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1 Introduction

The double copy is by now a highly-studied procedure for turning solutions in a
(non-)abelian gauge theory into gravitational counterparts. It originally arose in the study
of perturbative scattering amplitudes [1, 2], where it had a string theoretic motivation [3]
at tree-level. There is by now a huge amount of evidence for the double copy being exact
in a variety of (supersymmetric) theories, including at the quantum level, and to all orders
in perturbation theory in certain kinematic limits [1, 4–43]. A related body of work has
extended the double copy to classical solutions. The first work to appear was the Kerr-
Schild double copy of ref. [44], which concerned certain exact (albeit algebraically special)
solutions of the Einstein equations, and demonstrated the existence of well-defined coun-
terparts in gauge and biadjoint scalar theory. A second exact procedure is the Weyl double
copy of ref. [45], which is more general than the Kerr-Schild approach, although equivalent
to the latter where they overlap. However, it is still apparently restricted to algebraically
special solutions, albeit ones that may be interesting for astrophysical purposes (see e.g.
refs. [46–83] for follow-up studies). A key feature of exact classical double copies is that the
equations of motion in each theory turn out to be linearised, with no non-linear corrections.
Other classical double copy techniques have been developed that can in principle go beyond
this [84–122], but at the price of proceeding order-by-order in perturbation theory, such
that one loses an exact understanding. One might thus hope that further scrutiny of the
Kerr-Schild and Weyl double copies — including ascertaining their limitations and scope
— will yield an underlying explanation of where the double copy comes from, and an un-
derstanding of how to apply it to arbitrary solutions. Given the fact that the Weyl double
copy is more general than the Kerr-Schild double copy, it is sufficient to focus on the former.
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Recently, a derivation of the Weyl double copy has been given [123], using ideas from
twistor theory [124–126] (see e.g. refs. [127–130] for pedagogical reviews). This explained
why the Weyl procedure has the form it has, as well as suggesting that it is more general
than previously thought. In particular, the original Weyl double copy of ref. [45] (see
also ref. [131]) applies to gravitational solutions of Petrov types D and N only.1 However,
ref. [123] found an example outside these classes, and also argued that the Weyl double
copy should extend to general conformally flat spacetimes, thus formalising preliminary
remarks in this regard [48, 49] (see also [80] for a recent discussion of the classical double
copy in curved space). The aim of the present paper is then twofold. Firstly, we will fill in
the details of the brief ref. [123], providing full details of how to carry out the appropriate
calculations. Secondly, we will extend previous results to anti-self-dual as well as self-dual
fields, as well as to arbitrary Petrov types.

The structure of our paper is as follows. In section 2, we will introduce salient details
regarding spinors and twistors, as well as reviewing the Weyl double copy of ref. [45]. In
section 3, we will present our twistor-space formalism for obtaining spacetime Weyl double
copy formulae, going beyond the preliminary results of ref. [123]. We summarise our results
and conclude in section 4.

2 From spinors to twistors

The Weyl double copy relies on the spinorial formalism of General Relativity and related
theories. Although this is textbook material (see e.g. ref. [132] in addition to the above
references), this formalism is not necessarily known to all researchers working on the double
copy or beyond, and the same can certainly be said about twistor theory. We will thus
review key concepts in this section, in order to make our presentation self-contained, and
also to set up crucial notation needed for the rest of the paper.

2.1 The spinorial formalism

Our first introduction to GR typically uses the language of tensors and four-vectors. How-
ever, an alternative formulation exists, in which all equations are expressed in terms of
two-component spinors πA ≡ (π0, π1), and their higher-rank generalisations. Spinor in-
dices may be raised and lowered according to

πA = εABπ
B, πB = πAε

AB, (2.1)

where εAB and εAB are the two-dimensional Levi-Civita symbols defined such that2

εABε
CB = δCA , ε01 = 1, (2.2)

where δAC denotes the Kronecker symbol. Given a spinor πA, one may also consider its
complex conjugate πA′ , where primed indices may be raised and lowered analogously to

1We review the Petrov classification below, after introducing the appropriate language.
2Our conventions follow those of refs. [127, 128], where we have chosen an appropriate spin basis to

define ε01.
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eq. (2.1), but with the symbols εA′B′ and εA′B′ , such that

εA′B′εC
′B′ = δC

′
A′ , ε0′1′ = 1. (2.3)

These operations extend to objects with any number of spinor indices. Furthermore, there
is a remarkable simplification of the structure of these higher-rank quantities, which ulti-
mately follows from the fact that there are only two values that can be held by each spinor
index A or A′. Let us introduce the notation

φ(A1A2...An) = 1
n!
∑
σ

φAσ(1)Aσ(2)...Aσ(n) , (2.4)

where the sum is over all permutations σ of the index labels (1, . . . , n). That is, eq. (2.4)
constitutes the fully symmetric combination of spinor components of an arbitrary rank n
spinor (with suitable generalisation to primed indices). Then any multi-rank spinor can
be decomposed into a sum of terms, each of which involves symmetric spinors, multiplying
Levi-Civita symbols. We will see explicit examples of this shortly. Another nice property
is that any symmetric spinor factorises into a symmetrised product of spinors e.g.

SAB...C = S(AB...C) ⇒ SAB...C = α(AβB . . . γC). (2.5)

The individual spinors {αA, βB, . . .} are associated with null vectors in spacetime, referred
to as principal null directions of SAB...C . To see this, one may note that any tensorial
quantity can be translated into the spinorial language using the so-called Infeld-van der
Waerden symbols {σµAA′}, which may be chosen in Cartesian coordinates as follows:

σ0
AA′ = 1√

2

(
1 0
0 1

)
= σAA

′
0 , σ1

AA′ = 1√
2

(
0 1
1 0

)
= σAA

′
1 ,

σ2
AA′ = 1√

2

(
0 −i
i 0

)
= −σAA′

2 , σ3
AA′ = 1√

2

(
1 0
0 −1

)
= σAA

′
3 . (2.6)

For a 4-vector this gives

Vασ
α
AA′ = 1√

2

(
V0 + V3 V1 − iV2
V1 + iV2 V0 − V3

)
, (2.7)

where the determinant of the matrix on the right-hand side is

det (VασαAA′) = 1
2
(
(V0)2 − (V1)2 − (V2)2 − (V3)2

)
. (2.8)

We may recognise this as being proportional to the norm of the 4-vector, such that the
determinant vanishes if Vα is null. By standard linear algebra arguments, this then implies
that the matrix must factorise i.e.

VαV
α = 0 ⇒ Vασ

α
AA′ = πAπA′ , (2.9)

where πA′ = (πA)∗ given that the matrix in eq. (2.7) is clearly Hermitian. Conversely, given
any spinor πA, we may construct a matrix MAA′ = πAπA′ , which in turn corresponds to a

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
9

null 4-vector in spacetime. In particular, each of the so-called principal spinors appearing
in the decomposition of a general symmetric tensor (eq. (2.5)) can be associated with a
principal null direction in spacetime.

A given solution to Einstein’s field equations in GR will have a corresponding Riemann
tensor Rαβγδ. One may translate this into the spinor language as above, and then decom-
pose it into various symmetrised spinor parts, where some further simplifications arise due
to the known symmetries of the Riemann tensor itself. The result turns out to be

Rαβγδ → RAA′BB′CC′DD′ = ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD

+ ΦABC′D′εA′B′εCD + Φ̄A′B′CDεABεC′D′

+ 2Λ(εACεBDεA′B′εC′D′ + εABεCDεA′D′εB′C′), (2.10)

where all spinors appearing on the right-hand side are fully symmetric. The spinors
ΦABA′B′ and Φ̄A′B′AB are directly related to the trace-reversed Ricci tensor Rαβ , and
Λ is directly proportional to the Ricci scalar R (see e.g. ref. [129]). We will be concerned
with vacuum spacetimes, so that these quantities all vanish by the Einstein equations. We
are then left with the only contribution to the curvature that is present in free space, which
in the usual tensorial formulation of GR is known as the Weyl tensor, and denoted Cαβγδ.
From eq. (2.10), we thus have the spinorial identification

Cαβγδ → ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD. (2.11)

If we are working in Lorentzian signature such that the spacetime is real, Ψ̄A′B′C′D′ must
simply be the complex conjugate of ΨABCD. More generally, ΨABCD and Ψ̄A′B′C′D′ are
the anti-self-dual and self-dual parts of the Weyl tensor respectively. That is, they are
respectively projected out by the conditions

∗Cαβγδ = ∓iCαβγδ, (2.12)

where the dual Weyl tensor is defined by

∗Cαβγδ = 1
2εαβστC

στ
γδ. (2.13)

The dynamics of the Weyl tensor is constrained by the Bianchi identity for the Riemann
tensor, which can be shown to lead to the following conditions:

∇AA′ΨABCD = 0, ∇AA′Ψ̄A′B′C′D′ = 0, (2.14)

where ∇AA′ = ∇µσAA′
µ is the appropriate spinorial translation of the spacetime covariant

derivative. Given its role as part of the Weyl tensor, the spinor ΨABCD is usually referred
to as the Weyl spinor.

Let us now turn to electromagnetism, whose equation of motion involves the field
strength tensor Fµν . Using similar methods to those above, one may show that the spinorial
decomposition of the field strength is as follows:

Fαβ → FAA′BB′ = φABεA′B′ + φ̄A′B′εAB, (2.15)
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where the symmetric spinors φAB and φ̄A′B′ are the anti-self-dual and self-dual parts,
respectively projected out by

∗Fαβ = ∓iFαβ , ∗Fαβ = 1
2εαβστF

στ . (2.16)

The Maxwell equations then imply

∇AA′
φAB = 0, ∇AA′

φ̄A′B′ = 0. (2.17)

We may note that eqs. (2.14) and (2.17) are both special cases of the general spinorial
equations (see e.g. ref. [127])

∇AA′
φAB...C = 0, ∇AA′

φ̄A′B′...C′ = 0 (2.18)

where φAB...C is assumed symmetric, with n indices. These are known as the massless free
field equations, as they are indeed associated with massless and non-interacting fields in
a vacuum spacetime. The spin of the field is given by the number of spinor indices di-
vided by two, which matches the two cases described above: eqs. (2.14) and (2.17) contain
spinors with four and two spinor indices, describing the spin-2 graviton and spin-1 photon
respectively. If we restrict to solutions of positive frequency, the spinors φ̄A′B′...C′ and
φAB...C represent states of positive and negative helicity ±n/2 respectively (in units of ~).3
Note that we have not yet stated which spacetime we are working with, which above corre-
sponds to the fact that ∇AA′ is the covariant derivative associated with a potentially curved
spacetime. In what follows, we will only need to consider eqs. (2.14), (2.17) in Minkowski
spacetime, although we will not necessarily work in Lorentzian signature. Furthermore, we
may also work in complexified Minkowski space, whose line element is

ds2 = dt2 − dx2 − dy2 − dz2, t, x, y, z ∈ C (2.19)

n.b. the complexified coordinates, but not their complex conjugates, appear.
An immediate use of the spinorial language is that it allows us to classify different

types of solution in electromagnetism and gravity. Above, we noted that any symmetric
spinor can be factorised into 1-index principal spinors. These may be degenerate, and the
various different patterns of degeneracy allow for a classification of different solutions. For
the electromagnetic field strength spinor, one has:

φAB = α(AβB), (2.20)

and there are then two different “types” of field strength spinor: (i) those with distinct
null directions (αA 6∝ βA); (ii) those with a degenerate null direction, so that αA ∝ βA.
The latter give rise to null electromagnetic fields, given that the field strength spinor then
satisfies

φABφ
AB = εACεDBφABφCD = εACεDBαAαBαCαD = 0. (2.21)

3In optics parlance, positive and negative helicity correspond to right-handed and left-handed circular
polarisations.
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Weyl type Petrov label
{1, 1, 1, 1} I
{2, 1, 1} II
{3, 1} III
{4} N
{2, 2} D
{−} O

Table 1. Different types of Weyl spinor classified by: (i) the pattern of degenerate principal null
directions; (ii) the equivalent Petrov type.

For the Weyl tensor there are more possibilities. In general one has

ΨABCD = α(AβBγCδD), (2.22)

and one can classify the different types of Weyl spinor by their pattern of degenerate null
directions. If they are all different, this is called a spinor of type {1, 1, 1, 1}. Gradually
making more of the null directions degenerate leads to types {2, 1, 1}, {3, 1} and {4} (n.b the
symmetrisation of the 1-index spinors in eq. (2.22) means that the order of the principal
spinors does not matter — only their degeneracy). A fifth possibility is that there are
two distinct pairs of null directions, denoted as {2, 2}. Finally, the Weyl spinor may be
zero, which is written as {−}. This reproduces the well-known Petrov classification of GR
solutions, which was first derived using tensorial methods. That formalism used different
labels to those used here, and we summarise these in table 1. We will use the Petrov labels
from now on.

Having summarised spinorial notation and methods, we can now state the Weyl dou-
ble copy discussed in the introduction, which was first presented in ref. [45]. Given an
electromagnetic field strength spinor φAB, one may construct a Weyl spinor according to
the rule

ΨABCD = 1
S
φ(ABφCD), (2.23)

where S is a scalar function. This procedure was argued to hold for arbitrary type D vacuum
spacetimes in ref. [45], where the scalar S could then be found in particular examples by
matching both sides of eq. (2.23). All of these solutions have the property that they linearise
the Einstein equations. Thus, the corresponding field strength and Weyl spinors may be
taken to satisfy eqs. (2.14), (2.17) in Minkowski space i.e. such that ∇AA′ corresponds to
a flat-space derivative. The rule of eq. (2.23) is given only for the anti-self-dual part of
the Weyl tensor. It is straightforward to write down the appropriate generalisation for the
self-dual part, and the above linearity property then means that one may superpose these
solutions to obtain the complete Weyl tensor.

Equation (2.23) makes intuitive sense from our previous discussion of principal null
directions. Taking a field strength spinor of the form of eq. (2.20), one obtains a Weyl
spinor of form

ΨABCD ∼ α(AβBαCβD), (2.24)
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φAB φ̃CD Petrov type
αAβB γCδD I
αAβB αCγD II
αAαB βCγD II
αAαB αCβD III
αAαB αCαD N
αAαB βCβD D
αAβB αCβD D

Table 2. Various combinations of principal null directions for two electromagnetic spinors lead to
Weyl tensors of different Petrov types under the mixed Weyl double copy of eq. (2.25).

which is clearly of Petrov type D. This is not the only way to obtain such a Weyl tensor.
As already argued in ref. [45], one could also define a “mixed” Weyl double copy

ΨABCD = 1
S
φ(ABφ̃CD), (2.25)

involving two different electromagnetic spinors

φAB = αAαB, φ̃CD = βCβD. (2.26)

This immediately suggests that one might be able to generalise the Weyl double copy away
from gravity solutions of type D: by taking different patterns of principal null directions
of both electromagnetic spinors in eq. (2.25), one may obtain a variety of Petrov types, as
summarised in table 2. We have yet to show whether such a double copy is meaningful,
although we will see later that this is indeed the case, provided one restricts to linearised
level in some cases.

Since its inception, the Weyl double copy has been used to study certain topologically
non-trivial electromagnetic solutions (“Hopfions”) [133], and a tensorial formulation of the
relationship between the electromagnetic field strength and Weyl tensor has been presented
in refs. [71, 73], allowing a generalisation to higher dimensions. An alternative approach to
the self-dual double copy which also has links to spinorial ideas may be found in ref. [66].
Recently, a study of the Weyl double copy properties of type N solutions has been presented
in ref. [131].

2.2 Twistors

In what follows, we will be concerned with deriving the Weyl double copy using ideas from
twistor theory [124–126]. This is a subject with an illustrious history spanning more than
half a century, and we cannot do justice to all of its many developments here, but will
concentrate on those aspects which are crucial for what follows. Excellent reviews may be
found in refs. [128–130]. We may start by defining twistor space T as the set of solutions
of the twistor equation

∇(A
A′ ΩB) = 0, (2.27)

– 7 –
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whose general solution in Minkowksi space is

ΩA = ωA − ixAA′
πA′ . (2.28)

One may thus associate solutions of eq. (2.27) with four-component objects (“twistors”)
containing a pair of 2-spinors:

Zα =
(
ωA, πA′

)
. (2.29)

More explicitly, the index notation on the left is such that

(Z0, Z1, Z2, Z3) =
(
ω0, ω1, π0′ , π1′

)
. (2.30)

The “location” of a twistor in Minkowski space is defined to be the region in which its
associated spinor field ΩA vanishes. From eq. (2.28), this implies the incidence relation

ωA = ixAA
′
πA′ , (2.31)

where xAA′ is the spinorial translation of a point in space-time. Note that this condition
is invariant under simultaneous rescalings

ωA → λωA, πA′ → λπA′ , λ ∈ C, (2.32)

so that twistors obeying the incidence relation are defined only up to an arbitrary complex
scale factor. They thus correspond to points in projective twistor space, or PT. If we
consider a fixed point xAA′ in eq. (2.31), this defines a line in PT. To see why, note that
the constraint of eq. (2.31) reduces the four complex parameters in a general twistor to two,
and a further complex parameter is removed by going to the projective space. We therefore
see that the relationship between Minkowski space and PT is non-local.4 A complex line
(with a point at infinity) can be mapped to a Riemann sphere.

By considering the conjugate twistor equation

∇(A′

A ΛB′) = 0 (2.33)

whose general solution is
ΛA′ = µA

′ + ixAA
′
λA, (2.34)

one may define dual twistors
Wα =

(
λA, µ

A′)
. (2.35)

Projective dual twistor space is denoted by PT∗. Similarly to twistors, the location of a
dual twistor in spacetime is defined by the region where the associated spinor field ΛA′

vanishes, leading to an incidence relation

µA
′ = −ixAA′

λA. (2.36)

There is an inner product between twistors and dual twistors, defined by

ZαWα = ωAλA + µA
′
πA′ , (2.37)

4Likewise, points in PT represent two (complex) parameter surfaces called α-planes in complexified
Minkowski space, or a null ray through a given point in real Minkowski space.
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where we have defined components as in eqs. (2.29), (2.35). These various objects have
a number of very nice mathematical properties. For example, one may show that the
generators of the conformal group act linearly on (dual) twistors, and that the inner product
of eq. (2.37) is conformally invariant. This explains the ubiquity of twistor techniques in
modern research on scattering ampitudes, given that there are many situations in which
(dual-) (super-) conformal invariance can be made manifest, particularly in more symmetric
theories such as N = 4 SYM.

Another useful result from twistor theory is that there is a known correspondence
between solutions of the massless free field equations of eq. (2.18) in Minkowski spacetime,
and certain contour integrals in projective twistor space [125]. This is called the Penrose
transform, and involves twistor functions5 f(Zα) (i.e. not involving the conjugates Z̄α).
Given such a function with Zα defined as in eq. (2.29), we may define the integral

φA′B′...C′(x) = 1
2πi

∮
Γ
πE′dπE

′
πA′πB′ . . . πC′ [ρxf(Zα)], (2.38)

where the symbol ρx denotes that we must restrict to the line in PT corresponding to the
spacetime point xAA′ . The contour Γ for this integral is defined on the related Riemann
sphere, and is well-defined only if the various poles appearing in f(Zα) can be separated
from each other. We will see explicit examples of functions and contours later on. Note
that, for eq. (2.38) to make sense as an integral in projective twistor space, the integrand
(including the measure) must be homogeneous of degree zero under rescalings πA′ → λπA′

(or Zα → λZα). This in turn implies that the function f(Zα) must have degree (−n− 2),
where n is the number of indices appearing on the left-hand side. Clearly the field on
the left-hand side is symmetric in {A′, B′, . . . , C ′}, and thus could potentially represent a
solution of eq. (2.18). The proof that it does indeed do so is relatively straightforward.
First, one notes6

∇DD′ [ρxf(Zα)] = ∂

∂xDD′ f(ixAA′
πA′ , πA′)

= iπD′ρx

[
∂f(Zα)
∂ωD

]
. (2.39)

Then from eq. (2.38) we have

∇DD′φA′B′...C′ = 1
2π

∮
Γ
πE′dπE

′
πA′πB′ . . . πC′πD′ρx

[
∂f(Zα)
∂ωD

]
. (2.40)

The right-hand side is symmetric in A′ and D′. Thus, contracting both sides with εA
′D′

yields
∇A′
D φA′B′···C′ = 0 (2.41)

as required. Note that there is considerable freedom on the right-hand side of eq. (2.38),
due to being able to move the contour, and also being able to modify the function f(Zα)

5The functions f(Zα) are actually representatives of cohomology classes, as we describe below.
6The fact that only the derivative with respect to ωD arises in eq. (2.39) and not its conjugate, is a

consequence of f(Zα) being a representative of a cohomology class. See ref. [130] for a discussion of this
issue from a different point of view.
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N

S

Figure 1. A contour Γ divides the Riemann sphere into two hemispheres, with singularities in two
regions N and S.

with additional terms that vanish upon performing the contour integration. To examine
this in more detail, note that any contour will separate the Riemann sphere into two parts,
such that any singularities are associated with two regions on either side of the contour.
Without loss of generality, we denote this as in figure 1 with the contour at the equator of
the sphere, and the singularities confined to regions N and S in the northern and southern
hemispheres respectively. We must get the same answer for the integral of eq. (2.38) if we
take the contour to enclose wither N or S (up to a change of sign for differing orientation
of the contour). However, we are free to modify the twistor function according to the
equivalence relation

f(Zα)→ f(Zα) + fN (Zα) + fS(Zα), (2.42)

where fN (Zα) (fS(Zα)) contains singularities only in the northern (southern) hemisphere.
In carrying out the contour integral for either of fN,S(Zα), one may simply choose to
enclose the hemisphere that is free of singularities, thus obtaining zero.

The above remarks make clear that the Penrose transform map from twistor space
to spacetime is many-to-one. In more mathematical terms, this may be described in
terms of sheaf cohomology groups (see e.g. refs. [128, 129] for a review), where the no-
tation H1(PT,O(m)) represents, roughly speaking, the equivalence class of holomorphic
functions of homogeneity m in projective twistor space (avoiding the regions N and S),
modulo the redefinitions of eq. (2.42). The above Penrose transform then amounts to an
isomorphism between massless fields of helicity n in spacetime, and the cohomology group7

H1(PT,O(−n− 2)).
Above, we have given the Penrose transform for primed fields. A similar formula

may be written for unprimed fields, if one instead uses holomorphic functions defined on
projective dual twistor space:

ψAB···D(x) = 1
2πi

∮
Γ
λE dλ

E λA λB . . . λD [ρxf(Wα)] . (2.43)

Analogously to eq. (2.38), this constitutes an isomorphism between massless fields in space-
time with helicity −n, and the cohomology group H1(PT∗,O(−n− 2)). In early works on
twistor theory, it was seen as unsatisfactory that both twistors and dual twistors were

7In practice, one takes this isomorphism on a suitable open subset of PT e.g. that corresponding to
positive or negative frequency fields in spacetime.
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needed to define fields of arbitrary helicity. This in turn led to the alternative procedure
for negative helicity fields [134]

ψAB...C(x) = 1
2πi

∮
πE′dπE

′
ρx

[
∂

∂ωA
∂

∂ωB
. . .

∂

∂ωC
f(Zα)

]
, (2.44)

in which the spinors ωA are defined in eq. (2.29). In this formula, the twistor function must
now have homogeneity (n − 2) for consistency. In terms of the sheaf cohomology groups
mentioned above, one has an isomorphism between helicity −n massless fields in spacetime
and elements of the cohomology group H1(PT,O(n − 2)). From now on, we will loosely
use the term function to imply a given representative of the appropriate cohomology class,
returning to a discussion of the latter in section 3.4.

Each of eqs. (2.38), (2.43), (2.44) is defined for Minkowski space only. In gauge theory
or gravity, they thus give rise to field configurations that satisfy the linearised Yang-Mills
or Einstein equations. This does not bother us for the Weyl double copy, all previous
examples of which have been linear, but exact, solutions. However, we must bear this
in mind when considering generalisations. Full non-linear generalisations of the Penrose
transform exist for the (anti-)self-dual sectors of Yang-Mills theory [135] and gravity [136].
Also, even the linear Penrose transform above is more general than it seems. Conformal
invariance is manifest in twistor space, so that we expect that the fields obtained from
eqs. (2.38) and (2.44) can also be transformed to an arbitrary conformally flat spacetime.
In fact, the massless free field equation is known to be conformally invariant [127], so this
is indeed the case. There is a subtlety, however, regarding scalar fields. From eq. (2.38),
we expect these to be given by contour integrals of the form

φ(x) = 1
2πi

∮
Γ
πE′dπE

′ [ρxf(Zα)]. (2.45)

We can longer form an equation like eq. (2.18), as there is nothing for either of the spinor
indices in the covariant derivative ∇AA′ to contract with. However, one can instead show
that eq. (2.38) is (in conformally flat spacetimes) a solution of the conformally invariant
wave equation (

� + R

6

)
φ = 0, (2.46)

where R is the Ricci scalar.
The above-mentioned many-to-one property of the Penrose transform of eq. (2.38)

means that it is not possible to write a unique inverse transform that fixes a twistor func-
tion f(Zα) from a given spacetime field. However, there are some tricks for formulating
representative twistor functions for spacetime fields possessing certain properties. A partic-
ularly useful one is the observation made in ref. [128], relating the poles of twistor functions
to principal spinors in spacetime. First, note that the factorisation property of symmetric
spinors means that if a given n-index spinor has a k-fold principal spinor ξA′ , it will vanish
if contracted with (n− k+ 1) factors of ξA′ , but not if only (n− k) factors are contracted.
To see this, we may write such a spinor’s decomposition into principal spinors as

φA′B′...F ′ = ξ(A′ξB′ . . . ξC′︸ ︷︷ ︸
k factors

αD′βE′ . . . γF ′)︸ ︷︷ ︸
(n−k) factors

, (2.47)
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so that contracting this with (n− k) factors of ξA′ gives

ξD
′
ξE

′
. . . ξF

′
φA′B′...F ′ = [αξ][βξ] . . . [γξ]ξ(A′ξB′ . . . ξC′), [λµ] ≡ λA′µA

′
. (2.48)

The various prefactors on the right-hand side are manifestly non-zero, given that none of the
spinors {α′A, βB′ . . . γC′} can be proportional to ξA′ , if they are distinct principal spinors.
Contracting with a further factor of ξA′ immediately gives a factor of [ξξ] = 0, thus proving
the assertion made above. Now consider the spacetime field defined by eq. (2.38), in the
case where the twistor function f(Zα) has a pole of order m (where m ≤ n),8 which occurs
when πA′ ∝ ηA′ . Contracting eq. (2.38) with m factors of ηA′ gives

ηA
′
ηB

′
. . . ηC

′︸ ︷︷ ︸
m factors

φA′B′...C′D′...F ′︸ ︷︷ ︸
n indices

(x) = 1
2πi

∮
Γ
πE′dπE

′ [πη]mπC′ . . . πF ′ [ρxf(Zα)]. (2.49)

The factor [πη]m in the integrand will kill the mth-order pole as πA′ → ηA′ , such that the
contour integral is zero. By the above remarks, and given that this will not occur if one
contracts with only (m − 1) factors of ηA′ , we thus find that in the Penrose transform of
eq. (2.38), the field φA′B′...F ′ has at least a (n−m+1)-fold principal spinor ηA′ , if the twistor
function f(Zα) has a single mth-order pole as πA′ → ηA′ , enclosed by Γ. Furthermore, if
this pole remains present for varying xAA′ , then the twistor function must have the general
form [128]

f(Zα) = θm(Zα){χ(Zα)}−m, (2.50)

where θm(Zα), χ(Zα) are homogeneous and holomorphic, θm(Zα) is regular at the m-fold
pole we are discussing, and χ(Zα) has a simple zero.

3 A twistorial derivation of the Weyl double copy

In the previous section, we have reviewed various aspects of spinors and twistors, culmi-
nating in the Penrose transform of eq. (2.38), and its related results of eqs. (2.43), (2.44).
In this section, we show how these results can be used to derive the Weyl double copy of
ref. [45], presented here in eq. (2.23). We will focus on the conjugate form of eq. (2.23),
involving fields with primed indices. From the remarks of section 2.2, this means that we
will be concerned with maps from PT to spacetime, rather than PT∗. Changing notation
for later convenience, the general (mixed) Weyl double copy may be written as

φA′B′C′D′ = 1
φ
φ

(1)
(A′B′φ

(2)
C′D′). (3.1)

Here φ satisfies the scalar wave equation, and φ(1,2)
A′B′ are two electromagnetic spinors. Then

φA′B′C′D′ satisfies the spin-2 case of the massless free field equation of eq. (2.18), and
thus represents a self-dual Weyl spinor. As discussed in the introduction, the Weyl double
copy is related to previous exact classical double copies that have appeared in the literature

8If the twistor function has a pole of higher order than n, enclosed by Γ, then the associated spinor is
not even a principal spinor.
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where overlap exists e.g. the Kerr-Schild double copy of ref. [44]. It has been argued to hold
for general type D vacuum spacetimes in ref. [45], and also for type N vacuum spacetimes
in ref. [131]. However, a number of questions remain:

1. The form of eq. (3.1) involves a certain product of spinorial quantities, with sym-
metrisation over the indices. Is there a deeper explanation of where this form comes
from?

2. Similarly, why should there be an exact double copy relating fields in position space?
The original BCJ double copy for amplitudes [1, 2] involves products in momentum
space, which would be expected to lead to a convolution in position space. Indeed,
there are alternative double copy formalisms that have exactly this property [95, 97,
98, 101, 102, 104, 105, 137–141].

3. Does the double copy apply to Petrov types other than type D or N? As already
discussed in section 2.1, the form of eqs. (2.23), (3.1) would seem to apply for arbitrary
Petrov types, although it is not of course guaranteed that the resulting spinorial
quantity on the left-hand side will satisfy the spin-2 massless free field equation.

4. Can the Weyl double copy be extended to curved spacetime backgrounds? Prelimi-
nary work for the Kerr-Schild double copy implies that exact results are possible in
conformally flat spacetimes [48, 49].

Reference [123] recently presented (in a very brief form) a twistor space procedure for
deriving the type D Weyl double copy, and also gave an example of a more general solution
(of Petrov type III) that could be obtained from eq. (3.1). We discuss this, with full details
that are missing in ref. [123], in the following sections.

3.1 Twistor space picture

Consider a two holomorphic twistor functions f (1,2)
EM (Zα) of homogeneity −4, and a fur-

ther holomorphic twistor function f(Zα) of homogeneity −2. By the Penrose transform
described here in section 2.2, these will necessarily respectively correspond to electromag-
netic spinors φ(1,2)

A′B′ and a scalar field φ in spacetime. One may then form a product

fgrav.(Zα) = f
(1)
EM(Zα) f (2)

EM(Zα)
f(Zα) , (3.2)

such that the function on the left-hand side necessarily has homogeneity −6, and thus po-
tentially corresponds to a spacetime field solving the spin-2 massless free field equation i.e.
to a self-dual (linearised) gravity solution.9 All we have done here is use known properties
of the Penrose transform. However, the above remarks imply that there might be some sort
of relationship between gauge, gravity and scalar fields in spacetime that corresponds to the
product of eq. (3.2). By choosing suitable functions on the right-hand side of eq. (3.2), we

9The reader may object at this point that we are multiplying together twistor functions. We return to
this in section 3.4.
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can generate a particular spacetime relationship. We now show that for a suitable choice
of twistor functions, this spacetime relationship is precisely the type D Weyl double copy
of eq. (3.1).

To find the appropriate functions, we may rely on the result of eq. (2.50), namely that
a spacetime field possessing a (n−m+ 1)-fold principal spinor must have a m-fold pole in
twistor space. A type D Weyl spinor has a pair of 2-fold degenerate principal spinors, such
that the twistor function f(Zα) must have two triple poles. This in turn implies that the
function χ(Zα) in eq. (2.50) has two simple zeros, and thus corresponds to some quadratic
form10

χ(Zα) = QαβZ
αZβ , (3.3)

for some constant Qαβ . Let us also define θm in eq. (2.50) to be the simple combinatorial
factor

θm = 1
m! , (3.4)

for reasons that will become clear. Then, putting everything together, we may define a
family of twistor functions

fm(Zα) = 1
m!
[
QαβZ

αZβ
]−m

, (3.5)

and our claim is that this will produce a type D Weyl tensor (for m = 3), that is related
to an electromagnetic field strength (m = 2) and scalar field (m = 1). To show that this is
indeed true, we may carry out the Penrose transform in each case by choosing homogeneous
coordinates

πA′ = (1, ξ), ξ ∈ C (3.6)

(n.b. we are allowed to do this, given that the integrand of the Penrose transform has
homogeneity zero under rescalings of πA′). The quadratic form in eq. (3.3) is to be evaluated
when the incidence relation of eq. (2.31) is obeyed, namely for Zα = (ixAA′

πA′ , πA′).
Substituting eq. (3.6) then implies

χ(Zα) = N−1(x)(ξ − ξ1)(ξ − ξ2) (3.7)

in general, where ξi ≡ ξi(x) expresses the location of a pole in terms of the variable ξ,
and N−1(x) is an overall normalisation factor. The dependence of the incidence relation
on xAA

′ gives rise to the spacetime dependence of {N, ξi}. The measure of the Penrose
transform becomes simply

πE
′
dπE′ = dξ, (3.8)

10It is important here that the Weyl spinor we are seeking has no more than two distinct principal spinors:
more than two, and the contour Γ in the Penrose transform would be enclosing more than one pole in at
least one hemisphere of the Riemann sphere, thus invalidating the remarks leading to eq. (2.50). We discuss
this point in more detail in section 3.3.
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and we can now consider each value of m in turn. For the scalar case of m = 1, the Penrose
transform reduces to

φ = 1
2πi

∮
Γ
dξ

N(x)
(ξ − ξ1)(ξ − ξ2)

= N(x)
2πi

∮
Γ
dξ

1
(ξ − ξ1)(ξ − ξ2) . (3.9)

The contour Γ is defined on the Riemann sphere of ξ, such that it separates the poles at
ξ = ξ1 and ξ = ξ2. We may thus evaluate the contour integral by enclosing only one of
these poles, which we take to be ξ = ξ1. Cauchy’s theorem then tells us that∮

Γ

dξ

(ξ − ξ1)(ξ − ξ2) = 2πi
ξ1 − ξ2

, (3.10)

so that we have

φ(x) = N(x)
ξ1 − ξ2

. (3.11)

Next, we have the case m = 2, which gives the Penrose transform

φA′B′ = N2(x)
2πi

1
2!

∮
Γ
dξ

(1, ξ)A′(1, ξ)B′

(ξ − ξ1)2(ξ − ξ2)2 . (3.12)

We choose to evaluate the integral for each choice of {A′, B′} by again enclosing the pole
at ξ = ξ1. Recalling that if a function f(z) has an nth-order pole at z = c, the residue
associated with the latter is

res(f, c) = 1
(n− 1)! lim

z→c
dn−1

dzn−1 [(z − c)nf(z)] , (3.13)

one may then verify the following:

1
2πi

∮
Γ
dξ

ξn

(ξ − ξ1)2(ξ − ξ2)2 = − 1
(ξ1 − ξ2)3 ×


2, n = 0,
(ξ1 + ξ2), n = 1,
2ξ1ξ2, n = 2,

(3.14)

which in turn implies

φ0′0′ = − N2(x)
(ξ1 − ξ2)3 , φ0′1′ = φ1′0′ = − N2(x)

(ξ1 − ξ2)3
1
2(ξ1 + ξ2), φ1′1′ = − N2(x)

(ξ1 − ξ2)3 ξ1ξ2.

(3.15)
Alternatively, one may express φA′B′ directly in terms of its principal spinors. Defining

αA′ = (1, ξ1), βA′ = (1, ξ2), (3.16)

eq. (3.15) is equivalent to

φA′B′ = − N2(x)
(ξ1 − ξ2)3α(A′βB′). (3.17)
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Finally, we can examine the case m = 3, which produces a Weyl spinor as follows:

φA′B′C′D′ = N3(x)
2πi

1
3!

∮
Γ
dξ

(1, ξ)A′(1, ξ)B′(1, ξ)C′(1, ξ)D′

(ξ − ξ1)3(ξ − ξ2)3 . (3.18)

Again using eq. (3.13), one finds

1
2πi

∮
Γ
dξ

ξn

(ξ − ξ1)3(ξ − ξ2)3 = 1
(ξ1 − ξ2)5 ×



6, n = 0,
3(ξ1 + ξ2), n = 1,
ξ2

1 + 4ξ1ξ2 + ξ2
2 , n = 2,

3ξ1ξ2(ξ1 + ξ2), n = 3,
6ξ2

1ξ
2
2 , n = 4.

(3.19)

Substituting this into eq. (3.18), one finds that the result may be written as

φA′B′C′D′ = N3(x)
(ξ1 − ξ2)5α(A′βB′αC′βD′)

=
[

N(x)
(ξ1 − ξ2)

]−1
φ(A′B′φC′D′), (3.20)

where in the second line we have recognised the spin-1 massless field (i.e. an electromagnetic
field strength tensor) of eq. (3.17), and used the symmetrisation property

Ψ((A′B′)(C′D′)) = Ψ(A′B′C′D′), (3.21)

which holds for an arbitrary spinor ΨA′B′C′D′ . We may recognise the prefactor in eq. (3.20)
as the inverse of the scalar field of eq. (3.11). Thus, our choice of twistor functions has
provided a scalar, electromagnetic field strength and (linearised) Weyl tensor satisfying

φA′B′C′D′ = 1
φ
φ(A′B′φC′D′). (3.22)

This is precisely the (primed version of) the Weyl double copy of eq. (2.23). Some further
comments are in order:

• Our choice of the combinatorial factor in eq. (3.4) is to reproduce the normalisation
of the Weyl double copy as given in ref. [45], and one needs such a factor whenever
higher-order poles are present. However, the scalar function S(x) is itself only defined
up to a constant factor in that paper, so that this is not strictly necessary. Further-
more, we are working with linearised field equations, so that any constant factor is
possible.

• The twistor story explains why there is a classical double copy in position space,
given that the Penrose transform links twistor functions with spacetime fields. Fur-
thermore, the somewhat mysterious form of eq. (3.1) is now also explained.

• In the original formulation of the Weyl double copy, there was no clear prescription
for fixing the scalar function S. Here, we see that it naturally arises as the scalar
field φ obtained from the m = 1 case of eq. (3.5).
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• Equation (3.22) is limited to linearised equations of motion only. However, this is not
a problem for the spacetimes considered in ref. [45], all of which linearise the Einstein
equations, so that the linearised double copy can be promoted to an exact statement.

• The twistor formalism is in principal conformally invariant (at least in those cases in
which the twistor functions do not involve the infinity twistors for a given spacetime,
that break conformal invariance). This means that the Weyl double copy should
immediately extend to conformally flat spacetimes, thus formalising a preliminary
observation made in ref. [49]. One could, for example, take a given set of scalar,
electromagnetic and gravity fields that are linked by the Weyl double copy, and con-
formally transform them directly to a desired spacetime, thus achieving a double copy
on a curved background. We leave a full investigation of this interesting possibility
to future work.

In order for the above to constitute a full derivation of the Weyl double copy, it must be the
case that all possible vacuum type D spacetimes can be obtained using twistor functions
of the form of eq. (3.5). That this is indeed the case has been argued by Haslehurst and
Penrose in ref. [142], and general arguments may also be given. Type D vacuum solutions
are distinguished by the presence of two distinct shear-free null geodesic congruences. All
such congruences (in Minkowski space) can be obtained as the zero sets of twistor functions,
by a result known as the Kerr theorem (see also e.g. refs. [128, 129]). In the present case,
these twistor functions are precisely those appearing in the denominator of eq. (3.5).

3.2 Example: Schwarzschild & Taub-NUT

A canonical example is that of the Schwarzschild black hole, which is not (anti-)self-dual by
itself. However, it is known [55, 70, 71] that duality transformations map out the parameter
space of a general Taub-NUT solution with Schwarzschild mass M and NUT charge N .
Thus, if we restrict to the self-dual part of the Weyl tensor only, we will obtain self-dual
Taub-NUT with a fixed relationship between M and N . To obtain this using the above
construction, one may take a family of functions as in eq. (3.5), where a suitable choice for
Qαβ is11

Qαβ = 1
2


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , (3.23)

so that the quadratic form in eq. (3.3) becomes

χ = Z1Z2 − Z0Z3

= ω1π0′ − ω0π1′ . (3.24)

This must be evaluated subject to the incidence relation of eq. (2.31), where

xAA
′ = 1√

2

(
t+ z x+ iy

x− iy t− z

)
. (3.25)

11We use the self-dual analogue of the anti-self-dual twistor function presented in refs. [143–145].
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With πA′ given by eq. (3.6), we then find

χ = − i√
2

(
ξ2(x+ iy) + 2zξ − (x− iy)

)
. (3.26)

This has roots at

ξ1,2 = −z ± r
(x+ iy) = x− iy

z ∓ r
, r =

√
x2 + y2 + z2, (3.27)

and comparing eq. (3.26) with eq. (3.7), we find

N(x) = i
√

2
(x+ iy) . (3.28)

From eq. (3.11), the biadjoint scalar function φ associated with this solution is given by

φ = i

r
√

2
. (3.29)

This agrees with the function S(x) presented in ref. [45],12 up to an overall normalisation
constant. However, their function S(x) is itself only defined up to an overall constant, so
this is not a problem.

The field strength and Weyl spinors associated with the electromagnetic and gravity
solutions will have the form of eqs. (3.17), (3.20), where the two principal spinors in the
present case are

αA′ =
(

1, x− iy
z + r

)
, βA′ =

(
1, x− iy
z − r

)
. (3.30)

We may relate these to the Kerr-Schild double copy of ref. [44] as follows. In a real
spacetime, we construct the principal null directions corresponding to the real spinors by
combining each of the latter with their complex conjugates and the appropriate Infeld-van-
der-Waerden symbols:

k(1)
µ = αA′ᾱAσ

AA′
µ , k(2)

µ = βA′ β̄Aσ
AA′
µ . (3.31)

Using the spinors of eq. (3.16), one finds

k(i)
µ = 1√

2

(
1 + |ξi|2, ξi + ξ∗i , i(ξi − ξ∗i ), 1− |ξi|2

)
, (3.32)

such that the explicit forms of eq. (3.30) yield

k(1,2)
µ ∝ r

√
2

r ± z

(
1,±x

r
,±y

r
,±z

r

)
. (3.33)

The proportional sign here arises from the fact that the spinors of eq. (3.16) were defined
in projective space, and thus can be renormalised by a position-dependent factor. This
allows us to remove the prefactor on the right-hand side of eq. (3.33), and one recovers the
two possible choices of Kerr-Schild vector kµ for the Schwarzschild spacetime [44].

12Reference [45] actually presents results for the Kerr solution, but this reduces to the Schwarzschid
solution when the angular momentum parameter a is taken to zero.
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3.3 Examples of general Petrov type

Above, we have seen that it is possible to derive the type D Weyl double copy, by choosing
appropriate functions in the twistor space product of eq. (3.2). However, the spacetime
form of the (mixed) double copy, eq. (2.25), is not intrinsically limited to producing type
D solutions only. Thus the question naturally arises as to whether arbitrary Petrov types
are possible. This was briefly considered in ref. [123], which presented examples with
Petrov types N and III (see also ref. [131] for a discussion of Petrov type N). These ex-
amples utilised a particularly well-studied class of holomorphic twistor functions, namely
elementary states (see e.g. ref. [128]), which consist of ratios of factors of the form (AαZα),
where Aα is a constant dual twistor. Elementary states were originally intended as alter-
natives to plane wave states, for the purposes of examining scattering processes in twistor
space. However, they were recently reconsidered from a different point of view, as the
twistor functions associated with certain topologically non-trivial electromagnetic fields.
Reference [146] pointed out that the field associated with the zeroes of the twistor function
(AαZα) is an electromagnetic Hopf knot, any pair of whose electric (or magnetic) field lines
are linked. Reference [147] generalised this further, by considering the Penrose transform
of the family of twistor functions

fh(Zα) = (AαZα)−1(BβZβ)−2h−1, (3.34)

where h is the helicity of the resulting field in spacetime. We may write the dual twistors
in eq. (3.34) as13

Aα = (AA, AA
′), Bα = (BA, BA′). (3.35)

Furthermore, we follow ref. [147] in defining the calligraphic quantities

ρx[AαZα] ≡ AA′
πA′ , ρx[BβZβ ] ≡ BB′

πB′ , (3.36)

such that
AA′ = ixAA

′
AA +AA

′
, (3.37)

and similarly for BB′ . Then the corresponding solutions of the massless free field equations
were found to be

φA′
1...A

′
2h

(x) =
( 2

Ω|x− y|2
)2h+1

AA′
1
. . .AA′

2h
, (3.38)

where

Ω = ABB
B, yAA

′ = i
BAAA

′ −AABA′

ABBB
. (3.39)

The spin-1 and spin-2 versions of eq. (3.38) correspond to a null electromagnetic spinor
and type N Weyl spinor respectively. The general field is referred to as a spin-N Hopfion,
given that its spacetime topology is related to the well-known Hopf fibration.

13In a slight abuse of notation we have used A and B to denote dual twistors, as well as their associated
Weyl-spinors. However, the nature of the index in each case makes this notation unambiguous.
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A further generalisation was presented in ref. [148], which considered the family of
twistor functions

f(Zα) = (CγZγ)h(np−1)(DδZ
δ)h(nt−1)

(AαZα)(BβZβ)h(np+nt)+1 . (3.40)

Here h is the helicity as before, and np, nt ∈ Z. Defining calligraphic spinorial quantities as
in eq. (3.36), the corresponding spacetime fields via the Penrose transform were found to be

φA′
1...A

′
2h

(x) = (AC′CC′)h(np−1)(AD′DD′)h(nt−1)

(AB′BB′)h(np+nt)+1 A(A′
1
. . .AA′

2h). (3.41)

These fields again have a non-trivial topology: in the electromagnetic case, electric field
lines correspond to torus knots, where nt and np denote the toroidal and poloidal wind-
ing numbers. A similar geometry (involving gravitoelectric field lines, defined from the
parity-even part of the Weyl tensor) can be ascertained in the spin-2 case. Again, the elec-
tromagnetic field strength is null, and the Weyl spinor is type N. Reference [149] sought
to generalise this, by constructing gravitational solutions with different Petrov types. In
particular, the following Penrose transform was noted:14

1
(AαZα)1+a(BαZα)1+b →

Nab
[AB]a+b+1A(A′

1
. . .AA′

b
BA′

b+1
. . .BA′

2h)

= Nab
( 2

Ω|x− y|2
)a+b+1

A(A′
1
. . .AA′

b
BA′

b+1
. . .BA′

2h), (3.42)

where
Nab = (−1)a

(
a+ b

a

)
. (3.43)

The Weyl double copy properties of torus knots were considered using methods similar
to refs. [52, 150] in ref. [133], although the form of the biadjoint field was not explicitly
discussed there. However, the above results fit very nicely into the twistor space picture
for obtaining the Weyl double copy. Starting with eqs. (3.34), (3.38), one may take the
cases with h = 0, h = 1 and h = 2 as the scalar, electromagnetic and gravity functions in
the twistor space product of eq. (3.2), such that the corresponding spacetime fields are

φ = 2
Ω|x− y|2 , φA′B′ =

( 2
Ω|x− y|2

)3
A(A′AB′),

φA′B′C′D′ =
( 2

Ω|x− y|2
)5
A(A′AB′AC′AD′), (3.44)

from which it is straightforward to verify eq. (2.25). A similar analysis can be carried out
for eqs. (3.40) and (3.41).

Next, consider eq. (3.42). If a = b = 0, one obtains the scalar field of eq. (3.44). One
may construct twistor functions of homogeneity −4 by choosing (a, b) = (1, 1) or (0, 2),
leading to the two respective electromagnetic spinors

φ
(1,1)
A′B′ = −2

( 2
Ω|x− y|2

)3
A(A′BB′), φ

(0,2)
A′B′ =

( 2
Ω|x− y|2

)3
A(A′AB′). (3.45)

14The results of ref. [149] appear not to include an overall combinatorial factor, which we have explicitly
instated here.
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Using these in the mixed Weyl double copy of eq. (2.25), one can generate a number of
different Weyl spinors:

φ
(1,1)×(1,1)
A′B′C′D′ = 4

( 2
Ω|x− y|2

)5
A(A′AB′BC′BD′),

φ
(1,1)×(0,2)
A′B′C′D′ = −2

( 2
Ω|x− y|2

)5
A(A′AB′AC′BD′), (3.46)

φ
(0,2)×(0,2)
A′B′C′D′ =

( 2
Ω|x− y|2

)5
A(A′AB′AC′AD′), (3.47)

which is entirely consistent with the rule for combining the corresponding functions in
twistor space. The first and third of these examples are Petrov type D and N respectively.
However, the second (as already noted in ref. [149]) is Petrov type III, thus going beyond
the original formulation of the Weyl double copy in ref. [45].

We may go further than the above (and the results of ref. [123]) by seeking Weyl double
copy examples with Petrov types I and II, where again we may rely on elementary states.
However, we will see that this leads to a generalisation of the Weyl double copy formula
of eq. (3.1). Let us illustrate this with the simpler case of type II solutions. Consider the
twistor function

f (II)
grav. = CγZ

γ

(AαZα)3(BβZβ)4 ≡
CE′

πE′

(AG′πG′)3(BH′πH′)4 , (3.48)

where Aα, Bα and Cα are constant dual twistors, and we have defined calligraphic spinors as
in eq. (3.36). This has homogeneity −6 and thus represents a gravity solution in spacetime,
where the appropriate Penrose transform can be written as

Ψ(II)
A′B′C′D′ = CE′

φ
(2,3)
A′B′C′D′E′ , (3.49)

where

φ
(2,3)
A′B′C′D′E′ = 1

2πi

∮
Γ

πA′πB′πC′πD′πE′

(AG′πG′)3(BH′πH′)4πI′dπI
′
,

= 10
[AB]6A(A′AB′AC′BD′BE′), (3.50)

and we have used eq. (3.42) in the second line. To see why eq. (3.49) yields a type II
Weyl spinor, note that one may rewrite the spinorial quantity on the right-hand side of
eq. (3.50) as

A(A′AB′AC′BD′BE′) = 1
5
[
3AE′B(A′ + 2BE′A(A′

]
AB′AC′BD′), (3.51)

such that the Weyl spinor of eq. (3.49) may be rewritten as

Ψ(II)
A′B′C′D′ = 2

[AB]5A(A′AB′BC′FD′), (3.52)

where
FA′ = 3 [CA]

[AB]BA
′ + 2 [CB]

[AB]AA
′ . (3.53)
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Equation (3.52) is then manifestly of type II as required, and to show that it may be
obtained by a Weyl double copy, we must find twistor functions that can be substituted in
eq. (3.2) so as to reproduce eq. (3.48). In fact, we need only use the twistor functions related
to the electromagnetic Hopfions discussed above. To this end, consider the homogeneity
−4 functions related to the two electromagnetic spinors (3.45). These are

f
(0,2)
EM = 1

(AαZα)(BβZβ)3 = 1
[πA][πB]3 ,

f
(1,1)
EM = 1

(AαZα)2(BβZβ)2 = 1
[πA]2[πB]2 , (3.54)

where we have used the notations of eqs. (2.48), (3.36), as well as the homogeneity −2
function

f (0,0) = 1
(AαZα)(BβZβ) = 1

[πA][πB] . (3.55)

Upon applying the Schouten identity

[CA][πB] + [BC][πA] + [AB][πC] = 0, (3.56)

one may then rewrite eq. (3.48) as15

f (II)
grav. = 1

f (0,0) f
(1,1)
EM

(
− [CB]

[AB]f
(0,2)
EM + [CA]

[AB]f
(1,1)
EM

)
. (3.57)

The spacetime field corresponding to eq. (3.57) is a Weyl tensor of the form

Ψ(II)
A′B′C′D′ = 1

φ

[
3 [CA]

[AB]φ
(0,2)
(A′B′φ

(1,1)
C′D′) − 4 [CB]

[AB]φ
(1,1)
(A′B′φ

(1,1)
C′D′)

]
, (3.58)

in agreement with eqs. (3.52), (3.53). Here, we have combined the electromagnetic func-
tions to make a gravity function in twistor space, and only then carried out the Penrose
transform. This correctly keeps track of combinatorial factors resulting from the multi-
plicities of the poles in twistor space, and the result of our procedure is that we obtain a
generalised double copy formula (eq. (3.58)), containing a sum of two distinct terms, each
with the structure of eq. (3.1).16

We may carry out a similar analysis for Petrov type I, by considering e.g. the twistor
function

f (I)
grav. = (CE′

πE′)2

(AG′πG′)4(BH′πH′)4 , (3.59)

whose Penrose transform yields

Ψ(I)
A′B′C′D′ = CE′CF ′

φ
(3,3)
A′B′C′D′E′F ′ , (3.60)

15This factorization is not unique. The other possibility is f (II)
grav. = 1

f(0,0) f
(0,2)
EM

(
[CA]
[AB]f

(2,0)
EM − [CB]

[AB]f
(1,1)
EM

)
,

where f (2,0)
EM is given in eq. (3.66).

16We have chosen to keep out factors of spinor brackets in eq. (3.58), but could just as easily have absorbed
these into the definitions of the electromagnetic spinors on the right-hand side.
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with

φ
(3,3)
A′B′C′D′E′F ′ = 1

2πi

∮
πA′πB′πC′πD′πE′πF ′

(AG′πG′)4(BH′πH′)4 πI′dπI
′

= − 20
[AB]7A(A′AB′AC′BD′BE′BF ′). (3.61)

But

A(A′AB′AC′BD′BE′BF ′) = 1
5
[
3A(E′BF ′)A(A′BB′ +AE′AF ′B(A′BB′ +BE′BF ′A(A′AB′

]
AC′BD′),

(3.62)
such that eq. (3.60) gives

Ψ(I)
A′B′C′D′ = − 4

[AB]7
[
3[CA][CB]A(A′BB′ + [CA]2B(A′BB′ + [CB]2A(A′AB′

]
AC′BD′)

= − 1
[AB]5A(A′BB′DC′ED′), (3.63)

where

DC′ = (3−
√

5) [AC]
[AB]BC

′ + 2[BC]
[AB] AC

′ ,

ED′ = (3 +
√

5) [AC]
[AB]BD

′ + 2[BC]
[AB] AC

′ . (3.64)

Equation (3.63) is manifestly of type I as required. As for the type II example of eq. (3.58),
it may be written as a superposition of pure Weyl double copies. By repeated application
of eq. (3.56), we may rewrite the twistor function of eq. (3.59) as17

f (I)
grav. = 1

f (0,0)

( [CB]
[AB]f

(0,2)
EM −

[CA]
[AB]f

(1,1)
EM

)(
− [CA]

[AB]f
(2,0)
EM + [CB]

[AB]f
(1,1)
EM

)
, (3.65)

where we have introduced a third homogeneity −4 function

f
(2,0)
EM = 1

(AαZα)3(BβZβ) = 1
[πA]3[πB] , (3.66)

with the respective electromagnetic spinor

φ
(2,0)
A′B′ = −

( 2
Ω|x− y|2

)3
B(A′BB′). (3.67)

Expanding and transforming each term separately to position space, one finds

Ψ(I)
A′B′C′D′ = 1

φ

[
3
2

[CA][CB]
[AB]2

(
φ

(0,2)
(A′B′φ

(2,0)
C′D′) − φ

(1,1)
(A′B′φ

(1,1)
C′D′)

)
+ [CB]2

[AB]2φ
(0,2)
(A′B′φ

(1,1)
C′D′) −

1
2

[CA]2
[AB]2φ

(1,1)
(A′B′φ

(2,0)
C′D′)

]
. (3.68)

17Similar to the type II case, this factorization is not unique. The other possibility is f
(I)
grav. =

1
f(0,0) f

(1,1)
EM

(
[CA]2
[AB]2 f

(2,0)
EM + [CB]2

[AB]2 f
(0,2)
EM − 2 [CA][CB]

[AB]2 f
(1,1)
EM

)
.

– 23 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
9

As in the previous type II example, this is a sum of pure double copy terms. However, in
both cases, there is considerable choice in how one presents the final results. Returning to
the simpler type II example of eq. (3.58), one may define the alternative electromagnetic
spinor

ΦA′B′ = 3 [CA]
[AB]φ

(0,2)
A′B′ − 4 [CB]

[AB]φ
(1,1)
A′B′ , (3.69)

which is guaranteed to solve the massless free field equation given that the two terms
on the right-hand side are themselves solutions, and thus may be linearly superposed.
Equation (3.58) then becomes

Ψ(II)
A′B′C′D′ = 1

φ
Φ(A′B′φ

(1,1)
C′D′), (3.70)

which is of pure Weyl double copy form. The reader may be worried that there are ap-
parently different double copy formulae that can be written down that relate different
electromagnetic solutions to a given gravity solution. However, this is in fact neither sur-
prising nor profound. The Penrose transform used here is limited to the linearised gauge
and gravity theories only, as are our examples of gauge / gravity solutions, such that the
ambiguity in associating a given gravity solution with a given pair of electromagnetic solu-
tions is precisely that associated with being able to linearly superpose the latter. Notably,
the individual terms in eqs. (3.58), (3.68) correspond to Weyl spinors of restricted Petrov
type, such that the superpositions involved correspond to the known property that, in the
linearised theory, one may superpose solutions to create different Petrov types. We have
thus succeeded in providing Weyl double copy examples of more general Petrov type, but in
a rather artificial way. One may therefore question the utility of the twistor approach (and
indeed the Weyl double copy in general) for these solutions. However, what the twistor
framework does is provide an interesting way to classify possible double copy formulae, in
that the problem of finding the different single copies of a given Weyl tensor amounts to
obtaining the different factorizations of the related twistorial function. It also provides a
motivation for why particular solutions may be interesting even at linearised level (e.g. the
identification of elementary states with Hopfions and torus knots [146–149]). It would of
course be very interesting to find examples of arbitrary Petrov type where exact — or at
the very least non-linear — solutions are related.

3.4 A possible objection

In the previous sections, we have outlined a derivation of the Weyl double copy, that
relies on a certain product of holomorphic twistor functions in projective twistor space.
However, this should rightly incur the wrath of any sensible twistor theorist: as we dis-
cussed in section 2.2, the “functions” we have discussed above are not actually functions,
but representatives of cohomology classes. Each spin-n (positive helicity) massless free
field in spacetime corresponds to a particular element (cohomology class) from the group
H1(PT,−n−2), and the interpretation of the product of eq. (3.2) is then not at all clear.18

18We thank Prof. Edward Witten for comments leading to the present discussion.

– 24 –



J
H
E
P
0
5
(
2
0
2
1
)
2
3
9

In more pedestrian terms, the twistor function corresponding to a given spacetime field
is not unique, but may be redefined by adding functions whose singularities lie on only one
side of the contour Γ on the Riemann sphere corresponding to a given spacetime point.
Then, the product of eq. (3.2) that is needed to obtain the Weyl double copy in position
space appears incompatible with the ability to perform equivalence relations according to
eq. (2.42), in that the order of these operations does not commute. To illustrate this point,
it is sufficient to consider redefining the twistor functions in the numerator of eq. (3.2),
according to

f
(i)
EM(Zα)→ f̃

(i)
EM(Zα) ≡ f (i)

EM(Zα) + χ(Zα), (3.71)

where χ(Zα) has homogeneity −4, and contains poles either in the northern or southern
hemisphere when restricted to the Riemann sphere of spacetime point x, but not both. By
construction, the functions f̃ (i)(Zα) give rise to the same electromagnetic spinors φ(i)

A′B′(x)
as the functions f (i)

EM(Zα). However, forming the product of eq. (3.2) for the redefined
functions leads to the twistor function

f̃
(1)
EM(Zα)f̃ (2)

EM(Zα)
f(Zα) = f

(1)
EM(Zα)f (2)

EM(Zα)
f(Zα) +

2∑
i=1

χ(Zα)f (i)
EM

f(Zα) + χ2(Zα)
f(Zα) . (3.72)

Both the second and third terms on the right-hand side have homogeneity −6, and thus
the right-hand side gives rise to a solution of the massless spin 2 free field equation in
spacetime. However, the second term on the right-hand side involves the original functions
f

(i)
EM(Zα), and thus will have poles in both the northern and southern hemispheres of the
Riemann sphere of x. Recognising the first term on the right-hand side as our original
gravity function in twistor space, we thus see that eq. (3.72) does not correspond to an
equivalence relation of the form of eq. (2.42). Consequently, the transformation on the
right-hand side will gives rise to a different spacetime gravity solution in general.

If we instead take given representative members of the equivalence class of functions
for (f (i)

EM, f(Zα)) and form the product of eq. (3.2), we are indeed free to make redefinitions
according to eq. (2.42). That is, the transformations

f
(1)
EM(Zα)f (2)

EM(Zα)
f(Zα) → f

(1)
EM(Zα)f (2)

EM(Zα)
f(Zα) + fN (Zα) + fS(Zα) (3.73)

do indeed yield equivalent gravity solutions. However, we are then faced with the puzzle of
how to pick out what these representative members are meant to be, given that all possible
choices of the classes of function entering eq. (3.2) are meant to be equivalent!

The above puzzle, whilst interesting, does not appear to pose an obstacle to deriv-
ing the Weyl double copy in spacetime. All one has to do to achieve the latter is to
pick suitable representatives from each cohomology class, chosen by construction so as to
obtain the type D Weyl double copy of eq. (3.1). Put another way, one only needs to ver-
ify the following statement: for particular elements (cohomology classes) from the groups
H1(PT,−2), H1(PT,−4) and H1(PT,−6), a representative of each class exists such that
the corresponding spacetime fields obey eq. (3.1). This is a much weaker statement than
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requiring a complete map between the classes themselves i.e. intepreting the product of
eq. (3.2) as providing a general map:

H1(PT,−2)×H1(PT,−4)×H1(PT,−4)→ H1(PT,−6), (3.74)

which may or may not be achievable. The validity of the weaker statement above is
demonstrated explicitly in section 3.1, but whether or not anything more general can be
said is certainly worth investigating, as it is clearly related to central questions regarding the
validity and scope of the double copy, including to exact solutions of arbitrary Petrov type.

We note also that from a physics point of view, the situation is highly reminiscent of the
well-known BCJ double copy for (quantum) scattering amplitudes [1, 2], in which gravity
amplitudes are expressed as a sum of terms, each involving a product of kinematic factors
{ni} obtained from gauge theory amplitudes. These numerators are gauge-dependent, but
such that the total amplitude is gauge-invariant. The double copy structure is not manifest
in arbitrary gauges, and one must make generalised gauge transformations (including also
field definitions in general) in order to put the numerators into a specific “BCJ-dual” form,
so that the double copy can be carried out. This problem already occurs at tree-level, and
if a given set of such numerators is subjected to a gauge transformation

ni → ni + δi (3.75)

for some δi, the double copy formula will generate unwanted terms in the gravity ampli-
tude, that threaten the gauge-invariance of the latter. It is possible to set up the double
copy in a more gauge-invariant manner, but at the expense of having to introduce addi-
tional correction terms on the gravity side, to cancel out the unwanted contributions [151].
Although the situation here is not exactly identical (i.e. the equivalence transformations of
eq. (2.42) do not correspond to spacetime gauge transformations), it may well be that some
similar procedure in twistor space can be defined, so that full invariance with respect to
equivalence transformations is made manifest. Any such procedure presumably faces the
additional barrier of having to be interpretable in sheaf cohomological terms, but there is
again hope. For example, products of twistor space cohomology classes have been discussed
in earlier literature regarding twistor diagrams for scattering amplitudes (see e.g. [134, 152]
for reviews). Some of these techniques may be adaptable to the present case of classical
solutions, and there may also be existing results from the algebraic geometry literature
regarding maps similar to those required here (although we do not know of anything at the
time of writing).

Throughout, we have been discussing twistor cohomology classes using the language of
sheaf cohomology (or alternatively C̆ech cohomology, which is an appropriate approxima-
tion). However, another formulation of the Penrose transform exists, in which the twistor
functions become differential forms, and are to be interpreted as Dolbeault cohomology
classes (see e.g. [153] for a review). That this is equivalent to the above approach follows
from known isomorphisms between C̆ech and Dolbeault cohomology groups. It would cer-
tainly be interesting to try to reformulate our derivation of the Weyl double copy in the
Dolbeault approach, as this is clearly related to whether the double copy has a genuinely
twistorial interpretation.
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3.5 The Weyl double copy for anti-self-dual fields

In the previous sections, as in ref. [123], we have addressed the Weyl double copy for self-
dual fields i.e. those with primed spinor indices. In this section, we extend this discussion to
anti-self-dual fields. As reviewed in section 2.2, there are two Penrose transforms one may
consider for anti-self-dual fields. The first (eq. (2.43)) simply consists of replacing twistors
with dual twistors, and it is straightforward to see that the derivation of the type D Weyl
double copy in terms of anti-self-dual fields proceeds similarly to the case of self-dual fields
discussed above. That is, one may consider the family of functions

f̃m = 1
m!
[
QαβWαWβ

]−m
, (3.76)

with Qαβ a constant matrix. In the Penrose transform, this is to be evaluated subject to
the incidence relation of eq. (2.36), and one may choose homogeneous coordinates

λA = (1, η) (3.77)

such that the quadratic form appearing on the right-hand side of eq. (3.76) may be written
as

χ̃ ≡ ρx
[
QαβWαWβ

]
= Ñ−1(x)(η − η1(x))(η − η2(x)), (3.78)

for some spacetime-dependent functions Ñ and ηi. Carrying out the Penrose transforms
for m ∈ {1, 2, 3} yields spacetime fields

S= Ñ(x)
η1−η2

, φAB =− Ñ2(x)
(η1−η2)3α(AβB), ΨABCD = Ñ3(x)

(η1−η2)5α(AβBαCβD), (3.79)

obeying the Weyl double copy formula of eq. (2.23).
One may also consider using the (non-dual) twistor space Penrose transform of

eq. (2.44), but the complication then arises of how to form a product in twistor space
(i.e. before or after the derivatives are applied). In section 3.1, each quantity entering
the twistor space product must be interpretable by itself as corresponding to a spacetime
field, after restriction to a given spacetime point. In eq. (2.44), the restriction to a given
spacetime point happens after the function f(Zα) has already been differentiated, which
suggests that we define a twistor-space product in terms of differentiated quantities:

fAB...C = ∂

∂ωA
∂

∂ωB
. . .

∂

∂ωC
f(Zα). (3.80)

A twistorial double copy for anti-self-dual fields can then be written as

fgrav.
ABCD =

fEM
(ABf

EM
CD)

f
. (3.81)

We can at least show that such a relationship holds in particular cases. For example, a
suitable function to be entered into eq. (2.44) for the (anti-self-dual) Coulomb solution
is [143]

fEM = log
(
Q

P

)
, (3.82)
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with
P = Z2Z3

Q = Z1Z2 − Z0Z3 .
(3.83)

From eq. (2.29), we then find

∂

∂ωA
P = 0 and ∂

∂ωA
∂

∂ωB
Q = 0, (3.84)

so that it is straightforward to compute

f̃EM
AB = −QAQB

Q2 , QA ≡
∂

∂ωA
Q. (3.85)

The anti-self-dual Schwarzschild / Taub-NUT solution can be obtained from the following
twistor function for use in eq. (2.44) [144]:

f̃grav = 1
2QlogQ

P
(3.86)

with Q and P as defined in (3.83). Then

f̃grav
ABCD = QAQBQCQD

Q3 . (3.87)

Finally, comparing equations (3.85) and (3.87), we see that the double copy formula (3.81)
is indeed verified, with

f = Q−1 . (3.88)

We remark that the expression for the scalar twistor function is the same as that used for
the self-dual analysis of section 3.2, as must be the case. Furthermore, different choices of
the quadratic form Q (subject to the conditions of eq. (3.84)) will map out the space of
type D vacuum solutions [142].

It is possible to extend the above to general families of solutions. Firstly, recalling the
definition of Zα eq. (2.30)

Zα = (Z0, Z1, Z2, Z3) = (ω0, ω1, π0′ , π1′) = (ωA, πA′) (3.89)

we notice that
Q = QαβZ

αZβ = Z1Z2 − Z0Z3 (3.90)

was chosen exactly such that

QA = ∂

∂ωA
Q = (−π1′ , π0′) = (επ)A, (3.91)

so that QA is just πA′ rotated by a Levi-Civita symbol. It is then straightforward to show
that we can write

ρx[Q] = (AA′
πA′)(BB′

πB′) (3.92)
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with AA′ and BB′ defined as in (3.37). Then, using (3.91) and (3.92) we can write the
integrand for the Coulomb solution of (3.82) as:

ρx

[
∂

∂ωA
∂

∂ωB
f̃EM

]
=− (επ)A(επ)B

1
(AA′πA′)2(BB′πB′)2

=− (επ)A(επ)Bf (1,1)
EM

(3.93)

with f (1,1)
EM the function appearing in the self-dual transform (see eq. (3.54)). Similarly, for

the Schwarzschild solution of eq. (3.86) we have

ρx

[
∂

∂ωA
∂

∂ωB
∂

∂ωC
∂

∂ωD
f̃grav

]
= 2(επ)A(επ)B(επ)C(επ)D

1
(AA′πA′)3(BB′πB′)3

= 2(επ)A(επ)B(επ)C(επ)DfTypeD
grav. .

(3.94)

Above we described the double copy for Type D. In order to progress to more general
families, we will first use the results above to find the f̃EM’s which map to f (0,2)

EM and f (2,0)
EM

defined in (3.54) and (3.66). Making the ansatz

f̃
(0,2)
EM = Q

R2 log
(
Q

P

)
(3.95)

with Q and P as before and
R = RαZ

α = RA
′
πA′ , (3.96)

we have
∂

∂ωA
∂

∂ωB
f̃

(0,2)
EM = QAQB

R2Q
. (3.97)

Then
ρx

[
∂

∂ωA
∂

∂ωB
f̃

(0,2)
EM

]
= (επ)A(επ)B

1
(AA′πA′)(BB′πB′)(RA′πA′)2

RA
′=BA′

−−−−−−→ (επ)A(επ)Bf (0,2)
EM .

(3.98)

Similarly, we have
f̃

(2,0)
EM = Q

S2 log
(
Q

P

)
(3.99)

with Q and P as before and

S = SαZ
α = SA

′
πA′ , SA

′ = AA′
. (3.100)

Finally, the anti-self-dual analogue of the gravity function (3.59) will be

f̃ (I)
grav. =

[
G1Q+ G2

Q2

R2 + G3
Q2

S2 + G4
Q3

S2R2

]
log
(
Q

P

)
(3.101)

with P,Q,R, S defined as before. If we choose

G1 = −1
2

[CA][CB]
[AB]2 , G2 = 1

2
[CB]2
[AB]2 , G3 = 1

2
[CA]2
[AB]2 , G4 = −1

6
[CB][CA]

[AB]2 (3.102)

then the double copy factorisation proceeds by direct analogy to (3.65) and the subsequent
discussion.
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The double copy formula of eq. (3.81) is perhaps less desirable than the form based
on dual twistors, in that it ceases to be a simple product, and thus appears to offer no
additional advantages with respect to the spacetime double copy formalism. Note also
that the same objections regarding how to interpret the procedure in cohomological terms
apply here. The twistor “functions” to be entered into eq. (2.44) are actually cohomology
classes, which in this case are elements of the sheaf cohomology group H1(PT,O(n − 2)),
for a spin n field. Differentiating 2n times maps each cohomology class into an element of
H1(PT,O(−n − 2)), similar to the case of self-dual fields. Once again, we may take the
pragmatic view that in order to generate a particular spacetime double copy, it is sufficient
to show that particular representatives of the cohomology classes may be found in twistor
space, that achieve the desired spacetime relationship.

4 Conclusion

In this paper, we have examined the Weyl double copy that relates solutions of biadjoint
scalar, gauge and gravity theories, using a twistor-space formalism initiated in ref. [123].
The latter argues that each instance of the Weyl double copy in spacetime can be associated
with a certain product of functions in twistor space. We have provided full details of how
this formalism is sufficient to derive the previously noted form and scope of the Weyl double
copy, namely the fact that it applies to arbitrary vacuum type D solutions. We have also
gone further than ref. [123] in providing examples of Petrov type I and II solutions in
gravity, in addition to types III, D and N. However, such solutions are limited to linearised
level, which is ultimately due to the limitations of the Penrose transform itself. We have
also shown how similar arguments can be used to derive spacetime double copy formulae
for anti-self-dual fields, as well as self-dual ones.

Care must be taken in how to interpret the twistor space double copy, given that
it apparently involves multiplying together twistor functions. In the Penrose transform,
the “functions” are in fact cohomology classes (i.e. elements of sheaf cohomology groups).
Deriving a given instance of the Weyl double copy then amounts to showing the existence
of appropriate representations of each cohomology class, such that the functions entering a
particular instance of the spacetime Weyl double copy are indeed related by a twistor-space
product. This is a far cry from demanding a map between the relevant cohomology groups
themselves, and the investigation of whether a more rigorous twistor-space interpretation
exists deserves further investigation, as it may shed further light on the ultimate origins
and scope of the double copy itself. It may also open up the possibility to look at fully
non-linear solutions. Work on these issues is in progress.
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