 € Q?

57 = k65D + O = O(k?) (2.28)

where §°* has a coefficient order 7 in x and a divergence of order 1/¢* and we have used the
general form for the counter-term as given in Eq. (2.14) (this is possible since we can in principle
include any finite part in the count-term coupling). We also allow for high order terms, O(x?2),
which are required to cancel divergences from amplitudes above the one-loop order, which we
will determine in Section 2.2.4. In this section I have presented a simple example of a one-
loop self-energy calculation, in Section 3.3.1 we work through a more complicated one-loop

self-energy using the same techniques.

2.2.2 Basis integrals

In Section 2.2.1 I used basis integrals to express one-loop amplitudes in a standardised form.
Not only does this make the expressions more tractable but the evaluation is straight forward,
with various software packages having at least some implementation of the A and B integrals.
Because the UV divergences are associated with the integrals themselves, basis integrals are
generally expressed with the divergent part included. Indeed, we could have saved some work
by referring immediately to these integrals in their full form. I will use the basis integrals as
defined in Ref. [9], where the integrations are performed in Euclidean space (and thus have a

different sign on the mass terms appearing in the denominator). For A and B we have

1 x

Alz) = c/de[kz T e A+ eAdn) +O(@) (2.29)
1 1

B(r,y) — C/de[k2+x][(k_p)2+y] — L B(,y) + eB(w,y) + O()  (2.30)

€
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where C' = (ZW) , Ac(x) and Be(zx,y) are defined by Ref. [9] to be

Q

Bu(wy) = C(2)/2+ % /01 dt [mg (m +{d- t)g_ t1 = t)s)r (2.32)

and ( is the Riemann zeta function. With these definitions one can immediately extract the

A(z) = = [—1 —((2)/2 +log = — <10g ) /2] (2.31)

divergent piece once the amplitude is reduced to the form of a known basis integral. In general
we will use boldface type for divergent basis integrals, and standard type for the finite piece.
This standardised form for integrals appearing in self-energy calculations is essential when
working with two-loop amplitudes. In Section 2.2.3 I will write down the two-loop self-energy
for the ¢* theory using basis integrals which can be evaluated numerically using the TSIL

software package.

I will use the same notation for the basis integrals as Ref. [9],

1

,2) = CQ/ddk:/dD 2.33
S L e Py (s (233)
(xai%z) = S(x7yaz)|520 (234)
T(z,y,2) = -S(z',y,2) (2.35)
1

; = 02/dd /dD 2.36
Yty s e e ey ER (2:36)

1
M(z,y, 2, u, :C2/dd/dD 2.37
(g2 00) R e (e e [ e [ e e Ml
where a prime denotes a derivative with respect to that argument, s = —p? and once again

we omit the explicit dependence on the external momentum in the function arguments on the
LHS. Each one of these integrals represents a possible two-loop topology, in the case of a simple
scalar propagator and no momentum-dependent couplings. Because of this there are a range
of symmetries in the arguments to each integral, which we will make use of at evaluation time
(see Ref. [9] for more details).

Following the notation used for the TSIL software, the basis integrals can be expanded out

into finite and divergent pieces (terms of order one or higher in 1/¢) as [9]

y.2) = Iy + T a4 a) + Al (2.39)
—[A(z) + A(y) + A(z) — (x +y + 2)/2] Je + O(€)
B (x4+y+2)
S@..2) = St~ D L)+ Al + A) (239

+[A(x)+Aly) + A(z) — (z+y+ 2)/2+ s/4] e + O(e)

T(z,y,z) = T(x,y,2)+ 2—12 — [A($)/a; +1/2] + (Alw) ;Ae(x)) + O(e) (2.40)

+ [B(z,y) +1/2] Je + Be(x,y) + Ofe) . (2.41)

1
U(%Z/;%“) = U(a:,y,z,u)—i-@
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In many cases there is some manipulation required to express the amplitude in the form of
one of these basis integrals. This process becomes more involved with momentum-dependent
couplings and higher loop order, so in most cases an algorithm is used to reduce these tensor
integrals into the scalar basis integrals introduced here. Two-loop propagator integrals can be
reduced to simpler basis integrals using the recurrence algorithm proposed by Tarasov [207,208].
The TARCER software package [209] is an implementation of the complete set of Tarasov’s
recurrence relations with some additional extensions.

Another method to simplify multi-loop integrals is reduction by integration-by-parts identi-
ties (IBP) [210]. These IBP relations are based on an application of the divergence theorem to
loop integrals with propagators raised to integer powers. Combining complicated multi-loop in-
tegrals in such a way to take advantage of IBP relations requires sophisticated algorithms, such
as Laporta’s algorithm [211] or Baikov’s method [212]. The FIRE software package [213,214]
makes use of Laporta’s algorithm, the s-bases algorithm [215] and other techniques to efficiently
implement IBP relations to multi-loop integrals.

In Section 2.2.3 T will apply TARCER [209] to some integrals appearing at two-loop in
the ¢* theory, although equivalent results can also be achieved using simple identities (I will
make reference to these when applicable). In the much more complicated two-loop calculation
presented in Chapter 3 we use both TARCER and FIRE [214] to reduce amplitudes to an

expression involving only the basis integrals presented in this section.

2.2.3 Two-loop self-energy in ¢* theory

There are nine loop diagrams and five counter-term diagrams for the self-energy of the ¢*
theory at two-loop order. I will demonstrate how the basis integrals introduced in Section 2.2.2
can be used to efficiently write down these amplitudes, determine the total UV divergence, and
subsequently derive the appropriate counter-term couplings.

This calculation is implemented as a quick-start example in the Mass Builder software,
documented in Appendix C. Where necessary I use the result of a TARCER [209] reduction,
(2

for consistency with the Mass Builder output. The diagram numbering, given by i in ¥;7/,
is equivalent to the numbering system in the Mass Builder implementation which is originally

determined by FeynArts [216].



2.2. Precision mass calculations 54

The first two-loop diagram is given on the left and has an ampli-

tude
i 2y 2
5 = 9 CQ/del Py -
ky iy 1 (K + )" [(p — k1)? + a] (K3 +2)
2)\ 2
_ 4g A(z)B(2', x) (2.42)
p— ki where z = m? and B(2/,y) = £ B(z,y). Because of the derivative
term this is not the most fundamental representation. Making use
of the relationship [9]
(3= D)(s — 2+ y)B(w,y) + (2~ D){A(y) + (s — = — y)A(z) /2}]
B, y) = (2.43)

s2 + 22 + y2 — 25w — 25y — 27y
and taking x = y then substituting this along with Egs. (2.29), (2.30) and (2.43), and setting

D =4 — 2¢ gives

52) :zlg;?zgzj\s) [—2(A(£L’))2 — 2¢A(z)B(x, ) — 42 B(z, ) + 22A, + 22° B, (z, z)
% (2$A($) + 222 B(z, ) — 23:2)] + O(e) (2.44)

which is the fully reduced form for this amplitude. For the remaining diagrams we will not
present the working to this final stage, as in most cases this would just be a repetition of
Egs. (2.29) through (2.41). We will also not write out the integral form, instead going straight to
the basis integrals as defined in Eqgs. (2.33) through (2.37). However, we retain the momentum
labels on the Feynman diagrams so it is easy to see what basis integral is required.

The next two diagrams are

kz ‘ p— kl p— k)l kz
kl kl

from which we can use Eq. (2.36) to immediately write down the amplitudes as

252) = E§2) = k2 MU (z, 2, 2,2, 2). (2.45)

The next diagram, given on the left, represents the “master” inte-

gral (Eq. (2.37)) which has no divergences and is given by

4
Ef) = —/QQ%M(l',l',ZL‘,IL‘,l‘)
p—ki p— ke (2.46)

4
= —H,Q%M(JJ, z,x,z,z)+ O(e).
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The fifth diagram, given on the left, is equivalent to a derivative

with respect to the second mass argument of Eq. (2.36)

4
2;2) :ﬁQ%U(ZC, 2z, x) (2.47)

although this is not the most fundamental representation.

To reduce this further one can use Eq. (3.22) of Ref. [217] and Eq. (2.38) of Ref. [9] (given the
complexity and length of these expression, I refer the motivated to reader to the given reference
rather than reproducing it here). We obtain a more compact expression by making use of the
TARCER software package. The result is

2 g [3BD=8)z(2z —p?) da(z — p*)(9z — p?)

Eém = 1922 Ty P—) S(x,z,x) — 4z — ) T(x,z,x)
3(Dp_2(i>;(_2;2; ) a2, 2) + 2(D — 2)A(2)B(z. 2) (2.48)
_x(Dp2Za—:2_(l;2— 9):E)U(af:, x,T,T)
oy The sixth diagram is given on the left and has an amplitude
" . ) = —HQZQA(:C)A(QU’) (2.49)

where A (') can be further reduced with the result

A@) = (DQ; 2) Ax) (2.50)

(which one can verify using Egs. (2.15), (2.29) and (2.31)) to give
2

5@ = —,{2&%(1) —2)[A(2)]2. (2.51)

The final three diagrams to consider are given below.

kq
k1

k k

Cl 32 k1 + k2 k1 + k2
—k —k

p 1 p 2 p— k1 — ko
The first on the left is expressed using Eq. (2.30)
g°X
Yy = /@27 [B(z, z)]? (2.52)
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the middle diagram is given by the derivative of Eq. (2.34) with respect to the third mass

argument
Zg) = —k*Z=1I(z,x,2") (2.53)

which can be further reduced using TARCER to give

2
(2 29°A
Yyl =— D—-3)1 . 2.54

Finally, the right-most diagram is given by Eq. (2.33) as

252) = —n2%S(:c,x,x). (2.55)

Counter-term diagrams

The first two-loop counter-term diagram is given on the left. This

k1 k1 diagram involves a correction to the internal scalar propagator,
with an amplitude
p—Fki 22 = 250D 2B (2, x) (2.56)

which after using Eq. (2.43) becomes

n(2) _ .2 g D—2)A 2D — 3)B 92.57
1 —ﬁm[( —2)A(z) +2(D - 3)B(z, )] (2.57)

where we have set 5(Zl’1) = 0 from Eq. (2.28) and neglect O(x3) terms in §,,.

The next three counter-term diagrams are given below.

]Cl kl
k1
p—kp p—ki
The first on the left is given by
4]
») = —KEA A(z) (2.58)

and the following two, which are mathematically equivalent are given by

E§2C) = E?C) = k%9 6,B(x, ). (2.59)
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The final amplitude, coming from the counter-term diagram on the

left, is

ey ey 52 = k2iASD A (2) (2.60)

which after using Eq. (2.50) becomes

D —2)

59 s 2= 5 ) (2:61)

2.2.4 The total finite mass correction

The two-loop mass correction is obtained by combining all the amplitudes computed in Sections
2.2.1 and 2.2.3 and cancelling all divergences by a careful choice of counter-term couplings.
The full self-energy up to two-loop order, ¥ = (1) 4 22 g
2 2 e 1 > @
2= 243 5@ 459 L $onl (2.62)
i=1 i=1 i=1

and it is required that ¥ has no terms of order one or higher in 1/e. To impose this constraint
we must first add higher order terms to the two-point counter-term such that the corresponding

amplitude is

where 6%F has a coefficient order 7 in x and a divergence of order 1/ ek, The results for 5%’1) and
5(21’1) were given in Eqs. (2.27) and (2.28) respectively. Two equations are formed by setting
the coefficients of 1/¢ and 1/¢? of ¥ (Eq. (2.62)) equal to zero, which gives

0 = 24(62 +p?%5") + A(159% + p? + 6Az)
+(39A — 260,) B(x, ) + (205 — 35)?) A(x) (2.64)
0 = —8359 — 4z +8 (022 +p07Y) + 592X + 222 (2.65)

We can split Eq. (2.64) in three by separating into the coefficients of A(z), B(x,z) and the

remainder. This gives three independent equations

0 = 26y —3k\? (2.66)
0 = 3g\—2rd, (2.67)
0 = 24(0@Y +p*7) + A(156% + Ap? + 6A). (2.68)

Finally we seperate Eqgs. (2.65) and (2.68) into a momentum-dependent and independent part

to give an additional two equations. Now we can solve for the following counter-term couplings
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(including the results from Eqs. (2.27) and (2.28))

K 32
S = = (2.69)
K 3gA
5, = =y (2.70)
1
1Ly L9 2
0y = 5 (g + Am ) (2.71)
s = 0 (2.72)
1 ) 1
(21) _— 2 (_2y.2_ 1422 9
O z ( 8/\g 4)\ m ) (2.73)
ey _ 1[N
g = 1(2) -
1 /7 1
22 _ L [(fy2, Lty2 2
0y = (8)\9 + 2/\ m ) (2.75)
522 (2.76)

where 1/¢ = 1/e + log(4mp?/Q) — . With these counter-term couplings all divergences are

removed. The resultant self-energy is

s = %AA(x) - %923(37»95) (2.77)
2(2)(]72) = —% 4M(x,:r,a:,x,:c) - %g4V(x,m,x,x) + AgQU(x,x,x,x)
—é)\zS(:c,x, )+ iAng(x, )B(x, ) + %AM@) [A(z)/z+1]  (2.78)
1

1
_5)‘92‘4(1')3(1'/71") - Z)‘QQI(x/a xz, :E) ’

where I have used the more compact form of some amplitudes. This is the same result as
given in Ref. [9] where this serves as an example calculation in the TSIL package. This result
is numerically equivalent to the less compact, but further reduced, expression that is obtained
using the Mass Builder package to complete the entire calculation that we have done here.
This concludes our brief introduction to precision mass calculations. These concepts form

the theoretical background for the research presented in Chapters 3, 4 and 5.

2.3 The renormalisation group

The second concept I will introduce is the renormalisation group. If one keeps the cut-off, A, in
bare renormalisation theory it is enlightening to follow the Wilsonian approach to renormalisa-
tion, interpreting this as a physically meaningful quantity. By choosing a new cut-off, A’, and
integrating out the momenta between A and A’ an effective Lagrangian, £', can be obtained.
When loop calculations are performed, one must then only integrate up to the new cut-off A/,

with the additional high energy physics now encoded in the effective Lagrangian. By making



2.3. The renormalisation group 59

the range of this integration infinitesimally small the integrating out process becomes a con-
tinuous transformation. Combining this with an appropriate rescaling we obtain a flow in the
space of all possible Lagrangians. This continuously generated transformation is historically
known as the renormalisation group, although it lacks some formal properties of a group, such
as invertibility of the integrating out process [8].

In renormalised perturbation theory the cut-off is taken to infinity from the beginning, so
it is not as immediately clear how a group of possible theories can be constructed. When the
dependence on the cut-off scale is removed through renormalisation of masses and couplings a
set of constraints must be applied. These renormalisation conditions are set at some energy
scale, Q. In the MS scheme that we used in Section 2.2 the renormalisation conditions are
imposed through the counter-term couplings, with the scale dependence explicitly entering in
the definition of the basis integrals, such as the @ in Eq. (2.15).

The choice of the renormalisation scale, @), is physically irrelevant, and in an infinite order
calculation would have no consequence. However, in a perturbative field theory it is through the
choice of this scale that the renormalisation group is manifest. In this section I will introduce
the Callan-Symanzik Equation and develop the concept of running couplings. 1 will show how
all quantities in a quantum field theory are scale dependent, which has important consequences
for popular dark matter theories, and will form the basis for the likelihoods used to constrain

models in Chapter 7.

2.3.1 The Callan-Symanzik equation

In Section 2.2 T introduced the two-point correlation function. This function can be generalised
to an n-point correlation, or Green’s function. Let G(")(azl,. .. ,xy) be the connected n-point

function in renormalised perturbation theory,
G (zy,. .. xn) = (QTo(x1) ... dz,)|Q), (2.79)

which represents all four-point diagrams except those where the propagators are not connected
(for example, a diagram with two parallel propagators and no interactions). The dependence
on @ only enters when we remove the cutoff by rescaling the fields and introducing renormalised
parameters. The effect of this renormalisation process on the Green’s functions is a scaling by

the field strength renormalisation Z

(QTP(@1) . .. $lan) | = Z72(QT(21) - - - $(xn) [Dpare - (2.80)

The bare Green’s functions are independent of the renormalisation scale. However, the renor-

malised functions could be defined at any scale (), and are functions of the rest of the renor-
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malised parameters. Therefore, when the renormalisation scale is shifted by an amount 6Q,
there must be a corresponding shift in the renormalised parameters such that the bare Green’s
functions remain fixed. Again using the ¢* theory as an example, we can consider G™M as a
function of @, A\, g and m. In this case the requirement of a constant bare Green’s function

with respect to @ gives us the Callan-Symanzik equation [218,219]

0 0 0 5 0 (n) . B
<8logQ +5A8)\ +5gag +2m EIe +n7¢> G (z1,. .., zp;m, N, 9,Q) =0 (2.81)

where for i € {\, g} we have

O
Bi = E)logQ‘B’ (2.82)
1 oz
1 Om?
T m2alg Q| (2.84)

and B denotes that the bare parameters are to be kept fixed when taking the partial derivatives.
Here the 3 are known as beta functions and v, the anomalous dimension. So we have seen
that the Callan-Symanzik equation tells us that there exist functions 3, 74 and 2 of the
renormalised parameters which compensate for changes in the renormalisation scale () such

that the bare Green’s function is fixed.

2.3.2 The beta function in ¢* theory

The function §;(A,g,m) for i = A, g is of particular interest for particle phenomenology. It
tells us how a coupling, and thus the strength of an interaction, changes with respect to the
scale at which the physics is being studied. In this section I will demonstrate how to compute
the beta functions in the ¢* theory directly from the counter-term couplings derived in Section
2.2.4.

The most direct way to compute the beta functions is by demanding that a perturbative
expression for an appropriate Green’s function satisfies the Callan-Symanzik equation. As
we found for the two-point function in Section 2.2.1, the renormalisation scale dependence
originates in the counter-terms that cancel the logarithmic divergences, and thus the 5 and ~

functions are related to these counter-terms.
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Taking Eq. (2.2) and making the @) dependence explicit we have

applying the definitions in Eqs. (2.82), (2.83) and (2.84) gives, to leading order in the pertur-

bative couplings,

= 39050 © (Z31050) 250
NP YN )
Yo =274 — aaliZ; @) <5m2 a?ngQ) . (2.92)

Now we are ready to determine the values of these functions from the counter-terms derived
earlier. Since we know the counter-terms must cancel divergences in the Green’s functions, we

can express these in the form

1 Ay
57 = A, (6 +log g—’; - 7> (2.93)

for some constant A, o Therefore

7
dlog@Q

and then from comparison with Eq. (2.89) we have

24, (2.94)

Ay, == (2.95)

Comparing this result with Eq. (2.28) (working to one-loop order for this example) we find

that v4 = 0. Similarly, for the 3 and ~2 functions we find

5, 3
by =5 — 397 (2.97)

A, =m? (722 - ’y¢> (2.98)
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and thus after comparison with Egs. (2.69) and (2.70) we have

32
Br = 162 (2.99)
3gA
1 g°
72 = 152 (A + m2> (2.101)

up to leading order in the perturbative couplings. Now consider the g function for A. This
function tells us how the coupling A changes with respect to the energy scale. If A\(Q) is known
for some reference scale (Q, then at some other renormalisation scale p we have

Q)

Ap) =
Yo 29 1og (p/Q)

(2.102)

so we can immediately see that the coupling A grows for large p. In the limit p — @ exp (%)
the coupling becomes undefined; this is known as a Landau pole. Before the Landau pole is
reached, the coupling is sufficiently large that perturbation theory breaks down. If this happens
at a energy scale p where the theory is expected to be valid, then either something is wrong
with the theory or it implies that our computational framework is inadequate. We will discuss
this further in Section 6.4 and use it as a constraint on new physics models in Chapter 7.

In this introduction we worked up to one-loop order, but in general an RGE can be expressed

as

dx
dlog@Q

L om 1 (2) 1 (3)
- - . 2.103
167r2ﬂ/\ i (16772)26)\ i (16772)3ﬁ>\ i (2:103)

where we separate the differential equation into contributions from diagrams involving one
internal loop, two internal loops and so on.

The couplings in the SM all have corresponding beta functions like those we found in the ¢*
theory. These are known as renormalisation group equations (RGEs) and parameters are said
to run with respect to the renormalisation scale. In the SM parameters are generally defined
at a reference scale around the top quark mass, and then run using RGEs up to scales as high
as the Planck scale. The reference scale is chosen to minimise the magnitude of missing higher
order terms, which would be of order O(y — m;) where m; is the top mass (or whichever is the

largest mass involved in the calculation).



3 'Two-loop mass splittings in electroweak multiplets:

winos and minimal dark matter

3.1 Introduction

Dark matter as the lightest component of an electroweak multiplet remains a viable explanation
for the observed relic abundance. One feature of this type of dark matter model is the potential
for a striking signature in the form of a disappearing charged track in a collider experiment. This
is due to an order 100 MeV radiatively-induced mass difference between the neutral multiplet
component, and the heavier charged components. The exact length of such a track is extremely
sensitive to the value of this mass difference.

At the lowest order in perturbation theory, all components of an electroweak multiplet have
the same mass. After electroweak symmetry breaking, radiative corrections from massive gauge
bosons push the physical masses of the charged components slightly above that of the neutral
component [220,221]. In many phenomenological studies, a one-loop calculation of this mass
splitting is considered sufficient to give reasonable constraints on physical observables. However,
as we will show, due to the strong dependence on the mass splitting, two-loop corrections can
result in up to a 40% change in the lifetime of a charged multiplet component, and should be
included when comparing theory with experiment.

In this chapter we compute two-loop mass splittings for multiplets in two phenomenologi-
cally relevant models, both of which are introduced in Section 1.2.2. The first is the wino in
the minimal model of R-parity conserving supersymmetry, a Majorana fermionic electroweak
triplet. We focus specifically on the scenario where the lightest supersymmetric particle (LSP)
is a pure wino (neutralino), corresponding to the neutral component of the triplet. In this
scenario the next-to-lightest supersymmetric particle (NLSP) is also a pure wino (chargino),
corresponding to the charged component. The rest of the supersymmetric spectrum is suffi-
ciently massive to be decoupled. In this limit, a wino of mass ~ 3 TeV would give the correct
relic abundance [115,116]. This model and the radiatively-induced mass splitting have been
studied extensively [128,221], including calculation of radiative corrections to the mass splitting
at two-loop order [118]. We refine the existing calculations by treating light quarks as massive,
and by using input parameters computed using a full model spectrum. We compare to existing

results based on massless light quarks and simple threshold corrections.
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The second model that we consider is the minimal dark matter (MDM; [113,136]) fermionic
quintuplet, introduced in Section 1.2.2. In general, MDM refers to a class of dark matter
models, each consisting of the SM plus a different electroweak multiplet with some minimal set
of quantum numbers and charges under the SM gauge groups. Most models in this class have
been ruled out [137], although the fermionic quintuplet with zero hypercharge is still viable.
This model has a weakly-interacting massive particle, which for a mass of ~9TeV gives the
expected dark matter relic abundance [113,144]. The quintuplet contains neutral, charged and
doubly-charged components. This is the first two-loop calculation of the splitting between the
masses of these components.

The proper lifetime of a charged component, 7, which we will express in units of (mm/c), is
on the order of nanoseconds to picoseconds for the models considered here. This corresponds
to disappearing track lengths on the millimetre to centimetre scale, or more precisely about
6 cm [118] for the wino limit of the MSSM. This is the motivation for many disappearing-track
searches [123-128]. See Section 1.2.2 for more details on the phenomenology of these models.

The calculation of two-loop radiative corrections is a computationally challenging task,
which has been significantly simplified with the introduction of modern tools. Even at the
most rudimentary level, determining all possible topologies is non-trivial, let alone simplifying
and evaluating the resulting integrals. Fortunately, FeynArts [216], FeynCalc [222,223], TARCER
[209], FIRE [214], FeynHelpers [224] and TSIL [9] have made each step of this process far more
achievable than in the past.

The computational difficulty of the two-loop mass calculation is significantly greater for the
MDM quintuplet model than for a triplet, due to the ~ 300 additional amplitudes that must be
considered compared to the triplet. We overcome this by using a new computational framework
that is almost completely automated. This framework effectively makes the generalisation from
a triplet to quintuplet trivial, and in the future can be extended to make two-loop calculations
achievable with even more diagrams.

Although precision two-loop self-energy corrections are essential for accurately constraining
the lifetimes of charged multiplet components, the values of the input parameters used for these
calculations are equally important. Due to the scale dependence of parameters in perturbative
quantum field theory, all quantities entering into a precision mass calculation are subject to
potentially large uncertainties.

Consistently computing all masses and couplings in a theory such as the MSSM is rather
involved. The physical masses must be correctly matched to corresponding running masses,

which depend on the renormalisation scale. Similarly, the couplings, which appear in the
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Lagrangian of the theory, are scale-dependent quantities. Because different quantities of the
calculation are defined at different scales, threshold corrections must be applied to match some
low-energy theory, such as QCD, to the high energy theory of interest, such as the MSSM.
In our example, input parameters such as the running masses of the light quarks and leptons
are defined in the low-energy effective QCD theory, but we are interested in determining the
values of running parameters at some higher scale (), so that we can use them as inputs to our
two-loop self-energy calculations for the electroweak multiplet components. To achieve this, it
is necessary to numerically solve a set of ordinary differential RGEs with boundary conditions
defined across a hierarchy of scales, and perform the appropriate matching.

Spectrum generators are software packages that are designed to do all this in a consistent
and precise way. A number exist for the MSSM [225-230]. There are also packages intended
to compute precision masses for specific states, such as FeynHiggs [231] and SUSYHD [232],
which compute Higgs masses. However, these packages are hardcoded to a specific model,
and a specific parameterisation of that model. In this study, we consider both a specific limit
of the MSSM, and a non-supersymmetric theory. We therefore use tools that can create a
spectrum generator from a Lagrangian, providing a consistent approach across both models.
A major part of computing a spectrum is obtaining the analytical forms of the RGEs and
the radiatively-corrected masses, threshold and tadpole corrections. It is then the part of the
spectrum generator to use numerical techniques to solve and evaluate those functions. We use
SARAH [140-143] to produce two-loop RGEs and one-loop masses and threshold corrections,
and then use FlexibleSUSY?! [234,235] to generate a spectrum generator for the MDM and
MSSM models. We link the spectrum generator to our self-energy calculations, in order to
provide precision running masses and couplings.

In Section 3.2 we detail the input parameters used. We then describe our calculation
methods in Section 3.3, our results in Section 3.4, and summarise in Section 3.5. We give explicit
expressions for the one-loop self-energies and counter-term couplings required for computing

two-loop mass splittings in Appendix A.

3.2 Input parameters

The models used and parameter definitions are detailed in Section 1.2.2. Here we briefly define
the additional SM input parameters and ranges.
In this study, we use a fully-computed model spectrum to obtain the input parameters

for our self-energy calculations. To generate the spectrum, we therefore require a full set of

!'FlexibleSUSY also uses some code pieces from SOFTSUSY [230,233].
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Table 3.1: Input parameters and 30 uncertainties used for the calculations in this study (unless
stated otherwise). Except for the renormalisation scale, the ranges and central values come
from the latest Particle Data Group tables [236].

Parameter Values
Electromagnetic coupling 1/ aé\/[ﬁ(m z) 127.940(42)
Top pole mass my 173.34(2.28) GeV
Higgs pole mass my, 125.5(1.6) GeV
W pole mass my 80.385(15) GeV
Z pole mass my 91.1876(21) GeV

Electron pole mass
Muon pole mass

Tau pole mass

Down quark mass

Up quark mass
Strange quark mass
Charm quark mass
Bottom quark mass
Strong coupling
Renormalisation scale

me  0.5109989461(31) MeV
m,  105.6583745(24) MeV
my 1776.86(12) MeV
(2 GeV)  4.80(96) MeV
2.30(46) MeV
9(2GeV) 95(15) MeV

mﬁ(mc) 1.275(75) GeV
mﬁq(mb) 4.18(9) GeV
aMS(my) 0.1181(11)

Q mt/2—2mt

SM input parameters. These are given in Table 3.1.

The central values and experimental

uncertainties are from the latest Particle Data Group tables [236]. We quantify the parametric
sensitivity of the mass splitting to each of these uncertainties by varying one parameter at
a time, and holding the rest fixed. We show the results of this exercise in Table 3.2, at a
phenomenologically relevant value of the degenerate mass for each model.

The renormalisation scale @ (see Sections 2.2.1 and 2.3) is an important input parameter
in our calculation. This is the scale to which all mass parameters and couplings are run,
and where the self-energies, and subsequent pole masses, are evaluated. The range of this
parameter should reflect the scale of missing logarithmic corrections in the calculation, which

are of the form log(m/Q)/(1672)3 for some mass m?.

When using a non-iterative method
for computing the multiplet mass splitting, we find that the dominant missing logarithmic
corrections come from masses near the electroweak scale. Contributions from the multiplet
itself, with masses around the TeV scale, are cancelled. We will demonstrate this in detail in
Chapter 4 (alternatively see Ref. [2]). Therefore, for this calculation it is sufficient to vary

the renormalisation scale around the mass of the top quark. We therefore choose the range

my/2 < Q < 2my.

2The renormalisation scale dependent terms of this form would be cancelled in a three-loop order calculation.



3.3. Method 67

3.3 Method

To determine the mass splitting we must compute the physical, or pole, masses of the multiplet
components to a fixed order in perturbation theory. See Section 2.2 for an introduction to pole
mass calculations in perturbative quantum field theory.

The definition of a pole mass is the complex pole of the two-point propagator. For a
fermion the propagator has a denominator given by the one-particle irreducible effective two-
point function

Dy =p— M+ Sx(p)p+ Su(p?) (3.1)

which is the fermion equivalent to the denominator of the scalar propagator derived in Eq. (2.7).
Here p, is the four-momentum of the particle, M is the tree-level MS mass and P = V'pu-
The self-energy, which we express as X(p?) = X (p?) + pEx (p?), is in general a function of
the external momentum, the renormalisation scale and any relevant masses or couplings in the
theory.

The pole mass is obtained by demanding I'y = 0. This can be achieved by setting p? = Mgole

(and p = Mpele), and solving the resulting implicit expression for the pole mass

p

1 —|—2K(M2

Mpole = Re
pole)

(3.2)

M - EM(MQOIe)]

In Chapter 4 we will solve Eq. (3.2) iteratively and show that this results in unwanted scale-
dependent logarithms in the result. Alternatively, one can take advantage of the perturbative
nature of this expression to write down an explicit result for the pole mass that preserves a
fortunate cancellation of the scale-dependent logarithms.

We will make an expansion around the tree-level mass, M, to second order in the pertur-
bative coupling «. For this derivation we set O (E(”)) = o". Demanding that the self-energies

are evaluated at the tree-level mass requires the use of the Taylor expansion

(1) — (M y (D 3
ZW0 o, = Eb0 + 20 (Mo = IDE}) +0 ()] e (3.3)
where Zg?) = Eg?) (p?) and ¥ is the derivative of ¥ with respect to the external momentum

squared. The second term on the RHS of Eq. (3.3) still includes Mqc, so we use the relation

Mpole - M = *Mpolezg) (Mgole) - Eg\i[)(Mgole) + O(O‘2) (3 4)
= —Mpote Sl (M) — S (M) + O(a?),

which comes directly from demanding I's be equal to zero (from Eq. (3.1)), and the second line

follows from Eq. (3.3). An error of order a? is acceptable for this difference, as it appears in
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(1)

the final expression as the coefficient of ¥}, so will contribute to a total error of order a3. To
remove the remaining Mo on the right-hand side of Eq. (3.4), we use the same expression

within itself (effectively iterating once by hand) to obtain
Mpore — M = =35 a1y — 2 (31) + 0(a?). (3.5)
We then substitute this expression into Eq. (3.3) to give

»( = 3 — 2 (1= + 255 + 0 (o) (3.6)

2 —M?2
pole

p2=M2"
For the two-loop self-energy functions, we can immediately take 2(2)(Mpole) = 2(2)(M2) +
O (a?), as the derivative terms will be of higher order. Similar relations hold for Z%) and E( )

Finally, we can express the pole mass valid to order o as

M

pole = |1 — 2 — 5§ — M5 — 15

H(E A 20185+ 20Ps) o (of)]
which is the method of pole mass calculation we will use in this chapter.

For this study we use the Feynman-"t Hooft (¢ = 1) gauge for all calculations.®> One-loop
mass splittings computed in the Landau (¢ = 0), Feynman-"t Hooft and Fried-Yennie (§ = 3)

gauges can also be found in Ref. [2] and Appendix A (which are used in Chapter 4).

3.3.1 Electroweak triplet one-loop self-energies

The one-loop self-energies for the wino and MDM models are analogous, for MDM it is simply
the same calculation in a larger representation. In this section we review the techniques used
to compute the one-loop mass splitting in an electroweak triplet by hand, although in practice
we use an automated process along with the two-loop self-energies, as detailed in Section 3.3.2.

The neutral component has two radiative corrections, due to the processes yo — W=+ xT.
The corresponding Feynman diagrams are given in Figure 3.1. The sum of these two amplitudes

is

Syo(p) = 2 /d4k 7“?+%+M) (—9u) (3.8)

[(p + k)2 — M2|(k2 — miy,)

where g = v4ma/sy. The numerator of the loop integral can be simplified as

A E+p+ M)V g = =" (k+p+ M)y,
= (D —-2)(k+p) -

3The gauge parameter ¢ is introduced in the fixing of a gauge theory. Because a gauge field is free to transform
under the gauge transformation operator to an infinite number of physically equivalent field configurations, a
functional integral over such a field is poorly defined. Gauge fixing eliminates this ambiguity so that each
field configuration is counted only once. Physical results are independent of the exact fixing used, which is
parameterised by &, as long as the choice is consistent across all parts of the calculation.
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W W-
x° x° x° x°
X~ x*
w+ v Z
X+ X+ X+ X+ X+ X-I—
x° x* x+

Figure 3.1: The one-loop corrections to the propagator for the neutral (top row) and charged
(bottom row) components of an electroweak triplet.

using the identities

" = (2 = D)d
Y = DI
where I is the identity matrix in D dimensions.

Now we use the Feynman parameter integral from Eq. (2.18) to simplify the denominator

1 _/1 dx
(k2 —m¥)[(p+ k)2 — M2 Jo (K —A)?

2 — x(md, — M?) + m},. Translating

where k' = k + pr and we have defined A = —z(1 — z)p
the integration measure [d*k — [d*k’ (and henceforth omitting the prime on &) gives (after

substituting £k — k — px in the numerator)

) d*k 1 (D—-2)[k+p(1l—2)]—-DM
ZZXO(p) = 292/ (2w)4/0 ( I (kzp_( A)2 ) :

Since the denominator of the loop integral is now symmetric with respect to k we can discard

(3.10)

all terms of odd order in k to give

, d*k 1 (D—=2)(1—2x2)p— DM
Do) =2 [ g [ e

Next we apply dimensional regularisation, following the same procedure as in Eq. (2.21), such

(3.11)

that in the limit of small € we have

4 i 2

We are now ready to calculate the integral for i¥yo(p). Setting D = 4 — 2¢ in the numerator

we have

iSyo(p) = 24° /01 de [(2 —2e)(1—a)p—(4— 26)M} (1 + log g) . (3.13)

(4)?
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After some simplification and evaluation of the straight forward integrals over x we find

iSy0 () =247 (4') [2M p+2p( +/Oldxmlog$2> (3.14)

+(2p — 4NT) (1 - /01 dz log gz)] (3.15)

which can be expressed as

. ) 2 2 r2
iEy0 () =242 (47T) 281 — p+ (2p — AND)B(NI?, miy) — 2pBa (miyy, 17| (3.16)
where B1 is given by
1 A
2 2\ —
Bi(m7,m3) = % —/0 dxmlog@ (3.17)

for A’ = —z(1 — 2)p? — x(m? — m3) + m? [237]. From Eq. (B.9) of Ref. [237] we have

1

2 T2\ —
Bl(mW7M ) = 2p2

(A1) = A(miy) + (0 + miy — MP)B(N,miy)| (3.18)

which when substituted into Eq. (3.16) gives the self-energy in Eq. (A.2) of Appendix A.1.1 in
terms of the A and B basis integrals.
The charged component has three one-loop corrections represented as Feynman diagrams
in the bottom row of Figure 3.1. The total amplitude for all three contributions is
. Ak, (= K+ M)y (—guw)
iXy-(p) = (ng)Z/ " 4 ST
(2m) [(p— k)? — M?|(k?)
+ / d4 ,u k + ]\?)Fyy (_guy)
[(p — k) — M?)(k? —miy)

dik Pk + M) (—gw)
’ (CWQ)Q/ @ ((p— k)2 — Nk — )

(3.19)

The calculation of this amplitude is very similar to that for the neutral component, so we will
not repeat it here. The counter-terms for both the charged and neutral components are trivial

to compute, both with amplitudes (p Oy, 7 + 5x,M)-

3.3.2 Details of two-loop self-energy calculation

In the wino limit of the MSSM and the MDM quintuplet model there are about 200 and 500
two-loop diagrams respectively. The generic two-loop topologies are given in Figures 3.2 and
3.3, and counter-term diagrams of two-loop order in Figure 3.4. We determine the counter-
term couplings from the one-loop self-energies of the electroweak gauge bosons and electroweak
multiplets given in Appendix A.1. In this subsection, we describe our automated process for

calculating self-energies at two loops.



3.3. Method 71

LD

Figure 3.2: Two-loop diagrams involving only the gauge bosons and multiplet fermions. Solid
lines indicate multiplet fermions (x°, xT, x**) and wiggly lines electroweak vector bosons
(W%, Z, 7).

Figure 3.3: Two-loop diagrams formed by reinserting the 1-loop gauge boson self-energy into its
own propagator. Solid lines indicate fermions (x°, x*, x*%, ¢, [, v), wiggly lines electroweak
vector bosons (W¥, Z, 7), dashed lines scalars (Higgs and Goldstone bosons) and dotted lines
indicate ghosts.

e e

Figure 3.4: Two-loop counter-term diagrams. Small circles with crosses indicate counter-term
insertions. Solid lines indicate multiplet fermions (x°, xT, x*¥) and wiggly lines electroweak
vector bosons (W*, Z, v).

A complete self-energy calculation (at any order) requires the construction of a symbolic
amplitude, followed by its numerical evaluation. In general, interfaces between tools are suf-
ficient for generating symbolic amplitudes at both one and two-loop level. For one-loop cal-
culations, the evaluation step can be performed with various existing tools: FeynHelpers [223]
provides analytic one-loop amplitudes for this purpose, and other codes do this by making
use of the LoopTools package [238] (e.g. SARAH [143] interfaced to either SPheno [229] or
FlexibleSUSY [234,235]).

The interface between the tools available for generic two-loop calculations is only complete
up to the stage of the symbolic amplitude. The necessary conversions exist between FeynArts,

FeynCalc and TARCER, but the final step of numerical evaluation requires significant user
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intervention. The TSIL library provides numerical, and in some cases analytical, solutions for
the basis integrals that appear in two-loop self-energies. However, in order to make use of these,
one must construct a C++ interface to call the TSIL libraries and then use them to evaluate
the amplitudes. Although the TSIL functions are extremely user-friendly, making use of them
from a symbolic Mathematica expression provided by one of the other tools is highly non-
trivial. There is therefore no automated method for obtaining numerical implementations of
two-loop amplitudes. Given that there can be hundreds or even thousands of such amplitudes,
this makes the final step of the calculation an arduous process. By completely automating
the generation of this C++ interface with a new software framework, we have been able to
dramatically simplify the process of computing two-loop self-energies. This framework has also
been used to generate two-loop amplitudes used in Chapter 4 (Ref. [2]) and is documented in
Appendix C.

Our method also makes it possible to split the calculation of many loop diagrams into
manageable pieces. Simultaneously computing O(10) different amplitudes (of distinctly differ-
ent masses and/or topologies) with symbolic tools like FeynCalc takes an extremely long time,
as FeynCalc attempts to symbolically simplify the amplitudes. On the other hand, keeping
track of all terms on a diagram-by-diagram basis is a serious task by any manual or even
semi-automated method. By completely automating the whole process, we are instead able
to keep track of all terms, and simply evaluate them independently and numerically. On a
modest computing setup, this is the only way to obtain a result in a feasible timeframe without
additional user intervention.

We calculate the amplitudes either one diagram at a time, or in selected groups, using Fey-
nArts, FeynCalc and FIRE, run from C++ via the Wolfram Symbolic Transfer Protocol (WSTP).
We decompose the resultant symbolic amplitudes into lists of coefficients to be applied to basis
integrals, and keep a master list of all the basis integrals required.

The algorithm begins by evaluating the finite part of the amplitude A. It then computes
the coefficients {C4, Cy, ...} of every possible basis integral {Bj, Ba,...}. For the non-zero Cj,

it then constructs a trial amplitude of the form
Atrial = C181 + CaBa + ... (3.20)

and checks the difference A — Aj;;,; for the presence of basis integrals with non-zero coefficients,
in order to identify any cross-terms that have been double-counted in the first step. From the
set of basis integrals {B;, Bj,...} with non-zero coefficients at this stage, the algorithm then
creates new ‘compound basis integrals’ B;; = B;B;, and presents them to Mathematica as unified

objects. We can then instruct Mathematica to extract new coefficients C;; for the compound
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basis integrals. The final amplitude is then

Arial = C1B1+CaBa+ ...
1 1
- 5012(3132) — 5021(3281) - ...

+ 011(8181) + CQQ(BQBQ) + ...

where Cj; is the coefficient of B;B; in the original amplitude A. We convert these coefficients
into C++ format, and generate numerical routines for evaluating both them and the relevant
basis integrals.

This automated framework is fully generic, allowing numerical routines to be generated for
two-loop diagrams in almost any FeynArts model file. The only limitations are computational:
problems involving over ~ 1000 diagrams require long runtimes to generate the amplitudes,

and produce large amounts of generated code. Other features include:

e automatic determination of one-loop counter-term couplings for two-point diagrams (us-

ing the one-loop self-energies),

e optimisation of the evaluation of the two-loop basis integrals, by automatically determin-

ing which integrals can be evaluated in symmetry groups, and

e flexibility and reusability of precomputed amplitudes (by separating the symbolic calcu-

lations from the final code generation).

This framework is publicly available as Mass Builder and is documented in Appendix C.

For the calculations in this chapter, we use FeynCalc 9.2.0 [222,223] and FeynArts 3.9 [216]
to obtain symbolic amplitudes, and reduce them to basis integrals with FIRE 5 [214] (via
FeynHelpers 1.0.0 [224]) and TARCER 2.0 [209]. We evaluate the basis integrals using TSIL
1.41 [9] and analytical forms from the literature [237]. This is all achieved via the Mass Builder

interface.

3.3.3 Check for divergence free-result

It is important to confirm that the pole masses are free of non-physical divergences. UV
divergences can be regulated using dimensional regularisation by computing in D = 4 — 2¢
dimensions and using modified minimal subtraction. Using both the symbolic amplitudes and
a numerical implementation, we have confirmed that the individual pole masses are free from

any poles in € when the appropriate counter-terms are included.
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Infra-red (IR) divergences arise from the zero mass of the photon. To regulate these diver-
gences, we retain an explicit mass m., for the photon throughout the calculation, and take the
limit m, — 0 in the evaluation. IR-divergent diagrams exist at two-loop order, but their diver-
gences are cancelled by the derivative of the one-loop self-energies in the two-loop expansion
of the pole mass (Eq. (3.7)). The proof of this cancellation is given in Ref. [118] for the wino
model. The analogous result holds identically for the MDM quintuplet, so we do not repeat
the details here.

We also encounter ‘fictitious’ IR divergences in our numerical implementation. These can
arise from including a non-zero photon mass when attempting to evaluate non-IR divergent
diagrams. We nonetheless include this mass for all diagrams as, in some cases, taking a zero
photon mass before the tensor integral reduction causes the tensor integrals to reduce to basis
integrals that are not available in current mathematical libraries. Using a regulator mass en-
ables the reduction to proceed further, giving a result in terms of the basis integrals introduced
in Section 2.2.2. The price to pay for this convenience is an apparent IR singularity in the
result: the amplitude picks up O(1 /m%) terms. However, the sum of the coefficients of these
terms is numerically equivalent to zero for every diagram (i.e. to within a small factor of the
floating-point machine accuracy times the largest individual coefficient). We therefore always
see numerically that these terms cancel, even if the integral reduction fails to cancel them sym-
bolically. We take care in our evaluation step to explicitly check for the numerical cancellation,
and to then remove the terms before taking the limit m, — 0, as the latter would otherwise
cause numerical cancellation errors between the O(1/ m%) terms to blow up and dominate the
result.

Also, because the basis integral T'(zx,y, z) is not defined for small z, in the limit of m., — 0
we make the replacement T'(z,y, 2) = T(z,y, 2) — B(y, ) log(z/Q?) [9]. This will cancel with
other terms of the form A(z)B(y, z) = z [log(z/Q?) — 1] B(y, z) in the amplitude, and because

T(0,y, z) is finite, will give a total that is IR safe.

3.3.4 Spectrum calculation

We use FlexibleSUSY 1.7.4 [234,235] to create a spectrum generator, based on output from
SARAH 4.8.0 [140-143]. This provides two-loop RGEs, one-loop threshold and tadpole cor-
rections and one-loop self-energies for all fields. Because the spectrum generator requires a
tree-level parameter prior to computing the loop-corrected EWSB conditions, the Higgs pole
mass is an output rather than an input parameter. Thus we also employ a simple iterative

procedure to determine the correct input value for the Lagrangian Higgs mass parameter p,
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such that the observed Higgs pole mass is produced.

For two-loop mass calculations, it is important to consider threshold corrections when
matching the SM to the wino or MDM model. These corrections include the determination
of MS masses consistent with a specified physical pole mass (particularly important for the
W and Z bosons), and matching the MS gauge couplings in the SM to the model containing

additional fermions. The relevant threshold correction for the electroweak coupling is

N ~1
0(Q) = asu(Q) [1 _ Xoswl@) ), (M @))] , (3.21)

3T

where X = 2 for the wino model and X = 10 for the MDM quintuplet. FlexibleSUSY applies
this correction and does the mass matching, iteratively, at Q) = m .

For the one-loop calculation, we do not need to apply threshold corrections, as they are of
the next loop order. If we did include them, it would introduce higher order terms resulting in a
spurious logarithmic increase or decrease in the mass splitting. When calculating one-loop mass
splittings, we therefore use pole masses in place of the M.S masses, and neglect the threshold
corrections to the gauge couplings. This is consistent with the method of Ref. [118]. However
for two-loop calculations, if these corrections are not applied, then important cancellations do
not occur between the threshold corrections and the self-energies, resulting in a similar spurious
logarithmic increase or decrease in the mass splitting.

From the computed spectrum we extract the couplings and M .S masses for the gauge bosons,
Higgs and quarks at a common scale (). This scale is not necessarily the scale used for the
matching in Eq. (3.21). Since the gauge couplings run independently from the values set at
the matching scale we recompute « at () using

922

T (g )

(3.22)

where ¢’ = V4mwa/eyw. This preserves the required tree-level relations that are necessary to
retain the proper cancellations between parts of the self-energies of the charged and neutral
multiplet components. We also compute the Weinberg angle as 0y = arccos(my/myz) and the

Higgs vacuum expectation value vy = 2 sin(Oy )my /4.

3.4 Results

3.4.1 The wino limit of the MSSM

As electroweak mass splittings have already been studied at the two-loop level in the wino

limit of the MSSM [118,239], we are able to compare our results to the previous ones, and in
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Figure 3.5: The two-loop mass splitting in the wino model for m; = 173.2 GeV, mj, = 125.5
GeV, af¥(my) = 0.1184 and Q = 163.3 GeV. In both panels the black dashed line is the fit
given by Eq. (17) of Ref. [118], and the grey region in the lower panel is the stated deviation of
this fit from the actual result. The solid lines indicate our result with one and two-loop RGEs
in blue and red respectively, with all light quark masses taken to be zero. The red and blue
dashed lines in the lower panel correspond again to one and two-loop RGEs respectively, but
with all light quark masses included. Figure from Ref. [1].

the process demonstrate the impacts of the improvements that we have made in this study.
This also serves as a validation of the consistency of our method, in particular the use of a full
spectrum generator, before applying our method to the MDM quintuplet.

In Figure 3.5 we compare our two-loop results for the mass splitting AM = M+ — M9 to

pole ~ Mpole
the one given by the polynomial fit in Eq. (17) of Ref. [118]. For consistency, we use the same
top pole mass m; = 173.2 GeV [240] and strong coupling ay_s(mz) = 0.1184 as in Ref. [118].
We compare with both one and two-loop RGEs, and with both finite and zero masses for the
light quarks. The authors of Ref. [118] state that their polynomial fit gives less than a 0.02%
deviation from the true value over the mass range 100 — 4000 GeV, so we expect to be able to
achieve a result close to this when comparing with our calculation. We see that our equivalent
result (one-loop RGEs, zero light quark masses) is in good agreement with theirs, with the
deviation clearly the result of ringing from the polynomial fit rather than an inconsistency
between the methods used. This ringing is worst at large masses, where we expect the mass
splitting to be constant; the polynomial fit fails to properly represent this behaviour. Over the

whole mass range we have no more than a 0.05% deviation from this previous calculation. The

impact of the light quark masses is to increase the mass difference by about 0.03-0.04% across
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Figure 3.6: The two-loop mass splitting (left) and decay lifetime of the chargino (right) in the
wino model as a function of the degenerate tree-level M S mass. The green and red bands are
the respective ranges of the one and two-loop mass splittings when @ is varied continuously
between m;/2 and 2m;. The light green band is the estimated uncertainty on the one-loop
result using Eq. (3.24). Figure from Ref. [1].

the whole mass range.

The consistency of our result with that of Ref. [118] can also be seen by making a polynomial
fit to the curve computed with 1-loop RGEs, massless light quarks, @ = 163.3GeV, m; =
173.2 GeV and ag_s(mz) = 0.1184, over the range 100 GeV < MS < 4TeV:

ole
AM MY, M, ?
= —412.2+304.7 | In =222 ] —60.71 [ In —22=
1 MoV " <n1GeV PTGV
MO \? MO\
5.403 [ In —2°% ) _0.181 { In —2% | . 3.23
* (n 1 GeV 1 1 GeV ( )

This is in very close agreement with Eq. (17) of Ref. [118].

In Figure 3.6 we present the two-loop mass splitting in the wino model using the parameters
in Table 3.1, two-loop RGEs and non-zero light quark masses. The dark green and red uncer-
tainty bands are given by the maximum and minimum AM possible for values of () between
my/2 and 2my. For the two-loop mass splitting, at values of M < my the minimum splitting
occurs at Q = my/2, whereas for M 2 2my the minimum occurs at Q = 2m;. For intermediate
values M ~ my, around the point where the crossover occurs, we find that the extrema occur
at values of ) inside the chosen range. As a result, although the uncertainty band appears by
eye to become very narrow, it does in fact maintain a non-zero width. At even lower multiplet
masses than shown here (M < 100 GeV), the two-loop uncertainty from scale variation on the
mass splitting is comparable to, and eventually becomes larger than, the equivalent one-loop

uncertainty; this is due to the additional electroweak-scale logs introduced at the two-loop
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Figure 3.7: Branching fractions for x* — Xx° in the wino limit of the MSSM, where X €
{eve, pvy,, m}. Solid lines are the branching fractions using the two-loop mass splitting, and
dotted use the one-loop result, both evaluated at @ = m; = 173.34 GeV. Figure from Ref. [1].

level, and their tendency to blow up as M drops significantly below my.
The light green uncertainty band is the naive estimate [118] of the missing two-loop contri-
bution expected from loops involving the top quark:
2

QMg

—————— ~ 4 MeV. 3.24
167 sin*(Oyy) ¢ (3:24)

As we can see in Figure 3.6, this does indeed give a reasonable rough estimate of the uncertainty
on the one-loop result.

In Table 3.2 we present a detailed analysis of the uncertainties entering into this calculation.
As there are several uncorrelated uncertainties to include, we simply consider the effect of each
individually. The effect of including light quark masses is a +0.0532 MeV change in the mass
splitting, resulting in a 0.180% decrease in the lifetime. The parameter with the largest effect
on the mass splitting is the renormalisation scale. Although this uncertainty is greatly reduced
at the two-loop level (as seen in Figure 3.6), it is still the dominant contribution. We find that
the uncertainties on the top mass and electromagnetic coupling also induce an O(0.1) MeV
uncertainty in the mass splitting. All other parameters have negligible impacts on the mass
splitting. Although including the light quarks does slightly increase AM, the uncertainties on
these masses have almost no impact on the result. Finally, we note that the strong coupling
even has some influence, which is entirely indirect through the calculation of the spectrum, as
this coupling is not directly involved in the wino mass calculation.

In the right panel of Figure 3.6 we present the decay lifetime of the charged component in
units of mm/c, as a function of the degenerate mass M. The charged component decays as

xT — X, which is dominated by channels where X is either a pion, an electron+neutrino or
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Table 3.2: The effect of uncertainties in input parameters on the mass splitting and decay
lifetime in the wino and MDM models. The effect on the decay lifetime is taken to be the
difference between the upper and lower lifetimes normalised by the mean of the upper and
lower values, expressed as a percentage.

Wino model (M = 3TeV) MDM (M = 9.6 TeV)
Change in Change in Change in Change in
Parameter ~ AM (MeV) lifetime (%) AM™T (AMTT) (MeV) lifetime (%)
1/adS(mz)  0.0919 0.310 0.101 (0.402) 0.348 (0.209)
my 0.192 0.647 0.175 (0.699) 0.604 (0.364)
mp, 0.0124 0.0417 0.0170 (0.0680) 0.0588 (0.0354)
mw 8.22x 1078 277 x 1077  4.60 x 1077 (1.85 x 107%)  1.59 x 107% (9.65 x 107?)
mz 0.00936 0.0316 0.00467 (0.0187) 0.0162 (0.00974)
Me 823 x 107% 278 x107°  2.04 x 107° (8.15 x 107%)  7.05 x 1077 (4.24 x 107°)
my, 3.60x107° 1.25x107%  9.87x107° (3.95 x 1073)  3.41 x 1072 (2.06 x 10®)
my 355 x 107 120 x 107°  3.37 x 107° (1.35 x 107°)  1.16 x 107" (7.01 x 107°)
mY5(2GeV) 1.85x10°*  0.000623 0.000845 (0.00338) 0.00292 ( 0.00176 )
m2%(2GeV)  3.09 x 10°*  0.00104 0.00477 (0.0191) 0.0165 (0.00994 )
mM(2GeV) 847 x107°  0.000286 0.00100 (0.00402) 0.00348 (0.00209 )
mMS(me)  0.00176 0.00595 0.00170 (0.00679) 0.00587 (0.00354 )
mMS(my)  0.000754 0.00255 0.00195 (0.00780) 0.00674 (0.00406 )
a¥S(mz)  0.00224 0.00759 0.00436 (0.0174) 0.0151 (0.00908)
0.304 1.03 0.242 (0.969) 0.839 (0.505)

muon+neutrino pair.
The decay width for the pion channel in an electroweak multiplet with total weak isospin
Jj, with eigenstates x; where I € {—j,—j+1,...,j — 1,7}, is given by [150]

2

1
AM?’

QAM?) 2 r3
) =12 GrAM Vaalx (3.25)

Xt =T (XI+1 — xrmt

where T = /j(j +1) —I(I + 1), fr = 130.2 £ 1.7MeV, |Vyq| = 0.97417 £ 0.00021 [236,241]
and m; is the pion mass. Ti is equivalent to (n? — 1)/4 for I = 0, for a representation of
dimension n, as given in Ref. [113], however for the MDM case we will need this more general
expression. For wino dark matter we have j = 1 and I = 0 to give I'(xT — x°z™1).

For AM =~ 170 MeV > m, the pion decay is the dominant channel, with a 97.7% branching
fraction [113]. The other kinematically-allowed channels are the electron-neutrino and muon-
neutrino ones, which have widths

GZAM®

+ 2
Fe =T 50

(3.26)

and Fif = 0.12I'X". The expected lifetime of the charged component is thus 7 = (X" +Fi§+ +
F’{r)’l. The large step in the decay lifetime in Figure 3.6 is where AM > m, and the pion
channel opens, and the smaller step is due to the muon channel opening. These can be seen

clearly as branching fractions in Figure 3.7.
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The most phenomenologically interesting mass range for pure wino-like neutralino dark
matter is M ~ 3TeV, as this would give the correct dark matter relic abundance [115,116]. For
this value and assuming @ = my, the two-loop mass splitting is 164.5 MeV, compared to the
one-loop value of 167.5 MeV. This difference in mass splitting represents a 9.7 % increase in the
decay lifetime of the chargino when going from the one-loop to the two-loop calculation. For
other masses, this ratio can be larger, depending on the dominant decay channel. For example,
for a wino of 70 GeV mass, the one and two-loop mass splittings are 142.3 MeV and 145.5 MeV
respectively, with a increase in the lifetime of 40.1%. Thus, although the difference in the mass
splittings is approximately the same (~ 3 MeV), as we can see in Figure 3.7, this mass value is
exactly where the pion channel opens up, so the effect on the lifetime in this range is far more
significant.

We now offer an updated fit, using the latest values in Table 3.1, two-loop RGEs and

non-zero light quark masses,

AM MO, M2, 2
= —413.7+305.7 (1 PO 1 —60.96 (1 poe
1 MoV * <n1GeV "1 Gev
MO \3 MO\
5.429 [ In —2% ) _0.182 (In —2ok | | 3.27
+ (n 1 Gev BT Gev (3.27)
This fit is valid over the range 100 GeV < Mgole < 4TeV. The effect of including light quark

masses is a small positive shift in AM, and 2-loop RGEs a smaller negative shift, with a total

difference of approximately —0.03%.

3.4.2 The MDM quintuplet

The MDM quintuplet has two mass splittings. The first, AM™T = M;Ole — Mgole,

to AM in the wino model, with a one-loop value of O(170) MeV. The second, AMT* =

is analogous

M;;Jl; — MI?OIC, between the neutral and doubly-charged component, has a value of O(670) MeV
at one loop. In this section we present the first analysis of these mass splittings at the two-loop
level and the subsequent decay lifetimes of the charged components. In Section 3.4.3 we discuss
the differences between the charged/neutral component mass splitting in the MDM and wino
models.

In Figure 3.8 we present the two-loop mass splittings between the neutral and charged
(left panel) and the neutral and doubly-charged (right panel) components. The dominant
uncertainty, resulting from the choice of renormalisation scale, is indicated by the dark shaded

regions at one loop (dark green) and two loops (red), where @ has been varied continuously

between m;/2 and 2m;. Once again we see a significant reduction in the uncertainty at the
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two-loop level, at least for moderate and large multiplet masses; at lower multiplet masses
(M < 100 GeV), the two-loop uncertainty grows due to the additional electroweak-scale logs
introduced at the two-loop level, just as in the triplet case. The light-green band is the naive
estimate of the missing two-loop contribution, where we use Eq. (3.24) for AM ™, and multiply
this by a factor of four for AM™T, based on the generic charge-dependent pre-factors for
one-loop electroweak mass splitting in Eq. (4) of Ref. [239].

In Table 3.2, we also give a detailed presentation of the uncertainties entering into the
two-loop calculation in the MDM model. Again, we consider the effect of each uncertainty
individually. As in the wino case, the parameter with the largest effect on the mass splitting is
the renormalisation scale, but its effect is greatly reduced by going to two loops (Figure 3.8).
The top mass and electromagnetic coupling are again responsible for an O(0.1) MeV uncertainty
in the mass splittings. All other parameters have negligible impacts on the splittings. Including
the masses of light quarks results in a +0.0125 MeV change in AM ™ and a +0.0499 MeV change
in AM™T, which translate into 0.0432% and 0.0258% reductions in the respective lifetimes of
the charged and doubly-charged states. As with the triplet, although finite light quark masses
affect AM, the uncertainties on those masses have little impact — and the strong coupling has
some influence via the calculation of the spectrum (on the order of 0.01%).

In Figure 3.9 we plot the decay lifetimes of the charged and doubly-charged components.
The lifetime of the charged component can be computed using Eqgs. (3.25) and (3.26) with
j = 2 and I = 0; the calculation is the same for the doubly-charged component, but with
I =1 instead. The doubly-charged component has an additional decay channel via the process

xTt — xTK™, where KT is a kaon. We take the partial decay width to the kaon channel to

be
GZLAM3VZ 3 m2
T+ =T7—F KT 1 — K 2
KT ="+ ™ AM?’ (3.28)

where fyx+ = 155.6 £ 0.4 MeV, |V,s| = 0.2248 £ 0.0006 [236,241] and m+ is the kaon mass.

The most phenomenologically interesting mass for MDM is M ~ 9.6 TeV, as this would
give the correct dark matter relic abundance [144]. For this value the two-loop mass splittings
are AM™T = 163.6 MeV and AM™ = 654.3 MeV, which can be compared with the one-loop
values of 168.3MeV and 673.4 MeV respectively, for a choice of @ = m;. This difference in
mass splitting represents a 15.5% change in the decay lifetime of the charged component when
going from the one-loop to the two-loop calculation, and a 9.78% change in the decay lifetime
of the doubly-charged component. Like in the wino model, this ratio will be larger at different

mass values, depending on the dominant decay channel. One important new feature in this
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Figure 3.8: The two-loop mass splittings between the charged and neutral components (left)
and the doubly-charged and neutral components (right) in the MDM model as a function of
the degenerate tree-level M S mass. The dark green and red bands are the range of the one
and two-loop mass splittings respectively when @ is varied continuously between m;/2 and
2my. The light green band is the estimated uncertainty on the one-loop result using Eq. (3.24).
Figure from Ref. [1].

calculation is the opening up of the kaon channel, which we indicate with the orange line in
the right panel of Figure 3.10.

These two-loop mass splitting results can be reproduced using the following fitting formulae.

For AM™) | we have

AM) 328.6 +250.1 | 1 Mpote 47.7 (1 Moo :
YAl Cak a7 7l B Sk We v
MO \? MO \*
4.049 | 1 PO 1 —0.1292 (1 po= .2
+ 09<n1GeV> 0.129 (aneV> (3.29)
and for AM™H) | we have
AMEH) M2 \
— = 1314410001 Po° 1 -190.7 ( In °e
T Mev - (n 1 Gev 1 Gev
MO 1 ’ 1
16.18 | 1 P 1 —0.5162 po® 3.30
+ (n 1 GeV) ( 1 GeV) ( )

These formulae are valid for values of M?° pole between 100 GeV and 10 TeV.

3.4.3 Differences between triplet and quintuplet models

The two-loop loop mass splitting between the charged and neutral multiplet component is not
identical in the triplet and quintuplet models. At the one-loop level this mass splitting is the
same in both representations, yet when we go to the next loop order there are subtle differences.

In this section we discuss these differences and determine which diagrams are responsible.
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Figure 3.9: The decay lifetimes of the charged and doubly-charged components in the MDM
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the respective ranges of the one and two-loop mass splittings when @ is varied continuously
between m;/2 and 2m;. The light green band is the estimated uncertainty on the one-loop
result using Eq. (3.24). Figure from Ref. [1].
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Figure 3.10: Branching fractions in the MDM model for the x* — Xx° (left) and x ™+ — Xx+
(right) processes, where X € {etve, ptv,, 7+, KT}, The solid lines are the branching fractions
using the two-loop mass splitting and dotted lines are the results using the one-loop result,
both evaluated at @@ = m; = 173.34 GeV. Figure from Ref. [1].
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In the MDM model, for multiplet masses 2 1TeV we see a decrease in the two-loop mass
splitting. In the two-loop wino result, and in the one-loop case for both models, we see a
constant mass splitting in the limit of large M. In the one-loop case, this can be seen directly
from the difference of the one-loop self-energies (given in Appendix A), and the fact that we
do not apply threshold corrections (as they are technically of higher loop order). If we were
to include threshold corrections to the one-loop result, we would see a similar decrease in the
mass splitting for large M , as we would be introducing extra logarithmic terms with nothing
to cancel them.

In the wino model the constant mass splitting at large M is the result of a cancellation
between these threshold corrections and one specific set of diagrams. These are specifically
the corrections to the gauge boson propagators coming from the new multiplet fermions. The
diagrams that contribute to the gauge boson propagators are are all those in Figure 3.3 and
the first counter-term diagram in Figure 3.4. Ref. [239] asserts that this cancellation occurs
exactly for all SU(2)r, multiplets, and therefore goes on to ignore threshold corrections and the
influence of the multiplet fermions on the gauge boson propagator. Our calculations show that
this cancellation does indeed occur for the triplet, but that the resulting logarithmic terms do
not perfectly cancel in the quintuplet case. The fact that the mass splitting is almost flat in
the large M limit indicates that most of the logs have cancelled (as e.g. neglecting threshold
corrections results in a clear logarithmic increase in the splitting with increasing M ) — but
some small residual term of the form — log (M / Q) remains.

To illustrate this point, we can construct a partial two-loop mass-splitting calculation with
the terms responsible for the residual logarithms excluded. First, we construct two-loop am-
plitudes by neglecting threshold corrections and excluding all contributions to the gauge boson
self-energy, i.e. all diagrams in Figure 3.3 and the first in Figure 3.4. In Figure 3.11, we plot
the resulting partial two-loop mass splittings in each model as ‘Partial Two-loop no Iy’
along with the one-loop results. We see that the results are indeed identical at large M. We
can also see that this incomplete subset of diagrams misses some important cancellations of
scale-dependent logarithmic terms, as the uncertainty from scale dependence is much larger in
the partial two-loop splitting compared to the full two-loop result.

To investigate further, we next exclude only those diagrams where the multiplet fermions
contribute to the gauge boson propagator, i.e. the versions of the top left-most diagram in
Figure 3.3 with y fermions in the upper loop. Continuing to neglect threshold corrections,
we then recompute the corresponding counter-term (the first in Figure 3.4) with the same

contributions removed from the gauge boson propagator, and recompute the mass splitting.
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Figure 3.11: The one-loop (green band), partial two-loop (red band) and extended partial two-
loop (blue band) mass splittings in the wino limit of the MSSM (left) and the MDM quintuplet
model (right). The partial two-loop mass splitting is computed using self-energies constructed
from diagrams in Figure 3.2 and all except the left-most diagram in Figure 3.4, that is, all
two-loop diagrams except those that include a correction to a gauge boson propagator. The
extended partial two-loop mass splitting is calculated with all two-loop diagrams except those
that include a correction to a gauge boson propagator by y fermions. The coloured bands
are determined by varying ) continuously between m;/2 and 2m;. For these calculations, we
neglect threshold corrections and all running of parameters. Figure from Ref. [1].

We refer to this extended partial amplitude as ‘Partial Two-loop no Iy v, " in Figure 3.11. The
splitting is still flat at large M in both models, albeit with a larger scale dependence in the
MDM model due to the contributions of a large number of additional diagrams (relative to
the wino model) in Fig. 3.3 with x™* in the lower internal propagator. The flatness of the
extended partial two-loop result at large M shows that the uncanceled logarithms in the full
quintuplet calculation specifically arise from the failure of the threshold corrections to fully
cancel the logarithms from the contribution of the multiplet fermions to the gauge boson self-
energies. Unlike light quark masses, which increase the mass splitting (Figure 3.5), the addition
of multiplet fermions reduces the splitting, as the two types of fermions enter into the gauge
boson self-energies with opposite signs. The fact that the mass splitting ultimately turns down
in the MDM quintuplet therefore indicates that the impacts of the multiplet fermions on the
gauge boson self-energies dominate over the threshold corrections in this model.

That the logarithms do not fully cancel in the quintuplet model suggests that they will also

not completely cancel for higher-dimensional representations of SU(2)y.
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3.5 Conclusions

We have presented a two-loop calculation of mass splitting in electroweak multiplets, in the
wino limit of the MSSM and in the MDM fermionic quintuplet model. In the wino model,
we showed that our calculation is in agreement with the previous two-loop calculation. We
improved on the previous calculation by using two-loop RGEs and including finite masses for
light quarks.

We also presented the first complete two-loop calculation of the splitting in the MDM
quintuplet model, showing that it is not constant in the limit of large multiplet masses. This
is contrary to the triplet case, and the naive expectation from the one-loop result. This result
comes from the influence of the additional heavy fermions on the gauge boson self-energies, and
subsequently the two-loop self-energies of the multiplet. As the mass of the multiplet increases,
so does its effect on the mass splitting through these diagrams.

The two-loop corrections that we present here are phenomenologically relevant, resulting in
a ~ 10% change in the lifetime of the charged components in both models. This is in agreement
with previous calculations for wino dark matter [118]. It is similarly important to include the
two-loop radiative corrections presented here when considering disappearing track searches for

MDM.



4 Pitfalls of iterative mass calculations

4.1 Introduction

A fermionic multiplet coupled to the SM via the electroweak gauge sector is only a viable dark
matter candidate because of the radiately induced mass splittings between the charged and
neutral components. In Chapter 3 we computed the value of this mass splitting to two-loop
order in two multiplet models, the wino limit of the MSSM and MDM. Both of these models and
their phenomenology are discussed in Section 1.2.2. Radiatively-induced mass splittings are
not only relevant for fermionic multiplets. For instance, a theory with a massive spin-one vector
field consisting of a charged and neutral component will also have a mass splitting of similar
magnitude to the fermionic case [3] (also see Chapter 5). Again, this is phenomenologically
essential for the neutral component of the vector field to be a viable dark matter candidate.

The lifetimes of charged components in a detector are extremely sensitive to the mass
splitting within the multiplet. In the wino limit of the MSSM, two-loop contributions increase
the lifetime of the charged component by up to 40% [1,118], as demonstrated in Chapter 3.
This is because the lifetime goes as the fifth power of the mass splitting. We discuss this further
in Section 4.5. Therefore, it is important that the mass splitting used in any phenomenological
study is as precise as possible.

To calculate the mass splitting we must determine the physical mass of the multiplet com-
ponents up to a particular order in perturbation theory. The physical mass can be computed
via two equivalent methods, detailed in Section 4.3, which differ only by partial higher order
corrections beyond the formal precision of the calculations. The first is an iterative approach
for finding the pole mass. This approach has been applied in spectrum generators produced
by SARAH/SPheno [142,143,225], and FlexibleSUSY 1.7.4 [234], which can provide a spectrum
generator in any model. The iterative method has the advantage that it allows one to use
simple expressions that can be used for self-energies of any order, making it more straightfor-
ward to extend to higher orders. The second approach replaces the pole mass in the implicit
expression with the running scheme-dependent mass, by performing a perturbative expansion,
yielding an explicit expression which is truncated at the desired order. The latter is the only
method previously used to estimate mass splittings in electroweak multiplets [118,136,145,242].
In Section 4.3 we show that both approaches give equivalent values for the pole mass, with any

differences between the results from the two approaches smaller than the uncertainty on the
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mass itself. However, in Section 4.4 we demonstrate that the resultant mass splittings show a
significantly larger dependence on the renormalisation scale in the iterative approach than in
the non-iterative method.

The large variation in the iterative mass splitting is due to logarithmic terms dependent on
the renormalisation scale, which result from a large mass hierarchy. While the physical pole
mass should in principle be independent of the renormalisation scale, at the lowest orders of
perturbation theory there are order-GeV variations (for a ~ TeV-mass particle) with respect
to the choice of renormalisation scale. Nevertheless, a one-loop mass splitting of ~ 170 MeV is
often stated without an uncertainty [136,145,242]. This apparent level of precision originates
from an exact cancellation of scale-dependent logarithms that occur between the mass functions
in the non-iterative method. As a result, the only scale-dependence enters through the input
parameters.

We show that this cancellation does not hold when using the iterative method. If computing
the mass spectrum with a renormalisation scale set to the mass of the top quark, we find a
mass splitting that differs on the order of 100 MeV from the non-iterative result for a ~ TeV-
mass multiplet. However, by varying the renormalisation scale we are able to account for the
large hierarchy and reconcile the computational methods, albeit with a large uncertainty on
the iteratively-computed mass splitting. We also identify the origin of this difference as a
remarkable transformation of the difference of one-loop functions in the large mass limit.

In perturbation theory a typical solution to an unacceptable uncertainty at one level of
precision is to move to the next order. We show that the uncertainty in the splitting predic-
tion from the non-iterative approach is improved at two-loop order, as one would normally
expect for a quantity that is not accidentally small, and find reasonable agreement with similar
calculations in the literature [118,239]. In Chapter 3 and Ref. [1] we computed full two-loop
self-energies using the non-iterative method for a range of different electroweak multiplet mod-
els, and discuss the improvements of our non-iterative two-loop calculation over those in the
literature. In this chapter and Ref. [2], we compare the results of the iterative and non-iterative
calculations. The iterative procedure for calculating the pole mass has not previously been car-
ried out at two loops, as it leads to infrared divergences. However, by using a regulator mass for
the photon, one can safely employ the iterative method. However, the iterative method also re-
quires self-energies defined off-shell, which are not straightforward to obtain for some diagrams.
Here we consider only a subset of diagrams, which suffice to demonstrate and understand the
problem with the iterative calculation. We show that with this partial two-loop self-energy

calculation, the mass splitting exhibits a remarkably similar behaviour to the one-loop case,
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especially in the large mass limit.

We compute self-energies for this study using FeynCalc 9.2.0 [222,223] and FeynArts 3.9 [216],
reducing them to basis integrals with FIRE 5 [214] (via FeynHelpers 1.0.0 [224]) and TARCER
2.0 [209]. We evaluate the basis integrals using TSIL 1.41 [9] and analytical forms from the
literature [237]. To compute the running of the input parameters, and to cross-check the mass
calculations, we generate one-loop RGEs and self-energies with SARAH 4.8.0 [140-143] and
solve them using FlexibleSUSY1.7.4 [234]. We have also used SARAH/SPheno [142,143,225] to

verify the main results.

4.2 Model and parameters

For this investigation, we use a simple electroweak triplet extension of the SM. However, our
findings apply to any other model with an equivalently-induced mass splitting, such as the
wino limit of the MSSM, or models with more multiplet components. This model consists of a
Majorana fermionic SU(2)y, triplet x with zero hypercharge, coupled to the SM via the SU(2)p
gauge fields. The M S renormalised Lagrangian is

1 ) N
EZESMJrgY(ZZD*M)X, (4.1)

where P is the SU(2), covariant derivative, M is the degenerate tree-level MS multiplet mass
and Lgy is the SM Lagrangian. At zeroth order in perturbation theory (i.e. tree-level), the
charged and neutral components have the same mass, M.

We give the full one-loop self-energies in a general gauge (parameterised by £) in Appendix
A.2. The self-energies are functions of M, the MS masses of the SM gauge bosons myy and
Mz, and the SU(2), gauge coupling g. The self-energy functions and the input M .S parameters
also depend on the renormalisation scale Q. We use SARAH [143] to generate one-loop RGEs
and threshold conditions, and FlexibleSUSY [234] to compute the spectrum of couplings and
M S running masses at the required scale.

The most relevant input parameters are the physical masses my = 80.404 GeV and my =
91.1876 GeV, and the coupling agl\l/[ (mz) = 127.934. For applying threshold corrections and the
renormalisation group running we also require additional low energy inputs, which we take to be
my = 173.34 GeV, and fix all other parameters to the default values used in FlexibleSUSY, which
are kept up to date. These have a marginal impact on the renormalisation group evolution, so
we omit the details.

We evaluate the self-energies in Appendix A.2 in the Landau (§ = 0), Feynman-"t Hooft

(¢ = 1) and Fried-Yennie (£ = 3) gauges. We have also reproduced our results in the Feynman-
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't Hooft gauge using self-energies computed both with SARAH (4.8.0) and by hand. We evaluate
the Passarino-Veltman functions appearing in the self-energies with TSIL [9], making additional

checks using LoopTools [238], and when possible with the integrated analytical forms from

Ref. [237].

4.3 Pole mass calculations

In this section we outline two common methods for the computation of a physical pole mass to a
fixed order in perturbation theory. The definition of a pole mass is the complex pole of the two-
point propagator, which for a fermion has a denominator given by the one-particle irreducible
effective two-point function in Eq. (3.1), where p, is the four-momentum of the particle, M
is the tree-level M S mass and p = Y¥pu. The self-energy, Y(p?) = S (p?) + pZK(pQ), is in
general a function of the renormalisation scale and any relevant masses or couplings in the

theory.

4.3.1 The iterative pole mass

The pole mass is obtained by demanding I'y = 0. This can be achieved by setting p> = Mgole,

and solving the resulting implicit expression for the pole mass

M — S (M2
Mpole — Re M( 2pole)‘| 7 (4‘2)
1+ Z:1((]\4pole)
iteratively until the desired convergence is reached. Equivalently, one can solve
Mpole =M - ZM(]Wgole) - MpoleZK(Mgole)- (4‘3)

We will refer to this definition as the iterative pole mass.

4.3.2 The explicit pole mass

In practice it is not always possible to use the iterative definition of the pole mass. In such a
case, one may obtain an explicit expression for M. by making an expansion by hand in the
perturbative coupling, around the tree-level mass, as we demonstrated up to two-loop order in
Section 3.3. For the second method of pole mass calculation we will use Eq. (3.7). We refer to
this as the explicit, or non-iterative, pole mass.

Truncating Eq. (3.7) to first order in « gives a simple expression for the one-loop pole
mass. However, the two-loop result requires expressions for the derivatives of the one-loop

functions. In general these are not simple to obtain and implement, making the iterative
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Figure 4.1: The ratio of the one-loop pole mass to the tree-level mass for the neutral (left)
and charged (right) components of the electroweak triplet. The solid lines indicate values
computed using the iterative method, (Eq. 4.2), and dashed lines the explicit method (Eq. 3.7)
truncated to one-loop order, at fixed values of the renormalisation scale (). The shaded bands
indicate the range of values obtained by varying @ continuously between min{M /2,my/2} and
max{2M,2m,}, for each calculation method. Figure from Ref. [2].
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approach, Eq. (4.2), more attractive. On the other hand, as we will discuss in Section 4.4.4, it
is not always possible to obtain two-loop self-energies defined away from p? = M2, making the
use of Eq. (3.7) mandatory.

In Figure 4.1, we present the one-loop pole masses for the charged, Mp+ and neutral,

ole’

MO

poles components of the electroweak triplet. Due to the scales involved, we present the pole

masses in terms of their ratios to the tree-level mass. We show pole masses computed for
Q = my/2, 2my, M /2, M and 2M. We obtain uncertainty bands by smoothly varying the
renormalisation scale continuously between min{M /2,m;/2} and max{2M,2m,}. There is
a large variation in both the iterative and non-iterative pole masses as the renormalisation
scale is changed. Any discrepancy between the two methods is small, however, relative to the
magnitude of this uncertainty. There therefore appears no reason to favour one method over
the other, at the level of pole masses themselves. However, as we will show in Section 4.4, the
non-iterative pole mass produces remarkably different results when the difference between the

charged and neutral masses is considered instead.

4.4 'The mass splitting

In Figure 4.2 we present the mass splitting AM = M+ MY

pole — Mpole 88 a function of the degenerate

tree-level mass M. We compute the iterative pole masses, and resultant mass splittings, at
renormalisation scales @ = my/2, 2my, M /2, M and 2M. For each value of M , We again
determine an uncertainty band by varying the renormalisation scale continuously between
min{M /2, m;/2} and max{2M,2m,}, and taking the uncertainty to encompass the minimum
and maximum mass splittings determined in each computational method.

For very large values of the renormalisation scale, the iterative mass splitting reaches a
maximum at some value of M, before suddenly dropping to negative values at larger M. An
example of this can be seen in the @ = M and Q = 2M curves in Figure 4.2, shown in
blue and orange, respectively. In such cases, we consider the result too unreliable, as negative
values of the mass splitting are unphysical (they would lead to charged dark matter and violate
the classical argument discussed in Section 4.6). At a given value of M, we therefore do not
include data for values of @@ leading to AM < 0 when computing the uncertainty band. We
note however that it is still very important to consider values of ) > M /2 for establishing the
upper bound on the iterative mass splitting, with values closer to M /2 remaining close to the

non-iterative result at larger and larger mass scales.
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Figure 4.2: The one-loop mass splitting AM = M;Ole — M;())ole as a function of the degenerate

mass M. The solid lines represent AM computed using the iterative method (Eq. 4.2), at
fixed values of the renormalisation scale (. The equivalent lines for the explicit method are
entirely contained within the grey uncertainty region, so we omit them. The shaded bands
indicate the range of values obtained by varying Q continuously between min{M /2, m,/2} and
max{2M,2m,}, for each calculation method. Figure from Ref. [2].
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4.4.1 The explicit mass splitting

The weak dependence of the explicit mass splitting on the renormalisation scale can be under-
stood by a symbolic calculation in the limit M > m zw . The one-loop self-energies are given in
terms of Passarino-Veltman (PV) [243,244] functions B(p?, M?,m?) = B(M?, m?) (making the
dependence on p? explicit) and A(M?), defined in Eqgs. (2.29) and (2.30) respectively. When
using the explicit pole mass Eq. (3.7) truncated to one-loop order (O(g?)) these functions are

evaluated at M = M, m = mzw and p* = M2 >> m. In this case the limits are given by [118]

INEN 1 M? m m? M?
A (M) M2 1

where 1/é = 2/(4—D)—~+log(4n) is cancelled by the appropriate counter-terms (see Appendix
A.2) and D = 4— 2¢ is the spacetime dimension. With the use of these limits the mass splitting
becomes

2
lim AM :g—(mw — c&ymy) ~ 165 MeV, (4.6)

M>»myg ™
which agrees with Ref. [113]. Here ¢y = cos(6) is the cosine of the Weinberg angle and we
have taken My, = my and My = my since threshold corrections to these masses are of next
loop order. In Eq. (4.6), all logarithms of the form log(myx/Q), where myx € {M, mw,mz},
have cancelled exactly, leaving the only renormalisation dependence coming from the gauge

coupling.

4.4.2 The iterative mass splitting

We find that the iterative mass splitting is highly dependent upon the chosen renormalisation
scale. Although it is not possible to write down an analytical expression analogous to Eq. (4.6)
that would be at all tractable, we can show that the limits used in Eqs. (4.4) and (4.5) do not
hold in the iterative case.

When the iterative pole mass has converged to My, it can be expressed as a function of

the self energy evaluated at p? = M2 The self energy then becomes not only a function of

pole*

M , but also an implicit function of M. Making the approximation Mpge = M;Ol o N Mgole,

and neglecting all terms which become small in the limit M > my (i.e. terms of order one or
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Figure 4.3: Left: The value of AB from Eq. (4.7) as a function of M for different choices of
r. Right: The value of &£ [B(T‘M, M,my) — B(rM,M,mg)} as a function of M for different
choices of r, with m; = 100 GeV, mg = 200 GeV. Figures from Ref. [2].

more in 1/M or 1/p) we are left with the iterative mass splitting

i an =2 (a2 Byt 31, may)

im =7 _ . m

M>mg 1672 Mpole pole pole, V1, My
_S%VB(Mpolea M'} 0) - C%/VB(Mpolea M7 mZ)]

_2Mg1

T 16722

—s3,B(rM, M,0) — ¢, B(rM, M, mz)}

(4 - % - r) | B(r NI, NI, ) (4.7)

= AB,

where 7 = Mpole/ M. For r within any realistic distance of 1, the prefactor % (4 — % - r) is
close to 1, and has little impact on the splitting. However, the fact that » # 1 in the argument
to the B integral has significant implications for the evaluation of the mass splitting. We plot
AB in the left panel of Figure 4.3 as a function of M for different values of . For r = 1 and
M > my, this expression approaches ~ 170 MéV, analogous to the result in Eq. (4.6). However,
for r # 1 the large M behaviour of Eq. (4.7) is significantly different. Similar behaviour can

also be seen in a simpler combination of B functions,

~

M (B, 51,my) = B 31,my)] (4.8)

7r
which we plot in the right panel of Figure 4.3. One can immediately see similarly remarkable
differences in the large M limit from small variations in r away from one.

It is evident from Figure 4.3 that the limit of Eq. (4.6) does not hold in the case that

r # 1'. Instead, the difference appears to approach the ~ 170 MeV limit with increasing M ,

'In an ideal case we would produce a similar expression to Eq. (4.4) in the limit of large M for the case of



4.4. The mass splitting 96

until a critical point is reached. If r < 1 then a turn-over occurs, beyond which the curve
asymptotically approaches zero. If r > 1, then there is a rapid increase, followed by a sudden
sign change, and then the curve asymptotically approaches zero from below. This effect can
be seen in the excursion to negative AM of the large-) curves in Figure 4.2. The mass scale
at which the critical point is reached depends on the magnitude of |1 — r|; values of r closer
to one follow the ~170MeV limit to larger values of M. In the analogous case of radiative
mass splittings, r = Mpele/ M, which one would expect to be close to unity unless there are
extremely large radiative corrections (which may indicate that unphysical large logarithms are
present).

Consider the yellow curves in Figures 4.1 and 4.2, corresponding to @) = M /2. Of the scales
we consider, this is the best choice of renormalisation scale in terms of minimising unwanted
logarithmic corrections, as it interpolates the large mass hierarchy. As we see in Figure 4.1,
this indeed corresponds to a ratio of pole and tree-level masses close to unity at large M. In
turn, this corresponds to a value of r ~ 1 for large M in Figure 4.3, and thus a suppression of
the deviation from the ~ 170 MeV limit. The yellow curve on Figure 4.2 illustrates the same
behaviour, running closest to the non-iterative result.

This is further verified by considering the other curves in Figure 4.2. For () at the lower end
of the scale, at m;/2, the turn-over occurs for relatively small M. At the other end of the range
for ), where we consider cases with @ M , once the constant of proportionality becomes
sufficiently large a critical point is reached where the turn-over occurs at smaller values of M,
as can be seen between the QQ = M and Q = 2M results. This behaviour is consistent with
the idea that this is the result of large logarithms of the form log(rw,z/Q), log (M / Q) and
log(Mpole / Q), which contribute to a large self energy, and are not cancelled in the iterative
calculation. Thus, it is sensible that for the intermediate value of Q ~ M /2 the iterative mass
splitting is in much closer agreement with the non-iterative result, as logarithms from both

ends of the hierarchy are better controlled.

4.4.3 Gauge choice

As physical observables, the pole masses and mass splitting should be entirely independent

of the gauge choice. For the non-iterative method we see that this is indeed the case, with

2

consistent results in all three gauges (£ = 0,1,3). This can be seen in both Figure 4.1 and

a general r. However, due to the complex nature of the function involved obtaining such an analytic expression
was not possible in this study.

2The running of the MS gauge boson masses is not relevant for a one-loop calculation, as the contribution
from running is of higher loop order. We find that the gauge dependence of the running couplings has little
effect. For the calculations discussed in this subsection, we therefore use Feynman gauge for all running, and
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from the analytical form of the self-energies with the condition that p? = M2, in which case
the dependence on the gauge parameter is completely removed. For example, for the neutral

component with p? = M? we have

N 242 N N A N
KINO(NI2) = A% (ACiw) = A(NT) = (s + ANI) BN, N i) + NI2) - (4.9)

which is clearly gauge independent. Therefore the on-shell condition guarantees that the pole
masses, and subsequent mass splittings, are gauge independent.

In the iterative method the self-energies must be evaluated off-shell with p? # M?. In this
case the self-energies are dependent on the gauge parameter, as can be seen in the expressions
in Appendix A.2. In Figure 4.1 this gauge dependence is apparent in the numerical results,
with a slight enlargement in the uncertainty band in the Landau gauge, and an even larger
uncertainty in the Fried-Yennie gauge (£ = 3). Subsequently in Figure 4.2 we see that the
iterative mass splittings are also gauge dependent

Given that the iterative pole mass is gauge dependent it is not surprising we get unexpected
results when computing the mass splitting. As a physical observables, the pole mass should be
exactly gauge independent at each loop order. However, this is only true when the self-energy

is defined on-shell. This further strengths the case for using the non-iterative method.

4.4.4 The two-loop mass splitting

With such a large uncertainty in the one-loop mass-splitting, it is of interest to compute
the radiative corrections at the next order. We have computed full two-loop amplitudes for
the charged and neutral multiplet components in the Feynman-'t Hooft gauge using the non-
iterative method; the details of this calculation were presented in Chapter 3 and Ref. [1].
Without the condition p? = M2, which is imposed in the non-iterative calculation only, the
basis integral reduction fails to produce reliable results, encountering a singularity at p = N>
for certain diagrams. Therefore, we are able to obtain a full two-loop result only with the
non-iterative method. However, in the interests of investigating the behaviour of the iterative
calculation at two loops, we have produced a partial two-loop amplitude that can be solved
iteratively, based on a combination of diagrams that gives a finite self-energy. By considering
this subgroup of two-loop topologies, we obtained a self-energy valid at both p? # M? and p? =
M?2. The classes of diagrams that we used for this partial two-loop amplitude are summarised
in Figure 4.4; the full set of two-loop diagrams can be found in Figures 3.2, 3.3 and 3.4.

As shown in Ref. [118], the two-loop amplitude contains IR divergent terms for p? = M2

These divergences cancel with the derivative of the one-loop amplitude when the pole mass is

only change the gauge choice for the self-energies.
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Figure 4.4: Two-loop diagrams contributing to the partial self-energy. Small circles with crosses

indicate counter-term insertions. Solid lines indicate multiplet fermions (x°, x*) and wiggly
lines electroweak vector bosons (W=, Z, ). Figure from Ref. [2].

computed using the non-iterative method (Eq. (3.7)). In both the iterative and non-iterative
case, we regulate this divergence by using a fictitious — but small — mass for the photon,
causing the divergences to cancel numerically. We have verified that the mass splitting is
indeed independent of the exact choice for sufficiently small values of the regulator mass. For
the iterative case there is no such cancellation, but the amplitude is IR-safe anyway because
p? # M2 By using a regulator mass even in the iterative calculation, however, we avoid any
problem associated with the IR divergence at the first step of the iteration, when p? = M2

In the left panel of Figure 4.5, we begin by comparing the non-iterative mass splitting
in the one-loop, partial two-loop and full two-loop calculations. The uncertainty of the full
two-loop amplitude due to scale dependence is much smaller than that of the one-loop result.
This confirms findings in the literature, and shows that these cancellations in the non-iterative
approach allow the precision of the splitting to improve with the addition of the higher-order
contributions, as one would normally expect. In the limit of large M, the only remaining
(Q-dependence of the one-loop and full two-loop results comes from renormalisation of the SM
input parameters.® Similarly, for solutions at fixed Q and large M, there is also a very small
dependence on M, seen as a slight decrease in the mass difference with increasing M; this is
due to the influence of the value of M on the renormalisation of the SM input parameters. This
can be confirmed by comparison with the left panel of Figure 3.11, where the pink band which
is indeed flat for large M corresponds to exactly the same result but without any threshold
corrections applied to the input parameters.

On the other hand, the partial two-loop amplitude shows a relatively large uncertainty,

dominated by the results where () is chosen to be some multiple of M. Because even the

3The large M limit of the two-loop mass splitting is slightly larger than the result in Ref. [118] due to the
choice of input parameters.
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Figure 4.5: The splitting AM = M;;le — Mgole as a function of the degenerate mass M at one-

loop and two-loop order, for the non-iterative method (left) and the iterative method (right).
We include partial and full two-loop results for the non-iterative method; only a partial two-loop
calculation is possible with the iterative method. Shaded bands indicate the range of values
obtained by varying @ continuously between min{M /2, m;/2} and max{2M,2m;}. Solid lines
indicate partial two-loop values computed at specific choices of the renormalisation scale Q.
Figure from Ref. [2].

partial mass splitting is manifestly constant for large M and fixed Q (modulo the small and
irrelevant impact of running input parameters), we know that there are no terms of the type
log (M / Q) left in the result. We can therefore infer that there are other terms proportional
to @, of the form log(mzw /Q), causing an increase in AM for cases where we have chosen @
to be a multiple of M. These terms are clearly cancelled in the full two-loop amplitude, and
dominate the uncertainty of our partial two-loop result. Given the form of these corrections,
we can reduce the uncertainty by considering solutions with fixed @) near the electroweak scale.
This gives some control over the effect of the uncancelled scale-dependent terms in the partial
mass splitting. With this constraint, the uncertainty on the non-iterative mass splitting is
comparable to the uncertainty of the one-loop result. This is illustrated by the red and black
lines in the left panel of Figure 4.5, which together bound the uncertainty on the partial result
if @ is varied between m;/2 and 2my.

In the right panel of Figure 4.5, we compare the one-loop and partial two-loop mass split-
tings computed using the iterative procedure. The behaviour of the partial two-loop mass
splitting is reminiscent of the behaviour of the one-loop splitting for £ = 0,1 when @ is chosen
independently of M, as seen in Figure 4.2 (Q = my/2, 2m;). Specifically, the mass splitting

converges to zero for large M, although this occurs at slightly higher masses for the partial two-
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loop result. For @) = M /2 we again see that the iterative mass splitting tracks the ~ 170 MeV
limit reasonably well. However for QQ > M /2, the partial two-loop splitting extends to very
large values (as large as 1 GeV for @ > M /2), much greater than the iterative one-loop mass
splitting. Because we are restricted to a subset of two-loop diagrams that we know in the non-
iterative case to result in an increased scale-dependence compared to the one-loop result, some
increase in the scale-dependence can be expected in the iterative calculation when going from
one loop to the partial two-loop result. Indeed, it is from the solutions for which @) o« M that
we see the large increase in the uncertainty of the explicit mass splitting, so it is not surprising
that these solutions lead to a larger uncertainty in the iterative result as well. For @) chosen
independently from N (Q = my/2, 2my), the iterative partial two-loop calculation does show
slightly less sensitivity to the renormalisation scale than the one-loop result. This can be seen
by comparing the area bounded by the red and black curves in the right panels of Figs. 4.2
and 4.5. This suggests that if we were also able to control the uncertainty for solutions with
@ x M by including the missing diagrams, then the overall uncertainty of the iterative result
could be reduced somewhat compared to the one-loop version.

Similarly, the delay of the turnover of the mass splitting to higher multiplet masses, when
going from one loop to two, indicates that the two-loop corrections do partially compensate
for the large logarithms in M /@ responsible for the deviation of the iterative result from
the non-iterative one. However, the asymptotic behaviour for large M and Q = my /2, 2my
remains the same as in the one-loop iterative result, indicating that this compensation is far
from complete. Even with two-loop contributions included, the iterative calculation does not
exhibit the cancellation that occurs in the non-iterative case. This suggests that higher-order
corrections cannot completely ‘cure’ the scale-dependence of the one-loop iterative calculation,

even if they can reduce the effect.

4.5 Phenomenological implications

The precise value of the mass splitting is most relevant in the calculation of the dark matter
relic density, and the decay lifetime of the charged component. We briefly discuss the possible
effect of erroneous mass splittings entering into these calculations, in the case that one was
to accidentally use an iterative result without being aware of the pitfalls of this method (such
a situation may arise if a spectrum generator is used and results passed to other programs
without checks in between).

As the typically-assumed ~ 170 MeV mass splitting is still relatively small compared to the

actual pole masses, it has sometimes simply been neglected when calculating the dark matter
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Figure 4.6: The lifetime of the charged component of an electroweak triplet Y, as a func-
tion of the degenerate multiplet mass M , as computed in the Feynman-'t Hooft gauge. The
green and grey regions indicate the range of values obtained by varying () continuously be-
tween min{M /2,m;/2} and max{2M,2m,} for the iterative and non-iterative approaches,
respectively. The opening of the pion channel is evident in the large change in the lifetime
when AM = m,, and the opening of the muon channel can be seen in a smaller change at
AM = my,. Figure from Ref. [2].

relic abundance [136]. In this approximation, the uncertainty on the splitting obviously plays no
real role. However, AM is quite important when including the Sommerfeld enhancement [119],
as it sets the location of the resonance, so can have a large impact on the resulting relic density
at certain values of M. This is particularly relevant in the multi-TeV region preferred by the
observed relic density.

The calculation of the decay lifetime for the charged component is extremely sensitive to the
value of the mass splitting. To demonstrate the importance of avoiding the iterative method,
we compute the effect of the mass splitting uncertainty on the decay lifetime.

The charged component decays as YT — x" + X, which is dominated by channels where X
is either a pion, an electron+neutrino or a muon+neutrino pair. The decay width for the pion
(T'x), electron (I'¢) and muon (I',) channels are given by Eq. (3.25), Eq. (3.26) and I'), = 0.12T",
respectively. The expected lifetime of the charged component is thus 7 = (I'e +T', + )%

In Figure 4.6, we present the decay lifetime of the charged component in units of mm/c, as
a function of the degenerate mass M, for both methods of pole mass calculation at one-loop.
The large step in the decay lifetime is where AM > m, and the pion channel opens (where

my is the pion mass), and the smaller step is due to the muon channel opening. We can
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see here that the uncertainty in the one-loop iterative pole mass calculation results in a huge
uncertainty in the decay lifetime. Indeed the width in Eq. (3.26) has a quintic dependence on

the mass splitting.

4.6 Conclusions

In a model where a fermionic multiplet is required to be 100% of the observed thermal relic
abundance of dark matter, the multiplet mass must be of the TeV scale. Therefore we have
M > mw,z and the calculation of the pole mass involves a large mass hierarchy. Due to the
mathematical form of the non-iterative (or explicit) pole mass, large logarithms of the form
log(mx /Q), where mx € {M , My, Mz}, associated with this hierarchy, cancel out when taking
the difference of the charged and neutral components. Therefore the only renormalisation scale
dependence in the mass splittings comes from the input parameters, such as the gauge coupling
and running M S masses.

In the iterative method this cancellation is spoiled. In order to obtain a reasonable esti-
mate of the uncertainty on the resulting mass splitting, such that the iterative and explicit
results are consistent, we must vary () over the entire mass hierarchy. Despite the fact that
both the iterative and explicit pole masses show almost identical variance with respect to the
renormalisation scale, only the difference of the iterative masses suffers from a similarly large
uncertainty. This is the result of cancellations not occurring in the iterative case, due to the
nature of the procedure. Any renormalisation scale dependence in the explicit mass splitting
is cancelled out perfectly.

The iterative method of calculating a pole mass is a natural choice for a computer program.
As demonstrated in Section 4.3, it uses the least approximations and is straightforward to
implement at any loop order. As seen in Figure 4.1, the choice of either iterative or non-iterative
calculation is typically not consequential for pole masses themselves, so it is understandable that
publicly-available spectrum generators have made different choices over which approach to use.
Of particular relevance here, SARAH/SPheno [142,143,225] spectrum generators use an iterative
procedure for all pole masses, with no alternative option, whereas FlexibleSUSY [234] enables
the user to select either high precision (iterative), or medium/low precision (non-iterative).
Although the FlexibleSUSY names for these options imply that the iterative method is more
precise, we can see from Figure 4.2 that this is certainly not always the case for differences
between pole masses.

We have reproduced the large uncertainty in the mass splitting using pole masses computed

with both FlexibleSUSY and SPheno with the iterative method. We have also reproduced the
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non-iterative result using FlexibleSUSY’s low precision mode.

Finally, we have demonstrated that the iterative pole masses are not gauge independent.
Although there is no tension between the uncertainty bands of the pole masses in each gauge,
we expect this quantity to be exactly gauge independent, which it is clearly not. This brings
into question the validity of the iterative method in general, as we show at least in this example
that self-energies defined off-shell have an explicit dependence on the gauge parameter.

A pertinent question is if one must consider the uncertainty arising from the iterative
result when using calculations of electroweak mass splittings for doing phenomenology. On
the basis of our investigations in this chapter, we argue that this is not necessary. Due to
fortunate cancellations, the explicit method is able to predict the mass difference while being
free from logarithmic terms containing explicit scale dependences. From a physical point of
view, with this method we are able to minimise the sensitivity of the final result to non-
physical renormalisation-scale effects. In addition, we have found that the iterative pole masses
are gauge dependent which is inconsistent from a physical point of view. Furthermore, a
finite mass splitting is predicted by a classical effect — the Coulomb energy. Ref. [136] shows
agreement between the classical prediction and the value derived from the self-energies in Eq.
(4.6). Relying on a classical argument alone is of course not sufficient to safely disregard the
large uncertainty of the iterative result. By understanding however that the origin of this
uncertainty lies in scale dependence, and that this can be safely removed by performing the
explicit calculation, we can safely conclude that the explicit result is indeed accurate to within

its own error margin, and should therefore be adopted as such for phenomenological analyses.



5 Mass splittings in a vector multiplet

To conclude Part I we will briefly consider electroweak mass splitting in a vector multiplet. In
Chapter 4 we demonstrated how an iterative pole mass calculation can result in the cancellation
of scale dependent logarithms being spoiled, leading to a large renormalisation scale dependence
in the mass splitting. In this chapter we will show that computing a mass splitting using an
iterative pole mass is not the only way to spoil the fortuitous cancellation of such terms.

We will compute electroweak mass splitting in a vector dark matter (VDM) model, the
phenomenology of which is discussed in Ref. [3]. Like the fermionic models considered in
Chapters 3 and 4, this model features an essential mass splitting between components of the
multiplet. However, because the vector propagator has a different form to the fermionic one,
the linear subtraction of logarithms is spoiled and consequently the result is more sensitive to
changes in the renormalisation scale.

The model is constructed as an extension of the SM by a new massive iso-triplet vector
boson V,, charged under SU(2)r. We impose an additional Zy symmetry in order to avoid a

cubic V vertex. The corresponding Lagrangian is

2
L = Lsy—Tr{D,V,D"V"}+Tr{D,V,D"V"} — %Tr (V.. Vo] [V*, V]

—igTr (W, [V, V*]} + MPTr{V,V"} +a (HTH) Tr{V,V"} (5.1)

where D, is the SU(2), covariant derivative in the adjoint representation, H is the SM Higgs
doublet, Lgys represents the SM Lagrangian, a is a new dimensionless coupling and M is a
Lagrangian mass parameter for the vector field. Note that, compared to the model in Ref. [245],
we allow for couplings to the Higgs scalar field H. Due to the Zy symmetry, the new vector
boson does not mix with the gauge bosons when the Higgs field acquires a VEV, so the EWSB
is unchanged from the SM. The tree-level M S mass, My, of the new vector boson is given by

~ ~ 1
M‘2/ = M?+ 5@1}8 (5.2)

where vy = 246 GeV is the usual VEV acquired by the Higgs field. Therefore this model has
two free parameters: My and a.

We define the physical masses for the charged and neutral components of the vector multi-

plet as M T

pole and Mgole respectively. These pole masses are given by p? satisfying Eq. (2.10),

p? = Mg - S (p?), (5.3)
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where E%/ is the real and transverse part of the self-energy for the charged (i = +) or neutral
component (i = 0) of the multiplet. Equivalently, up to one-loop order, the pole masses are

given by

pote = VI - 2 (1) (5.4)
The mass splitting between the physical masses of the charged and neutral components can be

written by expanding Eq. (5.4)

: . SUME) e & 0\ (=) \"
Mlge=My,|1—- =2 =My > (-1)"| 2] =2 (5.5)
pote ME o n M

and taking the difference
o & N [[/zre)\"  (=0r)\"
AM = My, = Mpge = My ;f‘”” (;) K Mgv ) - ( Mgv ) ] . (56
For a consistent one-loop result we truncate the expansion to the first term, which appears at
order g2 in the gauge couplings.

We compute the self-energies in the Feynman-'t Hooft gauge at one-loop order. We do not
perform any sophisticated spectrum generation for this brief study, instead using a one-loop
solution for the running of the gauge coupling and neglecting the higher order effect from the
running of the other parameters. The one-loop, O(g?), mass splitting is obtained from the first

term in the expansion in Eq. (5.6),

2
AM = 12(157021\35} [f(mw) + glmw) — ¢ (f(mz) — g(mz))
5(miy — hy MI3)(A(Ny) — 2003) + 3083, NI B3y, 0)]  (5.7)
where

f@) = —(30M} + 26M2x? — 52)B(My, x) (5.8)
g(z) = (12M2% —52%)A(x) (5.9)

and A and B are defined in Egs. (2.15) and (2.22) respectively. To evaluate the mass splitting

for My > my,mz, we use the limits from Egs. (4.4) and (4.5), to give

5g%(mw — c&ymy)
327

AM =

~ 217.3 MeV (5.10)

This result is of the same order of magnitude as we found for a fermionic multiplet in Eq. (4.6)
and is independent of My in the large My limit. A plot of the full expression in Eq. (5.7) as a
function of My is presented in Figure 5.1 (black solid curve), where we see that the asymptotic

constant value is reached for masses above ~ 500 GeV.
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Figure 5.1: The one-loop radiatively induced mass splitting between the charged and neutral
components of the vector multiplet in the VDM model. The dashed lines represent AM
computed at fixed values of the renormalisation scale @ using Eq. (A.100), the value of @ is
indicated by the colour on the legend. The solid black line is the one-loop mass splitting, Eq.
(5.7), with all higher order terms truncated. The shaded green band indicates the range of
values obtained by varying ) continuously between min{Mv /2,myz/2} and max{2MV, 2my}.
Figure from Ref. [3].

The non-truncated mass splitting, Eq. (5.6), contains higher order terms. The sensitivity
of these higher order terms to the renormalisation scale can be used to give a naive estimate
of the theoretical uncertainty in the one-loop result. The dependence on @ enters both via the
input parameters! and via explicit logarithms. In the case of a fermionic multiplet in the large
mass limit, only the former ) dependence appears [1,118] thanks to a cancellation of all scale-
dependent logarithms between the neutral and charged self-energies: this is due to the fact that
the fermionic pole mass is linear in the self-energies, which share the same dependence on the
logarithms. The vector case is different because it is the mass squared that depends linearly on
the self-energies, thus a cancellation of the explicit logarithms occurs in (MF, )2 — (M2 )2,

pole p
but not in AM = M;le — Mgole.

'For the one-loop mass splitting we need only compute the running MS coupling, which we take as
esm(mz) = 0.3134 and renormalise using the one-loop SM renormalisation group equation. Any matching
to the VDM is of higher order and thus can be neglected.
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In fact, as seen in Eq. (A.100), the next-to-leading terms in the series (O(g") for n > 2)
explicitly contain the term log<Mv / Q). The dotted lines in Figure 5.1 show the results for
Q=mgz/2,2myg, Ny /2, My and 2My. This allows us to identify the theoretical uncertainty
with the green region, and estimate the error in the range 5 — 10%. However, this is only a
naive estimate for the uncertainty in the one-loop result, and should be considered along with
an estimate of the magnitude of missing two-loop corrections, such as in Eq. (3.24).

The resultant sensitivity of AM to () is not as severe as in the case of an iteratively
computed pole mass that we demonstrated in Chapter 4. This is because we do not return the
value of the pole mass back into the basis integrals, and thus avoid the sensitive nature of the
B basis integral, which magnifies the problem in the iterative calculation. However, this result
further demonstrates that the fermionic mass splitting indeed involves a fortuitous cancellation

of these scale dependent terms.
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6 The physics of vacuum stability

6.1 Introduction

The Higgs field is an essential feature of the SM of particle physics. Yet it is not simply the
existence of this field that is so essential, it is the mechanism of EWSB that gives rise to particle
masses and the observed structure of the electroweak sector. If the VEV that the Higgs field
gains through EWSB were orders of magnitude different, then the masses of SM particles would
likewise be very different.

At the electroweak scale the SM is a combination of broken and unbroken symmetries. The
breaking of the SU(2);, x U (1) symmetry occurs when the Higgs field, H, gains a non-zero VEV.
While the Higgs potential is rotationally invariant under the SU(2), x U(1) gauge groups, the
solution of the minimisation condition is not. Instead we have an infinite set of equivalent
solutions, connected by SU(2); x U(1) transformations. This is analogous to the solution of a
planet moving in a spherical orbit around a star; although the potential is rotationally invariant
(ignoring other planets), once the orbit has been chosen to lie in a given plane, the rotational
invariance is broken in one of the angular directions. This phenomenon, where the solution
violates the symmetry of the original equation, is called spontaneous symmetry breaking.

The Higgs mechanism is an example of spontaneous symmetry breaking. First we introduce
the Higgs field, which transforms nontrivially under the SU(2)z x U(1) gauge group. We then
find that the VEV of this field is non-zero such that the vacuum state is not invariant under
SU(2)r, x U(1) and the gauge symmetry is broken.

The SM Higgs potential is given by

V(H) = —p*[H|* + A|H|", (6.1)

where H is the Higgs field, pu is the Lagrangian Higgs parameter and A is the quartic coupling.
If 42 > 0 and A > 0 the field value at the minimum of the potential, or VEV, is vy = /2 /2.

The excitation of the physical Higgs field, h, is then a perturbation around this minimum state,
Gt
H = (6.2)
vo + J5 +iG°
where G and G° are Goldstone bosons, which correspond to the longitudinal polarisations of

the W and Z bosons. Substitution of Eq. (6.2) into the potential gives the terms in h to be

2
A
V(h) = %iﬁ + Avoh® + 0 (6.3)
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where mj, = v/2u is the tree-level Higgs mass parameter and I have dropped a constant term
and terms for the Goldstone bosons as they are not relevant for our discussion here. For the
study of vacuum stability we are interested in the high energy behaviour of Eq. (6.3) when

h > vy. So we can safely neglect all other terms and write an effective potential as [11,15,97]

Vaa(h) = Z\(@Q)h* (6.4)

|

where () ~ O(h) is the renormalisation scale and I have made the scale dependence of A
explicit. The electroweak VEV can then be taken as approximately zero, and consequently
V(vg) = 0. Eq. (6.4) demonstrates how the electroweak vacuum stability can be compromised.
If the running quartic coupling becomes negative for some value of the renormalisation scale,
@', then V(Q') < V(vg) and a more energetically favourable second minimum exists (or the
potential can drop off to infinitely low energies).

I will classify and discuss the physical effect of this phenomenon in Section 6.2. In Section
7?7 1 present the details of the likelihood calculation for electroweak vacuum decay. This
is followed by a brief discussion of perturbativity and unitarity in Section 6.4, which is an
essential consideration when studying vacuum stability. Finally in Section 6.5 I present a brief
study of vacuum stability in the SM (6.5.1), the Zy scalar singlet model (6.5.2) and the MDM
model (6.5.3).

The techniques developed in this chapter will be applied to a global fit of the Zs and Zj

scalar singlet dark matter models in Chapter 7.

6.2 Classifying stability

If A(@) in Eq. (6.4) becomes less than zero at high energies there exists a second minimum
to the Higgs potential. Except for the finely tuned case of degenerate minima, the potential
energy at this second minimum would be much lower than at the electroweak scale minimum.
Therefore, the electroweak vacuum is no longer absolutely stable, even though there is a large
potential barrier between it and the high energy minimum. If a second minimum does exist,
then it is due to this large potential barrier that the decay lifetime from the electroweak vacuum
is sufficiently large to allow the Universe to exist, before quantum tunnelling to the lower energy
state occurs.

If the Higgs field did tunnel through the barrier to the global minimum, at any point
in spacetime, a bubble of low energy vacuum would form. This is the processes of bubble
nucleation. After nucleation, this bubble would propagate outwards at very nearly the speed

of light [246] converting all space in its future light-cone into this low energy state. Since the
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nature of EWSB is essential to the SM, if the vacuum expectation value of the Higgs field were
to change by orders of magnitude, this would have catastrophic results. Additionally, if it is
found that vacuum decay is highly likely in the SM, then clearly something is wrong with the
theory itself given the fact that such an event has not already occurred.

However, even if the quartic Higgs coupling is negative at some energy before the Planck
scale the electroweak vacuum state may still be very stable, to the extent that we should
not be concerned about a bubble nucleation suddenly occurring, or question why one hasn’t
occurred in the past 13 billion years. We will now formalise the difference between such a case
and one where the vacuum is almost certain to have decayed already, and discuss the physical
interpretation of each.

Based on the nature of Eq. (6.4), Isidore et al. [247] define a lower bound, Ayin, on the
value of the running quartic coupling in order to classify stability. If Ap is the energy scale at
which A attains its minimum value, then the vacuum is metastable so long as A\(Ap) > Anin-
Instead of applying a cut-off we will develop a likelihood function for vacuum decay in Section
??. Alternatively, if we are only interested in absolute stability, we could demand A(Q) > 0
for all @. In Ref. [248] three-loop RGE running was used to place a lower bound on the Higgs

mass by finding the value of my, such that

AMQo) = Br(Qo) =0 (6.5)

for some renormalisation scale Qg (the value of Q) is irrelevant, it is the fact that this model has
a degenerate minimum that matters). Since this condition depends only on the behaviour of A,
it is based on the effective tree-level potential in Eq. (6.4). The resulting lower bound on the
Higgs mass (given in Eq. (2.5) of Ref. [248]) is 129.35 GeV for avg = 0.1184 and m; = 171.3 GeV.

We could also take into account the full structure of the effective potential at two-loop (or
higher) order to classify vacuum stability. The full two-loop effective potential is given by Ford
and Jack [249] and has been used by Degrassi et al. [97] to place a lower bound on the Higgs
mass for absolute stability. From Eq. (2) of Ref. [97] we get a bound on the Higgs mass of
129.40 GeV (for ag = 0.1184 and m; = 171.3 GeV). This differs by less than ~ 0.1 GeV from the
bound obtained using RGE running, the effective potential in Eq. (6.4) and the condition in
Eq. (6.5) given in Ref. [248]. This is well within both experimental and theoretical uncertainties.

For a precise study of the Higgs potential at high energies Casas, Espinosa and Quiros [13]
define an effective quartic coupling Aeg(Q) = A(Q) + AX(Q) in order to account for radiative
corrections. They then take h = @ as is the standard practice [14,15,250] based on the scale

invariance of the effective potential (see Ref. [12] for a detailed discussion), and obtain the
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potential

Aefi(h)

V() = 210 o M@ g (6.6)

for which the approximation on the right is equivalent to taking h = @) in the potential from
Eq. (6.4) in the first instance. So, although AX(Q) is known up to two-loop level [13,250], we
will use the tree-level result as calculation of this effective coupling is beyond the capabilities of
the computational tools we employ and it does not offer a significant improvement in precision.
Masina [14] claims that the simplifications leading to the right hand side of Eq. (6.6) result
in negligible impact on the determination of vacuum stability (see Ref. [248] for a detailed
discussion). Only for more precise studies would determination of the full effective potential
be necessary.

There are three possible cases for electroweak vacuum stability, outlined below.

e Stable: If A\(Q) > 0 for all Q < Mp; then the electroweak vacuum is the only minimum

of the Higgs potential (up to Mp;) and is therefore absolutely stable.

e Metastable: If there exists a Q9 < Mp; such that A(Qp) < 0 and the lifetime of the

electroweak vacuum state is longer than the age of the Universe.

e Unstable: If there exists a Qo < Mp; such that A\(Qp) < 0 and the lifetime of the

electroweak vacuum state is less than the age of the Universe.

The distinction between metastability and instability will become clear when we consider the
nature of the transition probability function in Section ??. We will see that there is a specific
value of the minimum quartic coupling at which the tunnelling probability changes from zero
to unity in an almost step function manner.

The case of two degenerate minima forms the boundary between metastability and stability.
This occurs when Eq. (6.5) is satisfied for some Q. To compare the height of the potential at
the VEV and at QQp Ref. [14] uses a re-parameterisation of the Higgs potential such that

2 2
V(H) = —m2|H[? + ) (H2 - ”20> (6.7)

which compared with Eq. (6.1) is simply shifted by a constant. Therefore if A(Qp) < 0 for any
Qo < Mp) then the electroweak minimum is “higher” than the new high energy minimum, and
is thus a less energetically favoured state. The case when Apin = 0 exactly at the Planck scale
has gained some particular attention. Shaposhnikov and Wetterich [251] used the condition
that 8x(Mp)) = M(Mp;) = 0 as a means of predicting the Higgs mass, although this has since

been ruled out for the experimentally measured values of the Higgs and top quark masses [252].
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In our study of vacuum stability we do not focus on trying to construct a model that admits
this finely tuned case of two degenerate vacua. However, we make use of this case in the sense
that it forms our definition of the boundary between metastability and absolute stability.

Cases, Espinosa and Quiros [13] use a different terminology in the study of vacuum stability
than what I have developed here. They refer to a model as “safe” if either (a) the potential has
no high energy minimum (so the quartic Higgs coupling is always positive) or (b) the minimum
occurs for Q > A, where A, is a cut-off beyond which the SM is no longer valid. This type
of analysis does not allow for the case of metastability, and instead rules out a model as soon
as a second vacuum appears, whether this be a high energy metastable vacuum, degenerate
with the electroweak vacuum or a global stable minimum®. Because this analysis also uses the
concept of a variable cut-off, any model can still be valid as long as A, is sufficiently small.
We will use this approach in part of our analysis in Chapter 7, where we take A, = Mpy.
This results in only models with an absolutely stable vacuum being allowed, which is certainly
more theoretically appealing than the situation of metastability and may thus be considered
interesting.

The physical interpretation of a Higgs potential with two minima versus an absolutely stable
single minimum has implications during the early evolution of the Universe. One may ask how
the Higgs potential came to be in the electroweak vacuum in the first place, rather than the
global minimum. Indeed, for the electroweak vacuum to be in a metastable state particular
conditions must be satisfied [246]. After the grand unified transition (from some unified gauge
group such as SO(10)) the Universe must go into the correct SU(3) x SU(2), x U(1) invariant
vacuum and remain there until the electroweak phase transition, after which it must move to
the false minimum rather than the global minimum. In order to confirm that the Universe
goes into the correct vacuum at the grand unified phase transition we would need to know the
parameters of the grand unified theory [246] such as the timescales and size of the potential
barrier separating the correct SU(3) x SU(2)r x U(1) invariant vacuum from the unbounded
region. Although we do not know these parameters, the barrier is larger and the timescale
for decay much shorter [246] than that associated with the barrier between the global and
metastable minima after electroweak symmetry breaking, and thus this condition is satisfied
so long as metastability of the electroweak vacuum is satisfied.

Finally we are left with the condition that after the Universe cools it passes through the

'Tf A(Q) becomes sufficiently small (of order O(107°)) but non-zero at its minimum then the potential
develops an inflection point. However the resulting minimum in the Higgs potential is higher than the electroweak
one, and thus is itself metastable. If bubble nucleation did occur to this less energetically favoured state it would
have to be on the time scale comparable to the required change in energy with respect to the uncertainty principle
and would not then propagate outwards through the Universe. Therefore this is clearly not a scenario we are
concerned about.
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electroweak phase transition and must go into the metastable minimum, and not the global
one. Sher [246] argues that “in most cases” the barrier between the global and metastable
minima is, even at zero temperature, larger than the SU(3) x SU(2)y x U(1) vacuum energy,
and thus by energy conservation a transition to the true vacuum (the global minimum) is
prohibited (if the final state is found to be metastable, not transitioning over 13 billion years,
then the tunnelling probability through this same barrier would be negligible over this much
shorter time scale). In cases in which the barrier is lower than the SU(3) x SU(2)r x U(1)
vacuum at zero temperature, it will still be much higher at the temperatures relevant for this
phase transition. Thus the only situation where the field could “roll over the hill” into the
true vacuum is when the electroweak phase transition occurs at a very low temperature, which

requires my, < 1 GeV [246], which we can confidently rule out [47,48].

6.3 The likelihood of false vacuum decay

In order to calculate the likelihood of the Higgs vacuum decaying to a lower energy state we
need to solve the problem of quantum tunnelling through an arbitrary potential. To begin with
we need to be able to solve the time-independent Schrédinger equation in a one dimensional
potential which depends arbitrarily on the position. For this purpose we will introduce the
WKB method (an initialism for Wentzel, Kramers and Brillouin who developed the formalism
in 1926) for finding approximate solutions to linear differential equations of the same form as
the Schrodinger equation.

The time-independent Schrodinger equation for a particle in a one-dimensional potential

V(q) with position ¢ is

d2y) p(g)\?
w () ©5)
where 1 = 1(q) is the wave function, p(q) = /2m(E — V(q)) and E is the energy of the

particle. Taking p(q) to be real we assume a general solution for the wave function as

¥(q) = exp (Zféq)> (6.9)

where f(q) is some complex function (and thus there is no need to include an arbitrary pre-factor
in this general solution). We can then expand f(q) in powers of /i such that f(q) = 352, i fi(q).

Taking derivatives of Eq. (6.9) and substituting into Eq. (6.8) gives

Zhld fi1 szdJ;z 1 d? f] Sl i L2 — (6.10)
=0 75=0
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Figure 6.1: The potential barrier V' in the example in Eq. (6.13). This is similar to the problem
of a square barrier except now we have an arbitrary function defining the top of the barrier.

(where p(q) = p and f(q) = f). Separating Eq. (6.10) into powers of i and solving gives a

leading order solution of the form

Y(q) ~ |pl(q)| exp (; / p(q) dQ> (6.11)

where a solution to Eq. (6.8) would be given by a linear combination of positive and negative
complex exponentials of this form.

Since we are interested in quantum mechanical tunnelling we need to consider the case of
E < V(q), and thus take p(q) to be pure imaginary. So we can write p(q) = ir(q) where r(q) is
real, and thus i|p(q)| = i|r(q))| = ir(¢) = p(q) so we find that the wave function is now a real

exponential

Y(q) = |pl(q)‘ exp <i,11 / p(q) dq) : (6.12)

To obtain an approximate expression for tunnelling through an arbitrary potential V(gq) we
will study the simplified case of a rectangular potential with an arbitrary top given by V(q)
as depicted in Figure 6.1. Solving the Schrédinger equation in the usual way, and using our

result from Eq. (6.12), we obtain the wave function

Aetka + Betkq qg<a
= %e%fp(q) dg %eﬁfp(q) 4 gcg<b | (6.13)
Fetka qg>b

where A, B, C', D and F' are constants. If the potential barrier is very wide or high then the
probability of tunnelling is small and we may take the coefficient of the exponentially growing

term, C, to be negligible (or in the case of an infinite barrier this would necessarily be exactly
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zero). The probability of tunnelling is given by the ratio of the incident wave amplitude, A,

and the transmitted wave amplitude F' both squared,

A]?
= —. 6.14
We can use the exponential decay of the wave function between the entry, a, and exit, b, points

inside the potential as an estimate of the ratio of |A|/|F| and thus
T ~ e B/h (6.15)

where B = [ |p(q)| dg.
If we consider the case that all points in space have the same probability of bubble nucleation

then we have the rate of bubble nucleation per unit volume per unit time of
[~ Toye %8/", (6.16)

where 'y depends on the size of the past light-cone and Sg is determined by the shape and
size of the potential barrier.

The WKB method presented here is a simplification of the situation where the particle
enters a sloping potential such that the energy FE is equal to V at the barrier, making the
wave function in Eq. (6.12) discontinuous. Such a situation requires the “patching" of a new
wave function over a linearised potential at the barrier. However, for our purposes we need not
write down an exact wave function across the barrier, instead we need only the probability of
decay. The result in Eq. (6.16) is the starting point for Coleman’s 1977 [10] derivation of the
tunnelling probability for a barrier potential in four-dimensional spacetime (see also Kolb and
Turner [11] for a detailed review following the same method) which I present in the following

section.

6.3.1 The bounce solution for potential barrier penetration

The relevant potential we wish to consider for particle/cosmological applications is that of a
false, or meta-stable, minimum separated from a global true minimum by a potential barrier.
We begin with the simple case of a physical particle moving in such a potential, and the gener-
alisation of this to multiple dimensions. Consider a particle in a multidimensional spacetime,

with a position ¢ and Lagrangian

L==¢-7-V(Q (6.17)

N | =

which lives in a potential, V(7), with a meta-stable minimum at ¢y and an escape point at &,

for simplicity we take the zero of energy such that V() is zero. In the multidimensional case
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the escape point lies on a surface of zeros, and & is taken to be the point for which the path

integral in Eq. (6.16),

c

B= 2/ ds (2V)1/2, (6.18)
do

is a minimum, where (ds)2 = dq- dg. Coleman calculates this “path of least resistance” by

solving the analogous Euler-Lagrange variational problem

5/ds[2(E —-V))V2=0 (6.19)
with V' — =V, E = 0 and with a transformation to Euclidean time 7 = —it. This gives the
Euclidean equations of motion

d’g oV
— i _ 2 —9 6.20
dr?  0q (6.20)
1dg dq B
55.E_V_() (6.21)

which correspond to the Euler-Lagrange equation for the imaginary-time version of Hamilton’s
principle, ¢ [ dT7Lg = 0 where,

1 dq dq
= — — . .22
E=79 dr dr V. (6.22)

From Eq. (6.21) we find

7 ds (V)2 = /dsi / d7-dg 9. 49 (6.23)
qo ) do dr dr

0 |dg dgdq g dq

= — . 2= —d dr = U 6.24
/oo\/dT drdr Ter= / 7 dr (6:24)
0 1d dq
/ dr q Z+V / dr L (6.25)

where we have applied the boundary conditions

lim ¢ =g (6.26)

T——00
and § = ¢ at 7 = 0. Coleman invokes time translation invariance to arbitrarily choose the time
7 = 0 for when the particle is at the stable point &, in which case ¢ ’0 = 0. After this time the
particle motion is just the time reversal of that from —oo to zero, so the particle bounces off
Y, at &, when the Euclidean time is zero (7 = 0) and returns to gy asymptotically as 7 — oc.
This is the origin of the name “bounce” motion, and B in Eq. (6.16) is the total Euclidean

action of the bounce,
o0
—0o0

so to find B we must find the solution of this imaginary-time equation of motion subject to

the boundary conditions given above.
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6.3.2 Quantum tunnelling in field theory

The previous discussion of a particle moving in imaginary time to tunnel through a potential
barrier can be translated to field theory following Coleman’s derivation [10]. The tunnelling of
the field from a meta-stable state at ¢ = gg to the global minimum, which we will denote by
o, occurs through the nucleation of bubbles of this energetically favoured phase. This bubble
then expands outwards at the speed of light, causing the surrounding vacuum to decay to the
lower energy global minimum.

The Euclidean (imaginary-time) equation of motion for a quantum field is [10]

0’ 2 dV(¢)
Il — = 2
<8T2+V>¢ o 0 (6.28)
analogous to Eq. (6.20). This equation of motion corresponds to the solution which minimises
the action
1 /06\? 1 /= \2
— 3.2 (22 Z
SE_/dex[2(8T> +2(V¢) +v|. (6.29)
Since we want the action, and coefficient B, to be finite we impose the condition
lim ¢(z) = qo (6.30)

|Z|—o00
which results in a finite Lagrangian density (as V(qo) = 0) and gy thus becomes a stationary
point. The physical origin of this condition is also clear if we consider that if a quantum
fluctuation creates a bubble at some point in spacetime, at a great distance (|z| — oco) from
this point the vacuum still remains in the initial meta-stable state, go.
For bubble nucleation in flat four-dimensional spacetime we can take ¢ to be a function of
p = (T*+|7?) 1/2 only, as there exists an O(4) symmetry, giving the Euclidean equation of

motion

d?¢  3d¢ 4V

for which the boundary conditions can be combined into the single requirement that lim,_,. ¢(p) =

qo and finally the action becomes

B = Sp = 27° /OOO p2dp [1 <d¢>2 +V]. (6.32)

2 \dp

To understand how the solution given here corresponds to quantum tunnelling we again turn
to the analogy of a particle moving in a potential, in this case a potential —V" (see Figure 6.2)
subject to a velocity dependant retarding force given by the second term in Eq. (6.31) with

the “time” given by p. To begin with the “particle” is released from rest (p — 0) at a position



6.3. The likelihood of false vacuum decay 119

¢e called the “escape point”. Coleman shows that if this escape point is chosen correctly then
as p — oo the particle will come to rest exactly at the stationary point ¢ = 0, this is achieved
through a simple argument of undershoot and overshoot and invoking continuity and the mean
value theorem to imply a solution. Therefore with the appropriate choice of initial conditions
this Euclidean equation of motion does indeed correspond to a bounce motion as required for
quantum tunnelling. Once this solution for ¢(p) is obtained we can substitute this into the

Euclidean action Eq. (6.32) and obtain the required coefficient B.

6.3.3 The likelihood of Higgs vacuum decay

The process outlined in the previous section for a simple scalar field can be applied to the
quartic Higgs potential, even with the use of the approximation V(h) ~ A(h)h*. In this case

the Euclidean equation of motion is

2
d°h _3dh _dV(h) _ (6.33)

with the boundary conditions % 0= Oand h — v = 0 as p — oo. If we perform this calculation

at tree-level we can obtain an approximation for the coefficient B, so taking A(h) = A\, A <0

2 2R
h(r) = w[ﬁ e (6.:34)

where R is a dimensional factor associated with the size of the bounce. This can be a relevant

we have a solution [247]

quantity such as the height of the barrier, or the change in renormalisation scale between
adjacent minima; we shall use the latter. From Eq. (6.32) we then obtain the action

872

(6.35)

The validity of the approximation V =~ Ah*/4, with A < 0, is not immediately evident, as
h = 0 is an unstable maximum, and indeed any value of A > 0 is unstable. However, as stated
in Ref. [247], the bounce solution is not a constant field configuration, so requires a non-zero
kinetic energy. Because of this, the required bounce solution is suppressed even in the absence
of a potential barrier, and thus this is still a valid approximation [253].

Now that we have an expression for Sp we need to determine the pre-factor in Eq. (6.16).
The explicit form of this pre-factor, Iy, was first calculated in Ref. [254] by taking account of
one-loop quantum corrections. Yet because the exponential in Eq. (6.16) dominates, the value
of I’y need only be an approximation, so we follow the analysis of Ref. [246] and determine it

by a dimensional reasoning.
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Figure 6.2: The potential V' of the original problem (top) is inverted (bottom) in the equation
of motion corresponding to Eq. (6.32), and is used here to illustrate quantum mechanical
tunnelling. The equation of motion in Eq. (6.31) describes a “particle" moving in the inverted
potential —V from a release point ¢, subject to a time-dependent friction force. If the point
¢e is chosen appropriately the particle will roll to rest at ¢ = 0 at infinite Euclidean time.

If we take the Planck constant and the speed of light to be unity (A = ¢ = 1), then the rate of
decay per unit time per unit volume, I, has units of [time~!.length~3] = [length]~* = [energy]*.
]~ ]*. The characteristic scale relevant in this

Thus 'y must have units of [length]™* or [energy

problem is the width or height of the potential barrier, so we set g ~ A% = 1/R* and define
Ap to be the energy at which A\(u) is at a minimum.?

Eq. (6.16) gives the rate of decay per unit time per unit volume, I'. As we are ultimately
interested in the probability of the Universe having decayed in our past light cone, we multiply

I' by the volume of the past light cone NTé, where Ty is the age of the Universe.> Thus we

obtain a predicted number of decays in the our past light cone

s~ TTH = (TyAp)te ™ E, (6.36)

2If the minimum value of the running quartic coupling Amin < 0 is achieved at energy scales higher than
Mp1, but )\(Mpl) < 0, we take Amin = /\(Mpl).

3This can be computed more rigorously for a standard FLRW cosmology, see Ref. [255], however to the level
of detail required here this result is equivalent.
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which can be expressed as

Ag\* 82

140 B

=~ — _ 6.37
° <e Mp1> eXp( SA(AB)|> (6.37)

where A(Ap) is the minimum value of the quartic Higgs coupling and we have expressed the
age of the Universe as Ty ~ he'4? /Mp,.*

The arguments used to arrive at Eq. (6.37) were based only on dimensional analysis. Al-
though this quantity is now dimensionless it cannot be immediately interpreted as a probability,
instead it should be interpreted as the expected value for the random variable k, where k is
the number of decay events that occurred in the time given (in this case ~ 10 billion years).?
To model the probability that the Universe has actually decayed in the given time interval, we
use a Poisson likelihood L(k|s) = (s*/k!)e™*. Because we want the likelihood that no decay

has occurred in our past light-cone, we calculate the probability that £ = 0, which is given by

= eX — 6140A73 4eX —787(2
£= p[ (e 32) p( 3\A<AB>|>1' (6.38)

The likelihood given by Eq. (6.38) is typically either extremely small or exactly one, being
extremely sensitive to the value of A(Ap). This results in an almost step-function transition
from a metastable to an unstable universe when model parameters are varied.

The likelihood in Eq. (6.38) is difficult to study due to its double exponential behaviour.
In order to understand the implications of this likelihood function we will focus on —log £ in
the SM. In Figure 6.3 we plot the base-10 logarithm of this quantity to again improve clarity,
thus this also can be interpreted as the logarithm of the expected number of decay events. As
we can see, even after taking two logarithms the likelihood has a steep gradient over the top
mass range 172 < my < 180 GeV where the stability of the electroweak vacuum changes from
absolutely stable through to unstable.

Figure 6.3 gives an indication of the effect the vacuum stability likelihood will have on a
global scan. Although the vacuum is metastable for all top masses in the range 172 < m; < 178
GeV, the negative log likelihood is extremely small. On first inspection of £ one could assume
that in most cases up to m; =~ 178 GeV one could not distinguish between an absolutely stable
state and a metastable state using £ alone, and this is indeed true. However, once we begin

taking logarithms, some distinction can be made between a metastable state and a stable one

“Eq. (6.37) may be expressed in different units. For example, Ref. [246] expresses the age of the Universe
in “units of the electroweak scale”, as T, ~ e'°!, where the mass of the Z boson is set as m, = 1. Similarly
Ref. [15] expresses the age in what would equivalently be called “units of the Planck scale”, but leave the original
factor of Mp; in the expression for the expected number of decays; this is the style we follow.

5By a decay event we mean the decay of the Universe at our position due to a decay at some point in our
past light cone, and thus a decay of the observable Universe. Of course, more than one decay event does not
physically make sense, so all situations where k > 1 are effectively equivalent — the Universe has decayed to the
true vacuum.
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Figure 6.3: The likelihood in Eq. (6.38) transformed to log;o(—log(£)) as a function of the top
mass at mp = 125.66 £+ 0.3 GeV (with 1o bounds given) and ag(myz) = 0.1184 in the SM.

for almost all top masses in the range of metastability. It is through a negative log likelihood
that such an observable will enter our likelihood analysis and thus there is some value to be
had even within the stable/metastable region of the parameter space.

Finally, it is of interest to compute the expected lifetime of the electroweak vacuum. From

Eq. (6.36) we can obtain a decay rate by dropping a factor of Ty,

6140

3
r=|—| ALeE 6.39
G oo

such that the expected lifetime is given by 7 = r~!. Converting this from natural units into

T 1 GeV h GeV
. — 9091 —32(>. 4
yr  3.16-107 ( r ) (GeVs> 09-10 r (6.40)

years gives

6.4 Perturbativity and unitarity

Vacuum instability is the result of the quartic Higgs coupling becoming negative at large scales.
In Section 6.5 I will demonstrate how this can be counteracted by a positive contribution to

the running of this parameter. However, this can result in the coupling becoming so large that
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perturbation theory breaks down. Likewise, any modifications to the SM from new physics can
cause any other coupling in the theory to become too large as well. In the worst case scenario,
the coupling becomes extremely large as it approaches a Landau pole, as demonstrated in
Section 2.3.1, at which point it becomes undefined. In this section I will briefly discuss how to
quantify this and use it as a constraint on potential models.

The eigenvalues of the scattering matrix can give a bound on the couplings, such that
unitarity (STS = 1, where S is the scattering matrix) is conserved (see Ref. [256] for a general
prescription of such an analysis in a ¢* like theory). The exact upper bound for couplings
before they violate such a condition varies depending on the requirements of the study. In
most cases only an approximation is required, since once the coupling has already become
large, it will continue to rapidly increase (and may approach a Landau pole). Ref. [67] places
an upper bound on perturbative couplings by demanding that one-loop processes have a smaller
amplitude than tree-level ones. Naively, this can be approximated with the constraint £ < 4,
where £ is a generic coupling adjusted by the symmetry factors for how it will appear in a
Feynman amplitude. For example, we can express the potential for the scalar singlet model

from Eq. (1.1) in terms of adjusted couplings, ), and X} as [67]
1 1
V= ZA;LSSQ|H|2 + @Ags‘l (6.41)

which gives the constraint on the original couplings as Ag < 27/3 and A\pg < 27.

However, it has been shown that these kind of naive constraints can be too weak, and
that perturbation theory can break down at much lower coupling values [257]. It is difficult
to determine exactly when perturbation theory has broken down, as one requires higher order
results. In general we expect a quantity to have a smaller renormalisation scale dependence
at two-loop than at one-loop. If this renormalisation scale dependence does not reduce with
loop-order, then it is a sign perturbation theory has broken down. Fortunately such a rigorous
constraint isn’t necessarily required; in Ref. [258] a larger two-loop mass correction than the
one-loop is used as an indicator that the perturbative couplings have become too large.

An application of detailed constraints on perturbative unitarity is applied to a Georgi-
Machacek model (the SM extended by one real and one complex scalar SU(2), triplet) in
Ref. [259]. These constraints include tree-level unitarity constraints derived from the scattering
matrix, with one of the most restrictive being that the counter-term of a coupling be no greater
than 7. For a generic quartic coupling this implies an upper bound of some factor times /7.

In the studies presented in Section 6.5 and Chapter 7 we will focus only on perturbativity
violation (and not unitarity violation). For this constraint we use the perturbativity require-

ment that no coupling becomes larger than v/4m. Given that this is similar to other constraints
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used in the literature, and that once a coupling is above this value it will quickly grow any-
way (at least in the models that we study), we consider this a reasonable upper bound for

perturbativity.

6.5 Vacuum stability in physical models

6.5.1 The Standard Model

The stability of the SM electroweak vacuum in the absence of new physics up to the Planck
scale has been studied extensively [50,97, 246, 255, 260, 261] (also see references within and
[45,46,262-264]). As the nature of the electroweak vacuum could affect the evolution of the
Universe on a cosmological scale studies have also been made with the SM coupled to gravity
in a curved spacetime [265-267].

Examples of the most recent calculations of vacuum stability in the SM are those of Degrassi
et al. [97] and Masina [14] using three-loop RGEs [268] and two-loop threshold corrections to
the quartic Higgs coupling at the weak scale. Before these results the state of the art was two-
loop RGEs and one-loop threshold corrections at the weak scale, see Refs. [13,247,269-275].
The analysis I present here will use two-loop RGEs and one-loop threshold corrections, yet the
aim is not to produce the most state-of-the-art SM results, instead I am interested in validating
a versatile tool for vacuum stability analysis that can easily be extended to other models not
currently within reach of such high precision analyses. For this analysis I use FlexibleSUSY [234]
to solve the RGEs which are derived using SARAH [141,143]. These are then used in my own
vacuum stability functions which locate the minimum of the quartic coupling, classify stability
and determine quantities such as the likelihood of decay and expected age of the Universe.
Unlike other vacuum stability studies, which may require manual calculation of complicated
RGEs, this method will enable us to easily repeat such a study for any model (supersymmetric
or not) compatible with FlexibleSUSY and SARAH. I will demonstrate this by computing the
stability of the electroweak vacuum in the scalar singlet and MDM models in Sections 6.5.2
and 6.5.3 respectively.

To understand how the problem of vacuum stability arises in the SM it is instructive to
consider the beta function for the quartic Higgs coupling. The one-loop beta function is given
by [276-278]

9 9
Bg\l) =12)% — (59% + 99%) A= <

3 2
1 — gt + =915 + g%) — 12y} + 127\ (6.42)

25 5
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where g1 and gy are the SM gauge couplings and I have neglected the lepton, up-type and down-
type Yukawa couplings except for the top quark coupling y;. It is common practice to neglect
all other Yukawa couplings except for y; = v/2m;/v as done by Masina [14]; this is reasonable
as the top coupling is two orders of magnitude larger than the other Yukawa couplings. Even
with these simplifications there is no closed form analytic solution to the one-loop beta function
in Eq. (6.42) yet numerical solutions are readily available for this and higher-loop order RGEs
for all SM parameters, with public codes available for this purpose [279]. For now we are
interested in a qualitative description simply by considering the leading order behaviour of the
one-loop RGE in Eq. (6.42) as a function of the renormalisation scale Q.

To determine how A is affected by radiative corrections we must consider quantum processes
which involve the interaction of four Higgs particles. The tree-level process is simply four Higgs
particles interacting at a single vertex. The next order then involves diagrams with one internal
loop, of which there are many. I draw the two SM process with the greatest contributions in
Figure 6.4 (a) and (b). In (a) there are two vertices in which four Higgs particles interact, and
in (b) four vertices where a Higgs interacts with two top quarks. The dominant contributions

to the running of A\ are
B &~ 1227 — 12y + 1252 (6.43)

From Eq. (6.43) we can understand how to place bounds on the Higgs mass for the SM to
remain perturbative. If the Higgs mass is large then A\ as determined by solving the EWSB
conditions becomes too large, or non-perturbative, at increasingly lower energies. For example
if we demand that the SM be perturbative up to the Planck scale then this puts an upper bound
of approximately 180 GeV on the Higgs mass. This upper bound does not necessarily mean
the Higgs mass is unphysical above it, instead it means we either require a new theory above
the energy at which it becomes non-perturbative, or we do not have the necessary theoretical
framework to deal with the problem.

On the other hand Eq. (6.43) can give a lower bound on the Higgs mass if we require that
A is at no energy negative below the Planck scale. Unlike the upper bound this is based on
a physical consequence of having too small a Higgs mass. If the Higgs mass, and in turn the
value of A\ (at some low energy reference scale where the EWSB conditions are solved) is too
small, then the dominant term in Eq. (6.43) is the top coupling which drives the beta function
negative. For absolute stability of the electroweak vacuum (A(Q) > 0 for all @ < Mp) this
gives a constraint of mj 2> 130 GeV [97].

In the left panel of Figure 6.5 I show the running of A\(Q) in the SM. The regions of

metastability and instability with respect to the minimum value of A(Q) are indicated with
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Figure 6.4: The dominant loop contributions to the one-loop beta function for the quartic
Higgs coupling in the SM are given by (a) and (b), and correspond to the terms in Eq. (6.42).
The addition of a scalar field in the scalar singlet model gives the contribution from diagram
(c) in Eq. (6.44).
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Figure 6.5: Left: The quartic Higgs coupling A as a function of the renormalisation scale @ in
the SM. Right: The expected lifetime of the Universe in the SM, in units of years to the base
ten logarithm. The white cross indicates the experimentally measured values for the top and
Higgs masses. The white contour denotes the boundary of valid models, outside of which the
expected age of the Universe is approximately zero or the model is non-perturbative.

shading. The instability region is determined as including models where the probability of a
decay not having already occurred is less than 4.6%, given by the likelihood in Eq. (6.38). In
other words, a decay not having occurred for models in this region would be a greater than 2o
event.

In the right panel of Figure 6.5 I show the expected lifetime of the electroweak vacuum from
Eq. (6.40). The value of log;o(7/yr) = 300 (the green region in Figure 6.5) is a computational
upper limit and indicates an infinite lifetime, arising from the case A\(Ap) > 0, and thus an
absolutely stable vacuum. From this we can see the regions of stability, metastability and

instability in the SM top mass and Higgs mass parameter space. It is clear that the measured
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values for the top and Higgs masses are extremely close to the boundary of instability.

6.5.2 Scalar singlet dark matter

The scalar singlet model (see Section 1.2.1) provides an example of how an additional scalar
particle coupled to the Higgs field can influence the running of the quartic coupling. The beta
function for the quartic Higgs coupling in the scalar singlet model gains a contribution from loop
corrections which enables us to relax the lower bound on the Higgs mass for absolute vacuum
stability. In particular, at the one-loop level the beta function gains a positive contribution

from the loop in Figure 6.4 (c) such that [64, 98]
Br =AM + 208y (6.44)

due to the coupling, parametrised by A, of the Higgs field to the scalar singlet in Eq. (1.1).
The full two-loop RGEs which differ from the SM ones are given in Appendix B.1. As Khan and
Rakshit show [103] for a minimally coupled scalar singlet, using three-loop SM beta functions
with one-loop scalar singlet corrections®, it is possible to choose values of \,s such that A
remains positive all the way up to the Planck scale. This analysis neglects the possibility of
a second minimum forming in the S direction of the potential, which is possible when ,ug <0
and A\ps is sufficiently large [64].

In the left panel of Figure 6.6 I show the running of the quartic Higgs coupling for A\, = 0.5
and mg = 1.3 TeV. We can see that the addition of a scalar singlet does indeed improve the
stability compared to the SM. In the right panel of Figure 6.6 I show the expected lifetime of
the electroweak vacuum from Eq. (6.40). The positive contribution from the scalar field in the
beta function, Eq. (6.44), extends the stability and metastability bounds to larger top masses,
such that the measured values for the Higgs and top mass are now positioned well within the
stable region.

I used the requirement of absolute vacuum stability to choose the benchmark point of
Ans = 0.5 and mg = 1.3 TeV. However, this point also satisfies the most recent experimental
constraints and is within one standard deviation of the maximum likelihood point located in
Ref. [5]. For the vacuum to be stabilised the portal coupling A\ns must be sufficiently large,
and it turns out that a large part of the viable parameter space does not actually have an

absolutely stable electroweak vacuum. In Chapter 7 we will present a global fit and locate all

5This is to some extent inconsistent as the scalar singlet corrections should also be considered at the same
loop order as the SM corrections. If there are interesting cancellations between the singlet sector and the SM at
one-loop, then this would be lost at the higher order with such a set up. Although in this case it appears there
is no serious implications from this choice.
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Figure 6.6: Left: The quartic Higgs coupling A as a function of the renormalisation scale @ in
the scalar singlet dark matter model with Apg = 0.5 and mg = 1.3 TeV. Right: The expected
lifetime of the Universe for this model, in units of years to the base 10 logarithm. The white
cross indicates the experimentally measured values for the top and Higgs masses. The white
contour denotes the boundary of valid models, outside of which the expected age of the Universe
is approximately zero or the model is non-perturbative.

points in the scalar singlet model parameter space which stabilise the electroweak vacuum and

satisfy the most recent experimental constraints.

6.5.3 Minimal dark matter

Finally I will consider the running of the quartic coupling in the MDM model (introduced in
Section 1.2.2). A discussion of vacuum stability would be incomplete without considering at
least one more, less obvious, mechanism for stabilisation.

The addition of an electroweak multiplet to the SM affects the renormalisation group evo-
lution of the SM couplings. The additional multiplet directly alters the RGE for the SU(2),
gauge coupling, g2, at the one-loop level and above, which subsequently affects the running of
other parameters coupled to the electroweak sector. For some representations this effect can
be significant, in which case strong constraints can be placed on the UV completeness of the
model. For example, in Ref. [137] they show that the Landau pole scale is reduced to ~ 108 GeV
in the SU(2)r, scalar septuplet extension of the SM. Fortunately, it has been shown with partial
two-loop RGEs that for the fermionic quintuplet representation the SM Landau pole remains
above the Planck scale [150]. I will validate this result here with a full two-loop treatment.

Another phenomenologically relevant effect of the altered running of the SU(2); gauge

coupling is the subsequent influence on the running of the quartic Higgs coupling. It has
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Figure 6.7: Left: The quartic Higgs coupling A as a function of the renormalisation scale @) in
the MDM model with MS ~ MY~ Mt =96TeV. Right: The expected lifetime of the

ole pole pole
Universe for this model, in units of years to the base 10 logarithm. The white cross indicates the

experimentally measured values for the top and Higgs masses. The white contour denotes the
boundary of valid models, outside of which the expected age of the Universe is approximately
zero or the model is non-perturbative.

been shown, with SM two-loop RGEs and one-loop MDM contributions, that this effect is
significant enough to stabilise the electroweak vacuum [100]. In the following I present the first
full two-loop analysis which confirms this result.

The one-loop SM RGE for the gauge coupling gs is modified by the MDM quintuplet as

1 19 1 7
Béz?SM - _Egg — ﬁg(gg?MDM = 593 (6.45)

and similarly the two-loop RGE is modified from the SM result

) 1
B = 2598 (36093 — 45y3 — 45y, — 1597 + 274} + 175¢3) (6.46)

to become

2 2
ﬂ_c(]z?MDM = /B;Q?SM + 18095 (6.47)

where g3 is the strong coupling and y,,, y4 and y; are the up, down and lepton Yukawa couplings
respectively. The remaining two-loop RGEs are the same as in the SM.

In the left panel of Figure 6.7 I present the running of the quartic Higgs coupling in the
MDM scenario with a physical mass Mgole R M;:)le R~ M;;L = 9.6 TeV. This two-loop analysis
shows a positive A at all scales and thus an absolutely stable electroweak vacuum. On the right

panel of Figure 6.7 I show the expected lifetime of the Universe in the m; and mj parameter

space in the MDM model. This is clearly an improvement on the SM and similar to the situation
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in the scalar singlet model, with the measured values being well within the stable region. We
also note that although the altered running of g causes the quartic coupling to remain positive
for smaller values of my,, it also has the effect of preventing it reaching a Landau pole before
the Planck scale for larger values of my,.

Although the perturbative region in Figure 6.7 is extended up to larger values of my, than in
the SM this is only because we do not study the running couplings above the Planck scale. In
fact, the addition of the SU(2) 1, quintuplet actually results in the SM Landau pole shifting from
~10% GeV to a few orders of magnitude above the Planck scale. Therefore if we had demanded
the spectrum be perturbative to higher scales then eventually all of the allowed region would be
invalidated, while the SM would survive. However, the location of the Landau pole in the MDM
model for the measured values of m; and m; is phenomenologically interesting as it indicates
the presence of new physics much closer to the scale where gravitational physics is expected
to become relevant. Additionally the existence of a Landau pole much lower than in the SM
also creates tension for proponents of an SM that remains weakly coupled with gravity even
above the Planck scale [280] (and thus should then be renormalisable well beyond this scale).
I find with a full two-loop analysis (including Yukawa coupling evolution) a Landau pole scale
of 8.8 x 102! GeV (with Mgole = 9.6 TeV) which agrees well with the value of 4.0 x 10%! GeV
from Ref. [150].



7 The status of scalar singlet dark matter

7.1 Introduction

In this chapter we present a series of global fits to the scalar singlet dark matter model using
the GAMBIT global fitting package®. For these studies we assign the scalar field a charge under
either the Zs or Zs symmetry group to make it a stable dark matter candidate. The details of
these models and a brief review of the latest phenomenological studies is given in Section 1.2.1.

We begin with a comprehensive global fit to the Zs model in Section 7.4, which is based
on the results presented in Ref. [5]. In this fit, in addition to the two scalar singlet parameters
we vary a total of 13 nuisance parameters characterising the dark matter halo distribution, the
most important SM masses and couplings, and the nuclear matrix elements relevant for the
calculation of direct search yields. We improve on the constraints in Refs. [75,76] by including
the most recent direct detection likelihood from LUX [285] as well as improved likelihoods
for the PandaX [286], SuperCDMS [287] and XENON100 [288] experiments, all implemented
via the DarkBit [182] interface to DDCalc. We also include IceCube limits on dark matter
annihilation to neutrinos in the core of the Sun [283,289]. In this fit we do not compute the
RGE running of the couplings and as a result neglect the UV properties of the theory. We also
set the quartic scalar singlet coupling, Ag, to zero as it has little phenomenological impact at
low energies.

In Section 7.5 we present results from a study of the UV properties of the Zo-stabilised
scalar singlet model. We repeat the global fit presented in Ref. [5] (and Section 7.4) but fix the
light quark masses and the Fermi constant as these parameters have little phenomenological
impact. Subsequently we allow Ag to be free and compute a fully solved model spectrum with
RGE running up to the Planck scale. Additional constraints from electroweak vacuum stability
are included.

We further generalise the analysis of the Zs model to a UV-scale study of Zg-stabilised scalar
singlet dark matter in Section 7.6. This symmetry group introduces new phenomenology due
to an additional cubic S coupling and the associated semi-annihilation channel. It has been

shown [102] that this semi-annihilation channel can open up regions of the parameter space that

!GAMBIT enables the user to incorporate existing software via a backend system. We used the following
external codes to produce the results presented in this chapter: Diver [6], MultiNest 3.10 [203] and GreAT [198§]
(efficient sampling); FlexibleSUSY 2.0.1 [234,235] and SARAH [141-143,281] (renormalisation group evolution
for vacuum stability calculation); DDCalc 1.0.0 [182] (direct detection), nulike 1.0.4 [282,283] (neutrino indirect
detection), gamLike 1.0.0 [182] (gamma-ray indirect detection) and DarkSUSY 5.1.3 [284] (Boltzmann solver).
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would be otherwise ruled out by direct detection. However, vacuum stability considerations
limit the magnitude of the coupling responsible for this channel. Semi-annihilations can also
have some effect on indirect detection constraints. As shown in Ref. [111] semi-annihilations can
effect the injection spectrum of light particles when dark matter annihilates through a portal,
like in the Zs scalar singlet model. Therefore, as direct and indirect detection constraints
continue to get stronger a detailed study this type of scalar singlet dark matter is indeed
relevant.

In Section 1.2.1 we describe the model and corresponding Lagrangians that we study in
this chapter. We present details of the input parameters, associated ranges, and our methods
for sampling the parameter space in Section 7.2. We give details of the physics and likelihood
functions in Section 7.3 (we also present a more in-depth discussion of vacuum stability in
Chapter 6). In Sections 7.4, 7.5 and 7.6 we present the results, and make comparisons to
previous studies in Section 7.7. Finally, we make some conclusions in Section 7.8.

The input files, samples and best-fit benchmarks for the Zs global fit in Section 7.4 are
publicly accessible from Zenodo [290], with the equivalent available for the other fits in the
near future. The results presented in Sections 7.5 and 7.6 are, due to limited computing
resources, only preliminary and do not include all nuisance parameters. However, they are

to the best of our knowledge entirely representative of the final results which will appear in

Ref. [7].

7.2 Input parameters and sampling

7.2.1 Parameters and nuisances

For the first global fit we will consider only the direct phenomenological implications of the
scalar singlet, without considering renormalisation of the theory, running couplings or vacuum
stability. In this sense, the first global fit that we will present treats the scalar singlet as an
effective field theory at the scale of the scalar mass. In a second study, we will go on to examine
the implications of considering the scalar singlet as a UV-complete theory. We will refer to
these global fits as the fized-scale and the UV-scale studies respectively. The input parameters
and the required ranges are necessarily different for each of these studies.

A summary of all the parameter ranges that we scan over in these fits is presented in
Tables 7.1 and 7.2. Table 7.1 gives the singlet model parameters, along with the scanning
priors that we use. We carry out two main types of scan: one over the full range of masses

from 45 GeV to 10 TeV, intended to sample the entire parameter space, and another centred on
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lower masses at and below the Higgs resonance mg ~ my, /2, in order to obtain a more detailed
picture of this region.

Even in an effective field theory one must be able to compute perturbative expressions,
such as pole masses and loop corrected scattering cross-sections. So for the fixed-scale scans
we choose to limit the portal coupling to a value of 10. This is a very generous limit and as
such gives the reader the freedom to invoke their own choice of upper bound when interpreting
the results. For the UV-scale studies we need to demand perturbativity as part of the likeli-
hood analysis (by invalidating points deemed non-perturbative). Therefore we choose a more
conservative value on the upper bound for dimensionless couplings of v/4w. As discussed in
Section 6.4 this is roughly the same as the choice made in other studies [67,259).

In addition to the scalar singlet parameters, we also consider the effects of varying a number
of SM, astrophysical and nuclear parameters within their allowed experimental uncertainties.
Table 7.2 gives the full ranges of all the nuisance parameters we consider, along with their
central values. We allow for £30 excursions from the best estimates of the nuclear couplings.
For the local dark matter density, we scan an asymmetric range about the central value,
reflecting the log-normal likelihood that we apply to this parameter (Section 7.3.6). Detailed
references for the central values and uncertainties of these parameters can be found in Ref. [182].

The central values of the up and down quark masses come from the 2014 edition of the
PDG review [291]; we allow these parameters to vary by £20% in our fits, so as to encompass
the approximate 30 range of correlated uncertainties associated with the mass ratio likelihoods
implemented in PrecisionBit [4]. The central value and £30 scan range for the top quark pole
mass come from Ref. [292], and for all other SM nuisance parameters from Ref. [291].

Given the large impact that the Higgs mass can have on the phenomenology of this model,
we scan an extended range for this parameter in the fixed-scale scan where the input parameter
is directly interpreted as the physical mass. The allowed range for mj covers more than
+40 around the central value quoted in the 2015 update to the PDG review [293] (m), =
125.0940.24 GeV; see Section 7.3.6). In the UV study, where we include renormalisation of the
input masses, the Higgs pole mass is traded for the MS mass. The physical pole mass is then
computed from the input parameters (see discussion in Section 7.3.1), so we must provide a
large range for this parameter as this relationship is affected by radiative corrections from the
scalar singlet mass. Therefore, the relationship between m%is and the pole mass is not constant
throughout the parameter space. In both cases the resultant value for my is constrained by
the same likelihood function, described in Section 7.3.6.

We include the local dark matter density and nuclear matrix elements as nuisance param-
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Table 7.1: Scalar singlet model parameters varied in our fits, along with their associated ranges
and prior types. The M S masses are used in the UV studies where we compute the pole mass,
mg, for each point. For the fixed-scale global fit mg is input directly as the pole mass.

Parameter Minimum Maximum Prior
Ahs 1074 10 log
s 1074 10 log

mg  (full-range scan) 45 GeV 10 TeV log
mg  (low-mass scan) 45 GeV 70 GeV flat

mg (full-range scan) 45 GeV 10 TeV log
mS (low-mass scan) 45 GeV 70 GeV flat
ps  (Zs model only) 0GeV 4TeV flat

eters because of their impacts on direct detection and capture of singlet particles by the Sun.
The strong coupling, Higgs VEV (determined by Gr), Higgs mass and quark masses all en-
ter into the cross-sections for annihilation and/or scattering of S [75]. The electromagnetic
coupling does not impact our fit beyond its own nuisance likelihood, but has a small effect on
renormalisation of other parameters and is therefore most important in the study of vacuum
stability. We assign flat priors to all nuisance parameters in Table 7.2, as they are all sufficiently
well constrained that their priors are effectively irrelevant.

We performed the fixed-scale global fit as a standalone study first [5] and included 13 nui-

sance parameters. These were all parameters in Table 7.2 except for mf]‘L/TS (using my, instead).
From this first fit we determined that variation of the light quark masses (bottom, charm,
strange, down and up) and the Fermi coupling did not have any significant effect on the re-
sults. So in total we have a 15-dimensional parameter space for the fixed-scale scans of the
Zs model and 10 and 11 parameters for the (preliminary) UV scans of the Zy and Zs models
respectively.

The reduction in the total number of nuisance parameters in the UV-scale study is also
intended to counter-act the increased computational requirements for this global fit. The
likelihood is significantly more demanding of computer resources due to the need to solve the
RGEs and compute pole masses, and as a result takes longer to compute. We have also replaced
the relatively small prior on the Higgs pole mass with a much less constrained M S mass in order
to effectively sample around observed Higgs mass at all points in the scalar singlet parameter

space. Therefore, although we have less nuisance parameters in these global fits, they actually

require more computational resources than the fixed-scale study.
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Table 7.2: Names and ranges of SM, halo and nuclear nuisance parameters that we vary
simultaneously with scalar singlet parameters in our fits. The columns Fized-scale and UV-
scale indicate if the nuisance parameter was included (v') or not included (x) in the fixed-scale
and UV-scale studies respectively. We assign a flat prior to all these parameters.

Parameter Value(tRange) Fixed-scale UV-scale
Local dark matter density 00 0.2-0.8 GeVcm ™3 v v
Nuclear matrix el. (strange) Os 43(24) MeV v v
Nuclear matrix el. (up + down) oy 58(27) MeV v v
Strong coupling aéVTS(mZ) 0.1185(18) v v
Electromagnetic coupling  1/a™5(my) 127.940(42) v v
Fermi coupling x 10° Grs 1.1663787(18) v X
Higgs pole mass mp, 124.1-127.3 GeV v X
Higgs M S mass mﬁ/TS 130(50) GeV X v
Top pole mass my 173.34(2.28) GeV v v
Bottom quark mass méVTS(mb) 4.18(9) GeV v X
Charm quark mass mMS (m.) 1.275(75) GeV v X
Strange quark mass mM5(2GeV) 95(15) MeV v X
Down quark mass mM5(2GeV)  4.80(96) MeV v x
Up quark mass mﬁTS@ GeV) 2.30(46) MeV v X

7.2.2 Scanning procedure

Although many of the directions in the parameter space are well constrained, efficient sampling
still requires sophisticated scanning algorithms. We explore the parameter space primarily
with two different scanning packages interfaced via ScannerBit: a differential evolution sampler
Diver, and an ensemble Markov Chain Monte Carlo (MCMC) known as T-Walk [6]. The use
of these two packages enables both a frequentist (through efficient optimisation) and Bayesian
(through posterior sampling) statistical analysis and thus both serve a purpose in this study.
These algorithms are also particularly well suited for large multimodal and multidimensional
distributions.

T-Walk allows efficient and accurate calculation of the Bayesian posterior distribution for
the target model. The package can also be used for frequentist studies if the sampling density
is amplified by a judicious choice of run parameters. However, T-Walk is far less efficient at
sampling the profile likelihood in high-dimensional spaces than Diver [6]. Because we vary up
to 15 parameters in total, we use Diver to produce high-quality profile likelihoods. Having
identified all likelihood modes, and therefore all possible locations that might meaningfully
contribute to the posterior, we then use T-Walk to produce posterior distributions, checking
that it does not fail to locate any of the modes identified by Diver.

For the fixed-scale global fit we also combine our results with those from a more traditional
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MCMC, GreAT, and the nested sampling algorithm MultiNest [203]. These are also interfaced
to ScannerBit [6]. Although it is not typically necessary to combine results from four different
algorithms, here we demonstrate the power of the GAMBIT package, which allows us to use a
range of scanning procedures on the same composite likelihood, in order to produce the most
robust results possible.

As discussed in Section 1.2.1, the scalar singlet parameter space features a viable region
at mg =~ my/2. In this region, the annihilation of singlet dark matter to SM particles via
s-channel Higgs exchange is resonantly enhanced, and a lower portal coupling is required to
achieve the observed relic density. However, obtaining detailed samples of this region while also
sampling over a large mass range is difficult, even when using a logarithmic prior on the mass.
To properly sample this region, we run a second scan with each sampler, using a flat prior
over the range mg € [45,70] GeV. For the fixed-scale global fit we also carry out an additional
specially focused low-mass scan with Diver in the “neck” region of the resonance, in order to
obtain well-sampled contours in the most localised part of the allowed parameter space. We
do this by excluding all points outside the range mg € [61.8,63.1] GeV.

For the UV-scale studies of the Zs and Zgz models we perform identical scans with and with-
out the requirement that the vacuum be absolutely stable. With this additional requirement,
any point which has a metastable vacuum (such as the SM) is ruled out completely. Although
such models are not physically invalid, the ability to make the electroweak vacuum absolutely
stable is phenomenologically appealing and often cited as an advantage of this model, therefore
we are interested in investigating the effect such a requirement has on the parameter space. We
do not perform a scan over the low mass range with this additional constraint as it is almost
entirely ruled out (except for the very top of the neck region). For these studies we only use the
Diver package, but complete results including posterior sampling with T-Walk will be available
in Ref. [7].

The convergence criteria, population size and chain details are controlled by various settings
for each sampler. The settings that we use for the global fits in these studies are presented
in Table 7.3. We chose these settings after extensive testing [6], to give the most stringent
convergence and best exploration possible with each scanner and region. To a certain extent,
some of these settings are overkill for the problem at hand, and the same physical inference
could be achieved with less samples. For the fixed-scale study, the scans that we present here
took only 26000 core hours in total to compute, and the scan that dominates most of the
contours (the full-range Diver scan) took just 3hr on 10 x 24-core nodes, i.e. around 700

core hr. The UV-scale fits were run on a different computing set up, using 200 processes for
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Table 7.3: Parameters of each sampler for carrying out global fits of the scalar singlet model
in this study.

Scanner Parameter  Full range Low mass

MultiNest nlive 20,000 20,000
tol 104 10°
Diver NP 50,000 50,000
convthresh 10~4 1079
T-Walk chain_number 512 512
sqQrtR — 1 0.01 0.01
GreAT nTriallists 17 17
nTrials 20,000 10,000

approximately 70 hours in total, or about 14,000 core hours. Compared to the time required
to compute fits that include direct LHC simulations [160,161,183], the additional sampling we
do here, particularly in the fixed-scale fits, costs practically nothing — and noticeably improves
the resolution of our results. We refer the reader to Ref. [6] for further details of the scanners,
their settings and underlying algorithms.

The profile likelihoods that we present in Section 7.4 for the fixed-scale study are based on
the combination of all samples from all scans, which contain 5.7 x 107 valid samples altogether.
The posteriors that we show come exclusively from the T-Walk scans. For the UV-scale studies
in Sections 7.5 and 7.6 we use a total of 2.6 x 107 and 3.5 x 107 samples for the Zs and Zs
models respectively.

We compute and plot profile likelihoods and posteriors using pippi [294], obtaining profile
likelihoods by maximising the log-likelihood in parameter bins over all other parameters not
shown in a given plot, and posteriors by integrating the posterior density over the parameters
not shown in each plot. We compute confidence regions and intervals by determining the appro-
priate iso-likelihood contour relative the best-fit likelihood for one or two degrees of freedom,
corresponding to one and two dimensional plots, respectively. We compute Bayesian credible
regions and intervals as parameter ranges containing the relevant posterior mass according to

the maximum posterior density requirement. Further details can be found in Ref. [294].

7.3 Physics framework & likelihood details

7.3.1 The renormalised model spectrum

In order to compute the running of the couplings in the UV-scale global fits we need a con-
sistently renormalised quantum field theory. In the case of the scalar singlet model, where

the scalar field can have a mass much heavier than the SM masses, we also need to per-
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form appropriate matching between effective field theories. For this purpose we use Flexi-
bleSUSY 2.0.1 [234, 235] via the SpecBit [4] interface from GAMBIT [16]. FlexibleSUSY uses
SARAH [140-143] and parts of SOFTSUSY [230,233], along with higher order corrections from
various sources [97, 204, 232, 255, 295-299]. SpecBit can then evolve the MS parameters to
higher scales, using the two-loop RGEs of FlexibleSUSY, in order to test vacuum stability and
perturbativity.

The value of the quartic Higgs coupling is of particular interest in this study, as the running
of this parameter determines the stability of the electroweak vacuum. The value of this coupling
at high energy scales (such as Mpj) is sensitive to the initial value which is usually set near
the electroweak scale where the theory is defined. This initial value is determined by the
physical masses of the theory and the other dimensionless couplings. So it is imperative that a
consistent scheme is used to determine this initial value. Therefore we use the HiggsEFT mode
of FlexibleSUSY to achieve a consistent matching between the SM and the scalar singlet model,
along with full one-loop pole masses and two-loop RGE running.

In Section 7.2 we described the input parameters but not the renormalisation scale at which
they are defined. Since the M S masses and couplings are scale dependent quantities this is an
important consideration. When using the HiggsEFT framework within FlexibleSUSY we must
match the SM to the scalar singlet model at the scale of new physics, which in this case is mg
(unless mg < my in which case we use my). Since the physical pole mass mg is an output of the

MS

spectrum calculation, we will use mg'” ~ mg as the scale of new physics. It is then natural to

MS , and the couplings A\ps, Ag (and in the Zs case ug as well) at

define the MS scalar mass, m?
this scale. Because of the way FlexibleSUSY works, this is also the scale where all pole masses
are computed and the EWSB conditions are solved. Therefore, we must also input the MS
Higgs mass at this scale (choosing a fixed value near the electroweak scale is more natural for
this parameter yet because it must be run to m MS Yefore the pole mass is computed, this
adds an additional level of complexity and would require increasing our already large prior on

i) 2

With the model spectrum generated using FlexibleSUSY, the Higgs pole mass is calculated
using full one-loop self-energies obtained from SARAH [141, 143] along with partial two-loop
corrections. Thus we obtain the Higgs pole mass as an output rather than an input parameter,
and scan the parameter space by varying the input MS mass mh MS  Gince the value of the

MS(,,, MS

scalar singlet mass can have a significant impact on the relationship between m;"~ (mg'~) and

my, we allow mj MS vary from 80-180 GeV. This is sufficient to provide a suitable value of

®Note that with this set up our model definitions for SingletDM_running and Higgs_running (the model
names used within GAMBIT) are different to that given in [16] where the input scale is mz.
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mﬁ/TS such that a 125 GeV pole mass can be achieved throughout the scalar singlet parameter
space, with all other points penalised using a Gaussian likelihood centred on the experimentally

measured Higgs mass of mj = 125.09 £ 0.24 GeV based on the 2015 PDG result [293].

7.3.2 Vacuum stability and perturbativity

In Section 6.2 we classified the electroweak vacuum as either absolutely stable, metastable
or unstable and defined conditions for each case. To determine which class of stability the
electroweak vacuum is in we use the likelihood function in Eq. (6.38), which is based on a cal-
culation of quantum mechanical tunnelling through an arbitrary potential barrier. See Section
?7? for the details and derivation of this function.

Since the dominant contribution from the scalar singlet model to the running of A is always
positive the electroweak vacuum can only become more stable than it is in the SM. As the
likelihood of vacuum decay even in the metastable SM is extremely small, the effect of going
from a metastable vacuum to an absolutely stable one has a negligible impact on the composite
likelihood. However, since the scenario of absolute stability is phenomenologically appealing,
we repeat the global fit with the strict condition of invalidating all points which are metastable.

In the Z3 model we have an additional constraint on the pus parameter. If ps is large
enough it is also possible to form Zg-breaking minima which would be degenerate with, or
more energetically favourable, than the SM vacuum. This can be avoided by placing an upper
bound on the p3 parameter. We take the constraint given in Ref. [102] for an absolutely stable

SM vacuum as an upper limit on pus

max g = 2v/Agms . (7.1)

This constraint can be relaxed slightly by allowing for the possibility of a Zs-breaking minimum
with a lower potential energy than the SM vacuum, but an SM vacuum with a decay half-life
longer than the age of the Universe. See Ref. [102] for this calculation. We do not consider this
possibility as part of our interest in studying scalar singlet dark matter, particularly in this
global fit, is the appeal of removing metastability from the SM. Therefore, adding additional
metastability is not in our immediate interests.

We will also require that the scalar singlet couplings remain positive, such that the scalar
singlet potential is bounded from below and we can isolate our study of the electroweak vacuum
to the Higgs dimension only. This analysis neglects the possibility of a second minimum forming
in the S direction of the potential, which is possible when ,u% < 0 and Apg is sufficiently

large [64]. However, we will not consider such an effect in this study. Due to the nature of the
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RGEs for the dimensionless scalar couplings, Aps and Ag, these couplings only grow with scale.
However, when mg is less than m, it is also possible to achieve negative couplings, Aps and Ag,
when the spectrum is run down from the top mass. If this does occur then we invalidate the
points such that the scalar potential remains bounded from below.

We let Ap denote the scale where the dimensionless couplings become larger than our upper
bound for perturbativity of /4w ~ 3.54. If Ap < mg then we invalidate the point, otherwise
we record the scale Ap for later analysis.

There is an important caveat to our definition of vacuum stability and how we apply
this as a constraint on the parameter space. In many cases, increasing the values of the
dimensionless couplings in the scalar singlet sector (Aps and \g), results in the theory becoming
non-perturbative at energy scales as low as the electroweak scale. Since perturbation theory is
no longer trusted in this case, we cannot compute the running of the quartic Higgs coupling to
the typical scales of instability, so our analysis does not encounter a minimum and thus renders
the electroweak vacuum “stable”. Thus, such a point would pass the test for stability. This
caveat is acceptable, because such a model would be severely penalised for the extremely low
scale at which perturbativity is broken, as given by Ap. Yet it is important to consider the
order in which we apply these constraints when interpreting the results in Sections 7.5 and 7.6.

With this set up our analysis is similar to that in Ref. [102]. Although we do not consider
negative portal couplings in the rest of this study, we do so here in order to make a comparison
with Ref. [102] and thus validate our computational method. In Figure 7.1 we plot the logarithm
(base 10) of the scale at which either perturbativity or the additional constraint 2V A Ag + Apg >
0 (required for negative A;¢ to maintain a scalar potential bounded from below [102]), is violated
in the Z3 model. The latter is responsible for the saw-tooth shape of the contours for negative
Ans and immediately rules out the black region before any running is performed. This gives
a near identical result to that presented in Figure 2 of Ref. [102], so we can be confident that

our RGE running and spectrum generation is consistent with this previous work.

7.3.3 Relic density

In the early universe the scalar dark matter would have been in thermal equilibrium with the
SM particles. That is, the annihilation processes in the top two rows of Figure 7.2 would have
occurred at equal rates in both directions. As the Universe expanded and cooled the density of
the scalar fields reduced and these forward annihilation reactions became extremely rare. As a

result the remaining dark matter became frozen out of thermal equilibrium. We compute the
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Figure 7.1: The logarithm (base 10) of the energy scale (in GeV) at which the Zs scalar
singlet model is no longer considered valid as a function Apg and Ag, indicated by the contour
lines. For A\ps > 0 this constraint comes from an upper bound on the perturbative running
couplings. In the lower half the condition 2¢/AAs + Aps > 0 becomes relevant, with the
saw tooth shape coming from a violation of this condition at the indicated scale due to the
running of the couplings, and the black region immediately ruled out from this constraint before
any running (so not valid even at the electroweak scale). For this plot we take pu3 = 0 and
mg = 90.7 4+ 2070|A\;,5| GeV to match Ref. [102] which gives an approximate fit to the observed
relic density. This result is a reproduction of Figure 2 in Ref. [102] using FlexibleSUSY and
SARAH for generating and solving the RGEs and consequently serves as a validation of our
method.

density of this relic abundance of scalar dark matter by solving the Boltzmann equation [300]

dn
d—ts +3Hng = —(0Vpe) (ng — n§7eq) , (7.2)

where ng is the dark matter number density, ngeq is the number density if the dark matter
population were in chemical equilibrium with the rest of the Universe, H is the Hubble rate,
and (ovyel) is the thermally averaged self-annihilation cross-section times the relative velocity
of the annihilating dark matter particles (technically the Mgller velocity).

When semi-annihilation processes are possible then Eq. (7.2) must be modified. Such
processes are possible in the Zg scalar singlet model. The tree-level semi-annihilation processes
are represented in Figure 7.2. In the semi-annihilation channel two dark matter particles can

annihilate into an SM particle and a dark matter particle. In the Z3 case the relic abundance
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Annihilation to SM final states
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Figure 7.2: The diagrams for annihilation, semi-annihilation, scalar-nucleon scattering and
Higgs invisible decays in the Zj3 scalar singlet model. Here N denotes nucleons, f are SM
fermions and V' SM gauge bosons. Except for the semi-annihilation processes, the equivalent
diagrams apply in the Zs scenario but with S* replaced with S.

is made up of equal amounts of both S* and S. This is because each annihilation processes
requires both an .S and 5%, and the semi-annihilation process can occur both via SS — S*h and
S*S5* — Sh with equal probability. So we do not need to track the individual densities of the
particles, and can thus simplify the analysis. Therefore, compared with the case of Majorana

dark matter in Eq. (7.2) we include a factor of 1/2 and treat S and S* as the same particle.
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Including semi-annihilation, this gives [102]

dn
7; + 3H7’LS = — <0"Urel> (ng‘ - ng‘,eq)
1

(7.3)
- §<U’Urel>SS~>hS (ng - nSnS,eq) y
where (ovy) is the thermally averaged self-annihilation cross-section without semi-annihilations,

and (ovUpel)ss—ns is the equivalent for the semi-annihilation channel. We define a semi-

annihilation fraction

0ot (oUre1) s5—5h5 (7.4)

2 <0'7)rel> + %<U'Urel>SS—>hS

which we will record for each sampled point.

For the fixed-scale study of the Zo model we obtain thermally-averaged annihilation cross-
sections using analytic expressions given in Ref. [75] and solve Eq. (7.2) numerically using the
Boltzmann solver of DarkSUSY [284] in order to obtain the relic density, Q5h2. For the UV-scale
study of the Zs and Zs3 models, which were done concurrently, we adopt a different approach
because an analysis of semi-annihilations is required in the Zs case. We use micrOMEGAs to
compute the Qgh? with the settings fast = true and Beps =1e-5. This is computationally slower,
yet is able to deal with the case of semi-annihilations.

We implement the relic density likelihood as an upper limit only, permitting models where
the thermal abundance makes S a fraction of dark matter. Comparing with the relic abun-
dance measured by Planck [83] (Qpymh? = 0.1188 4 0.0010, at 10), we compute a marginalised
Gaussian upper limit likelihood as described in Sec 8.3.4 of Ref. [16]. Models that predict less
than the measured relic density are assigned a likelihood contribution equal to that assigned
to models that predict the observed value exactly. Models predicting more than the measured
relic density are penalised according to a Gaussian function centred on the observed value.
We adopt the DarkBit default value of 5% for the theoretical uncertainty on the relic density
prediction, adding it in quadrature to the experimental uncertainty on the observed value.

For models that under-populate the observed relic density, we rescale all direct and indirect
signals to account for the fraction of dark matter that is detectable using the properties of the
S boson. This is internally consistent from the point of view of the model, and conservative in
the sense that it suppresses direct and indirect signals in regions where the thermal abundance

is less than the Planck measured value.

7.3.4 Direct and indirect detection

Scalar singlet dark matter is strongly constrained by direct detection experiments. These ex-

periments place limits on the dark matter-nucleon scattering cross-section. The corresponding
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tree-level processes are represented in the bottom left diagrams of Figure 7.2. In the case of
scalar singlet dark matter this cross-section is parameterised by the portal coupling, Apg, and
the scalar mass, mg.

We apply direct detection constraints using the DarkBit interface to the DDCalc [182] im-
plementations of various experimental limits. The dominant limits applied in this study come
from the LUX [82,285] and PandaX [286] experiments, with other limits also imposed based on
SuperCDMS [287] and XENON100 [288]. For the UV studies we also included the newly avail-
able results from the XENONIT experiment [32] which were not available when the fixed-scale
scans were presented in Ref. [5].

For a given experiment, the likelihood for observing N direct detection events, given a
predicted number of signal events Ny, is given by the Poisson likelihood

(b+ NN e~ (M)
NI

L(N|Np) = (7.5)

where b is the expected number of background events in the analysis region. We model detector
efficiency and acceptance effects by interpolating between values in pre-calculated tables con-
tained in DDCalc. The likelihood in Eq. (7.5) is then obtained by recasting the experimental
results contained in DDCalc [182] for each experiment.

Constraints can also be placed on the dark matter annihilation cross-section by searching
for anomalous gamma-ray emission in dwarf spheroidal galaxies. As such emission has not
been detected we can infer limits on the annihilation cross-section. The effect of the particle

physics model on the flux of gamma rays is quantified with the factor

{ov)oy /Em ANy
; = 2 dE oL 7.6
%: 87Tm% E dF (7.6)

min,i

for an energy bin of width AE; = Enax,i — Emin i, where dN,, j/dE is the differential gamma-ray
multiplicity for single annihilations into final state j, and (ov)o ; = ovj|v—0 = oV}, Sam?, is the
zero-velocity limit of the partial annihilation cross-section into final state j.

We use a combination of analytic expressions from Ref. [75] and micrOMEGAs to compute
the annihilation and semi-annihilation cross-sections for direct and indirect detection. The
zero temperature annihilation cross-section for scalar singlet particles to SM states, (ov)o, is
given by the processes (at tree-level) in the top two rows of Figure 7.2 for the Zs model, and
equivalently the Zs model with S = S§*. For the Z, model the S particle is Majorana and thus
the calculation of (ov)y would include a symmetry factor of 1/2! to avoid double counting initial
states. In the Z3 model annihilation requires both an S and a S* so there is no such symmetry

factor. Consequently, the cross-section must be a factor of two larger for the same processes in
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the Zs model, with the rest of the calculation being identical. With this consideration we can
reuse the results for the annihilation rates in the Zs model for the Zz model.

However we must also consider the number density. In the Z, model the annihilation rate
is proportional to (ov)on%. Because an annihilation in the Zsz case requires both S and S*,
the rate is proportional to (ov)ongng« = (ov)onZ,, /4 since the relic density is made up of
equal parts S and S*. Therefore, using the same computational framework as the Zo model
we can compute annihilation rates in the Zs model if we rescale by a factor of two to account
for the symmetry factor, and a factor of 1/4 to account for the number density. The effective
cross-sections for annihilation to SM final states in the Z3 model are therefore a factor of two
smaller than in the Zo model. We compute these by rescaling the Zy cross-sections down by a
factor of two. We obtain the semi-annihilation cross-section directly from micrOMEGAs, with
there being no equivalent in the Zs model.

With the necessary cross-section computed we then obtain the predicted spectrum dN,/dE
for each model point by using a Monte-Carlo showering simulation, detailed in Ref. [182]. This
is then used to compute a combined likelihood for all the dwarf spheroidals in the Fermi-LAT
Pass 8 analysis of the six-year dataset [78]. The details of this likelihood are given in Ref. [5].

The dark matter-nucleon cross-section can also be constrained by the neutrino indirect
detection constraints from the IceCube search for annihilation in the Sun [289,301]. The 79-
string results are implemented in our composite likelihood using the DarkBit interface to the
nulike package [282,283]. We obtain the predicted neutrino spectrum that would be observed
at the Earth using WimpSim [302] yield tables contained in DarkSUSY [284]. WimpSim uses
PYTHIA 6.400 [303] to perform an event-based full three-flavour Monte Carlo simulation of
dark matter annihilation in the Sun, followed by a model of neutrino propagation to the Earth,
including effects of neutrino oscillations and interactions. Although neutrino indirect detection
places stronger bounds on spin-dependent scattering cross-sections, which the scalar singlet
model does not have, it can still place weak bounds on the spin-independent cross-sections.
Indeed this constraint provides limits stronger than SuperCDMS and almost as strong as

XENON100 direct detection limits.

7.3.5 Higgs invisible width

If mg < my/2 then the decay channels h — SS in the Zy or h — SS* in the Z3 model are
kinematically allowed. The decay products from this process would be entirely invisible at a
hadron collider, so they would be identified as a missing contribution to the total decay width.

We use a tree-level result for the decay of the Higgs to scalar fields. The corresponding diagram
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is given in the bottom left of Figure 7.2. For a model with a Z3 charged scalar the decay width

of the Higgs to invisible final states is

2 .2
Z3 _ )\hSUO
h—ss* —

o 9\U2
L6mmy, (1 4ms/mh) (7.7)

where vy is the Higgs VEV. In the Zs model the final states are identical so we must include a

symmetry factor of 1/2 to avoid double counting,

ZLa
Fh—>ss h—ss*

1.7
= -1 . .
5 (7.8)

From Egs. (7.7) and (7.8) we can infer that constraints on the Higgs invisible width are able
to exclude regions of the parameter space at large A\ps and, due to conservation of energy, at
sufficiently small values of mg.

For the case of SM-like couplings, the 95% confidence level upper limit on the Higgs invisible
width from LHC and Tevatron data is presently at the level of 19% [79]. We use the DecayBit [4]
implementation of the complete invisible Higgs likelihood, based on an interpolation of Figure
8 of Ref. [79]. This gives a constraint on the mg < my,/2 region of the scalar singlet parameter
space for portal couplings that would produce invisible decay widths identifiable with the

current experimental limits.

7.3.6 Additional likelihoods

We also implement simple likelihoods for the well-constrained nuisance parameters via Preci-
sionBit [4]. For the Higgs mass, the top quark mass and the strong coupling we use Gaussian
likelihoods based on experimental results. In the fixed-scale study of the Zs model, we constrain
the strong coupling with a likelihood based on the measurement as(myz) = 0.11854+0.0005 (M S
scheme), as obtained from lattice QCD [291]. In the UV-scale studies we use the updated value
of as(mz) = 0.1181+0.0011 from Ref. [236]. For the Higgs mass we use my, = 125.09+0.24 GeV
and for the top quark m; = 173.34 £+ 0.76 GeV, both based on the 2015 PDG result [293].
Finally, we implement a likelihood for the local dark matter density with a central value of
po = 0.4GeVem™3 (e.g. [304]). We use a log-normal distribution for the likelihood of pg, with

an uncertainty of o,, = 0.15 GeV cm ™3,

JORUE SR <_ln<po/m>2> | (7.9)

/ 12
2l P 207

where o, = In(1+ 0,,/po). More details can be found in Ref. [182].
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Figure 7.3: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters
Ans and mg. Contour lines mark out the 1o and 20 confidence regions. The left panel shows the
resonance region at low singlet mass, whereas the right panel shows the full parameter range
scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of
the allowed regions corresponding to solutions where S constitutes 100% of dark matter are
indicated in orange. Figure from Ref. [5].

7.4 The status of the low energy Z> model

7.4.1 Profile likelihoods

The results for our 15-dimensional fixed-scale study of the Zs model are presented as two-
dimensional profile likelihoods with respect to the scalar mass and portal coupling in Figure
7.3, and in terms of some key observables in Figures 7.4 and 7.5. The one-dimensional profile
likelihoods for each parameter are shown in red in Figure 7.6.

The viable regions of the parameter space agree well with those identified in the most recent
comprehensive studies [75,76]. We find that the low mass resonance region, a well-known feature
from previous studies, is still allowed. In this region the dominant annihilation channel is to a
bottom quark pair via s-channel Higgs exchange. However, it is heavily constrained by direct
detection from lower masses, indirect detection from higher masses, Higgs invisible width from
above and the relic density from below. There also exists a narrow “neck” region directly on
the resonance, which is constrained by the Higgs invisible width from lower masses and direct

detection from higher masses.. The width of this region is set by a number of things:

1. the actual separation between the areas allowed by the invisible width and direct detection

constraints, which press in from mg < my,/2 and mg > my, /2 respectively,



7.4. The status of the low energy Zs model 148

GAMBIT 1.0.0

GAMBIT 1.0.0 GAMBIT 1.0.0

V OTeI POOI[aYI[ YOI

logy, (20?)

vy [

2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5
log,o(ms/GeV) log,(ms/GeV) log,o(ms/GeV)

Figure 7.4: Profile likelihoods for the scalar singlet model, in various planes of observable
quantities against the singlet mass. Contour lines mark out the 1o and 20 confidence regions.
Greyed regions indicate values of observables that are inaccessible to our scans, as they corre-
spond to non-perturbative couplings Aps > 10, which lie outside the region of our scan. Note
that the exact boundary of this region moves with the values of the nuisance parameters, but
we have simply plotted this for fixed central values of the nuisances, as a guide. The best-fit
(maximum likelihood) point is indicated with a white star, and edges of the allowed regions cor-
responding to solutions where S constitutes 100% of dark matter are indicated in orange. Left:
late-time thermal average of the cross-section times relative velocity; Centre: spin-independent
WIMP-nucleon cross-section; Right: relic density. Figure from Ref. [5].

2. the uncertainty on the Higgs mass, which blurs the exact mg value of the resonance by

~ 480 MeV at the level of the 20 contours, and

3. the width of the bins into which we sort samples for plotting, which prevents anything

from being resolved on scales below Amg ~ 170 MeV in the left panel of Figure 7.3.

The largest allowed regions are two high-mass, high-coupling solutions. In this region
the dominant annihilation channel is SS — W~W™ via s-channel Higgs exchange. These
two regions are separated from below by the most recent LUX and PandaX direct detection
exclusion limits. The region excluded by this constraint, effectively dividing the two high mass
modes, is due to the rescaling of the direct detection signals by the predicted relic density,
which approximately cancels the leading A%S-dependence of ogr and ov. Therefore, since the
relic density has a logarithmic dependence on A, for large values of this coupling the exclusion
limits can reach masses of a few hundred GeV. However, the relic density does not scale exactly
as /\,:52, owing to its dependence on the freeze-out temperature, resulting in an extension of the
sensitivity of direct detection to larger masses than might be naively expected, for sufficiently
large values of \,s.2 This is the reason for the division of the large-mass solution into two sub-
regions; at large coupling values, the logarithmic dependence of the relic density on A,g enables

LUX and PandaX to extend their reach up to singlet masses of a few hundred GeV. This is

3This point is discussed in further detail in Sect. 5 of Ref. [75].
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Figure 7.5: Profile likelihoods of nuclear scattering (left) and annihilation (right) cross-sections
for the scalar singlet model, scaled for the singlet relic abundance and plotted as a function
of the singlet mass. Here we rescale the nuclear and annihilation scattering cross-sections
by f = Qs/Qpum and f2, in line with the linear and quadratic dependence, respectively, of
scattering and annihilation rates on the dark matter density. Contour lines mark out the lo
and 20 confidence regions. The best-fit (maximum likelihood) point is indicated with a white
star. Figure from Ref. [5].

also slightly enhanced by additional )\,SLS and )\%S terms in (ov)o pp, which are responsible for
the “kink” seen in the border of the grey regions at mg ~ 600 GeV in the left and right panels
of Figure 7.4.

By using the relic density as an upper limit, all points for which Qsh? < Qpyh? are assigned
a null log-likelihood contribution and treated the same as those with Qg h? = Qpuh2. However,
by consistently rescaling the local dark matter density as well as that in dwarf spheroidal
galaxies, the direct and indirect detection likelihoods are not flat within this allowed region.
In contrast to overlaid exclusion plot studies, like the example in the left panel of Figure 1.2,
we gain additional information with some points favoured more than others. In addition, with
this self-consistent rescaling of the predicted relic density, the excluded areas do not follow the
familiar curve that readers may be familiar with. This can be seen in the first two panels of
Figure 7.4. This rescaling is clear when we present the same two-dimensional profile likelihood
with respect to cross-sections rescaled by the appropriate power of Qg/Qpy in Figure 7.5,
together with the experimental constraints from Fermi-LAT, LUX and PandaX.

Were we to instead restrict our fits to only those models that reproduce all of the dark

matter via thermal production to within the Planck uncertainties, we would be left with a

narrow band along a small number of edges of the allowed regions we have found. These edges
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are indicated with orange annotations in Figures 7.3 and 7.4. At high singlet masses, the
value of the late-time thermal cross-section corresponding to this strip is equal to the canonical

0726 cm3s™!. At low masses, this strip runs along the lower edge of the

‘thermal’ scale of 1
resonance “triangle” only, as indirect detection rules out models with Qgh? = 0.119 near the
vertical edge (at mg = 62 GeV).

In Figure 7.4, we also show in grey the regions corresponding to Higgs-portal couplings
above our maximum considered value, A\ps = 10. This gives an indication of how this prior
affects the preferred regions with respect to other quantities. It is of note that for large values
of the scalar mass, this Aps = 10 upper limit has an important constraining role. For these
large coupling values the annihilation cross-section is so high, and the relic density so low, that
constraints from direct and indirect signals are essentially absent. Therefore, it is certainly

worthwhile to perform a proper perturbative study to investigate the effect of a more robust

constraint on the magnitude of the portal coupling.

7.4.2 Best-fit point

Our best-fit point is located within the low-mass resonance region, at Apg = 6.5 x 1074,
mg = 62.51 GeV. This point has a combined log-likelihood of log(£) = 4.566%, shown broken
down into its various likelihood components in the second column of Table 7.4. To put this into
context, we also provide the corresponding likelihood components of a hypothetical ‘ideal’ fit,
which reproduces positive measurements exactly, and has likelihood equal to the background-
only value for those observables with only a limit. The overall combined ideal likelihood is
log(L) = 4.673, a difference of Aln L = 0.107 with respect to our best-fit. The best-fit above
the resonance is at Apg = 9.9, mg = 132.5 GeV, with log(£) = 4.540, Aln £ = 0.133.
Interpreting A In £ defined this way is somewhat fraught, as we do not know its distribution
under the hypothesis that the best-fit is correct. However, its definition is almost identical to
half the “likelihood x2” of Baker & Cousins [305], which is known to follow a x? distribution
in the asymptotic limit. Our Aln £ differs from half the likelihood x? only in that some of
the components of the ideal likelihood come from the likelihood of a pure-background model,
rather than from setting all predictions to their observed values. Assuming that 2A In £ follows

a x? distribution, estimating the effective number of degrees of freedom would still be difficult,

4Note that the likelihoods have dimension of one over the dimensions of the data. For mass likelihoods,
the dimension is GeV~'. The local dark matter density likelihood has dimensions of GeV~'cm™, the Higgs
invisible width likelihood has dimensions of [width] ™' =GeV~!. The Fermi coupling likelihood has dimensions
of GeV?. The direct detection likelihoods, Fermi-LAT likelihood and the vacuum stability likelihood are all
dimensionless since in these cases the “data” are counts. The relic density, the electromagnetic and strong
coupling likelihoods are dimensionless since these quantities are dimensionless. Finally, the IceCube neutrino
likelihood has dimensions of degrees™"t°* where no, = 2990 is the number of events used in the analysis.
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as our likelihoods include many upper limits and Poisson terms, some of which have already
been conditioned on the background expectation, and some of which have not. The difference
between the ideal and the best-fit likelihood does nonetheless give some indication of the degree
to which the singlet dark matter model can simultaneously explain all data in a consistent way,
and how much worse it does than the ideal model. In this sense, it gives information similar in
character to the modified p-value method known as CLs [306-308], which was explicitly designed
for excluding models that gave poorer fits than the background model, by conditioning on the
background. Were one to approximate the distribution of 2A1In £ as x? with e.g. 1-2 effective
degrees of freedom, this would correspond to a rough p value of between 0.6 and 0.9 in both
the resonance and the high-mass region — a perfectly acceptable fit.

Next we consider parameter combinations where the singlet constitutes the entire observed
relic density of dark matter, by restricting discussion to points with Qgh? within 1o of the
Planck value Qpyh? = 0.1188 + 0.006 (the uncertainty includes theoretical and observational
contributions added in quadrature). In this case, the best-fit occurs at the bottom of the
resonance, at A\ps = 2.9 x 1074, mg = 62.27GeV. This point has log(£) = 4.431, which
translates to Aln £ = 0.242 compared the ideal model. In the high-mass region, the best-fit
point able to reproduce the entire observed relic density is at Aps = 3.1, mg = 9.79 TeV, and
has log(£) = 4.311 (Aln £ = 0.362). If we were to approximate the distribution of 2A1In £ as
x? with 1-2 degrees of freedom, this would correspond to p values of between 0.5 and 0.8 for the
resonance point, and between 0.4 and 0.7 for the high-mass point. Again, these would suggest
that the fit is perfectly reasonable. This indicates that there is no significant preference from
data for scalar singlets to make up either all or only a fraction of the observed dark matter.

The four best-fit points and the corresponding relic densities are presented in Table 7.6.

7.4.3 Bayesian posteriors

By using multiple scanning algorithms in our fits, we are also able to consider marginalised
posterior distributions for the singlet parameters. In Figure 7.6, in blue we also plot one-
dimensional marginalised posteriors for all parameters, from our full-range posterior scan with
the T-Walk sampler.> The one-dimensional posterior for mg shows that although the full-range
scan has managed to detect the resonance region, this area has been heavily penalised by its
small volume in the final posterior, arising from the volume effect of integrating over nuisance

parameters to which points in this region are rather sensitive, such as the mass of the Higgs.

5We choose T-Walk for this rather than MultiNest, as we find that MultiNest biases posteriors towards
ellipsoidal shapes; see [6] or Chapter 8 for more details and example posterior maps for this same physical
model.
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Aln L

Likelihood contribution Ideal Zo UVZo SVZs UVZs SVZs
Relic density 5.989 0 0 0.001 0 0
LUX Run I 2015 —0.640 0 0 0.059 0.001 0.027
LUX Run IT 2016 —1.467 0.001 0.001 0.119 0.001 0.054
PandaX 2016 —1.886 0.001 0 0.076 0.001 0.033
SuperCDMS 2014 —2.248 0 0 0 0 0
XENON100 2012 —1.693 0 0 0 0 0
XENONI1T 2017 —0.360 - 0.001 0.239 0.003 0.109
IceCube 79 0.000 0 0 0.008 0 0
v rays (Fermi-LAT dwarfs)  —33.244 0.105 0.105 0.149 0.105 0.131
Higgs invisible width 0.000 0 0 0 0 0
Hadronic elements o, o; —6.115 0 0 0 0 0
Local dark matter density pg 1.142 0 0 0.012 - -
GFermi 24.920 0 - - - -
QEM 3.350 0 0 0 0 0
a(0.1184) 6.500 0 - - - -
as(0.1181) 5.894 - 0.001 0 0 0
Higgs mass 0.508 0 0 0 0 0
Top quark mass —0.645 0 0 0 0 0
Bottom quark mass 2.588 0 - - - -
Charm quark mass 2.770 0 -

Light quark masses 4.844 0 - - - -
Vacuum stability 0.000 - 0 0 0 0
Total 0.107  0.108 0.633 0.110 0.340

Table 7.4: Contributions to the A log-likelihood at the best-fit point, compared to an ‘ideal’
case for various analyses of scalar singlet DM. The first is the fixed-scale study of the Zo
model (Zsy), with best-fit A\ps = 6.5 x 1074, mg = 62.51 GeV. The next two are the UV-
scale fit to the Zs model with metastability of the electroweak vacuum allowed (UVZg, with
best-fit A\ps = 3.2 x 1074, mg = 62.50GeV) and with the constraint of absolute stability
(SVZy, with best-fit A\pg = 2.0, mg = 3968.4 GeV). The fourth and fifth are the UV-scale fits
to the Zs model with metastability of the electroweak vacuum allowed (UVZs, with best-fit
Mis = 4.6 x 1074, mg = 62.48 GeV) and with the constraint of absolutely stability (SVZs, with
best-fit A\js = 5.2 x 1072, mg = 143.0 GeV). The ideal is defined as the central observed value
for detections, and the background-only likelihood for exclusions. Note that each likelihood is
dimensionful, so its absolute value is less meaningful than any offset with respect to another
point (see Section 8.3 of Ref. [16] for more details of the normalisation used). Dashes indicate
that this likelihood was not evaluated.

The penalty is sufficiently severe that this region drops outside the 20 credible region in the
mg-Aps plane. We therefore focus only on the high mass modes in the righthand panel of
Figure 7.7, where we show the posterior from the full-range scan.

Because it is restricted to the resonance region, the low-range scan (left panel of Figure
7.7) shows the expected relative posterior across this region. The fact that the resonance is so
strongly disfavoured in the full-range posterior scan is an indication of its heavy fine-tuning, a

property that is naturally penalised in a Bayesian analysis. This mode of the posterior accounts
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Mode Statistic Relic density  Ang ms (GeV)  Qgh? log(£) Aln L

Low mass  Best-fit < 6.5 x 107" 62.51 0.0179 4.566 0.107
Best-fit v 29x107% 6227 0.1129 4.431 0.242
Posterior mean < 43x107% 60.28

High mass Best-fit < 9.9 132.5 1.2 x 1078 4.540 0.133
Best-fit v 3.1 9.790 x 10° 0.1131  4.311 0.362
Posterior mean < 3.0 1867

Table 7.5: Details of the best-fit points and posterior means for the fixed-scale study of the
Zs scalar singlet model, differentiated into the two main likelihood modes. Best-fit points with
a singlet relic density within 1o of the observed value (Qsh? ~ Qp,h?) are indicated with
a tick in the third column, otherwise we allow for the case where singlet particles may be a
sub-dominant component of dark matter (Qsh? < Qp,h?), indicated by a cross. We omit
the values of the 13 nuisance parameters, as they do not deviate significantly from the central
values of their associated likelihood functions.
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Figure 7.6: One-dimensional profile likelihoods and posterior distributions of the scalar singlet
parameters, and all nuisance parameters varied in our fits of the fixed-scale Zo model. Posterior
distributions are shown in blue and profile likelihoods in red. Dashed lines indicate 1o and 20
confidence and credible intervals on parameters. Figure from Ref. [5].

for less than 0.4% of the total posterior mass, indicating that it is disfavoured at almost 3o
confidence.

For the sake of understanding the prior dependence of our posteriors, we also carried out
a single scan of the full parameter range with flat instead of log priors on mg and Apg, using
MultiNest with the same full-range settings as in Table 7.3. Unsurprisingly, the resulting
posterior is strongly driven by this choice of prior, concentrating all posterior mass into the

corner of the parameter space at large A\ps and mg. The 1o region lies above A\pg ~ 3, mg ~



7.5. The status of the Z, model at UV scales 154

GAMBIT 1.0.0 GAMBIT 1.0.0

1.0
08 2 g
= =
@ @
a 06 % 2 B
=< S =< s
= o, o =
= = = =
o0 = o0 =
= 04 2 2 <
v v
~ ~
ks 5
02 * Scalar singlet #

Scalar singlet
T-Walk

Marg. posterior

T-Walk

Marg. posterior

2.0 2.5 3.0 3.5
logyg(ms/GeV)

Figure 7.7: Marginalised posterior distributions of the scalar singlet parameters, in low-mass
(left) and full-range (right) scans. White contours mark out 1o and 20 credible regions in the
posterior. The posterior mean of each scan is shown as a white circle. Grey contours show
the profile likelihood 1o and 20 confidence regions, for comparison. The best-fit (maximum
likelihood) point is indicated with a grey star. Figure from Ref. [5].

3TeV, and the 20 region above A\pg ~ 1, mg ~ 1TeV.

7.5 The status of the Z, model at UV scales

7.5.1 Profile likelihoods

In this section we present results for a global fit to a Zs scalar singlet model with a full
spectrum calculation and RGE running up to the Planck scale. These results are based on
three separate global fits. The most general fit consists of a scan over the full range of mg with
both a metastable and stable electroweak vacuum permitted (the case of vacuum instability
is excluded with an extremely poor likelihood from Eq. (6.38)). For this fit, and all others in
this section, we require that the dimensionless couplings are in the perturbative regime (which

we define to be less than v/47) up to the maximum of mg/TS or my, i.e. we demand that

Ap > max(mm, my). The profile likelihoods for this fit are presented in the top left panels of
Figures 7.8 and 7.9 in the mg, Aps and mg, Ag parameter spaces respectively.

We then perform another global fit over the full singlet mass range, with the additional
constraint of absolute vacuum stability. The corresponding profile likelihoods are presented
in the top right panels of Figures 7.8 and 7.9 in the mg, A\ps and mg, Ay parameter spaces

respectively. Finally, we perform a fit over the low mass range ms € {45, 70} GeV, focusing on

the resonance around mg ~ my, /2. Since all points in this region are metastable, we only present
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results without the additional restriction of absolute vacuum stability. The corresponding
profile likelihoods are presented in the left panels of Figure 7.10.

The restriction of Ap > max(mg/fis, my) results in a reduction in the volume of the allowed
region, compared to the allowed regions presented in Section 7.4. Because any point with an
input value of Apg, Ag > /4w violates the perturbativity condition before any running is even
performed, our profile likelihoods have an upper limit at v/47 with respect to Apg and \g, in
contrast to the more generous restriction of 10 in Section 7.4. The excluded points at large
values of mg and Apg are due to a non-perturbative Higgs quartic coupling, as a result of large
loop corrections from the scalar sector driving up the value of this coupling. We also note that
the location of the allowed region is different, which is to be expected given that this later study
includes a slightly more constraining direct detection likelihood (XENONI1T) and an updated
central value for ag.

If we demand that the electroweak vacuum be absolutely stable then the parameter space is
further reduced (see the right panels of Figures 7.8 and 7.9). We find that values of A\pg 2 0.2
are required to stabilise the electroweak vacuum. As a result the low-mass resonance mode
around mg ~ my/2 is almost entirely ruled out (such that we omit a detailed scan over this
mass range), except for a few points in the neck region at sufficiently large Apg 2 0.2. This
leaves the high mass modes centred on approximately 100 GeV and 1TeV, where Apg is large
enough to stabilise the vacuum. This preference for larger values of A5 is as we would expect,
as a large value of A4 is required to prevent the Higgs quartic coupling becoming negative.

The profile likelihood of the scalar quartic coupling, Ag, is reasonably uniform over the
prior range. This is not surprising given that Ag has little phenomenological impact in this
model (and thus why it was not included in the analysis of Section 7.4 and Ref. [5]). However,
it can have an important role in stabilising the electroweak vacuum, but on the other hand
can become too large and violate perturbativity. The role of Ag in vacuum stability will be

discussed in the next section.

7.5.2 Scale of non-perturbativity and vacuum stability

We compute the scale at which perturbativity is violated for each point in the UV-scale global
fits and present this in the lower panels of Figures 7.8, 7.9 and the right panels of 7.10. Since we
run the couplings up to a maximum value of 1 x 10%° GeV, points with Ap equal to this value
are to be interpreted as being valid to at least this scale (although this is phenomenologically
irrelevant as anything above the Planck scale raises questions regarding quantum gravitational

effects). We plot the value of Ap only within the 20 contours, as determined by the profile
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Figure 7.8: The profile likelihood (top) and scale of perturbativity violation (bottom) with

respect to mg and Aps for the Zs scalar singlet model with the requirement that Ap >

max (mM my) only (left) and with the additional requirement of absolute vacuum stabil-

ity (right). White contour lines mark out the 1o and 20 confidence regions. The best-fit
(maximum likelihood) point is indicated with a white star.

likelihood. The value of Ap at each bin in the two-dimensional plot corresponds to the point in
that bin with the maximum likelihood. Therefore since we maximise with respect to £ rather
than Ap, there can exist points with a larger value for Ap in the same bin that have a slightly
worse L, but are not outside 20 of the best-fit. To get an idea of how high Ap can be, beyond
what is shown in these plots, in Figure 7.11 we present the profile likelihood when a cut is
placed such that all points satisfy the requirement Ap > 10'® GeV. As we have not performed
a separate scan with this requirement, instead cutting out points from the original scans, the
sampling is not exceptional.

When we allow metastability of the electroweak vacuum, regions with Ap near or beyond

the Planck scale are found in both the low mass resonance mode (at mg ~ my,/2) and the mode
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Figure 7.9: The profile likelihood (top) and scale of perturbativity violation (bottom) with

respect to mg and Ag for the Zg scalar singlet model with the requirement that Ap >

max(mM¥ my) only (left) and with the additional requirement of absolute vacuum stabil-

ity (right). White contour lines mark out the 1o and 20 confidence regions. The best-fit
(maximum likelihood) point is indicated with a white star.

at large A\ps and mg ~ 1TeV. The values of Ap for these fits are presented in the lower left
panels of Figures 7.8 and 7.9 and the right panels of Figure 7.10. The mode at mg ~ 100 GeV
is much worse off due to the large values of \pg rendering the spectrum invalid at scales well
below 10'° GeV.

There is a rough correlation between Aps and Ap in most of the high mass mode (at
mg ~ 1TeV), such that we can control the amount of parameter space allowed by making a
choice of what Ap is considered acceptable. With direct detection limits constraining this mode
from below, and perturbativity from above, the point where it is entirely ruled out depends
only on how low one is willing to let Ap be, until eventually Ap = max(m,, méVTS) is reached.

When we demand that the electroweak vacuum be absolutely stable, and consider the values
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Figure 7.10: The profile likelihood (left panels) and scale of perturbativity violation (right

panels) for the Zy scalar singlet model with the requirement that Ap > max(m? m;) and

metastability of the electroweak vacuum allowed. White contour lines mark out the 1o and 20
confidence regions. The best-fit (maximum likelihood) point is indicated with a white star.

of Ap in the remaining parameter space, the competing interests from vacuum stability and
perturbativity become evident. Indeed, the requirement of vacuum stability is even more severe
than direct detection on the lower parts of the high mass contours. It also has the additional
effect of completely ruling out the resonance mode for values of Aps < 0.2.

The rough correlation between Apg and Ap is broken for the small A\pg tip of the high mass
mode. Instead we see Ap decrease rapidly for smaller values of A\;s. This is because a non-
zero value of \g can either help stabilise the electroweak vacuum or simply make the model
non-perturbative below the scale of vacuum instability (thus rendering it “stable” — see the
discussion in Section 7.3.2). In the former case, this stabilisation occurs as a higher order effect

since Ag does not appear directly in the one-loop RGE for the Higgs quartic coupling. Instead,

Ag appears in the RGE for Ay in such a way that larger values drive up the value of A\g, which



7.5. The status of the Z, model at UV scales 159

Stable Relic

vac. Ap (GeV) density s Ahs ms (GeV) Qgh? log(£) AlnfL
~ > 10%° < 255 x 1072 3.17x107* 6250 0.04995 —34.87 0.107
v 26x10* < 1.55 x 1074 2.03 3968 0.1043  —35.40 0.633
v 1.0 x 10 < 5.49 x 107*  0.724 1999 0.1080 —35.94 1.173
v 1.1 x 10" v 1.29 x 1072 0.717 2026 0.1129  —36.00 1.254

Table 7.6: Details of the best-fit points for the UV-scale study of the Zy scalar singlet model,
with different conditions on the model. Points with a singlet relic density within 1o of the
Planck observed value (2 sh? ~Qp Mh2) are indicated with a tick in the third column, otherwise
we allow for the case where singlet particles may be a sub-dominant component of dark matter,
Ogh? < Q puh?. Best-fits have an absolutely stable (indicated by a tick in the first column)
or metastable electroweak vacuum. We omit the values of the nuisance parameters, as they do
not deviate significantly from the central values of their associated likelihood functions.

in turn results in an increase in the running of the Higgs quartic coupling. Since this is a much
weaker effect, larger values of Ag are required to stabilise the vacuum than Apg. However, the
necessarily large values of Ag result in the spectrum rapidly becoming non-perturbative. This
can be seen on the lower panels of Figure 7.9, with larger values of Ay having a very low Ap.
The competing interests of vacuum stability and perturbativity become more problematic
when we consider what choice of Ap is reasonable. The metastability of the electroweak
vacuum in the SM is the result of the quartic coupling becoming negative near the grand
unified theory (GUT) scale (~ 10'® GeV). Therefore, if we are concerned about vacuum stability,
then we would generally also be concerned about the perturbativity of our theory to at least
this scale (although some may view a strongly coupled theory as less problematic than a
metastable vacuum). In the allowed region of our parameter space we have been able to
stabilise the electroweak vacuum, but in many cases this results in the model violating our
condition on perturbativity at scales well below the GUT scale. To then allow these points as
viable would be somewhat contradictory. Fortunately, limiting the parameter space to points
with Ap > 10'5 GeV doesn’t completely rule out the model, as we can see in Figure 7.11. We
will find a point in this model that does remain perturbative up to the typical instability scales,
and is confirmed to have a stable electroweak vacuum in the next section, and show that this

still gives a good fit to the data.

7.5.3 Best-fit point

The best-fit point for our UV study of the Zy model is located at Ag = 2.55x 1073, \pg = 3.17 x
10~* and mg = 62.50 GeV. This is located in the low mass resonance region, the electroweak
vacuum is metastable (with a minimum Higgs quartic coupling at ~3 x 10'3GeV) with a

lifetime of ~ 1.3 x 10198 years and the model is perturbative up to at least 102 GeV. The mass
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at this point is within 0.01 GeV of the best-fit found for the fixed-scale study in Section 7.4, and
the portal coupling is approximately a factor of two smaller. Given that the profile likelihood
is reasonably uniform with respect to Apg around the best-fit, this difference in Apg is not

surprising. The similarity between this best-point and that found in Section 7.4 is expected

since the constraint Ap > max(m*

,m¢), and the consideration of Ay, do not have a significant
effect on the phenomenology at small values of the dimensionless couplings. Indeed, we find
that log(£) = —34.87 and Aln £ = 0.107 (see Table 7.4), the same Aln L as the best-fit in the
fixed-scale study.

When the constraint of absolute vacuum stability is imposed the location of the best-fit
necessarily moves away from the resonance region where A5 is too small to stabilise the vacuum.
For this fit we find a best-fit point at Ag = 1.55 x 1074, A5 = 2.03 and mg = 3968 GeV. In this
case we find log(£) = —35.40 and Aln £ = 0.633, which demonstrates a slight penalty over the
metastable case. Although the vacuum is stable at this point, the scale where the couplings
enter the non-perturbative regime is reduced to ~ 26 TeV. Therefore it is not of particular
phenomenological interest. Indeed, this is an example of a point where the couplings are so
large that we are unable to compute the spectrum to the typical scale of vacuum instability,
so the point is classified as stable.

By excluding all samples with Ap < 10' GeV we can find points which have a stable
vacuum and are more phenomenologically interesting. The profile likelihood and value of Ap
within the allowed region with this additional requirement is presented in Figure 7.11. We find
a best-fit point that is absolutely stable and has Ap = 1.0 x 10'5 GeV. This point is located at
As = 5.49x 1074, \ps = 0.724 and mg = 1999 GeV. It has log(£) = —35.94 and Aln £ = 1.173,
with the largest contributions coming from the XENONI1T and LUX Run II 2016 likelihoods.
This corresponds to a likelihood ratio A = 0.34, which places this point outside 1o but within 20
of the overall best-fit point (that is, the metastable point at A = 3.17x 1074, Ag = 2.55x 1073
and mg = 62.50 GeV). Therefore a model with an absolutely stable vacuum and perturbative
couplings up to at least the GUT scale is in some mild tension with direct detection limits. As
XENONIT gains more exposure, this model will either be detected or the tension will grow.

Finally we consider a point with a relic density within 1o of the Planck measured value,
with a stable vacuum and that is perturbative to at least 10'® GeV. This point is located at
As = 1.292 x 1073, A\ps = 0.7174 and mg = 2026 GeV. This point has a likelihood log(L) =
—36.0 and Aln £ = 1.254.

The four best-fit points, the corresponding relic densities and the scale of perturbativity

violation are presented in Table 7.6.
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Figure 7.11: The profile likelihood (left) and scale of perturbativity violation (right) for the Zs
scalar singlet model with the requirement of a stable electroweak vacuum and Ap > 10 GeV.
White contour lines mark out the lo and 20 confidence regions. The best-fit (maximum
likelihood) point is indicated with a white star.

Following the same reasoning as in Section 7.4.2 we obtain an approximate p-value for these
best-fit points by interpreting A ln £ as half the “likelihood x2” of Baker & Cousins [305]. We
again obtain an approximate p-value range by assuming either one or two degrees of freedom.
For the best-fit point with metastability allowed we find p &~ 0.6 —0.9. The best-fit with vacuum
stability required has p ~ 0.3 — 0.5. Both the model that is perturbative up to 10'® GeV and
has an absolutely stable vacuum, and the model with the same requirements and a relic density
within 1o of the Planck value, have p =~ 0.1 — 0.3. Therefore in each case we find the p-value
to be acceptable, although requiring the UV properties of perturbativity and vacuum stability

has a notable impact on the value.

7.6 The status of the Z3; model at UV scales

7.6.1 Profile likelihoods

In this section we present a UV-scale study of the Zs scalar singlet model with a fully com-
puted spectrum and vacuum stability considerations. We present the profile likelihood, scale
of perturbativity (Ap) and semi-annihilation fraction («) in the top, middle and lower panels
respectively of Figure 7.12 in the mg and Apg parameter space and Figure 7.13 in the mg and

us parameter space, for scans over the full range of mM°. On the left panels we present the

results from fits with the requirement that Ap > max(mglis, m¢) and a metastable vacuum

allowed, and on the right we add the additional requirement of absolute vacuum stability. For
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each bin on these plots we display the value of o and Ap for the point with the maximum
likelihood.

In Figure 7.14 we present the results from a focused scan over the low mass range, with
the profile likelihood on the left panels and the scale of perturbativity on the right. The
semi-annihilation fraction is approximately zero everywhere in this mode so we omit the cor-
responding plot for a. As in the Zs model, the requirement of absolute vacuum stability rules
out all points in the low mass resonance region except the top of the neck, so we do not present
a focused scan with this requirement.

The phenomenologies of the Zs and Z3 models are notably different. In the Apg, mg
parameter space (Figure 7.12) there is one large mode at high masses, instead of two separate
modes as in the Zy case (Figure 7.8). The distribution of this mode is also very different,
extending to much smaller values of A\pg for mg ~ 100 GeV, and only resembling the shape of
the corresponding region in the Zs model for mg on the TeV scale.

The extent of the high mass mode with respect to A, can be understood by considering the
fraction of semi-annihilation present for the model at each point. In the lower panel of Figure
7.12 we plot the semi-annihilation fraction, o, within the 20 confidence regions. The region of
the mode that is ruled out in the Zs model has o &~ 1, corresponding to a model where the
semi-annihilation channel dominates. When « is large, semi-annihilation plays a greater role
in achieving the correct relic density in the early universe, so the same relic abundance can be
reached with a smaller value of the portal coupling. Therefore, the bound from Qgh? < Qparh?
can be avoided until much lower values of Apg, by invoking a large amount of semi-annihilation.
Likewise since the relic density is lower, and we consistently rescale the local dark matter
density, the reduced relic density combines with a lower value for the portal coupling (and
thus scattering cross-section) to allow the model to more easily evade the direct detection
constraints.

In Figure 7.13 we present the profile likelihood, scale of perturbativity and semi-annihilation
fraction with respect to mg and p3. The allowed region is constrained by the vacuum stability
condition on the maximum value of uz in Eq. (7.1), particularly at small singlet masses. The
semi-annihilation fraction is proportional to usAi,/mS at leading order [102], which agrees
with the observation that « is largest for smaller masses (for mg 2 100 GeV) and large portal
couplings, since the dependence on pus3 is relatively weak. Instead, it is the dependence on Ajg
and mg which dominates. However, in the resonance mode, with mg ~ my, /2, us3 and thus the

semi-annihilation are strongly constrained by Eq. (7.1).
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Figure 7.12: The profile likelihoods (upper), scale of perturbativity violation (middle) and
fraction of semi-annihilation (lower) with respect to Apg and mg for the Zs scalar singlet model
with (right panels) and without (left panels) the requirement of an absolutely stable electroweak
vacuum. In both cases we have the requirement that Ap > max(m¥® m;) . White contour
lines mark out the 1o and 20 confidence regions. The best-fit (maximum likelihood) point is

indicated with a white star.
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Figure 7.13: The profile likelihoods (upper), scale of perturbativity violation (middle) and
fraction of semi-annihilation (lower) with respect to us and mg for the Zs scalar singlet model
with (right panels) and without (left panels) the requirement of an absolutely stable electroweak
vacuum. In both cases we have the requirement that Ap > max(m3* m,). White contour
lines mark out the 1o and 20 confidence regions. The best-fit (maximum likelihood) point is

indicated with a white star.



7.6. The status of the Z3 model at UV scales 165

GAMBIT 1.0.0 GAMBIT 1.0.0
]L.0

] oy

. 5

108 %
i = =
3 —o6 3 2 =
< 1 &8 < o
(=1 -1 = o L
& 1 = o 2
< 04 2 = &
42 e

[

o

~

02 &

E

GAMBIT 1.0.0
]1.0

] T

— =

o8 &
1 = ~
— ] g o~ ®
> 06 3 > 2
[} 1 2 [} =
@) s - O 5
~— . E/P ~— F
o0 5 o” mA
2 04 - X =

[

S

L

02 bH

50 59 60 65
ms (GeV)

Figure 7.14: The profile likelihood (left) and scale of perturbativity violation (right) for the Z;

scalar singlet model with the requirement that Ap > max(mM S my) with respect to mg and

Ans (upper) and ms and ps (lower). White contour lines mark out the 1o and 20 confidence
regions. The best-fit (maximum likelihood) point is indicated with a white star.

7.6.2 Scale of non-perturbativity and vacuum stability

The results of our global fit with the requirement of an absolutely stable vacuum are presented
as profile likelihoods for the Zj3 scalar singlet model in the right panels of Figures 7.12 and
7.13 for scans over the full scalar mass range. The parameter space opened up by the semi-
annihilation channel, which extends the high mass modes to lower values of Apg, is not entirely
compromised by the constraint of absolute vacuum stability. Although the lower tip is lost,
vacuum stability is still achieved to a value of Apg ~ 0.04. This is almost an order of magnitude
smaller than the equivalent fit in the Zo model.

However, when we consider the scale of perturbativity violation we find that it is extremely

low throughout this high mass mode, such that the stability of the vacuum is phenomenologi-
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Stable Relic

vac. Ap (GeV) density As Ahs ms (GeV) p3 (GeV) Qsh? log(£) AlnLl
~ > 102° < 2.38 x 1072 4.60 x 107% 62.48 0.7230  0.04695 —36.02 0.108
v 238 < 3.54 5.33 x 1072 62.48 540.3 0.002991 —36.25 0.340
v 2.0 x 10%% < 0.235 0.841 2309 961.3 0.1081  —37.43 1.52
v 2.6 x 1017 v 0.204 0.775 2183 517.6 0.1128  —37.67 1.76

Table 7.7: Details of the best-fit points for the UV-scale study of the Z3 scalar singlet model,
with different conditions on the model. Points with a singlet relic density within 1o of the
Planck observed value (2 sh? ~Qp Mh2) are indicated with a tick in the third column, otherwise
we allow for the case where singlet particles may be a sub-dominant component of dark matter,
Ogh? < Q puh?. Best-fits have an absolutely stable (indicated by a tick in the first column)
or metastable electroweak vacuum. We omit the values of the nuisance parameters, as they do
not deviate significantly from the central values of their associated likelihood functions.

cally irrelevant for these points. The value of Ap is given in the middle panels of Figures 7.12
and 7.13. We find that Ap is much less than 10'° GeV throughout most of this high mass mode.
As discussed in Section 7.3.2, these points are considered “stable” only because we are not able
to run the quartic Higgs coupling to the typical scales of instability due to perturbation theory
breaking down.

In Figure 7.15 we present the profile likelihood when a cut is placed such that all points
satisfy the requirement A > 10'° GeV. As we have not performed a separate scan with this
requirement, instead cutting out points from the original scans, the sampling is not exceptional.
However, we will find a point in this model that does remain perturbative up to the typical
instability scales, and is confirmed to have a stable electroweak vacuum in Section 7.6.3, and
show that this still gives a good fit to the data.

The reason large couplings are required in the high mass mode is related to the semi-
annihilation that is responsible for opening up this part of the parameter space in the first place.
In the Z3 model there is a large mode in the likelihood at high couplings and masses = 100 GeV.
This mode is dominated by points with large fractions of semi-annihilation. However, this in
turn requires that the coupling us is large, of order 2 0.1 — 1 TeV. On the other hand, this
implies that Ag must be large to satisfy Eq. (7.1). So although we have a large area of the
parameter space available due to this new semi-annihilation channel in the Zs model, it is
limited in phenomenological appeal due to the perturbativity violation resulting from the large
couplings required. Such an observation would not have been possible if we simply studied this
model as a low energy effective field theory, and unlike in the Zs model where many points

survive our test of perturbativity, the situation is somewhat more serious here.
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Figure 7.15: The profile likelihood (left) and scale of perturbativity violation (right) for the Zs
scalar singlet model with the requirement of a stable electroweak vacuum and Ap > 10 GeV.
White contour lines mark out the lo and 20 confidence regions. The best-fit (maximum
likelihood) point is indicated with a white star.

7.6.3 Best-fit point

The best-fit point in the Zs model, with metastability allowed, it is at As = 2.38 x 1073,
Ahs = 4.6x107%, mg = 62.48 GeV and uz = 0.7230 GeV. This point has a lifetime of ~ 1.3x 1008
years, and minimum Higgs quartic coupling at ~ 3 x 10'3 GeV. The semi-annihilation fraction
at this point is @ = 0. For this point we find log(£) = —36.02 and Aln £ = 0.108. This is
only slightly worse than the equivalent best-fit in the Zs model, which is more likely the result
of sampling than a phenomenological difference, since semi-annihilations are effectively zero in
the resonance mode.

With the additional constraint of absolute vacuum stability the best-fit is located at Ag =
3.54, A\ps = 5.33x 1072, mg = 143.0 GeV and u3 = 540.3 GeV. In this case the semi-annihilation
fraction is @ = 0.986. This point has a log(£) = —36.25 and Aln £ = 0.340, compared to the
equivalent point in the Zy model this represents a factor of two improvement, which has been
possible due to the semi-annihilation channel. However, Ap at this point is only 238 GeV, due
to the large value of Ag. Therefore, like the point located with these conditions in the Zo model,
it is not phenomenologically interesting given this very low Ap.

If we also demand that Ap > 10" GeV then we find a point with an absolutely stable
vacuum, Ap = 2.0 x 10> GeV and a = 0.0128. The profile likelihood and value of Ap within
the allowed region with this additional requirement is presented in Figure 7.15. This point
is located at Ag = 0.235, Aps = 0.841, mg = 2309 GeV and usz = 961.3 GeV. This point has
log(£) = —37.43 and Aln L = 1.52, with the dominant contributions coming from the most
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recent direct detection limits (LUX 2016 and XENONIT). This corresponds to a likelihood
ratio A = 0.24, which places this point outside 1o but within 20 of the overall best-fit point for
the Z3s model. Thus, as in the Zs model, we again see mild tension between direct detection
limits and the requirement for the model to be absolutely stable and perturbative to at least
the GUT scale.

Finally we consider a point that is perturbative to at least 10'®> GeV, has a stable electroweak
vacuum and has a singlet relic density within 1o of the Planck measured value. The best-fit
point under these requirements is located at Ag = 0.204, Aps = 0.775, mg = 2183 GeV and
uz = 517.6GeV. This point has Qgh? = 0.1128 and Ap = 2.6 x 107 GeV. This point has
log(£) = —37.67 and Aln £ = 1.76.

The four best-fit points, the corresponding relic densities and the scale of perturbativity
violation are presented in Table 7.6.

Following the same reasoning as in Section 7.4.2 we obtain an approximate range for p-values
by assuming either one or two degrees of freedom. For the best-fit point with metastability
allowed we find p =~ 0.6 — 0.9. The best-fit with vacuum stability required has p ~ 0.4 — 0.7
and the model that is perturbative up to 10" GeV and has an absolutely stable vacuum has
p ~ 0.1 — 0.2. The additional requirement of the relic density being equal to the Planck
measured value gives the same range of p &~ 0.1 — 0.2. Thus, except for the metastable point
which is the same, these models have slightly worse p-values than the corresponding points in
the Zs model, despite the semi-annihilations opening up a large region of parameter space. We
note that the Zs model is not a simple sub-model of Zg model, in that we would not expect
u3 = 0 to be equivalent to the Zs scenario. Even with pus = 0 RGE running can result in a
non-zero value at other scales, so the difference in phenomenology not only comes from the
relative factors of two in the annihilation cross-sections and Higgs invisible width, but also

from differences in the spectrum calculation (masses and running couplings).

7.7 Comparison to existing results

The most recent study of the scalar singlet model with a Zy symmetry and a wide range of
experimental constraints was that of Beniwal et al. [76]. This study is an ideal candidate with
which to compare our results, in order to check for consistency and determine the impacts of the
newest experimental constraints. There are two important differences in the ingredients of our
study and that of Beniwal et al. [76]. First, we include stronger dark matter direct detection
constraints from LUX [285] and PandaX [286], which exclude a large part of the parameter

space. Second, we scan many relevant nuisance parameters, whereas previous studies have
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taken them as fixed. The effect of this can be seen along the boundaries of the confidence
intervals, where the viable regions are always at least as large in a scan where the nuisances
are allowed to vary as in one where they are fixed.

Considering these differences, we see consistency between the results in Section 7.4 and
this existing study. In particular this is seen in Figure 7.3 and Figure 4 of Beniwal et al. [76],
both in the low and high-mass parts of the A\pg, mg parameter space. The increased size of
the allowed region resulting from the variable nuisance parameters is evident along all contour
edges. The behaviour of the stronger direct detection constraint is also visible, in the top left
corner of the triangular part of the allowed region in the left panel of Figure 7.3, and on the
right side of the “neck”. In the high-mass area of the parameter space (right panel of Figure
7.3), we also see LUX and PandaX cutting a large triangular region into the allowed parameter
space, essentially separating the high-mass solutions into two separate likelihood modes.

The role of semi-annihilations in the Zg charged scalar singlet model has been studied in
Ref. [111]. They show that semi-annihilations can dominate over ordinary annihilation in some
parts of the parameter space, as we have demonstrated in Figure 7.12, with some points having
a =~ 1. In Ref. [112] Z3 scalar singlet dark matter is considered as a mechanism of generating
radiatively induced neutrino masses, although no study of the dark matter phenomenology is
presented. The Z3 symmetry has also been studied in other scenarios which are not directly
relevant here, such as dark matter stabilised through spontaneous symmetry breaking and GUT
models [309,310].

The most relevant phenomenological study of the scalar singlet model with a Z3 symmetry
is presented by Belanger et al. [102]. Opportunities for direct comparison with this study are
limited since they use flat priors, a random sampling algorithm (and thus risk missing viable
solutions) and do not allow for a scalar singlet which under populates the relic abundance.
However, we can compare Figure 7.13 with Figure 6 of Ref. [102], where we see the same
behaviour with respect to the bound on p3 coming from Eq. (7.1) and the distribution of «
within the allowed region. We also locate an allowed region at mg ~ 1 TeV which has solutions
valid up to GUT scale, analogous to that given in Figure 7 of Ref. [102]. Finally, we have also
verified that we can reproduce Figure 2 of Ref. [102] using our computational set-up in Figure

7.1.

7.8 Conclusions

The extension of the SM by a scalar singlet stabilised by a Zo or Zs symmetry is still a

phenomenologically viable dark matter model, whether one demands that the singlet constitutes
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all of dark matter or not. However, the parameter space is being continually constrained by
experimental dark matter searches. This is evident in the global fit that we have presented
in Section 7.4, combining some of the latest experimental results and likelihoods to provide
an extremely stringent constraint on the parameter space of this model. Direct detection
experiments will fairly soon probe the entire high-mass region of the model, with XENON1T
expected to access all but a very small part of each of the high-mass islands [75]. The resonance
region will prove more difficult, though some hope certainly exists for ton-scale direct detection
to improve constraints from the low-mg direction, and for future colliders focussed on precision
Higgs physics to probe the edge of the region at Apg ~ 0.02.

In Section 7.5 we have shown that it is still possible to stabilise the electroweak vacuum
through the addition of a scalar singlet field charged under a Zs symmetry. Since the high
energy minimum in the SM exists around the GUT scale, if we are to argue that this minimum
should be removed, then we should also expect the model to remain perturbative to at least
this scale. Otherwise, we could argue that GUT scale physics is irrelevant from the beginning.
With this additional consideration, the viable parameter space is significantly reduced to a small
mode at scalar masses of ~2TeV. By placing the additional requirement of perturbativity up
to high scales we find a viable solution that is still an acceptable fit to the experimental data,
even for a model that constitutes all of the dark matter, although this will soon be heavily
constrained by direct detection experiments.

The generalisation to a scalar singlet with a Zs symmetry opens up a large region of the
parameter space that was excluded by direct detection experiments in the Zs model. This
is due to the semi-annihilation channel allowing the same relic density to be achieved with a
lower annihilation cross-section. However, the additional constraint of pertubativity up to at
least 10™ GeV compromises this semi-annihilation channel. This is because semi-annihilations
require a large Ay coupling, which in turn results in the dimensionless couplings becoming
large at low renormalisation scales. So, although semi-annihilations can open up the scalar
singlet parameter space, the viable solutions are severely limited by the requirement that the
theory remain perturbative up to high scales. However, even with the requirements of absolute
vacuum stability, perturbativity to at least 10'° GeV and that the scalar constitutes all of the

dark matter relic density, we are still able to find a viable solution.



8 Comparison of statistical sampling methods

8.1 Introduction

Statistical sampling algorithms are a fundamental part of global likelihood analyses. The choice
of algorithm and the implementation can significantly affect the quality of the results. In some
cases, a poorly sampled likelihood function can result in incorrect inferences. An inefficient
sampling method could also result is wasted computing resources. On the other hand, if care
is taken to choose the best algorithm for the parameter space, and to implement it correctly,
outstanding results can be obtained with maximal computing efficiency. In this chapter we
present an exploration of the performance of the four major scanners available in GAMBIT
1.0.0, when applied to a physically realistic likelihood function.

By offering the capacity to vary the scanning algorithm and its operating parameters —
whilst keeping all other aspects of a scan identical — ScannerBit [6] provides a unique testbed
for comparing sampling algorithms. The modularity of the scanner interface allows consistent
comparison between both the algorithms themselves, and between different choices of algorithm
parameters. The scanners available via this interface are MultiNest [203], a nested sampling
algorithm, Diver, a differential evolution algorithm [6], GreAT an MCMC sampler [198] and
T-Walk an ensemble MCMC sampler [6]. See Section 1.3.1 for a review and discussion of these
sampling algorithms in the context of particle phenomenology.

This investigation is intended to reveal the strengths and weaknesses of different sampling
algorithms with respect to typical user requirements. These requirements can be quite varied,
and may include the choice of statistical approach (frequentist or Bayesian), the time taken for
a scan to converge, the reliability of the results, or some combination of the three. However,
for any thorough investigation, the user should typically take advantage of the unique flexi-
bility offered by ScannerBit to employ a range of algorithms, statistical methods, and scanner
parameters in order to obtain the most complete and robust sampling possible.

For this demonstration, we work with the Zs scalar singlet dark matter model introduced
in Section 1.2.1. We study the model at a fixed scale and do not perform any RGE running.
This model has two parameters beyond the SM: the Higgs portal coupling Apg, and the singlet
Lagrangian mass parameter pug. We present the results in the effective parameter space of Apg
and mg, where the physical singlet mass mg is given by Eq. (1.2). The likelihood and posterior

are both multimodal and highly degenerate across several orders of magnitude in the values of
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these parameters.

To investigate how performance scales with dimensionality, we introduce additional param-
eters that enter into the combined likelihood function. These parameters are well constrained
by unimodal likelihood functions, but still create a significant challenge for any sampling al-
gorithm due to the increase in the dimensionality of the parameter space. In particular, we
carry out detailed tests in two, seven and 15 dimensions, and one scan with each sampler for
dimensionalities between two and 15. We list the free parameters for each scan in Table 8.1.
For all test scans, we apply a logarithmic prior to the singlet parameters Aps and mg, and flat
priors to the additional parameters.

In the following, we only show full results from the 15-dimensional scans. Increasing the
dimensionality of the problem across this particular parameter space does not substantially
shift the location nor shape of the final likelihood with respect to A\;s and mg. As a result, the
best-fit point and regions of maximum likelihood remain similar. For comparison, in Appendix
D we give additional detailed results in two dimensions. The inclusion of additional parameters
does significantly increase the runtime for the scanning algorithms, and degrades their ability
to locate the maximum likelihood point. Note that choosing a more complicated model, with
more complicated parameters in the “higher” dimensions, would only increase the required
computing time, making such an extensive comparison study infeasible. We refer the interested
reader to the studies on supersymmetric models in Refs. [160,161] for applications of Diver and
MultiNest to higher-dimensional multimodal parameter spaces.

The dominant physical constraints on the model that we consider here come from exper-
iments searching for dark matter via direct and indirect detection, the observed limit on the
thermal relic abundance of dark matter, and constraints on the rate of invisible Higgs decays
at the LHC. We also apply the constraint Apg < 10, as larger values would violate perturba-
tivity and are therefore not physically interesting. More details on the model can be found
in Chapter 7 and Refs. [5,16,59-61, 66, 74-77]. Here our test function consists of the same
likelihood components as in Ref. [5] and the fixed-scale study in Chapter 7. Although this is
a simple, well-studied extension of the SM, the parameter space is still sufficiently non-trivial
that it constitutes an illustrative test of scanner performance.

In Sections 8.2—8.5 we discuss the most appropriate choices of settings for MultiNest, Diver,
T-Walk and GreAT, respectively. In order to make comparisons, we require fair metrics with
which to compare the outcomes of scans. We first look at the best value of the log-likelihood
found in each scan, which is crucial for the correct normalisation of the profile likelihood

(Figures 8.1, 8.2, 8.6 and 8.9). The results of this test favour algorithms primarily intended
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Figure 8.1: Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and
MultiNest scanners, for a range of convergence tolerances and a fixed number of working points.
Tolerances correspond to the parameter tol for MultiNest and the parameter convthresh for
Diver. Working points correspond to the parameter Ny, for MultiNest and the parameter np

for Diver. Figure from Ref. [6].
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Table 8.1: Parameters, ranges and central values of the test scans of this section, for each scan
dimensionality. The ranges for most SM parameters correspond to +3¢ variations around the
2014 PDG central values [291]. For the Higgs, the range is +40 about the 2014 central value
(which encompasses the 2015 40 range [293]). For the up and down quark masses, we take the
central values from the 2014 review, and scan over a range of +20% around the central values.
This is intended to capture the +30 range implied by the likelihoods in PrecisionBit [4], which
deal with correlated mass-ratio measurements. The nuclear couplings also incorporate a range
of +30 around the best estimates. The dark matter density has an asymmetric range about
the central value, as the likelihood that we apply to this parameter is log-normal rather than
Gaussian. We refer the reader to Refs. [5,75] for further details and references on the central
values and uncertainties associated with the local density and nuclear parameters.

Parameter Values
Scalar pole mass Mg [45,10%] GeV
Higgs portal coupling Ahs [107%,10]

Varied in 7 and 15-dimensional scans
Electromagnetic coupling 1/aMS(my)  127.940(42)

Strong coupling aMS(my) 0.1185(18)
Top pole mass mye 173.34(2.28) GeV
Higgs pole mass my, 125.7(1.6) GeV
Local dark matter density 2 0.4703 GeVem ™3

Varied in 15-dimensional scans

Nuclear matrix el. (strange) Os 43(24) MeV
Nuclear matrix el. (up + down) o 58(27) MeV
Fermi coupling x 10° Grs 1.1663787(18)
Down quark mass Q/T(2 GeV) 4.80(96) MeV
Up quark mass F@ GeV) 2.30(46) MeV
Strange quark mass mMS(2GeV)  95(15) MeV

mMS(m,)  1.275(75) GeV

mMS(my)  4.18(9) GeV

Charm quark mass
Bottom quark mass

as optimisers, whilst disadvantaging those mainly designed to map the likelihood function or
posterior. We therefore also compare the visual quality of the profile likelihood maps (Figures
8.3, 8.5, 8.7 and 8.10), and the corresponding posterior maps (Figures 8.4, 8.8 and 8.11). This
is a more qualitative approach, better suited for algorithms intended to explore the parameter
space.

We also make some additional comparisons between the four sampling algorithms. In the
first two of these tests, we are interested in the relative performance as a function of parameter
space dimensionality (Section 8.6) and the total CPU time required to complete a scan (Section
8.7). Here, we focus mostly on the value of the best-fit log-likelihood and the time taken to
achieve it. These sections are most relevant for evaluating profile likelihood performance; in
Section 8.8, we instead focus on the specific merits of different algorithms for mapping the

Bayesian posterior. We discuss the overall implications of these results in Section 8.9.
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Figure 8.3: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the MultiNest scanner with a selection of difference tolerances (to1) and
numbers of live points (nlive). The maximum likelihood point is shown by a white star. Figure
from Ref. [6].

We performed all tests using a high-performance computing cluster, taking advantage of
the ability to run GAMBIT in parallel across multiple processors. In the interests of making
sensible use of computing resources and time, we ran the two-dimensional scans on a single
24-core compute node, using 24 MPI processes. For the seven- and 15-dimensional scans, we
used 10 nodes, for a total of 240 MPI processes. For the scans where we compare performance
with respect to dimensionality, a consistent computing environment is required; here we used 5
nodes for all scans, corresponding to 120 MPI processes.! The two-dimensional profile likelihood

and marginalised posterior maps that we show in this chapter were produced with pippi [294],

! Although GAMBIT is also able to use OpenMP threads for further (likelihood-level) parallelisation within
individual MPI processes [16], here we limit ourselves to distributed-memory parallelisation with MPI, seeing as
this is the form of parallelisation employed by the scanning algorithms.
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Figure 8.4: Marginalised posterior probability density maps from a 15-dimensional scan of
the scalar singlet parameter space, using the MultiNest scanner with a selection of difference
tolerances (to1) and numbers of live points (n1ive). Note that the colourbar strictly only applies
to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot,
rather than to the same iso-posterior density level (i.e. the transition from red to purple is
designed to occur at the edge of the lo credible region, and so on). The posterior mean is
shown with a grey bullet point. Figure from Ref. [6].
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using 150 bins in each dimension.

8.2 MultiNest

MultiNest’s ability to accurately evaluate the evidence and map the posterior is directly affected
by the number of live points used in a scan, with more live points increasing the chance of finding
all relevant modes of the posterior. On the other hand, more live points means more likelihood
evaluations, and requires greater computing resources. The overall duration of the scan is also
influenced by the stopping criterion, which is given by the tolerance on the final evidence (the
estimate of the largest evidence contribution that can be made with the remaining portion of
the posterior volume). The sampling parameters that we vary are therefore the number of live
points (Njive, nlive) and the tolerance (tol).

We perform runs with 2000, 5000, 10000 and 20000 live points, and tolerances of 1074,
1073, 1072 and 10~!. The values of the best-fit log-likelihoods achieved for scans using these
parameters are shown in Figures 8.1 and 8.2. In Figure 8.3, we present a selection of the profile
likelihoods from MultiNest scans in the full 15-dimensional parameter space; in Figure 8.4 we
give corresponding marginalised posterior maps.

We see consistent best fits from all scans when to1 < 1073, A sufficiently small tolerance
appears to provide a good best-fit value over a large range of nlive values. On the other hand,
even with larger values of nlive, setting tol too large will still negatively impact the quality
of the best-fit point; even with 20000 live points we still see a poor best-fit likelihood if the
tolerance is greater than 1072. The number of live points has a more significant impact on
the sampling of the parameter space, as can be seen in Figures 8.3 and 8.4. In these plots, a
significant difference in the quality of both profile likelihood and posterior sampling is evident
even between runs done with 2000 and 5000 live points.

On the basis of these results, we recommend an upper bound on the tolerance of 1073 if
MultiNest is to be relied upon for obtaining the appropriate normalisation for profile likelihoods.
The number of live points required will depend on the desired quality of the resultant profile
likelihood or posterior contours, and the dimensionality of the parameter space. In Figure 8.3,
it is clear that in 15 dimensions a value of at least 20 000 for nlive is required to give fine-grained
sampling of the profile likelihood. Because in most cases one is interested in a global fit over
many parameters, we recommend a value of 20000 live points as the lower limit. We note
however that this may be reduced somewhat if dealing with a lower-dimensional parameter
space, or if one is only interested in mapping the posterior at a lower resolution (less bins) than

we have employed here.
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Figure 8.5: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet pa-
rameter space, using the Diver scanner with a selection of difference convergence thresholds
(convthresh) and population sizes (wp). The maximum likelihood point is shown by a white
star. Figure from Ref. [6].

8.3 Diver

Diver is a differential evolution optimisation package that is also highly effective at sampling
parameter spaces. The size of the evolving population is determined by the np parameter, and
the threshold for convergence is controlled by the convthresh parameter.

We examine population sizes of np = 2000, 5000, 10000 and 20000, and convthresh values
of 1074, 1073, 1072 and 10~!. Although these parameters have different definitions to nlive
and tol in MultiNest, we take advantage of the similarity in the appropriate ranges for these
and plot the scan results on the same axes in Figures 8.1 and 8.2. We see that a convthresh

value of less than 10~3 gives consistent results for the best-fit log-likelihood at all values of up.
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In two dimensions, both MultiNest and Diver are able to find roughly the same or equiva-
lently good best-fit points. The differences in the algorithms become evident in seven and 15
dimensions however, where Diver consistently outperforms MultiNest for equivalent parameter
values. This is somewhat expected, given that Diver is designed as an optimisation routine,
whereas MultiNest is intended to compute the Bayesian evidence and sample the posterior dis-
tribution. In two dimensions, the sampling is dense enough that MultiNest has been able to
locate the best-fit point, but in higher dimensions the task is more suited to an optimisation-
specific routine. Because the maximum likelihood is located in the low-mass region in both
two, seven and 15 dimensions, it is indeed a result of poor sampling that MultiNest has not
located the same best fit that Diver has achieved (see Appendix D for equivalent plots for two
dimensional scans). We return to this discussion in Section 8.9.

In Figure 8.5, we investigate the ability of Diver to accurately map the contours of the
profile likelihood. We see that both the convthresh and np settings are relevant in reproducing
the desired contours. A convthresh of 1073 appears appropriate in 15 dimensions, along with
an NP value of at least 20000. However, these requirements become less stringent in a lower-
dimensional parameter spaces (see Appendix D for examples in two-dimensions), where they
can be reduced by at least an order of magnitude whilst still achieving a suitable mapping of
the profile likelihood.

From these tests, we recommend similar settings as for MultiNest for similar parameters: for
a detailed picture of the profile likelihood a value of 20 000 is recommended for vp (although this
can be reduced for lower dimensional parameter spaces), and to consistently find the best-fit

point an upper bound of 1072 is recommended for the convthresh convergence tolerance.

8.4 T-Walk

T-Walk is an ensemble MCMC algorithm. The primary parameters of interest are the number
of chains used during the scan and the stopping criterion. The latter is controlled by the
parameter sqrtk, which is the square root of the Gelman-Rubin R statistic, where 1 is perfect.
For comparison with other scanners, we define the equivalent tolerance of T-Walk scans as tol
= sqrtR — 1. The chain_number is bounded below by 1 + projection_dimension 4+ the number of
MPI processes in use (see the T-Walk documentation in Ref. [6]). For two dimensions, we have
a lower limit of 27 (24+2+ 1), and therefore perform tests with 27, 54, 81 and 108 chains. For
higher-dimensional scans, the increase in the number of MPI processes requires larger chain

numbers, so we choose 256 and 512. We consider tol values of 0.3, 0.1, 0.03 and 0.01.
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The best-fit log-likelihoods from scans using various T-Walk settings are given in Figure 8.6.
In two dimensions, we hold the tolerance fixed and investigate the effect of varying the chain
number. We see no notable trend with chain number, for either of the tolerance values. For the
seven and 15-dimensional scans, we therefore instead focus on varying the tolerance for a fixed
number of chains. This reveals the expected trend: smaller tolerances result in improvements
to the best-fit log-likelihoods. A significant improvement seems to occur when tol < 0.1. We
also notice no significant difference between the scans with 256 and 512 chains, consistent with
what we saw in the two-dimensional scans.

In Figure 8.7, we show a selection of profile likelihood maps of the 15-dimensional scalar
singlet parameter space. We immediately see that smaller tolerances are preferable for a de-
tailed sampling, and doubling the number of chains has no notable impact on the quality of
the sampling. In Figure 8.8, we show a selection of the marginalised posterior maps of the
15-dimensional scalar singlet parameter space achieved by T-Walk. Here we see that whilst
the main posterior modes appear to be better explored with smaller values of to1, leading to
smoother, better-converged posterior contours, the presence of the minority mode at low mass
would seem to be more evident in scans using a higher tolerance. This may appear counter-
intuitive; why should poorer sampling apparently do better at uncovering small regions such
as this? In reality, this region has been sampled more carefully in the scans with lower to1
values, despite appearing less prominently in the posterior maps. That the sampling in these
regions is better at lower tolerances can be seen from Figure 8.7, where lower tolerances pick
up better-fit points in this region. Nevertheless, the additional samples retrieved in runs with
lower tolerances provide a steadily more accurate indication of relative posterior weights of each
of these modes, gradually leading the low-mass solution to become reweighted and disfavoured
in the better-sampled posterior maps of Figure 8.8.

Recommending parameters for the T-Walk algorithm is difficult, due to the sensitivity of
the convergence to the tol = sqrtk — 1 parameter. However, values less than ~ 0.1 appear
to be safe for the scans we have conducted here. Increasing the number of chains above the
minimum value does not appear to result in any improvement in the quality of the best-fit, nor
in the overall sampling. As starting values for a study using the T-Walk scanner, we therefore

recommend setting tol < 0.1 and leaving chain_number at the default (minimum) value.

8.5 GreAT

The Grenoble Analysis Toolkit (GreAT [198]) is a traditional Metropolis-Hastings MCMC able

to sample parameters in parallel using multiple independent chains. The number of chains is
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Figure 8.7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet param-
eter space, using the T-Walk scanner with various numbers of chains and different tolerances.
The maximum likelihood point is shown by a white star. Figure from Ref. [6].

controlled by the nTriallists parameter, and the number of points to run each chain for is
controlled by nTrials. No other convergence criteria are available.

For all dimensionalities, we consider nTrials values of 100, 200, 500, 1000, 2000, 5000 and
10000. For scans in Ngim = 7 or 15 dimensions, we test nTrialLists values of Ngim, Ngim + 1
and Ngim + 2. For the two-dimensional scans, we consider a larger range, setting nTriallists
to 2, 4, 24 and 48. We plot a selection of these results in Figure 8.9.

In two dimensions, we see that more chains result in some improvement in the reliability
of the algorithm in uncovering competitive values of the best-fit likelihood. Unsurprisingly,
Figure 8.9 also illustrates a tendency for longer chains to uncover slightly better fits. These
trends are both borne out substantially more strongly in seven and 15 dimensions. Visual

inspection of the profile likelihood maps in Figure 8.10 indicates that beyond nTrials of about
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Figure 8.8: Marginalised posterior probability density maps from a 15-dimensional scan of the
scalar singlet parameter space, using the T-Walk scanner with various numbers of chains and
different tolerances. The second to rightmost panel is from a 512-chain scan with a tolerance
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credible region, and so on). The posterior mean is shown with a grey bullet point. Figure from
Ref. [6].
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Figure 8.10: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTriallists) and
chain lengths (nTrials). The maximum likelihood point is shown by a white star. Figure from
Ref. [6].

1000, these improvements in best-fit likelihood with increasing numbers of chains do not come
with any substantial impact on the overall quality of sampling across the rest of the parameter
space. We do notice a small runtime improvement, however. For example, two two-dimensional
scans, each with 10000 samples per chain, took 119 min to complete with nTriallists = 48, but
165 min with nTrialsLists = 4. The best-fit log-likelihoods returned by the two scans were equal
to the third significant figure. This timing difference reflects the improvement in acceptance
that can be achieved when GreAT is able to draw on many different chains for constructing its
correlation matrix.

In Figure 8.11, we show the posterior maps resulting from the final set of independent

samples returned by GreAT after its thinning process. Clearly, none of the scans we have run
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Figure 8.11: Marginalised posterior ratio maps from a 15-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTriallists) and
chain lengths (nTrials). Note that the colourbar strictly only applies to the rightmost panel,
and that colours map to the same enclosed posterior mass on each plot, rather than to the
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the edge of the 1o credible region, and so on). The posterior mean is shown with a grey bullet
point. Figure from Ref. [6].
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produce enough independent samples for a convergent map of the posterior, at least at the
relatively high bin resolution that we employ for these tests.

For all scans, we observe that a minimum value between 1000 and 10000 for nTrials is
required in order to achieve a consistent value for the best-fit log-likelihood. We also notice that
very low values (below ~ 1000) map the profile likelihood rather poorly. The value of nTrialLists
appears to be less crucial to the quality of the result; in general, values of Ngi, + 1 and above
appear to give relatively stable results when coupled with nTrials 2 10000. Substantially longer

chains (nTrials > 10000) would probably be required to obtain high-resolution posterior maps.

8.6 The effect of dimensionality on performance

We have studied scanner performance in detail for two, seven and 15-dimensional parameter
spaces, by increasing the number of nuisance parameters; each additional parameter adds an
additional Gaussian component to the likelihood, and modifies the existing components. We
now fix the computing configuration and scanner parameters (or apply a consistent scaling
with dimensionality, where appropriate), and carry out scans for every possible dimensionality
from two to 15. The results of these tests are presented in Figure 8.12. The scanner settings

we use for these tests are:
Diver: wp = 20000, convthresh = 1073
MultiNest: nlive = 20000, tol = 1073
T-Walk: chain_number = number of MPI processes + Ngim + 1, tol = sqrtk — 1 = 0.05
GreAT: nTrials = 2000, nTrialsList = Ngjm + 1

To reach convergence, GreAT requires significantly more likelihood evaluations for a larger
number of dimensions. Although this is undoubtedly in part due to the increased number of
chains used in higher dimensions, even with this increased number of evaluations, the best-
fit log-likelihood is not competitive with that achieved by either Diver or MultiNest. If we
demanded that all scanners must achieve the same quality of best fit, then it is clear that
GreAT would require an even greater number of function evaluations to achieve this. Judging
from the quality of best fit, the decrease in the number of evaluations required for convergence
by GreAT in higher dimensions is clearly the result of spurious early convergence, rather than
any increase in performance.

Diver performs extremely well at all dimensionalities, out-performing the other three scan-

ners in terms of quality of best fit at Ng;, > 10. It also achieves this using a consistent number
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Figure 8.12: Best-fit log-likelihood (left) and number of likelihood evaluations (right) as a func-
tion of dimensionality, for all four scanning algorithms, using a fixed computing configuration
and scanner settings. Figure from Ref. [6].

of likelihood evaluations across the full dimensionality range. MultiNest is able to achieve a
competitive best-fit log-likelihood up until Ngjn ~ 10, however this comes with a steady in-
crease in the number of evaluations with respect to dimensionality. T-Walk runs for a consistent
number of likelihood evaluations across all dimensions, despite the required increase in number
of chains, yet the best-fit deteriorates significantly with respect to dimensionality, in much the
same way as it does with GreAT. The ensemble version of the MCMC algorithm implemented
by T-Walk essentially provides the same best-fit performance as the regular MCMC (GreAT),
but with a significant improvement in efficiency with increasing dimension. Overall, at least in

this parameter space, Diver appears to be the scanner of choice for larger dimensions.

8.7 Scanning efficiency

The number of likelihood evaluations required to reach convergence is not the only reasonable
metric for scanner efficiency. In general the number of evaluations is used as a proxy for
time, as the likelihood evaluations are generally expected to be the bottleneck in most scans
— but it is also illustrative to look directly at actual runtime. The efficiency of a scanner
can be degraded by poor use of parallel processing capabilities, or by complicated calculations
performed between likelihood evaluations. This can lead to a divergence between the apparent
performance assessed purely by number of function evaluations, and the true walltime needed.

We therefore record the actual CPU time used for all scans, and compare with the total number
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Figure 8.13: The real time required as a function of likelihood evaluations for two- (upper-left),
seven- (upper-right) and 15-dimensional (lower) scans. Figure from Ref. [6].

of likelihood evaluations in Figure 8.13.%

Figure 8.13 shows that dimensionality has a significant impact on the relative efficiency
per likelihood evaluation of each algorithm. For two-dimensional scans, we see that T-Walk
performs the least efficiently, while the other algorithms are reasonably similar. However, in
the higher-dimensional parameter spaces, the efficiency of the nested sampling in MultiNest
becomes comparable to the MCMC in T-Walk, whereas GreAT and Diver remain relatively
efficient. The reduction in performance by MultiNest in higher dimensions is probably due to
the complicated calculations required to perform its ellipsoidal sampling of multi-dimensional
modes. These calculations must be performed between each generation of live points. Another
potential cause of the performance reduction in T-Walk and MultiNest is the intrinsic level of
parallelisability of their algorithms, relative to the other scanners. For problems with larger

numbers of parameters, we observe that the most efficient sampling algorithms are GreAT and

2Here we use 24 processes for the two dimensional scans, and 240 processes for the seven and 15-dimensional
scans, so time comparisons should not be drawn between the two-dimensional plots and the seven/15-dimensional
ones.
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Diver, with both exhibiting the lowest average latency between likelihood evaluations.

In Figure 8.14, we summarise the overall performance of the algorithms in terms of time and
fit quality at each dimensionality. We bin all completed test scans logarithmically in the total
convergence time, and for each sampler, choose the scan in each bin with the best fit. There are
no Diver points in the longer bins, simply because the longest Diver scans took less time than
the longest scans with other samplers. Diver clearly outperforms the other algorithms in high
dimensions by this metric as well, finding a better fit in a shorter runtime than the other three
algorithms. It is also important to note the vertical scales in Figure 8.14, where the likelihood
values span a much wider range in seven and 15 dimensions than in two. On close inspection
however, we can see even in two dimensions that Diver and MultiNest obtain better fits in less
time than either T-Walk or GreAT.

We also notice that in higher dimensions, although T-Walk takes less evaluations than
GreAT, both take a similar amount of runtime to reach convergence, suggesting that T-Walk’s

reduced sampling is offset by additional algorithmic complexity requiring more extended cal-
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culations between samples.

8.8 Posterior sampling

Figures 8.4, 8.8 and 8.11 show the posterior sampling abilities of T-Walk, MultiNest and GreAT,
respectively. The best-quality posterior in T-Walk took 9 hr, while in MultiNest the best poste-
rior we show took over 21 hr. The highest-quality GreAT posterior we show took even longer,
and is clearly a poorer result than what was achieved by T-Walk and MultiNest.

Comparing the quality of the posterior maps achieved by T-Walk and MultiNest reveals
some interesting trends. Firstly, despite taking less than half the runtime, the best posterior
map returned by T-Walk appears to have given a better-converged map of the posterior than
the best effort by MultiNest.

We can also see a distinct tendency for the shapes of the contours returned by Multi-
Nest to erroneously ‘smooth away’ sharper features in the posterior, which are mapped far
more carefully and accurately by T-Walk. This is most likely due to the ellipsoidal sampling
method intrinsic to MultiNest, which biases the algorithm towards finding new live points within
elliptically-shaped regions encompasing its current population of points. This makes it rather
easy for the algorithm to miss sharp features in the posterior, such as the low-coupling tip of
the highest-mass mode in the scaler singlet parameter space, which would protrude beyond the
approximate contour defined by the bounding ellipsoids in MultiNest.

We also see that posterior maps become poorer for shorter scans with both T-Walk and
MultiNest, but in quite distinct ways. In MultiNest, a scan performed with too few live points or
too high a tolerance will give a poorly-sampled posterior with few favoured regions, essentially
because the algorithm has only managed to locate the most dominant modes of the posterior
at the outset. In contrast, a poorly-converged T-Walk scan, particularly one with a large tol
value, will typically instead result in a map that includes all relevant modes across the parameter
space, but with their relative contributions poorly determined, such that they appear alongside
a number of other, spurious, favoured regions. When inspecting a posterior map, particularly

from brief scans, it is important to be aware of these differences between the algorithms.

8.9 Discussion

We have investigated the performance of the four major samplers available in ScannerBit as part
of GAMBIT 1.0.0, over a range of algorithmic settings and parameter space dimensionalities. In

Table 8.2, we summarise our recommended values for the two most important settings of each
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Table 8.2: The recommended starting parameters for each scanner available in GAMBIT 1.0.0.
Here Ngim is the dimensionality of the scan and Nyp is the number of (distributed-memory)
parallel processes available to GAMBIT.

Scanner Parameter Recommendation

MultiNest nlive 2 x 107
tol 103

Diver NP 2 x 107
convthresh 1073

T-Walk chain_number  Ngim + Nupr + 1
sqrtR < 1.01

GreAT nTriallLists Ngim +1
nTrials 104

scanner. These are intended as starting values that will give reasonably robust results. However,
every parameter space is different and publication quality results may require significantly more
stringent settings, in order for final results to be sufficiently robust. See Sections 8.3-8.5 for
more detailed recommendations.

We are also able to make detailed comparisons between the four scanning algorithms. In
Sections 8.6 and 8.7 it became evident that differential evolution, as implemented in Diver,
consistently out-performs the other algorithms in the computation of profile likelihoods. This
becomes particularly clear in high dimensions, where Diver leads the other algorithms in like-
lihood mapping, the quality of the best fit found, and overall efficiency.

The true best-fit point for this likelihood is located in the low-mass region, regardless of
the number of additional free parameters. The scanners did not always locate this point, and
in many cases located a best-fit in one of the high-mass modes. Although locating this point
in two dimensions is less challenging (see Appendix D), once the dimensionality is increased,
only Diver (with most stringent convergence criteria) was able to successfully locate the best fit
in the low-mass mode. All other scans converged to a best fit in a completely different mode,
demonstrating the value of using alternative algorithms to fully understand the parameter
space.

For careful mapping of the posterior, we find that T-Walk is the most effective algorithm,
followed by MultiNest and GreAT. T-Walk manages to sample the posterior distribution at
higher resolution in less time than the other two scanners, and avoids the ellipsoidal biases
that appear to afflict MultiNest. For computing low-resolution posteriors however, MultiNest
has the advantage that it requires less parameter tuning than T-Walk, and can more quickly
identify which are the most relevant posterior modes.

In many cases, having both Bayesian and frequentist interpretations of results is desirable.

This makes it necessary to use a sampler able to effectively sample the posterior, such as
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MultiNest or T-Walk. However, our tests show that this is best performed after the likelihood
function has been carefully mapped with another sampler, in order to find all modes. For
example, in Figure 8.3, MultiNest has completely missed the likelihood mode at low mass. This
mode was successfully found by all three of the other samplers. If MultiNest were to be used
exclusively, then this region — which contains best-fit points degenerate with those in the
other modes — would be completely unexplored. However, with the knowledge gained from
the other scanners, a localised study can be performed using MultiNest around the low-mass
region (a technique used in Ref. [5]), in order to correctly evaluate the full posterior. In this
way, the ability to use complementary scanners significantly improves the statistical robustness
of results.

For lower-dimensional problems where both posterior distribution and profile likelihood are
required, MultiNest could potentially be used solo, to save repeating analyses with multiple
scanners. We find that it is able to locate all modes when scanning only the two-dimensional
parameter space, and that it is reasonably efficient compared with the other algorithms. In
general though, relying on only a single sampling algorithm is risky.

The two MCMC-based scanners available in GAMBIT 1.0.0, T-Walk and GreAT, provide the
user with a somewhat more traditional class of sampling methods. Although these algorithms
are demonstrably less effective scanners in higher-dimensional profile likelihood problems, they
may suit lower-dimensional studies better.

Notably, our tests here are based on only one physical problem; although this is intended as
a realistic example, no single example could ever represent the full diversity of problems that
might be encountered. Other parameter spaces and likelihood functions may therefore reveal

different trends to those we have observed with the scalar singlet model.

8.10 Conclusions

We compared the performance of the four main sampling algorithms interfaced to ScannerBit
in GAMBIT 1.0.0: Diver, MultiNest, T-Walk and GreAT. We found that for profile likelihood
analysis at low dimensionality, Diver and MultiNest outperform T-Walk and GreAT, and provide
roughly equivalent performance to each other. At higher dimensions (10 and above), Diver
substantially outperforms the other three algorithms on all metrics. This is to some extent
because Diver is an optimisation routine intended only for frequentist studies, and thus does
not sample the posterior. T-Walk provides a more accurate, timely and complete mapping
of the Bayesian posterior than MultiNest, although MultiNest identifies the primary posterior

mode more quickly.



9 Conclusion

As the particle nature of dark matter has not yet been identified, the number of experiments,
and the models to be tested, continue to grow. Dealing with numerous, often complicated,
experimental constraints is made manageable with the processes of global fits. At the same
time, it is imperative that the precision of the theoretical predictions is not less than that
of the experimental measurements. It is in the renormalisation of a theory that the desired
theoretical precision is controlled, so pursuing higher order results and being aware of potential
pitfalls are essential. In this thesis I have approached both global fits and renormalisation in
the context of dark matter phenomenology.

In Chapter 3 I presented precision mass calculations in the wino limit of the MSSM and in
the MDM model. For the wino model I showed consistency with previous calculations [118] and
improved on these by including the effect of light quark masses. I presented the first two-loop
calculation for electroweak mass splittings in the MDM model. I also made a detailed analysis
of the uncertainties in the calculation from all parameters involved, and showed that the effect
of including two-loop mass splittings can be up to 40% in the decay lifetime of the charged
multiplet components compared to the one-loop result.

The precision mass calculations in Chapter 3 represent the first application of the Mass
Builder software. Although all the tools exist to compute and evaluate two-loop self-energies,
the non-trivial execution and organisation of these calculations, and the linking of the separate
parts make such a task excessively difficult. I present a new tool which removes the obstacle
of computing and then organising hundreds of two-loop amplitudes, and writing the resulting
code to evaluate them. From a few simple input files, the necessary programs are called in
the appropriate ways, and the resultant code is automatically generated. This has allowed
us to not only replicate the results in Ref. [118] but to quickly generalise them to a higher
dimensional multiplet without any significant extra work. Even if one is only interested in
one-loop calculations, Mass Builder offers an organised framework to carry them out, and was
used to produce all one-loop results in Chapter 4. A full user guide and details of the program
itself are given in Appendix C.

The Mass Builder software offers the ability to quickly obtain professional and reliable nu-
merical implementations of one and two-loop self-energies. With this software publicly avail-
able, it may be used in future to compute precision masses in a range of models. Although in

principle there is no limit to the number of diagrams that can be computed for a particular
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calculation, the time taken to compute and then compile the resultant generated code becomes
excessive for more than a thousand diagrams. However, there are various ways the Mass Builder
algorithm could be optimised to make significant improvements in this regard. In many cases
there are multiple diagrams that are near identical, with the same type of particles and the
same types of couplings, with the only differences being the mass parameters. Identifying these,
and computing only one generic diagram would save a huge amount of time. Although simple
in principle, this is technically difficult to implement and was not necessary for the problems
we have dealt with here. Other improvements could be made by automatically computing
two-loop counter-terms, which currently requires a manual approach. In any case, Mass Builder
offers a new avenue for tackling the monumental task of computing full two-loop amplitudes.

As the need to quickly analyse new models and to make more precise predictions increases,
spectrum generator tools are becoming more common in dark matter phenomenology. However,
these tools often carry out calculations in the background, relying on theoretical assumptions
with subtle implications of which the user may be unaware. In Chapter 4 I made an in-depth
investigation into the effect of performing mass calculations iteratively and then using these
precision masses for a mass splitting prediction. This iterative method, which is widely used
in spectrum generators, is highly sensitive to the renormalisation scale and would, for a typical
scale choice around the electroweak scale, lead to a near zero mass splitting. While it is easy
to see that something is wrong with this result, it is difficult to reconcile this with the fact
that iteratively computed masses are entirely valid, and often considered more precise than
the alternative methods. Only through a detailed investigation do we properly understand the
subtle differences behind this issue.

The computation of precision masses is only one aspect of the search for dark matter.
In the second part of this thesis I performed several global fits to scalar singlet dark matter
models, using a range of constraints. These included both the latest experimental constraints
and considerations of electroweak vacuum stability and perturbativity. In such a way I placed
strong limits on the parameter space of two variants of the scalar singlet dark matter model.
The metastability of the SM, with such proximity to the situation of catastrophic instability
(as seen in Figure 6.5), suggests that there is a theoretical problem with the model. Although,
this may be argued against on the grounds that the expected lifetime of the Universe is still
significantly longer than necessary. However, it is hard not to agree with this notion when it
becomes apparent that the addition of a dark matter candidate, a known missing part of the
SM, can make the vacuum completely stable. Putting these ideas together is an extremely

satisfying result. Thus when we are left with having to include dark matter without this
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additional theoretical bonus, the model loses some of the initial appeal. Apart from a tiny part
of the parameter space, this is the situation we have found for scalar singlet dark matter.

It has already been shown [102] that scalar singlet dark matter charged under a Zs symmetry
opens up a larger parameter space than the Zy model. This is the result of the cubic scalar
singlet coupling and the associated semi-annihilation channel. I verify this fact in Section 7.6
and place strong constraints on what remains of the allowed region. However, despite the
increase in the size of the allowed region, this model performs worse under the requirement of
a stable electroweak vacuum and perturbativity up to the GUT scale. If these constraints are
relaxed, the scalar singlet with a Zs symmetry model may survive longer than the Zs model, as
direct detection constraints become stronger in the future. Although eventually the parameter
space in both models will be severely restricted.

If we add the additional requirement that the scalar singlet constitutes all of the dark
matter relic abundance, then we can still find viable solutions in both the Zs and Z3 models.
These models, with scalar singlet masses of ~2TeV, are already slightly penalised by the latest
direct detection likelihoods, although not sufficiently so to rule them out completely. However,
these findings give us a clear prediction for where future direct detection experiments may find
scalar singlet dark matter in the not too distant future.

An essential part of global fits is the statistical sampling algorithm that is used. In a multi-
dimensional and multi-modal parameter space, which even the simple scalar singlet model
admits, it is important to use an efficient and reliable method. In addition, we must be
confident that the convergence criteria and number of population points used are sufficient to
properly sample the contours and to find all modes, including the best-fit point. In Chapter
8 I provide the most thorough comparisons to date of statistical sampling algorithms applied
to the scalar singlet scenario. I test and compare each scanner using a variety of metrics in
parameter spaces with dimensions between two and 15. The result of this is a set of guidelines
for the use of the four sampling algorithms available in GAMBIT 1.0.0, along with a detailed
understanding of the strengths and pitfalls of each algorithm. This information is extremely
relevant for anyone pursuing global fits using any of the four sampling algorithms, or algorithms
which have similar methodology and control parameters. The effort to constrain dark matter
is ongoing but the results presented here offer both precise things to look for, in the way
of disappearing track searches and heavy scalar singlets in direct detection, and a significant
reduction in the available parameter space of scalar singlet dark matter. Further to this, the
techniques developed and used throughout this process will help accelerate the search for the

most important missing ingredient in the SM of particle physics.
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A One-loop self-energies and counter-term couplings

A.1 Winos and minimal dark matter

Here we present the one-loop self-energies and counter-term couplings required for the compu-
tation of the two-loop mass splittings in Chapter 3. The two-loop multiplet self-energies are
omitted, but a C++ computer code with the self-energies expressed in the form described in
Section 3.3.2, as coefficients of basis integrals, is available as part of the Mass Builder package
(see Appendix C).

One-loop self-energies for the multiplet components are presented in Sections A.1.1 for the
wino limit of the MSSM, and Section A.1.2 for the MDM model. Counter-term couplings for
the new two and three-point vertices are provided in Sections A.1.1 and A.1.2 for the wino and
MDM models, respectively.

To compute the two-loop amplitudes in the left-most diagram of Figure 3.4, we need to
determine the counter-term couplings for the gauge boson propagators. This is achieved by
computing the one-loop gauge boson self-energies and setting the counter-term couplings such
that the UV divergences cancel. In both the wino limit of the MSSM and MDM, the self-
energies of the electroweak gauge bosons are given by the SM contribution plus an additional

one or two diagrams from the new multiplet. Let the self-energy of the gauge bosons be

Mv,vy = Mvivg,sn + Mviva e + 62111, (07 — ) — Sarvavs (A.1)

where V; € {W, Z,~}, llyy,gum is the SM contribution, 7y is the boson mass when Vi = V5
or zero otherwise and dzv,v4,00 141, are counter-term couplings. The SM part, Ilyv s,
which consists of the contributions from other gauge bosons, fermions, ghosts and Goldstone
bosons can be found in multiple sources (see for example Refs. [118,237,239]), so we do not
reproduce them here. The contributions to the gauge boson self-energies from the new multiplet
components are presented in Sections A.1.1 and A.1.2, respectively, for the wino and MDM
models. We also provide the full counter-term couplings, including the SM contributions, for
the gauge bosons in Sections A.1.1 and A.1.2.

The self-energies are written in terms of the one-loop A and B basis integrals, defined in
Egs. (2.29) and (2.30), but with the Mass Builder normalisation which is defined in Egs. (C.2)
and (C.3).

Throughout this appendix, the separation of fermion self-energies into the form Y(p?) =

223
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Sk (p?)p + Sam(p?) is manifest in the form of the coefficients. All self-energies are in the

Feynman-"t Hooft (¢ = 1) gauge and we define x = 1/(1672).

A.1.1 Wino model

Neutral component

The self-energy of the neutral component x° is
RTIE0(p) =CY A(M) + CY,, A(w) + C,, BOM, i) + CF, (A.2)

with coefficients

29°
ch, = e (A.3)
0 29
2 .
ey ., = pg (0% + 812 — i, ) p — 8g° 11 (A.5)
C8 = (207 +0yz) p+ (497 + St ) M. (A.6)

Charged component

The self-energy of the charged component x ™ is given by

RTIST(P%) =CE A(M) +CF, Aliw) + CF, A(rig)

. R R (A7)
+Cf  B(NI,0) +Cf | B(M, ) + Cf B(M,iiz) + Cyf,
with coefficients
2¢°
Ok, = (A.5)
Chyw = s (A.9)
Aw p2p .
2 2
g~ cos”(Ow)
L = (A.10)
2 in2
g° sin®(Ow)
Ci, = ¥ (A.11)
+ 9 (2 2 9 A
Chaw = ) (p +M *mW)ff*‘lg M (A.12)
sin? (0w )g? N "
Cgm = (pg> (p2 + M2> P— 42 M sin?(Oyy) (A.13)
cos® (B )g> o
Chy = g (07 4 0 =) p = 4g” M cos” () (A14)

Co = (20" +0xz2) p+ (46> + 6 ar) NI (A.15)
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Gauge bosons

The multiplet contributions are given by

e? cot?(Oy) ., ~

HZZvXX == WH(M) (A16)
2

e ~
My = SGWZH(M) (A.17)

9
Mwwoor =363 (M) (A.18)

€2 cot? (O N
Uzyxx = 3677(2 )H(M)7 (A.19)
where

II(m) = 3(p* + 2m?) B(p, m, m) — p*> — 6 A(m) + 6m?. (A.20)

Counter-term couplings

The counter-terms dz and s required to cancel divergences arising from B and A are

4 2

Sy = -2 (A.21)
€
1 2

Somt = — 0g” (A.22)

PN

€

where 1/é =2/(4 — D) — g + log(4m) and g is the Euler-Mascheroni constant.
Additional one-loop counter-terms are required to control divergences in the two-loop self-

energies. These are the counter-terms for the gauge-multiplet three-point vertices,

e
5 _ 5X+X+,y B 5X+X+Z o g3 (A 24)
XOXTW T Gin(0w)  cos(Bw)  2m2é '

The gauge boson counter-term couplings are

1342
dzww = T (A.25)
Suww = ﬁ [— Z cim? + 13m3y, — 61m% cos(2t9w)] (A.26)
g2
0227 =g a7 [54sin®(Ow ) — 41 sec? Oy + 28] (A.27)
sec?( N
Om,zz = _QTW(%W) l3 Z c;m; + m%,v (55 — 47sec?® 0w — 15 cos 29w)] (A.28)
9g? sin? Oy
0Zyy = T 1602 (A.29)
6M,’yfy =0 (A30)
2tan@
Sp2y = 996% (14 — 29 cos 20 (A.31)
2,52
OMmzy = _Jg Mz sin Oy cos Oy (A.32)

8m2e
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where the summation is over all SM quarks and leptons, with
m; € {1, e, My, M, M, M, e, My, M7t (A.33)

and ¢; = 3 for quarks and 1 for leptons.

A.1.2 Minimal dark matter

Neutral component

The self-energy of the neutral component, x°, is
kTIE0(p?) =C% A(M) + CY,, Alw) + CB B(M, ry) + C (A.34)

where the coefficients are given by

6g
0 _
%, = - (A.35)
6g2
692 ~ N N
ey, = = (0 + N2 — iy, ) p — 249° M1 (A.37)
o = (—6g2 + 52) P+ (1292 + 5M) M. (A.38)

Charged component

The self-energy of the charged component, x™, is

KTIST(P?) =CE A(M) + Ch, A(mw) + C, Aig)

+ O BOL0) + Oy BUL, i) + Cf, BO, 1hz) + Cf )
where the coefficients are given by

ci, = —(g (A.40)
Ch, = 5pg22p (A.41)
Ci, = gQCOJS;(gW) (A.42)
ngW = QQSH;;(QW);) (A.43)
Chow = 5522 (p2 + M2 - m%v) P — 209> M (A.44)
ngv = sm2(];92w)gz <p2 + M2> P— 4¢* M sin® (By) (A.45)
C’EXZ = COSQ(;WW (p2 + M? - mz) P 4¢* M cos® (Oy) (A.46)

Ci = (69> +dx.2) p+ (126° + o) M. (A.47)



A.1. Winos and minimal dark matter 227

Doubly charged component

The self-energy of the doubly charged component, x ™7, is

RIS =CLT A + CAF AGhw) + CHF Aing)

(A.48)
+ ngj B(M,0) + ngw B(M, ) + ngz B(M,mz)+CiT,
where the coefficients are given by
69>
2g°
++
Caw = p—zp (A.50)
492 cos®(Ow)
++
Cy, = e P (A.51)
4¢2 sin?(Oy)
++
C A = Tp (A.52)
2¢> A N
++ 2 2 _p 2
Chlv = (b + 012 — ity ) p — 8970 (A.53)
4sin?(Oy ) g? - A
g; = — e (p2 + M2) P— 16¢% M sin’(6y) (A.54)
deos®(Ow)g® (o oo o 207 e
Cil, = — (p + A2 — mz)p — 16¢°M cos? (6 ) (A.55)
Cit = (69> +05,2) p+ (126° + Syt ) M. (A.56)
Gauge bosons
The contributions from the MDM quintuplet to the gauge bosons self-energies are
5¢2 cot?(Ow) o, »
Uzzpw =32 M) (A.57)
5e? -
H'Y'Y’XX — mH(M) (A58)
I 59 i A.59
WWxx — 367T2 ( ) ( . )
5¢2 cot?(Ow) .~
HZ’Y»XX = WH(M), (A60)
where IT is given in Eq. (A.20).
Counter-term couplings
The counter-terms d, 7 and d, ) are given by
124°
bz = —- (A.61)
48492

St = ——L (A.62)
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Additional counter-terms for the gauge-multiplet three-point vertices are required to control

divergences in the two-loop self-energies. They are

5X0X+W+ B (5X++X+W+ B 93 A
/3 = NG =5 (A.63)

5X++X++’Y B 5X++X++Z _ 5X+X+’Y B 5X+X+Z _ i (A.64)

2sin(fy)  2cos(fw)  sin(fw)  cos(Bw) w2’ ’

We determine these terms by demanding that the two-loop self-energy be free of UV divergences

(i.e. free of any poles in € or €2).

The gauge boson counter-term couplings are

15¢*
dzww = —32775% (A.65)
Suoww = ﬁ [— Z cim? + 15myy, — 2% COS(QQW)] (A.66)
m2¢é .
g
Sz.zz = 96 5 [43cos(20w) + 41 sec” By — 39 (A.67)
T
gsec 5 9
Omzz = 967r2€ 3 Z c;m; + mW 70 — 47sec” Oy + 62 cos GW) (A.68)
4392 sin? Oy
07,y T 482 (A.69)
6M,'y’y =0 (A?O)
e
0z.2v = 96 ~ (41 tan Oy — 43 sin 20y) (A.71)
m2€
2,42
om,zy = 98 HZZ sin Oy cos Oy, (A.72)
m2e

where the summation is over all SM quarks and leptons given in Eq. A.33.

A.2 One-loop self-energies for an electroweak triplet in

general gauge

In this section we present the one-loop self-energies used to produce the results in Chapter 4.
These are the self-energies for the charged and neutral components of the electroweak triplet
in a general gauge, parameterised by the gauge parameter £. These results reduce to those

presented in section A.1.1 for £ = 1.

The self-energy of the charged component T is given by
RIS =CF AM) + CF | A(mw) + Ch Alig) + CL L A(Siw)
+Ch, A(&mg) + CF B(M,0) +CF | B(M, i) (A.73)

+Cf o BIM, &) + Cf | B(M, &mgz) + C , B(M,1hz) + Cff,
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with coefficients

cr = 9722 (€2 — 1) cos(20) — € — 3] p (A.74)
ch, = % (23 + M* —p°) p (A.75)
ci, = % (2m7 + M* —p°) p (A.76)
Chwe = % (p” — N?) p (A.77)
Chze = QT@ (" —01%)p (A.78)
ey = —925.”;# (p* + M?) p— g*sin’(0) (€% +3) M (A.79)
Ch. = _mg; 3 [ (0 = 2007 ) N W — ] p— 3N (A.80)
i, = *ngZp(e) [0? (07 — 200 + %) + BT+ N1 — ] p— 3g° cos(O)NT  (A81)
Chowe = _% [p* (2M° = p* + 1y €7) — M* + NPy %] p — g NIE? (A.82)
ng& = 77922;2222;29) [p2 (2M2 —p’ + T?L2Z§2) - M* + M2m2252] P— g° cos®(0) M €3 (A.83)
cy = {922 [(€% = 1) cos(20) — € — 3] + 52} p+ (49° + o) M. (A.84)

The self-energy of the neutral component x° is

rTIS0(p%) = CY L AM) + CY, Aluw) + O, A(&ruw) + O, B(M, 1)

(A.85)
+ C%XW§ B<M7 ‘SmW) + C(())
with coefficients
2¢>
Cho =" (A.86)
2
g ~ .
CI%W = M2 p2 (M2 - p2 + 2m%/V> }Z’ (A.87)
w
2
0 ___49 22
Cawe = 2, p? (M p )p (A.88)
2
Chw = _mg 7 (—2Mr“p2 + mdyp? + pt + M 4 M2, — 2m3v) p—69°M  (A.89)
W
2
g ~ . . - .
C%st = 77/%%/1)2 (—2M2p2 _ m%{/fng +p4 + M4 _ MQmIQ/ng) p _ 292€2M (Ago)
CY = (29> +0z)p+ (49> + o) M. (A.91)

The separation of the self-energy into the form X(p?) = Xg (p?)p + X (p?) is manifest in
the form of the coefficients presented above. The counter-terms §7 and d,; required to cancel

divergences arising from B and A are

2¢2
5, = W& (A.92)

A

€
4g°(& +3)

: (A.93)

o =
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A.3 One-loop self-energies in the vector dark matter model

Here we present the one-loop self-energies for the vector dark matter model used in section

5. The one-loop self-energies of the charged and neutral components of the vector field V' are

given by
192 A N
+ (2 R . 7
o = giree 40T (e Bz My) + Bling, M) ~ By, 0))] + 67 (A.94)
2
g ~ N A~ A~ N N A~
Svor = 6(1672) {16 ((C%VM\Z/ + m%v) B(ihz, My ) + (M7, + vy )B(ruw, My)
+NI2 52, B(My, 0)) + 7 A(g) + 14A (M) + TA () + 20(V2 + m?y)
a . . . a’mi, -
@ (A(m ) + 2A(mw) + A(mz)) R B(mH, Mv) + Oar (A.95)
0
Yvz = 167T2 [2+57B mw,Mv)} + 0z (A.96)
0 _ 2 so Y
Yym = 167r2 [7A My) + TA(w) + 2 (Mv + mw) (5 + 8B(rhw, MV))}
R an%V R A
167‘(2 (A( ) + 2A( ) +A(mz)) — s B(hg, My) + o (A.97)

We check that the one-loop divergences are canceled by the corresponding counter-terms. The

required counter-terms are

1942
5, = —I A.
7 3(1672)é (A.98)
5 B CLQS%VAZ a A2 2A2 ~ 92 392 MQ o~ 2 A .99
M= i e 2€< ot mw‘i‘mZ)—m[ V+mW}' (A.99)

A.3.1 Large My limit mass splitting series expansion

The one-loop mass splitting is given by the first term of the series expansion in Eq. (5.6). In
the limit of large My we have computed the next seven terms of this series, up to order g'6
The series expansion can be represented as

00 q\n? 2(n+1) 72 n
_ 2 (=D)" ¢n ME
AM = 5(mw — cjymyz) E T ( (2n+1)> (n) (42 log ( o2 ) — 103) (A.100)

n=0

where we have verified that it is convergent for the first eight terms, with corresponding coef-

ficients

11 1 2 5 4 28 64
(1 2 02 A.101
n {16’ 4(32)" 4(3%) 360 38 390 3 314} (4.101)



B Renormalisation group equations

B.1 Scalar singlet dark matter

The RGEs used in Section 6.5.2 which are different to the SM RGEs are given here up to

two-loop order.

gl = 2(9>\2 + N ) (B.1)
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The top Yukawa coupling changes from the SM as
B = 8P + )\ (B.7)

and we omit the changes to the other Yukawa couplings.
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Abstract

Mass Builder is designed to build, up from the level of a model file, a C++ computer code
to evaluate renormalised masses. This is achieved by generating the necessary Mathematica
and C++ scripts to interface with the existing tools, along with sophisticated intermediary
sorting. In doing so it provides a new interface between the symbolic amplitudes provided by
FeynArts [216], FeynCalc [222,224], reduced by TARCER [209] and FIRE [214] and the numerical

evaluation of these amplitudes using TSIL [9].

C.1 Introduction

The interface between the tools available for generic two-loop calculations is only complete
up to the stage of a symbolic amplitude. Between FeynArts [222, 224], FeynCalc [222, 224]
and TARCER [209] exists the necessary conversions, yet the final step of numerical evaluation
requires significant user intervention. However, for one-loop calculations this process is available
with various existing tools. The recently released FeynHelpers [224] serves this purpose by
providing analytic one-loop amplitudes, and other existing codes have been able to do this
by making use of the LoopTools package [313], such as SARAH [142, 143] interfaced to either
SPheno [229] or FlexibleSUSY [234].

The TSIL [9] libraries provide numerical, and in some cases analytical, evaluation of the
basis integrals which appear in a two-loop self-energy. However, in order to make use of
these one must construct a C++ interface to call the TSIL libraries and then evaluate their
amplitude. Although the TSIL functions are user-friendly, making use of them from a symbolic
Mathematica expression is non-trivial. Therefore we provide Mass Builder which is designed
to automate this task by generating the C++ interface and automatically managing the whole
computation process.

In addition to providing an automated framework we are also able to split the calculation
of many loop diagrams into manageable pieces. The computation of O(10) amplitudes simul-
taneously using tools such as FeynCalc results in extremely long run times as simplifications are
attempted at the symbolic level. On the other hand, keeping track of all terms on a diagram

by diagram basis is a serious task by any manual or even semi-automated method. We offer an
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alternative; by completely automating this process we are able to keep track of all terms and
evaluate them numerically, which on a modest computing set up is the only way to achieve this
task without additional user intervention.

Mass Builder has successfully been used to compute full two-loop self-energies in the minimal
dark matter quintuplet model (MDM) and the wino limit of the minimal supersymmetric
standard model (MSSM) [1]. It has also been used for a study of the pitfalls of using an
iterative procedure for computing electroweak mass splitting [2]. All routines used to produce
the results in these studies are available with the Mass Builder distribution. This includes
additional code with an interface to the FlexibleSUSY spectrum generator to provide the most

precise and consistent input parameters.

C.1.1 Installation

Mass Builder can be downloaded from https://github.com/JamesHMcKay/Mass_builder.git. Before

beginning the following programs are required
e Mathematica 9.0
e FeynCalc 9.2 including a patched distribution of FeynArts 3.9 and TARCER 2.0
e TSIL 1.41
e cmake 3.4.0.

For additional functionality and use of the routines to generate the results appearing in Refs. [1]
and [2] FlexibleSUSY 1.7.4 is also required. See Section C.5 for details on how to install these
packages. I have tested the Mass Builder C++ code using gcc versions 4.8.4, 5.2.0 and 5.5.0.

The Mass Builder executable is built using cmake with the following commands

mkdir build

mkdir output

cd build

cmake -DTSIL_PATH=/path/to/tsil-1.41/ ..

make

The main executable is now located in the root directory.

C.1.2 Quick start guide

This section provides a minimalistic example to demonstrate the core features of this program

and test the installation has been successful. The example uses a simple scalar field theory
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with Lagrangian,

1 g A
L= —imigt— St g (1)

for which I provide a FeynArts model file and the necessary Mass Builder input files in the

models/Scalar/ directory.

Generate FeynArts diagrams

It is important to check the diagrams that are involved in a self-energy calculation and assign
a consistent numbering system to identify each process. FeynArts has the capability to produce
the relevant Feynman diagrams which we store in the folder models/<model>/FA_diagrams/. All
relevant two-loop self-energy diagrams are generated using the commands

mkdir models/Scalar/FA_diagrams

./mass_builder -f -m Scalar -p S[1]

while the one-loop and counter-term diagrams can be generating by specifying additional flags

-1 1 and -c respectively.

Compute amplitudes

Next we compute the amplitudes and extract the coefficients and required basis integrals,

storing these for later use. This is achieved with the commands

mkdir output
mkdir models/Scalar/output

./mass_builder -a -m Scalar

which will tell Mass Builder to compute all diagrams in the default list models/Scalar/diagrams.
txt.

Alternatively, if only a few diagrams are required one may enter

./mass_builder -a -m Scalar -p S[1] -4 1

to compute the first two-loop diagram, for example. Additional flags may also be entered here,
such as -c for counter term diagrams or -1 1 to use one loop order instead (two-loop is the
default setting). One may also specify an alternative list rather than the default one using the
flag -i followed by the path to the list file.

Next we need to solve for the one-loop counter-term couplings. This is done automatically

using the command

./mass_builder -b -m Scalar -p S[1]



C.1. Introduction 235

This will solve for the counter-term couplings diM and d1z to give the result which is automat-

ically written into the file models/Scalar/couplings.txt!.

Generate code and evaluate

Once the amplitudes have been computed and stored in the Mass Builder format of basis
integrals and coefficients the next step is to generate the TSIL interface. This is conveniently
separate from the previous step because computing the amplitudes is time consuming, so this
is only done once. In such a way the generation of code can be done repeatedly, using different
combinations of diagrams, without the need to recompute them.

Mass Builder keeps track of all diagrams which have been computed so we can easily generate

the code for every available diagram using the command

./mass_builder -g -m Scalar

alternatively one may use their own custom list by adding the additional flag -i followed by
the path to the list file. If code has previously been generated then one must first run ./scripts
/clean.sh before the above step, otherwise existing incompatible files will be detected by the
cmake system.

Next the generated C++ code must be compiled using the same commands used to make

Mass Builder

cd build
cmake .
make

cd ..

Now we are finally able to compute the total amplitude using the command

./mass_builder -e -i models/Scalar/input.txt

where we must explicitly enter the path to an input file which contains values for the masses

and couplings. This will return the self-energy

One loop self-energy of particle S1 = -0.0316688

Two loop self-energy of particle S1 2.91938e-05

where the particle name has been converted to a simplified form, which is the name appearing

in the generated output filenames.

"We provide additional high-order counter-term couplings, which are not as trivial to compute, in this file
as well. However, these are not required for computing the finite part of the two-loop self-energy. Instead these
are only required when checking that the amplitude are divergence free.
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Table C.1: The definitions, required input and default values for command line flags used when
calling Mass Builder. Input flags must be followed by a string, number or path to an input
file. All option flags control boolean parameters; use of the flag will result in the parameter
switching to the opposite value from the default.

Input Definition Default value
Run mode flags (specify one and only one)
-a Compute amplitudes
-g Generate TSIL interface code
-e Evaluate self-energies
-f Generate diagrams from FeynArts
-b Solve for one-loop counter-term
Input flags (must be followed by string or integer)
-m m Specify the model null
-p p1 Specify a particle in FeynArts style null
-q p2 Second particle for mixing amplitudes p;
-dn Specify diagram number null
-i file Provide an input list for mode -a diagrams.txt
-i file Provide an input list for mode -g output/avail_diagrams.txt
-1i file Provide an input list for mode -b output/avail_diagrams.txt
-1n Work at n-loop order 2
-r input  Set restrictions for FeynArts model null
-k n Extract terms of order " 0
Option flags
-0 Optimise TSIL interface false
-c Use counter term diagrams false
-w Print value of each diagram false
-t Use FIRE for tensor reduction true
expole Ignore terms proportional to 1/m. true
onshell Set p? = mass® before computing true

We also provide detailed output in the file LaTeX_table.tex written to the model’s output
directory. The columns of this file are particle name, loop order (with a “c" suffix if a counter-

term diagram), diagram number and amplitude in GeV.

C.2 Full user guide

C.2.1 Command line interface

The user interface to Mass Builder is via the command line, where all modes of functionality
are available depending on the chosen input flags. These flags are either run mode flags, input
flags or option flags. The input flags, definitions and default values are given in Table C.1.
One and only one run mode flag must be given. Additional inputs must be specified
depending on the run mode. The requirement can be met in multiple ways, as detailed in Table

C.2. These flags are always followed by a string, number or path to an input list (following
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Table C.2: The minimum combinations of input flags for each run mode and the resultant
behaviour. Each input flag must be specified by the appropriate input, either a string, integer
or path to an input file.

Input flags Resulting behaviour

-a -m Compute all diagrams listed in diagrams.txt

-a -m -i  Compute all diagrams in the specified input list

-a -m -p -d Compute specified diagram

-g -m Generate code for all available diagrams

-g -m -i  Generate code for diagrams in specified input list

-f -m -p Produce FeynArts Feynman diagrams for specified particle
-e -i  FEvaluate self-energy

b -m -p Solve for one-loop counter-term

the format given in section C.2.2). Option flags control boolean parameters and they are not
followed by an input, instead their use results in the parameter switching from the default
value, as specified in Table C.1.

Restrictions can be specified with the -r flag, such as excluding certain particles from a
model. This flag will add the text following the flag exactly as is into the FeynArts function
InsertFields[ . . . Restrictions -> {¢tnput} . . . 1. This will imply the desired restriction onto
the possible set of diagrams generated. This should be used consistently across all commands
as the number of allowed diagrams will change, and thus so will the numbering of each diagram.
The -x flag is used to extract the O(e") part of the amplitude, given an input n. By default
n = 0 returns the finite amplitude. The total self-energy should be divergence free and use of
n < 0 should give a zero amplitude when all counter-terms are appropriately set. Use of n > 0
will give unreliable results as we do not carry through all terms of order O(e™) where m > 0
in our calculations.

The option expole will exclude all terms which have a fictitious IR divergence in the final
numerical evaluation. The option onshell controls if the external momentum is set equal to the
mass before the amplitude is computed in FeynCalc and the tensor integral reduction is carried
out. This is set to true by default as this is the standard practice and is necessary for some
reductions to proceed to the most fundamental basis integrals.

The -o flag invokes optimisation of the generated TSIL interface, see Section C.3.2 for
details. The -w flag will put a std::cout statement for every two-loop amplitude computed at
runtime for detailed inspection of each contribution to the total self-energy, as may be useful

for identifying large contributions and diagnostics.
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C.2.2 Input

All model specific input is stored in the directory models/<model_name>/. The required input files

are
® <model_name>.mod — FeynArts model file
® masses.txt — list of masses and identifiers
® couplings.txt — list of couplings
® diagrams.txt — list of diagrams to compute

which are all stored in the directory models/<model_name>/.

The file masses.txt can contain either one or two columns. The first, and required, column
must contain a list (in no particular order) of the masses exactly as they appear in the FeynArts
model file. The second column, which is highly recommended, should contain a unique identifier
for each mass in the corresponding row. For example a typical masses file would be

# masses.txt

MWp wp
MWm wm
MZ z
MA a
MChi c

where the shortened identifier makes the resulting generated code easier to read. With this is
mind one could replace vm and wp with single character identifiers.

If a mass is set to zero in the FeynArts model file, with the line Mass -> 0, and the user
does not wish to replace this with a finite mass for the purposes of the calculation, then the
following line must be used in masses.txt

# masses.txt

null n

where n can be any identifier as long as it is unique in the list. No further reference to null or n
is required in the input file at the numerical evaluation step as Mass Builder will automatically
assign zero to any null terms appearing in the TSIL interface code.

The file couplings.txt is a list of all parameters (except the masses specified in masses.txt)
exactly as they appear in the FeynArts model file. This is essential for the generated code
to have declarations for these parameters and for the user input header to contain options

for setting these couplings at runtime via an input file. These parameters can be left free



C.2. Full user guide 239

and set at runtime or defined in terms of other parameters. These derived couplings and the
corresponding relationships must be specified first in the list, followed by undefined parameters,
as in the example below. The couplings file would typically look like

# couplings.txt
dl (gxg/2+lambda*Ms*Ms/2)
dlambda 0O

lambda

g

where the counter-term couplings are set to be dy = ¢g/2 + AM2/2 and dy = 0 and the other
couplings are left free to be set at run time. In this case Ms must be listed in the masses.txt file.
Any value or relationship defined in the second column of the couplings.txt file will override
user input at runtime.

Finally diagrams.txt is a list of diagrams to compute. This file contains at least two columns,
the first specifies the particle name in FeynArts format (such as s[1]) and the second the
corresponding diagram number (to obtain a list of diagrams for each particle in pdf output see
section C.1.2. An optional column may be added to specify the loop order and if this is to
be a counter term diagram (if these options are not set globally with the appropriate flags at
runtime). Including all columns this file would look like

# diagrams.txt

F[5] 1 2
F[5] {1,2,3} 1
F[6] 2 2c

which will tell Mass Builder to compute the first two-loop diagram for the particle F[5], the first,
second and third one-loop diagrams for the same particle, and the second two loop counter term
diagram for particle rF[6]. Grouping diagrams together can increase the speed if the diagrams
are of a similar topology and contain the same masses on internal legs. If the grouping results
in a large number of different masses in the calculation, or combinations of very different
topologies, it can excessively increase runtime. All numbers are in reference to the numbers
given with the diagrams as listed in the pdf output from ./mass_builder -f -p <particle> -m <
model>. The file which may be provided at runtime with the -i option follows exactly the same
format.

There are two additional input files one may place in the model directory when a FeynArts
model contains notation for the couplings and masses that is not supported by Mass Builder
by default. The types of notation not supported are functions, that have not been defined in

the generated code, such as Mass[i] where 7 is an index. Another function that often appears
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in patched FeynArts model files is Fcav["x"1. This occurs when FeynCalc symbols are wrapped
to avoid clashes with symbols from FeynArts . These can be dealt with by including a list
named FCGV.txt in the model directory containing all values of x in one column, and the chosen

replacement name in the other.

C.2.3 Output

All output from the amplitude calculation is stored in the directory models/<model_name>/output
(this empty directory must be created manually before calculation). For typical usage the
contents of the output directory is not important as this is an intermediate step between com-
putation of the amplitudes and the generated C++ interface to TSIL.

Between computing the amplitudes and generating the code Mass Builder stores the neces-
sary information for each diagram in models/<model>/output/. This information is split into four

text files
® basis_integrals_tag.txt list of required basis integrals
® coeff_integrals_tag.txt list of coefficients of the basis integrals in C++ form
® coeff_products_tag.txt list of coefficients of the products in C++ form
e summation_tag.txt the amplitude as a sum of basis integrals and coefficients
and a Mathematica data file
® math_data_tag.mx stores full divergent amplitude for later recall within Mathematica

where tag encodes the particle name, diagram and loop order (and if this is a counter-term
diagram). When necessary the output is written in C++ style for simple implementation into
the final code.

The Mathematica data file is essential if one wishes to repeat a calculation using the full
amplitude. This is necessary for the computation of the tree-level counter-term, where Mass
Builder collects all relevant amplitudes for the particle in question and then sums these together
before extracting the divergent piece. In the other files we only store information on the finite,

O(e), part of the amplitude. Thus no information is lost from the original calculation.

C.2.4 Interface to external routines

The self-energies are available to external functions via the data structure. This is useful for

including the results into other routines, or doing further manipulations to the self-energies. We
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provide example source codes to demonstrate different levels of complexity for communicating
with the TSIL interface. Scalar.cpp is the most basic example of retrieving the one and two-
loop self-energies. MSSM.cpp computes pole masses and compares these via different methods of
calculation. vbM.cpp will do the same for a vector dark matter model. EW_triplet.cpp will do the
same again, yet it also includes manually created expressions for the derivatives of the one-loop
self-energies. This demonstrates how one may add additional integrals by hand that make use
of the TSIL libraries.

All example routines are located in the folder examples/ and are compiled with make <name>
where <name> is the source file name. Note that for each example the corresponding self-energies
must be generated first, otherwise a null result will be returned. It is straight forward to add

similar routines following the syntax used in CMakeLists.txt for additional targets.

C.3 Algorithm details and code structure

C.3.1 Computing the amplitudes

We calculate the amplitudes either one diagram at a time, or in selected groups, using FeynArts,
FeynCalc and FIRE, run from C++ via the Wolfram Symbolic Transfer Protocol (WSTP). We
decompose the resultant symbolic amplitudes into lists of coefficients to be applied to basis
integrals, and keep a master list of all the basis integrals required. We convert these coefficients
into C++ format, and generate numerical routines for evaluating both them and the relevant

basis integrals. The details of this algorithm are given in Section 3.3.2.

Basis integral labelling

A priori we have no information on the basis integrals required for a particular problem. For an
amplitude involving multiple particles there are on order hundreds of possible non-degenerate
permutations of basis integrals. Thus, when an amplitude is evaluated in Mathematica we have
no generic way of identifying the integrals we need to use to reconstruct the result in the form
of an integral times a coefficient. So I begin with all possible non-degenerate basis integrals,
and quickly determine which ones have a non-zero coefficient in the resulting amplitude. The
computational time required for this process is negligible and is achieved through the use of
the Coefficient[ Amplitude, Integral ] Mathematica routine. Therefore we use this “brute force"
method to reliably determine the basis integrals we require without any notable computational

penalty.
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During this procedure, and in the resultant generated C++ code, we need a unique identifier
for each basis integral. However, if the input masses are strings of more than one character,
for example mHp, ma0, and mw, then the obvious way to name the basis integral, F'(mHp,mHp,mA0,mA0
;W) would be F_mHpmHpmAOmAOmW which along with being difficult to read can led to ambiguous
labelling of integrals. For example if one choose the mass labelling to be (H~, HY, x) = (mHm,nH
,m) then we easily have the degeneracy J(mH,mmHn) =J_mHmmHm= J (mHm,mH,m). When dealing with
hundreds of possible permutations it is important to avoid such possibilities, however unlikely
they may seem.

To overcome this we assign a unique single character identifier to each mass in the routine
set_id. This will check for user input, which is the recommend action, or in the absence of
this input it will attempt to assign a unique identifier to each mass. However, this alone is
not sufficient as the original FeynArts model file, and subsequent expressions will contain the
original masses, so we must retain this information along with the unique identifier for each
basis integral. Therefore we create a C++ map to map the short name, using the identifiers, to
a simple class of type Bases which holds the following information

class Bases
{
public:
string type = "";
string el = " ", e2 = " ", @3 = " " @4 =" " g5 =N n;
string coefficient = "";
string short_name = "";

Bases() {}

<constructors>

};

where we also we provide a constructor for each number of elements (masses). For example

the basis integral V (mHp,mA0,mA0,mW) is initialised as

Bases base("V",mAO,mAO,mW);

which we then save in std::map<std::string, Bases> to the integrals short name.

This set up significantly simplifies the entire algorithm, as we no longer need to pull apart
basis integral identifiers, such as F_abcde character by character to reconstruct and print out
the integral in a useful form for either FeynCalc or TSIL, and indeed this would not be possible
if any of the identifiers were not a single character. This also enables a huge flexibility in the
mass labelling; in practice one may use whatever name one prefers for the masses without

sacrificing final code readability.
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C.3.2 The TSIL interface

The generated C++ interface to TSIL is organised on a diagram by diagram basis. However,
during the generation of this code the basis integrals required for all diagrams in the chosen
set are amalgamated and reduced to a minimal set. This set is evaluated in one function and
made globally available to the rest of the functions in the script.

The basis integrals are evaluated using the TSIL libraries. The function used, and the
corresponding computation time required, depends on the integral required. In the most general
case the TSIL_Evaluate function is called with 5 mass parameters which will evaluate most of the
possible basis integrals. This is also the most time consuming method, however it is required
for any of the M or V integrals. Therefore, when we need to call this function we should
make sure to also extract any other basis integrals we require to minimise the number of calls
required.

In general the possible basis integrals available from each TSIL_Evaluate call forms a set of
over 30 elements, owing largely to the symmetries between integrals, each of which is extracted
using a unique identifying string. As there is no additional computation overhead for extracting
these integrals once they are already calculated, if we must use TSIL_Evaluate for a M or V
integral, then we should simultaneously extract all other required integrals that are useful for
our problem.

While each call to TSIL Evaluate can compute over 30 integrals, conversely for each basis
integral there are multiple arguments that can be passed to the evaluate routine to get the
same integral out. Thus we want to find the optimal parameters to pass to TSIL_Evaluate to get
the maximum number of useful integrals out of it.

We provide a class capable of taking an input list of basis integrals, and providing a correctly
formatted set of calls to the TSIL libraries which minimises the computational time required.
This significantly increases the time required to generate the code (up to a couple of minutes),
due to the huge sorting problem involved, yet will save time if many TSIL_Evaluate calls are
going to be required. To invoke this option the flag -o must be passed along with the generate
call. An example of generated output is

TSIL_SetParameters (&bar,mc2, ma2, ma2 , mc2 , mc2, Q2);

TSIL_Evaluate (&bar, s);

Fcaacc = TSIL_GetFunction (&bar,"M");

Jcaa = TSIL_GetFunction (&bar,"Svzy");
Jccc = TSIL_GetFunction (&bar,"Svxu");
Taca = - TSIL_GetFunction (&bar,"Tzvy");

Tcaa - TSIL_GetFunction (&bar,"Tvzy");
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Tccc
Vaacc
Vcaac

Vccca

= TSIL_GetFunction (&bar,"Tvux");

= TSIL_GetFunction (&bar,"Uyuvz");

= TSIL_GetFunction (&bar,"Uyuzv");

= TSIL_GetFunction (&bar,"Uxzvu");

where all integrals evaluated here have been explicitly requested by the user input. This is

significantly more efficient than the naive case where each integral is evaluated one at a time

using the full five parameter TSIL_SetParameters input.

The generated code, located in src/self_energy.cpp takes the following structure

TSIL_COMPLEXCPP <basis integral declarations> ;

TSIL_REAL <mass declarations>;

TSIL_REAL <coupling declarations>;

void DoTSIL(TSIL_REAL s,TSIL_REAL Q2)

{

//TSIL basis integral evaluations

void init(Data data)

{

//set couplings and masses from data

TSIL_COMPLEXCPP diagram_1()

{

TSIL_COMPLEXCPP C = C(oefficient;

return + C * basis integral;

TSIL_COMPLEXCPP diagram_2()

{

TSIL_COMPLEXCPP C = C(Coefficient;

return + C * basis_integral;

void Self_energy::run_tsil (Data &data)

{

TSIL_COMPLEXCPP SE_particle = diagram_1() + diagram_2();

data.SE["particle"] = real(SE_particle);
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where we have one subroutine to call TSIL and compute the basis integrals, and a subroutine
for each diagram, where the subroutine names will encode the particle name, diagram number
and loop order (and if it is a counter term diagram or not). The routine run_tsi1 will fill the
self-energy map for each available particle (in practice we have a map for both the one and two
loop self-energies separately, sE_1 and sE_2).

Along with the above source code a header file, data.hpp, is also generated in the include/
directory to hold the model data. This header contains a class definition of type Data which
is designed to manage the input and output of information from the self-energy calculator.
This class contains declarations for each coupling defined in couplings.txt, and for each mass
in masses.txt. It also holds a vector of strings with the name avail_part containing the short
names of all particles for which amplitudes are available, along with two maps of type map<
std::string,double> SE_1 and SE_2 which hold the names of the particles and the one-loop and
two-loop self-energies respectively. Finally, it includes the functions which read the runtime
input of values for the couplings and masses relevant for this model. By dynamically updating
this class when generating the self-energy interface we enable user input of these quantities and
a dynamic mapping interface to other functions in the code.

Before code is generated self_energy.cpp is a skeleton necessary for the rest of Mass Builder
to compile successfully. If self_energy.cpp or data.hpp becomes corrupted and the rest of the
code no longer compiles, which is likely if couplings.txt is missing a variable name, then the
skeleton code can be restored by simply running scripts/clean.sh.

The diagrams available to be included in the generated TSIL interface are registered in models
/<model>/output/avail_diagrams.txt which is updated each time a new diagram is computed (it
is also checked for duplicate entries, so no diagram, particle, and type combination appears
twice). However, if using the -i option with the generate code mode, then it is possible for
duplicate diagrams to appear (we choose not to override this possibility to avoid unnecessary

interference with user input).

C.3.3 Management of divergences

The amplitudes produced by TARCER are expressed in terms of divergent basis integrals. In
a consistent field theory these divergences should be accounted for by divergent counter-term
diagrams. Mass Builder offers the ability to compute counter-term diagrams and also compute
the analytical form of the two-point tree-level counter-term coupling. Since the tree-level
counter-term is the only counter-term of one-loop order, we only need to solve one equation to

demand no divergences of order 1/e. To automatically compute this coupling one first needs
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to compute all the one-loop amplitudes, and then use the -b flag followed by the model and
particle identifier, then the file couplings.txt is automatically updated with the new counter-
term coupling.

Three and four-point vertex counter-terms, and higher order terms in the two-point cou-
plings, must be determined via a different method. This can be done by computing one-loop
corrections to the vertex, or by computing the two-loop self-energy and demanding that it
be divergence free. We use the latter approach as we already compute the self-energies, with
example Mathematica routines in the scripts directory.

The TSIL package provides the evaluation of the finite parts of the basis integrals. However,
these basis integrals are not the only finite contributions to the amplitude. For example, if the
divergent piece of the basis integral is of order 1/e¢ and the basis integral had a coefficient
containing a term linear in €, then this leading divergence becomes a finite contribution that
must be included. Thus we must appropriately take D = 4 — 2¢ and be careful not to loose
any finite contributions.

There are some minor differences between the basis integral notation in the TSIL and
TARCER packages. The notation used in Mass Builder for the finite piece of the basis integrals

is a combination of these and is related to the TSIL integrals defined in Ref. [9] as

b = —iA(z) (C.2)
By = iB(z,y) (C.3)
keyz = I(2,y, 2) (C.4)
vz = Sla,y, 2) (C.5)
Ty = —T(x,y,2) (C.6)
Vuxzy = —Ul(@, y, 2, ). (C.7)

These relationships are used to convert the numerical result from the TSIL integrals, which we
evaluate in the DoTSIL routine, into the form appearing in the amplitudes.

The divergences appearing in the amplitudes as poles in € should arise exclusively from UV
divergences. If the theory contains IR divergent amplitudes, for example due to a massless
gauge boson, then this should be regulated throughout the calculation using a fictitious mass
parameter, m,. This parameter should remain in the calculation until the numerical evaluation,
where one can take m, — 0. In some cases taking m, = 0 exactly may result in unexpected
behaviour, in which case it is sufficient to choose smaller and smaller values until a limit is

reached.
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The basis integral T'(x,y, z) is not defined for small x, so when z is small or zero (such

as & = m2) we make the replacement T'(z,y, 2) = T(x,y, 2) — B(y, z) log(x/Q?) [9]. This will
cancel with other terms in the amplitude of the form A(x)B(y, z) = x [log(z/Q?) — 1] B(y, ),
and because T'(0,v, z) is finite, will give a total that is IR safe. This step is necessary even
for light quark masses on the eV scale, but generally only when there is a large scale hierarchy
present (such as a large external momentum and other masses). If a mass is expected to be
small, such as m., then it can be given a special status within the Mass Builder package. This
replacement then happens automatically during the construction of the amplitude. By default
this occurs for any masses with the labels in the set ma,mf,md,mu,ms,mb,mc,mm,nl,me. This can be
changed by locating the array massesSmall appearing in bases.cpp and utils.cpp.

It is also possible to encounter ‘fictitious’ IR divergences. These can arise from including a
finite photon mass when attempting to evaluate non-IR divergent diagrams. In this case the
amplitude may contain O(1/ m%) terms. However, the sum of the coefficients of these terms
is numerically equivalent to zero (i.e. to within a small factor of the floating-point machine
accuracy times the largest individual coefficient). We therefore always see numerically that
these terms cancel, even if the integral reduction fails to cancel them symbolically. Thus when
m~ — 0, the error from the machine precision eventually becomes huge and looks like a physical
divergence. This is currently avoided by separating the amplitude into an O(1/ mg) part and
the remainder. Then at evaluation the coefficient of the O(1/ m%) is checked to see if the sum
is sufficiently less than the magnitude of the largest component. If it is, then this term is
automatically ignored. It is possible to force all terms of O(1/ m%) to be ignored (the default
behaviour), effectively overriding this check, by using the runtime flag expole. In this case

caution must be used to be sure that it is indeed a fake divergence and not a physical one.

C.3.4 Runtime

The calculation of the amplitudes depends on the performance of the tools we are using. The
time taken depends strongly on the type of two-loop topology and the number of unique mass
parameters. We find run times range from less than a minute to several hours. Time can be
reduced by grouping similar diagrams, and leaving the most complex diagrams to be computed
individually. However, due to the way Mathematica carries out the symbolic calculations, a
poor choice of grouping may result in the calculation taking significantly longer than it would
for the sum of the amplitudes alone.

The numerical evaluation of the amplitudes is on the order of seconds but can be reduced

using the optimisation method described in section C.3.2. This optimisation routine can take
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some time to complete, and increases dramatically when more masses are present, yet is ad-
vantageous when many evaluations of the amplitudes are required. For example with the
optimisation routine employed we reduced the numerical evaluation of 123 two-loop diagrams
and five one-loop diagrams from 5.7 seconds to 1.7 seconds. In this instance the optimisation
routine took under two minutes to complete. Thus after only 26 evaluations the optimisation
has been worthwhile. The generation of the TSIL interface code is, excluding the optimisation

calculation, effectively instantaneous.

C.4 Conclusion

I have introduced a program designed to organise and simplify the use of two-loop tools for
the calculation of self-energies. Although entirely an interface tool, this program makes the
calculation of multiple two-loop diagrams an accessible task even on modest computing set
ups.

This program provides a central structure for carrying out and storing the results of long
calculations. By producing an automatically generated interface to the TSIL libraries we enable
maximum flexibility for the user’s choice of precomputed amplitudes to include in a calculation.

The TSIL interface provides an automated method of organising basis integrals into sets
which can be evaluated using a single TSIL call, a task near impossible by hand, thus taking
advantage of the structure of the TSIL libraries to speed up the calculation of the amplitude.
This is especially useful when one is switching between sets of amplitudes to compute, with the
optimal combination of evaluation routines changing each time. Even as a standalone feature,
this is useful to those who have already obtained a list of required basis integrals from elsewhere

and intend to write their own TSIL interface.

C.5 Installing required packages

FeynCalc, FeynArts and TARCER

The easiest way to install FeynCalc , FeynArts , TARCER and FeynHelpers is via the automated

installation method. Open a Mathematica notebook or kernel session and enter

Import ["https://raw.githubusercontent.com/FeynCalc/feyncalc/master/install.m"]
InstallFeynCalc[]
Import ["https://raw.githubusercontent.com/FeynCalc/feynhelpers/master/install.m"]

InstallFeynHelpers[]

(being careful to avoid any spaces which appear in the link when copy-pasting this) when

requested to install the latest version of FeynArts say yes, as this will automatically patch the
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FeynArts installation. If you do not follow this method then it is not possible to run FeynArts
and FeynCalc in the same session (as we need to do) as many function names are identical
between the packages, so to avoid name shadowing follow the recommend method. For more
information see the FeynCalc wiki https://github.com/FeynCalc/feyncalc/wiki.

Check if TARCER has been loaded with the following input

./MathKernal

$LoadPhi = True;
$LoadTARCER = True;
$LoadFeynArts = True;

<< FeynCalc/FeynCalc.m

if TARCER has not been loaded this will give an error and advise the user to run

GenerateTarcerMX
which will generate the required files. All packages within Mathematica are now set up.

TSIL

The Two-loop Self-energy Integral Library (TSIL) can be installed anywhere (Mass Builder will
request the path at configuration). It is available from http://www.niu.edu/spmartin/TSIL/. Mass

Builder has been tested with version 1.41.

FlexibleSUSY

To reproduce the results in Refs. [1,2] the code provided in the mass_splittings directory
can be used. See the documentation in this directory for more details. This code also
requires the FlexibleSUSY libraries to be installed. FlexibleSUSY can be downloaded from
https://flexiblesusy.hepforge.org/. Mass Builder has only be tested with version 1.7.4 and is
not expected to work with version 2.0 and above. Once FlexibleSUSY is installed (in a different
location the Mass Builder package) the models provided in the extras/flexiblesusy/ directory
should be placed in the appropriate places in the FlexibleSUSY root directory, and then installed
using the commands

./createmodel --name = "EW_triplet MDM"
./configure --with-install-dir=<mass_builder_root_directory>/flexiblesusy/ --with-models=
"MDM EW_triplet" --disable-librarylink

make install-src

and then the flag -DFS=true must be used with cmake before using the make target splittings

to build the required program.


https://github.com/FeynCalc/feyncalc/wiki
http://www.niu.edu/spmartin/TSIL/
https://flexiblesusy.hepforge.org/

D Scanner comparisons in a two-dimensional param-

eter space

The scanner comparisons presented in Chapter 8 are based on about 16 separate scans for
each scanner in two, seven and 15 dimensions. We also included results from 52 more scans
to cover each dimensionality between two and 15. However, for clarity we only displayed two-
dimensional profile likelihoods for the 15-dimensional scans (Figures 8.3-8.5, 8.7, 8.8, 8.10 and
8.11). In this section we present the equivalent plots to these for the two-dimensional scans.
In some cases, where the optimal settings depends strongly on dimensionality, we have chosen

different sampler settings in two than in 15 dimensions, so as to allow a meaningful comparison.

D.1 MultiNest & Diver

The profile likelihoods for MultiNest and Diver are presented in Figures D.1 and D.3 respectively.
The marginalised posterior for MultiNest is given in Fig. D.2. For both MultiNest and Diver,
we present scans with the same settings as used for the 15-dimensional equivalent (Figures 8.3,
8.4 and 8.5).

The quality of the profile likelihood is dramatically better in the two-dimensional scans than
in the 15-dimensional equivalents. Although MultiNest did not sample the low-mass region at
all in 15 dimensions, it has been well sampled in two. The maximum likelihood point is located
in the low-mass mode in all scans presented in Figs. D.1 and D.3. This is in good agreement
with the analysis in Figs. 8.1 and 8.2, in which the maximum likelihood was easily achieved in
two dimensions with less stringent scanner settings.

The marginalised posteriors in Fig. D.2 show some qualitative differences to their 15-
dimensional counterparts in Figure 8.4. The primary difference is that the low-mass region
shows in two dimensions, but not in 15. This is because in two dimensions, the low-mass
region does not suffer from the same fine-tuning penalty (imposed by the integration over the
nuisance parameters) as in 15 dimensions. This penalty is due to the dependence of the exact
location and shape of the low-mass region on the values of the 13 nuisance parameters included
in the 15-dimensional scan. This reduces the ratio of the posterior mass of the low-mass mode

to the posterior mass of the high-mass mode in the 15-dimensional scan.
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Figure D.1: Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the MultiNest scanner with a selection of difference tolerances (to1) and
numbers of live points (nlive). The maximum likelihood point is shown by a white star. Figure

from Ref. [6].
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Figure D.2: Marginalised posterior probability density maps from

GAMBIT 100

MultiN

: 0.001
posterior

2.0 2.5 3.0 3.5

log,o(ms/GeV)

a two-dimensional scan of

the scalar singlet parameter space, using the MultiNest scanner with a selection of difference
tolerances (to1) and numbers of live points (nlive). Note that the colourbar strictly only applies
to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot,
rather than to the same iso-posterior density level (i.e. the transition from red to purple is
designed to occur at the edge of the lo credible region, and so on). The posterior mean is
shown with a grey bullet point. Figure from Ref. [6].
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Figure D.3: Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the Diver scanner with a selection of different convergence thresholds
(convthresh) and population sizes (¥P). The maximum likelihood point is shown by a white star.
Figure from Ref. [6].
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Figure D.4: Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the T-Walk scanner with various numbers of chains and different toler-
ances. The maximum likelihood point is shown by a white star. Figure from Ref. [6].
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Figure D.5: Marginalised posterior probability density maps from a two-dimensional scan of
the scalar singlet parameter space, using the T-Walk scanner with various numbers of chains
and different tolerances. Note that the colourbar strictly only applies to the rightmost panel,
and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at
the edge of the 1o credible region, and so on). The posterior mean is shown with a grey bullet
point. Figure from Ref. [6].

D.2 T-Walk

The profile likelihoods and marginalised posteriors for two-dimensional T-Walk scans are pre-
sented in Figs. D.4 and D.5, respectively. We use different T-Walk settings compared to Figs.
8.7 and 8.8. This is primarily dictated by the dimensional dependence of the optimal number
of chains, chain_number, as discussed in Section 8.4. We find that values of to1 ~ 0.1 cause very
rapid convergence in two dimensions, even before any meaningful sampling can occur. This
behaviour can be seen in the right-most plot of Figure D.4, where to1 = 0.03. We therefore
use different settings, more appropriate for the two-dimensional parameter space.

We find that T-Walk samples the profile likelihood very well in two dimensions when tol <
0.01. The number of chains appears to have less influence on the quality of the sampling, but
dramatically increases the runtime. The scans of the two left-most plots in Figure D.4 took
~4 hours (chain_number = 54) and ~ 18 hours (chain_number = 108).

Although the sampling of the profile likelihood is much more complete in these two-
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Figure D.6: Profile likelihood ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTriallists) and
chain lengths (nTrials). The maximum likelihood point is shown by a white star. Figure from
Ref. [6].
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Figure D.7: Marginalised posterior ratio maps from a two-dimensional scan of the scalar singlet
parameter space, using the GreAT sampler with various numbers of chains (nTriallists) and
chain lengths (nTrials). Note that the colourbar strictly only applies to the rightmost panel,
and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at
the edge of the 1o credible region, and so on). The posterior mean is shown with a grey bullet
point. Figure from Ref. [6].

dimensional scans than in the 15 dimensional case, there is no significant improvement in
the marginalised posteriors (Fig. D.5). However, we do see that the low-mass region appears

within the two-sigma contours (as discussed in Section D.1).

D.3 GreAT

The profile likelihoods and marginalised posteriors for GreAT scans in a two-dimensional pa-
rameter space are presented in Figs. D.6 and D.7, respectively. The scanner settings in these
plots are equivalent to those in Figs. 8.10 and 8.11, except for nTriallists, which is set to
Ngim = 2 or Ngim + 2 = 4.

The two left-most plots of Fig. D.6 clearly show that these settings are excessive for
sampling the profile likelihood in two dimensions. Even though all panels in Fig. D.6 exibit well-
sampled profile likelihoods, one can make an optimal choice when considering the computing

time taken. From left to right, the scans took ~5hr, 3hr, 8 min and 17min. Only in the
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quickest two scans does some degradation of the contours and sampling begin to appear. In
contrast to the quality of the profile likelihood, we see in Fig. D.7 that even with a long scan,

in two dimensions the marginalised posterior is not well sampled by GreAT.

D.4 Summary

We have presented profile likelihoods and marginalised posteriors for scans of a two-dimensional
parameter space, directly comparable to the 15-dimensional case presented in Chapter 8. These
plots show that the inclusion of the additional 13 nuisance parameters does not significantly al-
ter the joint profile likelihood of A\, and mg. We find that sampling performance is significantly
improved, demonstrating that although the additional 13 parameters are well constrained by

unimodal likelihoods, their inclusion creates a significant challenge for the sampling algorithms.
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