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1 Introduction

The AdS/CFT correspondence [1] greatly simplifies the study of the entanglement structure

of quantum field theories. This is due to the geometrization of entanglement measures

which manifests itself in the Ryu-Takayanagi formula [2–5]. In short, it states that for a

CFT in a state |Ψ〉, the entanglement entropy of a subregion A

SA = −TrρA log ρA, ρA = TrAc |Ψ〉 〈Ψ| , (1.1)

can be computed as the area of a codimension two surface in the bulk

SA =
Area(γA)

4G
, (1.2)

where γA is the minimal surface anchored on ∂A and homologous to region A.

For pure states entanglement entropy SA, provides a good measure of quantum cor-

relations, allowing us to probe the dynamics of entanglement under different types of

quenches [6–12]. For mixed states, however, von Neumann entropy measures both quan-

tum and classical correlations, thus leading to a necessity of finding a different correlation

measure, more suitable for mixed states.

Such a measure has been first proposed in [13, 14] in the holographic context, with

a precise holographic dual called entanglement wedge cross-section. Entanglement wedge

cross-section is defined for two boundary intervals as an area of minimal cross-section which

bipartitions their entanglement wedge

EW = min
Area(ΣAB)

4G
. (1.3)
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It has been shown to satisfy the inequality

EW ≥
1

2
IAB, (1.4)

which is saturated when the system A∪B is in a pure state. This measure has been further

related to other correlation measures [15–17]. For recent developments see [18–33]. Let us

now review the definitions of two measures dual to EWCS: entanglement of purification

and reflected entropy.

Entanglement of purification. Entanglement of purification [34] is defined as

EP (ρAB) = min
ρAB=TrA′B′ |ψ〉〈ψ|

S(ρAA′), (1.5)

where ρAA′ = TrBB′ |ψ〉 〈ψ|. The minimization is taken over all possible purifications of

state ρAB, that is over all pure states |ψ〉 ∈ HAA′ ⊗ HBB′ which satisfy the condition

ρAB = TrA′B′ |ψ〉 〈ψ|. The holographic entanglement of purification conjecture relates this

quantity to entanglement wedge cross-section as [13, 14]

EW = EP (ρAB). (1.6)

Interesting realizations of this idea have been provided in [35, 36]. In particular, in [36]

the authors derived the holographic entanglement of purification as a simple entanglement

entropy of a state deformed via path integral optimization procedure [37–39]. In gen-

eral, however, this quantity is hard to compute on the field theory side. This is due to

minimization over all possible purifications, which is not well understood in field theories.

Reflected entropy. On the other hand, reflected entropy [15] is defined as entanglement

entropy of a canonically purified state. Consider a general mixed state

ρAB =
∑
a

pa |ψa〉 〈ψa| , (1.7)

with
∑

a pa = 1, belonging to Hilbert space HA ⊗ HB. States |ψa〉 ∈ HA ⊗ HB can be

written as

|ψa〉 =
∑
i

√
λia |ia〉A ⊗ |ia〉B , (1.8)

with
∑

i λ
i
a = 1. With that our density matrix takes the form

ρAB =
∑
a,i,j

pa

√
λiaλ

j
a |ia〉A ⊗ |ia〉B ⊗ 〈ja|A ⊗ 〈ja|B . (1.9)

Interpreting the above density matrix as a vector |√ρAB〉 ∈ HA ⊗HB ⊗H∗A ⊗H∗B defines

a canonical purification

|√ρAB〉 =
∑
a,i,j

pa

√
λiaλ

j
a |ia〉A ⊗ |ia〉B ⊗ |ja〉A∗ ⊗ |ja〉B∗ , (1.10)
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which satisfies the appropriate condition ρAB = TrA∗B∗ |
√
ρAB〉 〈

√
ρAB|. Using the above

state, we define reflected entropy as

SR(A : B) = S(ρAA∗), ρAA∗ = TrBB∗ |
√
ρAB〉 〈

√
ρAB|. (1.11)

Reflected entropy is related to entanglement wedge cross-section via

SR(A : B) = 2EW . (1.12)

In contrast with the entanglement of purification, it is well understood how to compute

reflected entropy in conformal field theories. In particular, there is clear replica trick

prescription1 which can be used to compute it. This has been used in recent works to

investigate the dynamical properties of reflected entropy in holographic CFTs [41]2 as well

as in more general CFTs [44, 45]. For our purposes, however, it will be sufficient to know

that reflected entropy [15] (or holographic entanglement of purification [36]) between two

intervals [z1, z2], [z3, z4] in a 2d CFT on a complex plane can be expressed as

EW =
c

12
log

1 +
√
z

1−
√
z

+
c

12
log

1 +
√
z̄

1−
√
z̄
, (1.13)

with z being the standard cross-ratio z = z12z34/z13z24.

In this paper, we provide another study of the dynamics of reflected entropy in holo-

graphic CFTs. The setup we consider is motivated by the works [46–48]. In particular,

in [46] the authors considered mutual information between two matching intervals on both

sides of the thermofield double state, perturbed by a spherical shock wave. It was found

that for sufficiently early perturbations mutual information between the two intervals goes

to zero. Since the entanglement wedge cross-section is a different measure of correlations

between two intervals, it is interesting to check what is the behaviour of the correlations

captured by the entanglement wedge cross-section in this simple setup. We will find that

for spherical shock waves the entanglement wedge cross-section behaves similarly to other

correlation measures, such as mutual information and the two-point function. For local-

ized shocks, however, we find an interesting behaviour in which the entanglement wedge

cross-section settles at some non-zero value sometime before mutual information goes to

zero. This results in a plateau, similar to the one observed in [44]. We show that at high

temperatures this behaviour can be precisely captured by the line-tension picture [49–55],

which was very recently extended to the local operator quenches in [56].

The structure of the paper is as follows. In section 2 we derive the result in (1+1)d CFT

using two conformal maps. Our computation is similar in spirit to the computation of the

two-point function in [47]. In section 3 we calculate the entanglement wedge cross-section

in a localized shock wave geometry [48]. A precise match with a late time CFT result is

found. We discuss some aspects of our result. In section 4 we use the same techniques to

compute EWCS for the case of a spherical shock wave [46]. In section 5 we summarize

our results.

1See [40] for a very clear presentation.
2Dynamics of EWCS purely on the gravity side have been also studied in [42, 43].
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2 Reflected entropy for perturbed TFD from CFT

We begin with the CFT side computation. The state of interest is a thermofield double

state [57–59] perturbed by a heavy operator insertion

|TFD〉pert = e−iHLtψL(x)eiHLt |TFD〉 . (2.1)

One can think of it as first evolving the left CFT backward in time, inserting the operator

ψ(x), and then evolving the resulting state forward in time to tL = tR = 0. We consider

the case with symmetric intervals [xA, xB] in both copies of CFT. To compute reflected

entropy we need to find Euclidean path integral on a cylinder of circumference β, with

twist operator insertions at points

w3 = xA, w̄3 = xA, w4 = xB, w̄4 = xB, (2.2)

w1 = xB +
iβ

2
, w̄1 = xB −

iβ

2
, (2.3)

w2 = xA +
iβ

2
, w̄2 = xA −

iβ

2
, (2.4)

and heavy operators inserted at

wc = x− t− iε+
iβ

2
, w̄c = x+ t+ iε− iβ

2
, (2.5)

wd = x− t+ iε+
iβ

2
, w̄d = x+ t− iε− iβ

2
, (2.6)

where we introduced ε as the UV regulator of the local operator ψ. To do this most simply,

we will first map our setup to the complex plane where the result is known [15, 36]

EW =
SR
2

=
c

6
arccosh

(
1 +
√
u√

ν

)
, (2.7)

u = yȳ, ν = (1− y)(1− ȳ), (2.8)

y =
(y1 − y2)(y3 − y4)
(y1 − y3)(y2 − y4)

, (2.9)

and then analytically continue it to Lorentzian times −t, such that t > xB−x [47]. We use

two conformal maps (see figure 1). The first map will take us from perturbed thermofield

double state (w, w̄) to perturbed state on the complex plane (z, z̄) [9]

z(w) = e
2πw
β , z̄(w̄) = e

2πw̄
β , (2.10)

and the second one will take us further to the unperturbed complex plane (y, ȳ) [12, 60, 61]

y(z) =

(
z − zc
z − zd

)α
, ȳ(z̄) =

(
z̄ − z̄c
z̄ − z̄d

)α
, (2.11)

zc = −e
2π
β
(x−t−iε)

, z̄c = −e
2π
β
(x+t+iε)

, (2.12)

zd = −e
2π
β
(x−t+iε)

, z̄d = −e
2π
β
(x+t−iε)

, (2.13)
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Figure 1. Our setup in the computation of reflected entropy. We consider two symmetric intervals

[xA, xB ] in both copies of the CFT, perturbed by the heavy operator insertion in the left copy at

time t in the past. Using two conformal maps, z(w) and y(w), we map this setup to the known

vacuum result.

where α =

√
1− 24hψ

c ' 1−12hψ/c for hψ/c� 1. Points zc, zd, correspond to the insertion

points of ψ,ψ† after using the first map. The “cross-ratios” necessary in (2.8) take the form

y =

((
z1−zc
z1−zd

)α
−
(
z2−zc
z2−zd

)α)((
z3−zc
z3−zd

)α
−
(
z4−zc
z4−zd

)α)((
z1−zc
z1−zd

)α
−
(
z3−zc
z3−zd

)α)((
z2−zc
z2−zd

)α
−
(
z4−zc
z4−zd

)α) , (2.14)

with analogic form for ȳ. At this point, we perform an analytical continuation to Lorentzian

times t. The terms appearing in the brackets above might have non-trivial monodromies

around zero, which we need to properly take care of to get the correct answer. To analyze

which of these terms pass through the branch cut during analytical continuation, we expand

these terms for small ε [7, 12]

z̄1 − z̄c
z̄1 − z̄d

= 1 +
4iπεe

2π(t+x)
β

β
(
e

2π(t+x)
β − e

2πxB
β

) +O
(
ε2
)
, (2.15)

z̄2 − z̄c
z̄2 − z̄d

= 1 +
4iπεe

2π(t+x)
β

β
(
e

2π(t+x)
β − e

2πxA
β

) +O
(
ε2
)
. (2.16)

We see that as we increase t past t = xB − x and t = xA − x, both of these expressions

pass to a different sheet at infinity. The other terms stay on the principal sheet. We

therefore take
z̄1 − z̄c
z̄1 − z̄d

→ z̄1 − z̄c
z̄1 − z̄d

e2πi,
z̄2 − z̄c
z̄2 − z̄d

→ z̄2 − z̄c
z̄2 − z̄d

e2πi, (2.17)

before taking hψ/c� 1. It is convenient to rewrite the full expression for y as

y =

(
1−

(
z1−zd
z1−zc

z2−zc
z2−zd

)1−12hψ/c)(
1−

(
z3−zc
z3−zd

z4−zd
z4−zc

)1−12hψ/c)
(

1−
(
e−2πi z1−zdz1−zc

z3−zc
z3−zd

)1−12hψ/c)(
1−

(
e2πi z2−zcz2−zd

z4−zd
z4−zc

)1−12hψ/c) . (2.18)
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After expanding the terms in the brackets for hψ/c� 1 and assuming late times t� xB−x,

we arrive at

ȳ =

(
e

2π
β
xA − e

2π
β
xB
)2

(
e

2π
β
xA + e

2π
β
xB +

24hψπi
cεβ

et+x
)2 , εβ ≡ (e

− 2πiε
β − e

2πiε
β ), (2.19)

y = tanh
π

β
(xA − xB)

2
. (2.20)

This leads to

EW =
c

6
arccosh

(
2 cosh 2π

β (xA − xB) + h(xA) + h(xB)

2
√
h(xA) + 1

√
h(xB) + 1

)
, (2.21)

h(xA/B) =
12hψπi

cεβ
e

2π
β
(t+x−xA/B)

. (2.22)

In the next section, we will find that this result precisely matches the gravity calculation

in localized shock wave geometry, after relating regularization parameters as ε = −τ . The

important point of our CFT calculation was taking t > xB − x. This agrees with the

conclusion that local shock wave geometries are a good approximation in the region t > |x|
derived in [48].

3 Entanglement wedge cross-section for localized shock wave

In this section, we proceed with the gravity side computation. For convenience we work

with AdS radius l = 1. We also set R = 1 which will be reintroduced at the end of

the computation. The holographic dual to thermofield double state perturbed by heavy

operator insertion hψ was found in [47, 48]. It is a geometry of a localized shock wave

ds2 = − 4

(1 + uv)2
dudv +

(1− uv)2

(1 + uv)2
dx′2 + 4δ(u)h(x′)du2, (3.1)

with

h(x′) =
4πGNhψ

sin τ
et−|x

′−x|. (3.2)

In the above, the shock wave propagates from the point (x,−t) on the left boundary and

the parameter τ corresponds to the UV regularization of the single-particle operator in the

bulk. This geometry can be understood as two halves of eternal AdS black hole, glued

together along u = 0 with a shift in v coordinate (see figure 2)

vL = vR + δv(x′), δv(x′) = h(x′), (3.3)

where we set coordinates vL to the future of the shock, and vR to the past. We will consider

the case where x < xA < xB.

To find entanglement wedge cross-section between intervals [xA, xB] on both bound-

aries, we first need to find the HRT surfaces between respective ends of the intervals.

Following [47], we do this by calculating the distances from boundary points (tL = 0, xA)

– 6 –
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h(x’)

v
L
= 0

v
R
= 0

u = 0

Figure 2. Two halves of eternal AdS black hole, glued together along the shock at u = 0. There

is a discontinuity in v coodinate as we pass through the shock, with vL = vR + h(x′).

and (tR = 0, xA) to the intermediate point (vL = h(xp) + vR, xp) on the horizon. Minimiz-

ing the total distance over the intermediate point will give us the HRT surface. The total

distance can be found simply using embedding coordinates and reads3

d = log
(
4r2∞ (cosh(xA − xp)− vR) ((h(xp) + vR) + cosh(xA − xp))

)
. (3.4)

For the HRT surface anchored at the point xA the distance is minimized for

vR(xA) = − h(xA)

2
√
h(xA) + 1

, (3.5)

xp(xA) = xA + log
√
h(xA) + 1, (3.6)

with the total distance

d = log
(
4r2∞(1 + h(xA))

)
. (3.7)

Knowing the intermediate points we can now calculate the entanglement wedge cross-

section. Our approach will be similar to the one presented in [35, 41], with the slight

generalization of the calculation to the case of bulk-boundary geodesics. Using embedding

coordinates we will find the minimal distance between two bulk-boundary geodesics, each

anchored on one interval endpoint and its respective intermediate point on the horizon.

3.1 Spacelike geodesics in AdS

A general spacelike geodesic anchored on bulk points Xi and Xj can be written as

XA
ij (λ) = mAe−λ + nAeλ, (3.8)

where mA, nA satisfy

mAmA = nAnA = 0, 2m · n = −1. (3.9)

Using

XA
ij (λi) = XA

i , XA
ij (λj) = XA

j , (3.10)

3See appendix A for embedding coordinates.
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we can express Xij(λ) as

XA
ij (λ) =

XA
i sinh (λ− λj)−XA

j sinh (λ− λi)
sinh (λi − λj)

. (3.11)

Now we can use the equations (3.9) to find

eλi =

√
ξ −

√
ξ2 − 1, e−λi =

√
ξ +

√
ξ2 − 1, (3.12)

eλj =

√
ξ +

√
ξ2 − 1, e−λj =

√
ξ −

√
ξ2 − 1, (3.13)

where we introduced the product ξ = −Xi·Xj . With that Xij(λ) can be rewritten further as

XA
ij (λ) = C−e

−λ + C+e
λ, (3.14)

C− =
XA
i

√
ξ +

√
ξ2 − 1−XA

j

√
ξ −

√
ξ2 − 1

2ξ
' XA

i√
2ξ
−

XA
j

(2ξ)3/2
, (3.15)

C+ =
XA
j

√
ξ +

√
ξ2 − 1−XA

i

√
ξ −

√
ξ2 − 1

2ξ
'

XA
j√
2ξ
− XA

i

(2ξ)3/2
, (3.16)

where we also expanded C± for ξ � 1, which is relevant when we put one of the points near

the boundary. Now we will use this to calculate the minimal distance between spacelike

geodesics X14(λ), X23(λ
′), each anchored on one boundary (points 1,2) and one bulk point

(points 4,3). It’s important to note that while for the case of boundary-boundary spacelike

geodesics we can just keep the leading terms in the expansion of C±, for the case of bulk-

boundary geodesics we have to also keep second terms in our calculation. The reason for

that will become clear below.

3.2 Minimal distance between bulk-boundary geodesics

Following previous subsection we write bulk-boundary geodesics as

XA
14(λ) = e−λ

(
XA

1√
2ξ14

− XA
4

(2ξ14)3/2

)
+ eλ

(
XA

4√
2ξ14

− XA
1

(2ξ14)3/2

)
, (3.17)

XA
23(λ

′) = e−λ
′
(

XA
2√

2ξ23
− XA

3

(2ξ23)3/2

)
+ eλ

′
(

XA
3√

2ξ23
− XA

2

(2ξ23)3/2

)
,

with ξij = −Xi ·Xj . For each of these geodesics, one point corresponds to the end of the

boundary interval while the other corresponds to its respective intermediate point on the

horizon. The distance between two points X14(λ) and X23(λ
′) is given by

d(X14(λ), X23(λ
′)) = arccosh(ξ) = log(ξ +

√
ξ2 − 1), (3.18)

ξ = −X14(λ) ·X23(λ
′). (3.19)

To find the minimal distance between these two geodesics we just need to optimize over

λ, λ′. This reduces to optimization of ξ in a general form

ξ = e−λ−λ
′
A11 + eλ+λ

′
A22 + e−λ+λ

′
A12 + eλ−λ

′
A21, (3.20)

– 8 –
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for which the minimal value is found to be

ξmin = 2(
√
A12A21 +

√
A11A22). (3.21)

For X14(λ), X23(λ
′) written as in (3.17), we have

A11 =
ξ12

2
√
ξ14ξ23

+
ξ34

(4ξ14ξ23)3/2
− ξ13√

2ξ14(2ξ23)3/2
− ξ24√

2ξ23(2ξ14)3/2
, (3.22)

A22 =
ξ34

2
√
ξ14ξ23

+
ξ12

(4ξ14ξ23)3/2
− ξ24√

2ξ14(2ξ23)3/2
− ξ13√

2ξ23(2ξ14)3/2
, (3.23)

A12 =
ξ13

2
√
ξ14ξ23

+
ξ24

(4ξ14ξ23)3/2
− ξ12√

2ξ14(2ξ23)3/2
− ξ34√

2ξ23(2ξ14)3/2
, (3.24)

A21 =
ξ24

2
√
ξ14ξ23

+
ξ13

(4ξ14ξ23)3/2
− ξ34√

2ξ14(2ξ23)3/2
− ξ12√

2ξ23(2ξ14)3/2
. (3.25)

Now because points (1,2) are at the boundary, we can drop the terms which lead to sub-

leading O(r−1) contributions to ξ. The relevant terms are

A11 =
ξ12

2
√
ξ14ξ23

∼ O(r), (3.26)

A22 =
ξ34

2
√
ξ14ξ23

+
ξ12

(4ξ14ξ23)3/2
− ξ24√

2ξ14(2ξ23)3/2
− ξ13√

2ξ23(2ξ14)3/2
∼ O(r−1), (3.27)

A12 =
ξ13

2
√
ξ14ξ23

− ξ12√
2ξ14(2ξ23)3/2

∼ O(r0), (3.28)

A21 =
ξ24

2
√
ξ14ξ23

− ξ12√
2ξ23(2ξ14)3/2

∼ O(r0). (3.29)

Note that even though A22 is of the order O(r−1), in combination with A11 it gives the

leading contribution to ξmin. Inserting the endpoints of the geodesics to ξ’s leads to entan-

glement wedge cross-section (putting back R)

EW =
d(X14, X23)

4GN
(3.30)

=
1

4GN
arccosh

(
2 coshR(xA − xB) + h(xA) + h(xB)

2
√

(h(xA) + 1)(h(xB) + 1)

)
(3.31)

=
c

6
arccosh

(
2 cosh 2π

β (xA − xB) + h(xA) + h(xB)

2
√

(h(xA) + 1)(h(xB) + 1)

)
, (3.32)

where in the last line we have used the holographic dictionary [62]

c =
3

2GN
, R =

2π

β
. (3.33)

Analyzing the form of h(x)

h(xA) =
4πGNhψ

sin 2π
β τ

e
2π
β
(t+x−xA) =

12πhψi

c(e2πiτ/β − e−2πiτ/β)
e

2π
β
(t+x−xA), (3.34)

we see that after setting ε = −τ , this result matches precisely with the one derived on the

CFT side. This is the main result of our work. Below we will briefly analyze the functional

dependence of EW (t) and find an interesting plateau behaviour for times t > xB − x.

– 9 –
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t

0.5

1.0

1.5

EW (A:B), Ι(A:B)/2

2 4 6 8 10
t

2

4

6

8

10

EW (A:B), Ι(A:B)/2

Figure 3. Half of the mutual information (red) and the entanglement wedge cross-section (blue)

for localized shock wave for two different temperatures, with t denoting the time in the past of the

shock insertion. After the red line reaches zero, the entanglement wedge becomes disconnected and

the blue line jumps to zero. In the above plots we took x = 1, xA = 5, xB = 10. The dotted

lines correspond to values seqL and seqL/2 respectively. For high enough temperatures (right plot)

an interesting plateau develops in the late time region, which should be properly captured by our

setup. For low temperatures (left plot) mutual information disappears before we enter our region

of validity, we therefore expect that there might be some corrections to the above behaviour.

3.3 Discussion of the result

The result we arrived at

EW =
c

6
arccosh

(
2 cosh 2π

β (xA − xB) + h(xA) + h(xB)

2
√

(h(xA) + 1)(h(xB) + 1)

)
, (3.35)

h(xA/B) =
6πhψ

c sin 2πτ
β

e
2π
β
(t+x−xA/B)

, (3.36)

should be compared with mutual information, to find when entanglement wedge becomes

disconnected and EWCS goes to zero. Using the previously found HRT surfaces, we eas-

ily find

IAB =
1

4G

(
2 log 2r2∞

(
cosh

2π

β
(xA − xB)− 1

)
− 2 log 4r2∞(1 + h(xA))(1 + h(xB))

)
(3.37)

=
1

2G
log

cosh 2π
β (xA − xB)− 1

2
√

(h(xA) + 1)(h(xB) + 1)
. (3.38)

The comparison is plotted in figure 3 for different temperatures. We see that in both cases

the inequality [13, 14]

EW ≥
1

2
IAB (3.39)

is properly satisfied. Since in both CFT and gravity calculations we assumed t > xB − x,

there might be some corrections to our result for times t < xB − x. We expect however

that for t > xB − x our result correctly captures the true behaviour. Certainly, the most
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interesting aspect of this result is the plateau which develops for high enough temperatures.

It starts to develop after h(xB) = 1, and settles at the value equal exactly half of the non-

perturbed result

EplatW =
π

4Gβ
(xB − xA) =

1

2
seqL, (3.40)

with L = xB − xA. We can in fact find the condition necessary for the plateau to develop.

Denoting tp as the time at which h(xB) = 1, and ts the time for which IAB(ts) = 0, a

natural condition would be

tp < ts, (3.41)

i.e. we want h(xB) to become significant before the entanglement wedge is disconnected.

From this condition, we obtain

L

2
+

β

2π
log
(

1− 2e
− 2π
β
L
2 − 2e

− 2π
β

3L
2 − e−

2π
β
2L
)
>

β

2π
log 4, (3.42)

which for high temperatures β � 1 reduces to

πL

2β
> log 2 ⇔ 1

2
seqL >

c

3
log 2. (3.43)

This suggests that the plateau will develop only for temperatures bigger than Tc ∝ 1/L.

A plateau with the same value of reflected entropy was also observed in [44] for global

homogeneous quenches. There the authors found that the high-temperature behaviour

of reflected entropy can be given a nice intuitive explanation by employing a line-tension

picture [49–55]. In our case, we can use a generalization of this picture for local operator

quenches in the context of reflected entropy, introduced by the same authors in a more

recent work [56]. We find

EW =



L log q t < xA − x,(
L− 1

2
(t+ x− xA)

)
log q xA − x < t < xB − x,

1

2
L log q xB − x < t <

3

2
xB −

1

2
xA − x,

0 t >
3

2
xB −

1

2
xA − x.

(3.44)

This result precisely agrees with the high-temperature behaviour of our result after setting

the bond dimension [63]

q = eseq = e
πc
3β . (3.45)

4 Entanglement wedge cross-section for spherically symmetric shocks

Using the methods presented in section 3, we can also compute the entanglement wedge

cross-section in the case of spherically symmetric null matter falling towards the AdS black

hole [46]. We consider several particles with total energy E, thrown towards the AdS black

hole with mass M at time tw in the past. The metric in this case is4

ds2 =
−4dudv

(1 + uv)2
+

4αδ(u)du2

(1 + uv)2
+R2 (1− uv)2

(1 + uv)2
dφ2, (4.1)

4See [64–66] for more details on geometries with spherical shock waves.
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Figure 4. Half of the mutual information (red) and entanglement wedge cross-section (blue) for

spherical shock waves, with t denoting the time in the past of shock insertion. After the red line

reaches zero, the entanglement wedge becomes disconnected and the blue line jumps to zero.

with

α =
E

4M
eRtw . (4.2)

This metric can also be thought of as two halves of AdS black hole with a shift in v

coordinate at u = 0

vL = vR + α. (4.3)

To find an entanglement wedge cross-section of two matching intervals of size φ at times

tL = tR = 0, we again start with finding the intermediate points on the horizon of HRT

surfaces. The details of the computation are similar to the previous section, we find the

minimal distance

d = log

(
4r2∞
R2

(
1 +

α

2

))
, (4.4)

for HRT passing through

vR = −α
2
. (4.5)

Using now the formulas (3.18), (3.21), for the radial geodesics between interval endpoints

and the corresponding intermediate points on the horizon, we find

EW =
1

4G
arccosh

(
1 + (coshRφ− 1)

4 (1 + α)

(α+ 2)2

)
. (4.6)

Note that setting α = 0 we reproduce the thermofield double result derived in [14]. The

comparison with half of the mutual information is plotted in figure 4. In this case, there

is no late time plateau region and entanglement wedge cross-section behaves similarly to

mutual information before going to zero.

We expect that this result should be also properly captured by the line-tension picture,

however one would need to extend this prescription to capture the case of the spherical

shock wave. We leave this for future work.
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5 Summary and discussion

In this work, we studied dynamical aspects of the entanglement wedge cross-section. On the

CFT side, we used two conformal maps to derive reflected entropy in a thermofield double

state perturbed by a sufficiently early heavy operator insertion. We showed that the result

matches precisely with the gravity result derived from localized shock wave geometry [47,

48]. For high temperatures, the result exhibits an interesting plateau behaviour in the

time region which should be properly captured by our calculation. On the gravity side, we

can see that the plateau develops because HRT surfaces can avoid the shock in the spatial

direction. The value of the plateau is equal to exactly half of the EWCS in the unperturbed

thermofield double state. We estimated that this plateau can develop only if its value is

bigger than c
3 log 2. Employing a line-tension picture for local operator quenches [56] we

found that it precisely reproduces the high-temperature behaviour of our result.

We extended our calculation to the setup of spherically symmetric shock waves [46, 64].

In this case, the shock is not localized and the HRT surfaces cannot avoid the shock by

bending in the spatial direction. Here EWCS behaves similarly to mutual information

and no plateau is observed. To our knowledge, the line-tension picture has not been

yet extended to these situations, however, we expect that such a picture should properly

capture the high-temperature behaviour of this setup.

A similar plateau region for reflected entropy was recently observed in [44] in the case of

global homogeneous quenches. There the authors referred to it as “missing entanglement”

SR − I. This is because, as we’ve seen, the extended plateau period is not captured by

mutual information. In our work, we have provided one situation in which the plateau

is observed - localized shock wave, and one in which it is not - spherical shock wave. It

would be interesting to understand what exactly is responsible for the plateau. Extending

the line-tension picture to capture spherical shocks would probably be the next step in

this direction.

The gravity computation performed here, based on [16], led us to a fairly simple

expression for the distance between two spacelike bulk-boundary geodesics. It seems that

a similar type of computation could be employed for multipartite reflected entropy [18, 23,

24, 30]. We leave this for future work.
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A Embedding coordinates

In our conventions AdS3 space is defined in flat space R2,2

ds2 = −dX2
0 − dX2

1 + dX2
2 + dX2

3 , (A.1)
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as the surface defined by

−X2
0 −X2

1 +X2
2 +X2

3 = −1. (A.2)

The parametrization via Kruskal coordinates (u, v) is given by

X0 =
v + u

1 + uv
, (A.3)

X1 =
1− uv
1 + uv

coshRx, (A.4)

X2 =
v − u
1 + uv

, (A.5)

X3 =
1− uv
1 + uv

sinhRx, (A.6)

with R denoting the horizon radius. Both sides of this geometry outside of the horizon can

be parametrized by AdS-Schwarzschild coordinates (r, tL/R) which are related to Kruskal

coordinates as

Left side : u =

√
r −R
r +R

e−RtL , v = −
√
r −R
r +R

eRtL , (A.7)

Right side : u = −
√
r −R
r +R

e−RtR , v =

√
r −R
r +R

eRtR . (A.8)

In the above tL increases “downwards”. The embedding coordinates allow us to easily

calculate geodesic distances between points Xi, Xf as

cosh d = Xi
0X

f
0 +Xi

1X
f
1 −X

i
2X

f
2 −X

i
3X

f
3 . (A.9)
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