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2017

One of the big unsolved questions in gravity research is the black hole information
problem. This problem, which pits the unitarity of quantum field theory against smooth
classical spacetime, must have a solution in a complete theory of quantum gravity.

This thesis will explore aspects of one approach to this problem in the context of
string theory. The approach imagines black hole microstates as string theoretic objects.
We look at a prototype system, the D1D5 system, and exploit holography to examine
the dual conformal field theory (CFT). Specifically, we examine the CEFT deformed from
the free orbifold point, dual to a very stringy bulk, using a twisted operator that will
take us towards the point with the supergravity description.

The effects of twisted operators in the CFT are key to understanding physical pro-
cesses such as emission and thermalization in black hole microstates. We will propose
a component twist method for examining the effects of bare twist operators for higher
twists in the continuum limit. Our method builds higher twists from simple 2-cycle twists,
whose effects are known. We will find that, in this limit, the coefficients describing general
states will follow a conjectured general functional form.

We then explore the deformed CFT directly by examining operator mixing for un-
twisted operators. We will exploit the operator product expansion on the covering space,
where twist operators of the orbifold are resolved. We use this to examine the mixing
of a general supergravity operator, specifically examine the dilaton, and finish with the
mixing of a non-supersymmetric candidate operator. We conjecture that this method

could be extended to include twisted operators.
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We will also examine the mixing of the non-supersymmetric candidate operator by
examining three point functions. To automate the lengthy and repetitive computations,
we wrote a Mathematica package to compute correlation functions and OPEs in the
D1D5 CFT. We will explain some of the main functions of this package and how it can
be applied to computations.

Finally, we will end with a short discussion on future directions.
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Chapter 1

Introduction

1.1 Black holes and the information problem

At the classical level, our universe is described by Einstein’s general theory of relativity.
This imagines spacetime to be warped by the presence of energy and these warps to
influence the motion of matter within it. This interplay between matter and spacetime
is captured in the beautiful Einstein equation [1],

&rG

1
RIW — §g#VR + Aglﬂ’ = 7,1_}“/, (11)

where g, is the metric of the space time, R,,, is the Ricci tensor, R is the scalar curvature,
A is the cosmological constant, and T}, is the stress-energy tensor. This equation has
been very successful in describing not only basic aspects of astronomical observations but
also in explaining cosmological evolution.

The first non-trivial solution to this equation was the Schwarzschild solution [2],

2G M 2GM\ !
ds® = — <1 |26 ) dt? + <1 2 ) dr? 4+ r?df* + r? sin” 0d¢°. (1.2)

c2r c2r

This solution is four dimensional and is one of the simplest solutions in a class of solutions
known as black hole solutions. The key features of these solutions are the presence of
horizons and the inner singularity. In Schwarzschild coordinates, the single horizon is at
r=r,=2GM/c? and the singularity is at r = 0.

There have been a number of independent supporting astrophysical observations in
favour of their existence. Most recently, the LIGO collaboration detected a number of
gravitational wave patterns of binary black hole mergers [3]. This means we must deal

with the existence of these objects in our universe and understand all aspects of their
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description.

The horizon of the black hole is an interesting feature of these objects. They metric
looks singular but this is a coordinate artefact and can be removed by a suitable co-
ordinate transformation. Even then, the horizon still has physical consequences. This
was shown with Hawking’s derivation of black hole radiation [4]. The toolset used was
quantum field theory on a curved background. The semiclassical calculation found that
through Hawking radiation a black hole will eventually evaporate away on a timescale
~ G¥D=3) \f(P=D/(D=3) with D the total spacetime dimension. There is also the prob-
lematic curvature singularity at the heart of a black hole, which is expected to be resolved

somehow by quantum gravity and will not be our explicit focus here.

The evaporation of a black hole presents a bit of a problem. There is a theorem in
four dimensional general relativity called the no-hair theorem [5-7]. This states that
an asymptotically flat black hole can only support three types of conserved quantum
numbers: their mass, angular momentum, and charges. The resultant thermal radiation
after evaporation can only depend on these quantum numbers. If we form a black hole
from gravitational collapse, any other information about the infalling matter is then lost.
If we start with matter in a pure state and then collapse to a black hole and finally
wait until evaporation is finished, we end up with a mixed state. This is a non-unitary
process, which conflicts with the unitarity of quantum field theory. This conflict is one of
the most important open problems in quantum gravity, called the black hole information

problem.

Although there have been many proposals for correcting Hawking’s picture semiclas-
sically, Mathur [8] made a broad-based argument that more major quantum gravity cor-
rections will be needed to resolve the information problem. His argument hinged on only
two assumptions. The first was that each Hawking pair created in the emission process
are produced independently of previous pairs and the second that strong subadditivity,
a quantum constraint on the entropies of subsystems, holds. The first assumption is
dependent on the structure of the classical horizon and is therefore not changed in semi-
classical arguments. The second is known to hold for any physical quantum mechanical
system. So the only way to resolve the information problem would be with order one
quantum gravity corrections.

Since then, the “firewall” arguments of Almheiri et al [9] considerably sharpened com-
munity thinking about the regime of validity of effective field theories involving Einstein
gravity. They began with four main postulates. The first was unitarity, the second was
the validity of semi-classical effective field theory with gravity, the third was that the

Bekenstein entropy formula holds, and the last was smooth infall at the horizon. They
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argued that these postulates together were incompatible, so the authors chose to give up
the final one. They gave a very generic argument that the first and second postulates
would imply a “firewall” at the horizon. This is a wall of very highly excited modes of
Hawking radiation near the horizon that would destroy any infalling matter. Avoiding
this result would require instead to give up a different of of the four postulates. There
are a number of proposals for solving the black hole information paradox and avoiding

firewalls.

The “ER=EPR” proposal [10,11] sees bipartite entanglement between particles (the
EPR) as equivalent to a wormhole (the ER) that connects the particles. It was originally
imagined for large black holes, but was also argued to hold for single particles with
non-classical wormholes. These quantum wormholes allow new Hawking radiation to be
connected to the black hole with a wormhole, which is connected via wormhole to earlier
radiation. This picture is different from independent pair creation assumed in the Mathur
argument and allows unitary to be restored. It remains unclear how these quantum
wormholes would behave or the details of how multipartite entanglement configurations

would be represented.

The state-dependent operator proposal [12-14] attempts to describe black holes by
constructing mirror operators that would act as though there was a second asymptotic
region behind the horizon. This proposal sees the Hilbert space of the interior of a black
hole as a scrambled version of the exterior. State independent operators would have
a number of problems, including violating locality, but their state dependent operators
avoid these problems for low-point correlators. A number of papers argued against its
validity, either showing non-unitary measurement processes [15] or violations of the Born
rule |16]. Non-locality has been discussed in both semiclassical gravity [17] and string
theory in a black hole background |18-21]. However, it is unclear how to incorporate non-
locality manifestly in the calculations to see how the unitary of black hole evaporation is

rescued.

In order to progress in finding an honest solution to the black hole information prob-
lem, we should focus in on a theory that could possibly describe quantum gravity in the
ultraviolet (UV). In this thesis, we will focus on exploring the black hole information
paradox through the lens of string theory. It is in string theory that we can construct
setups that are well defined in the UV but could be used to describe the physics of certain
types of black holes under strong theoretical control. In the next section, we will review

some preliminaries of string theory to prepare for discussing these setups.
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1.2 String theory as quantum gravity

String theory is a UV complete theory, which reduces in the low energy limit to su-
pergravity. The emergence of gravity can be seen by studying the beta functions of the
worldsheet sigma model description of strings, where spacetime fields like the metric arise
as coupling functions of the quantum fields describing string motions. Having these beta
functions vanish to preserve conformal invariance of string theory quantum mechanically
will give back Einstein’s equation of the target space (the actual spacetime we want to
describe) and require that the number of spacetime dimensions is D = 10 for critical
string theory. This is why the worldsheet description of string theory recruits techniques
of conformal field theory (CEFT). String theory is described by one coupling, gs, and one
length scale set by the string tension, o/ = [2.

An important part of string theory is supersymmetry. There are plenty of introduc-
tions and reviews of supersymmetry, see for example [22[23]. Supersymmetry relates
bosonic degrees of freedom to fermionic degrees of freedom and has a corresponding
charge, by Noether’s theorem. A theory can have AN > 1 supersymmetry generators,
at which point it is said to possess extended supersymmetry. The generators then have

anticommutation relations that go, schematically, as
{QL, Q%) =Th,P." + CopZ! (1.3)

where Q! are spinor supercharges, P, is the momentum, and Z!7 is the central charge.
The actual form of the anticommutator depends on N, d, and the conserved charges of
the theory. This relation gives rise to the Bogomol'nyi-Prasad-Sommerfield (BPS) bound
defined by M > |z, where M is the mass of a state of the theory and {z;} are the eigen-
values of the central charge operator for the state, up to normalizations. Supersymmetry
gives a significant amount of control, such as non-renormalization theorems, that can be
exploited to compute various aspects of the theory.

String theory contains the eponymous strings but also nonperturbative Dp-branes,
with tension proportional to 1/gs, where p is the number of spacetime dimensions that
are parallel to the brane. A few classic textbooks for string theory are [24-26]. There
are five distinct critical superstring theories in D = 10: Type I, Type IIA, Type IIB,
Heterotic E (E8xES), and Heterotic O (SO(32)). There also exists another description,
M-theory which lives in D = 11. The exact spectrum of objects and fields in the low
energy theory depends on the string theory and will split into two sectors depending on
the periodicity of fermionic states. All types have a Neveu-Schwarz (NS) sector, with an-

tiperiodic fermionic states, consisting of the string metric G, and the dilaton ¢, and also
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two-index antisymmetric tensor potential B,,,. However, their Ramond (R) sectors, with
periodic fermionic states, differ. For example, Type IIA has the 1-index and 3-index anti-
symmetric potentials whereas Type IIB has a scalar, 2-index, and 4-index antisymmetric
tensor potentials. For types I, ITA, and I1B, we have the Dp-branes, fundamental strings,
and NS5-branes. The two heterotic theories have just the fundamental strings and the
NS5-branes. Furthermore, Dp-branes couple to (p + 1)-index tensor potentials, so Type
ITA has even dimensional stable Dp-branes carrying the pertinent charges whereas Type
IIB has odd dimensional stable Dp-branes carrying charges. Stakes of straight parallel

Dp- branes have solutions of the form [27]

dS* = H'P(—dt* + daf) + H)/*da?
Co.p=g; ' (1= H), (1.4)
e® = H]g3*p)/4’

where

Cpgs NP
ri-e

Here C, = (24/m)° PT[(7—p)/2] and r is the radius perpendicular to the brane worldvol-

ume. Branes can then be put together to construct more complicated solutions in string

H,=1+ (1.5)

theory. Generically to produce big smooth classical spacetimes, we need large numbers
of branes to be used. We can see from H, that g;N < 1 will be valid for perturbative
string theory and gsN > 1 for a black brane description.

These different string theories are related by dualities, which act on both the objects
in their spectra and couplings. The first duality discovered was T-duality. This acts on a
compactified cycle and inverts its radius in string units while switching momentum and
winding modes of strings wrapped or moving around the cycle. This duality exchanges
Type ITA and IIB, exchanges Heterotic E with Heterotic O, and will take Type I to either
ITA or IIB. It will also change Dp branes to Dp+1 or Dp— 1 when acting perpendicular or
parallel to the brane, respectively. Another important symmetry is S-duality, which is an
electric-magnetic duality. In type IIB, it can be used to switch D1 branes for fundamental
strings and D5 branes for NS5 branes. These dualities and others allow us to connect
up the five 10D string theories with M theory in an interconnected web. Furthermore, it
allows us to relate systems of strings and branes in one string theory to other systems in

another theory where the construction may be easier to study technically.
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1.3 Fuzzball proposal

An interesting and fruitful string theoretic approach to the black hole information prob-
lem in string theory has been the fuzzball program. See [28] for a good introduction
for interested beginners. Its general framing is more top-down than bottom-up, and it
focuses on black hole microstates, whose geometries are string theoretic constructions
without horizons or singularities. The ultimate goal for this approach is to see how the
sum over microstates captures the full physics of black holes. In a single microstate,
there is no infinite throat of a black hole and instead there is a finite throat, ending in at
the cap. This cap is a complicated, string theoretic arrangement of fluxes, compactified
dimensions, and nonperturbative ingredients which identify the individual microstate.
Order one corrections occur close to the cap and the ingredients of the setup will interact
with infalling matter and radiate without information loss. In the literature there is nor-
mally a distinction drawn between a generic fuzzball, which may be a strongly coupled
or stringy object, and a microstate geometry, a low energy supergravity solution that

describes the fuzzball with a smooth geometry and no horizons.

One can use these fuzzballs to count the entropy from the bound state description
and the black hole description and find agreement between the two descriptions. This
was done first in the famous paper by Strominger and Vafa [29]. This was the first
observation that string theoretic descriptions can be used to reproduce the physics of
black holes. This microscopic counting was extended to non-extremal [30] and rotating

black holes [31] and agreements were found in those cases as well.

The basic constructions involve using D-branes in compactified dimensions to create
the black hole geometries. One of the simplest is the D1D5 system. We will describe
this in detail in section [I.9) When fully compactified, this is a 5-dimensional black hole
with a degenerate horizon. In order to get a non-degenerate horizon, one must add some
momentum charge around the S* that the D1 branes wrap to get the three charge system
D1D5P. This momentum then puffs up the horizon to macroscopic size and the results
is a non-degenerate 5-dimensional black hole. To obtain a 4 dimensional black hole, one
must use four charges. One such setup is the a D2D6NS5P solution. These are not the
only such charged solutions, and in fact one can exploit the dualities of string theory to
relate them to other solutions. For example, the D1D5 solution is dual to a fundamental
string with a momentum charge. This can be useful for calculating quantities in a duality
frame where it is easiest to compute. A review on the technical aspects of constructing
these solutions can be found in [32]. A more generic description of how to construct

fuzzball solutions is found in [33].
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Some of the most simplistic microstates are also extremal states saturating the BPS
bound. This means the black hole has zero temperature and it will not evaporate. In order
to see emission from black holes, one needs non-extremal solutions. Radiation emission
for a number of different types of near-extremal fuzzball geometries were reproduced
beautifully using microscopic CFT methods [34-37]. However, astrophysical black holes
are obviously not supersymmetric and far from extremal, and so there have been a
number of works dedicated to constructing more complicated, more physical microstate
geometries. The most famous of these is the JMaRT class [38] but there are other
solutions that have been found as well [39,/40]. More recent works include finding an
uncharged, rotating, but not stationary solution [41], and by exploiting the superstratum,
a smooth horizonless supergravity solution parameterized by arbitrary functions of two
variables [42,43]. Most recently, a solution with arbitrarily small angular momentum has
been found [44].

A question about the fuzzball proposal is how they might be formed from gravitational
collapse. The typical size of these fuzzballs is roughly horizon sized, and so there must be
some mechanism which prevents the infalling matter from forming the black hole. Early
works [45] argued that the amplitude for tunneling, exp[—Sunneling] = exp[—kGM?],
where k is an order one number, could compete with the large phase space of fuzzballs
exp[Spek] = exp[GM?] and so there was an order one chance of tunneling into a fuzzball
geometry upon collapse. A more detailed and intricate calculation of this was done more
recently by Bena et al [46] by looking at a collapsing shell of branes. They considered a
stepwise quantum tunneling process by considering some number of the original branes
tunnelling into non-trivial fluxes that support horizon-sized fuzzball structure. Their

results supported the initial arguments that such tunneling occurs.

So far we have indicated how fuzzballs can provide a microscopic description for black
holes. We still need to discuss how they finesse the black hole information problem and
the associated firewall argument. The solution to the black hole information problem is
simple from the point of view of the microstates. They do not have a horizon and so there
is no problem with ingoing and outgoing modes of Hawking radiation. A solution to the
firewall problem has been proposed, in the form of fuzzball complementarity [47,48]. The
main idea is that highly energetic degrees of freedom — compared to the temperature of
the corresponding black hole — which impact the fuzzball surface will have an effective
description as falling through a classical horizon. The full fuzzball geometry avoids the
firewall arguments by not having a horizon but one can still have a general relativity

description for the infall problem.

Working out more complicated supergravity solutions for fuzzballs and their quantum
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corrections will not be our focus here. We will focus on examining the prototypical D1D5
system which is best understood example of a fuzzball. However, we will not work in the
supergravity picture. Instead we will describe the system by a dual conformal field theory
(CFT) and study the system there, with strong string tension correction and weak string
loop corrections. The context for this study is the famous AdS/CFT conjecture |49], will

be described in the next section.

1.4 Holography and AdS/CFT

The holographic AdS/CFT correspondence [49-51] has been a fruitful laboratory for
exploring many ideas involving quantum gravity, including the black hole information
problem. In this framework, dynamics of quantum gravity in asymptotically anti de
Sitter (AdS) spacetime are described in terms of a CFT without gravity living in one
fewer dimensions on the boundary of the spacetime. Working models of holography were
originally discovered by considering the near-horizon limit of a N stack of D3 branes,
finding a correspondence between the AdSs x S° and 4 dimensional, A" = 4 super Yang-
Mills theory with gauge group SU(N) and vanishing beta function. Each side of this
duality has two theory parameters. Yang-Mills has the ‘t Hooft coupling A = ¢g2,;N and
the rank of the gauge group N. On the quantum gravity side, we have the dimensionless
ratio R?/a’ = v/4mg,N where R is radius of curvature of the AdS; and S° and the string
coupling g,. These two sides are then related by A = R*/a? and N/\ = 1/(47gs). So
this duality is strong-weak, meaning that strongly coupled AdS quantum gravity can be
studied via weakly coupled gauge theory and vice versa. There have been further brane
constructions engineered that lead to many other classes of dualities as well.

Many different quantities and aspects of the theories can be calculated on either side
and shown to match. For example, in the AdS;/CFTy case above, we can find that the
bosonic symmetry group for either side is SO(4,2) x SO(6) and that the various pa-
rameters have corresponding matches on the other side. Furthermore, one can relate the
fields in the gravity theory to the operators in the CFT. This allows certain supersym-
metric quantities that are protected by non-renormalization theorems to be compared
between two weak coupling calculations from either side [52]. An example us chiral pri-
mary operators, which are the lowest weight operators that are annihilated by half the
supersymmetry generators. The construction of these in the CF'T side will match exactly
to the dual gravity side.

The formal method for computing correlation functions in the CFT using the AdS

bulk is done using holographic renormalization. For a detailed review of this scheme,



CHAPTER 1. INTRODUCTION 9

see [53]. The basic idea is that fields can be expanded in Fefferman-Graham coordinates,
which is a set of coordinates that allows expansion of the metric and fields in terms of a
radial parameter. Coefficients in this radial expansion will correspond to different data.

For example, we can expand a field F' as

F(x,p) = p"(fo) (@) + fo)(x)p + ...+ p"(from) + 108 pfian) + ), (1.6)

where z are the coordinates of the asymptotic AdS boundary, p is the radial coordinate,
and n,m are non-negative integers that depend on the dimension of spacetime, spin,
and mass of the field. Then we can find that f corresponds to the source for the dual
operator in the CF'T and f(2,) is the vev of that operator. With this expansion, one can
put in a cutoff away from the boundary and perform a renormalization scheme on the
action of the bulk field. The renormalized action of the bulk can then be used to extract
the CFT correlation functions for the operator dual to this bulk field.

This formalism has been useful in applying AdS/CFT to a number of contexts. Holog-
raphy can be used in condensed matter to help model conformal theories arising in at
the quantum critical point of a number of physical systems. For example, see recent
reviews of “AdS/condensed matter” [54,55]. AdS/CFT can also be used to model the
quark-gluon plasma in quantum chromodynamics [56}/57]. There has also been work on
extending the duality to de Sitter spaces and modeling cosmological features [58,59]. A
great general review of AdS/CFT can be found in [60].

An important intellectual shift has occurred in gravitational string theory in the last
few years using the conformal symmetry and the structures that are generated in CFTs
from it to study the AdS bulk indirectly. One of the first major approaches is to start
by inspecting CFTs and asking what conditions a CFT should satisfy in order for it to
have a well defined AdS gravity dual. These include a large central charge and a sparse
spectrum of light operators [61]. Roughly, this can be connected to a large N limit in the
bulk and having a hierarchy between the AdS and string scales. In the next section, we
will see how recent work has focused on finding how the geometry of the bulk is stored
in the degrees of freedom in the CFT.

1.5 The AdS in AdS/CFT

One of the key questions of active interest for researchers is how the dual gravity bulk
emerges from data in the dual CFT. This is often referred to as the bulk reconstruction

problem. The HKLL proposal [62-66] gave an early prescription for reconstructing bulk
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fields. Its main feature was to propose reconstructing bulk fields from the dual boundary
theory by smearing the dual operator on the boundary. The drawback of this approach
is that the smearing is done with an integration kernel that depends on the equations of
motion for the bulk field. Furthermore, applying this to black hole geometries requires
complexifying the boundary and finite N corrections require giving up microcausality [67].
A number of other proposals for bulk reconstruction have been proposed more recently

to try and improve on this method.

The main focus for these newer approaches is entanglement entropy, one of the main
tools for studying entanglement. This has an entry in the holographic dictionary on
both sides. This was conjectured by Ryu and Takayanagi [68,69] and the formula relates
the entanglement entropy of a region A (defined as Sy = —Trpalogpa where pu is
the reduced density matrix) on the boundary to the area of the minimal surface in
the bulk whose boundary matches the region. The Ryu-Takayanagi (RT) conjecture
is fundamental to current efforts in exploring bulk reconstruction. The connection to
bulk reconstruction began with van Raamsdonk in [70], where it was posited that the

connectedness of classical spacetime is related to the entanglement structure of the dual
CFT.

The extension of RT to a covariant formulation for weak time dependence was found
by Hubeny, Rangamani, and Takayanagi (HRT) |71]. Proofs supporting the RT formula
have been found. The first was for spherical regions [72,/73] where the entanglement
entropy of the vacuum is mapped to a thermal state on a hyperbolic geometry. This
method is still often used when computing spherical entanglement entropies. A more
detailed supporting argument for the RT and the HRT formula were worked out in [74,75].
This was done by examining classical Euclidean gravity solutions with a boundary which
computes the entanglement entropy through the gravitational entropy. Looking at 1/N
corrections was done by [7678]. They found that the next order correction is given by the
entanglement entropy in the bulk between the two regions separated by the original RT
minimal surface. An alternative approach to computing the entanglement entropy using
bit threads (a divergenceless norm-bounded vector field) and reformulates the minimal

area condition as the maximum flux of the threads out of a region [79].

More aspects of entanglement have been studied than just the plain entanglement
entropy. For example, more general Rényi entropies were worked out in [80]. It also
found that RT surfaces have a phase transition when considering the entanglement en-
tropy of two disconnected regions. The minimal surface when the two regions are close
goes between the two regions but they separate into two separate minimal surfaces with

sufficient separation, similar to soap bubbles.
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It has also been argued that bipartate entanglement is not enough to fully determine
the bulk geometry [81,82]. Another quantity, entwinement, has been conjecture to be
important in determining the full geometry for black holes [83-85]. Entwinement in
the bulk is captured by non-minimal but still extremal surfaces. For example, in the
three dimensional conical defect geometry we can have non-minimal geodesics that wind
around the defect. These are still extremal geodesics, but they are not captured by the
entanglement entropy. However, they are captured by the fractionated degrees of freedom
in the CFT generated by the defect.

A related quantity, complexity, was examined in the series of works in [86-93|. The
complexity is another quantum information measure, defined in quantum mechanics as
the minimum number of unitary gates needed to create a state from a reference state.
Various authors have suggested a number of proposals for the bulk realization for this.
The main two competing proposals are the complexity-volume proposal, where complex-
ity is dual to the volume of the spacetime behind the horizon, and the complexity-action
proposal, where the complexity is dual to the action of the Wheeler-deWitt patch. One
can study the divergence structure, as in the holographic renormalization scheme, and
find the leading order divergences agree, though subleading terms do not [94,95]. How-
ever, the CFT computation is not yet known, so it is not possible to determine which

gives the correct entry in the holographic dictionary.

There has also been a lot of work towards finding gravity from the CFT more directly.
It was shown in [96-99] that entanglement entropy defined via the Ryu-Takayanagi for-
mula satisfies a first law relationship with the modular Hamiltonian (defined as H4 =
—log(pa/trpa)) giving rise to the linearized Einstein equations. This work was extended
to include sources and argued that the only non-linear completion would be Einstein
gravity |100].

Others have focused on how much of the bulk can be obtained from a finite region
on the boundary [101-106]. This program focused on a quantity known as differential
entropy and using a family of regions in AdS; and their entanglement entropies to recon-
struct curves. Specifically they found one could reproduce the circumference of a curve
from a formula integrating the differences of the entanglement entropies of this family
(hence the name “differential” entropy). This program was eventually upgraded to study-
ing kinematic space using integral geometry methods [107-111]. What they found is that
various geometric objects in the bulk, such as points and curves, are reorganized into
an auxiliary space which they called kinematic space. It is a space of boundary causal
diamonds, which are the defined as the intersection of the causal cones of two time-like

separated points. The causal diamonds define spacelike regions on the boundary, which
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can be used to reproduce the entanglement entropy in the CFT and the bulk minimal
surfaces. It is hoped that this auxiliary kinematic space will act as a useful translator

for uncovering further entries in the holographic dictionary.

Other quantum information tools have been brought to bear on studying how CFT
degrees of freedom are organized. The concept of distinguishability of quantum states is
important in quantum information. There are a number of ways to measure this, for ex-
ample the Zamolodchikov metric [112] or the Fisher information metric [113}/114]. These
are related holographically to the relative entropy and the canonical energy, respectively.
One can also examine what inequalities the entropies of holographic states satisfy. These
may include general inequalities known to quantum information theorists [115] or more
novel ones [116-118]. These inequalities can have non-trivial consequences for the dual
gravity theory, such as enforcing the null energy condition [119H122]. Other authors have
investigated the utility of quantum error correcting codes. Quantum error correcting
codes show up in quantum information theory as methods for protecting against the
loss of qubits in quantum communication. Some aspects of the entanglement structure,
such as bounds and gauge invariance of boundary operator dual to a bulk field, can be
explained by these holographic error correcting codes [123-127]. Finally, the concept of
tensor networks was been considered as a useful way of discretizing and studying quan-
tum gravity [108,|128-132]. These networks are built up of connected tensors that are
imbued with properties to reproduce entanglement structure and other aspects of the
CFT.

One can also try to extract more detailed information about the entangling surface
or the geometry. The dependence on the shape of the entanglement region has been
explored in many works such as [133-136]. The authors in [137-139] studied details of
entanglement entropy in the D1D5 system both in the CFT and the bulk. This required
extending the RT formula to work for product spaces, specifically AdSs x S3. They found
that subleading corrections to the RT formula were sensitive to the fuzzball geometry

and saw this in both the bulk and boundary calculations.

Overall, we can see that there is a lot of information about gravity stored in CFTs.
We will also want to examine how we can exploit holographic CFTs to explore questions
foremost in the minds of gravitational physicists. Before we do, we will present a quick

review of CFT structures.
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1.6 Basic introduction to CFT's

In this section, we will discuss several definitions for 2d CFTs, although many of the
objects discussed here will have analogues in higher dimensions. For a great review of
2d CFTs, see [140]. In two dimensions, the symmetry group for CFTs is governed by
the infinite dimensional Virasoro algebra [141]. Suppose we start with our CFT on a
cylinder. We can map the cylinder to the plane and see the Fourier modes in powers of
z,z. First recall our cylinder can be parametrized as o € [0,27] and 7 € [—o00, 00]. To

get to the complex plane, we simply conformally transform by

z=e" (1.7)
Z=e (1.8)
Now we can see how the time is mapped. For 7 = —o0, we see z = 0 and for 7 = oo, we

see z = 00. Furthermore, lines of constant 7 are circles around the origin. So to define a

time ordered product, we now do a radially ordered product.

There are several different types of fields we can work with, the most basic of which

is called a primary field. Primary field transform as tensors under conformal transforms:

O(z,2) = 0'(z,2) = (g—j)h<g—'i) hO(z’,z'). (1.9)

We call h and h conformal weights. The scaling dimension of a field is given by A =
h + h and the conformal spin is given by | = h — h. These indicate how field behave
under conformal transformations, similar to the mass and spin under the Lorentz group.
Holomorphic functions have h = 0 and anti-holomorphic functions have h = 0. We can
also define quasi-primary fields which transform as in equation only under the global
subgroup of the full Virasoro symmetry of the 2d CFT.

Now suppose we have energy momentum tensor components 7., = T'(z) and Ts; =
T(E) The energy-momentum tensor can be used to generate conformal transformations.
We can see this by noting that in a 2d theory with conformal symmetry has a traceless
stress energy tensor which, together with stress-energy conservation, implies that 7'(z)
and T(E) are conserved currents. Therefore the conformal symmetry is generated by the

stress tensor.

We can use the definition of a primary field together with the generator to find the
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operator product expansion (OPE) between the stress tensor and a primary field as

hO(w) N 0O (w)

T(z)0(w) = (z —w)? Z—w

+ regular. (1.10)

Here regular refers to terms that are non-singular.

Now we expect to be able to expand T similarly. We can determine the OPE from the
requirement of the stress energy tensor as the generator of conformal transformations.
We can find

T(2)T(w) =

¢/2 27 (w) + OuT(w) + regular. (1.11)
w

(z—w)* (z—w)? z-—
Note that we do not need to have the term proportional to ¢ for the OPE to give the
correct conformal transformations. However, it does have the correct scaling dimension
and symmetry to appear. This term is called the central charge and is a term that comes
from the Weyl anomaly. If the central charge is not vanishing, then the stress energy
tensor is not a full primary, only a quasi-primary. In higher dimensions the stress tensor

OPE may contain other terms central charges corresponding to other anomalies.

So this brings us to our more general idea of a product expansion of two operators.
Suppose that {O;} are a complete set of local operators with definite scaling dimensions.
We can then expand a product of these two operators in terms of the others. We expand

as

0i(2)0;(w) =Y Ciju(z — w)" MOy (w). (1.12)

It is important to note that the (anti)commutators of the operators are determined by the
singularities in the operator product expansion. The coefficients Cj;, are the structure
constants, which define the CFT. Furthermore, in CFTs, the OPE is a convergent series,

unlike in regular QFTs where it is only an asymptotic series.

The energy-momentum tensor generating conformal transformations implies that the

mode expansion of the stress tensor satisfy the Virasoro algebra.

T(z) =) Lyz " (1.13)

nel

n+tl A important note

L, are generators of conformal transformations for z — 2z + 2
is that L_1,Lg,L; are the generators of SL(2,R), the maximal closed subalgebra of the
conformal group called the global conformal group. If we add L_y,Lg,L;, then we get
SL(2,C).

We could also consider the effect of a finite conformal transformation, z — f(z), on
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T(z). We can use our OPE for T'(2)T (w) to find the result,

T(z) = T'(z) = (9f (2)"T(f(2)) + 15 D(F)-. (1.14)

Note that D(f) is the Schawrzian derivative, which is given by

0f(2)0°f(2) = (3/2)(9*f(2))*
(0f(2))? '

D(f)- = (1.15)

We expect that we can now complete the Hilbert space by using our raising operators,
L_4, on primary operators. Somewhat counter-intuitively, the resulting states are called
descendant states. For every primary ¢;, we can find a representation of the Virasoro
algebra labelled by h;. It is called a Verma module or Virasoro conformal family and it

consists of all the states that have the form of

A

O?l'“km(z) = L_k ~i/—k,,LOj(Z)- (116)

L
Note this only makes sense if k; > 0. These states will have conformal weight of h; +
> ki. Note that these states are secondary operators and, by conformal invariance,
are contained in the operator product of any two operators that contains the primary

operator ¢;. These will appear in less singular terms than its ancestor primary.

Now that we have our definitions of fields and operators sorted, we would like to
investigate how the correlation functions behave. To do this we will restrict ourselves to
fields called quasi-primary fields. Demanding invariance under these restricts the forms

that are allowed for the correlation functions. The results are as follows,

(Oi(2)) =0 (1.17)
Ci
(0i(21)0;(22)) = Q_;iéhi,h]- (1.18)
212
Cijk
<OZ(21)O](22)OI€(Z3>>: hith;—hy hithn—h; hpth;—h; (119)
Zip 713 T2y3
ha+hy  h1+h3
z ya 2127
01(21)04(22)05(23)04(24)) = 15~ 127 1.20
< 1( 1) 2( 2) 3( 3) 4( 4)> Z?5+h223§+h32g2+h42?i+h4 213294 ( )
- h; O,
(T(2)01(w1)...0n(wy)) = > (—— )(O1(w1)...0, (wy)), (1.21)

‘= (z —wj) Z —wj

where z;; = z; — z;. Note (}; are normalization constants that we usually set to unity.

Furthermore, f is a function of the (n — 3) independent cross ratios which cannot be
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specified further by conformal invariance and will depend both on the CFT and on the
operators in the correlator. The final correlation identity is the unintegrated form of the

conformal Ward identity.

Let us consider a very simple example of a free boson CFT to showcase the concepts

here. In 2d, a free scalar has a two point function defined by

(p(2)p(w)) = —log(z — w). (1.22)

This is not the correct form for a conformal primary, see equation ([1.18)), but we can see
that d¢ will be a primary. We can extract from this the OPE,

1

=———. 1.2
O(:)00(w) = (123
Therefore Jp(z) is weight one. We can then define the stress-energy tensor as
1
T(z) = —5° Dp(2)0¢p(2) - (1.24)

and show it satisfies all the equations we had above by using Wick contractions.

With the basics covered, we can now use the considerable structure and power of
CFTs to explore properties of holographic CF'Ts and how that connects to the physics

of quantum gravity.

1.7 The CFT in AdS/CFT

One approach to studying holographic CFTs is to look at the information stored in
conformal blocks. The broad definition of a conformal block is the contribution from
a single conformal family to a four-point function of primary operators. These can be
defined in any dimensions but they can be extended to Virasoro blocks in d = 2 when
one considers the full Virasoro descendants of the operator in the family. For example,

we can consider a four point function of scalar primaries,

(G1(21)da(2)ds(23)Pa(xa)) = Y Y (0l¢s(w3)dalwa)| ) (] (z1)da(22)[0), (1.25)

O€g1Xg2 «a

where O € ¢ X ¢9 are primary operators in the OPE of ¢; X ¢5 and « are the descendants

of O, including itself. If we consider a single term in this sum corresponding to a single
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O, then we can write the conformal block as

1 22 A3zy/2 22 A12/2 A A A

_ 13 14 1+A2 3+Ay

g0<u7v) -~  ~ (_> (_> ‘rlZ x34 (126>
C16:0C 30,0 \ T34 34

X (0]¢s(x3)da(wa) ) (cldr (1) Pa(22)]0).

Here we have the structure constants Cy, 6,0, Cps6,0, the notation z;; = x; — x;, A;; =
A; — A, and the cross ratios u = (a3,23,)/(23323,), u = (21,23;)/(23523,). The main
point of the conformal blocks is that they are fixed by the conformal symmetry and only
depend on the dimensions and spins of O and ¢;. This property makes them extremely

useful for studying universal properties of CF'Ts and extracting holographic physics.

We know that in order to connect to quantum physics, we must perform 1/N correc-
tions. These corrections correspond to 1/¢ corrections in the CFT. So if we can work out
the conformal blocks and examine 1/c¢ corrections, this is tantamount to doing consider-
ing quantum corrections in the bulk. Serious study of this expansion in the holographic
context began with [142], with expressions in more general dimensional CFTs. The fol-
lowup to this paper [143] focused on 2d CFTs. In this paper, they considered a four
point correlator of two heavy and two light correlators where the conformal weights of
the heavy operators where h ~ ¢ and the light operators have h < c. In this limit, the
authors imagined the heavy operators as creating a black hole background in the bulk
on which the light operators acted as probe fields in bulk. They showed that one can
implement this in the CF'T using conformal transformation to a non-trivial metric. This
related the full Virasoro blocks to the global block in the new metric. This was the first
in a series of works dedicated to extracting corrections in 1/c and h/c [144H148]. These
papers used a variety of different techniques to extract the corrections to the Virasoro
blocks. These corrections lead to a final extension showing that exact Virasoro blocks

can be extracted from sl(2) Chern-Simons Wilson lines [149).

A parallel series of developments examined the role of geodesic Witten diagrams.
These were first suggested in [150] as the bulk duals to the conformal blocks. Standard
Witten diagrams [51,/151,/152] are make up one method of computing holographic n-
point functions. These diagrams are generated from the CFT path integral, similar to
well known Feynman diagrams. The holographic correspondence then relates this path
integral to the bulk path integral with the supergravity action as well as the operators
in the CFT to fields in the bulk. So one considers a set of operators on the boundary
and then connect the boundary insertions with bulk-to-boundary and bulk-to-bulk prop-

agators. For standard Witten diagrams, one must integrate this point of contact over
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the full bulk [153]. A geodesic Witten diagram is similar but has a big advantage. Here
we consider a four point function and do the Witten diagram, except the integration is
only done over a geodesic connecting two operators. The paper then went through the
computation for a scalar conformal and showed the correspondence. This was extended
to Virasoro blocks in [154]. In the large ¢ limit, the leading contribution is the global
block and so this paper allowed the geodesics to back-react on the AdS in order to extract
1/c corrections. The next series of papers took this further, working out the details on

how to get conformal blocks for operators with spin [155,/156].

Although it is interesting to study conformal blocks from the point of view of the
structure of CFTs, we are more interested on how this can be applied to study black
holes. An important connection between conformal blocks and the black hole information
problem was found in [147]. They focus on examining a specific CFT manifestation of
the information problem. They first review that two point correlators in a black hole
background decay at large time, as the information is lost. This behaviour is also found
in thermal correlators of CFTs at large central charge. Then examining the problem
would be to see how 1/c¢ corrections may correct this. They take it further by pointing
out that in the heavy-light limit, one can examine a thermal two point correlator as a
four point correlator of two light and two heavy operators as explained earlier. Then the
periodicity of the Euclidean time (tg — tg + ) gives singularities that are forbidden in
the full four point correlator at finite central charge. So examining these singularities will
give another probe for information loss in the CFT. The papers |[157,158] argued that it is
non-perturbative contributions (in 1/c) to the correlators that are required to resolve the
singularities and the late time decay. This was supported by a model CFT calculation
of black hole collapse [159]. These contributions correspond to subleading saddles. The
authors of |160] show explicitly one infinite class of these geometries do not have late
time decaying correlators, giving evidence that such non-perturbative corrections may

resolve the problem.

There are still other properties one can harness for holographic CFTs. For example,
one can use causality in the CFT to constrain terms in a bulk Lagrangian. This was
done in [161] to show how the causality, encoded in the crossing symmetry of correlators,
can be used to derive the sign constraint on a (9¢)* term. This was extended for light
spinning operators in [162] which reproduces non-trivial bounds found earlier in [163]/164].
Another property is studying chaos as done in [165]. This paper examined the bound
in [166] and found that ordinary holographic CFTs saturate the bound and rules out

some other holographic theories with finite towers of higher spins.

Finding CFTs that satisfy holographic restrictions is not easy: they appear to be
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rare in the space of all CF'Ts. One fruitful line of investigation is to focus on permuta-
tion orbifold CFTs, which are more likely to be holographic [167-171]. Some of these
permutation orbifolds will possess the required sparse light spectrum, while also giving
the desired growth at large energies consistent with existence of black holes in the dual
theory. Of course, not all permutation orbifolds will necessarily give CFTs with a classi-
cal AdS dual. They might instead require full string theory to describe them. In higher
dimensions that d = 2, there will also be further constraints on which seed theories can
be used in the orbifold [171]. Accordingly, investigating the general structure of orbifold
CFTs and the states in them is likely to be important to understanding holography more
generally.

One can try to find the universal behaviour of the spectrum in more detail. For
example, the requirement of a sparse light spectrum can be used to place restrictions

on the partition function [172,/173]. This is accomplished using modular invariance, a

4r?
B
define similar restrictions on the elliptic genus, as done in [169}/174]. There the authors

symmetry of the partition function that can be used to relate Z(8) = Z(%%-). One can
try to use a few well known examples to show how the constraints can be satisfies (for
example in the case of a symmetric orbifold) or not (more generally).

We will study aspects of the D1D5 symmetric permutation orbifold in detail in chap-
ters [2] and [3] Before we get there, we will discuss in the next section some of our own
explorations into trying to find a 2d (0,2) supersymmetric theory that would satisfy these
bounds on the elliptic genus and show how difficult it is to combine all these properties
together. See [175] for some review on 2d (0,2) supersymmetry and its relationship to
(2,2).

1.8 (0,2) Holography

As an example of how to examine CFT's for holography, we mention here some of our work
that ultimately failed to find class of holographic theories with reduced supersymmetry.
We will outline why it is difficult to find a theory that works with all the restrictions but
also can be examined with known techniques. Our goal was to find some CFTs with 2d
(0,2) supersymmetry that were holographic.

There has been previous work to find holographic 2d (0,2) SCFETs [176,177] through
brane constructions. We wished to find more general holographic theories in the vein of
[61], by examining CFTs with large central charge and sparse light spectrum. Specifically,
we are looking for gauge theories that flow in the infrared to CFTs that have central

charges that scales as ¢ ~ N? for large N. Furthermore, we want to put constraints on
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the sparseness of the spectrum with the results of [169,[174]. The bonus of using these is
that the elliptic genus is invariant on the moduli space of the gauge theory and we can
find the results without having to find the infrared CFT. Instead, we can construct the
elliptic genus where we know the gauge theory and, if it satisfies the constraints, then
the infrared CFT would satisfy them as well.

We began by considering the CFT presented in [178], which was suspected to possibly
have a CFT dual. However, there is an obvious problem that one hits. The global
symmetry of the model has multiple SU(N) x U (1) factors. In the holographic dictionary,
global symmetries are related to currents in the bulk. At large N this would imply there
would be a large number of massless currents, and so it would definitely fail the sparse
low-lying spectrum condition for a Einstein gravity dual (though it still could have a

string theory dual).

To continue this path, we need to first construct large N, (0,2) gauge theories with
global symmetries that do not scale with N. Then we will need to identify a way to

compute the elliptic genus and compare it to the constraints in [169,[174].

To construct (0,2) gauge theories, we can examine quiver gauge theories which are
derived from quiver diagrams. There is some review of these diagrams in [179,[180]. The
basic construction is that one has vertices and lines. To each vertex, we associate a vector
multiplet and a gauge group V' and directed links from V; to V5 will represent a complex
scalar transforming in the Vi x V, representation. Depending on the supersymmetry at
play, these can be used to form chiral or hypermultiplets. For our (0,2) gauge theories,
we will have chiral multiplets. We can also have Fermi multiplets, where the only on-shell
degree of freedom is left-moving fermion. These can be included into the diagrams as
well. These diagrams will also represent a superpotential term for all closed loops. For
the quiver gauge theories to make sense, one has to be careful of gauge anomalies and
there are conditions on the fields at each vertex for these to cancel [181]. Furthermore,
one then needs to go through a process of c-extremization in order to determine the R

charges of the fields [182].

To illustrate the calculations a bit more, we will cover one of the simpler quiver dia-
grams that we examined. This is show in figure [I.I} Here we have m Fermi multiplets
transforming in the adjoint representation of SU(N);, m Fermi multiplets transforming
in the adjoint representation of SU(N),, n chiral multiplets transforming in the (N, N)
representation, and n chiral multiplets transforming in the (N, N) representation. There
are also global U(1) symmetries as well, arising in the loops that give rise to the super-
potentials. To cancel anomalies, we will have to take the combination m + 1 = n. Going

through the c-extremization procedure, we can determine the R-charges of the multiplets
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Figure 1.1: Simple (0,2) quiver diagram. Here we have 2m Fermi multiplets, 2n chiral
multiplets, and 2 SU(N) gauge groups.

as

2m(N? — 1 N?

m ) Ry = n (1.27)
nN? —4dm(N? — 1) A4m(N? — 1) — nN?

Re=1+

and we have a right central charge of

S (mv? +m(n — 4)(N? — 1))

4m(N? — 1) — nN? (1.28)

which scales as N? at large N as required.

Now that we have the ability to construct gauge theories relatively simply, we turn
to computing the elliptic genus using the techniques outlined in [183,/184]. The details
are very technical and not important for what we wish to cover here, but a rough outline
of the method is as follows. We start by considering localization. Suppose we have a

supersymmetric theory and invariant supercharge (). Now we wish to compute
7 = / Doe 5, (1.29)

If we can find a functional W such that {Q, W} is semi-definite and Q-invariant, then

we can consider

7 = / D SEHHAWT (1.30)
and find that 17
t

—L=0. 1.31

i (1.31)

Note that ¢ is just a variational parameter. So we just need to construct the correct W

to extract the contributions to the elliptic genus. Going through this correctly will yield

Z = — Z ]f B duZy_joop (1) (1.32)
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Here u are the various fugacities of the elliptic genus. This technique has been used
in other contexts in holography to show some exact results in the Aharony, Bergman,
Jafferis, Maldacena (ABJM) gauge/gravity duality [185,(186], a holographic setup of N
M2 branes with a AdS,/CFTj; duality.

So if we can find the 1-loop determinant for our quiver gauge theory, we can find the
full elliptic genus. We can find to give the contributions to the 1-loop partition function
from any type of multiplet we may have in our gauge theory, using our knowledge of
the representations of the multiplets under the gauge and global symmetries. These
contributions are in terms of ratios of theta functions. Once we have our expression
for the 1-loop expression in terms of theta functions, we can using the Jeffrey-Kirwan
method [187] to evaluate the residue integrals in equation . For our simple example,
the result for the Z;_;,0p is

Zy =(2mn(q)?)* ™Y ﬁ {Hl(TL;L(Z-q)— ;) 01 (7|v; — vj)} ﬂ { (01<T|uz7(_q)vj : z))erl

iy e 155

X(e( n(q) ))m“(91(T|ui—uj+2z)91(7|vi—vj+zz))m} (1.33)

Tl —u; — 2 n(q) n(q)

X(S(Z u,)é(z v;)dNud™v.

7

Here we have 7 is the modular parameter of the elliptical genus, ¢ = exp[2miT|, w;
and v; are the ith component of the fugacities for the Cartan elements of SU(N); and
SU(N)y respectively, z is the fugacity for the global U(1), and 7, 6; are the eta and
theta functions defined in [183,|184]. Note that, despite the many terms, one can pick
out the contributions from the various fields from their representations under the gauge
symmetry. Now actually evaluating these integrals is quite difficult, especially when we
want to go to large N. So we can instead consider some of the low N cases, compute
their elliptic genus, and try to extrapolate to large V.

The difficulty with this is we end up hitting elliptic genera that do not have the correct
expansion to be compared to the works of Benjamin et al [169,|174]. The constraints
that these authors work out are on coefficients of an expansion of the elliptic genus.
They implicitly assume in their expansion that their gauge theories have a compact
moduli space, allowing the elliptic genus to have a polynomial expansion in the fugacities.
However, the theories we considered had rational expansions, indicative of non-compact
moduli space. We attempted to avoid this problem by considering more complex quiver
theories but we were unable to find a model that was able to work with our method.

Overall, it is clear that holographic CFTs are a rarity on the space of CFTs [18§]. We
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would need to have a theory that is unitary, has a large N expansion, sparse low-lying
spectrum, and a compact moduli space. We shall now turn to one of these CFTs in the

next section, which we will work with for the rest of this thesis.

1.9 D1D5 system

Our work in this thesis will focus on studying the properties of the D1D5 system, a
prototype system for string theory fuzzballs. In this section, we will describe how the
brane system is constructed and the relationship between the two sides of the AdS/CFT
duality. Then we will focus on the D1D5 CFT at the orbifold point, giving a description
of the operators involved, and describe how we can try to connect the CFT description

to the supergravity description through the deformation operator.

1.9.1 D1D5 construction

The D1D5 system is constructed in Type IIB string theory, with a S* x T* compactifica-
tion in the full 10 dimensions. There are N; D1-branes wrapped on the S' and smeared
along over the 7%. Additionally, N5 D5-branes are wrapped on the full S* x T%. This is

usually explained visually in a table,

01 2 3 4 5 6 7 8 9
Dl — . . . . - ~ ~ ~
D5 | — . . . . - — — _

Table 1.1: Configuration for the D1D5 system. Dashes represent parallel directions, dots
represent perpendicular directions, tildes are smearing directions.

This setup can be described in Type IIB supergravity by the following solution [189],

ds* = 7P I3 P (=dt? + dad) + 17 P dadat + 1P 15 dagdat, (1.34)
Ci =—(f = 1)/2, (1.35)
e = fofit (1.36)
fis=1+7115/r° (1.37)

where 17 = (2m)4g I8Ny /Vpa, 72 = g4l* N5, z* are the coordinates along the T*, and z*
are the non-compact directions.

One can show that in the near horizon limit, the D1D5 system becomes AdS5x.S®xT™.
Note that the volume of the 7% in this limit is near the string scale whereas the AdS; x S®
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is large. So then a truncation to supergravity to AdSs; x S, ignoring KK modes on the
torus, is well defined. The dynamics of the system can also be described (by the AdS/CFT
correspondence) as a (1+1)-dimensional SCFT living on (2°, z°).

Due to the holographic duality, we can already determine the symmetries of this CF'T.
The isometries of AdS3 correspond to the global part of the Virasoro algebra of the CFT,
the isometries of the S* will be the R-symmetry of the CFT, and the torus will provide
a global symmetry.

Where the supergravity description is valid, the dual CFT will be strongly coupled.
Conversely, a free CF'T description has a bulk dual only described by full string theory.
The D1D5 system is described by supergravity and a free CF'T, but these descriptions
are only valid at different points in its moduli space. The Type IIB on T* has 25 moduli,
5 of which are fixed by the near horizon limit geometry of AdSs x S3 [189,/190]. This
leaves 20 moduli corresponding to 20 marginal operators. There are four of these in the
twisted sector, corresponding to various blow up modes in the bulk. More details of the
moduli space can be found in the comprehensive review [189].

To connect to black hole physics, we wish to study the marginal deformation operator
in the free CFT which is a singlet of the various SU(2)s; this particular blow up mode
corresponds in the bulk to the field a;Cy+a2Cjji. To begin, we will describe the free CFT
and then finish the section with a discussion of how the marginal deformation operator

appears in the CFT.

1.9.2 D1D5 CFT: introduction

The D1D5 CFT is a well known CFT describing the D1D5 system. For early papers
on the system, see [189,[1911199]. It can be described by a N = (4,4) 1+1d free SCFT
with the target space (T*)NNs /Sy n. at a point in its moduli space. We will sometimes
abbreviate this symmetric orbifold as (7%)Y/Sy where N = N;N5. This SCFT has
R symmetry SU(2); x SU(2)r and another symmetry from the symmetry of the T,
SO(4) = SU(2); x SU(2)e. This CFT then has a central charge of ¢ = 6Ny N5. One can

write the action as

NiNs
S= > / dzdz[0X]" (2)0X W (2) = A (2)00) () — $ 2D 04 (2)),
! (1.38)
where (a) are the copy indices of the fields, i are the directions of the torus, and «, ¢ are
the indicates of the SU(2), x SU(2)g, respectively.

For the moment, let us focus on a single copy. We can rewrite the scalar fields to
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transform under the torus symmetry as,
1
V2

where A, A are the indices of the SU(2); x SU(2),. We take the conventions for the Pauli

matrices and epsilon tensors where

XM= (5, (1.39)

2=, (1.40)

((72)21 = 1,619 =€

and use the epsilon tenor to raise and lower indices of the fields. The fields have Hermitian

conjugates of the form

(" = —eapeapt” = =4, (1.41)
(XA = —¢5eaX 55 (1.42)

These fields then have OPEs of the form

XA (2)0XPB (w) ~ % (1.43)
R . 6(166/13
A () (w) ~ — o) (1.44)

These fields can then be used to build the supercharge, current, and energy momentum

tensor. These are given respectively by

G = e aX A, (1.45)
1 *a « A ;

J¢ = ZGABGOZﬁ(O- )5#] A¢WB7 (146)
1 . . 1 . )

T = EEABEABaXAAaXBB + §€ABEQ5¢QA8¢'BB, (1.47)

with similar expressions for the anti-holomorphic side. These satisfy various commutation
relations which can be found in [200]. When we have more than one copy, the supercharge,
current, and energy momentum tensor will be given by a sum over all of these copies,

which is Sy invariant.
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1.9.3 D1D5 CFT: bosonization

Since we have a free CFT, we can avoid some of the hassle of dealing with fermions by
bosonization. In general, it is easier to compute correlators of bosons than fermions.
However, fermions have anti-commuting properties not captured by bosons which need
to be enforced using cocycles. This has been studied extensively for the D1D5 system

in [201]; here, we will only mention results that we require.

Calculating correlators with spin and fermion fields can be difficult. One way of

simplifying these calculations is by bosonizing these fermionic fields into the form,
Cref?®, (1.48)

where Cj is the cocycle. It is responsible for restoring the fermionic statistics of the
original fermionic field. We will use the notation and conventions from [201]. We take
Cy = exp(imk-(Mayp)), where ag are momentum operators and M is a matrix of constants
which are constrained by the anticommutation relations and OPEs of the fermions and
spin fields. We also have k- ® = k55 + kg + k‘5$5 + kaq36 where the tildes represent the
antiholomorphic bosonic fields. The commutation for the momentum and the fields is
[Pr, 0] = zéi The paper cited above then provides lists of the bosonized forms of 1, S,
and J.

It also provides some constraints that must be satisfied by the matrix M for this to
work out. These come from enforcing the anticommuting conditions on the fermions and

the OPE structure of the spin fields. For example,

()t (w) = e Mo (7100 () mM)ab (105 (1), (1.49)
— eﬂ[¢67M5ia6]eW[MGiaév(bdeiﬂMSiaé (6i¢5 ) (w)eiﬁMﬁiaé (e—i% ) (Z), (1'50>
= Moo= Mes) 2 (1)t (), (1.51)

since we wish for these to anticommute, we then require that Mss — Mgs; = 1 (mod
2). When all the anticommutation relations and OPE structures for the spin fields are
accounted for, the conditions are A;; £2 = —A;; (mod 4), where A;; = M;; — M;;. For
this work, we took the solution of these constraints as (Ase, Asz, Asg, Agz, Aggy Azg) =
(—1,-1,1,1,1,1).
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1.9.4 D1D5 CFT: twisted sector

Our CFT is a (T*)™™5 /Sy, ., meaning we have N;Nj5 copies of the CFT described in
subsection and the orbifold means that all well defined fields must be invariant
under permutations of the symmetric group, Sy,n,. Regular fields, which we will call
untwisted fields, can satisfy this by being simple sums over the copies. In addition to
the regular fields, we also have a twisted sector from the action of the orbifold. These

involve twisted boundary condition for fields permutes the copies of the CFT.

Operators in the twisted sector involve a bare twist operator, which enforce the bound-
ary conditions at the insertion point. For example, we can consider the specific bare twist
operator iz, .n) = 0, Which will permute fields as we go from z — 2€2™ in the following

manner,
6n 0 = 0@ o o ™ ), (1.52)

Here ¢ can either be the 90X of ¢ fields with copy index (i). The bare twist operators

then have a well known conformal weight,

(n—-), (1.53)

n

which can be argued by considering that a twist operator will take n copies of a vacuum
to a single circle n times longer. So then it will change the energy from —mnc/24 to

—c/24n. For a single copy, ¢ = 6 and so we have the conformal weight as above.

Of course, since we are orbifolding by the symmetric group, these twist operators can
defined by any permutation of length n where n = 2 to N;N5. The length of the permu-
tation of the twist operator will split the twisted sectors into different levels. We will call
an operator, built off a twist operator of length n, a twist n operator. For operators not
in the twisted sector, we will just call them untwisted operators. Well defined operators
must be fully Sy invariant. A single permutation is not Sy invariant and so these twisted
operators must be summed over the conjugacy class of the representative permutation

given in the bare twist. This will require one to consider

S

agery —n'\/_z (12.n)g (1.54)

where g are the group elements of Sy. Notice that this is mostly just amounts to a
combinatorial factor out front and it is usually sufficient to just consider a representative
twist operator o(12..n). However, the Sy invariance is important in restricting the form

of correlators with operators of fractional weights and branch cuts as explained in [201].
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These twist fields allow construction of fractionally moded operators,

dz ,
Ofm/n — f _Z Z Oim‘k)e—27r7,m(k—1)/nzh—m/n—1. (155)

21
k=1

where h is the conformal weight of the O field. These are only well defined in the presence
of the twist n operator, so that the integral is periodic around the insertion. With these
in hand, we can build chiral primaries in the twisted sector. We can build the lowest

weight chiral primary operator as for odd n as
Op = Jf(nﬂ)/n...Jfl/n&n. (1.56)

These then have conformal weight,

+-(n——)= : (1.57)

For even n, we have to be a bit more careful. Fermions have half integer weight and so
will behave differently when we permute copies. For us to have the expected behaviour
in equation , we will need to include a spin field to insure that the fermionic copies
do not pick up a negative sign when we go around the insertion. So then we will have

for even n the chiral primaries
On =T oy e S O (1.58)

These then have conformal weight,

(1.59)

We see that the spin field contribution 1/4n was crucial to the correct result. Note that
a spin field usually has a weight of 1/4 but we must consider the twist operator, which
will lead to a weight of 1/4n. Note that the bare twist for even twists should always

come with this spin field, otherwise they will not have the correct behaviour.

We can create higher weight chiral primaries by applying QZJJ_r{lﬂ and J*, modes. These
will have weights n/2 and (n+ 1)/2 respectively. This means that at each twist level, we
can construct four holomorphic and four antiholomorphic chiral primaries, totalling 16
chiral primaries. We can also create the anti-chiral primaries with the same construction,
but with opposite charges. Finally, we note that for n = 2, the bare twist with the spin

field is the chiral primary operator.
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With all this technology in hand, we can finally describe the deformation operator in
the CFT. The operator takes the form of

Op = eABeagedBG(fi‘/Qéé‘_?/Qagﬂ. (1.60)

This is a singlet under the SU(2)s and is a twist 2 operator. The deformation operator
has been studied in a wide range of contexts [137,202-216].

This deformation is the main focus of this thesis. We will focus on studying the how
the CFT is affected by the deformation operator and what results we obtain when we
perturb away from the orbifold point. To accomplish this, we will need to know how
to compute correlation functions with twisted boundary conditions, as the deformation

operator is a twisted operator.

1.10 Lunin-Mathur

The method for dealing with correlators with twisted operators was first introduced by
Lunin and Mathur [217,218]. The idea is to lift correlators to a covering space, using
a map that properly ramifies the twisted boundary conditions for each of the twisted
operators. The twisted operators will then be replaced by an identity operator. For

example, consider the simple two point function,
(0,(b,0)5,(0,0)). (1.61)

We can lift this correlator with the map

bt™
2(t) = m (1.62)
This map take the operators on the base space, z, covering space where we map the
points z = 0 and z = b to t = 0 and t = b, respectively. This satisfies the requirement
that 2z ~ (=1)""b" around 2z = 0,t = 0 and (2 — b) ~ b(t — 1)" around 2 = b, t = 1.
Away from these ramified points, each point in the base will correspond to n images in
the cover. These will correspond with the n copies that are involved in the twist. See
figure for an image of the base space mapped to the cover by with n = 2.
For some more detail on how the copies, images, and patches of the covering space come
together, refer to [219)].
In theory, we can define multiple covering space maps with the correct ramification.

What is role played by the genus of the covering surface partition function? We are
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Figure 1.2: Left: Diagram of base space for two twist two insertions (circled x), with a
closed path around both twist operators. Right: Lift of base space to the cover. Note
the two images of general non-ramified points (star).

considering a large N expansion in the AdS/CFT expansion and higher genus partitions
functions correspond to higher orders in 1/N [217]. So we focus those of spherical genus.
Suppose we have a correlator of k twist operators, each with ramification order n; — 1,
and that a generic point will be mapped to s sheets of the covering surface. Then the

genus is given by the Riemann-Hurwitz formula,

1
g:§zrj—s+1. (1.63)

J

The maps we consider are for genus zero. It is an interesting open question how the

general results of the lifting procedure would depend on a choice of map.

After lifting, the correlator will have two contributions, one from the now non-twisted
correlator and one from the Liouville term. This term appears because our CFT has a
large central charge and hence a conformal anomaly. So the lifting procedure untwists
the twisted fields, but we must keep track of this lifting through a Liouville field. The
contribution from the Liouville field reflects the contribution from the bare twist operators
themselves, since they do have non-trivial conformal dimension. Specifically, if we lift

our partition function Z**) to the covering space, then we find
AL YACK (1.64)

where the action of the Liouville field is

C

S, = —
L™ 96r

d*t\/—g (0,900,069 + 2RV ¢)]. (1.65)
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Figure 1.3: Left: regulator diagram on the base. Right: regulator diagram after lifting
to the cover. The term “pizza diagrams” come from these regulators, the smaller ones
looking like pepperoni and larger ones the crust.

To compute the contribution of the Liouville field, we will have to regulate around
infinities and around the twist insertions themselves. This leads to “pizza diagrams”
which help identify the various regulation patches and their copies on the covering space.
See figure for the case of the two point function of twist n = 2. The action of the
Liouville field will give three distinct contributions to the correlation function. Two of
these are just regulation dependent and cancel with proper normalization of the corre-
lation functions. The important term comes from boundary of the holes cut around the

twist insertions. Around these holes, we can rewrite the action of the Liouville field as

C

In our example of a two point function, we can use the fact that

2

d
4 (1.67)

:]_ _—
¢ = log i

to find that the contribution from both the images of the twist operators is given by

—1)e [1
Sy = _T)C {ﬁ log |b] + log(ne(”_l)/")} , (1.68)
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where € is the regulator for the twist insertions. With proper normalization, the regulator

dependence drops out and we are left with
(0 (b, )0 (0,0)) = [p] 5. (1.69)

We can then read off the conformal weight as £ (n — =), the correct conformal weight for
bare twists!

The Liouville contribution together with the contribution of the non-twist part will
yield the full correlation function. For the work we do here, we can use the results
from [200] Appendix D, which has general expressions for the bare twist contributions

using the Lunin-Mathur technique.



Chapter 2

Component twist method for higher
twists in D1D5 CFT

2.1 Introduction

The deformation operator, written out in equation (1.60)), is the key to understanding
black hole physics in the D1D5 system. Towards this goal, we wish to see how thermal-
ization occurs in the D1D5 system. At the orbifold point, the field theory is free and so it
is not possible to see thermalization, as the information of any localized excitation cannot
be scrambled without interactions. When we deform away from the orbifold point, the
twisted deformation operator introduces interactions between the copies and this allows
excitations to thermalize in the CFT. This is similar to the story of the emission of su-
persymmetric quanta from fuzzballs in CFT language [37]. In that scenario, the vertex
operator for emission in the CFT was a twisted operator, with a number of dressings.
This vertex operator can reproduce emission for a variety of non-supersymmetric fuzzball
solutions, even with differing methods of emissions such as Hawking radiation and su-
perradiance from the black hole and ergoregion emission from the smooth solutions. The
common theme here is that both thermalization and emission stem from the physics of
the twisted sector in the D1D5 CFT. So understanding the action of the twist operator is
important in investigating the details of how the black hole information problem might
be resolved.

One physical property known for free orbifold theories in 141d is that acting on the
vacuum with twist operators will produce a squeezed state. The rough argument is that
in the free theory we have a quadratic action, which means that the ground state is

a Gaussian. Each twist introduces a change of basis, but since the wavefunction was

33
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Gaussian to begin with, the result is a squeezed state. This behavior holds even when
one applies an arbitrary number of twists [204,220]. We can then try to find the Boguli-
ubov matrices describing these squeezed states. We described the existing technique for
computing quantities with twisted operators in free symmetric orbifold CFTs, the Lunin-
Mathur method in section [1.10]. Recall that this method involves mapping the orbifold
CFT into a covering space where all fields are single-valued. These maps from the base
to the cover must later be inverted to obtain physics answers of interest. When enough
twist operators are applied, the maps will become quintic and higher-order polynomi-
als which cannot be inverted. This technical obstruction severely limits the utility of
these techniques for higher numbers of twist operators. Our method will avoid using the

Lunin-Mathur method but will require working directly in the continuum limit.

We continue from previous investigations, which we will describe in the next section,
to study general twisted states. Our method, using twist 2 operators to build up general
twist configurations, reproduces previous results obtainable using Lunin-Mathur tech-
nology in the continuum limit. We show this by computing a configuration of twisting
and untwisting two copies. We also compute a new second-order twist 2 configuration
by twisting three copies by first twisting two and then twisting the third into the doubly
wound string. We find that the coefficients defining the squeezed state in this new sce-
nario scale as conjectured in [213]. Our methodology gives further evidence that these
general scalings should hold in the continuum limit for arbitrary configurations of twist

operators.

The remainder of this chapter is organized as follows. In Section [2.2] we will review
some of the other methods that have been used to study thermalization in the D1D5 CFT.
In Section [2.3] we present the method in detail for twist operators in orbifold CFTs. In
Section we discuss briefly the particular orbifold CFT arising from the D1D5 black
hole construction. We also discuss here the specific supersymmetry relations that relate
the bosonic and fermionic sectors of this theory. In the subsequent two sections, we apply
our method to two different twist configurations in the D1D5 CFT. In Section [2.5] we
tackle a previously-studied configuration and find good agreement with known results,
while in Section [2.6] we tackle a new twist configuration. Section concludes with a
few closing remarks. Our work builds heavily on [208|, which presented the basics of this
method entirely in the context of the D1D5 CFT.

This chapter mostly follows the work presented in the paper [216].
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2.2 Review of previous methods

There have been a number of previous works dedicated to studying thermalization in
the D1D5 system [137,204}205,[207-210}212-214]. These results have been obtained by
four main methods: direct calculations, the Ward Identity, entanglement entropy, and
the continuum limit. Let us briefly review these results to give context for our original

contribution.

The papers [204,205,207,209,212-214] focused on computing the effect of the twist 2
operator and the dressed deformation operator to first and second order. These papers
focused on looking at the effect of the bare twist 2 operator, g, or the deformation
operator Op. To first order, the twist 2 operator will twist together two copies into a
squeezed state. The second order will twist the two copies together then split them apart.
The copies can either be in the vacuum or a simple excited state, and one can set up

correlation functions to measure the Bogliubov coefficient describing the states.

The paper [210] took a different approach, using the Ward identity together with
the Lunin-Mathur technique to work out the effect of the deformation operator. Here
they used the Ward identity to extract the Bogliubov coefficient. Since the stress tensor
acts as a derivative on the squeezed state there is no need to compute the correlator, as
the stress tensor can extract off the coefficient directly. One still needs to lift the Ward
identity to the cover in order to remove the twisted boundary conditions and analyze the
two sides of the Ward identity.

The paper [137] instead examined the entanglement entropy for the D1D5 system
after a local quench by the deformation operator. Going through the definition of the
entanglement entropy in terms of a reduced density matrix, they employed the replica
trick in order to write out the expression in the CFT. Their entropy calculation reduced
to computing a four point correlator of twist operators, two twist n operators from the

replicas and two twist 2 operators from the state after the application of the deformation.

The Lunin-Mathur method is used in all three of the methods above. There are some
technical details on how to set up the correlators, such as being careful about relating
the modes on the cylinder to the plane, using spectral flow to remove the spin fields
from the correlators, and lifting the modes to the cover. In the end, this method gives
exact expressions. However, the Lunin-Mathur based approach will not work to higher
orders in the twist operator. Part of the lifting method is the map, which is known for
2, 3, and some 4 point correlators of twist operators. But going higher than this, the
map will require quintic or higher polynomials. Since higher point correlators will have

some unfixed coordinates (SL(2,R) global conformal invariance cannot fix all the points)
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one will need to be able to invert these maps to relate the cover and the base. Inverting
quintics or higher polynomials is not generally solvable making the Lunin-Mathur method

unable to handle higher order effects of the deformation.

A qualitatively different approach was taken in the paper [208], which studied the
Bogoliubov coefficients of the squeezed state directly in the continuum limit. This limit
is where we take the CFT to live on the line and not the circle. The results here are what
we shall build on with our component twist method. The benefit of using this method is
that we can avoid Lunin-Mathur map invertibility trouble and hence we will have results
that could go to arbitrarily high order. The cost is that we only get a result valid in the
continuum limit, not in general. However, there are a number of reasons to think that
the continuum limit is where we expect to see black hole dynamics. First, the AdS/CFT
correspondence says if we look at the Poincaré patch of a black hole, then it will be dual
to a CFT living on R? rather than S?. Second, we known that the long string, created by
high twist operators, is the generic state of the black hole and these very long strings will
act as if they effectively live on a line. Finally, when we have the CFT at the black hole
point, there will be strong twist interactions between the copies. So any quantum on the
S1 will not travel long before being affected by a twist and the quantum will act as if it
is living on a line. In the continuum limit, [208] used basic knowledge of quantum field
theory and mode expansions to work out the expressions for the coefficients describing

the squeezed state.

We will take these results for a single twist 2 operator and show how we can build
up more general configurations at higher order. We will do this by noting that we can
build up a general length n permutation by recruiting a number of 2-cycles and so the
knowledge of any twist 2 operator can be used to build any generic configuration of twists.
Then we will analyze the squeezed states by multiplying the matrices describing the twist
2 squeezed state together. We will call this method the component twist method and

explain the details of how this works in the rest of the chapter.

2.3 Overview of the component twist method

Given a free orbifold CFT in 1 4+ 1 dimensions, consider any arbitrary combination of
individual twist operators o,, which together we will call 6. This operator takes a free
theory living on one set of windings to a free theory on another set of windings, with
the total winding number remaining constant. For the moment, consider a scalar field ¢

exists on all windings. The allowed excitation modes for this field will differ between the
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pre-and post-twist configurations. The result is

Il
=
S

510) = Cexp | > > AWaPDialT |0f)

m,n>0 (J) J")

oag)’0) = D > faPad X)) (2.1)

n>0 (j)

The new parenthetical indices refer to the various CFT copies of the theory. For clarity,
we use the index (i) exclusively for CF'T copies before the twist operators and the index (j)
exclusively for copies after the twist operators. The index (k) will be used when speaking
of an arbitrary copy without specifying one side of the twist operators (including copy
structures between the twist operators). Primes are used for additional copies of the
same type. For calculational convenience, the mode indices m and n indicate the energy
of each excitation. They can be fraction-valued for multiwound copies. The excitation
level of each excitation is its mode index times the winding number of the CFT copy on

which the excitation lives.

A method for handling the bosonic sector of these twist operators was explored in [208]
in the context of the D1D5 CF'T, though the need to invert infinite matrices inhibited any
useful generalization. We present a straightforward workaround for obtaining the required
inverse matrices. For the remainder of this chapter, we will work in the continuum limit
of our orbifold CFT. In the next subsection, we will describe how to get out the f®)

and 70U using knowledge of Bogoliubov transformations.

2.3.1 Bogoliubov approach for arbitrary orbifold CFTs

Consider a particular component CFT copy (i) with winding number N; before the

twist insertions. On this copy, the field ¢ may be expanded as:

o(e) = Y (W@)al) +hi)(@)al)") (2:2)

mN(” EZ+

Now consider a particular copy (j) with winding number N; after the twist insertions.

Here ¢ may be expanded as:

o) = 3 (@) + K @)al)). 2.3

771]\[(]')627L
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Since both of these expressions describe the same field, we can relate these two expansions

with a linear relationship:
afl = D (el + 80P el). (2.4)
nN(j)GZJr
The two matrices appearing here are also related to the coefficients of (12.1)).
D@ — (D@
foo ()
N N =L L&)
= >0 D (@9),, 80 (25)

kN(i>EZ+ ()

It will be convenient to occasionally write these relations in their matrix form.
\T _
f=@"), y=a'g=f"8 (2.6)

The Bogoliubov matrices are straightforward to calculate. They can be expressed in
terms of the positive frequency solutions to the wave equation used in the expansions
(2.2) and (2.3)). The functions h form a complete orthonormal basis with respect to the

inner product:
(hg) = =i [ d"(10,5" = 50,1, (27)
2

where ¥ is the Cauchy hypersurface where the domains of f and g overlap. Applying
this orthonormality to (2.2]) and (2.3) and comparing to (2.4)), one finds:

Q16) I i) 1 ()
Apn (hm7hn )
B0 = ((1)hY). (2.8)

The material presented so far in this section is generic and was used in previous
calculations. Once one has calculated the Bogoliubov matrices, it is necessary to then
invert « in order to compute . This task is far from trivial. The Bogoliubov matrices
are infinite matrices, so there is no mathematical guarantee that an inverse even exists.
This is where our component twist method will come in and we will describe it in the

next subsection.

2.3.2 Obtaining ! using component twists

To proceed, we need to find a way to obtain a~! directly without having to invert a. We

saw that in equation (2.6) that a™! gives the unique physical transition matrix f. So
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rather than inverting « directly, we present a direct method of computing f for arbitrary
twist configurations based on the behaviour of the single component twists. In principle
one then need calculate only the 5 matrix using the methods in the previous subsection
to find ~.

Let us consider the twist configuration ¢ again. While we allowed this configuration to
contain any combination of twists o,,, each such component can itself be written in terms

of two-twist operators go. We thus decompose ¢ in terms of these two-twist operators.

Q
[To8 (). (2.9)

where each {k,} is an ordered pair of component CFTs. Since two-twist operators do
not commute, it is important to specify that we will choose indices such that the twists

act in order of increasing q.

We now act on a state containing only a single excitation of ¢. The left hand side is

given by (2.1)). On the right, we will pass each twist through one at a time.

ga®t0)y = fo,in” DIx(6))
kq I3
= Haé H(xg)aDt|0)
q=1

Q
- ([ 3 o

=2 ny,(k1

_ ) S ot 000 | ]
na,(k2)

ni,(k1)

k
— H {q} ) Z fn27n3k3) Z T(llilggkz) m(’fl) a;is)T|X3>

n3,(k3) n1,(k1)

= > (S (ke ntae (1 (fl100 fE00)) ) ) ok (@)10)
(k)

Here each |x;) is the state obtained by acting with the first i twists on the vacuum. The

parentheses in the last line are used to present the correct order for the infinite sums.
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The fact that this order matters is equivalent to the non-associativity of infinite matrix
multiplication. We have however played a little loose with our copy notation. We have
used k; to indicate both a pair of copies defining a twist operator (when in brackets) and
an intermediate CFT copy index (when in parentheses).

By construction, the sum over (kg) in the last line of is the same as the sum
over (j) the first line. Similarly, the sum over ng in the last line is the same as the sum
over n in the first line. We thus find:

9 =X (s (s (- (A ) )
{ni}{(ki)}

In matrix form, this gives

f@) = (fo(for (.- (f2/1))), (2.12)

where each f; is the transition matrix for the i*® two-twist in the decomposition ({2.9)).

Now that we have an expression for the transition matrix, and by extension a™!, for
arbitrary twist configurations, the generalization of [208| is straightforward. Calculate
the transition matrix and Bogoliubov matrices as described in this section. The matrix
a can be used to check the transition matrix calculation by verifying af? = ffa = L.
One then finds the matrix characterizing the squeezed state via v = f73. All of this
would apply for a generic free orbifold. To show this method explicitly, we turn to the
D1D5 CFT.

2.4 Application to the D1D5 CFT

We have reviewed the D1D5 CFT in section and we will now employ that here. This
is a free orbifold theory, so our work in the previous section applies. However, the fields
in this CFT carry global symmetries. We may worry that we will have a proliferation of
characteristic coefficients from the SU(2) structures. This is not the case. Aside from the
fermion zero modes, there is only a single linearly independent v and f matrix for each
copy combination. In practice, however, it is convenient to write different matrices for
bosons and fermions and to also add an SU(2),, index to the fermion transition matrix.
One then has the particular SU(2) structures:

(@) = Cexp [0 (=al) 0D, +al? a9,

X exp [ﬁgm/) (df++ 10— — dj,gj>+*d,2<j>*+)] 10) (2.13)
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The transition matrices are independent of all SU(2) charges except SU(2),. We thus

add an index « to the fermionic piece.
fr@) o fReu (2.14)

Our method only allows us to calculate the bosonic coefficients directly. However, the
nontrivial relationships between the fermionic and bosonic coefficients were shown in

[212], [213]. We can thus access the fermionic sector (except zero modes)[]

Our method was derived for canonically normalized modes, but it has become stan-
dard for work in the D1D5 CFT to make use of modes that are not canonically normal-
ized. We thus provide a translation between the standard mode normalizations and our

canonical normalizations.

® (M)t
Ypdn \/ﬁaAA

7k (k

dyy = VNwdy (2.15)

where the standard modes are on left-hand side. Because of this, our characteristic

coeflicients are also different. For the squeezed state we have

7mn v Pymn
’Vm%)() = V/NyyNgy 1md 9, (2.16)

while for the transition matrix we have

FROG)  — EfB@)o)
mn m mn

frati) _ Ni) FEOG). (2.17)
Ny

We also translate the relationships between the bosonic and fermionic coefficients from

LOur inability to access fermion zero modes means that our method is insensitive to the particular
SU(2) structure of the Ramond vacuum. This insensitivity is expected in the continuum limit.
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[212], [213).

~ F(i)(5) —Vm” 7 B(i)(j)

Tmn = —m

fnlz;,(i)(j) — / / B(Z
F+,0)0)  — B(Z , 2.18
fx e ,/ N (218)

In all of the above expressions, the traditional forms are written on the left-hand side.
With the main relationships reviewed, we can now turn to using our method to
reproduce results obtained using the Lunin-Mathur method to show that our method is

sound. We will examine a twist and untwist set-up in the next section.

2.5 Reproduction of 1 +1— 2 — 1+ 1 results

We now look at the case of two singly wound copies twisted into one doubly wound copy
at w; = 7 4+ i0y7 and then untwisted back into two singly wound copies at ws = 75 + 109.
For convenience, we will use translation and rotation invariance to select 7 = 7 = 0 and
0o > 1. This means that our Cauchy hypersurface ¥ is a collection of ¢ contours.
Since we have two singly-wound CFTs in both the initial and final states, we will
place primes on the explicit final-state copy indices. So the initial copies are (1) and (2)

while the final copies are (1’) and (2').

2.5.1 Calculating the Bogoliubov matrices

We begin by writing the positive frequency solutions to the wave equation.

hgi) _ 1 ezm(a—T)

1 1 ;
O i) (2.19)

where m is an integer. The functional form is the same for all copies since each copy

has the same winding number. However, different copies are valid over different regions.
Importantly, copies (1) and (2) have no domain overlap, and similarly for copies (1") and
(2'). What we need now is the domain of overlap for each initial-final copy pair. There

is in fact some ambiguity here, owing to the freedom to define our copies however we
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A A Alb—t----- A
Bf---=-====-ncn=-- B Bf---—--4B
0 27 0 01 27 0 01 o 27

(@) (b) ()

Figure 2.1: The layout of the copies as we apply the twists. Copy (1) is the black line,
copy (2) is red. Here the A B ends are identified under the 0 = 0 ~ 27 identification of
the cylinder. We perform all calculations at 7 = 0, though we separate the windings here
visually for clarity. (a) Copies before twists. (b) Application of o(12) at oy, twisting the
copies together. (c) Application of o1y at o, , splitting into two new copies (1’) (top)
and (2’) (bottom)

choose. We will follow the conventions of [212]. The intermediate doubly-wound CFT has
its interval [0, oq] taken from copy (1), while the second twist takes the first 27 interval
of this intermediate CFT into copy (1’). The initial-final domains of overlap can then be

seen in figure [2.1]

(1), (1) or (2),(2) = 2 =1[0,01] U0, 27]
(1),(2) or (2),(1) = 3 =][o1,09)- (2.20)

Since the expansion functions are the same for all copies, each matrix’s (1,1’) and (2,2')
components are identical, as are (1,2') and (2,1’) components. This is expected, as the

physics is invariant under the combination of interchanges 1 +» 2 and 1’ < 2'.

We can now calculate our Bogoliubov matrices. Starting with o, we have

o1 27 1
(1)(1") — = A pim(c—T0);,, ,—in(c—T0)
o ([ L)) g e e

—in(o—7) (_ )eim(affo)) do

—e im
1 o1 21 ( )

= Hm=m9 do. 2.21

i Pmn(/o +/0_2)(m—|—n)e o ( )
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The result is piecewise. For m = n, we have

, 11
Oégrllzr(Ll) = EaZm(al +27T—O'2>
- 1_ 01 — 02
2
A
= 1- (2.22)
271
For m # n, we find
/ 1 m+4+n . .
(1)(1 ) — fz(mfn)o'l _ 1 1 - 7Z(m7n)o-2
Y 4mt/mni(m —n) (e * € )
1 m+n z(mfn)m 1 < i(m—n) 222 —i(m—n) f’l*"2>
= ——F——¢€ 2z — (e T —e 2
27 /mn(m — n) 2i
1 m+n , o1+oo Aw
= " s —n)=). 2.23
o /mn(m —n) S <(m "5 ) (2.23)

We now use translation invariance to set the ¢ midpoint to zero. This eliminates the

phase.
) 1 m+n Aw
may — - Ty —n)— | . 2.24
Cmn 27 /mn(m —n) S ((m n) 2i ) (224)

As noted earlier, this is also the purely left-moving (2,2") portion of the @ matrix. The

calculation for (1,2') is identical up to a change in integration limits. The result is

D) — o e (2.25)
—aD oy #n,

which is also the purely left-moving (2, 1’) result. As expected by their general decoupling,
the purely right-moving results are identical to their purely left-moving counterparts.
There are also parts of the o matrix with mixed holomorphicity. Since we expect the
left and right movers to be decoupled at the free orbifold point, these matrices are
nonphysical. This is reflected in vanishing of terms with them. This is reflecting the
fact that their is an ambiguity in the definition of the «, as infinite matrices do not have

unique inverses and f is a physical quantity. For example, we have found

/ 1
o) = sin {(m —n) (2.26)

N 2w/ mn

We can multiply this by a f,,,, evaluating numerically, and find it will vanish. This

Aw
2
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observation is discussed in more detail in Appendix B of [208]. We thus have all the
physically-relevant parts of a.

The calculation for 3 is analogous. It gives:

1 m—n Aw
mw — - "y f——
B 21 /mn(m + n) S ((m +n) 2i )
) 21

Conveniently, there is no need for a piecewise expression. Each component simply van-
ishes on the diagonal. Again, we have similar expressions for the purely right-moving
results and the mixed holomorphicity end up vanishing in any physical terms.

With the o and  matrices, we can now turn to comparing to previous results.

2.5.2 Comparison to previous results

An analytic form of the transition matrix for this twist configuration in the continuum

limit was identified in [213]. Shifting to canonical modes, for 0 < Aw < 27i one has:

(1 Aw
- m=n
f(l)(l/) _ f(z)(zf) _ 21
mn - Jmn - 1 . Aw
\—W(m_n)sm (m—n)? m#£n
( Aw

f(l)(2/) - f(2)(1’) .

mn - mn

Aw (2.28)

| m—m) " ((m_”)y) m#n

We can multiply this matrix by « to check our calculations. Using a cutoff of A = 2000

for the sums, the result is I to within 0.1% for mode indices of order 10 or larger.

One can also check the method of building this two-twist transition amplitude out
of the behaviour of each component twist. Each component transition amplitude also
scales as 1/(m — n), so the summand behaves as an inverse square. The convergence is
fast. A = 2000 is sufficient for 0.2% accuracy for mode indices of order 10 or larger.

Like the transition matrix, the matrix v has the following copy relations:

Yo 0 = Al = =S = 4 8000, (2.29)
We therefore compute only the (1), (1) sector. This computation is more arduous. The

summand scales with a power of —3/2 so convergence is slower than checking inverses.

Furthermore, larger mode indices are required to maintain the validity of the continuum
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v Residuals, Aw=irt, A=10°
Residual
0.35(e@
0.30! o
0.25¢
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0.15¢

0.10¢

0.05¢

50 100 150 200

Figure 2.2: Residual vs n for fy,(zl,/z) ) at Aw = mi. Note that this is a single curve with

even and odd behaving slightly differently.

limit approximations. This is in keeping with , wherein a general from of the falloff
of v with rising mode indices was not valid for low-lying modes.

Figure [2.2|shows the percent error of our calculation for A = 10° for various excitation
levels. These high-cutoff calculations were performed on SciNet [221]. Computations with
lower cutoffs were performed on personal computers. Figure[2.3 and shows the cutoffs

required for a desired accuracy. To get a feel for the accuracy/computation tradeoff, see

Figures [2.5] and

2.6 New twist configuration: 1+1+1—2+1—3

We now turn to a new twist configuration which has not yet been addressed in the
literature. Here we begin with three singly-wound CFT copies and through two two-
twist operators join them into a single triply-wound copy. We can again use rotation and
translation invariance to set 71 = 75 = 0 and o9 > 07. The twist at o7 will join copies (1)
and (2) while the twist at o joins copies (2) and (3). There is only one final copy so we

drop its index.
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Diagonal y Residuals, n=200, Aw=irt

Residual
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Figure 2.3: Residual vs cutoff for 75(1)3,(210/3 at Aw = mi.

Off Diagonal y Residuals, p=200,q=222, Aw=irt

Residual

0.25
0.20
0.15
0.10

0.05

A\
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Figure 2.4: Residual vs cutoff for 75(1)8,(2122 at Aw = mi.
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Off Diagonal y Residuals, One Calculation, p=200, q=222, Aw=irt
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Figure 2.5: Residual vs computation tame for 7%3(2122 at Aw = mi.

Diagonal y Residuals, One Calculation, n=200, Aw=irt
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Figure 2.6: Residual vs computation time for 75337(;0'3 at Aw = mi.
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A A Ab—+--------1 B Al——+-----1 C
o] T R peppp— B - - - - —m—— C ............................. ¥+ - -

C C C BF---——A
0 2n 0 01 271 0 O o 27

(a) (b) (©)

Figure 2.7: The layout of the copies as we apply the twists. Copy (1) is the black
line, copy (2) is red, copy (3) is blue. Here the A, B, C, ends are identified under the
o =0 ~ 27 We perform all calculations at 7 = 0, though we separate the windings here
visually for clarity. (a) Copies before twists. (b) Application of o(19) at oy, twisting the
copies together. (c) Application of (3 at o9, which twists all three together.

2.6.1 Calculating the Bogoliubov matrices

We begin by writing the positive frequency solutions to the wave equation. For each of

the three initial copies, we have:

B = L1 e

" V2TV 2m

; 11

Y —im(o+) (2.30)

NN

with integer m. For the final copy, we instead have:

1 1 ..
hs - - ezs(o T)
Vo6 v 2m
1 1 -
hy = — e tslotT), 2.31
VO v 2m ( )

where s is a multiple of 1/3 since the copy is triply wound. We have dropped the
copy index to reduce index clutter. We now identify our domains of overlap, which are
diagrammed in figure [2.7]

= [0, 0] U [47 + 01, 67]

[01,00) U [2T + 09,47 + 4]

Y
by
Y = [09, 271 + 09}, (2.32)

where each line is the listed copy’s domain overlap with the unique final copy.
Before we proceed further, let us pause to identify an important point. Note that all

of our wavefunctions are identical after shifts of ¢ — o + 67. The domain overlap for
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copy (1) can thus be rewritten as:

(1) = X =[4n+ 01,67+ 0y
(2.33)

It is now clear that copies (1) and (3) both have contiguous domain overlaps while copy
(2) does not. This will manifest in significant similarity between all of copy (1) and copy
(3) matrix components, while the copy (2) components are significantly different. This
is physically expected, as copies (1) and (3) each only see one two-twist operator while

copy (2) sees both operators.

We can now proceed with the calculation of o and 5 for each of our three initial
copies. The mathematics behaves similarly to the previous case, so we present only the

results. For convenience, we identify a commonly-occurring factor:
ps = 1—e™s (2.34)

which vanishes for integer s. We won’t go over all the calculations, as they are similar to
what was shown in the previous case, but we will show the calculation of (2) which will

have a different behaviour. So we setup the integrals as before,

o1+4m
zs(cf—m)ime—im(a—m) _ e—im(U—T)(_Z'S>eis(U—To) do
(/ /a'2+27r ) 4\/—71-\/ ( )
TTL+ S / /U1+47r>
_ i(s=m)o 15 (2.35)
47TV ( oo+27

Now if m = s,

aH® :4\/1§7Té23(01 + 4w — 09 — 27 + 09 — 01)
Z% (2.36)
For m # s, we find
a%g(l’) _ 4W\}%Z(T:_‘|’;L) ( i(s=m)ay dmis _ gi(s—m)oy 2mis 4 gi(s—m)oy _ ei(s—m)al)
- 4\/3;?/%§ iz (pose™mmT2 — yy eilsmmion) (2.37)
Note that s € Z/3, so we can convert 1 — €™ = 1 — efmis—4mis — 1 _ g=dmis — )
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So we can do the o matrices for the (1) and (2) copies and overall have the results.

(L5 Vi
“=Ums S €
af) = (V3 i s+m
ms o i(s—m)o1 7
\ 47r\/33mz‘3—muS s ¢
(1
o = 1Y sum
e T e ) s g
= 0 e
~=Ums S
a® — V3 N
ms ) s+m :
i(s—m)oa
_s€ s ¢ 7.
\47r\/35m8—q'u ¢
The result for the § matrix is:
1 v §—m —i(s+m)o1
Pos = o s m"
1 s+m . .
67(132 _ (Mse—z(s+m)az i M_SG_Z(S+m)Ul)
4/ 3sm S —m
B = e T i

_47r\/ 3sm s — m,us

(2.38)

(2.39)

As expected form our configuration, the results for copies (1) and (3) are identical to the

behaviour of a single two-twist operator, which was solved in general in [208]. It is the

behaviour of copy (2) here which is new.

Now we have both the a and 8 matrices, we turn to obtaining the a~

component twist method.

2.6.2 Calculating the transition matrix

using our

While this twist configuration has not been solved before, the behaviour of copies (1) and

(3) is the same as a single two-twist configuration since each copy only interacts with one
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of our twists. We can thus identify their transition matrices from [208].
(

15
1 - 3ms
- \/_1 X

( 27iy/3s — ——
( s€eZ

! 0
Vi e g g (2.40)
s€ S .
L 273 8 — m'u

sel

e—i(s—m)zn s §§ 7,

\\

=

We now turn to f?), which is where we must apply our method of combining transition
behaviours for each individual two-twist operator. Noting that the intermediate state is

on a doubly-wound CF'T, we have:

=Y (@) B (gy), (2.41)

qEZT /2

where here the copy indices in brackets are used to denote which copies are being twisted
together. The expression (1 + 2) refers to the intermediate doubly-wound CFT that
results form the application of the twist at ;. All first-order transition matrices are

known for two-twist operatorsﬂ so we simply refer to [208] for their continuum limit

approximations.
(L z
—0m, c
fmer = vz !
B 1 1 m e~ ila=m)o1 q¢7Z
\ 271’i\/§ q—m 4

2
-0 sEZ
[(14+2),(3)] _ \/; 2
Ie = ] ] oo (2.42)

— <€ s ¢ 7.
[ 2miV6 s — q" ¢
We now break our computation into two cases.
Case 1: s€Z
Here fl1+2.G3) is nonzero only for ¢ = s, which means ¢ € Z. Thus f(M®)] is nonzero

only for m = ¢ = s. This leaves only one nonzero term in the sum.

[f?gfs)}sez - _6ms‘ (243)

20f positive SU(2), charge
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This seems like the correct result for f given the results for the o matrices in the previous

section.

Case 2: s ¢ Z

Here we cannot have s = ¢ since the allowed values for the two indices only coincide at
integers. We can however still have ¢ = m. We separate out this term, which is the only
nonzero term for integer ¢q. This gives:

i o 1 . eta(o2—01)
e i(s—m)oa — ptmot

s —18092
43 | s—m m ‘ 2 (s —q)(g—m)

q€Z+%5,q>0

[ (2)

2 ) gz (2.44)

This does not have a nice analytic result. So, as before, we will tackle this sum by using

a large but finite cutoff.

A quick check

Since there is no previous result to compare f® to, we instead multiply by o® and
use a large but finite cutoff to handle the sum. The product quickly reaches the identity
thanks to the inverse square scaling of the summand. As with the previous configuration,
a cutoff of A = 2000 is sufficient for 0.01% accuracy.

The behaviour of f,SiQ is shown in Figures and m As anticipated by [213], the

continuum limit behaviour for s # m scales as (for canonical modes):

1
@ ~ —h A 2.45
fms (m _ S) f(m7 S? w)? ( )
where h; is a function oscillating in Aw with amplitude independent of m and s. This
index falloff has been shown to hold for all cases of a single two-twist operator as well
as for both second-order cases considered so far. We recommend this form of transition

matrices as a first-guess fit for numeric work for any twist configurations in the continuum
limit of the D1D5 CFT.

With the transition matrix in hand, we can now use it and the § matrix from the

previous subsection to in compute the v in the next subsection.
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Figure 2.8: Transition amplitude as a function of separation for fl((Q))QO /3
I g -geral, A=10°
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Figure 2.9: Transition amplitude as a function of its index for fq(22q 1173 at Aw = 1.
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Figure 2.10: Gamma as a function of separation for ~gg,3 9,3

2.6.3 The squeezed state matrix

To compute the v matrix, we use the formula introduced earlier and we also must be

careful of the sum over copies. All three initial copies contribute.

Vss' = [fTB]SS/ = Zz,fr(,;lﬁgl/ (246)

m>0 (3)

There are technically two sums at work here, as a sum is required for the intermediate
calculation of f®. As usual we terminate each sum at some large cutoff. The resulting
vss behaviour is shown in Figures [2.10| and [2.11} Once again, the anticipated falloff

from [213] is a good approximation for the continuum limit.

1
s+ s

Vsst h’y(57 5/7 Aw)v (247>

where h., is a different function oscillating in Aw with amplitude independent of s and s'.
We therefore recommend this falloff form for the squeezed state coefficient as a first-guess
fit for numeric work with any twist configurations in the continuum limit of the D1D5
CFT.
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2.7 Discussion

Our goal here was to further investigate the effect of twist operators on quantum states in
the D1D5 orbifold CFT, in order to bring us closer to the general goal of understanding
how thermalization works in the microscopic picture of black holes. We wished to find
results in the continuum limit that went beyond the already known twist 2 results found
previously. The method we presented here, using component twists, has the advantage
of being applicable to higher twist configurations, unlike the Lunin-Mathur method.

We used knowledge of Bogoliubov transformations and the fact that twist two opera-
tors g, can be used to build up higher-twist operators &,, to find the transition matrices
f and squeezed state coefficient matrices v associated to states created by &,. To show
our method works, we checked our component twist method by comparing to a previous
result calculated with Lunin-Mathur technology.

With our method verified, we explicitly calculated a new configuration and found that
the scaling predicted in [213] holds true: we see good agreement with equations
for the transition matrices f and for the squeezed state coefficients v. We expect
that the form of these matrices will hold in the continuum limit for any general twist
operator configurations. This conclusion is based on our component twist method, the
forms of the twist 2 transition matrices, and simple power counting.

We have seen, using calculations in the D1D5 orbifold CFT, that it is possible to
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build up the f matrices from components and to obtain the v matrices from them. The
only part that made our calculations specific to this CFT was the form of the twist
two transition amplitudes. Twist operators in other orbifold CFTs might have a similar
decomposition.

Twist operators also show up in other orbifold CFTs that are not themselves holo-
graphic but are useful for computing quantities of physical interest in holographic CF'Ts.
In particular, cyclic orbifolds show up when using the replica trick for computing entan-
glement entropy via Renyi entropies in quantum field theories [84,/138,222-224]. The
entanglement entropy of multiple regions is written as a correlation function of multiple
pairs of twist operators. Better understanding the effect of applying twist operators in
the prototype D1D5 orbifold CF'T may assist with learning about information theoretic

quantities of interest for quantum gravity.



Chapter 3

Operator mixing from the OPE in
deformed D1D5 CFT

3.1 Introduction

In both the introduction and chapter 2] we have discussed the fact that the D1D5 system
has a moduli space; the supergravity description and the free orbifold description lie at
two different points in it. In the previous chapter, we looked at the continuum limit to
study the how to deform the free orbifold CFT towards the supergravity limit. There we
only studied the bare twist operator to build up other, more general, twist configurations.
With the correct dressing, this would correspond to higher orders in the deformation
operator. In this chapter, we will instead focus on a first order calculation but with the

full deformation operator.

Working with the D1D5 CFT requires unique techniques to deal with operators in the
twisted sector. One of the most important of these is the Lunin-Mathur technique, which
we described in section [I.10] Numerous applications have included matching correlators
to bulk calculations (e.g. emission rates [36]), entanglement entropies and other related
quantities [80,84], thermalization [204,209], and information loss [225]. Despite this
large body of work, the full description of the D1D5 CFT, especially away from the free
orbifold point, is still not fully understood.

One important aspect to the deformed theory is the anomalous dimensions. Studying
the anomalous dimension of the operators at the orbifold point in the D1D5 CFT will
give us a glimpse at how far away the supergravity description lies in the CF'T moduli
space. We expect that as we move towards the supergravity point, all operators not pro-

tected by supersymmetry will be lifted out of the low lying spectrum to have an effective

o8
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supergravity field theory. This is probed perturbatively by the anomalous dimension.

Another interesting body of work that plays a role here is the connection between
higher spin theories and the orbifold point of the D1D5 CFT. Higher spin theories are
toy models for working with quantum gravity, as they have a tower of massless higher
spin fields without a lot of the complications that can arise in full string theory. Higher
spin theories are generally forbidden in asymptotically flat spacetimes by well known
no-go theorems (see [226] for a review). The general rule of thumb is that there are no
interacting Lorentz invariant field theories involving spin greater than 2. In the case of
AdS, pertinent to AdS/CFT holography, we can have interacting higher spin theories,
known as Vasiliev higher spin theories. See [227-229] for some reviews of these theories

in the context of holography.

Relatively recent work has shown that at the D1D5 CFT at the orbifold point has
a closed subsector described by Vasiliev higher spin theory [230-232]. The main result
of these papers was to show that the orbifold point is the tensionless limit of the string
theory. Reacall the two coupling constants on the AdS side of the AdS/CFT corre-
spondence, R?/a’ and g,. The tensionless limit is the limit where we take the coupling
constant R%/a’ to zero, or o/ — oo. This limit would have very long and floppy strings
and so higher spin excitation on the strings would be massless. Deformation away from
the orbifold point acts like as a Higgs mechanism, giving mass to these higher spin fields.
This is important, as the higher spin fields are not in the supergravity description and
so these should lift out of the low energy spectrum to have the effective field theory be
Type IIB supergravity.

To get closer towards the goal of getting to a supergravity description, we continue to
develop the covering space techniques of [206219] to learn about conformally perturbing
away from the orbifold point. In earlier work |206], Burrington, Peet, and Zadeh consid-
ered certain four point functions which contain two copies of our candidate operator and
two copies of the deformation operator. Taking a coincidence limit of such a four point
function allowed them to read off structure constants and show that at first order in
perturbation theory a specific non-protected operator mixed with an unknown operator
of the same conformal dimension, and in this case both operators acquire an anomalous
dimension. One would have to find the exact form of the operator that mixes with the
candidate operator, and iterate this procedure to find all operators that mix in this block.
At each stage a four point function could be computed to find if there was a new operator
that mixes, and if so, many three point functions would need to be computed to find
out the proper combination that mixes. This is a fairly straightforward but extremely

laborious technique, as four point functions have functions of cross ratios that are not
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constrained.

In this chapter, we take another approach. The covering space techniques focus on the
computation of n-point functions, particularly three and four point functions. The three
point functions of quasi-primaries give the structure constants. The structure constants
are the main building blocks for any CF'T, and using bootstrap techniques allows the
building of general correlation functions through crossing symmetry. A modern review of
the bootstrap program can be found here [233|. There is of course another mainstay of
CFT that contains the information about the structure constants: the operator product
expansion (OPE). The symmetric orbifold CFT on the covering surface is particularly
simple: it is a free theory.

Thus, from previous work, we may say the following:

e If we know what the lift of an operator is to the cover, then we know everything
about the operator. We have enough to compute any correlator. Further, if we can
find it for one map, then we can reconstruct it for any map by re-expressing the
operator on the cover as appropriate modes of fields acting on twists that would
lead to that particular operator for that particular map.

e The operator product expansion contains all information about three point func-
tions because the OPE is written in terms of the structure constants.

e The OPE of free theories is simple. The free orbifold theory is a little more com-
plicated, but on the covering surface the difficulties of boundary conditions are
removed. The twisted boundary conditions are accounted for in the map from the
base space to the covering surface. Thus, the OPE on the cover is simple.

Given these statements, there is a natural question: Does the knowledge of the OPE on
the covering surface descend in some way to knowledge of the OPE on the base?

It is the purpose of this chapter to offer evidence that the answer to this question is
“yes,” and outline how to do this in the special case where one of the operators is in the
untwisted sector. We do this by considering specific operators as examples. We lay out
the challenges of general twist-twist OPEs in the Discussion.

The eventual goal of these techniques would be to work out all the mixing operators
for a candidate operator and then use conformal perturbation theory to compute the
anomalous dimensions of the operators after the deformation. This would illuminate
how the free CFT point is connected to the supergravity point in moduli space. Using
the OPE on the cover and simply reading off the operator at the next stage of mixing is
much more efficient than computing the plethora of three point functions at each stage.

The layout of the chapter is as follows. Section contains details about how we

examine operator mixing in a CFT through the structure constants. Section will
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show using the OPE and the lift to the cover that the exactly marginal supergravity
operators do not have an anomalous dimension, as expected. We will also show how one
can reproduce the leading singularity of the four point function for the dilaton operator
and deformation operator with the OPE. Section will use the OPE method to find
the operator that mixes with a (2,2) untwisted operator and contributes to its anomalous
dimension. We will also show how this result can be verified by computing three point
functions and confirm these results by reproducing the coefficient for the mixing found
in the four point function. We finish with the Discussion, including some directions for
future work, in Section [3.5

3.2 Operator mixing and the structure constants

In this chapter, we are studying mixing of operators with an eye to computing anomalous
dimensions. We will use conformal perturbation theory to find these anomalous dimen-
sions. This was discussed in more detail in the series of papers [206,219]. We will give a
lightning review it here. Consider a set of quasi-primary fields, O;. Assume, for now, no
degeneracy in the conformal weights of an operator. To see the anomalous dimension,

one adds a small perturbation to our free SCFT in the form
58 =6S = /\/szOD(z, Z) + h.c.. (3.1)

where A is the coupling constant and Op is the deformation operator. For a two point
correlation functions without the perturbation, conformal invariance fixes the form as

hi =h;
212719

(Oi(z1, 21)Oj(22, 22) )0 =

(3.2)

With the perturbation to first order, the holographic conformal dimensions change as

hi(A\) = h; + )\%ﬁi (A) and similarly for the anti-holomorphic conformal dimensions. Sub-

stituting into the above gives

0 _ S oh(N) ohi(\) | )
5((92-(21, Z1)0;(22, 22)) ) = (—QT In(z19) — QT ln(212)> (Oi(21,22)Oj(22, 22))o.

(3.3)
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One may also look at the path integral of the theory. At first order,

<Oi(21, Zl)Oj(Zz, 22)>)\A = <OZ’(21, 21)03'(22, 22)>0 + )\/‘d22<01(21, 21)0D<Z, Z)Oj(ZQ, 52)>
(3.4)

Regulating the integral and completing it will lead to the condition h; — h; = h; — h;.
This leads to a key relation,

0
a<0i(2’1751)0j(22, Z))a = (3.5)
(27TC¢D1‘ 111(212) + 27TCiDi 111(212) - 27TCiDi 11'1(62)> <Oi(21, 21)02‘(22, 22)>07 hz = hj
d;—d; cdi—dj
—27 681‘,83' CiDj <Edjdi zhjlfzﬁj + di—d; 2hi1_2ﬁi) ) h; 7é hj
2157 219 %12 %12

where s; = h; — l~1,-, d; = h;+ Bi, and C;; are structure constants of the OPE of the CFT.

With an appropriate renormalization

edi—ds

sj mCiDjOja (3.6)
9 7

Oi — OZ + AT ln(CZ)CiDiOZ‘ + 2T\ Z 551’7
J

and comparing to the earlier result leads to the formula for the anomalous dimension at

first order in perturbation theory,

Oh;
O\

= —7Cai, (3.7)

and similarly for the anti-holomorphic sector.

To lift the restriction of no degeneracy, we must diagonalize C;p; in the entire block
of fields with same conformal dimension. These mixing operators are what participate
in the computations of the anomalous dimension. Other operators with non-vanishing

structure constants will only end up affecting the wavefunction renormalization.

So the challenge for finding anomalous dimensions is to compute the structure con-
stants C;pr and the operators Oy, as was alluded to in the Introduction. To do this
through three point functions, we must first consider all operators that would possibly
participate in the mixing. First, they must have the correct conformal weights. Then they
also must satisfy any selection rules from the symmetries. Then each of these operators
Oy would then need to be put into the three point function (O;OpOy) and computed. If
this vanishes, then the operator does not mix; if it is non-zero, then it must be included
in the block diagonalization. These mixing operators would themselves mix with other

operators, O;, and these also must be included to complete the diagonalization. This
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would continue until all operators have been found.

This process would be tedious to do by hand. As mentioned in Appendix [A] for
a simple (2,2) operator may require up to 287 operators and therefore 287 three point
functions to compute. By hand, a single three point function could take a couple of weeks
to compute, making this process extremely length. To help speed up the computations,
we developed a Mathematica package to help with lifting, determining candidate mixing
operators, and computing correlation functions using conformal Wick contractions. We
will describe this package in Chapter [, We ran some of the computations using the
SciNet cluster located at the University of Toronto [221]. This code can compute a three

point function within a few hours or days.

However, finding the structure constants by brute force is a lengthy process, even
with the package as more and more operators enter the mixing. Moreover, there are a
lot of operators that would have no mixing. So there is a lot of time spent computing
vanishing three point functions. Instead, we can consider using the OPE. Recall the basic
definition of the OPE,

Oi(2,2)Op(w, @) = Y (2 —w)M=ho(z — @)leh=ho Cip O (w, @) (3.8)

So if we could compute the OPE of the deformation operator with an operator, we could
extract both the full mixing operator and structure constant directly without having to
compute a large number of three point functions. If we further specialize to h; = hy,
h; = hi, and recalling that hp = hp = 1, then we would only need the one term in the
OPE,

|z — w|?Cipr O (w, ) (3.9)

So instead of computing a multitude of three point functions we can instead just compute
the OPE and get the one operator that accounts for the full mixing, O, and get the
required structure constant as well. One would still need to iterate this procedure to find

all mixing operators, but this still cuts down significantly on the computational workload.

Previous work [206,219] focused on computing the four point functions in order to
study mixing of the dilaton operator and a (2,2) untwisted candidate operator. Taking
coincidence limits of these 4 point functions would indicate mixing and would determine
the full mixing. This limit does not give the mixing operator, but it does provide a useful
diagnosis of mixing. The results found in these papers are important for our work here,

so we will briefly review the method and results here.

The general idea of this approach is that in the coincident limit, we will access infor-
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mation of the structure constants. To start, let us consider the four point function,
<(’)i(a1,dl) OD(b, B)OD(O,(_))OZ'<CL2,6_12)>, (310)

where O; is an general operator of weight h and Op is the deformation operator. We
now take the coincidence limit, (a;,a@;) — (0,0) and (ag,ds) — (b,b). In this case, can

expand out the four point function using the OPE,

<<Z(a2 _ b)—h—1+hk(@2 _ b)—h—l-‘rhkCkaOk) (Z a; —h— 1+hp7 h— thCszO ))

k

(3.11)
We see now how information can be extracted from this coincidence limit. The most
singular term of the four point function will correspond to the operator in the OPE with
the smallest weight that shows up in the OPE. By definition, this will be a quasi-primary
since descendants have higher weights. Then we see that the most singular term would
be

<((a2 — byl (G, — 6)*’3*1%0@101) (a;h—l+hla;ﬁ—1+”“0imol)>, (3.12)
C1’2D1

7

) b1t ht1—hy (3.13)
(CL2 - b)h+1—h1 (a2 — b)h—i—l—hlaiﬂrlfhla]lz«pl,hl

where we have assumed that the lowest weight operator is properly normalized. Higher
orders in this expansion will then correspond to quasi-primary operators that show up
in the OPE with higher weight and follow similarly. So we would be able to extract the
structure constants from this limit. However, these higher orders would also contain con-
tributions from descendants of the lower weight quasi-primaries in the OPE. So these must
be removed so that only the contributions from quasi-primaries show up. For example if
we wanted to study the order of (ay —b) ="~ 1+hitl(G, — 5)*B*Hf““al_h_thHdl_ﬁ_HElH,
then we would have contributions from quasi-primaries of weight (hy +1, h; + 1) plus the
contribution from the descendants of weight (hy, k1), (b1 +1,h1), or (hy, hy + 1) operator

which are also of weight (hy 4+ 1, hy + 1).

This process was applied to the two operators in [206]. For the dilaton, the results
showed that there was no anomalous dimension by showing that the singularity of an
operator of weight (1,1) is not present. Then the authors turned to looking at a (2,2)
untwisted operator and found that there was a singularity corresponding to a weight
(2,2) operator was present. This singularity was not the leading singularity, so they first

showed the first singularity was from mixing with the deformation. Then the descendant
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of the deformation contributes to the mixing singularity and this was removed.

The usefulness of this method is that it will compute the structure constants directly
by computing the four point function. However, it will not give the operator that it
will mix into. This must be recovered either through computing three point functions or
studying the OPE directly. With these two approaches explained, we turn to showing
how these would work with a simpler example in the next section before getting into a

much more meaty calculation in Section [3.4]

3.3 Results for supergravity operator

3.3.1 OPE and lack of anomalous dimension

In order to compute structure constants, we must focus in on specific operators. To start
off, we take a quick look at how we can show how the SUGRA modes do not have any

mixing that contributes to their anomalous dimensions. So consider the OPE,
Os(z,2)0p(0,0) (3.14)

Where Op is the deformation operator and we have the general SUGRA mode,
ZGXCC (i) 2)0Xpp (z)( z) (3.15)

where (i) are the copy indices and are summed over. Note we do not sum over the
SU(2) indices, and instead keep them general. These correspond to SUGRA modes in
the D1D5, as shown in equation (6.16) of |189).

Now we consider lifting this operator. Since we are lifting copies separately, we have
to be careful about the patches on the double cover and choices of branches. We are
lifting with 2 = —t?, then we lift with copy (1) having ¢; = /—z and copy (2) in the
patch defined by ¢, = —y/—z. So we can lift the operator as

> X (90 m ‘HZ(%)_ (%) 00Xect0Xpplt) (310
—Z 4” Xeo(t)0X pp (L) (3.17)

Then we can use the fact that Op — —ieABﬁXAAgXBBSAB. Then we can put these
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together and find

EZZRz;a (1) by (£:) (—ie*POX 40X SAP) (3.18)

1 €p A€ €5 1€ - _ >
= Dt g (T OXe(t)0X,) (P2 + DX (7)) 1)

% 7

X (A 4 LN (1)0X00) (DI + £0X (00X )5 ™) (319
7 J

We can immediately see that we do not have anything that goes like 271271 = ¢=2¢72,

The most singular term, t~3, does not have any Taylor expansion to make it into a ¢ =2
and the rest is too non singular to contribute. So then we have no mixing that contributes
to anomalous dimensions, as we expect.

We can also see that the OPE is non-zero, so there is still mixing. These contributions
will not affect the anomalous dimensions, but will affect the wavefunction renormalization

to first order in the deformation. We will show in the next Section how this will work.

3.3.2 OPE and wavefunction mixing

For the moment, let us specialize to the dilaton. The four point function of two dilaton
and two deformations was found in [206]. We can now try to reproduce the leading
singularity to provide a non-trivial check on the OPE calculation in the previous sub-
section. The dilaton is found from the general SUGRA operator when there is a simple

contraction of the SU(2) indices. Then we have
Ouir(z,2) = —“PeP N " 0X 1 (2)0X pp 1) (2) (3.20)
The OPE then becomes

(’)dil(z Z)OD(O 0) (321)

(CD OD AB ECACCA 1 €ppepB | 14 3 AB
= 5¢ € (t—g ;aXOc(t)aXAA)( I + ?aXDD(E)aXBB)S
Note here that the full sum over copies will only involve two copies for any representative
twist we might consider, so we end up with a factor of two for any term where we do
not have a difference in sign. In general, one should do the Taylor series first then do
the summing over images. This would lead so some terms canceling in the end. For our

interests, this subtlety will not affect our results. So for now, the negative signs that
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come from the differing patches can be ignored, as the holomorphic and antiholomorphic
as summed together and so the signs end up canceling and we can write it in terms of a

generic t. Continuing, we can expand this out and simplify

Oui(z,2)0p(0,0) (3.22)
- #e S48+ Qt;’tPeAB@XBB(t)(’)X A SAE 4 AP QthaX (DX 5,542
+ %L'QEABECDEC%XCC@)&X n0X pp(DOX 5 SAB
Now let us consider just the first term,
s 5)
We can write this in terms of a power series in z by using our relationship, z = —2.
We see then that we have the powers z~%/2273/2. If we go back to our original idea of

the OPE and the fact that both the deformation and the SUGRA operators are (1,1),
then this operator would be a power of 2"~1=' = »73/2 which implies h = 1/2. So this
operator is a (1/2,1/2) on the base. We note this is exactly the weight of the operator
that mentioned as creating the leading singularity in equation (3.20) of [206].

Note that we did not explicitly include the contribution form the bare twist using the
Lunin-Mathur technique. We want to relate the result of the OPE to something from
the base. Since both sides of the OPE are lifted with the same map, they would have the
exact same contribution when lifting. So we do not need to explicitly include it to find
our results. This will no longer be true in the case of lifting the OPE of operators where

both are in the twisted sector. We will include more details about this in the Discussion.

So we seem to have got the correct mixing operator, but it would be nice to check
that this is the correct result. For this, we turn to the four point function,
(Ogi(ay, @) Op(b,b)O(0,0)O4i(asz, az)), and consider the coincidence limit (ay,a;) —
(0,0) and (ag,ay) — (b,b). The leading singularity in the coincidence limit took the form

of -

|a1[?|az — bJ*[b?
This should be recoverable from our OPE. Our coefficient from the OPE is just 1. How-

ever, we must normalize the operators involved to get the structure constant correct.

(3.24)

The normalization of the dilaton will give a factor of (4)7*/? and the deformation (8)~/2.

Then we also need the normalization of the operator itself. Luckily, this is super easy to
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calculate. Consider,
(€4S P (1, D)eepSP(0,0)) = eipeepe e’ =2 (3.25)

So then we must multiply the operator by 2/2 to get it properly normalized. Then we

find
2—2
W Oleading

o
reanS ™ = ()72 g =

T 320

where Oieading s the normalized mixing operator. So in the end we find we get the result
Cap1 = 272

To match up with the coefficient of the singularity, we must square this result. The
leading singularity in the coincidence limit of the four point function would be the two
point function of the normalized Ojcqaing and together with its coefficient. So we would
find that the coefficient of the leading singularity would be C2,, = 274, This agrees with
the coincidence limit of the four point function computed previously.

These results are relatively simple to work out. Now we turn to computing the mixing
for a non-SUGRA mode where previous results had indicated there would be a non-trivial

anomalous dimension.

3.4 Results for candidate operator

3.4.1 OPE and structure constants

Let us consider our main candidate operator,

k

Operators that mix with it must be part of the twist 2 sector, as the three point function
with the target operator and the deformation operator involves one twist 2 (from the
deformation), the candidate mixing operator must have a complementary twist 2 to get
an Sy invariant correlator.

Our main approach is to analyze the OPE themselves, with the hope of finding a more
efficient algorithm for computing mixing. However, this approach will hit an immediate
problem. We are looking for weight (2,2) quasi-primary operators for the computation
of the anomalous dimension. In general, the result of the OPE will include a sum over
quasi-primaries and their descendants. So we will need to find a way to project out the

descendants. We will discuss a simple procedure to do this in the Appendix section [3.6]
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To show how this will help, let us consider doing the OPE of our candidate operator
with the deformation operator. We will lift our OPE with the map z = —t2, which will

have the correct ramification of the twist 2 operator. Then we are looking at doing

Ou(2,2)0p(0,0) & > Oty 2)0F)(0,0) = 20.(t, 5O (0, 0) (3.28)

(tt,t+)

Note here we have take the sum over images as just a simple multiple of 2. This is
because the candidate operator just involves bosonic variables so the two images, which
differ only by a sign, affects the odd orders of ¢ and will not matter in the end for our
calculations. So to simplify the presentation, we will just skip that complication and give

the OPE in terms of a generic t.

Moving forward, we note that lifting with our map the candidate operator lifts to

. . 1 L. _ _ 1
Ou(t:1) = 1oz €2POX 000X pp(0)+ 55 ) 50X, (00X, (D) +
(3.29)

and the deformation operator lifts to
0(0,0) = —ie"PoX ;,0X ;55518 (3.30)

Note that in [206] the authors had worked out that the deformation operator mixes with
the candidate operator. Let’s first show that we can reproduce this here. Since the
deformation operator is weight (1,1) and the candidate has (2,2), we will be looking at
order z!7172z17172 = 72572 on the cover this corresponds to t~4#~*) So then expanding

out the OPE gives us

' b oD B 1 1
' _(ABCDCD EF EF (—EDAGDAaXCC(t> + t—zec-AecA(?XDD(t) 4 Scpieh 0X 4 )

16t272 t2 412
(3.31)
! OxX ! X BEEE X, ) SAB
x| Zerpern pp(t) + FZEEBCED pr(t) + 12
9i _ -
= —eam e*POX ;,0X S + ... (3.32)

Here we have suppressed the other terms in the OPE. We also want to include the

normalization 27 for the candidate operator. So then we have in total

9 9

O.(2,2)0p(0,0) =2 x 27 x WOD(O,O) +..= WOD(O,O) + ... (3.33)
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This agrees with previous results, where the mixing of the deformation operator was
found for the candidate as the leading singularity of the four point function. Recall the

first factor of two is from the sum over images.

Next we can focus on looking for the mixing operator contributing to the anomalous
dimension and see if the success holds. Again our OPE would yield the results
i
16t2¢2

2 1 o
AB (ﬁaXAA(t) + t—zaXAA + ECDGCDaXC‘C(t)aXDD(t>aXAA> (3.34)

2 - 1~ e _ _ _ -
X (EaXBB(t) + t_28XBB + EEFEEFa.XEE(t)@XFF(t)aXBB> SAB
7

— —16t2£2 EAB(aXAAGCDECDaXCCaXDD + 83XAA)

X (0X 5" F PP 0X 50X pp + X ) S8 + (3.35)
Again we have suppressed the other terms in the OPE. This is operator is not a quasi-

primary. So we can use our procedure to find the quasi-primary contribution to the OPE

at this order.

For the moment let us define some operator A which lifts on the cover to
‘AT ZEAB(aXAAGCDGCDaXOCaXDD + 83XAA> (5XBBEEF€EF5XEE5XFF + 53XBB)SAB
= P(0X P POXOX pp + 0P X 1) QS (3.36)

We have suppressed the antiholomorphic parts for simplicity. We want to compute (1 —
L_1Ly)A. Let us start with finding

LA — (3.37)

dt dz\ ™ 1 2 ). GAE

Fame0? ()T - GO, PO DX gy + X i)™

- %7{ %t?)T(t)EAB(aXAAGCD€CD8XC'CaXDD +0°X 41)QppS ™" (3.38)
Y

First note that the Schwarzian term will integrate to zero regardless, so we dropped this.

Working out the OPE and taking the residue, we find

LA — —66"P0X ;,QppStP (3.39)
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Then we can look at

L,1L1A — (340)
dt (dz\"' 1 T

Fom (5) (X0 = Fath(-610X1,0p5%)

3 dt AB A AB

Again the Schwarzian does not contribute. We can work out the OPE, making sure that
Taylor expand the singular terms of the OPE to correctly get the non singular terms.
This will give us

L,1L1A — (342)

3 .. 1 B ..
S (aX i€ PEPOX 6 DX ppy+ 0 X 4 + 20X 310 = 50X 4, (067 = 06°)” )Q 55548

So then we find

(1- %LlLl)A N (3.43)

1 .. 5 .
geAB (28){ ia€CPEPAX o OX ppy + 20°X 4,4 — 120X 4,07 + 30X 5, (09° — 9¢°)° )Q S
We now repeat the procedure with the antiholomorphic part of the operator as well.

Putting this back into our OPE we find

s (20X ane P POX OX pp + 207X 4 — 120X 3,0 + 30X 4, (00° = 06°)” )

(3.44)
_ .. _ _ _ _ _ _ . . 2 ..
<28XBBEEF€EF8XEE6XFF 4 20° X g — 120X 0% + 30X 1y (a¢5 - aqsﬁ) )SAB
1

~ ot
[2@'6AB (23}( ia€PECPIX 5 DXy + 20°X 45 — 120X 4,07 + 30X 4, (06° — a¢6)2)
_ .. _ _ _ _ _ _ . . 2 .
(20X e 7 DX 0 X o + 20° X gy — 120X 0 + 30X (967 — 06°) )SAB]
(3.45)

The operator in the brackets is the mixing operator we denote as O,24. Now we can

include the normalizations to find the structure constant. The candidate operator has



CHAPTER 3. OPERATOR MIXING FROM THE OPE IN DEFORMED D1D5 CFT 72

the normalization (2%)71/2 = 274 the deformation (2%)~'/2 = 273/2. The normalization
of the mixing operator is 3 x 2'%/2, which was found by computing the two point function

of O,24 using our code. Together, the contributions work out to an extra factor of 3 x 2%
We find that

3
On24(0,0) + ... = ——,24(0,0) + ... (3.46)

Ou(2,2)0p(0,0) =2 x (3 x 2%) x %23

U7

This result agrees with what we find by computing three point functions. In the next
Section, we will discuss the details of the results of the three point functions worked out

with our Mathematica package.

3.4.2 Three point functions

We undertook a search of quasi-primaries of weight (2,2) in the twist 2 sector for the
three point function computations. The operators that will contribute to the anomalous
dimension of our target operator are the quasi-primaries of weight (2,2) and singlets
under the SU(2)s. This involves determining the effect of Ly, Lo, to find the weight and
then the effect of Ly, L; to see if the operator of interest would vanish as is expected
for quasi-primaries. Of course, it is easier to check this on the cover, so we lift the
computations to the cover where we would have no twists. Even with these constraints,
there are still 34 operators that might participate in mixing. Doing this by hand would
be very tedious, so we developed a Mathematica code to handle both the checking of
operators being quasi-primary and the correlation functions. The length of calculations
becomes considerably greater as we iterate the anomalous dimension procedure, and we

will expand on this point in the Discussion.

From here we determine their three point functions to find our mixing operators. Not

all of the operators that satisfy the restrictions will end up participate in mixing. In the
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end, we found that 9 operators contribute to mixing.

O, = EABELHEADEaBESEEBCEBCERCERG

OXPB,0XCC,0X AN gL OX T, 0XCG,0X E e o (3.47)
Oy = €ABEL€ipEaplspiceBc0X 1/23XCI/28XA1/21/1 8XE:5210QH op (3.48)
O3 = A€ ip€apapcpecBcdX 1/28X01/28XA1/2¢3D8XE1/2wallq%ﬁﬁ (3.49)
Oy = EAEGEHGADEaﬁEaB‘fFGGFGaX 3/2¢3D8XF1/20X 1/28XE1/2 peH ﬁﬁ (3.50)
Os = €AB€4€ ip€aptap0X T 3/2¢ 8XE:521/)‘1H o (3.51)
O6 = €Ape i ap€antagdX 30 POX EE 0 ol (3.52)
Or = eAEeEHeADeageaﬁeFGepgaXAl/2w°‘D8XF1/20X§825XE1/2@baH o (3.53)
Os = EAEEEHEAD%BeaﬁaXA1/2¢aDaX 3/21/)(()1H‘7§ﬂ (3.54)
Oy = EAEEEHEAD%B%@@XAWQW?@X 1/2¢aH J’ (3.55)

However, these are not quasi-primaries on their own. So we take a linear combination
of them, > . a;0;. Applying the L; operator to the linear combination and setting the
equation to zero lead the equations 6a; 4+ 3a4 +a; = 0, 6as + 3as +ag = 0, and 6az + 3ag +
ag = 0. Applying the L, operator to the linear combination and setting the equation to
zero lead the equations 6a; + 3as 4+ a3 = 0, 6ay + 3as + ag = 0, and 6a; + 3ag + ag = 0.
These equations will lead to four independent solutions. We originally considered the

combination,

011:EAEEEHEAD%ﬁ%B(EBCEBCaXBl/QaX 1/28XA1/2 5P 68XA1/2¢Q?)

(epeercOXTT,0X 650X PE, ot — 60X EE, o0y’ (3.56)
O = eAEeEHeADeageaﬁ(eBCGBcﬁXBl/QaXclc/QaXAﬁQw 68XA1/21/10‘1D)
(OX 75,06 — 30X Lol (3.57)
Oa1 = eAEEEHEADgaﬁeaB( XA /zw 35XA1/2¢QD)
(GFGEFGaXF1/2aXGlG;2aX 1/21/} — 60X" 1/2¢QH) (3. 58)
Osp = €AE€EH€AD€Q5€aB<aX 3/2¢ 38XA1/2¢QD)(8X 3/2¢ —30X* 1/2¢QH)
(3.59)

Now we can consider the operator O = ¢11011 + ¢12012 + 21021 + €22099. We wish

to use this operator in the three point function. To compute the three point function,
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(Oc(a1,a1)O4(b,b)O(0,0)), we will lift to the covering space with the map

2(t) = 2;”_2 : (3.60)

This map has the correct ramifications for twist 2 operators around z = b,t = 1 and
z = 0,t = 0. Lifting to the cover and computing the three point function with the
Lunin-Mathur technique, we find

) _ 288(4cry + 2c19 + 2091 + €32)
@) Op(b,0)O(0,0)) = T
< C’(alaal) D( 3 ) ( ; )> a?(al o b)bd‘;’(al _ b)b

(3.61)

This result includes the contributions from the bare twists. However, our original set of
operators turn out to not be orthogonal. The orthogonal combinations can be obtained
by the usual Gram-Schmidt procedure. We can work out the general two point function
of the operators, @ and O = by; 011 + b1aO1a + b1 Oa1 + basOsy. Computing this can be

done with the same map in equation (3.60|), where we simply set b = 1. This will give

us,
(O(1,1)0(0,0)) = 460800¢11b11 + 115200621091 + 115200¢19b1 + 28800casbss  (3.62)
+ 138240(c11ba1 + bricar + bizcir + cribia) + 41472(cr1boy + 22011 + C12bo1 + €21012)
+ 34560(cazba1 + basCor + biacan + Ca2b12)
Using this two point function as the inner produce for Gram-Schmidt will give the
results,
Oy = Oy (3.63)
~ 3
O12 = 013 — 1—0011 (3.64)
~ 3
Oz = Og1 — 1—0011 (3.65)
~ 3 3 9
(922 = 022 — 1_0021 — EOH + WOH. (366)

We still need to normalize this by the square root of the two point function of the mixing
operator, (O(1,1)0(0,0)). We then can use our results in equation (3.62)) to find,

(0(1,1)0(0,0)) = 460800c7, + 276480c1;co1 + 276480¢11¢12 + 115200c3, (3.67)
+ 82944c11¢co9 + 82944 co1¢19 + 6912009195 + 69120¢19¢99 + 1152000%2 + 28800032.
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Using equation (3.67) to normalize our mixing operator together with the normal-
izations of the two point functions of the deformation, (Op(1,1)Op(0,0)) = 8 and the
candidate, (Oc(1,1)O0¢(0,0)) = 28, will lead to the four results,

(Oc(m, 1)0p (1, HOW(0.0)) =gz _Sb) T (3.68)
(Oc(an, 1)0p (. HOw(0.0) =55y _35) T (3.69)
(Oc(, 1)0p (. HOR(0.0) =55y _31;) s (3.70)
(Oc(a1,a1)Op (b, b)02(0,0)) = k — (3.71)

320a3a3(ay — b)(a, — b)bb

We can simplify our expression by changing our basis of operators here to have only one
operator that accounts for the full mixing and we can also normalize it. This operator

that captures the mixing is given by
Onaa = (011 + 2015 + 2041 + 405,)/(1536V/2). (3.72)

The structure constant for this operator is

3
CiD(n24) = 61 (3.73)

This structure constant agrees with the result obtained from the OPE.

Let us now show that the operator found by the procedure agrees as well. If we write
out O4 in the original nine operators, we find the linear combination (up to normaliza-

tion),

Now we can lift the operators to the cover. For the correlation functions, we use the map
z(t) = bt?/(2t — 1) to the cover. However, we want to compare to results in section [3.4.1]

we will need to use a map of the form z = —#2.
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Let us look at doing this lift. For the bosonic terms, this is quite easy. They are

dt i
8X_n/2 — f %Z(t)_n/QaXAA, (375)
dt —n/2;—n AA
= (=1)"2mH XA ), (3.77)
and we will also have
OXAN,0XEE,0XCC, — (1) 2axMaxPPoX O (3.78)

Here terms generated by the OPE between the 0Xs does not contribute with this map,

but will for when we lift for the correlators.

With this, we can consider the fermions. This is a lot more difficult to do, as the

bosonization and cocycles can be quite complicated. Still, we forge ahead and find

gA/ﬂ/)gﬁ/Qoﬂﬁ (379)

dZ dz 1/2 . L .

—(n+1)/2 3 t (m+1)/ i aA t aB t SB,B

]{ 271 j{ 27rz 2(0)” (dt) (dt) PEERTOST
Y n+m)/27{ ]{ (b D)+ /2F-(m1)+1/2 0 d 6B () gB8 3.80
iy L OO (3.50)

Even with the derivatives, we have to keep in mind that the derivatives that would come
from the residues would act just on the fermions. Because of this, it is difficult to write
down a compact notation with the cocycles explicit. Note we would get a t~%/2¢~1/2 from
the OPE, so then the integral is well defined.

To be able to present this in a managed way, we ran the code and had it expand the
results for the lifting. We then wrote down the compact notation we believed it would

correspond to and had the code expand that and compare the two expressions. From
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this, we have

€apasti VG0 — —8iSAP, (3.81)
eageaﬁzpam 33055 N _SaSAB’ ( :
EaﬁedﬁwaAd}gB 7 4i(8* — (D5 — 3¢6)2/4)5AB, (3.83)
€aB€a5Y0 ¢a1/20ﬂﬁ N —855‘43, ( )
Capagt® il 10 — 80057, (3.85)
eab’ﬁag@bml/}al/gaﬁﬂ — 4(0% — (D5 — 5%) /4)8548, (3.86)
eaﬁea5¢gA¢aB CLN 4i(8? — (D5 — Dobg) /4>SAB’ (3.87)
€asCas 1/2waB BB _, 40(9* — (s — 5956)2/4)5'43, (3.88)
Casagt 10 P o™ = —2i(0° — (95 — 065)°/4)(D" — (065 — D)’ [4)S*7. (3.89)

The phases and expressions could also be found with some work using the Gamma ma-

trices from [201].

With all these pieces, we can look at the nine operators we had listed at the beginning.

So lifting with the map z = —t2, we get expressions on the cover like
Oy = 8ie"B(0X ; ,¢“PePOX 00X ) (0X g F €PF X 1,0 X o) A, (3.90)
Oy = 4ie*B(0X ;1 e“PePOX 00X ) (0P X 1y 5) SAE (3.91)
Oy = 4ie™P(0X ;¢ “PePOX 10X ) (0X 55 0° — OX (D5 — D)2 /4)SAP . (3.92)
Oy = 4ie™P (P X ;) (0X g€ F PP OX 1,0 X ) SP, (3.93)
05 = 2ieB (P X ;) (P X 55) S8 (3.94)
O = 2ie*B (3P X ;) (0X 550° — 0X ;5 (D5 — D)2 /4)SAP, (3.95)
O = 4ie*B(0X ;0> — 0X ;4 (0d5 — 06)2/4) (DX pe=F €PF DX 10X pp) SAE,  (3.96)
Og = 2ie*B(0X ;10> — 0X ;4 (0ds5 — D)2 /4) (PP X ) SAE (3.97)
Oy = 2ie"B(0X ;40> — 0X i, (05 — Dg)? /4) (DX 30> — DX (Db — Debg)?/4)SAE.
(3.98)

Now using the fact that

04 = 014205 — 1203 + 204 + 405 — 2404 — 1207 — 2405 + 1440, (3.99)
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we find

O =2ie*P (20X ;1P ePOX . 0X ppy + 20°X i 4 — 120X ;4,07 + 30X 4, (05 — Dpg)?)
x (20X 5  PFOX 10X pp + 20°X ppy — 120X 302 + 30X (95 — b)) S4B
(3.100)

Note this agrees (up to normalization) with the results of the OPE in the previous section.

3.4.3 Four point function: coincidence limit

A non-trivial check on both methods is to examine the four point function of two can-
didates and two deformations. The coincidence limit will indicate the mixing for the
operator. The four point function for the candidate operator had previously been worked

out,

|]*
212
( )2 (R+1) RY2(R+1) RY?>(R+1) (R+1)? (R+1)?

QR DERNTE —w)*m w-12 (@1 R-iEo)
(R R2+6R+ 1) R(R2+6R+1)) 16R(R2+6R+1)R(R2+6R+1)

25

(Oc¢(ar,a1) Op(b,b)Op(0,0)0¢(az, a2)) = 5 A*|a1]|*ag|*|ar — b *|az — b|~ {Z

+ 10

(R—1)* (R—1)* (R—1)*
R1/2 R+1 R¥?(R+1) R¥?*R+1)RV*(R+ 1))
(R—1)* (R—1)* (R—-1)
R3/2(R + 1) R¥2(R+1)
(R—1*  (R—1)*
(R+12?R(R?+6R+1) R(R*+6R+1)(R+1)?
(e drt Eey e |

+ 64

+ 256

(3.101)

where R = ay(az — b)(az(ay — b)).

We wish to look at the coincidence limit, (a1, a;) — (0,0) and (ag, @) — (b,b). There
will be an number of singularities in this limit, but we are only interested in the mixing
from a weight (2,2), as mixing with other operators will not contribute to the anomalous
dimension. To see what comes from mixing, one first has to look at (1,1) operators that
contribute and subtract the weight (2,2) descendants’ contribution, as mixing will only
come from quasi-primaries not descendants. In the previous work [206], it was found
that the only operator at weight (1,1) was the deformation operator itself. We also found

this using our OPE method. Subtracting its descendant’s contribution, the term that
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indicates mixing with quasi-primary operators is given by

9
212a1(a2 — b)(fl(dg — B)‘b|8

(3.102)

This is the singularity that indicates the mixing with weight (2,2) operators. Using
Cinm2a) = 3/2°, we find that C’Z?D(RQA) = 9/2'2 gives us the coefficient in the four point

function. This indicates we have found the correct and complete mixing at twist 2.

3.5 Discussion

To fully compute the anomalous dimension, we would need to consider computing the
mixing for higher twist operators. This is due to the fact that a twist 2 operator can mix
with a twist 3 under the deformation and so on. Fixing the conformal dimension will put
a cutoff on how high the twists can go, as the bare twist fields carry conformal weight
themselves. A simple calculation will show that n = 8 is the highest twist allowed for a
(2,2) operator.

Doing this procedure for higher twists using correlation functions is well defined. How-
ever, due to the fractional moding of operators, the number of operators at each twist
level will generally increase. This means computing increasing numbers of correlators,
which will also have more complicated structure. In total, we believe there would be
a total of 288, including the candidate operator, that might be involved in the mixing.
The code we have developed can do these computations as well, but it takes an unrea-
sonably long time. Our preliminary calculations with the code showed that there were 9
independent mixing operators at twist 3 and 36 independent mixing operators at twist
4, and twist 5 was just as complicated. Finishing the computations by brute force was
unappetizing owing to the enormous length of expressions obtained.

To avoid this problem, we would like to use our OPE algorithm to find the higher
twist operators that participate in mixing. Then we would immediately recover the
mixing operator from the one computation. However, this would require understanding
how to properly lift the OPE to the cover when there are two twisted operators, and it
turns out that there is a really interesting subtlety to this story. On the one side, we
would have an OPE like

Op(20,20)O(0,0) (3.103)

where Op is the deformation operator and O is the operator we are investigating the

mixing for (which for our candidate is not in the twisted sector but in general may be
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a twisted operator with twist n). To get the ramifications correct when lifting this, we

could use the map

1
- (t T to) (3.104)
n

This has the correct ramification for the twist 2 deformation operator at ¢t = ty and the

= t0 so the image

correct ramification for a twist n operator at ¢ = 0. Note that 2z
of zy becomes e2™#/("t1¢ on the cover. A sum over these will ensure that will have
correct power series expansion of zg. However, the end result of the OPE would be an
operator of twist n 4+ 1 at ¢ = 0, which the map does not correctly ramify. We could
consider the limit of the map t, — 0, which would give us a map z = —nt"*!. This has
the correct ramification. However, in this process, a ramified point in the map has been
moved. In the Lunin-Mathur covering space technique, there are extra contributions
coming from a Liouville action contribution [217], and these contributions are localized
at ramified points in the covering space. We checked this problem by computing the
Op(z0,20)Oc(0,0) OPE and found that, not being careful about the map changing leads

to an incorrect result.

Another way to see the same difficulty is looking at the action of translation on a

generic operator. At leading order,
O(Zo + 520) = O(ZQ) + 80(20)520 +-= O(Zo) + (L_lo)(20)52’0 + - (3105)

The change (L_10)(z9)dzo may be lifted to the covering surface by a map z = f(t) where

20 = f(to) for some tg, and we find

dt (of(t)\ " c

L10)(z) — ¢ — (LY (Tt—— t,t)(’)t 3.106

L0 = f 5 () (r- U)o @00
We see here that if the map is ramified at ¢ = to with ramification n the function 0f(t)/0t
will have an n'" order 0 at ¢y, leading to Virasoro generators L_j;, with k > 2 on the cover.
Thus, simple translation on the base space does not relate so easily to simple translation
on the cover. Simple translation on the cover is only recovered for non-ramified points

in the map, i.e. only applies to untwisted operators.

We plan to return to this issue in a future paper. We still expect that the knowledge of
the mixing is contained in the OPE on the cover, along with some additional information

coming from a careful treatment of the Liouville dressing terms.

Another point to keep in mind is that the correlators and structure constants com-

puted here were done using a representative correlator. To get a fully Sy invariant
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correlator in the orbifold CFT, we would need to sum over the conjugacy classes of the
representative twist o(;2). This would lead to some combinatorial factors that we have
suppressed thus far using a particular prescription for stripping these terms. To avoid
the complications of these combinatorial factors, and to compare to the results of earlier

work, we chose to follow the conventions of [206].

There are a number of interesting further potential applications of this D1D5 technol-
ogy. The most obvious would be to look at other operators than the candidate studied
here. However, this would involve larger numbers of possible operators in the mixing as
one increases the conformal weight. This would make the three point function searches
unfeasible but one could study the OPE of any untwisted and twisted operator just as
easily as we have here. Going further, one could extend the methods here used for com-
pute mixing to computing the general structure constants of other operators with other

perturbations of the D1D5 system.

Another application would be to continue to study the deformation from the point
of view of higher spin theory. There has been work done on finding the anomalous
dimensions of the generators of these higher spin symmetries [211]. It would be interesting
to see how using OPEs might help explore this further, or how the OPE method fits into

the context of W, representation theory.

There are other recent works done using D1D5 technology that might be able to be
taken further with our code and/or our methods. One can consider a toy model [234] of
infall in this D1D5 system. It may be interesting to study other such infalls using more
complicated states (such as ones in [235] or using the duals of arbitrary angular momenta
3-charge system [44]) other than the Ramond vacuum. This would involve computing

complicated correlators, which our code should be able to accomplish.

There has also been a large amount of work done studying the conformal blocks in
CFT [150] [154] and OPE blocks using kinematic space [107] [110]. Since we have a free
theory, we can calculate these conformal blocks directly. It might be interesting to show
some explicit examples of these new methods for calculating conformal blocks, especially
if they could be used to generate conformal blocks and by extension correlators in the
D1D5 CFT more efficiently than the methods presented here.

As we continue to explore the D1D5 CFT, we are hoping that new tools will allow us

to come to a better understanding of this important model.
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3.6 Appendix: Quasi-primary projection procedure

In this appendix, we want to detail how we can take a general non quasi- primary state
and project to a quasi-primary. There are a number of different methods to do this, but
we will present two methods here and show they are equivalent. Another method was the
one we used in section [3.4.2] where we summed we use the coefficients of a few non-quasi
primaries to fix the combination that is a quasi primary. This method agrees with the

two methods presented here.

Start with a state |¢,) with conformal weight h and suppose the state satisfies
L n) = 0, Li|n) # 0. (3.107)

Now construct the following state

|[Pn-1) = (1 - ﬁL_lLl) D), (3.108)
where we have
N(n) =n(2h — (n +1)). (3.109)

We claim that this satisfies L}|¢,—1) = 0. To show this, consider

Liion1) = (28 = g L1 L) on) (3.110)

We recall that the general commutator for the Virasoro algebra is

[Lmy Ln] = (m - n)Lm-‘rn + %(mg - m)5m+n,0' (3111)

We can use this to show that [L_y, L1] = —2Ly. Then we can rewrite equation (3.110) as

2 1
oy —L’f“L_l) |fn). (3.112)

Ll = (04 5028 - 3

Next we can use the general commutator expression with some basic identities to work

out the following commutator,

(LYY Ly) =2(n+ 1)L Lo — n(n + 1)L} (3.113)
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Plugging this in and simplifying, we find

2h  2h(n+1) N n(n+1)
N(n) N(n) N(n)

LY |$n-1) = (1 + ) L7 pn) — LL_lL?“wn). (3.114)

N(n)

If we use the fact that N(n) = n(2h — (n + 1)), then the first term vanishes and the
second term vanish by L"™|¢,) = 0. So then we find L}|¢,_) = 0 as claimed.

We may iterate this process to obtain

) = (1 - ﬁL_M) (1 - ﬁL_lLI) <1 — ﬁL_lLl) l6),  (3.115)

where Lq[1) = 0, and so [¢) is quasi-primary. So in general, this will be the approach

we will take to get a quasi-primary out of a non-QP.

We could also construct the state

1
) = (1= gyl ) lonh (3.116)
where .
N'(n) =n!JJ(2h - 2n+p—1). (3.117)
p=1

The state |¢,,_1) is a state that satisfies L}|¢,_1) = 0. Again we can iterate this and find

W) = (1 + ﬁL_lLl) (1 + ﬁLQ_ILf) e <1 — ﬁLﬁ@?) |6n)  (3.118)

If we do this iterative process, we will find |¢') = [|¢)). The intermediate steps may
not agree but these final results do. First, note that one can expand out the iterated
projections, with the leading term being 1. All of the other terms will have an L_; to
the left. Hence, |¢) is of the form

¥) = [¢n) + L-1]6) (3.119)

for some state |0), and
¥') = |én) + La]0") (3.120)

for some state |0'). Both [¢)) and [¢)") are QP, and so their difference is as well. Thus the

state

) = ') = L1 (8) — |07)) = L1 [A) (3.121)
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is a QP as well (we have defined the state |[A) = [0) — [)). So, L_1|A) is a QP, and so

This proves that that
2
(A|LiL_1|A) = HL,l\A>H ~ 0. (3.123)

For a unitary CFT constructed using irreducible representations of the Virasoro algebra,
the only state with zero norm is the zero state. Therefore

L 4|A)=0 (3.124)
and so

) = [¢). (3.125)

This gives evidence that our construction for give the quasi-primary contribution in a

non quasi-primary operator.



Chapter 4

D1D5 orbifold CFT package for

Mathematica

4.1 Introduction and motivation

This chapter will describe the code that we developed to compute OPEs and correlators
in the D1D5 orbifold CFT. First we will discuss the motivations behind writing this code
and discuss the previous Mathematica package which we extended to our CFT. Later
we will discuss the extension of the base package to include the fields and OPEs in our
CFT, how the code will do the lifting procedure to the cover, the main computational
power behind the code doing the Wick contractions, how it computes the correlators,

and finally how it was applied to calculations of interest.

Since our CFT is a free CFT, we can compute both the OPEs and correlators in the
theory using simple Wick contractions once we lift to the cover. There, without the com-
plication of twists, it is straightforward to carry out the contractions. The complication

of this method is due to the number and forms of the mixing operators.

Let’s examine what operators would mix with our original candidate operator in
equation . As mentioned before, these mixing operators must be weight (2,2) and
singlet under all the SU(2) symmetries. Satisfying both these conditions is constraining,
but there are still a number of operators that must be considered. The one reason this
is even a tractable problem is that we do not consider arbitrarily twisted operators. The
weight (2,2) condition means that the operators that can mix only go up to twist 8. This
can be seen by considering lifting an generic twisted operator to the cover and comparing

conformal weights. Consider the twist n operator O with weight h, and lift it under the

85
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map z = t",

T) s - s oo (1)

_ f _,E(T(t) + n- 1)(9“) (4.2)

n——) (4.3)

h,=—+—(n— ﬁ) (4.4)

Note that we might have guessed this form from the beginning. We have the contribution
from the bare twist, (n? — 1)/(4n), which would become an identity on the cover and
we have a factor of n~! between the weight of the base on the cover from the mapping.
So if we set h, = 2 we get a formula, 4h, = 8n — n? + 1. we also know that h, > 0 by
unitarity of the CFT on the covering space, so we have a constraint on the twist level n
as 8n —n? 41 > 0. Since n is an positive integer, this implies that n < 8 as we claimed.
This is one of the reasons we chose a lower weight operator to study. The higher the
weight, the more twist levels enter in and the more operators that might participate in
the mixing.

In Appendix [A] we lay out a number of operators in just the holomorphic sector that
have weight 2, are singlets under the SU(2), and can be made singlets under the others
with the inclusion of an appropriate antiholomorphic operator. This list was generated
by considering fractional modes of the base boson and fermion. Note we did not include
possible fraction modes of J or other excitations from G or L. This is because these
modes are composites of the X and v fields, and so we do not get any new operators
from considering these assuming we have exhausted the list of operators with X and
fractional modes.

As mentioned earlier in section [3.5, we can count these operators and find 288 op-
erators to consider. Of course, we do have the restriction that only neighbouring twist
levels can be non-vanishing and that some of these will not mix, but this is a significant
number of operators to go through. Additionally, due to fractional moding, we end up
getting more complex operators in the middle of the twist levels. One could see this from
4h; = 8n — n? + 1, where the maximum conformal weight on the cover is for the middle
values between n = 2 and n = 8. So as we consider higher twists, we get more operators

and they are more complicated. Not all would mix but we would still need to consider
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all of them when computing three point functions.

We can see that computing these all by hand would be tedious. This is why in
chapter 3| we focused on looking at the OPEs directly. However, the OPEs themselves
are computed using Wick contractions. So even there, we can use the code to help work
out the results of OPEs with bosonized fermions and spin fields, which are tedious to
do. This code can handle both correlation functions and OPEs in the CFT, making it a
powerful tool for probing the D1D5 CFT.

With the motivation covered, we now turn to how we first constructed the code. We
built our package off of the previous package, ope.math, developed by Akira Fujitsu [236].
This package was designed to work for free CFTs, which was our main goal. However,
this was written for a generic free CFT. It does not include lifting, our bosonization
conventions, and it does not distinguish between holomorphic and antiholomorphic fields.
On the plus side, it did include a way to implement Wick contractions which is what we
needed for our work. We worked to include the missing features and change the Wick
contraction method to work for correlation functions. In the next section, we will start

to describe the code by explaining how we included the D1D5 CFT operators.

4.2 The D1D5 fields and the OPEs

Before we can do the Wick contractions, we need to introduce our fields and our basic
OPEs into the code. The OPE of currents and charges of the D1D5 CFT can be derived
from the OPEs of the basic bosons and fermions of the CFT and so we do not need
to include them explicitly. The basic boson and fermion OPEs come directly from the
action [1.38] and so we must include these OPEs explicitly in the code. We also have to
include the OPE of the bosonized operators, as the ¢ fields are not conformal fields by
themselves, so we must teach the code how to deal the exponential of these field which is
a conformal field. Of course, we also have a number of other definitions to include, such
as the epsilon tensors and the Pauli matrices as defined in . So below I will discuss
how we included the fields,

dx[Adot_,A_,z_,j_,h_]

These are the basic bosonic fields. The Adot,A are the symmetry indices, z is the
position, j is the number of additional derivatives, h is the (anti)holomorphic flag when
(-)1. This translates to @+ X44(z) when h=1 and &+ X44(z) when h=-1. This can be
used in anything, including OPEs, correlations, and lifting.

fr[alpha ,Adot_,z_,j_,h_]

These are the basic fermionic fields. The alpha,Adot are the symmetry indices, z is
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the position, j is the number of derivatives, h is the (anti)holomorphic flag when (-)1. It
translates to 394 (z) when h=1 and #9*4(z) when h=-1. For the most part, we do not

use this in most of our calculations as we bosonize beforehand. Note fr is for fermion.
tclj-,q-,z-,h]

This is what we use for bosonized fermions. The j is the number of derivatives, q
is a ordered list (with curly braces) representing the vector in the exponential, z is the
position, and h is the (anti)holomorphic flag when (-)1. This refers to &’ : exp(iq- ¢)(z) :
for h=1 and &’ : exp(iq - é)(i) : for h=-1. Note that the original package also has
operators like this, but it does not distinguish between holomorphic and antiholomorphic

fields, which we need for correlation functions.
bo[q_,qbar_,z_,zbar_,i_,j_]

This is similar to tc but includes both holomorphic and antiholomorphic pieces to-
gether. This allows spin fields to be represented as bosonized operators. Additionally,
this allows us to better define the cocycles, which were defined in the base package but did
not include holomorphic and antiholomorphic pieces. This 907 : exp(iq- ¢ +1iq- ¢)(z, Z) :

ph [j—, q—,z—:hj

This is a free bosonic field, used in the bosonization and important when we expand
out derivatives of the bosonized fermion field. The j is the number of derivatives, q is the
index, z is the position, and h is the (anti)holomorphic flag when (-)1. This represents
" p,(2) when h=1 and &*1¢,(Z) when h=-1. Again, the original code also has op-
erators like this, but it does not distinguish between holomorphic and antiholomorphic
fields.

These are a lot of fields to put into the code. It presents a bit of a technical challenge
for computing the Wick contractions, because each would require a separate rule to deal
with them. To simplify the way the code implements the contractions, we organize the
non-bosonized fields into an array. Then we can index the array to specify a specific
field. In our code, we have the array nff[k,i,j,z,h]. Here k is the index for the field
in the array, i and j are symmetry indices the physical meaning of which will depend
on the field, z is the position, and h is the (anti)holomorphic flag. For example, we have
dx[Adot,A,z, j,h] represented by nff [0,Adot,A,z,j,h].

In addition to the base operators, we can define composite operators with normal

ordering. This is required in order to properly get the singularity structure out of OPEs.
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For example, let us consider the full OPE of two bosonic fields,

AB_BB

OXAA(2)0X BB (w) = ﬁ+ L OXAN(2)0X BB (w) ; (4.5)
_ EABGBE; + i =W g XA ()ax BB () . (46)

We can see that the first term is the singular piece but in general we will also have an
infinite number of non-singular pieces that come with normal ordered operators. We
have suppressed the normal ordering notation in chapter |3 for notational convenience
but we must be explicit in the code. We represent normal ordered operators by including
them inside of the function N1[]. For example, : ' XA4(w)dXBB(w) : would read
N1 [dx[Adot,A,w,j,1],dx[Bdot,B,w,0,1]. The code can determine the non-singular
pieces of an OPE if needed. It is sometimes important to keep normal ordering and
non-singular terms in the code. For example, when we consider lifting fields to the cover.
The residue integrals from the lift will often pick out some of the non-singular terms from

an OPE and so simply dropping these terms leads to an incorrect answer.

One aspect for OPEs needed is the cocycles for bosonized operators. In the code, the
cocycles are not explicitly included but implicitly defined. So their effects will show up
when we need to commute bosonized fields or when we do a simple OPE. These factors
are defined generically in the code and we must explicitly include the definitions to agree

with the conventions of bosonization we defined in section [1.9.3]

To demonstrate the way the cocycles are handled in the code, consider the following
OPE,

oimd' Mijaf, . €% (2) otk Mija e* 9 (w) : (4.7)

~ (z —w)* exp(ilq - ¢, Wk;iMijaé])ei”(qJ“k)iM"jO‘% L e0(2)em P (w)

So if we include the cocycles eim@ Mo ¢ima'Mizaf and im(@+k)'Misad jmplicitly, then the
effect of the cocycles show up as a factor of exp(i[q - ¢, WkiMijaé]) in the OPE. This is
defined in the code as C02[q,0,k,0], as the momentum vectors in the exponentials are
the defining parts in this phase. In general, the cocycle in the code will take the form
C02[q,gbar,k,kbar], as we will also have cocycles for the spin fields that will depend
on both the holographic and antiholomorphic parts. These expressions are general, so we
will then need to use the definitions and choices made in section to specify to our
choice of cocycles. These are then able to reproduce the correct multiplicative factors

required to compute OPEs with bosonized fermions and bosonized spin fields. The full
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definitions of the bosonized operators also have generic phases to defined the fermions
and spin fields. These are very straight forward to include in Mathematica.

With all the required ingredients defined, we can implement the OPEs of the fields
that we laid out in equations and . We also need to include the basic OPEs
for the bosonized fields. These are the basic OPEs defined as follows,

003 (2)e"% () ~ L), (1.9)

along with the OPEs like the one in equation . Finally, we would need to define
OPEs for operators which do not have an OPE with each other. For example, a 0X
and a 1 have no singular pieces in their OPEs, neither do any holomorphic fields with
anti-holomorphic fields, etc.

All of these basic OPEs are defined in the code using the Vev[] function as these
OPEs do come from the vacuum expectation value using the action. For example, we
can consider the following,

Vev[nff[0,Adot_,A_,z_,d_,h_] ,nff[0,Bdot_,B_,w_,e_,m_],zl_,wl_]:=
If [TrueQ[z==wl],Vev[nff[0,Bdot,B,w,e,m] ,nff[0,Adot,A,z,d,h],z1,wl],
(-1)~(e+1) D[Logldz],{dz,d+e+2}] ESYMBOLU[Adot,Bdot]*
ESYMBOLU[A,B] N1[11/; (Not[TrueQ[z==w]]&&m==h) ;.
Note ESYMBOLU [Adot ,Bdot] is simply the epsilon tensor with indices up, AB.

We can see here that this rule is carried out when we have the OPE of operators at
different points (Not [TrueQ[z==w]]) and they are have the same holomorphicity (m==h).
A separate rule will force this to vanish if these conditions are not satisfied. If they are,
then we hit an if statement. Here we can see that if z==w1, we switch the order of the
fields. The purpose of this is for easier simplification of the OPE later in the code. The
more likely route is that we will carry out the OPE,

(_1)e€AB€AB

IHXM I XI ) ~

(4.10)
This rule and other Vev rules are then used as Wick contractions to compute OPEs of
more complex composite operators.

To actually compute the OPE in the package, one either calls ope[] or OPEsort[].
The first function ope[] compute OPEs when the fields in question are purely holo-

morphic or purely antiholomorphic. This function was in the base package, but we
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extended it to work with the above fields. The second function, OPEsort [], will first
sort out the fields into their holomorphic and antiholomorphic parts before perform-
ing the OPEs. For example, to compute the OPE in (4.10) we would use the function
ope[dx [Adot,A,z,d,h] ,dx[Bdot,B,w,e,h]].

There are a number of other small parts of the code that are important to getting
out the results, but we will not cover them. These mostly are devoted to turning input
into easier notation for the code and then transforming the results back into something
readable for the user. So we will now turn to the main pieces of the code that implement
the Wick contractions fore OPEs.

4.3 Wick contractions

The main workhorse of the code for OPEs is the Monomial function. This function,
together with other functions, will implement Wick contractions. This function was part
of the base package, although we made a few minor modifications. We review it here as
we used this as a base in implementing correlation function calculations. The main rule
of Monomial can be shown in the one rule below.

Monomial [OP[a___,N1[b___,nff[c__]],VN1[N1[d__1]],z_,w_]:=

Monomial [OP[a,N1[b,nff[c]],VN1[N1[d]]l]l,z,w]l=

Monomial [OP[a,N1[b],VN1[N1[nff(c],d]l]],z,w] +

Module[{i0},Sum[Exp[Pi I Simplify[

stsum[Drop[N1[d],-Length[N1[d]]+i0-1]] nff[c] [[1]]

1] Monomial[OP[a,N1[b],VN1[N1[Drop[N1[d],-Length[N1[d]]+i0O-1],

Expand [Vev[nff [c],N1[d] [[i0]],z,w]],Drop[N1[d],i0]]1]1],z,w],
{i0,1,Length[N1[d]1]1}1];

There is a lot of functions here, but we will unpack the various parts that are part of
our package and not the ones part of the base Mathematica code. To begin, we notice
the focus of the rule is the field nff [c], explained in the previous section. Note that
a and b are going to be some unspecified number of other fields and z,w are the two
coordinates involved in the OPE. Next we have the stsum function. This is simply a
way to keep track of fermions. When we do a Wick contraction with fermions, we must
be careful of anticommutation relations. For example, if we contract two fermions with
a fermion in between them then we must include a negative sign. This function returns
either an even or odd integer which will then, inside of the Exp[Pi I], give the correct
sign for the contraction. We recognize the N1 function and the VN1 function is similar.

It keeps a track of what is left after the contractions, which are normal ordered. Finally,
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we note that 0P is just a useful tool for organizing various parts of the code.

Now we can give a overview of how these functions come together. The first two lines
are part of the definition. This way of defining a function will save the result in RAM,
which is important for saving time with the iterative procedure. This does have the cost
of the code being very RAM intensive. When this rule is applied, it replaces the original
Monomial function with two terms summed together. The first term simply transfers the
operator over to the VN1, doing no contractions. The second term is the sum over all
the contractions of nff [c] with all the other fields in VN1[], as can be seen by the Vev
function showing up in this term. This rule, and the related rules, will continue to be
applied until all the fields are inside the VN1[]. This iterative approach will ensure we
capture all the contractions without overcounting and obtain the non-singular normal
order terms of the OPE as well.

To show this more explicitly, let’s consider a simple example of computing the OPE
of XA4(2) : 9XBB(w)dXCC(w) :. Putting this in our code, it would be

ope[dx[Adot,A,z,0,1],N1[dx[Bdot,B,w,0,1],dx[Cdot,C,w,0,1]1]1].

After some transformations, this will eventually be reduced to considering

Monomial [OP[N1 [dx [Adot,A,z,0,1]],N1[dx[Bdot,B,w,0,1],dx[Cdot,C,w,0,1]]1],
VN1[N1[]],z,w].

We can now start applying the rule. The first step will simply move the dx [Cdot,C,w,0,1]
into the VN1[] as there are no fields to contract with yet. So we then have

Monomial [OP[N1[dx[Adot,A,z,0,1]],N1[dx[Bdot,B,w,0,111],

VN1 [N1[dx[Cdot,C,w,0,1]1]1],z,w].

Now we apply the rule again. This time we will have to consider both the terms in the
rule, as there could be a contraction between dx [Bdot,B,w,0,1] and dx[Cdot,C,w,0,1].
However, we know that we should not contract two fields inside of a normal ordered
expression, so the contraction here vanishes. So we just have the term

Monomial [OP[N1[dx[Adot,A,z,0,1]],
VN1[N1[dx[Bdot,B,w,0,1],dx[Cdot,C,w,0,111],z,w].

Note that we have dropped the empty N1[] that would have been there. This is taken
care of in a different rule that we have not covered. Now, when we apply the rule again,
we get to the non-trivial part. Here we do have contractions which come into the mix.
So after applying the rule we would get something of the form

Monomial [OP [VN1 [N1[dx[Adot,A,z,0,1],dx[Bdot,B,w,0,1],dx[Cdot,C,w,0,1]11],z,w]
+ESYMBOLU [Adot ,Bdot] *ESYMBOLU [A, B] *

Monomial [0P[dz~ (-2) VN1[N1l[dx[Cdot,C,w,0,1]]1],z,w]
+ESYMBOLU [Adot ,Cdot]*ESYMBOLU[A, C] *
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Monomial [OP[dz~ (-2) VN1[N1[dx[Bdot,B,w,0,111],z,w].

Note that dz~(-2) is the representation of (z — w)™2.

We can see now how the code captures both the singular terms of the OPE and the
non-singular parts. In general the non-singular terms will be dropped unless explicitly re-
quested in the ope [] function (i.e. terms where dz~ (k) with k positive are forced to van-
ish). To keep the order n non-singular terms, one can use the form ope [-n,N1[a_],N1[b_].
The code then multiplies everything in the Monomial by dz~ (-n) and the code will keep
all singular terms. It will then be up to the user to multiply the end result by (z — w)"
to get back the correct expansion.

Once the Monomial function is finished, a number of other rules are applied to make
it readable on the Mathematica interface. For our example, we would find the result,

(dx[Cdot, C, w, O, 1] ESYMBOLU[A, B] ESYMBOLU[Adot, Bdot])/(-w + z)72 +
(dx[Bdot, B, w, 0, 1] ESYMBOLU[A, C] ESYMBOLU[Adot, Cdot])/(-w + z)~2.

This is agrees with the correct result,
ABABg Y CC  AC ACHx BB

(2 —w)? (2 —w)?

€

OXA4(2) 1 90X BB (w)dXC (w) i~

(4.11)

Of course, the snippet for Monomial included here is not the only rule and there are
rules for Monomial to deal with bosonized fields in the code as well. These are contained in
the array nvf []. These must be handled differently, as we can see in equations and
that a contraction with a bosonized field will generally not be a simple singularity
with no field dependence. Formally, we would compute these OPEs using the fact that
ek = i(n!)_l(kgb)” and do the contractions with the field ¢. However, ¢ is not a

conforng;f field and, furthermore, doing this explicitly while remaining analytic would be
difficult in the code. So we must use equations and directly and be careful of
the ordering of the contractions with other fields.

With these rules in hand, we can compute OPEs in the D1D5 CFT. Of course, we
should be a bit careful. We have not explicitly included the copy indices in the fields. So
our code will only apply either for a single copy of the D1D5 CFT or after an operator
has been lifted to the covering space. The next section will discuss how we implement

lifting in the code.

4.4 Lifting operators with the code

To continue, we need to consider how to use our code with twisted operators. In general,

correlation functions and OPEs with twist operators will not be calculable on the base,
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so we must lift them to the covering space where we no longer have the twisted boundary
conditions to deal with. Recall that in equation ({1.55)) we defined fractional modes. We
can lift this fractionally moded operator to the cover using the appropriate map. We can

now discuss how we do this with our package.

So we can lift a fractional moded operator of a primary field to

dt (d\"" —m/n+h—1 )t ¢
O_/nOn — ]{— yr z(t) O'(t)0;,. (4.12)

271
where O is a field of the D1D5 and O, is a twist n operator. To perform this integral,
we will need to have an number of different aspects included in the code. The first is
employing the OPE for O'(¢)O%. This will have some non-trivial expansion in ¢, which
would affect the residue integral. We have covered OPEs in the previous sections. The
second aspect is the residue integral itself. Note that after performing the OPE, we will
have operators in the code that are normal ordered with N1[]. This presents a bit of a
technical problem in the code, as the built-in Mathematica residue function will consider
N1[] as a function with derivatives. So we had to define our own function residue which

would ignore the normal ordering for the purpose of doing the residue integral.

Things get a bit more complicated when we have both holomorphic and antiholomor-
phic fields, especially when we have spin fields which will involve cocycles. This is where
our main function for lifting operators, Lift0Mt is used for. It will evaluate the residue
integral in equation (4.12)), making sure to separate out correctly the various holomorphic
and antiholomorphic pieces and operators correctly and making sure the OPE results are
done before the residue integral is evaluated. We can see this in the one of the main rules
for this function,

LiftOMt [N1[f_],N1[x_],N1[a ],z ,t_,t0_,p_,zbar_,tbar_,tbar0_,pbar_]:=
residue[residue [Expand [SeparateCoord0Pt [Expand [SeparateCoord0PMt [
LiftIntegralCoord[z,t]*Lift0ONew[N1[f],t,t0],LiftIntegralCoord[zbar,tbar]*
LiftONew[N1[x], tbar, tbarO],N1l[al, coordHolo[], coordAholo[],z,t,tO0,p,
zbar,tbar,tbar0,pbar]],coord[],z,t,t0,zbar,tbar,tbar0]],
Powerdt[],Collate([],{t,t0,dt}],Powerdt[],Collate[],{tbar,tbar0,dtbar}];

Again, there are a lot of functions here, but we will focus on the important parts. To
begin, we will explain some of the input arguments for LiftOMt. N1[f_ ] and N1[x__]
will contain any holomorphic and antiholomorphic fractional moded operators we might
want to apply, respectively. These are applied to the operator N1[a__], which should

already have been lifted to the cover. Additionally, we have the coordinates involved,
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z and zbar on the base plus t and tbar on the cover. The two coordinates t0 and
tbar0 are the location of the twist operator. Finally, p and pbar are used for including
Schwarzian derivatives for lifting quasi-primaries like the energy momentum tensor.
With the inputs explained, we will turn to discussing the functions. First, we can focus
on the integrand of the integral. We have LiftIntegralCoord, which is just the Jacobian
from the integral factor as we lift to the cover. We also have Lift0ONew, which simply adds

o z(t)~™/m+h=1 for the fractionally moded operators. Next,

in the correct factors of (%)
we focus on the OPE and doing the correct expansion around the twist for the residue
integral. SeparateCoord0PMt first separates out the holomorphic and antiholomorphic
pieces, then checks what non-singular terms in the OPE we must keep by examining the
order of the series expansion, and then doing the OPE. SeparateCoord0Pt will take in
the results from SeparateCoor0PMt and then work out the series expansion to use in
the residue function in both holomorphic and antiholomorphic sectors. Finally, we can
recognize the function residue, which appears twice to compute the holomorphic and
antiholomorphic integrals. The Powerdt[] and Collate[] arguments in the residue are
just the way to sort out the powers of (¢ — ty) as defined with {t,t0,dt}. This is what
will evaluate the residue integral at the end. Put all together, we have all the pieces
required to compute the integral in equation (4.12)).

We can also use the same covering space technology to evaluate whether a twisted
operator is a quasi-primary or not. We can use our code to determine the form of the
operator on the cover, which we can then use together with the lift of the L; mode to

the cover,

[0, > ]{ At (@) L - e yor. (4.13)
2 \ dt 2

If this vanishes, then it will be a quasi-primary. This was the same method employed

in chapter [3| and we can use the code to extract this information as well. We can do

this with the function LCommute [m_, Tmom_,N1[f___] z_, t_, tO_,h_], which can handle

general L,, modes acting on fields, and will act similarly to how LiftOMt does above.

4.5 Correlation functions

Now that we have both lifting and OPEs included in the code, we can now turn to how
the code handles correlation functions. The inclusion of Wick contractions for correla-
tors is a new addition to the package. To begin, we should point out that the code does
not compute the bare twist contribution to a correlation function. This is handled by

the Lunin-Mathur technology and is not implemented in the code. The code only com-
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putes the nontwist part of the correlator on the cover by performing the required Wick
contractions. The bare twist must be included by hand at the end.

Implementing the Wick contractions for correlation functions is very similar to how
we do it with OPEs, except we have multiple fields at multiple points involved. The main
rule for the contractions are contained in the following rule.

corMonomial [OP[a___,N1[b___,nff[c__]],VNL[N1[d___]1]1]1]:=
corMonomial [OP[a,N1[b,nff[c]],VN1[N1[d]]]l]=
corMonomial [OP[a,N1[b] ,VN1[N1[nff(c],d]]1]l] +
Module[{i0},Sum[Exp[Pi I Simplify[stsumcor[
Drop[N1[d],-Length[N1[d]]1+i0-1],nff[c][[1]1]11]1]*
corMonomial [OP[a,N1[b],VN1[N1 [Drop[N1[d],-Length[N1[d]]+i0-1],
Expand[corContract [nff[c],N1[d] [[i0]],nff[c] [[4]],N1[d][[i0]1]1[[4]11],
Drop[N1[d],10]1111,{i0,1,Length[N1[d]]}]];

We see this has a very similar form to the Monomial function with a few differences.
First there is no reference to z and w. This is simply due to the fact that we will have
multiple operators at multiple positions and so we must extract the position from the field
itself, nff [c] [[4]]. The other change is that we have replace Vev with corContract.
They operate the same but corContract has no explicit coordinate dependence. Specif-
ically, whereas Monomial represented (z — w) as dz as we only had the one difference for
the OPE, corMonomial must instead work directly with various different coordinates.

Of course we do have an additional complication. Unlike with OPEs, generally there
will not be any field dependence left over at the end. For most fields, this just translates
to the fact that their one point function will vanish (i.e. has zero vacuum expectation
value). So we set most of these terms to vanish. The exception is the exponential fields,
which must be handled slightly differently like with the OPEs. Once the contractions
are all calculated, we will be left with correlations with just exponential fields, as their

OPEs always return an exponential field. There is a well known formula to handle these,

(I : explitk - ¢+ k- 9))(21, %) ) = 6° <Z k) 5P (Z ki ) H aobgit o (4.14)
i=1 i,j=1,i<j
where we are considering this correlation function to be properly normalized so we can
drop any proportionality constants. We can implement this with another iterative rule
shown below.
corVertex[a___,N1[c___,bo[q_,qbar_,z_,zbar_,0,0]],donele__],
momentumHolo [p_] ,momentumAHolo [pbar_]]:=C02[q,gbar,p,pbar]*
Product [Abs[z-done[e] [[1]] [[1]1]1[[3]]1]1" (donele] [[i]1][[11][[1]1].q),
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{i, 1, Length[done[e]]}]*

Product [Abs [zbar-done[e] [[1]] [[1]] [[4]]]"(done[e] [[i]][[1]1][[2]].qgbar),
{i, 1, Length[done[e]]}]*
corVertex[a,N1[c],done[N1[bo[q,qgbar,z,zbar,0,0]],e],

momentumHolo [p+q] ,momentumAHolo [pbar+gbar]];

The inputs for corVertex are relatively simple. Here both a and ¢ are going to be bo []
fields. This function focuses on dealing with the one bosonized field bo [q, gbar,z,zbar,0,0].
Here done [] is what it appears to be, a place to put all the bosonized fields we are fin-
ished considering. We also have the momentumHolo and momentumAHolo functions, which
store the total of the holomorphic and antiholomorphic momentum vectors, respectively.
This function will take the vector arguments, q,gbar, of the bosonized field and will get
the correct coordinate dependence from this field with

(z-done[e] [[11]1[[11]1[[3]111)~(donele] [[i1]1[[111[[1]1].9).

This is part of a product over all the bosonized fields in the done function. The
code then move the field into the done[] function and adds the two momentum vectors
to the two totals. We also have to be careful of the cocycles, which is expressed with
C02[q,gbar,p,pbar]. This iterative approach ensures that we do not double count.
Once we have extracted the coordinate dependence from the bosonized fields, we can
then enforce the delta functions very easily. This is done by

corVertex[done[e___] ,momentumHolo[q_] ,momentumAHolo[p_]]:=
KroneckerDelta[zerolist[ql],qlKroneckerDelta[zerolist [p],p];.

KroneckerDelta is a build in function for enforcing delta functions and we simply
compare the totals for the vectors in the correlator to a vector of the same length with
zeros as entries.

Now we have all the pieces we need to compute correlation functions. To com-
pute the correlation functions, we use cor[]. For example, to compute the corre-
lator (9XA4(21)0X BB (2,)0XCC (23)0X PP (24)) we would use cor [dx[Adot,A,z1,0,1]
,dx[Bdot,B,z2,0,1], dx[Cdot,C,z3,0,1], dx[Ddot,D,z4,0,1]]. This finishes the

summary of the code that we have developed.

4.6 Applications of the code

To finish off this chapter, we will put everything we have discussed so far together and
show how we were able to compute the three point functions presented in chapter [3] We
will also present some preliminary results for twist 3 and twist 4 that were computed
with the code.
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To start, we must first consider the correct lifting map. This was stated in equation
3.60, which would have the required ramification. With this, we can consider lifting the
deformation operator and the candidate operator to the cover. The general lift for these
operators was already done in previous work but we can also use the code to do this.

These lift with our map as,

Op(b,b) — — i|b] 7 **POX 1, (1)0X 55(1)S4B(1,1), (4.15)

bttt = 1 (ongony ()0 pp(ta1) + )
16]a[*Jay — b" COTETTPEE T B (i — 1)?

. = _ = _ 1
<EEF€EF8XEE<t:t1)8XFF(t:tl) + m) : (4.16)

(’)C(al, C_Ll) —

where t4; = (a1 £ \/a1(a; — b))/b.

With these in hand, we can now turn to considering operators that might mix at the
twist 2 level. We take each of the operators at twist 2 that are listed in Appendix [A] lift
them to the cover, and test each one in the correlation function (O¢ (a1, @ )Op(b, b)O(0,0)).
In general, the forms of these operators on the cover are not as simple as shown in chapter
. This is due the fact that the map in has two ramified points and so there are
additional pieces when lifting to the cover. We can include an example of some of this

by looking at the following lift,

. L e . 2
EAEEEHGADEalgEdBangl/Q'(ﬁgDangzlbgHO’gﬁ — WEAEEEHEADGQBEL&BX (417)
(%aSXAA sgRxAd ;aXAA> <%a3XEE _sgRxEE gaXEE> oDbil

There are a few things to note here. First, in addition to the 9*X terms we saw in
chapter [3| we also have a few other terms like 9?X and 0X. These show up because of
the Taylor expansion of the map inside residue integral. We also have a normalization
of |b|7¥/4. This is from a normalization needed for the spin fields on the base. When
we lift with our map, we have a behaviour of z ~ —bt? around z = 0, and so this
transformation must be reflected when transforming the spin field in the twist 2. It
has weight h = (1/4)/2 for reasons explained in section [1.9.4] Furthermore, when we
have non-trivial fermionic excitation, the cocycles in the code does not simplify to simple
SU(2) index structures, as the code cannot recognize them. This leads to, at times, very

large expressions for operators on the cover.

Despite this, the code does compute things correctly. In fact, we can double check
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that we are doing the code correctly by considering the three point function,
(O (t21,1:1) 0} (1, 1)O (0, 0)), (4.18)

where we define @®® to be the lift of ZZ a;0; with O; are defined in equations 1'
(3.55]). We find the result,

9ag|ter|* — 2a7t2 (4 — 8ty +14,) — agt?(4 — 8ty +12,) — 2a3t%,(4 — 8tyg +12)))
|ax|*|ar — O *[b[/2[t 1 |*
N 9(4ay|4 — 8tyy + t3, > + 2az|4 — 8t4y + 3> — agt?y (4 — 8t4 +12,))
|ay[*ay — bl*[b]1/2[t 4|t
9(2a4|4 — toy + 13, + asld — tar +t3,]%)
|ar|*ar — bJ*b]*/ 2 [t [*

(4.19)

This is not very clear and does not look like a proper three point function. However,
recall that in chapter [3| we mentioned that ), a;0; is not a quasi-primary. Using the
conditions that 6a, +3as+a; = 0, 6as+3as+ag = 0, 6a;+3as+as = 0, 6a4+3a5+ag = 0,

and 6a; + 3ag + ag = 0, we can simplify this down to

144(4011 -+ 2612 -+ 2021 + 022)|1 — ti1’4

O(t) toi E O(t) 1.1)0Y(0.0)) =
(O (t41,t41)0p'(1,1)0(0,0)) a1 [Far — 2|6 772]t 2 ;

(4.20)

where we now have O = 011011 + 012012 + 021021 + 022022 with 011, 012, Ogl, and 022
defined in equations (3.56))-(3.59)). There are still a few things left to do to get the final
result. First, we must sum over the images, like in chapter [3] This gives

288(4011 + 2012 + 2021 + 022)

= . 4.21
a3(ar — )b /a3 (a, — b)bi/t (4.21)

The final piece to finish the calculation would be to include the contribution from the

bare twists. For our correlation function, we have the properly normalized contribution

of

<@ww@mﬁ»:§éﬁz (4.22)

This then leads to the result,

) _ 288(4cry + 2c19 + 2091 + €2)
o Op(b,0)0(0,0)) = AR
< C(alaal) D( ) ) ( ) )> a?(al _ b)ba?(al _ b)b

(4.23)

This was the result we discussed in section B.4.2 Note that all of this was handled

in the code, from the lifting to the computation of the correlator on the cover. We only
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needed to include the two point function (4.22)) and sum over the copies by hand, as the
code does not handle this itself. Not only does the structure constant match, but we also
have the correct form for a three point function. This is a non-trivial check that our code

works properly.

We can use the code to go further. Although the OPE method examined in chapter
does not yet work for operators with twists, the three point functions are still calculable.

To do this, we consider the correlators
(0011(0,0)0p (1, 1)04 (00, %)), (4.24)

where 0,41 and O, are operators of twist n 4+ 1 and twist n respectively. To have a
well defined limit as we approach infinity, we must normalize by the two point function
(0,(0,0)0,,(00,0)). We are suppressing the various other normalizations that would
also need to be included as well. Since we have the mixing operator of twist 2, we can use
the above correlator to find the mixing with twist 3. With twist 3, we can find mixing

with twist 4 and so on. The general map to lift this correlator, we can use the map

4
2(t) = Ty (4.25)
This map has the ramifications, z(t) ~ t"/(1—n)forz=0=1t,2—1 ~n(n—1)(t—1)?/2
for z=1=t, and z ~ "' /n for 2,t — oo. These are the correct ramifications for our
correlator. We can use the code to compute the lifting and to compute the correlator.
There is a small issue with lifting around infinity, but we get around this by transforming
the residue integral to bring infinity to zero and then compute as we normally would.

The results of these calculations for twist 3 and twist 4 can be found in Appendix [B]

In theory, the code could complete the rest of the calculations up to twist 8 to find
all the mixing operators but we run into a problem as we go to higher twists. The higher
twist levels have large number and more complicated operators leading to significantly
larger expressions for the operators and more pieces for the code to compute. As we
mentioned in section 4.3, we end up saving a lot of results for the contractions. This

means that the more complex and larger the operator, the more Mathematica must store
in the RAM.

Despite this limitation, the code is still of great use. It can be used with OPE method
explained in chapter [3| to check mixing more directly. The code could also be used to
compute correlation functions not related to operator mixing. Since correlators are used

in probing many different aspects of the D1D5 CFT, there are many possibilities for
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future work with the code. Overall, this code can be useful in cutting down a lot of the

annoying aspects of computing OPEs and correlation functions in the D1D5 CFT.



Chapter 5

Conclusions

5.1 Summary

The overall theme of the thesis is captured in the title. We view CFTs as a way of
defining and probing quantum gravity. We mentioned a number of different ways in the
introduction about how holographic CFTs capture a number of features of AdS quantum
gravity without needing a specific string theoretic construction. Our system, chosen
for its relative calculability and for its firm UV standing, is just one of many ways to
approach quantum gravity. We can expect a number of important physical phenomena
to be present in a well defined quantum gravity. Our motivation for this thesis stemmed
from a central thorny problem in the study of black holes, the information problem.
This problem has yet to be solved, but there has been significant recent progress in
understanding where semiclassical physics fails. The trick is to show how quantum gravity
corrects semiclassical predictions.

To study this problem in detail, we chose the context of string theory as a well known
theory of quantum gravity. The purpose of this is to have a UV theory with which we
can make concrete calculations without resorting to ancient semiclassical approximations.
String theory can be used to construct microstates of the black hole. Studying these
microstates can be done using AdS/CFT. This duality relates the gravitational degrees
of freedom in an asymptotically AdS space to those in the degrees of freedom of CFT
living on a space conformal to the boundary.

We studied the D1D5 system, a prototype system describing a two-charge 5 dimen-
sional black hole. The dual CFT has a description in its moduli space as a free orbifold
theory, (T*)Y/Sy. The restriction introduced by the orbifold allows the construction of
operators with twisted boundary conditions. These operators are important for reaching

towards the supergravity description from this very stringy orbifold point. We focused on

102
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deforming this orbifold CFT with a deformation operator built from a twist 2 operator
dual to a blow up mode resolving the orbifold. The main purpose of this thesis was to
explore the deformed D1D5 CFT through the OPE; correlators, and other techniques.

Chapter |2] of this thesis demonstrated how we can extract the effect of generic twist
operators from the D1D5 CFT in the continuum limit. We noted that twist operators
are important for thermalization. In black holes, thermalization is an important process
that will scramble information. Thermalization does not show up in a free theory, and
so we must introduce interactions between the copies by twist operators. To study how
the twist operators act, we exploit the property that twist operators acting on a vacuum
will create a squeezed state. Earlier work focused on studying these states by computing
correlators in the D1D5 CFT with the Lunin-Mathur method. This works for low order
calculations, but inverting the map to the covering space will in general fail for higher
order calculations. We avoided this by presenting a novel composite twist method, in
which we build more general twist operators out of twist 2 operators in the continuum
limit. This is the limit where the gap between momentum excitations is parametrically
small, which matches the expectations of black holes. In this limit, the expressions for
the squeezed state are known and we can build up the required matrices to compute the
characteristic coefficients of the squeezed state from these composite twists. We confirmed
the validity of this method by comparing its results to those previously obtained with
the Lunin-Mathur method. We then examined a new configuration of twists. The results
for this computation, plus some general power-counting arguments, led us to confirm a

set of conjectured scaling laws for the effect of generic twist operators.

The method here could be of use to considering thermalization and scrambling more
directly. If we consider creating some excitation on a single strand, we could then track
how this excitation is spread as we interact the copies using twist operators. Though one
can consider this to first or second order with previous methods, our method here could

give some indication how thermalization looks at more general orders.

Chapter [3| of the thesis showed how the OPE can be used as a calculational tool in
addition to correlation functions to study the deformed D1D5 CFT. We considered the
D1D5 CFT near the orbifold point and developed methods for computing the mixing of
untwisted operators to first order by using the OPE on the covering surface. We argued
that the OPE on the cover encodes both the structure constants for the orbifold CFT
and the explicit form of the mixing operators. We began by considering a family of
operators dual to supergravity modes, and showed that the OPE implies that there is no
anomalous dimension to first order, as expected. We then specialized to the operator dual

to the dilaton, and showed that the leading order singularity in the OPE reproduces the
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correct structure constant obtained from the four point function. Finally, we considered
an unprotected candidate low-lying string state operator of conformal dimension (2,2),
and showed that the leading order singularity and one of the subleading singularities
both reproduced the correct structure constant. We checked that the operator produced
at subleading order using the OPE method is correct by calculating a large number of
three point functions using a Mathematica package we developed.

The work discussed here is an important step forward in examining the deformed
D1D5 CFT. The OPE on the cover is a far easier thing to deal with, and allows us to
consider the structure constants and mixing operators more directly than just dealing
with the correlation functions. This could be use to further compute the anomalous
dimensions of operators, but it may also find use in examining other aspects of the D1D5
CFT such as the conformal blocks and their behaviours.

Chapter 4] of the thesis reviewed work done in order to put into code both the OPE
and the correlation functions for the D1D5 CFT. This Mathematica package was highly
important for our work in the third chapter. In order to implement the required func-
tionality into the package, we needed to include the basic definitions of fields and their
fundamental OPEs defining the CFT. This included programming in the bosonization
and cocycles required for the CF'T, and implementing Wick contractions. Since the CFT
at the orbifold point is free, we could use simple Wick contractions to compute the OPEs
of composite operators. This then allowed us to lift operators to the covering space as
in the Lunin-Mathur method, including operators with fractional moding which require
care in performing residue integrals. Finally, we were able to adapt the code to compute
correlation functions. We used this ability to analyze the mixing of the candidate low-
lying string state in chapter |3| and we were able to obtain some preliminary results for
mixing at higher twists.

Overall, we have learned a number of aspects about how to analyze the deformed
D1D5 CFT but there is still a lot left to do. In the next section I will outline a few

possible detailed directions to consider for the future.

5.2 Future directions

5.2.1 Mixing in deformed D1D5 from OPEs

One possible next step would be to follow up on some of the discussion in section [3.5]
There we outlined how we would generalize our results to higher twist levels. We discussed

how the more general approach to using the OPE to analyzing mixing with a perturbation
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of the deformation operator was to examine the OPE
OD(Z(),E())O(0,0), (51)

and lift with

1
z = —nt" (t - nt to) . (52)
n

The difficulty is that this map does not have the correct ramification for the results
of the OPE. This means we must somehow be able to move the location of the twist
insertion, which means studying how translation generators act on the cover. We noted
how, around ramified points, the lift of the L_; mode on the base is non-trivial on the
cover.

There are a number of ways to attempt to approach the problem. The first is to
see the moving of the twist insertion directly through the Lunin-Mathur method. One
could examine Liouville contribution and see how the action changes under a conformal
transformation that implements a translation on the base. This would be a direct way
to probe how the twist operator would change.

A different approach is to examine how the L_; lifts to the cover more carefully. As
discussed earlier, if we define a L, around a ramified point, it lifts to terms with L_
where £ > 2. So how do we generate L_; modes on the cover? Normally if we have
fractionally moded operators, O_j/, we find the lift to the cover as O_j. But we cannot
we define L_; /o due to the nature of the conformal symmetry group. So we must examine
Op(20+629) and Opy(to + 0tp). In other words, how does an infinitesimal translation on
the base correspond to an infinitesimal translation on the cover?

These questions are interesting not only because it would allow us to use the OPE
to study mixing but it would also clarify how the covering space in the Lunin-Mathur
method organizes the structures of the base space. Concepts such as translations exist and
are well defined on the base space and studying it would give us a better understanding
of this method.

Of course, with this method we could examine other operators other than just the
candidate operator we studied. For example, the fermionic version of the operator might
be interesting to study and see any connections to this. As already mentioned, the higher
spin currents have already be studied in [211]. However, there may be other operators
that have well defined representations under these higher spin operators other than the
currents that might provide a clue to how the higher spin symmetry is Higgsed. With
the OPE method, we could more efficiently study operators with even higher conformal

weights without worrying about the number of calculations getting out of hand.
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5.2.2 Infall and chaos

Of course, there are other aspects of the D1D5 system other than just mixing under the
deformation operator. Our code can compute correlation functions in this system that

may show us other physics.

Studying infall in the D1D5 system is difficult. This is due to the fact that if we
study operators that are not protected by supersymmetry non-renormalization theorems,
it is difficult to compare to results from the orbifold point and the supergravity point.
However, that does not mean we are unable to study the infall process at all. The work
presented in [234] presented a model of absorption and emission in an extremal D1D5.

They study this with the correlator

(Sv-10(0) Sk (W) (I Vo 1(O)[(Jg ) o] @) (5.3)

setting [ = 0 by global SU(2). Here the spin fields set up the black hole background and
the other two is the absorption and later emission of a chiral primary. They consider
a simple black hole background here, mainly so that they could do the dual calculation
to match relatively easily. To go further, we would want to study a more interesting
state. We could consider some perturbation of them [235] or complicated states with
different charges [43]44L]139]. Alternatively, one could use something more complex than
the simple chiral primary. However, like the case of a more complex state, we would need
to consider an interesting field to calculate with. Moreover, emission of anything that is
not a supergravity field would not have a dual computation to compare to.

Another area of interest is studying chaos in conformal field theories. Like with the
case with thermalization, we do not expect to see chaos in at the orbifold point. This
is due to the fact that the D1D5 system at this point in its moduli space is integrable.
However, the authors of [237] studied a time-dependent coarse graining at the orbifold
point to simulate what chaos in the D1D5 system might look like away from the orbifold
point. One could instead just study this phenomenon directly by introducing the defor-
mation operator. The drawback of this that we would have a six point correlator to deal
with, two twisted operators to create the initial and final states, two twisted deformation
operators, and two untwisted probe operators. In theory this could be done either by
hand or with the code, but it would be a long calculation either way. Furthermore, chaos
may not be evident at this level of perturbation theory and may require higher orders of
deformations. Regardless, examining this deformation might provide some clue as to how
chaos behaves with the D1D5 system and clarify if the authors model correctly captures

the physics.
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5.2.3 Conformal blocks and entanglement

A useful idea to explore would be the conformal blocks of the D1D5 system and their
relation to black hole information. We discussed the details of this in section that
looking at 1/c¢ corrections to conformal blocks is related to studying the black hole infor-
mation problem. It was already shown in [225] that in the heavy-light limit and large ¢
there are no singularities indicative of information loss. They study this limit both in the
gravity and CFT by looking at protected operators. Their results were done with very
specific operator and they argued that their results should generalize. However, it might
be interesting to check this with other operators such as those that are purely higher
spin fields as suggested in the paper. Alternatively it might be interesting to think about
this the other way and try to see how these singularities would arise from the fuzzball
complementarity picture.

Entanglement entropy has been well studied in the D1D5 system [137-139]. It would
be difficult to extend this much further, but there are still a few unanswered questions.
The first, identified by [139], would be to study how the conformal blocks of primary
operators other than the identity contribute the entanglement entropy of the fuzzball
states. Another direction would be to study the geometries of [44], which are valid for
arbitrary small angular momentum. Finding the relationship between the entanglement
entropy of the CFT states as a function of the angular momentum of the dual geome-
try may lead to some insight on how well the minimal geodesics are able to probe the
geometries of fuzzballs.

The D1D5 system could also be used to study other interesting aspects of holography
and black holes such as complexity and entwinement. A general description of how
complexity may fit into the fuzzball program was laid out in [238]. Here, infall in the
gravity picture is described from the dual picture as states evolving to higher complexity
states. It would be interesting to see if this model of fuzzball complementarity could
be connected to the calculations for the complexity in terms of the Wheeler-deWitt
patch [90]. Without a horizon in a fuzzball geometry, it is not possible to define a
volume behind a horizon, but the Wheeler-deWitt patch, defined as the union of all
spatial slices anchored at a given boundary time, should be well defined. It may provide
a clearer definition to extend the model presented in [238]. Alternatively, we could
consider other methods for defining complexity, as discussed in [239,[240], where the
complexity is defined on the CFT side through some quantum information definitions.
Entwinement was directly related to the D1D5 system in the paper [85]. Here they
showed a construction of entwinement in symmetric orbifold CFTs and then directly

used their method for calculating the entwinement and comparing it to the non-minimal
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geodesics of the corresponding supergravity state. They look at very simple states, so
it might be possible to consider more general states and see if the correspondence still
holds.

We do not need to fully restrict ourselves to the D1D5 system to study black holes.
Without a specific system to study, we can turn to looking for more universal results like
the results that have been obtained using quantum information theory. One direction
we have been thinking about is taking a closer look at kinematic space for Banados,
Teitelboim, and Zanelli (BTZ) black holes. The BTZ black hole is a solution for (2+1)-
dimensional Einstein gravity with a negative cosmological constant. The kinematic space
of BTZ has been examined from the bulk side in [241] and from the point of view of tensor
networks in [108], but there has not been much development in looking at the kinematic
space from the CFT side. One can start with the simpler case of a conical defect defined
by AdS; quotiented by Zy, which may provide clues on how to handle BTZ [242]. If one
could solve this simpler problem, then the generalization to the BTZ case may become
more clear. Furthermore this would clarify the role of the minimal and non-minimal

geodesics in the kinematic space.

5.3 Final words

Quantum gravity is a complicated and difficult thing to study. The approach taken for
this thesis, seeing conformal field theories as defining quantum gravities, is just one of
many approaches and the D1D5 system itself is only one of many holographic systems.
The work presented here is a small part of the larger and more ambitious programme.
However small, the two methods described here allow us to push further along towards
understanding both the D1D5 system and, more generally, string theory as a theory of

quantum gravity.



Appendix A

Table of mixing operators

Below is a table of operators that have weight 2 and can be made into singlets of the
SU(2)s when paired with the appropriate anti-holomorphic part. The first column will
contain the form of the operator. The second will give the twist level. The next four will
be the number of doublet indices from the operator for each of the SU(2)s. The final
column will be a generic symbol with indices left over in the holomorphic part and show
how many indices must be contracted with the antiholomorphic to make a full singlet.
Recall ¢ is the bare twist, whereas o are the bare twist including the spin field taken
into account for the lift (but not including any fractionally moded Js, so not the chiral
primary for twist > 2). Also recall that we use « for index of SU(2)., & for index of
SU(2)g, A for index of SU(2), and A for SU(2)s.

Assuming these all are involved with mixing, the full, final operator count (including
both left and right pieces that can be made into singlets) at each twist level is:
Twist 2: 34
Twist 3: 41
Twist 4: 128
Twist 5: 41
Twist 6: 24
Twist 7: 8
Twist 8: 1
Total: 287
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Operator Twist SU(2)L SU(2), SU(2)y
(8X_%)30 2 1 2x2x2—2 2x2x2x2—1
8X_18X_%a 1 2x2—1 2X2Xx2—2
8X_ga 2 1 2 2x2—1

(aX_%)%_%U 2 2x2—1 2x2—1 2X2x2—2
OX_1¢_10 2 2x2—1 2 2x2—1
OX 140 2 2x2—1 2 2x2—1
8X7%(w,%)20 2 2x2—1 2 2X2x2x2—1
Y10 2 2x2—1 1 2X2Xx2—>2
(1?7%)30 2 |2x2x2x2—1 1 2X2Xx2—>2
(3X7§)4<A7 3 1 2X2x2x2—1 2X2x2x2—1
(8X7%)28X7§& 3 1 2x2x2—>2 2x2x2—=2
0X_10X_16 3 1 2%x2 1 2%x2 1
(0X 2)0X 26 3 1 2%x21 2%x2 1
8X_%& 3 1 2 2
(aX_%)B(#J_%)?& 3 2x2—1 2X2x2—2 2X2X2X2%X2—2
0X %aXQ(w_é)% 3 2x2—1 2x2—1 2Xx2x2—2
(5X_%)2¢_%¢_%5 3 2x2—1 2x2—1 2X2Xx2—2
5X—1(1/)_%)25 3 2x2—1 2 2X2x2—2
OX 29 19 10 3 2x2—1 2 2x2x2—=2
aX_%(@/)_%)Q& 3 2x2—=1 2 2x2%x2—2
Vo5 10 3 2x2—1 1 2x2—1
o1 10 3 2x2—1 1 2x2—=1
(8X_%)2(¢_%)4[7 3 2Xx2x2x2—>1 2x2—1 2X2X2X2x2%x2—=1
0X 2(¢ 1 ‘o 3 |2x2x2x2—1 2 2X2X2X2%xX2—2
5)(%(1#7%)31#7%& 3 |2x2x2x2—1 2 2X2X2X2%x2—=2
(w,é)?’w,g& 3 |2x2x2x2—1 1 2X2x2x2—1
(wfé)Q(TL%)Q& 3 |2x2x2x2—1 1 2X2x2x2—1
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Operator Twist SU(2)L SU(2), SU(2),
(8X_%)40 4 1 2X2x2x2—-1[2x2x2x2x2—>2

(8X,i)28X7%a 4 1 2x2x2—=2 2Xx2x2x2—>1
0X_10X_10 4 1 2x2—1 2x2x2-—2
0X_39X_10 4 1 2x2—51 2x2x2-—2
0X_10 4 1 2 2x2—1
(0X_1)*_10 4 2x2—1 2X2x2—=2 2x2x2x2—1
(0X_1)2(¢_1)%0 | 4 2x2—1 2x2—1 [2X2x2x2x22
0X_10X_1¢_10 | 4 2x2—51 2x2—51 2x2x2—2
(0X_1)*_10 4 2x2—=1 2x2—=1 2X2x2—=2
OX_1(v_1)%0 | 4 2x2—1 2 2x2x2x2—1
0X_ 3¢ 10 4 2x2—1 2 2x2—1
OX_ 19 10 4 2x2—1 2 2x2—1
OX_ 19 _s0 4 2x2—1 2 2x2—1
(¢_1)%0 4 2x2—1 1 2%2%2—2
Y 1Y _s0 4 2x2—1 1 2X2x2—2
Y10 4 2x2—1 1 2
OX_1(p_1Pe | 4 |2x2x2x2-1 2 2x2x2x2—1
(_1)to 4 |2x2x2x2—1 1 2X2X2X2X2 2
(W_1)*_ 10 4 [2x2x2x2-1 1 2x2%2 -2
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Operator Twist SU(2)L SU(2), SU(2),
(0X_1)'0 5 1 2x2x2x2—1| 2x2x2x2—1

(8X7%)28X7%& 5 1 2x2x2—=2 2x2x2—=2
(0X_1)0X 16 5 1 2x2—1 2x2—1
(8X,%)8X,%6 5 1 2x2—1 2x2—1
8X,%& 5 1 2 2
(OX_1)*(Y_1)?% | 5 2x2—1 2x2%x2—2 2x2x2x2—1
OX_10X_2(v_1)%6 | 5 2x2—1 2x2—1 2x2x2—2
(OX ) 1046 | 5 2x2-1 2x2-1 2x2x2-2
0X_s(th_1)%6 5 2x2—1 2 2x2—1
OX 29 _1tp 10 5 2x2—1 2 2x2—1
8X_%(¢_1%)2& d 2x2—1 2 2%x2—1
Y1 _30 5 2x2—1 1 2x2—1
Y1 a0 5 2x2—1 1 2x2—=1
(8X_%)2(¢_1)46 5 2x2x2%x2—1 2x2—1 2X2X2X2X2X2—
aX_g(@z)_%O)% 5 2Xx2x2x2—1 2 2X2X2x2x2—2
3X_é(¢_%)3¢_%6 D 2x2x2x2—>1 2 2X2X2X2%x2—>2
(-1 ) 16 5ol2x2x2x2—1 1 2x2x2x2—1
(V-1 )2 (¢_2)% 5 ol2x2x2x2—1 1 2x2x2x2—1
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Operator Twist SU(2)L SU(2), SU(2),
(8X7%)3a 6 1 2x2x2—22[2x2x2x2—1
8X7é8X7%0 6 1 2x2—>1 2X2%x2—>2
aX,%a 6 1 2 2x2—1
(0X %)2¢7%0 6 2x2—1 2x2—1 2X2x2—2
aXfé(TL%)% 6 2x2—1 2 2X2x2x2—1
OX 19 10 6 2x2—1 2 2x2—1
OX 19 10 6 2x2—1 2 2x2—1
Y1y a0 6 2x2—1 1 2X2%x2—2
(@/)_é)gg 6 2x2x2—2 1 2X2x2—2
(8X_%)26 7 1 2x2—1 2x2—=1
8X_%6 7 1 2 2
(w_ﬁ)QaX_%fT 7 2x2—1 2x2—1 2X2x2—2
(Qﬁ_ﬁ)% T 2X2x2x2—1 1 2x2x2x2—>1
o 8 1 1 2




Appendix B

Higher twist mixing operators

The twist 2 operator found in (3.74]) could mix with operators at twist 3. The results
here were obtained using the Mathematica package. Looking for operators that mix with

this operator we find the operators that mix are given by

On3uibl = €pE€DCERAEBAE[IGEHGE R EFE (B.1)
0X 1/38XC1/33X 1/38XA1/38 1/38X 1/38X 1/33X 1/303
Onsuibs = €pc€DCERAEBAEHEEFEOX T 1/38X 1/33X 1/38XA1/38X 2/38X 2/303
Onguibr = €pa€DCERAEBACHGE [ € HE S
0XZ 1/33X01/36X 1/38XA1/38X 2/3 1/3¢A1/61w?/663
On3uapt = EBAEBAEHGEngFEEFEaX 2/30XA2/38 1/30X 1/38XF1/3@X 1/303
Onsuabs = €5 i€BACLREFEOX 2/33X 2/38XF§/38X 57303
On3u4b7_EBAEBA€HG€HF€GE€>\78X 2/38X 2/38X 2/38XG1/3¢ 1/61/}.119/66-3&3
Onsuthl = €e€HGEREFEEDCEDBECACSo
Onzumt = CHGEHGEFECFEEDCEHBCCACBa
OX 0 X O 0 X M0 X 60X 50X My
Onsurbs = EFEEFEEDCEDBECAEﬂaaX 2/3 1/31/}5?/6¢a1/6 2/38X 2/3‘73
Onsutvr = EHGE[FEGEEDCED BECAE S EBa

0X 2/36XC1/35X 2/38XG1/37/’ﬁ1/6 1/6¢a1/6¢.]15/663
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These are all independent. Diagonalizing like before, we find

O _ 27On3u1b1 + F
"4 128/140041 64\/ 280082 Onzutna \/140041 wuter + 57\ 550082 Oreant

25(9n3u4b4 n 5O 3utb7 + 3 n 50nsures 1 5
" G4/T004T | 8v/280082 140041 T 8y2s0082 2V 140041 Tt
(B.2)
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This has a structure constant Cjpa = —(94/v/140041). This twist 3 operator will mixing
with operators at twist 4. At twist 4, we find 36 mixing operators. These are

Onauzne = EBFEDCGDCEBAﬁﬁaeHGEHGEFE€5d>< (B.3)
DX PD,0XCC 0XPE Wi aX X G OXEE, 5P oqs

Oz = EBF6D06DC'«€BAEBQEHGeHG'EFE'EBdX
0XPD,0XCC,0XP8 uiostdx 110X CG,0X T, 00T o8

Onauzey = EBHEDCEHEE B ACBEHGEREESAE pa X

0X 1/28X01/4 1/4¢§A8X 1/2¢71/4¢A1/4¢6E e

A
O rauzpio = EBFEDCwEDCEBAEgaEFEEB-aXP328X€S4aXBB/4Q/}g 8XF§;4wﬂ oo

1/494
On4u2blz:EBHEDCQ‘)C‘EBA6,8cu€1‘mnj€5‘~a 1/28X 1/4 1/4%%8)( 1/4¢53/4 cha
Onauzb1s = EBREDCEHEE S ACBaE FGER €43 E o ¥

0X~ 1/23X01/4 1/4¢€A8X 1/47?71/4 1/4¢61/4J4
Ohnauerz = EFBEDCEPCERACBaCHGERGEFECSa X
0X~ 1/48XC1/4 1/4¢Bf/43XH1723XG84aX 1/4¢6E e
Onausts = EBFEDCE pe€ 3ACAaCHGE [FGEf € o
XD 0X [, 0X 00 DX OX G 0X ] W og
Onauby = EBHEDCE per€ 3 A€BaC [1G€ FEEAE fi
X~ 1/48X01/4 igfgzﬂbﬁf/z;aX 1/2@/’7 4@@/\1/4 gEUz(fa
On4u6b1o—€BF€Dc€Dc€BA€,Ba€pE€5aaX 1/48X 1/4 1/4”6?/48)( 3/41#’81/404

Onaubbi2 = EBFEDCEPEE €A €O X 1/4(9X 48X 4¢51/48XF1/4w53/4 o
Ohnausbis = €BHEDCE € A€BaE [1GEFEEAE pa X
OXPD,0X 00X 8 W04 DX 00G OAT PE oo
Onaugrz = EDFEPGE BAEVAEBaEHGEHG'EFEGBaX
1/2¢761V/4¢ 1/4 A8XH1728XG16;48X 1/4¢ﬁE 3
Ohnauors = GDFGDCGBAEWAGBQEHGEHG'GFEEMX

A aa
/2w7 1/4¢l\ 1/4%5 aXHlf/I48XG1C;4aXFf/4¢B 1/494

Onaugry = EDHGHcepE'ewaGDc'GBAevxﬁﬁa><

A7 aa
1/2¢W1/4¢A1/4¢g 0X” 1/2¢71/4¢A1/4@/)5E
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On4u9b10
On4u9b12

On4u9bl5

On4u10b2 =

On4u10b6
On4u10b9
On4u10b10
On4u10b12
On4u10b15
On4u12b2
On4u12b6
Onaur2e0
On4u12b10
On4u12b12
On4u12b15

On4u 1562

ad

€EDFEPEEBAIABaC e 0X - 1/21?71/41/1 1/41/1€A3X 3/41/151/4 1
GDFEDCEBAE'Y/\GﬂOLGFEEﬁaaX 1/2#’71/4¢A1/4¢§A5XF1/4¢63/404
EDHEDCEBAEW\EBaEHGEFE%}\GBa X

X207 2 g X 1/4wn/4w Mo
€FBEBACAaCHGEFGEFRE 330X~ 3/4@/1 1/43XH1728XGS40X 1/4¢6E ac
EBFGBAeﬁaéHGEHGGFEegaaX 3/4@051/4 1/40X 1/4 1/4¢61/404
EHBERACBaCfGERHEAEpa0X D 3/4¢ﬁ1/4 1/2¢71/4¢A1/4¢’8E o
EBFCRpCaaCBA B 0X 3/4¢61/4 3/41/151/4 Za
GBFeBAeﬁtXeFEEBaaX 3/41/’61/48XF1/4¢63/404
GBHEBAGBaeHGeFEEry)\GBaaX 3/4¢ 1/4 1/4¢7?/4¢A1/4¢’81/404
6FBEBA5504GHGGHGEFE%a 0X 1/4¢53/4 1/28X 1/45’XF /41/1% 3
eBFEBAeﬂaenggceFEeBdaX 1/41/1 3/48XH1743XGS43X 1/4¢61/4 Zm
EBHEBAegaeHGeFEew\eﬁa(‘?XBuzﬂbﬁ3/4 1/2@&71/4@/}/\1/4@55}3 o
EBFEBAeﬁOéeFEEBaaX 1/4wﬁ3/4 3/4wﬁ1/404

EBFEREC36EBACB 0X7Z 1/4¢63/48XF1/4¢53/4 Zéa
€BHEBACBaCHGERHEAEFa0X 1/4¢63/4 1/4¢71/4 1/4¢61/4 o
€FD GDCEBAGWAEBaEHGEHGGFEEBa X

E _ad
1/4¢7 1/4¢ 1/4¢5 1/48XH1P/128XG548XFF/4¢ﬁ

Onauisie = EDF6D¢63A€7A65a6HG€H¢€pE€Bd X

1/4¢71/4 1/4¢51/4 1/48XG1/48XF1/4¢61/4 fim

Onauisee = GHDEDCEBAEW\EBaEHGGFEE*/J\EBdX

On4u15b10
On4u15b12

On4u15b15

E aa
1/41#71/41? 1/41?[31/4 1/21”1/41# 1/4 B

~C AB TBE aa
EDFEDCGBAGWAGBaEFEGBaaX 1/4@/) 41/) 1/4¢ 1/4 3/4¢ 1/4 o

~C BA FF TBE aa
€DFEHCEBAEYNEBaE p€sa0X 1/4¢ 1/4 1/4¢ 1/43X 1743404
EDHEHGEFE%,’\EBJDCEBAEMEWX

A
1/41?71/410 1/41/)51/48)( 1/4¢71/4¢ 1/4¢51/4U4
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Again, we can rediagonalize using the structure constants. The results are then

— ((—375(1632174696960885657034471v/2 + 6211635480737440786485007/3) O na10610
+ 175(1863490644221232235945500 + 1632174696960885657034471v/6) Oygut0612

— (46587266105530805898637500 + 40804367424022141425861775v/6) Ontutovis

+ (2422537837487601906729150001/5 + 212182710604915135414481230v/30)O,u11052
+ (367239306816199272832755975v/2 + 139761798316592417695912500v/3) Ortu1os6
— (489652409088265697110341300 + 931745322110616117972750007/6) Oynaur1009

+ (326110862738715641290462500 + 285630571968154989981032425v/6) O paur2n1o

— (399882800755416985973445395v/2 + 1521850692780672992688825001/3) Opau12512
+ (57126114393630997996206485+/2 + 217407241825810427526975007/3) O, w1015

— (297055794846881189580273722v/10 + 113051765749421422314027000v/15) Oy p1242
— (195666517643229384774277500 + 171378343180892993988619455/6) Opu1266

+ (130444345095486256516185000v/2 + 228504457574523991984825940v/3) Opytu1250

— (46587266105530805898637500 + 40804367424022141425861775v/6)Oyauisvio

+ (57126114393630997996206485+/2 + 217407241825810427526975007/3) O,pau15012

+ (8160873484804428285172355v/2 + 3105817740368720393242500v/3) Opauso1s

+ (42436542120983027082896246+/10 + 161502522499173460448610007/15) O, a0
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+ (27952359663318483539182500 + 24482620454413284855517065\/6) Ornaulsws

+ (18634906442212322359455000\/5 + 32643493939217713140689420\/g)On4u15bg

+ (242253783748760190672915000\/5 + 212182710604915135414481230\/%)(’)Muzblo

— (297055794846881 189580273722+/10 + 113051765749421422314027000\/1—5) Onau2pi2

+ (42436542120983027082896246\/1_0 + 16150252249917346044861000\/ﬁ)(’)n%gbm
(1103350095145558704155302396\/5 + 419906558497850997166386000\/5)On4u2b2
(145352270249256114403749000\/5 + 127309626362949081248688738\/%)OMUQM
(96901513499504076269166000@ + 169746168483932108331584984\/1_5)On4u2b9
(367239306816199272832755975\/5 + 139761798316592417695912500\/§)On4u6b10
— (195666517643229384774277500 + 171378343180892993988619455\/6)On4u6b12

+ (27952359663318483539182500 + 24482620454413284855517065\/6) Ornausbis
(145352270249256114403749000\/5 + 127309626362949081248688738\/%)On4u6b2
(220343584089719563699653585\/5 + 83857078989955450617547500\/g) Ornausbs

+ (167714157979910901235095000 + 146895722726479709133102390\/6)On4u6b9

— (489652409088265697110341300 + 9317453221106161 1797275000\/6) Onaugbio

(130444345095486256516185000\/5 + 228504457574523991984825940\/3)(’)n4u9b12

(18634906442212322359455000\/5 + 32643493939217713140689420\/g) Ornauopis

(96901513499504076269166000\/1_0 + 169746168483932108331584984\/1—5)(’)n4u9bg

(167714157979910901235095000 + 146895722726479709133102390\/6)(9n4u9b6

(

+
+
+
+
+ (195860963635306278844136520v/2 + 74539625768849289437820000\/§)0n4u9bg)

/ (160(63/4)\/ 1185481(434997000 + 289939321/6)
/(96440412218155034761 + 5309127089939992000v/6))) (B.4)

This has a structure constant of

— ((2(2/%)(3481428628617569106454526643 + 551675047572779352077651198v/2
+ 209953279248925498583193000v/3 + 662470924020648059878625250v/6))  (B.5)

/((33/%) \/ 1185481 (434997000 + 2899393211/6))
/(96440412218155034761 + 5809127089939992000v/6))).
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