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The general three-component nonlinear Schrödinger (gtc-NLS) equations are completely integrable and
contain the self-focusing, defocusing and mixed cases, which are applied in many physical fields. In
this paper, we would like to use the Fokas method to explore the initial-boundary value (IBV) problem
for the gtc-NLS equations with a 4 × 4 matrix Lax pair on a finite interval based on the inverse
scattering transform. The solutions of the gtc-NLS equations can be expressed using the solution of a
4 × 4 matrix Riemann–Hilbert (RH) problem constructed in the complex k-plane. The jump matrices
of the RH problem can be explicitly found in terms of three spectral functions related to the initial
data, and the Dirichlet–Neumann boundary data, respectively. The global relation between the distinct
spectral functions is also proposed to derive two distinct but equivalent types of representations of
the Dirichlet–Neumann boundary value problems. Particularly, the relevant formulae for the boundary
value problems on the finite interval can generate ones on the half-line as the length of the interval
closes to infinity. Finally, we also analyse the linearizable boundary conditions for the Gel’fand–Levitan–
Marchenko representation. These results will be useful to further study the solution properties of the IBV
problem of the gtc-NLS system by using the Deift–Zhou’s nonlinear steepest descent method and some
numerical methods.

Keywords: general three-component nonlinear Schrödinger equations; initial-boundary value prob-
lem; inverse scattering; Riemann–Hilbert problem; global relation; Dirichlet and Neumann problems;
Gel’fand–Levitan–Marchenko representation.

1. Introduction

In the field of nonlinear integrable systems, there are some powerful approaches to study their integrable
properties. Particularly, in 1967, Gardner et al. (1967) first presented the celebrated inverse scattering
transform (IST, also called the nonlinear Fourier transform) to analytically study the initial value (IV)
problem of the integrable Korteweg–de Vries (KdV) equation. After that, the IST has been applied to
the IV problems of other many integrable nonlinear partial differential equations (PDEs) starting from
their matrix Lax pairs (Lax, 1968), such as the nonlinear Schrödinger (NLS) equation, modified KdV
equation, sine-Gordon equation, AKNS system, KP equation, etc. (see, e.g. Ablowitz & Segur, 1981;
Ablowitz & Clarkson, 1991; Zakharov & Shabat, 1972, 1973, and the references therein). In 1992–1993,
Deift & Zhou (1992, 1993) used the IST to present the nonlinear steepest descent method (an asymptotic
method) to explicitly explore the long-time asymptotics of the Cauchy problems of (1+1)-dimensional
integrable nonlinear PDEs in terms of matrix Riemann–Hilbert (RH) problems, defined as (Deift &
Zhou, 1992, 1993; Its, 2003) follows: let Σ be an oriented contour in the complex k-plane (Σ might

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/427/6218143 by EM

BL user on 28 N
ovem

ber 2024



428 Z. YAN

have points of self-intersection and might have more than one connected component), and J(k) being a
map from Σ into an invertible matrix. The RH problem given by (Σ , J) is to find a 2 × 2 matrix-valued
meromorphic function M(k) satisfying the following three properties:

• Analyticity: M(k) is analytic for k in k ∈ C \ Σ ;

• Jump condition: M+(k) = M−(k)J(k) for k ∈ Γ , where the limits M+(k) and M−(k) of M(k)
from the plus and minus sides of Σ , respectively;

• Normalization condition: M(k) → I as k → ∞.

In 1997, inspired by the well-known IST, Fokas (1997) introduced a new unified approach (alias
the Fokas method) studying the initial-boundary value (IBV) problems of both linear and integrable
nonlinear PDEs on the half-line and the finite interval (Fokas, 2000, 2002, 2008; Pelloni, 2015). The
Fokas method was regarded as a significant extension of IST from the IV problems to the IBV problems
and further developed by him and his collaborators (see Fokas, 2008, and the reference therein). The
main three steps of the Fokas method for the analysis of an IBV problem for an integrable nonlinear
PDE for u(x, t) with the Lax pair on a finite region Ω = {(x, t)|x ∈ [0, L], t ∈ [0, T]} are listed as follows
(see, e.g. Fokas, 2008; Boutet de Monvel et al., 2006):

• Step 1: Based on the simultaneous spectral analysis of the associated Lax pair, a RH
formulation is given under the assumption of existence and can be determined by the distinct
spectral functions arising from the various initial and boundary value conditions, where these
spectral functions are not independent, but they satisfy some identity, i.e. the so-called global
relation. As a result, u(x, t) can be expressed by the solution of the RH problem;

• Step 2: Existence under the assumption that the spectral functions satisfy the global relation.
As a result, one can have u(x, t) is defined globally for all 0 < t < T , 0 < x < L, solves the
given nonlinear PDE and satisfies the initial value conditions.

• Step 3: The key study of the global relation generating the Dirichlet–Neumann map. For
the given a subset of the boundary values (e.g. Dirichlet boundary conditions or Neumann
boundary conditions) as boundary conditions, one can use the global relation to characterize
the remaining part of the boundary values (e.g. Neumann boundary conditions or Dirichlet
boundary conditions) by the appropriate symmetries of spectral functions and the use of
Cauchy’s theorem and Jordan’s lemma from complex analysis.

Notice that the results for the IBV conditions in the limit L → ∞ can reduce to the corresponding ones
on the half-line (see, e.g. Fokas, 2002, 2008; Fokas et al., 2005; Boutet de Monvel et al., 2004; Lenells,
2008, 2011a, and the references therein).

The Fokas method used in the integrable nonlinear PDEs with the matrix Lax pairs admits the two
major breakthroughs (Fokas, 1997, 2008):

• On the one hand, the Fokas method was based on the idea of integrating the associated matrix
Lax pairs simultaneously, as opposed to separately what was performed in the classical IST
method (Gardner et al., 1967; Ablowitz & Segur, 1981).

• On the other hand, the Fokas method was the exploitation of the complex spectral plane as a
means of eliminating certain unknown boundary values that arise in the solution representation
formulae by integrating the matrix Lax pairs.
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 429

Since the Fokas method was first announced in 1997, it has been applied to a variety of distinct
settings regarding the type of linear and integrable nonlinear PDEs with distinct domains and IBV
conditions. For example, it can be used to study some physically significant integrable nonlinear PDEs
with 2 × 2 matrix Lax pairs on the half-line and the finite interval (e.g. the NLS equation, Fokas,
1997; Fokas et al., 2005; Fokas & Its, 1996; Kamvissis, 2003; Fokas & Its, 2004; the derivative NLS
equation, Lenells, 2008, 2011a; the sine-Gordon equation, Fokas & Its, 1992; Pelloni, 2005; the KdV
equation, Fokas & Its, 1994; the mKdV equation, Boutet de Monvel et al., 2006, 2004, 2003a; Ernst
equations, Lenells, 2011b; Lenells & Fokas, 2011; and etc., Boutet de Monvel & Kotlyarov, 2000;
Boutet de Monvel et al., 2003b; Fokas, 2005; Treharne & Fokas, 2008; Fokas & Lenells, 2012; Lenells
& Fokas, 2012a,b). Most notably, it has been successfully applied to integrable nonlinear PDEs with
3 × 3 matrix Lax pairs like the Degasperis–Procesi equation on the half-line (Lenells, 2012, 2013).
After that, the idea for the 3 × 3 Lax pairs was also applied to other integrable nonlinear PDEs with
3 × 3 matrix Lax pairs, such as the Sasa–Satsuma equation (Xu & Fan, 2013), the coupled nonlinear
Schrödinger equations (Biondini & Bui, 2012; Geng et al., 2015; Xu & Fan, 2016a; Tian, 2017) and
the Ostrovsky–Vakhnenko equation (Xu & Fan, 2016b). More recently, it was also successfully used to
the integrable nonlinear PDEs with 4 × 4 matrix Lax pairs such as the spin-1 Gross–Pitaeviskii system
(Yan, 2017, 2019).

As is well known, as a universal physical model, the standard dimensionless NLS equation

iqt + qxx − 2σ |q|2q = 0, σ = ±1, q(x, t) ∈ C[x, t] (1)

can be used to describe the propagation of slowly varying nonlinear wave envelopes in dispersive media
and appears in various backgrounds, such as nonlinear optics, deep ocean, Bose–Einstein condensates,
acoustics, plasma physics and even finance (Ablowitz & Segur, 1981; Ablowitz & Clarkson, 1991;
Zakharov, 1972; Sulem & Sulem, 1999; Agrawal, 2013; Osborne, 2009; Pitaevskii & Stringari, 2016;
Yan, 2010). Eq. (1) is completely integrable and possesses a 2 × 2 Lax pair (Zakharov & Shabat, 1972).
If the wave propagations in an isotropic medium are extended to ones in an anisotropic medium, and q
is a sum of two left- and right-hand polarized waves q1 and q2, then the coupled NLS equations (also
the Manakov system) were presented by Manakov (1974)

⎧⎨⎩
iq1t + q1xx − 2(s1|q1|2 + s2|q2|2)q1 = 0,

iq2t + q2xx − 2(s1|q1|2 + s2|q2|2)q2 = 0, s1,2 = ±1,
(2)

which contain the self-phase modulation (SPM, e.g. |qj|2qj) and cross-phase modulation (XPM, e.g.

|qj|2q3−j) and can be used to describe the nonlinear pulse propagation in birifrangent, single-mode fibers
(Menyuk, 1987), an ultrashort light pulse or continuous wave beam propagating in a monomode optical
fibre (Agrawal, 2013), matter waves in the two-component Bose–Einstein condensates (Pitaevskii &
Stringari, 2016) and the evolution of slowly varying two-phase standing waves in deep water (Roskes,
1976a, 1984). System (2) is also completely integrable and admits a 3 × 3 matrix Lax pair (Manakov,
1974). Moreover, Manakov (1974) also presented the three propagating waves in a nonlinear fiber
described by a three-component (n = 3) NLS system

iqt + qxx − 2(qΛq†)q = 0, q = (q1, q2, q3), Λ = diag(s1, s2, s3), sj ∈ R, (3)
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430 Z. YAN

and even the n-component NLS system (Roskes, 1976b; Ablowitz et al., 2004) defined by Eq. (3) with
q = (q1, q2, ..., qn) and Λ = diag(s1, s2, ..., sn) with sj ∈ R. System (3) can also be used to discuss the
launching and propagation of waves along the three spines of an alpha helix in protein (Scott, 1982,
1984). The three-component and n-component NLS systems are both completely integrable.

Recently, except for the effects of the SPM and XPM appearing in the above-mentioned systems
(2) and (3), if the pair- and three-tunneling effects (Albiez et al., 2005; Fölling et al., 2007) are also
considered, then the dynamics of a three-component system can be described by a general three-
component nonlinear Schrödinger (gtc-NLS) system (Wang et al., 2010)

⎧⎪⎪⎨⎪⎪⎩
iq1t + q1xx − 2

[
α11|q1|2 + α22|q2|2 + α33|q3|2 + 2 Re (α12q̄1q2 + α13q̄1q3 + α23q̄2q3)

]
q1 = 0,

iq2t + q2xx − 2
[
α11|q1|2 + α22|q2|2 + α33|q3|2 + 2 Re (α12q̄1q2 + α13q̄1q3 + α23q̄2q3)

]
q2 = 0,

iq3t + q3xx − 2
[
α11|q1|2 + α22|q2|2 + α33|q3|2 + 2 Re (α12q̄1q2 + α13q̄1q3 + α23q̄2q3)

]
q3 = 0,

(4)

where qj = qj(x, t), j = 1, 2, 3 denote the complex-valued fields, the overbar denotes the com-
plex conjugate, Re (·) denotes the real part of a function and the six complex-valued coefficients
αij’s (1 ≤ i ≤ j ≤ 3) of interactions form a 3 × 3 Hermitian-unitary matrix

M = M† =
⎛⎝ α11 α12 α13

ᾱ12 α22 α23
ᾱ13 ᾱ23 α33

⎞⎠ , M2 = I. (5)

The gtc-NLS system contains the group velocity dispersion (GVD, i.e. qjxx), self-phase modulation

(SPM, e.g. |qj|2qj), cross-phase modulation (XPM, e.g. |qj|2qs, j �= s), pair-tunneling modulation

(PTM, e.g. q2
j q̄s, j �= s) and three-tunneling modulation (TTM, e.g. q1q̄2q3). System (4) can be used

to describe the wave propagations of three modes with four types of modulations containing the SPM,
XPM, PTM and TTM in the nonlinear optics, acoustics, deep ocean, Bose–Einstein condensates, etc.
(Sulem & Sulem, 1999; Agrawal, 2013; Pitaevskii & Stringari, 2016; Roskes, 1976b; Ablowitz et al.,
2004; Whitham, 1999). Particularly, the tunneling modulations could make the system generate the
distinct wave structures (Wang et al., 2010). It is easy to see that system (4) is an extension of system
(3). System (4) can reduce to the distinct models for the choices of six parameters αij (1 ≤ i ≤ j ≤ 3),
such as

• The three-component focusing NLS system for αjj = −1 and αij = 0 with i < j (Manakov,
1974; Scott, 1982, 1984);

• The three-component defocusing NLS system for αjj = 1 and αij = 0 with i < j (Biondini et
al., 2016);

• The three-component mixed NLS system for (α11 = −1, α22 = α33 = 1) or (α11 = 1, α22 =
α33 = −1) and αij = 0 with i < j (Zhang & Yan, 2018);

• The three-component NLS system with only tunneling modulations for αjj = 0 (Wang et al.,
2010);

• Other types of general three-component NLS systems;
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 431

• The general two-component NLS system containing the Manakov system (Manakov, 1974) for
q3 ≡ 0.

Recently, the three-component defocusing NLS equations with nonzero boundary conditions were
studied via the IST (Biondini et al., 2016). More recently, the novelly integrable nonlocal version of
Eq. (4) were found (Yan, 2015, 2016, 2018). It is still an important subject to study the solutions of the
gtc-NLS system (4).

To the best of our knowledge, there was no report on the IBV problems of the integrable gtc-NLS
system (4) with 4 × 4 matrix Lax pairs on the finite interval before even if we recently investigated the
IBV problems for the spin-1 Gross–Pitaevskii system with 4 × 4 matrix Lax pairs on the half-line (Yan,
2017) or the finite interval (Yan, 2019). The aim of this paper is to apply the Fokas method to analyse
the IBV problems for the integrable gtc-NLS system with a 4 × 4 matrix Lax pair on a finite region
Ω = {(x, t)|x ∈ [0, L], t ∈ [0, T]}, with L > 0 being the length of the interval and T > 0 being the fixed
finite time. The extension will contain some novelties from the 2×2 and 3×3 matrix Lax pairs to 4×4
ones, but the two key steps of this Fokas method (Fokas, 1997, 2000, 2002, 2008) are similar: (i) finding
an integral representation of the solution in terms of a matrix RH problem formulated in the complex
k-plane (k is a spectral parameter of the associated Lax pair). The integral representation in general
contains the unknown boundary data such that this expression of the solution is not effective yet; (ii)
applying a global relation between the distinct spectral function matrices to find the unknown boundary
value conditions. The representation of the unknown boundary values in general involves the solution
of a nonlinear problem. But this problem for the linearizable boundary conditions can be ignored since
the unknown boundary values can be avoided in terms of only algebraic operations (Fokas, 2008).

In this paper, we would like to investigate the gtc-NLS system (4) with the following IBV problems:

⎧⎨⎩
Initial conditions: qj(x, t = 0) = q0j(x), j = 1, 2, 3,
Dirichlet boundary conditions: qj(x = 0, t) = u0j(t), qj(x = L, t) = v0j(t), j = 1, 2, 3,
Neumann boundary conditions: qjx(x = 0, t) = u1j(t), qjx(x = L, t) = v1j(t), j = 1, 2, 3,

(6)

where the initial data q0j(x) and Dirichlet and Neumann boundary data u0j(t), v0j(t) and u1j(t), v1j(t),
j = 1, 2, 3 are sufficiently smooth and compatible at points (x, t) = (0, 0), (L, 0), respectively. Of course,
the relevant formulae for the IBV problems on the finite interval can generate ones on the half-line as
the length L of the interval approaches to infinity. It should be pointed out that the results about the
4 × 4 Lax pair differ from the previous ones for the cases of 2 × 2 and 3 × 3 matrix Lax pairs, and our
results can reduce to the corresponding ones of some above-mentioned special three-component NLS
systems, and the known results of some special cases such as the Manakov system and other general
two-component coupled NLS equations.

The rest of this paper is organized as follows. In Sec. 2, we investigate the spectral analysis of the
associated 4 × 4 matrix Lax pair of Eq. (4), such as the eigenfunctions, the spectral functions arising
from the initial conditions and Dirichlet–Neumann boundary conditions, the jump matrices and the
global relation between the distinct spectral functions. Sec. 3 gives the corresponding 4 × 4 matrix
RH problem by means of the jump matrices obtained in Sec. 2. Moreover, we can find the solution
(q1, q2, q3) given by Eq. (57) can be expressed by using the obtained 4 × 4 matrix RH problem. The
solution (57) will be useful to further study the long-time asymptotics for the solution of the gtc-NLS
system via the Deift–Zhou method (Deift & Zhou, 1992, 1993), or the numerical method (Trogdon,
2013) starting from the above-obtained RH problem. In Sec. 4, a global relation is used to establish
the map between the Dirichlet and Neumann boundary values. Particularly, the relevant formulae for
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432 Z. YAN

boundary value problems on the finite interval can reduce to ones on the half-line as the length L
of the interval approaches to infinity. In Sec. 5, we present the Gelfand–Levitan–Marchenko (GLM)
representation of the eigenfunctions in terms of the global relation. Moreover, we also show that the
GLM representation is equivalent to one obtained in Sec. 4. Moreover, we also give the linearizable
boundary conditions for the GLM representation. Finally, some conclusions and discussions are given
in Sec. 6.

2. The spectral analysis of a 4 × 4 matrix Lax pair

2.1 The definition and boundedness of modified eigenfunctions

The gtc-NLS system (4) is just the compatible condition, ψxt = ψtx, of a set of linear PDEs (also called
a 4 × 4 matrix Lax pair) (Ablowitz et al., 2004; Wang et al., 2010){

ψx + ikσ4ψ = U(x, t)ψ ,

ψt + 2ik2σ4ψ = V(x, t, k)ψ ,
(7)

where ψ = ψ(x, t, k) is a complex 4×4 matrix-valued or 4 × 1 vector-valued eigenfunction, k ∈ C is a
spectral parameter, σ4 = diag(1, 1, 1, −1) and the 4 × 4 matrices U and V are defined as

U(x, t) =

⎛⎜⎜⎜⎝
0 0 0 q1(x, t)

0 0 0 q2(x, t)

0 0 0 q3(x, t)

p1(x, t) p2(x, t) p3(x, t) 0

⎞⎟⎟⎟⎠, V(x, t, k) = 2kU(x, t) + V0(x, t), (8)

with p1(x, t) = α11q̄1 + ᾱ12q̄2 + ᾱ13q̄3, p2(x, t) = α12q̄1 + α22q̄2 + ᾱ23q̄3, p3(x, t) = α13q̄1 + α23q̄2 +
α33q̄3, and

V0(x, t) = −i(Ux + U2)σ4 = −i

⎛⎜⎜⎜⎜⎜⎝
q1p1 q1p2 q1p3 −q1x

q2p1 q2p2 q2p3 −q2x

q3p1 q3p2 q3p3 −q3x

p1x p2x p3x −(q1p1 + q2p2 + q3p3)

⎞⎟⎟⎟⎟⎟⎠, (9)

Let the modified eigenfunction μ(x, t, k) be

μ(x, t, k) = ψ(x, t, k)ei(kx+2k2t)σ4 , (10)

such that the Lax pair (7) becomes the equivalent form for μ(x, t, k){
μx + ik[σ4, μ] = U(x, t)μ,

μt + 2ik2[σ4, μ] = V(x, t, k)μ,
(11)
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 433

Fig. 1. Contours γj(j = 1, ..., 4) from (xj, tj) to (x, t) in the region Ω = {(x, t)|x ∈ [0, L], t ∈ [0, T]}.

where [σ4, μ] ≡ σ4μ − μσ4. Let σ̂4 denote the commutator with respect to σ4 and the operator acting
on a 4 × 4 matrix X by σ̂4X = [σ4, X] such that eσ̂4 X = eσ4 Xe−σ4 , then the Lax pair (11) can be written
as a full derivative form

d
[
ei(kx+2k2t)̂σ4μ(x, t, k)

]
= W(x, t, k), (12)

where the exact one-form W(x, t, k) is of the form

W(x, t, k) = ei(kx+2k2t)̂σ4 [U(x, t)dx + V(x, t, k)dt]μ(x, t, k). (13)

For any point (x, t) in the region Ω = {(x, t)|x ∈ [0, L], t ∈ [0, T]}, let {γj}4
1 be four contours

connecting fours vertexes (x1, t1) = (0, T), (x2, t2) = (0, 0), (x3, t3) = (L, 0), (x4, t4) = (L, T) to (x, t),
respectively (see Fig. 1). Then, one can have the following inequalities on these contours:

γ1 : (0, T) → (x, t), x − ξ ≥ 0, t − τ ≤ 0,
γ2 : (0, 0) → (x, t), x − ξ ≥ 0, t − τ ≥ 0,
γ3 : (L, 0) → (x, t), x − ξ ≤ 0, t − τ ≥ 0,
γ4 : (L, T) → (x, t), x − ξ ≤ 0, t − τ ≤ 0.

(14)

By means of the Volterra integral equation, it follows from Eqs. (12) and (13) that the four
eigenfunctions {μj}4

1 on the four contours {γj}4
1 can be written as

μj(x, t, k) = I4 +
∫ (x,t)

(xj,tj)
e−i(kx+2k2t)̂σ4 Wj(ξ , τ , k), (15)

where I4 is a 4×4 identity matrix, the integral is over a piecewise smooth curve from (xj, tj) to (x, t) and
Wj(x, t, k) is given by Eq. (13) with μ(x, t, k) replaced by μj(x, t, k). Since the one-form Wj’s are closed,
thus μj’s are independent of the path of integration, and we now choose the paths of integration to be
parallel to the x and t axes. It follows from Eq. (15) with the chosen paths of integration that the four
columns of the matrix μj(x, t, k) contain the following exponentials:

[μj]s : e2ik(x−ξ)+4ik2(t−τ), j = 1, 2, 3, 4; s = 1, 2, 3, (16a)

[μj]4 : e−2ik(x−ξ)−4ik2(t−τ), e−2ik(x−ξ)−4ik2(t−τ), e−2ik(x−ξ)−4ik2(t−τ), j = 1, 2, 3, 4. (16b)
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434 Z. YAN

Fig. 2. The domains Dn (n = 1, 2, 3, 4) in the complex k-plane.

To analyse the bounded regions of these obtained eigenfunctions {μj}4
1, we need to use the curve

{k ∈ C|(Re f (k))(Re g(k)) = 0, f (k) = ik, g(k) = ik2} to separate the complex k-plane into four
regions (see Fig. 2):

D1 = {k ∈ C | Re f (k) < 0, Re g(k) < 0}, D2 = {k ∈ C | Re f (k) < 0, Re g(k) > 0},
D3 = {k ∈ C | Re f (k) > 0, Re g(k) < 0}, D4 = {k ∈ C | Re f (k) > 0, Re g(k) > 0},

(17)

which imply that D1 and D3 (D2 and D4) are symmetric about the origin.
Thus it follows from Eqs. (14), (16) and (17) that the regions are presented below:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ1 : (f− ∩ g+, f− ∩ g+, f− ∩ g+, f+ ∩ g−) := (D2, D2, D2, D3),

μ2 : (f− ∩ g−, f− ∩ g−, f− ∩ g−, f+ ∩ g+) := (D1, D1, D1, D4),

μ3 : (f+ ∩ g−, f+ ∩ g−, f+ ∩ g−, f− ∩ g+) := (D3, D3, D3, D2),

μ4 : (f+ ∩ g+, f+ ∩ g+, f+ ∩ g+, f− ∩ g−) := (D4, D4, D4, D1),

(18)

where the different columns of eigenfunctions {μj}4
1 are bounded and analytic in the complex k-plane,

f+ := Re f (k) > 0, f− := Re f (k) < 0, g+ := Re g(k) > 0 and g− := Re g(k) < 0.

2.2 The new matrix-valued functions Mn’s and jump matrices

To construct the jump matrix in a RH problem, we introduce the solutions Mn(x, t, k) (n = 1, 2, 3, 4) of
Eq. (11) as

(Mn)sj(x, t, k) = δsj +
∫

(γ n)sj

(
e−i(kx+2k2t)̂σ4 Wn(ξ , τ , k)

)
sj

, k ∈ Dn, s, j = 1, 2, 3, 4, (19)
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where δsj = 1 for s = j, δsj = 0 for s �= j, Wn(x, t, k) is given by Eq. (13) with μ(x, t, k) replaced with
Mn(x, t, k), and the contours (γ n)sj’s are given by

(γ n)sj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ1, as Re fs(k) > Re fj(k) and Re gs(k) ≤ Re gj(k),

γ2, as Re fs(k) > Re fj(k) and Re gs(k) > Re gj(k),

γ3, as Re fs(k) ≤ Re fj(k) and Re gs(k) ≥ Re gj(k),

γ4, as Re fs(k) ≤ Re fj(k) and Re gs(k) ≤ Re gj(k),

(20)

for k ∈ Dn, where f1,2,3(k) = −f4(k) = −ik, and g1,2,3(k) = −g4(k) = −2ik2.
Notice that to distinguish (γ n)sj’s to be the contour γ3 or γ4 for the special cases, Re fs(k) = Re fj(k)

and Re gs(k) = Re gj(k) in Eq. (20), we choose them in these cases as γ3 (or γ4), which must appear in
the matrix γ n; otherwise, we choose them in all these cases as the same γ3 (or γ4).

It follows from the definition (20) of (γ n)sj that γ n (n = 1, 2, 3, 4) can be written explicitly as

γ 1 =

⎛⎜⎜⎝
γ4 γ4 γ4 γ2
γ4 γ4 γ4 γ2
γ4 γ4 γ4 γ2
γ4 γ4 γ4 γ4

⎞⎟⎟⎠ , γ 2 = γ 1
∣∣{γ4→γ3,γ2→γ1}, γ 3 = (γ 2)T , γ 4 = (γ 1)T . (21)

Proposition 2.1 For the matrix-valued functions Mn(x, t, k) (n = 1, 2, 3, 4) defined by Eq. (19) for
k ∈ D̄n and (x, t) ∈ Ω , and any fixed point (x, t), Mn(x, t, k)’s are the bounded and analytic functions of
k ∈ Dn away from a possible discrete set of singularity {kj} at which the Fredholm determinants vanish.

Moreover, Mn(x, t, k)’s admit the bounded and continuous extensions to D̄n and

Mn(x, t, k) = I4 + O

(
1

k

)
, k ∈ Dn, k → ∞, n = 1, 2, 3, 4. (22)

Proof. Similarly to the proof for the case of the 3 × 3 matrix Lax pair in (Lenells, 2012, 2013), we can
also show the boundedness and analyticity of Mn. The substitution of

μ(x, t, k) = Mn(x, t, k) = M(0)
n (x, t, k) +

∞∑
j=1

M(j)
n (x, t, k)

kj
, k → ∞,

into the x-part of the Lax pair (11) yields Eq. (22). �
The above-defined matrix-valued functions Mn’s can be used to formulate a 4 × 4 matrix RH

problem. We introduce the spectral functions Sn(k) (n = 1, 2, 3, 4) by

Sn(k) = Mn(x = 0, t = 0, k), k ∈ Dn, n = 1, 2, 3, 4. (23)
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Let M(x, t, k) denote the sectionally analytic function on the Riemann k-sphere, which is equivalent to
Mn(x, t, k) for k ∈ Dn. Then M(x, t, k) solves the jump equations

Mn(x, t, k) = Mm(x, t, k)Jmn(x, t, k), k ∈ D̄n ∩ D̄m, n, m = 1, 2, 3, 4, n �= m, (24)

with the jump matrices Jmn(x, t, k) defined by

Jmn(x, t, k) = e−i(kx+2k2t)σ4 [S−1
m (k)Sn(k)]e

i(kx+2k2t)σ4 . (25)

2.3 The minors or the transpose of the adjugates of eigenfunctions

To conveniently calculate the spectral functions Sn(k) in the following sections, we need to use the
cofactor matrix XA (or the transpose of the adjugate) of a 4 × 4 matrix X defined as

adj(X)T = XA =

⎛⎜⎜⎜⎝
m11(X) −m12(X) m13(X) −m14(X)

−m21(X) m22(X) −m23(X) m24(X)

m31(X) −m32(X) m33(X) −m34(X)

−m41(X) m42(X) −m43(X) m44(X)

⎞⎟⎟⎟⎠ , (26)

where mij(X) denotes the (ij)-th minor of X and (XA)TX = adj(X)X = det X.

It follows from the Lax pair (7) that the eigenfunction {μA
j }4

1 of the matrices {μj(x, t, k)}4
1 satisfy the

Lax equation

{
μA

x − ik[σ4, μA] = −UT(x, t)μA,

μA
t − 2ik2[σ4, μA] = −VT(x, t, k)μA,

(27)

whose solutions can be written as

μA
j (x, t, k) = I4−

∫
γj

ei[k(x−ξ)+2k2(t−τ)]̂σ4
[
UT(ξ , τ)dξ+VT(ξ , τ , k)dτ

]
μA

j (ξ , τ , k), j=1, 2, 3, 4, (28)

in terms of the Volterra integral equations.
It is easy to check that the regions of boundedness of μA

j are given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μA
1 (x, t, k) is bounded for k ∈ (D3, D3, D3, D2),

μA
2 (x, t, k) is bounded for k ∈ (D4, D4, D4, D1),

μA
3 (x, t, k) is bounded for k ∈ (D2, D2, D2, D3),

μA
4 (x, t, k) is bounded for k ∈ (D1, D1, D1, D4),

which are symmetric ones of μj about the Re k-axis (cf. Eq. (18)).
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2.4 Symmetries of eigenfunctions

Let

Ǔ(x, t, k) = −ikσ4 + U(x, t), V̌(x, t, k) = −2ik2σ4 + V(x, t, k). (29)

in the Lax pair (7). Then we have

PǓ(x, t, k̄)P = −Ǔ(x, t, k)T , PV̌(x, t, k̄)P = −V̌(x, t, k)T , (30)

where the symmetric matrix P is taken as

P =

⎛⎜⎜⎝
α11 ᾱ12 ᾱ13 0
α12 α22 ᾱ23 0
α13 α23 α33 0
0 0 0 −1

⎞⎟⎟⎠ , P2 = I4, P = P†. (31)

Notice that the used symmetric matrix P differs from the diag ones used in the cases of 3 × 3 Lax pairs
(Biondini & Bui, 2012; Geng et al., 2015; Xu & Fan, 2016a; Tian, 2017).

Based on Eqs. (27) and (30) we have the following proposition:

Proposition 2.2 The matrix-valued eigenfunctions ψ(x, t, k) of the Lax pair (7) and μj(x, t, k) of the
Lax pair (11) both possess the same symmetric relations

ψ−1(x, t, k) = Pψ(x, t, k̄)
T
P , μ−1

j (x, t, k) = Pμj(x, t, k̄)
T
P , j = 1, 2, 3, 4, (32)

Moreover, In the domains where μj is bounded, we have

μj(x, t, k) = I4 + O

(
1

k

)
, k → ∞, j = 1, 2, 3, 4 (33)

and det[μj(x, t, k)] = 1 (j = 1, 2, 3, 4) since the traces of the matrices U(x, t, k) and V(x, t, k) are zero.

2.5 The relations between spectral functions and jump matrices Jmn

Since these functions μj(x, t, k), j = 1, 2, 3, 4 are dependent, thus one can define the three 4 × 4 matrix-
valued functions S(k), s(k) and S(k) between μ2 and μj, j = 1, 3, 4 in the forms (cf. Fig. 3)

μ1(x, t, k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4 S(k),

μ3(x, t, k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4 s(k),

μ4(x, t, k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4S(k).

(34)
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Fig. 3. The relations among μj(x, t, k), j = 1, 2, 3, 4.

Evaluating system (34) at (x, t) = (0, 0) and the three equations in system (34) at (x, t) =
(0, T), (L, 0), (L, T), respectively, yields

S(k) = μ1(0, 0, k) = e2ik2Tσ̂4μ−1
2 (0, T , k),

s(k) = μ3(0, 0, k) = eikLσ̂4μ−1
2 (L, 0, k),

S(k) = μ4(0, 0, k) = ei(kL+2k2T )̂σ4μ−1
2 (L, T , k),

(35)

Except for the defined three relations, it follows from Eqs. (34) and (35) that we can find other three
relations:

• The relation between μ3(x, t, k) and μ4(x, t, k):

μ4(x, t, k) =μ3(x, t, k)e−i[k(x−L)+2k2(t−T)]̂σ4μ−1
3 (L, T , k) = μ3(x, t, k)e−i[k(x−L)+2k2t]̂σ4 SL(k)

with

SL(k) = μ4(L, 0, k) = e2ik2Tσ̂4μ−1
3 (L, T , k), (36)

• The relation between μ1(x, t, k) and μ4(x, t, k):

μ3(x, t, k) =μ1(x, t, k)e−i(kx+2k2t)̂σ4S(k), S(k) = S−1(k)s(k), (37)

• The relation between μ1(x, t, k) and μ4(x, t, k):

μ4(x, t, k) = μ1(x, t, k)e−i(kx+2k2t)̂σ4 sT(k), sT(k) = S−1(k)S(k). (38)

It follows from Eqs. (35) and (36) that we have the relation

S(k) = s(k)eikLσ̂4SL(k). (39)

The map of these relations among μj’s is exhibited in Fig. 3.
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According to the definitions (15) of μj’s, Eq. (35) and (36) imply that

s(k) =I4 −
∫ L

0
eikξ σ̂4(Uμ3)(ξ , 0, k)dξ =

[
I4 +

∫ L

0
eikx′σ̂4(Uμ2)(ξ , 0, k)dξ

]−1

,

S(k) =I4 −
∫ T

0
e2ik2τ σ̂4(Vμ1)(0, τ , k)dξ =

[
I4 +

∫ T

0
e2ik2τ σ̂4(Vμ2)(0, τ , k)dτ

]−1

,

SL(k) =I4 −
∫ T

0
e2ik2τ σ̂4(Vμ4)(L, τ , k)dτ =

[
I4 +

∫ T

0
e2ik2τ σ̂4(Vμ3)(L, τ , k)dτ

]−1

,

S(k) =I4 −
∫ L

0
eikξ σ̂4(Uμ4)(ξ , 0, k)dξ − eikLσ̂4

∫ T

0
e2ik2τ σ̂4(Vμ4)(L, τ , k)dτ

=
[
I4 + e2ik2Tσ̂4

∫ L

0
eikξ σ̂4(Uμ2)(ξ , T , k)dξ +

∫ T

0
e2ik2τ σ̂4(Vμ2)(0, τ , k)dτ

]−1

,

(40)

which can lead to S(k) and sT(k) in terms of Eqs. (37) and (38), where μj2(0, t, k), j2 =
1, 2, μj3(L, t, k), j3 = 3, 4, μj1(x, 0, k), j1 = 2, 3, 4, μ2(x, T , k), 0 < x < L, 0 < t < T are defined by
the integral equations

μ1(0, t, k) = I4+
∫ t

T
e−2ik2(t−τ )̂σ4(Vμ1)(0, τ , k)dτ , μ2(0, t, k)=I4+

∫ t

0
e−2ik2(t−τ )̂σ4(Vμ2)(0, τ , k)dτ ,

μ3(L, t, k) = I4+
∫ t

0
e−2ik2(t−τ )̂σ4(Vμ3)(L, τ , k)dτ , μ4(L, t, k)=I4+

∫ t

T
e−2ik2(t−τ )̂σ4(Vμ4)(L, τ , k)dτ ,

μ2(x, 0, k) = I4+
∫ x

0
eikξ σ̂4(Uμ2)(ξ , 0, k)dξ , μ3(x, 0, k) = I4 +

∫ x

L
eikξ σ̂4(Uμ3)(ξ , 0, k)dξ ,

μ4(x, 0, k) = I4+
∫ x

L
eikξ σ̂4(Uμ4)(ξ , 0, k)dξ − e−ik(x−L)̂σ4

∫ T

0
e2ik2τ σ̂4(Vμ4)(L, τ , k)dτ ,

μ2(x, T , k) = I4+
∫ x

0
e−ik(x−ξ )̂σ4(Uμ2)(ξ , T , k)dξ + e−ikxσ̂4

∫ T

0
e−2ik2(T−τ )̂σ4(Vμ2)(0, τ , k)dτ .

It follows from the properties of μj and μA
j that the spectral functions {S(k), s(k), S(k), SL(k)} and

{SA(k), sA(k), SA(k), SA
L(k)} have the following boundedness:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(k), SL(k), and SA
L(k) are bounded for k ∈ (D2 ∪ D4, D2 ∪ D4, D2 ∪ D4, D1 ∪ D3),

s(k) is bounded for k ∈ (D3 ∪ D4, D3 ∪ D4, D3 ∪ D4, D1 ∪ D2),

S(k) is bounded for k ∈ (D4, D4, D4, D1),

SA(k) is bounded for k ∈ (D1 ∪ D3, D1 ∪ D3, D1 ∪ D3, D2 ∪ D4),

sA(k) is bounded for k ∈ (D1 ∪ D2, D1 ∪ D2, D1 ∪ D2, D3 ∪ D4),

S
A(k) is bounded for k ∈ (D2, D2, D2, D3).
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Proposition 2.3 The matrix-valued functions Sn(x, t, k) (n = 1, 2, 3, 4) defined by

Mn(x, t, k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4Sn(k), k ∈ Dn, (41)

with Mn given by Eq. (19) can be determined by the entries of the data S(k) = (Sij)4×4, s(k) = (sij)4×4,
and S(k) = (Sij)4×4 given by Eq. (35) as follows:

S1(k) =

⎛⎜⎜⎜⎜⎝
S11 S12 S13 0
S21 S22 S23 0
S31 S32 S33 0

S41 S42 S43
1

m44(S)

⎞⎟⎟⎟⎟⎠ , S2(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11 s12 s13
S14

(STsA)44

s21 s22 s23
S24

(STsA)44

s31 s32 s33
S34

(STsA)44

s41 s42 s43
S44

(STsA)44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

S3(k) =

⎛⎜⎜⎜⎜⎜⎝
S(11)

3 S(12)
3 S(13)

3 s14

S(21)
3 S(22)

3 S(23)
3 s24

S(31)
3 S(32)

3 S(33)
3 s34

S(41)
3 S(42)

3 S(43)
3 s44

⎞⎟⎟⎟⎟⎟⎠ , S4(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n11,44(S)

S44

n12,44(S)

S44

n13,44(S)

S44
S14

n21,44(S)

S44

n22,44(S)

S44

n23,44(S)

S44
S24

n31,44(S)

S44

n32,44(S)

S44

n33,44(S)

S44
S34

0 0 0 S44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (42)

where ni1j1,i2j2(X) denotes the determinant of the sub-matrix generated by choosing the cross
elements of i1,2th rows and j1,2th columns of X (Yan, 2019), i.e.

ni1j1,i2j2(X) =
∣∣∣∣ Xi1j1 Xi1j2

Xi2j1 Xi2j2

∣∣∣∣ ,
and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(1l)
3 = m24(S)n1l,24(s) − m34(S)n1l,34(s) + m44(S)n1l,44(s)

(sTSA)44
,

S(2l)
3 = m14(S)n2l,14(s) − m34(S)n2l,34(s) + m44(S)n2l,44(s)

(sTSA)44
,

S(3l)
3 = m14(S)n3l,14(s) − m24(S)n3l,24(s) + m44(S)n3l,44(s)

(sTSA)44
,

S(4l)
3 = m14(S)n4l,14(s) − m24(S)n4l,24(s) + m34(S)n4l,34(s)

(sTSA)44
.

l = 1, 2, 3,
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Proof. We introduce the matrix-valued functions Rn(k), Sn(k), Tn(k) and Pn(k), n = 1, 2, 3, 4) by
Mn(x, t, k) and μj(x, t, k)

Mn(x, t, k) = μ1(x, t, k)e−i(kx+2k2t)̂σ4 Rn(k),

Mn(x, t, k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4 Sn(k),

Mn(x, t, k) = μ3(x, t, k)e−i(kx+2k2t)̂σ4 Tn(k),

Mn(x, t, k) = μ4(x, t, k)e−i(kx+2k2t)̂σ4 Pn(k).

(43)

It follows from Eq. (43) that we have the relations

Rn(k) = e2ik2Tσ̂4 Mn(0, T , k), Sn(k) = Mn(0, 0, k),

Tn(k) = eikLσ̂4Mn(L, 0, k), Pn(k) = ei(kL+2k2T )̂σ4Mn(L, T , k),
(44)

and

S(k) = μ1(0, 0, k) = Sn(k)R
−1
n (k),

s(k) = μ3(0, 0, k) = Sn(k)T
−1
n (k),

S(k) = μ4(0, 0, k) = Sn(k)P
−1
n (k),

(45)

which can in general generate the functions {Rn, Sn, Tn, Pn} for the given functions {s(k), S(k),S(k)}.
Moreover, we can also determine some entries of {Rn, Sn, Tn, Pn} as

(Rn(k))ij = 0, if (γ n)ij = γ1,
(Sn(k))ij = 0, if (γ n)ij = γ2,
(Tn(k))ij = δij, if (γ n)ij = γ3,
(Pn(k))ij = δij, if (γ n)ij = γ4,

(46)

in terms of Eqs. (19) and (43). Thus it follows from systems (45) and (47) that we can obtain
Eq. (42). �

2.6 The global relation between the distinct spectral functions

The definitions of the above-mentioned spectral functions S(k), s(k), SL(k) and S(k) imply that they are
not independent. It follows from Eqs. (34) and (36) that

μ4(x, t, k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4S(k) = μ2(x, t, k)e−i(kx+2k2t)̂σ4 [s(k)eikLσ̂4SL(k)]

= μ1(x, t, k)e−i(kx+2k2t)̂σ4 [S−1(k)s(k)eikLσ̂4SL(k)],
(47)

which leads to the global relation

c(T , k) = μ4(0, T , k) = e−2ik2Tσ̂4 [S−1(k)s(k)eikLσ̂4SL(k)], (48)

by evaluating Eq. (47) at the point (x, t) = (0, T) and using μ1(0, T , k) = I.
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2.7 The residue conditions for Mn

Since μ2(x, t, k) is an entire function, it follows from Eq. (41) that Mn(x, t, k) only have singularities at
the points where the Sn(k)’s have singularities. We find from the expressions of Sn(k) given by Eq. (42)
that the possible singularities of Mn are listed as follows:

• [M]4 could admit the poles in D1 at the zeros of m44(S)(k);

• [M]4 could have the poles in D2 at the zeros of (STsA)44(k);

• [M]l, l = 1, 2, 3 could possess the poles in D3 at the zeros of (sTSA)44(k);

• [M]l, l = 1, 2, 3 could have the poles in D4 at the zeros of S44(k).

We introduce the above-mentioned possible zeros by {kj}N
1 , and suppose that they satisfy the

following condition.

Assumption 2.4 Suppose that

• m44(S)(k) has the n1 possible simple zeros in D1 denoted by {kj}n1
1 ;

• (STsA)44(k) has the n2 − n1 possible simple zeros in D2 denoted by {kj}n2
n1+1;

• (sTSA)44(k) has the n3 − n2 possible simple zeros in D3 denoted by {kj}n3
n2+1;

• S44(k) has the N − n3 possible simple zeros in D4 denoted by {kj}N
n3+1;

and that none of these zeros coincide. Moreover, none of these functions are assumed to have zeros on
the boundaries of Dn’s (n = 1, 2, 3, 4).

We can deduce the residue conditions at these zeros by the following expressions:

Proposition 2.5 Let {Mn}4
1 be the eigenfunctions given by Eq. (19) and suppose that the set {kj}N

1 of
singularities is as the above-mentioned Assumption 2.4. Then we have the following residue conditions
for Mn:

Resk=kj
[M1]4 =n12,23(S)(kj)[M1(kj)]1−n11,23(S)(kj)[M1(kj)]2+n11,22(S)(kj)[M1(kj)]3

ṁ44(S)(kj)m34(S)(kj)
e2θ(kj),

for 1 ≤ j ≤ n1, k ∈ D1,

(49)

Resk=kj
[M2]4=

[M2(kj)]1[S14(kj)n22,43(s)(kj)−S24(kj)n12,43(s)(kj)+S44(kj)n12,23(s)(kj)]

˙(STsA)44(kj)m34(s)(kj)e
−2θ(kj)

− [M2(kj)]2[S14(kj)n21,43(s)(kj)−S24(kj)n11,43(s)(kj)+S44(kj)n11,23(s)(kj)]

˙(STsA)44(kj)m34(s)(kj)e
−2θ(kj)

+ [M2(kj)]3[S14(kj)n21,42(s)(kj)−S24(kj)n11,42(s)(kj)+S44(kj)n11,22(s)(kj)]

˙(STsA)44(kj)m34(s)(kj)e
−2θ(kj)

,

for n1 + 1 ≤ j ≤ n2, k ∈ D2,

(50)
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Resk=kj
[M3]l=

m14(S)(kj)n4l,14(s)(kj)−m24(S)(kj)n4l,24(s)(kj)+m34(S)(kj)n4l,34(s)(kj)

˙(sTSA)44(kj)s44(kj)e
2θ(kj)

×[M3kj)]4, for n2 + 1 ≤ j ≤ n3, k ∈ D3, l = 1, 2, 3,
(51)

Resk=kj
[M4]l = − S4l(kj)

Ṡ44(kj)
[M4(kj)]4e−2θ(kj), for n3 + 1 ≤ j ≤ N, k ∈ D4, l = 1, 2, 3, (52

where the overdot stands for the derivative with resect to the parameter k and θ = θ(k) = −i(kx+2k2t).

Proof. It follows from Eqs. (41) and (42) that the four columns of M1 are given by the matrices μ2 and
S1(k)

[M1]j = [μ2]1S1j + [μ2]2S2j + [μ2]3S3j + [μ2]4S4je
−2θ , j = 1, 2, 3, (53a)

[M1]4 = [μ2]4

m44(S)
, (53b)

the four columns of M2 are given by the matrices μ2 and S2(k)

[M2]j = [μ2]1s1j + [μ2]2s2j + [μ2]3s3j + [μ2]4s4je
−2θ , j = 1, 2, 3, (54a)

[M2]4 = [μ2]1S14

(STsA)44
e2θ + [μ2]2S24

(STsA)44
e2θ + [μ2]3S34

(STsA)44
e2θ + [μ2]4S44

(STsA)44
, (54b)

the four columns of M3 are given by the matrices μ2 and S3(k)

[M3]j = [μ2]1S(1j)
3 + [μ2]2S(2j)

3 + [μ2]3S(3j)
3 + [μ2]4S(4j)

3 e−2θ , j = 1, 2, 3, (55a)

[M3]4 = [μ2]1s14e2θ + [μ2]2s24e2θ + [μ2]3s34e2θ + [μ2]4s44, (55b)

and the four columns of M4 are given by the matrices μ2 and S4(k)

[M4]j = [μ2]1

n1j,44(S)

S44
+ [μ2]2

n2j,44(S)

S44
+ [μ2]3

n3j,44(S)

S44
, j = 1, 2, 3, (56a)

[M4]4 = [μ2]1S14e2θ + [μ2]2S24e2θ + [μ2]3S34e2θ + [μ2]4S44, (56b)

For the case that kj ∈ D1 is a simple zero of m44(S)(k), it follows from Eq. (53a) that we have
[μ2]j, j = 1, 2, 4 and then substitute them into Eq. (53b) to yield

[M1]4 = n12,23(S)[M1]1 − n11,23(S)[M1]2 + n11,22(S)[M1]3

m34(S)m44(S)
e2θ − [μ2]3

m34(S)
e2θ ,

whose residue at kj yields Eq. (49) for kj ∈ D1, respectively.
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Similarly, we solve Eq (54a) for [μ2]j, j = 1, 2, 4, and then substitute them into Eq (54b) to yield

[M2]4 = [M2]1[S14n22,43(s) − S24n12,43(s) + S44n12,23(s)]

(STsA)44m34(s)
e2θ

− [M2]2[S14n21,43(s) − S24n11,43(s) + S44n11,23(s)]

(STsA)44m34(s)
e2θ

+ [M2]3[S14n21,42(s) − S24n11,42(s) + S44n11,22(s)]

(STsA)44m34(s)
e2θ − [μ2]3

m34(s)
e2θ ,

whose residues at kj yield Eq. (50) for kj ∈ D2, respectively. Similarly, we can show Eq. (51) for kj ∈ D3
and Eq. (52) for kj ∈ D4 by analysing Eqs. (55a)–(56b). �

3. The 4 × 4 matrix RH problem

By using the district contours γj (j = 1, 2, 3, 4), the integral solutions of the revised Lax pair (11) and
Sn due to {S(k), s(k), S(k), SL(k)}, we have defined the sectionally analytic functions Mn(x, t, k) (n =
1, 2, 3, 4), which solve a 4 × 4 matrix RH problem. This RH problem can be formulated on the basis of
the initial and boundary data of the functions q1(x, t), q2(x, t) and q3(x, t). Thus the solution of Eq. (4)
for all values of x, t can be refound by solving the RH problem.

Theorem 3.1 Let (q1(x, t), q2(x, t), q3(x, t)) be a solution of Eq. (4) in the interval domain Ω =
{(x, t)|x ∈ [0, L], t ∈ [0, T]}. Then it can be reconstructed from the initial data qj(x, t = 0) = q0j(x), j =
1, 2, 3, Dirichlet boundary data qj(x = 0, t) = u0j(t), qj(x = L, t) = v0j(t), j = 1, 2, 3 and Neumann
boundary data qjx(x = 0, t) = u1j(t), qjx(x = L, t) = v1j(t), j = 1, 2, 3. We can use the initial and
boundary data to define the jump matrices Jmn(x, t, k), (n, m = 1, ..., 4) given by Eq. (25) as well as the
spectral functions S(k), s(k) and S(k) defined by Eq. (35). Assume that the possible zeros {kj}N

1 of the

functions m44(S)(k), (STsA)44(k), (sTSA)44(k) and S44(k) are as in Assumption 2.4. Then the solution
(q1(x, t), q2(x, t), q3(x, t)) of Eq. (4) is given by M(x, t, k) in the form

qj(x, t) = 2i lim
k→∞(kM(x, t, k))j4, j = 1, 2, 3, (57)

where M(x, t, k) satisfies the following 4 × 4 matrix RH problem:

• M(x, t, k) is sectionally meromorphic on the Riemann k-sphere with jumps across the contours
D̄n ∪ D̄m, (n, m = 1, ..., 4) (see Fig. 2);

• Across the contours D̄n ∪ D̄m (n, m = 1, ..., 4), M(x, t, k) satisfies the jump condition (24);

• The residue conditions of M(x, t, k) are satisfied in Proposition 2.5;

• M(x, t, k) = I4 + O(1/k) as k → ∞.

Proof. System (57) can be deduced from the large k asymptotics of the eigenfunctions. We can follow
the similar ones in Fokas (2002); Fokas et al. (2005) to show the rest proof of the Theorem. �
Remark 3.2 The result (57) will be useful to further study the long-time asymptotics for the solution
of the gtc-NLS system via the Deift–Zhou method (Deift & Zhou, 1992, 1993), or the numerical method
(Trogdon, 2013) starting from the above-obtained RH problem.
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4. The nonlinearizable boundary conditions

The main difficulty of IBV problems is to find the boundary values for a well-posed problem.
All boundary value conditions are required for the definition of S(k) and SL(k), and hence for the
formulation the RH problem. Our main conclusion exhibits the unknown boundary condition on basis
of the prescribed boundary condition, the initial condition and the solution of a system of nonlinear
integral equations.

4.1 The generalized global relation

By evaluating Eqs. (47) and (48) at the point (x, t) = (0, t), we have the global relation between the
spectral functions

c(t, k) = μ2(0, t, k)e−2ik2tσ̂4 [s(k)eikLσ̂4SL(k)], (58)

which and Eq. (36) lead to the global relation in the form

c(t, k) =μ2(0, t, k)e−2ik2tσ̂4 [s(k)eikLσ̂4e2ik2tσ̂4μ−1
3 (L, t, k)]

= μ2(0, t, k)[e−2ik2tσ̂4 s(k)][eikLσ̂4μ−1
3 (L, t, k)].

(59)

Thus, the column vectors [c(t, k)]j, j = 1, 2, 3 are analytic and bounded in D4 away from the possible

zeros of S44(k) and of order O( 1+e−2ikL

k ) as k → ∞, and the column vector [c(t, k)]4 is analytic and

bounded in D1 away from the possible zeros of m44(S)(k) and of order O( 1+e2ikL

k ) as k → ∞,

4.2 Asymptotic behaviors of eigenfunctions

It follows from the Lax pair (11) that the eigenfunctions {μj}4
1 possess the following asymptotics (as

k → ∞):

μj(x, t, k) = I4 +
2∑

l=1

1

kl

⎛⎜⎜⎜⎜⎜⎜⎝
μ

(l)
j,11 μ

(l)
j,12 μ

(l)
j,13 μ

(l)
j,14

μ
(l)
j,21 μ

(l)
j,22 μ

(l)
j,23 μ

(l)
j,24

μ
(l)
j,31 μ

(l)
j,32 μ

(l)
j,33 μ

(l)
j,34

μ
(l)
j,41 μ

(l)
j,42 μ

(l)
j,43 μ

(l)
j,44

⎞⎟⎟⎟⎟⎟⎟⎠+ O

(
1

k3

)

= I4 + 1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ (x,t)

(xj,tj)
Δ

(1)
11

∫ (x,t)

(xj,tj)
Δ

(1)
12

∫ (x,t)

(xj,tj)
Δ

(1)
13 − i

2
q1∫ (x,t)

(xj,tj)
Δ

(1)
21

∫ (x,t)

(xj,tj)
Δ

(1)
22

∫ (x,t)

(xj,tj)
Δ

(1)
23 − i

2
q2∫ (x,t)

(xj,tj)
Δ

(1)
31

∫ (x,t)

(xj,tj)
Δ

(1)
32

∫ (x,t)

(xj,tj)
Δ

(1)
33 − i

2
q3

i
2 p1

i

2
p2

i

2
p3

∫ (x,t)

(xj,tj)
Δ

(1)
44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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446 Z. YAN

+ 1

k2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ (x,t)

(xj,tj)
Δ

(2)
11

∫ (x,t)

(xj,tj)
Δ

(2)
12

∫ (x,t)

(xj,tj)
Δ

(2)
13 μ

(2)
j,14∫ (x,t)

(xj,tj)
Δ

(2)
21

∫ (x,t)

(xj,tj)
Δ

(2)
22

∫ (x,t)

(xj,tj)
Δ

(2)
23 μ

(2)
j,24∫ (x,t)

(xj,tj)
Δ

(2)
31

∫ (x,t)

(xj,tj)
Δ

(2)
32

∫ (x,t)

(xj,tj)
Δ

(2)
33 μ

(2)
j,34

μ
(2)
j,41 μ

(2)
j,42 μ

(2)
j,43

∫ (x,t)

(xj,tj)
Δ

(2)
44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ O

(
1

k3

)
,

(60)

where we have introduced the following functions:

Δ
(1)
jl = i

2
qjpldx + 1

2
(qjplx − qjxpl)dt, j, l = 1, 2, 3,

Δ
(1)
44 = − i

2

3∑
j=1

qjpjdx + 1

2

3∑
j=1

(pjqjx − pjxqj)dt,
(61)

and

μ
(2)
j,l4 = 1

4
qlx + 1

2i
ql

∫ (x,t)

(xj,tj)
Δ

(1)
44 , μ

(2)
j,4l(t) = 1

4
plx + i

2

3∑
s=1

ps

∫ (x,t)

(xj,tj)
Δ

(1)
sl , l = 1, 2, 3,

Δ
(2)
sl =

[
1

4
qsplx + i

2
qs

3∑
n=1

pn

∫ (x,t)

(xj,tj)
Δ

(1)
nl

]
dx

+
⎧⎨⎩1

4

⎡⎣qsplx + iqsxplx−iqspl

3∑
j=1

qjpj

⎤⎦+ 1

2

3∑
n=1

(qspnx−qsxpn)

∫ (x,t)

(xj,tj)
Δ

(1)
nl

⎫⎬⎭ dt, s, l = 1, 2, 3,

Δ
(2)
44 (t) =

[
1

4

3∑
l=1

plqlx − i

2

3∑
l=1

plql

∫ (x,t)

(xj,tj)
Δ

(1)
44

]
dx

+
⎧⎨⎩1

4

⎡⎣ 3∑
l=1

(plqlx − iplxqlx) + i

(
3∑

l=1

plql

)2⎤⎦+ 1

2

3∑
l=1

(plqlx − plxql)

∫ (x,t)

(xj,tj)
Δ

(1)
44

⎫⎬⎭ dt.

The functions {μ(s)
jl = μ

(s)
jl (x, t)}4

1, s = 1, 2 are independent of k.
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We define the functions {Ψij(t, k)}4
i,j=1 as

μ2(0, t, k) = (Ψsj(t, k))4×4 = I4 +
2∑

l=1

1

kl

⎛⎜⎜⎜⎝
Ψ

(l)
11 (t) Ψ

(l)
12 (t) Ψ

(l)
13 (t) Ψ

(l)
14 (t)

Ψ
(l)
21 (t) Ψ

(l)
22 (t) Ψ

(l)
23 (t) Ψ

(l)
24 (t)

Ψ
(l)
31 (t) Ψ

(l)
32 (t) Ψ

(l)
33 (t) Ψ

(l)
34 (t)

Ψ
(l)
41 (t) Ψ

(l)
42 (t) Ψ

(l)
43 (t) Ψ

(l)
44 (t)

⎞⎟⎟⎟⎠+ O

(
1

k3

)
. (62)

Based on the asymptotics of Eq. (60) and the boundary data at x = 0, we find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ
(1)
j4 (t) = − i

2
u0j(t),

Ψ
(2)
j4 (t) = 1

4
u1j − i

2
u0jΨ

(1)
44 , j = 1, 2, 3,

Ψ
(1)
41 (t) = i

2

[
α11ū01(t) + ᾱ12ū02(t) + ᾱ13ū03(t)

]
,

Ψ
(1)
42 (t) = i

2

[
α12ū01(t) + α22ū02(t) + ᾱ23ū03(t)

]
,

Ψ
(1)
43 (t) = i

2

[
α13ū01(t)+α23ū02(t)+α33ū03(t)

]
,

Ψ
(1)
44 (t) = 1

2

∫ t

0

{
u11

[
α11ū01(t)+ᾱ12ū02(t)+ᾱ13ū03(t)

]+u12

[
α12ū01(t)+α22ū02(t)+ᾱ23ū03(t)

]
+u13

[
α13ū01(t) + α23ū02(t) + α33ū03(t)

]− u01

[
α11ū11(t) + ᾱ12ū12(t) + ᾱ13ū13(t)

]
−u02

[
α12ū11(t) + α22ū12(t) + ᾱ23ū13(t)

]− u03

[
α13ū11(t) + α23ū12(t) + α33ū13(t)

] }
dt.

(63)

Thus we have the the boundary data at x = 0:

u0j(t) = 2iΨ (1)
j4 (t), u1j(t) = 4Ψ

(2)
j4 (t) + 2iu0j(t)Ψ

(1)
44 (t), j = 1, 2, 3. (64)

Similarly, we assume that the asymptotic formula of μ3(L, t, k) = {φij(t, k)}4
i,j=1 is of the form

μ3(L, t, k) = (φsj(t, k))4×4 = I4 +
2∑

l=1

1

kl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(l)
11 (t) φ

(l)
12 (t) φ

(l)
13 (t) φ

(l)
14 (t)

φ
(l)
21 (t) φ

(l)
22 (t) φ

(l)
23 (t) φ

(l)
24 (t)

φ
(l)
31 (t) φ

(l)
32 (t) φ

(l)
33 (t) φ

(l)
34 (t)

φ
(l)
41 (t) φ

(l)
42 (t) φ

(l)
43 (t) φ

(l)
44 (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ O

(
1

k3

)
. (65)
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By using the asymptotics of Eq. (60) and the boundary data at x = L, we find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(1)
j4 (t) = − i

2
v0j(t),

φ
(2)
j4 = 1

4
v1j + 1

2i
v0jφ

(1)
44 , j = 1, 2, 3,

φ
(1)
41 (t) = i

2

[
α11v̄01(t) + ᾱ12v̄02(t) + ᾱ13v̄03(t)

]
,

φ
(1)
42 (t) = i

2

[
α12v̄01(t) + α22v̄02(t) + ᾱ23v̄03(t)

]
,

φ
(1)
43 (t) = i

2

[
α13v̄01(t) + α23v̄02(t) + α33v̄03(t)

]
,

φ
(1)
44 = 1

2

∫ t

0

{
v11

[
α11v̄01(t)+ᾱ12v̄02(t)+ᾱ13v̄03(t)

]+v12

[
α12v̄01(t)+α22v̄02(t)+ᾱ23v̄03(t)

]
+v13

[
α13v̄01(t) + α23v̄02(t) + α33v̄03(t)

]− v01

[
α11v̄11(t) + ᾱ12v̄12(t) + ᾱ13v̄13(t)

]
−v02

[
α12ū11(t) + α22v̄12(t)+ ᾱ23v̄13(t)

]−v03

[
α13v̄11(t) + α23v̄12(t)+ α33v̄13(t)

] }
dt,

(66)

which generates the following expressions for the boundary values at x = L:

v0j(t) = 2iφ(1)
j4 (t), v1j(t) = 4φ

(2)
j4 (t) + 2iv0j(t)φ

(1)
44 (t), j = 1, 2, 3. (67)

For the vanishing initial values, it follows from Eq. (60) that we have the following asymptotics of
the global relation cj4(t, k) and c4j(t, k), j = 1, 2, 3.

Proposition 4.1 Let the initial and Dirichlet boundary conditions be compatible at points x = 0, L
(i.e. q0j(0) = u0j(0) at x = 0 and q0j(L) = v0j(0) at x = L, j = 1, 2, 3). Then, the global relation (60)
with the vanishing initial data implies that the large k behaviors of cj4(t, k) and c4j(t, k), j = 1, 2, 3 are
of the forms

c14(t, k) = Ψ
(1)
14

k
+ Ψ

(2)
14 + Ψ

(1)
14 φ̄

(1)
44

k2 + O

(
1

k3

)

−
{

α11φ̄
(1)
41 + ᾱ12φ̄

(1)
42 + ᾱ13φ̄

(1)
43

k
+ 1

k2

[
α11φ̄

(2)
41 + ᾱ12φ̄

(2)
42 + ᾱ13φ̄

(2)
43

+ Ψ
(1)
11

(
α11φ̄

(1)
41 + ᾱ12φ̄

(1)
42 + ᾱ13φ̄

(1)
43

)
+ Ψ

(1)
12

(
α12φ̄

(1)
41 + α22φ̄

(1)
42 + ᾱ23φ̄

(1)
43

)
+ Ψ

(1)
13

(
α13φ̄

(1)
41 + α23φ̄

(1)
42 + α33φ̄

(1)
43

)]
+ O

(
1

k3

)}
e2ikL, k → ∞, (68)
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c24(t, k) = Ψ
(1)
24

k
+ Ψ

(2)
24 + Ψ

(1)
24 φ̄

(1)
44

k2 + O

(
1

k3

)

−
{

α12φ̄
(1)
41 + α22φ̄

(1)
42 + ᾱ23φ̄

(1)
43

k
+ 1

k2

[
α12φ̄

(2)
41 + α22φ̄

(2)
42 + ᾱ23φ̄

(2)
43

+ Ψ
(1)
21

(
α11φ̄

(1)
41 + ᾱ12φ̄

(1)
42 + ᾱ13φ̄

(1)
43

)
+ Ψ

(1)
22

(
α12φ̄

(1)
41 + α22φ̄

(1)
42 + ᾱ23φ̄

(1)
43

)
+ Ψ

(1)
23

(
α13φ̄

(1)
41 + α23φ̄

(1)
42 + α33φ̄

(1)
43

)]
+ O

(
1

k3

)}
e2ikL, k → ∞, (69)

c34(t, k) = Ψ
(1)
34

k
+ Ψ

(2)
34 + Ψ

(1)
34 φ̄

(1)
44

k2
+ O

(
1

k3

)

−
{

α13φ̄
(1)
41 + α23φ̄

(1)
42 + α33φ̄

(1)
43

k
+ 1

k2

[
α13φ̄

(2)
41 + α23φ̄

(2)
42 + α33φ̄

(2)
43

+ Ψ
(1)
31

(
α11φ̄

(1)
41 + ᾱ12φ̄

(1)
42 + ᾱ13φ̄

(1)
43

)
+ Ψ

(1)
32

(
α12φ̄

(1)
41 + α22φ̄

(1)
42 + ᾱ23φ̄

(1)
43

)
+ Ψ

(1)
33

(
α13φ̄

(1)
41 + α23φ̄

(1)
42 + α33φ̄

(1)
43

)]
+ O

(
1

k3

)}
e2ikL, k → ∞, (70)

c41(t, k) = −
{

α11φ̄
(1)
14 + α12φ̄

(1)
24 + α13φ̄

(1)
34

k
+ 1

k2

[
α11φ̄

(2)
14 + α12φ̄

(2)
24 + α13φ̄

(2)
34

+Ψ
(1)
44

(
α11φ̄

(1)
14 + α12φ̄

(1)
24 + α13φ̄

(1)
34

)]
+ O

(
1

k3

)}
e−2ikL

+ 1

k

[
(α2

11 + |α12|2 + |α13|2)Ψ (1)
41 + (α11α12 + α12α22 + α13ᾱ23)Ψ

(1)
42

+(α11α13 + α12α23 + α13α33)Ψ
(1)
43

]
+ 1

k2

[
(α2

11 + |α12|2 + |α13|2)Ψ (2)
41

+ (α11α12 + α12α22 + α13ᾱ23)Ψ
(2)
42 + (α11α13 + α12α23 + α13α33)Ψ

(2)
43

+ Ψ
(1)
41

[
α11

(
α11φ̄

(1)
11 + ᾱ12φ̄

(1)
12 + ᾱ13φ̄

(1)
13

)
+ α12

(
α11φ̄

(1)
21 + ᾱ12φ̄

(1)
22 + ᾱ13φ̄

(1)
23

)
+α13

(
α11φ̄

(1)
31 + ᾱ12φ̄

(1)
32 + ᾱ13φ̄

(1)
33

)]
+ Ψ

(1)
42

[
α11

(
α12φ̄

(1)
11 + α22φ̄

(1)
12 + ᾱ23φ̄

(1)
13

)
+α12

(
α12φ̄

(1)
21 + α22φ̄

(1)
22 + ᾱ23φ̄

(1)
23

)
+ α13

(
α12φ̄

(1)
31 + α22φ̄

(1)
32 + ᾱ23φ̄

(1)
33

)]
+ Ψ

(1)
43

[
α11

(
α13φ̄

(1)
11 + α23φ̄

(1)
12 + α33φ̄

(1)
13

)
+ α12

(
α13φ̄

(1)
21 + α23φ̄

(1)
22 + α33φ̄

(1)
23

)
+α13

(
α13φ̄

(1)
31 + α23φ̄

(1)
32 + α33φ̄

(1)
33

)]
+ O

(
1

k3

)
, k → ∞, (71)
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450 Z. YAN

c42(t, k) = −
{

ᾱ12φ̄
(1)
14 + α22φ̄

(1)
24 + α23φ̄

(1)
34

k
+ 1

k2

[
ᾱ12φ̄

(2)
14 + α22φ̄

(2)
24 + α23φ̄

(2)
34

+Ψ
(1)
44

(
ᾱ12φ̄

(1)
14 + α22φ̄

(1)
24 + α23φ̄

(1)
34

)]
+ O

(
1

k3

)}
e−2ikL

+ 1

k

{
(|α12|2 + α2

22 + |α23|2)Ψ (1)
42 + (α11ᾱ12 + ᾱ12ᾱ22 + ᾱ13α23)Ψ

(1)
41

+ (ᾱ12α13 + α22α23 + α23α33)Ψ
(1)
43 + 1

k2

[
(|α12|2 + α2

22 + |α23|2)Ψ (2)
42

+ (α11ᾱ12 + ᾱ12ᾱ22 + ᾱ13α23)Ψ
(2)
41 + (ᾱ12α13 + α22α23 + α23α33)Ψ

(2)
43

+ Ψ
(1)
41

[
ᾱ12

(
α11φ̄

(1)
11 + ᾱ12φ̄

(1)
12 + ᾱ13φ̄

(1)
13

)
+ α22

(
α11φ̄

(1)
21 + ᾱ12φ̄

(1)
22 + ᾱ13φ̄

(1)
23

)
+α23

(
α11φ̄

(1)
31 + ᾱ12φ̄

(1)
32 + ᾱ13φ̄

(1)
33

)]
+ Ψ

(1)
42

[
ᾱ12

(
α12φ̄

(1)
11 + α22φ̄

(1)
12 + ᾱ23φ̄

(1)
13

)
+α22

(
α12φ̄

(1)
21 + α22φ̄

(1)
22 + ᾱ23φ̄

(1)
23

)
+ α23

(
α12φ̄

(1)
31 + α22φ̄

(1)
32 + ᾱ23φ̄

(1)
33

)]
+ Ψ

(1)
43

[
ᾱ12

(
α13φ̄

(1)
11 + α23φ̄

(1)
12 + α33φ̄

(1)
13

)
+ α22

(
α13φ̄

(1)
21 + α23φ̄

(1)
22 + α33φ̄

(1)
23

)
+α23

(
α13φ̄

(1)
31 + α23φ̄

(1)
32 + α33φ̄

(1)
33

)]
+ O

(
1

k3

)
, k → ∞, (72)

c43(t, k) = −
{

ᾱ13φ̄
(1)
14 + ᾱ23φ̄

(1)
24 + α33φ̄

(1)
34

k
+ 1

k2

[
ᾱ13φ̄

(2)
14 + ᾱ23φ̄

(2)
24 + α33φ̄

(2)
34

+Ψ
(1)
44

(
ᾱ13φ̄

(1)
14 + ᾱ23φ̄

(1)
24 + α33φ̄

(1)
34

)]
+ O

(
1

k3

)}
e−2ikL

+ 1

k

{
(|α13|2 + |α23|2 + α2

33)Ψ
(1)
43 + (α11ᾱ13 + ᾱ12ᾱ23 + ᾱ13α33)Ψ

(1)
41

+ (ᾱ13α12 + α22ᾱ23 + α13ᾱ23)Ψ
(1)
42 + 1

k2

[
(|α13|2 + |α23|2 + α2

33)Ψ
(2)
43

+ (α11ᾱ12 + ᾱ12ᾱ22 + ᾱ13α23)Ψ
(2)
41 + (ᾱ12α13 + α22α23 + α23α33)Ψ

(2)
43

+ Ψ
(1)
41

[
ᾱ13

(
α11φ̄

(1)
11 + ᾱ12φ̄

(1)
12 + ᾱ13φ̄

(1)
13

)
+ ᾱ23

(
α11φ̄

(1)
21 + ᾱ12φ̄

(1)
22 + ᾱ13φ̄

(1)
23

)
+α33

(
α11φ̄

(1)
31 + ᾱ12φ̄

(1)
32 + ᾱ13φ̄

(1)
33

)]
+ Ψ

(1)
42

[
ᾱ13

(
α12φ̄

(1)
11 + α22φ̄

(1)
12 + ᾱ23φ̄

(1)
13

)
+ᾱ23

(
α12φ̄

(1)
21 + α22φ̄

(1)
22 + ᾱ23φ̄

(1)
23

)
+ α33

(
α12φ̄

(1)
31 + α22φ̄

(1)
32 + ᾱ23φ̄

(1)
33

)]
+ Ψ

(1)
43

[
ᾱ13

(
α13φ̄

(1)
11 + α23φ̄

(1)
12 + α33φ̄

(1)
13

)
+ ᾱ23

(
α13φ̄

(1)
21 + α23φ̄

(1)
22 + α33φ̄

(1)
23

)
+α33

(
α13φ̄

(1)
31 + α23φ̄

(1)
32 + α33φ̄

(1)
33

)]
+ O

(
1

k3

)
, k → ∞. (73)
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Proof. This proof of this proposition is presented in Appendix A. �

4.3 The relation between Dirichlet and Neumann boundary value problems

In what follows we show that the spectral functions S(k) and SL(k) can be expressed in terms of the
prescribed Dirichlet and Neumann boundary data and the initial data using the solution of a system of
integral equations. Introduce the new notations as

F±(t, k) = F(t, k) ± F(t, −k), Σ±(k) = e2ikL ± e−2ikL. (74)

The sign ∂Dj stands for the boundary of the jth quadrant Dj, oriented so that Dj lies to the

left of ∂Dj. ∂D0
3 denotes the boundary contour that does not contain the zeros of Σ−(k) and

∂D0
3 = −∂D0

1.

Proposition 4.2 Let q0j(x) = qj(x, t = 0) = 0, j = 1, 2, 3 be the initial data of Eq. (4) on the interval
x ∈ [0, L] and T < ∞. (i) For the Dirichlet problem, the boundary data u0j(t) and v0j(t) (j = 1, 2, 3) on
the interval t ∈ [0, T) are sufficiently smooth and compatible with the initial data q0j(x), (j = 1, 2, 3)

at points (x2, t2) = (0, 0) and (x3, t3) = (L, 0), respectively, i.e. u0j(0) = q0j(0), v0j(0) = q0j(L), j =
1, 2, 3; (ii) For the Neumann problem, the boundary data u1j(t) and v0j(t) (j = 1, 2, 3) on the interval
t ∈ [0, T) are sufficiently smooth and compatible with the initial data q0j(x), (j = 1, 2, 3) at the origin
(x2, t2) = (0, 0) and (x3, t3) = (L, 0), respectively.

For simplicity, let n33,44(S)(k) have no zero in the domain D1. Then the spectral functions S(k) and
SL(k) are defined by

S(k)=e2ik2Tσ̂4

⎡⎢⎢⎢⎢⎢⎢⎣P
⎛⎜⎜⎜⎜⎜⎜⎝

Ψ11(T , k̄) Ψ21(T , k̄) Ψ31(T , k̄) Ψ41(T , k̄)

Ψ12(T , k̄) Ψ22(T , k̄) Ψ32(T , k̄) Ψ42(T , k̄)

Ψ13(T , k̄) Ψ23(T , k̄) Ψ33(T , k̄) Ψ43(T , k̄)

Ψ14(T , k̄) Ψ24(T , k̄) Ψ34(T , k̄) Ψ44(T , k̄)

⎞⎟⎟⎟⎟⎟⎟⎠P

⎤⎥⎥⎥⎥⎥⎥⎦ , (75)

SL(k)=e2ik2Tσ̂4

⎡⎢⎢⎢⎢⎢⎢⎣P
⎛⎜⎜⎜⎜⎜⎜⎝

φ11(T , k̄) φ21(T , k̄) φ31(T , k̄) φ41(T , k̄)

φ12(T , k̄) φ22(T , k̄) φ32(T , k̄) φ42(T , k̄)

φ13(T , k̄) φ23(T , k̄) φ33(T , k̄) φ43(T , k̄)

φ14(T , k̄) φ24(T , k̄) φ34(T , k̄) φ44(T , k̄)

⎞⎟⎟⎟⎟⎟⎟⎠P

⎤⎥⎥⎥⎥⎥⎥⎦ , (76)
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452 Z. YAN

where the matrix P is given by Eq. (31), and the complex-valued functions {Ψij(t, k)}4
i,j=1 have the

following system of integral equations:

Ψ11,t(t, k) =1 +
∫ t

0

[
(2ku01 + iu11)Ψ41 − iΨ11(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ21(α12|u01|2+α22u01ū02+ᾱ23u01ū03)−iΨ31(α13|u01|2+α23u01ū02+α33u01ū03)
]
(τ , k)dτ ,

Ψ21,t(t, k) =
∫ t

0

[
(2ku02 + iu12)Ψ41 − iΨ11(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ21(α12u02ū01+α22|u02|2+ᾱ23u02ū03)−iΨ31(α13u02ū01+α23|u02|2+α33u02ū03)
]
(τ , k)dτ ,

Ψ31,t(t, k) =
∫ t

0

[
(2ku03 + iu13)Ψ41 − iΨ11(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)

−iΨ21(α12u03ū01+α22u03ū02+ᾱ23|u03|2)−iΨ31(α13u03ū01+α23u03ū02+α33|u03|2)
]
(τ , k)dτ ,

Ψ41,t(t, k) =
∫ t

0
e4ik2(t−τ)

{
Ψ11[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+ Ψ21[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+ Ψ31[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+ iΨ41[α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+ α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2]
}
(τ , k)dτ , (77)

Ψ12,t(t, k) =
∫ t

0

[
(2ku01 + iu11)Ψ42 − iΨ12(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ22(α12|u01|2+α22u01ū02+ᾱ23u01ū03)−iΨ32(α13|u01|2+α23u01ū02+α33u01ū03)
]
(τ , k)dτ ,

Ψ22,t(t, k) =1 +
∫ t

0

[
(2ku02 + iu12)Ψ42 − iΨ12(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ22(α12u02ū01+α22|u02|2+ᾱ23u02ū03)−iΨ32(α13u02ū01+α23|u02|2+α33u02ū03)
]
(τ , k)dτ ,

Ψ32,t(t, k) =
∫ t

0

[
(2ku03 + iu13)Ψ42 − iΨ12(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)

−iΨ22(α12u03ū01+α22u03ū02+ᾱ23|u03|2)−iΨ32(α13u03ū01+α23u03ū02+α33|u03|2)
]
(τ , k)dτ ,

Ψ42,t(t, k) =
∫ t

0
e4ik2(t−τ)

{
Ψ12[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+ Ψ22[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+ Ψ32[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+ iΨ42[α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+ α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2]
}
(τ , k)dτ , (78)
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Ψ13,t(t, k) =
∫ t

0

[
(2ku01 + iu11)Ψ43 − iΨ13(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ22(α12|u01|2+α22u01ū02+ᾱ23u01ū03)−iΨ32(α13|u01|2+α23u01ū02+α33u01ū03)
]
(τ , k)dτ ,

Ψ23,t(t, k) =
∫ t

0

[
(2ku02 + iu12)Ψ42 − iΨ13(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ23(α12u02ū01+α22|u02|2+ᾱ23u02ū03)−iΨ33(α13u02ū01+α23|u02|2+α33u02ū03)
]
(τ , k)dτ ,

Ψ33,t(t, k) =1 +
∫ t

0

[
(2ku03 + iu13)Ψ43 − iΨ13(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)

−iΨ23(α12u03ū01+α22u03ū02+ᾱ23|u03|2)−iΨ33(α13u03ū01+α23u03ū02+α33|u03|2)
]
(τ , k)dτ ,

Ψ43,t(t, k) =
∫ t

0
e4ik2(t−τ)

{
Ψ13[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+ Ψ23[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+ Ψ33[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+ iΨ43[α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+ α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2]
}
(τ , k)dτ , (79)

and

Ψ14,t(t, k) =
∫ t

0
e−4ik2(t−τ)

[
(2ku01 + iu11)Ψ44 − iΨ14(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ24(α12|u01|2+α22u01ū02+ᾱ23u01ū03)−iΨ34(α13|u01|2+α23u01ū02+α33u01ū03)
]
(τ , k)dτ ,

Ψ24,t(t, k) =
∫ t

0
e−4ik2(t−τ)

[
(2ku02 + iu12)Ψ44 − iΨ14(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ24(α12u02ū01+α22|u02|2+ᾱ23u02ū03)−iΨ34(α13u02ū01+α23|u02|2+α33u02ū03)
]
(τ , k)dτ ,

Ψ34,t(t, k) =
∫ t

0
e−4ik2(t−τ)

[
(2ku03 + iu13)Ψ44 − iΨ14(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)

−iΨ24(α12u03ū01+α22u03ū02+ᾱ23|u03|2)−iΨ34(α13u03ū01+α23u03ū02+α33|u03|2)
]
(τ , k)dτ ,

Ψ44,t(t, k) =1 +
∫ t

0

{
Ψ14[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+ Ψ24[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+ Ψ34[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+ iΨ44[α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+ α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2]
}
(τ , k)dτ . (80)

The functions {φij(t, k)}4
i,j=1 are of the same integral equations (77)–(80) by replacing the functions

{u0j, u1j} with {v0j, v1j}, (j = 1, 2, 3), i.e. φij(t, k) = Φij(t, k)
∣∣{u0l(t)=v0l(t), u1l(t)=v1l(t)}, (i, j = 1, 2, 3, 4; l =

1, 2, 3)
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454 Z. YAN

(i) For the given Dirichlet problem, the unknown Neumann boundary data {u1j(t)}3
j=1 and {v1j(t)}3

j=1,
0 < t < T can be given by

u11(t) =
∫

∂D0
3

[
2Σ+
iπΣ−

(kΨ14− + iu01) + u01(2Ψ44− − φ̄44−)

]
dk

+
∫

∂D0
3

4

πΣ−

[
α11

(−ikφ̄41− + α11v01 + α12v02 + α13v03

)
+ᾱ12

(−ikφ̄42−+ ᾱ12v01+ α22v02+ α23v03

)+ᾱ13

(−ikφ̄43−+ ᾱ13v01+ ᾱ23v02+ α33v03

)]
dk

+
∫

∂D0
3

4k

iπΣ−

[
Ψ14(φ̄44 − 1)e−2ikL − (Ψ11−1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

−Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43)−Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]
− dk,

(81)

u12(t)=
∫

∂D0
3

[
2Σ+
iπΣ−

(kΨ24− + iu02) + u02(2Ψ44− − φ̄44−)

]
dk

+
∫

∂D0
3

4

πΣ−

[
α12

(−ikφ̄41− + α11v01 + α12v02 + α13v03

)
+α22

(−ikφ̄42−+ᾱ12v01+α22v02+α23v03

)+ᾱ23

(−ikφ̄43−+ᾱ13v01+ᾱ23v02+α33v03

)]
dk

+
∫

∂D0
3

4k

iπΣ−

[
Ψ24(φ̄44 − 1)e−2ikL − Ψ21(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

−(Ψ22−1)(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43)−Ψ23(α13φ̄41 + α23φ̄42 + α33φ̄43)
]
− dk,

(82)

u13(t) =
∫

∂D0
3

[
2Σ+
iπΣ−

(kΨ34− + iu03) + u03(2Ψ44− − φ̄44−)

]
dk

+
∫

∂D0
3

4

πΣ−

[
α13

(−ikφ̄41− + α11v01 + α12v02 + α13v03

)
+α23

(−ikφ̄42−+ᾱ12v01+α22v02+α23v03

)+α33

(−ikφ̄43−+ᾱ13v01+ᾱ23v02+α33v03

)]
dk

+
∫

∂D0
3

4k

iπΣ−

[
Ψ34(φ̄44 − 1)e−2ikL − Ψ31(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

−Ψ32(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43)−(Ψ33−1)(α13φ̄41 + α23φ̄42 + α33φ̄43)
]
− dk,

(83)

and

v1j(t) = 4φ
(2)
j4 + 2

π

∫
∂D0

3

v0jφ44−dk, j = 1, 2, 3, (84)
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 455

where ⎛⎜⎜⎜⎝
φ

(2)
14

φ
(2)
24

φ
(2)
34

⎞⎟⎟⎟⎠= 1

4π

∫
∂D0

3

⎡⎢⎢⎣2iΣ+
Σ−

⎛⎜⎜⎝
kφ14− + iv01

kφ24− + iv02

kφ34− + iv03

⎞⎟⎟⎠− Ψ
(1)
44−

⎛⎜⎜⎝
v01

v02

v03

⎞⎟⎟⎠
⎤⎥⎥⎦ dk+MT

2iπ

⎛⎜⎜⎝
I1(t)

I2(t)

I3(t)

⎞⎟⎟⎠ ,

with

I1(t) =
∫

∂D0
3

{
2

Σ−

[
(α2

11 + |α12|2 + |α13|2)(kΨ̄41− + i(ᾱ11u01 + α12u02 + α13u03))

+(α11ᾱ12 + ᾱ12α22 + ᾱ13α23)(kΨ̄42− + i(ᾱ12u01 + α22u02 + α23u03))

+(α11ᾱ13 + ᾱ12ᾱ23 + ᾱ13α33)(kΨ̄43− + i(ᾱ13u01 + ᾱ23u02 + α33u03))
]}

dk

+
∫

∂D0
3

2k

Σ−

{
(1 − Ψ̄44)(α11φ14 + ᾱ12φ24 + ᾱ13φ34)e

2ikL

+Ψ̄41

[
α11(α11(φ11 − 1) + α12φ12 + α13φ13) + ᾱ12(α11φ21 + α12(φ22 − 1) + α13φ23)

+ᾱ13(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α11(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+ᾱ12(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + ᾱ13(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α11(ᾱ13(φ11 − 1) + ᾱ23φ12 + α33φ13) + ᾱ12(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+ᾱ13(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

−dk,

(85)

I2(t) =
∫

∂D0
3

{
2

Σ−

[
(α2

12 + α2
22 + |α23|2)(kΨ̄42− + i(ᾱ12u01 + α22u02 + α23u03))

+(α11α12 + ᾱ23α22 + ᾱ33α33)(kΨ̄41− + i(ᾱ11u01 + α12u02 + α13u03))

+(α12ᾱ13 + α22ᾱ23 + ᾱ23α33)(kΨ̄43− + i(ᾱ13u01 + ᾱ23u02 + α33u03))
]}

dk

+
∫

∂D0
3

2k

Σ−

{
(1 − Ψ̄44)(α12φ14 + α22φ24 + ᾱ23φ34)e

2ikL

+Ψ̄41

[
α12(α11(φ11 − 1) + α12φ12 + α13φ13) + α22(α11φ21 + α12(φ22 − 1) + α13φ23)

+ᾱ23(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α12(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+α22(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + ᾱ23(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α12(ᾱ13(φ11 − 1) + ᾱ23φ12 + α33φ13) + α22(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+ᾱ23(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

−dk,

(86)
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456 Z. YAN

I3(t) =
∫

∂D0
3

{
2

Σ−

[
(α2

12 + α2
22 + |α23|2)(kΨ̄43− + i(ᾱ13u01 + ᾱ23u02 + α33u03))

+(α11α13 + α12α23 + ᾱ13α23)(kΨ̄41− + i(ᾱ11u01 + α12u02 + α13u03))

+(α13ᾱ12 + α22α23 + ᾱ13α23)(kΨ̄42− + i(ᾱ12u01 + α22u02 + α23u03))
]}

dk

+
∫

∂D0
3

2k

Σ−

{
(1 − Ψ̄44)(α13φ14 + α23φ24 + α33φ34)e

2ikL

+Ψ̄41

[
α13(α11(φ11 − 1) + α12φ12 + α13φ13) + α23(α11φ21 + α12(φ22 − 1) + α13φ23)

+α33(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α13(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+α23(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + α33(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α13(ᾱ13(φ11 − 1) + ᾱ23φ12 + α33φ13) + α23(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+α33(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

−dk.

(87)

(ii) For the known Neumann problem, the unknown Dirichlet boundary data {u0j(t)}3
j=1 and

{v0j(t)}3
j=1, 0 < t < T can be determined by

u01(t) =
∫

∂D0
3

1

πΣ−

[
Σ+Ψ14+ − 2(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)+

]
dk

+
∫

∂D0
3

2

πΣ−

{
Ψ14(φ̄44 − 1)e−2ikL − [

(Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43) (88)

+Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]}

+ dk,

u02(t) =
∫

∂D0
3

1

πΣ−

[
Σ+Ψ24+ − 2(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43)+

]
dk

+
∫

∂D0
3

2

πΣ−

{
Ψ24(φ̄44 − 1)e−2ikL − [

Ψ21(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43) (89)

+(Ψ22 − 1)(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + Ψ23(α13φ̄41 + α23φ̄42 + α33φ̄43)
]}

+ dk,

u03(t) =
∫

∂D0
3

1

πΣ−

[
Σ+Ψ34+ − 2(α13φ̄41 + α23φ̄42 + α33φ̄43)+

]
dk

+
∫

∂D0
3

2

πΣ−

{
Ψ34(φ̄44 − 1)e−2ikL − [

Ψ31(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43) (90)

+Ψ32(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + (Ψ33 − 1)(α13φ̄41 + α23φ̄42 + α33φ̄43)
]}

+ dk,
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 457

and

v01(t) = 2iφ(1)
14 , v02(t) = 2iφ(1)

24 , v03(t) = 2iφ(1)
34 , (91)

where ⎛⎜⎜⎜⎝
φ

(1)
14

φ
(1)
24

φ
(1)
34

⎞⎟⎟⎟⎠ = − 1

2iπ

∫
∂D0

3

Σ+
Σ−

⎛⎜⎜⎝
φ14+
φ24+
φ34+

⎞⎟⎟⎠ dk + MT

2iπ

⎛⎜⎜⎝
J1(t)

J2(t)

J3(t)

⎞⎟⎟⎠ ,

with

J1(t) =
∫

∂D0
3

2

Σ−

[
(α2

11 + |α12|2 + |α13|2)Ψ̄41+ + (α11ᾱ12 + ᾱ12α22 + ᾱ13α23)Ψ̄42+

+(α11ᾱ13 + ᾱ12ᾱ23 + ᾱ13α33)Ψ̄43+
]
dk

+
∫

∂D0
3

2

Σ−

{
(1 − Ψ̄44)(α11φ14 + ᾱ12φ24 + ᾱ13φ34)e

2ikL

+Ψ̄41

[
α11(α11(φ11 − 1) + α12φ12 + α13φ13) + ᾱ12(α11φ21 + α12(φ22 − 1) + α13φ23)

+ᾱ13(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α11(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+ᾱ12(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + ᾱ13(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α11(ᾱ13(φ11 − 1) + ᾱ23φ12 + α33φ13) + ᾱ12(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+ᾱ13(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

+dk,

(92)

J2(t) =
∫

∂D0
3

2

Σ−

[
(α2

12 + α2
22 + |α23|2)Ψ̄42+ + (α11α12 + ᾱ23α22 + ᾱ33α33)Ψ̄41+

+(α12ᾱ13 + α22ᾱ23 + ᾱ23α33)Ψ̄43+
]
dk

+
∫

∂D0
3

2

Σ−

{
(1 − Ψ̄44)(α12φ14 + α22φ24 + ᾱ23φ34)e

2ikL

+Ψ̄41

[
α12(α11(φ11 − 1) + α12φ12 + α13φ13) + α22(α11φ21 + α12(φ22 − 1) + α13φ23)

+ᾱ23(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α12(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+α22(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + ᾱ23(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α12(ᾱ13(φ11 − 1) + ᾱ23φ12 + α33φ13) + α22(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+ᾱ23(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

+dk,

(93)
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J3(t) =
∫

∂D0
3

2

Σ−

[
(α2

12 + α2
22 + |α23|2)Ψ̄43+ + (α11α13 + α12α23 + ᾱ13α23)Ψ̄41+

+(α13ᾱ12 + α22α23 + ᾱ13α23)Ψ̄42+
]
dk

+
∫

∂D0
3

2

Σ−

{
(1 − Ψ̄44)(α13φ14 + α23φ24 + α33φ34)e

2ikL

+Ψ̄41

[
α13(α11(φ11 − 1) + α12φ12 + α13φ13) + α23(α11φ21 + α12(φ22 − 1) + α13φ23)

+α33(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α13(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+α23(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + α33(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α13(ᾱ13(φ11 − 1) + ᾱ23φ12 + α33φ13) + α23(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+α33(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

+dk,

(94)

where Ψ14 = Ψ14(t, k), φ̄44 = φ44(t, k̄) = φ̄44(t, k̄) and other functions have the similar expressions.

Proof. The proof of the Proposition is given in Appendix B. �
Remark 4.3 It follows from Proposition 4.2 that the well-defined boundary value data of the integrable
gtc-NLS system (4) are given, i.e. the generalized Dirichlet–Neumann map given by Eqs. (81)–(87) and
the generalized Neumann–Dirichlet map given by Eqs. (88)–(94) are established, respectively. These
obtained results can also provide one with more exact data to theoretically and numerically study the
solutions of the IBV problem of system (4).

4.3 The effective characterizations

Substituting the perturbated expressions for eigenfunctions and initial boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ψij(t, k) = Ψ
[0]
ij (t, k) + εΨ

[1]
ij (t, k) + ε2Ψ

[2]
ij (t, k) + · · · , i, j = 1, 2, 3, 4,

φij(t, k) = φ
[0]
ij (t, k) + εφ

[1]
ij (t, k) + ε2φ

[2]
ij (t, k) + · · · , i, j = 1, 2, 3, 4,

usj(t) = εu[1]
sj (t) + ε2u[2]

sj (t) + · · · , s = 0, 1; j = 1, 2, 3,

vsj(t) = εv[1]
sj (t) + ε2v[2]

sj (t) + · · · , s = 0, 1; j = 1, 2, 3,

(95)

into Eqs. (150)–(153), where ε > 0 is a small parameter, we have these terms of O(1) and O(ε) as

O(1) :

⎧⎨⎩ Ψ
[0]
jj = 1, j = 1, 2, 3, 4,

Ψ
[0]
ij = 0, i, j = 1, 2, 3, 4, i �= j,

(96)
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 459

O(ε) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ
[1]
js =Ψ

[1]
44 = 0, j, s, = 1, 2, 3,

Ψ
[1]
j4 =

∫ t

0
e−4ik2(t−τ)

(
2ku[1]

0j + iu[1]
1j

)
(τ )dτ , j = 1, 2, 3,

Ψ
[1]
41 =

∫ t

0
e4ik2(t−τ)

[
α11

(
2kū[1]

01 −iū[1]
11

)
+ᾱ12

(
2kū[1]

02 −iū[1]
12

)
+ᾱ13

(
2kū[1]

03 −iū[1]
13

)]
(τ )dτ ,

Ψ
[1]
42 =

∫ t

0
e4ik2(t−τ)

[
α12

(
2kū[1]

01 −iū[1]
11

)
+α22

(
2kū[1]

02 −iū[1]
12

)
+ᾱ23

(
2kū[1]

03 −iū[1]
13

)]
(τ )dτ ,

Ψ
[1]
43 =

∫ t

0
e4ik2(t−τ)

[
α13

(
2kū[1]

01 −iū[1]
11

)
+α23

(
2kū[1]

02 −iū[1]
12

)
+α33

(
2kū[1]

03 −iū[1]
13

)]
(τ )dτ .

(97)

Similarly, we can also obtain the analogous expressions for {φ[l]
ij }4

i,j=1, l = 0, 1 by means of the

boundary values at x = L, i.e. {v[l]
ij }, i = 0, 1; j = 1, 2, 3; l = 0, 1.

If we assume that m44(S) has no zero, then we expand Eqs. (81)–(84) to have

u[n]
11 (t) =

∫
∂D0

3

{
2Σ+
iπΣ−

(kΨ [n]
14− + iu[n]

01 )dk + 4

πΣ−

[
α11

(
−ikφ̄[n]

41− + α11v[n]
01 + α12v[n]

02 + α13v[n]
03

)
+ᾱ12

(
−ikφ̄[n]

42− + ᾱ12v[n]
01 + α22v[n]

02 + α23v[n]
03

)
+ᾱ13

(
−ikφ̄[n]

43− + ᾱ13v[n]
01 + ᾱ23v[n]

02 + α33v[n]
03

)]}
dk + LOTs,

(98)

u[n]
12 (t) =

∫
∂D0

3

{
2Σ+
iπΣ−

(kΨ [n]
24− + iu[n]

02 )dk + 4

πΣ−

[
α12

(
−ikφ̄[n]

41− + α11v[n]
01 + α12v[n]

02 + α13v[n]
03

)
+α22

(
−ikφ̄[n]

42− + ᾱ12v[n]
01 + α22v[n]

02 + α23v[n]
03

)
+ᾱ23

(
−ikφ̄[n]

43− + ᾱ13v[n]
01 + ᾱ23v[n]

02 + α33v[n]
03

)]}
dk + LOTs,

(99)

u[n]
13 (t) =

∫
∂D0

3

{
2Σ+
iπΣ−

(kΨ [n]
34− + iu[n]

03 )dk + 4

πΣ−

[
α13

(
−ikφ̄[n]

41− + α11v[n]
01 + α12v[n]

02 + α13v[n]
03

)
+α23

(
−ikφ̄[n]

42− + ᾱ12v[n]
01 + α22v[n]

02 + α23v[n]
03

)
+α33

(
−ikφ̄[1]

43− + ᾱ13v[n]
01 + ᾱ23v[n]

02 + α33v[n]
03

)]}
dk + LOTs,

(100)

where the word ‘LOTs’ means ‘lower order terms’ standing for the result involving known terms of
lower order.
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460 Z. YAN

The terms of O(εn) in Eqs. (77)–(80) and the similar equations for φij yield

Ψ
[n]
j4 (t, k) =

∫ t

0
e−4ik2(t−τ)

(
2ku[n]

0j + iu[n]
1j

)
(τ )dτ + LOTs, j = 1, 2, 3,

φ̄
[n]
41 (t, k̄) =

∫ t

0
e−4ik2(t−τ)

[
α11(2kv[n]

01 + iv[n]
11 )+α12(2kv[n]

02 +iv[n]
12 ) + α13(2kv[n]

03 + iv[n]
13 )
]
(τ )dτ + LOTs,

φ̄
[n]
42 (t, k̄) =

∫ t

0
e−4ik2(t−τ)

[
ᾱ12(2kv[n]

01 + iv[n]
11 )+α22(2kv[n]

02 +iv[n]
12 ) + α23(2kv[n]

03 + iv[n]
13 )
]
(τ )dτ + LOTs,

φ̄
[n]
43 (t, k̄) =

∫ t

0
e−4ik2(t−τ)

[
ᾱ13(2kv[n]

01 + iv[n]
11 )+ᾱ23(2kv[n]

02 +iv[n]
12 ) + α33(2kv[n]

03 + iv[n]
13 )
]
(τ )dτ + LOTs,

(101)

which can lead to

Ψ
[n]
j4−(t, k) = 4k

∫ t

0
e−4ik2(t−τ)u[n]

0j (τ )dτ + LOTs, j = 1, 2, 3,

φ̄
[n]
41−(t, k̄) = 4k

∫ t

0
e−4ik2(t−τ)

(
α11v[n]

01 + α12v[n]
02 + α13v[n]

03

)
(τ )dτ + LOTs,

φ̄
[n]
42−(t, k̄) = 4k

∫ t

0
e−4ik2(t−τ)

(
ᾱ12v[n]

01 + α22v[n]
02 + α23v[n]

03

)
(τ )dτ + LOTs,

φ̄
[n]
43−(t, k̄) = 4k

∫ t

0
e−4ik2(t−τ)

(
ᾱ13v[n]

01 + ᾱ23v[n]
02 + α33v[n]

03

)
(τ )dτ + LOTs. (102)

It follows from system (102) that Ψ
[n]
1j− and φ

[n]
4j−, j = 1, 2, 3 can be generated at each step from the

known Dirichlet boundary data u[n]
0j and v[n]

0j such that we know that the Neumann boundary data u[n]
1j

can be given by Eqs. (98)–(100). Similarly, we also show that the Neumann boundary data v[n]
1j can then

be determined by the known Dirichlet boundary data u[n]
0j and v[n]

0j .
Similarly, the substitution of Eq. (95) into Eqs. (88) and (89) yields the terms of O(εn) as

u[n]
01 (t) =

∫
∂D0

3

[
Σ+

πΣ−
Ψ

[n]
14+ − 2

πΣ−

(
α11φ̄

[n]
41 + ᾱ12φ̄

[n]
42 + ᾱ13φ̄

[n]
43

)]
dk + LOTs, (103a)

u[n]
02 (t) =

∫
∂D0

3

[
Σ+

πΣ−
Ψ

[n]
24+ − 2

πΣ−

(
α12φ̄

[n]
41 + α22φ̄

[n]
42 + ᾱ23φ̄

[n]
43

)]
dk + LOTs, (103b)

u[n]
03 (t) =

∫
∂D0

3

[
Σ+

πΣ−
Ψ

[n]
34+ − 2

πΣ−

(
α13φ̄

[n]
41 + α23φ̄

[n]
42 + α33φ̄

[n]
43

)]
dk + LOTs, (103c)
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 461

Eq. (101) implies that

Ψ
[n]
j4+(t, k) = 2i

∫ t

0
e−4ik2(t−τ)u[n]

1j (τ )dτ + LOTs, j = 1, 2, 3,

φ̄
[n]
41+(t, k̄) =

∫ t

0
e−4ik2(t−τ)

(
α11v[n]

11 + α12v[n]
12 + α13v[n]

13

)
(τ )dτ + LOTs,

φ̄
[n]
42+(t, k̄) =

∫ t

0
e−4ik2(t−τ)

(
ᾱ12v[n]

11 + α22v[n]
12 + α23v[n]

13

)
(τ )dτ + LOTs,

φ̄
[n]
43+(t, k̄) =

∫ t

0
e−4ik2(t−τ)

(
ᾱ13v[n]

11 ) + ᾱ23v[n]
12 + α33v[n]

13

)
(τ )dτ + LOTs. (104)

It follows from system (104) that Ψ
[n]
j4+ and φ

[n]
4j+, j = 1, 2, 3 can be generated at each step from the

known Neumann boundary data u[n]
1j and v[n]

1j such that we know that the Dirichlet boundary data u[n]
0j

can then be given by Eqs. (103a)–(103c). Similarly, we also show that the Dirichlet boundary data v[n]
0j

can then be determined by the known Neumann boundary data u[n]
1j and v[n]

1j .

4.4 The large L limit from the finite interval to the half-line

The formulae for the initial and boundary value conditions u0j(t) and u1j(t), j = 1, 2, 2 of Proposition 4.2
in the limit L → ∞ can be extended to the corresponding ones on the half-line. Since when L → ∞,

v0j → 0, v1j → 0, j = 1, 2, 3, φij → δij,
Σ+(k)

Σ−(k)
→ 1 as k → ∞ in D3, (105)

Thus, according to Eq. (105), the L → ∞ limits of Eqs. (81), (82), (88) and (89) yield the unknown
Neumann boundary data

u1j(t) = 2

π

∫
∂D0

3

[
u0j(Ψ44− + 1) − ikΨj4−

]
dk, j = 1, 2, 3, (106)

for the given Dirichlet boundary problem, and the unknown Dirichlet boundary data

u0j(t) = 1

π

∫
∂D0

3

Ψj4+dk, j = 1, 2, 3, (107)

for the given Neumann boundary problem.

5. The GLM representation and equivalence

In this section, we deduce the eigenfunctions Ψ (t, k) and φ(t, k) in terms of the GLM approach (Boutet
de Monvel & Kotlyarov, 2000; Boutet de Monvel et al., 2003b; Fokas, 2005; Treharne & Fokas,
2008). Moreover, the global relation can be used to find the unknown Neumann (Dirichlet) boundary
values from the given Dirichlet (Neumann) boundary values by means of the GLM representations.
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462 Z. YAN

Moreover, the GLM representations are shown to be equivalent to the ones obtained in Sec. 4. Finally,
the linearizable boundary conditions are also presented for the GLM representations.

5.1 The GLM representation

Proposition 5.1 The eigenfunctions Ψ (t, k) and φ(t, k) possess the GLM representation

Ψ (t, k) = I4 +
∫ t

−t

[
L(t, s) +

(
k + i

2
U(0)σ4

)
G(t, s)

]
e−2ik2(s−t)σ4 ds, (108a)

φ(t, k) = I4 +
∫ t

−t

[
L(t, s) +

(
k + i

2
U (L)σ4

)
G(t, s)

]
e−2ik2(s−t)σ4 ds, (108b)

where the 4 × 4 matrix-valued functions L(t, s) = (Lij)4×4 and G(t, s) = (Gij)4×4, −t ≤ s ≤ t satisfy a
Goursat system

Lt(t, s)+σ4Ls(t, s)σ4 = iσ4U(0)
x L(t, s)− 1

2

[
(U(0))3+iU̇(0)σ4 + [U(0)

x , U(0)]
]

G(t, s),

Gt(t, s) + σ4Gs(t, s)σ4 = 2U(0)L(t, s) + iσ4U(0)
x G(t, s),

(109)

with the initial conditions
Llj(t, −t) = L44(t, −t) = Glj(t, −t) = G44(t, −t) = 0, Gj4(t, t) = u0j(t), l, j = 1, 2, 3,

G41(t, t) = α11ū01(t) + ᾱ12ū02(t) + ᾱ13ū03(t), G42(t, t) = α12ū01(t) + α22ū02(t) + ᾱ23ū03(t),

G43(t, t) = α13ū01(t) + α23ū02(t) + α33ū03(t),

Lj4(t, t) = i

2
u1j(t), l, j = 1, 2, 3, L41(t, t) = − i

2
(α11ū11(t) + ᾱ12ū12(t) + ᾱ13ū13(t)),

L42(t, t) = − i

2
(α12ū11(t)+α22ū12(t)+ᾱ23ū13(t)), L43(t, t) = − i

2
(α13ū11(t)+α23ū12(t)+α33ū13(t)),

(110)

U(0) =

⎛⎜⎜⎝
0 0 0 u01(t)
0 0 0 u02(t)
0 0 0 u03(t)

p01(t) p02(t) p03(t) 0

⎞⎟⎟⎠ , U(0)
x = U(0)

∣∣{p0j(t)→p1j(t), u0j(t)→u1j(t), j=1,2,3} (111)

with

p01 = α11ū01 + ᾱ12ū02 + ᾱ13ū03, p02 = α12ū01 + α22ū02 + ᾱ23ū03, p03 = α13ū01 + α23ū02 + α33ū03,

p11 = α11ū11 + ᾱ12ū12 + ᾱ13ū13, p12 = α12ū11 + α22ū12 + ᾱ23ū13, p13 = α13ū11 + α23ū12 + α33ū13,

Similarly, L(t, s), G(t, s) satisfy the similar Eqs. (109) and (110) with u0j → v0j, u1j → v1j, U(0) →
U (L) = U(0)

∣∣
u0j→v0j

, U(0)
x → U (L)

x = U(0)
x
∣∣
u1j→v1j

.
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Proof. We assume that the function

ψ(t, k) = e−2ik2tσ4 +
∫ t

−t
[L0(t, s) + kG(t, s)]e−2ik2sσ4 ds, (112)

satisfies the time-part of the Lax pair (7) with the boundary data ψ(0, k) = I4 at x = 0, where L0(t, s)
and G(t, s) are the unknown 4 × 4 matrix-valued functions. We substitute Eq. (112) into the time-part of
Lax pair (7) with the boundary data (6) and use the identity∫ t

−t
F(t, s)e−2ik2sσ4 ds = i

2k2

[
F(t, t)e−2ik2tσ4 − F(t, −t)e2ik2tσ4 −

∫ t

−t
Fs(t, s)e−2ik2sσ4 ds

]
σ4, (113)

where the function F(t, s) is a 4 × 4 matrix-valued function. As a consequence, we find

L0(t, −t) + σ4L0(t, −t)σ4 = −iU(0)G(t, −t)σ4, G(t, −t) + σ4G(t, −t)σ4 = 0,
L0(t, t) − σ4L0(t, t)σ4 = iU(0)G(t, t)σ4 + V(0)

0 , G(t, t) − σ4G(t, t)σ4 = 2U(0),
L0t(t, s) + σ4L0s(t, s)σ4 = −iU(0)Gs(t, s)σ4 + V(0)

0 L0(t, s),
Gt(t, s) + σ4Gs(t, s)σ4 = 2U(0)L0(t, s) + V(0)

0 G(t, s),

(114)

where U(0) is given by Eq. (111) and

V(0)
0 = −i(U(0)

x + U(0)2)σ4 = −i

⎛⎜⎜⎝
u01p01 u01p02 u01p03 −u11
u02p01 u02p02 u02p03 −u21
u03p01 u03p02 u03p03 −u31

p11 p21 p31 −(u01p01 + u02p02 + u03p03)

⎞⎟⎟⎠ .

To reduce system (114) we further introduce the new matrix L(t, s) as

L(t, s) = L0(t, s) − i

2
U(0)σ4G(t, s), (115)

such that the first four equations of system (114) become

L(t, −t) + σ4L(t, −t)σ4 = 0, G(t, −t) + σ4G(t, −t)σ4 = 0,
L(t, t) − σ4L(t, t)σ4 = V(0)

0 , G(t, t) − σ4G(t, t)σ4 = 2U(0),

which lead to Eq. (110), and from the last two equations of system (114) we have Eq. (109). By means
of transformation (10), i.e. μ2(0, t, k) = Ψ (t, k) = ψ(t, k)e2ik2tσ4 , we know that Ψ (t, k) is given by Eq.
(108a). Similarly, we can also show that Eq. (108b) holds. �

For convenience, we rewrite a 4 × 4 matrix C = (Cij)4×4 as

C = (Cij)4×4 =
(
C̃3×3 C̃j4

C̃4j C44

)
, C̃3×3 = (Cij)3×3, C̃j4 = (C14, C24, C34)

T , C̃4j = (C41, C42, C43).
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The Dirichlet and Neumann boundary values at x = 0, L are simplified as

uj(t) = (uj1(t), uj2(t), uj3(t)), vj(t) = (vj1(t), vj2(t), vj3(t)), j = 1, 2, 3,
wj0(t) = (pj1(t), pj2(t), pj3(t)), wjL(t) = (pj1(t), pj2(t), pj3(t))|usj→vsj

, s = 0, 1; j = 1, 2, 3. (116)

For a matrix-valued function F(t, s), we introduce the F̂(t, k) by

F̂(t, k) =
∫ t

−t
F(t, s)e2ik2(s−t)ds. (117)

Thus, the GLM expressions (108a) and (108b) of {Ψij, φij} can be simplified as

Ψ̃3×3(t, k) = I + ˆ̃L3×3 − i

2
uT

0 (t) ˆ̃G4j + k ˆ̃G3×3, Ψ̃44(t, k) = 1 + ˆ̃L44 + i

2
ū0(t)M

ˆ̃Gj4 + k ˆ̃G44,

Ψ̃j4(t, k) = ˆ̃Lj4 − i

2
uT

0 (t) ˆ̃G44 + k ˆ̃Gj4, Ψ̃4j(t, k) = ˆ̃L4j + i

2
ū0(t)M

ˆ̃G3×3 + k ˆ̃G4j, j = 1, 2, 3,

(118a)

φ̃3×3(t, k) = I + ˆ̃L3×3 − i

2
vT

0 (t) ˆ̃G4j + k ˆ̃G3×3, φ̃44(t, k) = 1 + ˆ̃L44 + i

2
v̄0(t)M

ˆ̃Gj4 + k ˆ̃G44,

φ̃j4(t, k) = ˆ̃Lj4 − i

2
vT

0 (t) ˆ̃G44 + k ˆ̃Gj4, φ̃4j(t, k) = ˆ̃L4j + i

2
v̄0(t)M

ˆ̃G3×3 + k ˆ̃G4j, j = 1, 2, 3.

(118b)

For the given Eqs. (118a) and (119b) we have the following proposition:

Proposition 5.2

lim
τ→t

∫
∂D0

1

ke4ik2(t−τ)

Σ−

(
F̃j4e−2ikL

)
− dk=

∫
∂D0

1

[
ik

2
uT

0

(
ˆ̃G44− ¯̃̂

G44

)
+ k

Σ−

(
F̃j4e−2ikL

)
−

]
dk, (119a)

lim
τ→t

∫
∂D0

1

ke4ik2(t−τ)

Σ−
F̃4j−dk =

∫
∂D0

1

[
ik

2
MTvT

0

( ˆ̃G44 − ¯̃̂
G44

)
+ k

Σ−
F̃4j−

]
dk, (119b)

lim
τ→t

∫
∂D0

1

e4ik2(t−τ)

Σ−

(
F̃j4e−2ikL

)
+ dk =

∫
∂D0

1

1

Σ−

(
F̃j4e−2ikL

)
+ dk, (119c)

lim
τ→t

∫
∂D0

1

e4ik2(t−τ)

Σ−
F̃4j+dk =

∫
∂D0

1

1

Σ−
F̃4j+dk, (119d)

where the vector-valued functions F̃j4(t, k) and F̃4j(t, k) (j = 1, 2, 3) are defined by

F̃j4 = 1

2i
uT

0
ˆ̃G44 + i

2
MT ¯̃̂

GT
3×3MvT

0 e2ikL +
(

ˆ̃Lj4 − i

2
uT

0
ˆ̃G44 + k ˆ̃Gj4

)( ¯̃̂
L44 − i

2

¯̃̂
GT

j4MvT
0 + k

¯̃̂
G44

)
−
( ˆ̃L3×3 − i

2 uT
0

ˆ̃G4j + k ˆ̃G3×3

)
MT

( ¯̃̂
LT

4j − i
2

¯̃̂
GT

3×3MvT
0 + k

¯̃̂
GT

4j

)
e2ikL,

(120)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/427/6218143 by EM

BL user on 28 N
ovem

ber 2024



INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 465

F̃4j= 1
2i

¯̃̂
GT

3×3MuT
0 + i

2MTvT
0

ˆ̃G44e2ikL+MT
( ˆ̃L3×3− i

2 vT
0

ˆ̃G4j+k ˆ̃G3×3

)
MT

( ¯̃̂
LT

4j− i
2

¯̃̂
GT

3×3MuT
0 +k

¯̃̂
GT

4j

)
−MT

( ˆ̃Lj4 − i
2 vT

0
ˆ̃G44 + k ˆ̃Gj4

)( ¯̃̂
L44 − i

2

¯̃̂
GT

j4MuT
0 + k

¯̃̂
G44

)
e2ikL.

(121)

Proof. Similarly to the proof of Lemma 4.3 in Lenells & Fokas (2012b), we here show Eq. (119a)
in detail. Multiplying Eq. (120) by k

Σ− e4ik2(t−τ) with 0 < τ < t and integrating along along ∂D0
1 with

respect to dk can yield

∫
∂D0

1

k

Σ−
e4ik2(t−τ)(F̃j4e−2ikL)−dk =

∫
∂D0

1

ik

2
e4ik2(t−τ)uT

0
ˆ̃G44dk −

∫
∂D0

1

k3e4ik2(t−τ) ˆ̃Gj4
¯̃̂
G44dk

−
∫

∂D0
1

ke4ik2(t−τ)

(
ˆ̃Lj4 − i

2
uT

0
ˆ̃G44

)( ¯̃̂
L44 − i

2

¯̃̂
GT

j4MvT
0

)
dk

+
∫

∂D0
1

k2Σ+
Σ−

e4ik2(t−τ)

[(
ˆ̃Lj4 − i

2
uT

0
ˆ̃G44

) ¯̃̂
G44 + ˆ̃Gj4

( ¯̃̂
L44 − i

2

¯̃̂
Gj4MvT

0

)]
dk

−
∫

∂D0
1

2k2

Σ−
e4ik2(t−τ)

[(
ˆ̃L3×3 − i

2
uT

0
ˆ̃G4j

)
MT ¯̃̂

GT
4j + ˆ̃G3×3MT

( ¯̃̂
LT

4j − i

2

¯̃̂
GT

3×3MvT
0

)]
dk.

(122)

To further analyse the above equation, the following identities are introduced:

4

π

∫
∂D1

ke4ik2(t−τ)F̂(t, k)dk =
{

2F(t, 2τ − t), 0 < τ < t,
F(t, t), 0 < τ = t,

(123)

and

∫
∂D0

1

k2

Σ−
e4ik2(t−τ)F̂(t, k)dk = 2

∫
∂D0

1

k2

Σ−

[∫ τ

0
e4ik2(t−τ)F̂(t, 2τ − t)dτ − F(t, 2τ − t)

4ik2

]
dk, (124)

which also hold for the cases that k2

Σ− is taken place by k2Σ+
Σ− or k2.

It follows from the first integral on the RHS of Eq. (122) and Eq. (123) that we have

lim
τ→t

∫
∂D0

1

ik

2
e4ik2(t−τ)uT

0
ˆ̃G44dk = lim

τ→t

iπ

2
uT

0 G̃22(t, 2τ − t) = iπ

4
uT

0 G̃44(t, t), (125a)

lim
τ→t

∫
∂D0

1

ik

2
e4ik2(t−τ)uT

0
ˆ̃G44dk =

∫
∂D0

1

ik

2
uT

0
ˆ̃G44dk = iπ

8
uT

0 G̃44(t, t). (125b)

Therefore, we know that the first integral on the RHS of Eq. (122) yields the following two terms:

lim
τ→t

∫
∂D0

1

ik

2
e4ik2(t−τ)uT

0
ˆ̃G44dk =

∫
∂D0

1

ik

2
uT

0
ˆ̃G44dk

∣∣∣
(125a)

+
∫

∂D0
1

ik

2
uT

0
ˆ̃G44dk

∣∣∣
(125b)

. (126)
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Nowadays we study the second integral on the RHS of Eq. (122). It follows from the second integral
on the RHS of Eq. (122) and Eq. (124) that we have

−
∫

∂D0
1

k3e4ik2(t−τ) ˆ̃Gj4
¯̃̂
G44dk = −2

∫
∂D0

1

k3
∫ t

0
e4ik2(s−τ)G̃j4(t, 2s − t)

¯̃̂
G44dsdk

= −2
∫

∂D0
1

k3

[∫ τ

0
e4ik2(s−τ)G̃j4(t, 2τ − t)ds − G̃j4(t, 2τ − t)

4ik2

]
¯̃̂
G44dk.

(127)

Thus we take the limit τ → t of Eq. (127) to have

− lim
τ→t

∫
∂D0

1

k3e4ik2(t−τ) ˆ̃Gj4
¯̃̂
G44dk = −

∫
∂D0

1

k3 ˆ̃Gj4
¯̃̂
G44dk +

∫
∂D0

1

k

2i
uT

0
¯̃̂
G44dk.

Finally, following the proof in Lenells & Fokas (2012b) we can show the limits τ → t of the rest
three integrals (i.e. the third, fourth and fifth integrals) of Eq. (122) can be deduced by simply making
the limit τ → t inside the every integral, i.e. no additional term arises in these integrals. For example,

lim
τ→t

∫
∂D0

1

ke4ik2(t−τ)

(
ˆ̃Lj4 − i

2
uT

0
ˆ̃G44

)( ¯̃̂
L44 − i

2

¯̃̂
GT

j4MvT
0

)
dk

=
∫

∂D0
1

k

(
ˆ̃Lj4 − i

2
uT

0
ˆ̃G44

)( ¯̃̂
L44 − i

2

¯̃̂
GT

j4MvT
0

)
dk.

Thus, this completes the proof of Eq. (119a). Similarly, we can show that Eqs. (119b), (119c) and (119d)
also hold. �
Theorem 5.3 Let q0j(x) = qj(x, t = 0) = 0, j = 1, 2, 3 be the initial data of Eq. (4) on the interval
x ∈ [0, L] and T < ∞. For the Dirichlet problem, the boundary data u0j(t) and v0j(t) (j = 1, 2, 3) on
the interval t ∈ [0, T) are sufficiently smooth and compatible with the initial data qj0(x) (j = 1, 2, 3) at
the points (x2, t2) = (0, 0) and (x3, t3) = (L, 0), respectively. For the Neumann problem, the boundary
data u1j(t) and v1j(t) (j = 1, 2, 3) on the interval t ∈ [0, T) are sufficiently smooth and compatible with
the initial data q0j(x) (j = 1, 2, 3) at the points (x2, t2) = (0, 0) and (x3, t3) = (L, 0), respectively. For
simplicity, let n33,44(S)(k) have no zero in the domain D1. Then the spectral functions S(k) and SL(k)
are defined by Eqs. (75) and (76) with Ψ (t, k) and φ(t, k) given by Eq. (108a) and (108b).

(i) For the given Dirichlet boundary values u0(t) and v0(t), the unknown Neumann boundary values
u1(t) and v1(t) are given by

uT
1 (t) = 4

iπ

∫
∂D0

1

{
Σ+
Σ−

[
k2 ˆ̃Gj4(t, t) + i

2
uT

0 (t)

]
− 2MT

Σ−

[
k2 ¯̃̂
GT

4j(t, t) + i

2
MvT

0 (t)

]

+ ik

2
uT

0

(
ˆ̃G44 − ¯̃̂

G44

)
+ k

Σ−

[
F̃j4e−2ikL

]
−

}
dk,

(128a)
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vT
1 (t) = 4

iπ

∫
∂D0

1

{
−Σ+

Σ−

[
k2 ˆ̃Gj4(t, t) + i

2
vT

0 (t)

]
+ 2MT

Σ−

[
k2 ¯̃̂

GT
4j(t, t) + i

2
MuT

0 (t)

]

+ ik

2
vT

0

( ˆ̃G44 − ¯̃̂
G44

)
+ k

Σ−
MTF̃4j−

}
dk,

(128b)

(ii) For the given Neumann boundary values u1(t) and v1(t), the unknown Dirichlet boundary values
u0(t) and v0(t) are given by

uT
0 (t) = 2

π

∫
∂D0

1

[
Σ+
Σ−

ˆ̃Lj4 − 2MT

Σ−
¯̃̂
LT

4j + 1

Σ−

(
F̃j4e−2ikL

)
+

]
dk, (129a)

vT
0 (t) = 2

π

∫
∂D0

1

[
2MT

Σ−
¯̃̂
LT

j4 − 1

Σ−
ˆ̃L4j + MT

Σ−
F̃4j+

]
dk, (129b)

where F̃j4(t, k) and F̃4j(t, k) are defined by Eqs. (120) and (121).

Proof. The proof of this Theorem is given in Appendix C. �

5.2 The equivalence of two distinct representations

We now show that the above-mentioned GLM representation for the Dirichlet and Neumann boundary
data in Theorem 5.3 is equivalent to one in Proposition 4.2.

Case i). From the Dirichlet boundary conditions to the Neumann boundary ones
It follows from Eqs. (118a) and (118b) that we obtain

ˆ̃Gj4 = 1

2k
Ψ̃j4−, ˆ̃Gj4 = 1

2k
φ̃j4−, j = 1, 2, 3, ˆ̃G44 = 1

2k
Ψ̃44−, ˆ̃G44 = 1

2k
φ̃44−. (130)

Substituting Eqs. (120) and (130) into Eq. (128a) yields

uT
1 (t) = 4

iπ

∫
∂D0

1

{
Σ+
Σ−

[
k2 ˆ̃Gj4(t, t) + i

2
uT

0 (t)

]
− 2MT

Σ−

[
k2 ¯̃̂
GT

4j(t, t) + i

2
MvT

0 (t)

]

+ikuT
0

ˆ̃G44 + k

2i
uT

0
¯̃̂
G44 + k

Σ−

[
Ψ̃j4(

¯̃
φ44 − 1)e−2ikL − (Ψ̃3×3 − I)MT ¯̃

φT
4j

]
−

}
dk

=
∫

∂D0
1

{
2Σ+
iπΣ−

[
kΨ̃j4− + iuT

0 (t)
]

+ 4iMT

πΣ−

[
k ¯̃
φT

4j− + iMvT
0 (t)

]
+ 1

π
uT

0 (2Ψ̃44− − ¯̃
φ44−)

+ 4k

iπΣ−

[
Ψ̃j4(

¯̃
φ44 − 1)e−2ikL − (Ψ̃3×3 − I)MT ¯̃

φT
4j

]
−

}
dk.

(131)

Since the integrand in Eq. (131) is an odd function about k, which makes sure that the contour ∂D0
1

can be replaced by ∂D0
3, thus we can find the same Neumann boundary data u1j(t) (j = 1, 2, 3) at

x = 0 given by Eqs. (81)–(83) from Eq. (131). Similarly, we can also find the Neumann boundary data
v1j(t) (j = 1, 2, 3) at x = L given by Eq. (84) from Eq. (128b).
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Case ii). From the Neumann boundary conditions to the Dirichlet boundary ones
Eqs. (118a) and (118b) imply that

ˆ̃Lj4 = 1

2
Ψ̃j4+(t, k) + i

2
uT

0
ˆ̃G44,

¯̃̂
LT

4j = 1

2
¯̃
φT

4j+(t, k) + i

2

¯̃̂
GT

3×3MvT
0 . (132)

The substitution of Eqs. (132) and (120) into Eq. (129a) yields

uT
0 (t) = 2

π

∫
∂D0

1

[
Σ+
Σ−

ˆ̃Lj4 − 2MT

Σ−
¯̃̂
LT

4j + 1

Σ−

(
F̃j4e−2ikL

)
+

]
dk

=
∫

∂D0
1

{
Σ+

πΣ−
Ψ̃j4+− 2MT

πΣ−
¯̃
φT

4j+ + 2

πΣ−

[
Ψ̃j4(

¯̃
φ44(t, k̄)−1)e−2ikL−(Ψ̃3×3−I4)MT ¯̃

φT
4j

]
+

}
dk.

(133)

Since the integrand in Eq. (133) is an odd function about k, which makes sure that the contour ∂D0
1

can be replaced by ∂D0
3, thus Eq. (133) yields the Dirichlet boundary values u0j(t), j = 1, 2, 3 again.

Similarly, we can also deduce the Dirichlet boundary values v0j(t), j = 1, 2, 3 from Eq. (129b).

5.3 Linearizable boundary conditions for the GLM representation

In what follows we further explore the linearizable boundary conditions for the GLM representation
given in Theorem 5.3.

Proposition 5.4 Let qj(x, t = 0) = q0j(x), j = 1, 2, 3 be the initial conditions of the gtc-NLS equation
(4) on the interval x ∈ [0, L], and one of the following two boundary conditions: (i) Dirichlet boundary
conditions at x = 0, L, qj(x = 0, t) = u0j(t) = 0 and qj(x = L, t) = v0j(t) = 0, j = 1, 2, 3; (ii) Robin
boundary conditions x = 0, L, qjx(x = 0, t) − χqj(x = 0, t) = u1j(t) − χu0j(t) = 0, j = 1, 2, 3 and
qjx(x = L, t) − ϑqj(x = L, t) = v1j(t) − ϑv0j(t) = 0, j = 1, 2, where χ and ϑ are both real parameters.
Then the eigenfunctions Ψ (t, k) and φ(t, k) can be expressed as

(i)

Ψ (t, k) = I4 +
( ˆ̃L3×3

ˆ̃Lj4ˆ̃L4j
ˆ̃L44

)
, (134a)

φ(t, k) = I4 +
⎛⎝ ˆ̃L3×3

ˆ̃Lj4ˆ̃L4j
ˆ̃L44

⎞⎠ , (134b)

where the 4 × 4 matrix-valued function L(t, s) = (Lij)4×4 satisfies a reduced Goursat system

L̃3×3t + L̃3×3s = iuT
1 (t)L̃4j, L̃44t + L̃44s = −iū1(t)ML̃j4,

L̃j4t − L̃j4s = iuT
1 (t)L̃44, L̃4jt − L̃4js = −iū1(t)ML̃3×3, j = 1, 2, 3

(135)

with the initial data (cf. Eq. (110))

L̃3×3(t, −t) = 03×3, L̃44(t, −t) = 0, L̃j4(t, t) = i

2
uT

1 (t), L̃4j(t, t) = − i

2
ū1(t)M. (136)
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Similarly, the 4 × 4 matrix-valued function L(t, s) = (Lij)4×4 satisfies the analogous system (135) with
u1(t) replaced by v1(t).

(ii)

Ψ (t, k) = I4 +
( ˆ̃L3×3

ˆ̃Lj4ˆ̃L4j
ˆ̃L44

)
+
⎛⎜⎝ − i

2
uT

0 (t) ˆ̃G4j k ˆ̃Gj4

k ˆ̃G4j
i

2
ū0(t)M

ˆ̃Gj4

⎞⎟⎠ , (137a)

φ(t, k) = I4 +
⎛⎝ ˆ̃L3×3

ˆ̃Lj4ˆ̃L4j
ˆ̃L44

⎞⎠+
⎛⎝ − i

2
vT

0 (t) ˆ̃G4j k ˆ̃Gj4

k ˆ̃G4j
i
2 v̄0(t)M

ˆ̃Gj4

⎞⎠ , (137b)

where the 4 × 4 matrix-valued functions L(t, s) = (Lij)4×4 and G(t, s) = (Gij)4×4 satisfy the reduced
nonlinear Goursat system

L̃3×3t + L̃3×3s = iχuT
0 (t)L̃4j + 1

2

[
iu̇T

0 (t) − uT
0 (t)ū0(t)MuT

0 (t)
]

G̃4j,

L̃44t + L̃44s = −iχ ū0(t)ML̃j4 − 1

2

[
i ˙̄u0(t)M + ū0(t)MuT

0 (t)ū0(t)M
]

G̃j4,

L̃j4t − L̃j4s = iχuT
0 (t)L̃44, L̃4jt − L̃4js = −iχ ū0(t)ML̃3×3,

G̃j4t − G̃j4s = 2uT
0 (t)L̃44, G̃4jt − G̃4js = 2ū0(t)ML̃3×3,

(138)

with the initial data (cf. Eq. (110))

L̃3×3(t, −t) = 03×3, L̃44(t, −t) = 0, L̃j4(t, t) = i

2
χuT

0 (t), L̃4j(t, t) = − i

2
χ ū0(t)M,

G̃j4(t, t) = uT
0 (t), G̃4j(t, t) = ū0(t)M.

(139)

Similarly, the 4 × 4 matrix-valued functions L(t, s) = (Lij)4×4 and G(t, s) = (Gij)4×4 satisfy the similar
system (138) with u0(t) and χ replaced by v0(t) and ϑ , respectively.

Proof. Let us show that the linearizable boundary data correspond to the special cases of Proposition
5.1.

Case i) The Dirichlet zero boundary data qj(x = 0, t) = u0j(t) = 0. It follows from the second one

of system (109) that G̃ij(t, s) satisfy

G̃3×3t + G̃3×3s = iuT
1 (t)G̃4j, G̃44t + G̃44s = −iū1(t)MG̃j4,

G̃j4t − G̃j4s = iuT
1 (t)G̃44, G̃4jt − G̃4js = −iū1(t)MG̃3×3, j = 1, 2, 3,

(140)

with the initial data (cf. Eq. (110))

G̃3×3(t, −t) = 03×3, G̃44(t, −t) = 0, G̃j4(t, t) = 0j4, G̃4j(t, t) = 04j, j = 1, 2, 3. (141)
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470 Z. YAN

Thus the unique solution of Eq. (140) is trivial, i.e. G̃3×3(t, s) = 0, G̃4j(t, s) = 0, G̃j4(t, s) =
0, G̃44(t, s) = 0 such that Eq. (108a) reduces to Eq. (134a) and the condition (109) with (110) becomes
(135) with (136). Similarly, for the Dirichlet zero boundary data qj(x = L, t) = v0j(t) = 0, j = 1, 2, 3,
we can also show Eq. (134b).

Case ii) Consider the Robin boundary data qjx(x = 0, t)−χqj(x = 0, t) = u1j(t)−χu0j(t) = 0, (j =
1, 2, 3), i.e. the Dirichlet and Neumann boundary data have the linear relation

u1(t) = χu0(t). (142)

Let a 4 × 4 matrix Q(t, s) be Q(t, s) = 2L(t, s) − iχσ4G(t, s) be the linear combinations of L and G.
Then

Q̃3×3(t, s) = 2L̃3×3(t, s) − iχG̃3×3(t, s), Q̃44(t, s) = 2L̃44(t, s) + iχG̃44(t, s),

Q̃j4(t, s) = 2L̃j4(t, s) − iχG̃j4(t, s), Q̃4j(t, s) = 2L̃4j(t, s) + iχG̃4j(t, s), j = 1, 2, 3.
(143)

It follows from Eq. (109) and (143) with Eq. (142) that Q̃ij(t, s), G̃ij(t, s), i, j = 1, 2 satisfy

Q̃3×3t + Q̃3×3s =
[
iu̇T

0 (t) − uT
0 (t)ū0(t)MuT

0 (t) + χ2uT
0 (t)

]
G̃4j,

Q̃j4t − Q̃j4s =
[
iu̇T

0 (t) − uT
0 (t)ū0(t)MuT

0 (t) + χ2uT
0 (t)

]
G̃44,

Q̃4jt − Q̃4js =
[
−ū0(t)MuT

0 (t)ū0(t)M − i ˙̄u0(t)M + χ2ū0(t)M
]

G̃3×3,

Q̃44t + Q̃44s =
[
−ū0(t)MuT

0 (t)ū0(t)M − i ˙̄u0(t)M + χ2ū0(t)M
]

G̃j4,

G̃3×3t + G̃3×3s = uT
0 (t)Q̃4j, G̃44t + G̃44s = ū0(t)MQ̃j4,

G̃j4t − G̃j4s = uT
0 (t)Q̃44, G̃4jt − G̃4js = ū0(t)MQ̃3×3, j = 1, 2, 3,

(144)

with the initial data (cf. Eq. (110))

G̃3×3(t, −t) = 03×3, G̃44(t, −t) = 0, G̃j4(t, t) = uT
0 (t), G̃4j(t, t) = ū0(t)M,

Q̃3×3(t, −t) = 03×3, Q̃44(t, −t) = 0, Q̃j4(t, t) = 0j4, Q̃4j(t, t) = 04j, j = 1, 2, 3,
(145)

Thus the unique solution of Eq. (144) is trivial, i.e. Q̃j4(t, s) = Q̃4j(t, s) = G̃3×3(t, s) = G̃44(t, s) = 0
such that Eq. (108a) reduces to Eq. (137a) and the condition (109) with Eq. (110) becomes Eq. (138)
with Eq. (139). Similarly, for the Robin boundary data qjx(x = L, t)−ϑqj(x = L, t) = v1j(t)−ϑv0j(t) =
0, j = 1, 2, 3, i.e. v1(t) = ϑv0(t), we can also show Eq. (137b). �

Based on the Theorem 5.3 and Proposition 5.4, we have the following Proposition.
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Proposition 5.5 For the linearizable Dirichlet boundary data u0(t) = v0(t) = 0, we have the Neumann
boundary data u1(t) and v1(t):

uT
1 (t) = 4i

π

∫
∂D0

1

kΨ̃j4(
¯̃
φ44 − I4)dk, vT

1 (t) = 4i

π

∫
∂D0

1

kφ̃j4(
¯̃
Ψ44 − I4)dk, (146)

where

Ψ̃j4t + 4ik2Ψ̃j4 = iuT
1 (t)(Ψ̃44 + I4), φ̃j4t + 4ik2φ̃j4 = ivT

1 (t)(φ̃44 + I4), j = 1, 2, 3,

Ψ̃44t = −iū1(t)MΨ̃j4, φ̃44t = −iv̄1(t)Mφ̃j4.
(147)

Remark 5.6 Although the Fokas method has been used to investigated some integrable nonlinear PDEs
with 2 × 2 or 3 × 3 matrix Lax pairs, our results for the gtc-NLS equation (4) with a 4 × 4 matrix Lax
pair differ from the known ones. Particularly, the found symmetry (31), the matrices Sn, the 4 × 4 RH
problem and nonlinearizable boundary conditions all differ from ones appearing in the coupled NLS
systems with 3 × 3 Lax pairs (Xu & Fan, 2016a; Tian, 2017).

6. Conclusions and discussions

In conclusion, the well-known inverse scattering transform can be used to solve the initial value
problems of some integrable nonlinear PDEs with Lax pairs such as the KdV equation, NLS equation,
mKdV equation, sine-Gordon equation, AKNS system, KP equation, Camassa–Holm equation, etc. The
Fokas method is a powerful approach studying the IBV problems of linear and integrable nonlinear
PDEs. In this paper, based on the IST, we have investigated the IBV problem for the gtc-NLS system
with a 4 × 4 Lax pair on a finite interval by using the Fokas method. The 4 × 4 matrix Lax pair
of the gtc-NLS system can be regarded as the 4 × 4 generalization of the 3 × 3 Lax pairs for the
DP equation (Lenells, 2012, 2013), the Sasa–Satsuma equation (Xu & Fan, 2013) and two-component
coupled NLS equations (Biondini & Bui, 2012; Geng et al., 2015; Xu & Fan, 2016a; Tian, 2017). By the
Fokas method, we find that the solutions of the gtc-NLS system can be formulated using the solution
of a 4 × 4 matrix RH problem constructed in the complex k-plane. The relevant jump matrices with
explicit (x, t)-dependence of the matrix RH problem can be explicitly found in terms of three spectral
functions {s(k), S(k), SL(k)} arising from the initial data, and Dirichlet–Neumann boundary conditions
at x = 0, L, respectively. The global relation is also proposed to derive two distinct but equivalent
types of representations of the Dirichlet–Neumann boundary value problems. Particularly, the relevant
formulae for the boundary value problems on the finite interval can generate ones on the half-line as the
length of the interval closes to infinity. Finally, we also analyse the linearizable boundary conditions for
the GLM representation.

Particularly, we have the following conclusions:

• For the given the initial conditions qj(x, 0) = q0j(x), we have the spectral function matrix
s(k). For the given Dirichlet and Neumann boundary conditions at x = 0, qj(x = 0, t) =
u0j(t), qjx(x = 0, t) = u1j(t), j = 1, 2, 3, we have the spectral function matrix S(k). Similarly,
the Dirichlet and Neumann boundary conditions at x = L, qj(x = L, t) = v0j(t), qjx(x = L, t) =
v1j(t), j = 1, 2, 3, we have another spectral function matrix SL(k);
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• Given the Dirichlet boundary conditions, qj(x = 0, t) = u0j(t), qj(x = L, t) = v0j(t), j =
1, 2, 3, one can determined the Neumann boundary conditions qjx(x = 0, t) = u1j(t), qjx(x =
L, t) = v1j(t), j = 1, 2, 3 given by Eqs. (81)–(87) by means of the global relation between the
distinct spectral function matrices. Conversely, the corresponding result also holds;

• For the given spectral function matrices {s(k), S(k), SL(k)}, a matrix RH problem for M(x, t, k)
can be defined such that the functions qj(x, t), j = 1, 2, 3 expressed by means of M(x, t, k) can
be shown to satisfy system (4) and the IBV conditions given by Eq. (6).

Based on the corresponding RH problem, these above-obtained results may be used to further study
the long-time asymptotics of the solution by means of the Deift–Zhou’s nonlinear steepest descent
approach (Deift & Zhou, 1992, 1993) and some numerical methods (Trogdon, 2013). Moreover, the
analogous analysis of the Fokas method can also be used to explore the IBV problems for other
integrable nonlinear evolution PDEs with 4 × 4 matrix Lax pairs both on the the half-line and the finite
interval, such as the three-component derivative NLS system, the three-component high-order NLS
system and the three-component mKdV system. These important issues will be further implemented in
future.
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A. The proof of Proposition 4.1

Proof. The global relation (59) under the vanishing initial data can be simplified as

c14(t, k)=Ψ14(t, k)φ̄44(t, k̄) − e2ikL
[
Ψ11(t, k)(α11φ̄41(t, k̄) + ᾱ12φ̄42(t, k̄) + ᾱ13φ̄43(t, k̄))

+Ψ12(t, k)(α12φ̄41(t, k̄) + α22φ̄42(t, k̄) + ᾱ23φ̄43(t, k̄))

+Ψ13(t, k)(α13φ̄41(t, k̄) + α23φ̄42(t, k̄) + α33φ̄43(t, k̄))
]
,

(148a)

c24(t, k)=Ψ24(t, k)φ̄44(t, k̄) − e2ikL
[
Ψ21(t, k)(α11φ̄41(t, k̄) + ᾱ12φ̄42(t, k̄) + ᾱ13φ̄43(t, k̄))

+Ψ22(t, k)(α12φ̄41(t, k̄) + α22φ̄42(t, k̄) + ᾱ23φ̄43(t, k̄))

+Ψ23(t, k)(α13φ̄41(t, k̄) + α23φ̄42(t, k̄) + α33φ̄43(t, k̄))
]
,

(148b)

c34(t, k)=Ψ34(t, k)φ̄44(t, k̄) − e2ikL
[
Ψ31(t, k)(α11φ̄41(t, k̄) + ᾱ12φ̄42(t, k̄) + ᾱ13φ̄43(t, k̄))

+Ψ32(t, k)(α12φ̄41(t, k̄) + α22φ̄42(t, k̄) + ᾱ23φ̄43(t, k̄))

+Ψ33(t, k)(α13φ̄41(t, k̄) + α23φ̄42(t, k̄) + α33φ̄43(t, k̄))
]
,

(148c)

where φ̄ij(t, k̄) = φij(t, k̄).
Recalling the time-part of the Lax pair (11)

μt + 2ik2[σ4, μ] = V(x, t, k)μ. (149)

It follows from the first column of Eq. (149) with μ = μ2 that we have

Ψ11,t(t, k) =(2ku01 + iu11)Ψ41 − iΨ11(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ21(α12|u01|2 + α22u01ū02 + ᾱ23u01ū03) − iΨ31(α13|u01|2 + α23u01ū02 + α33u01ū03),

Ψ21,t(t, k) =(2ku02 + iu12)Ψ41 − iΨ11(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ21(α12u02ū01 + α22|u02|2 + ᾱ23u02ū03) − iΨ31(α13u02ū01 + α23|u02|2 + α33u02ū03),

Ψ31,t(t, k) = (2ku03 + iu13)Ψ41 − iΨ11(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)
−iΨ21(α12u03ū01 + α22u03ū02 + ᾱ23|u03|2) − iΨ31(α13u03ū01 + α23u03ū02 + α33|u03|2),

Ψ41,t(t, k) =Ψ11[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+Ψ21[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+Ψ31[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+iΨ41[4k2 + α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2].
(150)
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The second column of Eq. (149) with μ = μ2 yields

Ψ12,t(t, k) =(2ku01 + iu11)Ψ42 − iΨ12(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ22(α12|u01|2 + α22u01ū02 + ᾱ23u01ū03) − iΨ32(α13|u01|2 + α23u01ū02 + α33u01ū03),

Ψ22,t(t, k) =(2ku02 + iu12)Ψ42 − iΨ12(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ22(α12u02ū01 + α22|u02|2 + ᾱ23u02ū03) − iΨ32(α13u02ū01 + α23|u02|2 + α33u02ū03),

Ψ32,t(t, k) = (2ku03 + iu13)Ψ42 − iΨ12(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)
−iΨ22(α12u03ū01 + α22u03ū02 + ᾱ23|u03|2) − iΨ32(α13u03ū01 + α23u03ū02 + α33|u03|2),

Ψ42,t(t, k) =Ψ12[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+Ψ22[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+Ψ32[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+iΨ42[4k2 + α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2].
(151)

The third column of Eq. (149) with μ = μ2 yields

Ψ13,t(t, k) =(2ku01 + iu11)Ψ43 − iΨ13(α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ23(α12|u01|2 + α22u01ū02 + ᾱ23u01ū03) − iΨ33(α13|u01|2 + α23u01ū02 + α33u01ū03),

Ψ23,t(t, k) =(2ku02 + iu12)Ψ43 − iΨ13(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ23(α12u02ū01 + α22|u02|2 + ᾱ23u02ū03) − iΨ33(α13u02ū01 + α23|u02|2 + α33u02ū03),

Ψ33,t(t, k) = (2ku03 + iu13)Ψ43 − iΨ13(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)
−iΨ23(α12u03ū01 + α22u03ū02 + ᾱ23|u03|2) − iΨ33(α13u03ū01 + α23u03ū02 + α33|u03|2),

Ψ43,t(t, k) =Ψ13[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+Ψ23[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+Ψ33[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+iΨ43[4k2 + α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01

+α22|u02|2 + ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2].
(152)
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The fourth column of Eq. (149) with μ = μ2 yields

Ψ14,t(t, k) =(2ku01 + iu11)Ψ44 − iΨ14(4k2 + α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03)

−iΨ24(α12|u01|2 + α22u01ū02 + ᾱ23u01ū03) − iΨ34(α13|u01|2 + α23u01ū02 + α33u01ū03),

Ψ24,t(t, k) =(2ku02 + iu12)Ψ44 − iΨ14(α11u02ū01 + ᾱ12|u02|2 + ᾱ13u02ū03)

−iΨ24(4k2+α12u02ū01+α22|u02|2+ᾱ23u02ū03)−iΨ34(α13u02ū01+α23|u02|2+α33u02ū03),

Ψ34,t(t, k) = (2ku03 + iu13)Ψ44 − iΨ14(α11u03ū01 + ᾱ12u03ū02 + ᾱ13|u03|2)
−iΨ24(α12u03ū01+α22u03ū02+ᾱ23|u03|2)−iΨ34(4k2+α13u03ū01+α23u03ū02+ α33|u03|2),

Ψ44,t(t, k) =Ψ14[α11(2kū01 − iū11) + ᾱ12(2kū02 − iū12) + ᾱ13(2kū03 − iū13)]

+Ψ24[α12(2kū01 − iū11) + α22(2kū02 − iū12) + ᾱ23(2kū03 − iū13)]

+Ψ34[α13(2kū01 − iū11) + α23(2kū02 − iū12) + α33(2kū03 − iū13)]

+iΨ44[α11|u01|2 + ᾱ12u01ū02 + ᾱ13u01ū03 + α12u02ū01 + α22|u02|2
+ᾱ23u02ū03 + α13u03ū01 + α23u03ū02 + α33|u03|2].

(153)

Suppose that Ψj1’s, j = 1, 2, 3, 4 are of the forms

⎛⎜⎜⎝
Ψ11
Ψ21
Ψ31
Ψ41

⎞⎟⎟⎠ =
(

a10(t) + a11(t)

k
+ a12(t)

k2
+ · · ·

)
+
(

b10(t) + b11(t)

k
+ b12(t)

k2
+ · · ·

)
e4ik2t, (154)

where the 4 × 1 column vector functions a1j(t), b1j(t) (j = 0, 1, ..., ) are independent of k.
By substituting Eq. (154) into Eq.(150) and using the initial conditions

a10(0) + b10(0) = (1, 0, 0, 0)T , a11(0) + b11(0) = (0, 0, 0, 0)T ,

we have

⎛⎜⎜⎝
Ψ11
Ψ21
Ψ31
Ψ41

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+
2∑

s=1

1

ks

⎛⎜⎜⎜⎜⎜⎝
Ψ

(s)
11

Ψ
(s)
21

Ψ
(s)
31

Ψ
(s)
41

⎞⎟⎟⎟⎟⎟⎠+ O

(
1

k3

)

+

⎡⎢⎢⎢⎣ 1

2ik

⎛⎜⎜⎜⎝
0
0

0

α11ū01(0) + ᾱ12ū02(0) + ᾱ13ū03(0)

⎞⎟⎟⎟⎠+ O

(
1

k2

)⎤⎥⎥⎥⎦ e4ik2t. (155)
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Similarly, it follows from Eqs. (151)–(153) that we have the asymptotic formulae for Ψij, i =
1, 2, 3, 4; j = 2, 3, 4 in the form

⎛⎜⎜⎝
Ψ12
Ψ22
Ψ32
Ψ42

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+
2∑

s=1

1

ks

⎛⎜⎜⎜⎜⎜⎝
Ψ

(s)
12

Ψ
(s)
22

Ψ
(s)
32

Ψ
(s)
42

⎞⎟⎟⎟⎟⎟⎠+ O

(
1

k3

)

+

⎡⎢⎢⎢⎣ 1

2ik

⎛⎜⎜⎜⎝
0
0

0

α12ū01(0) + α22ū02(0) + ᾱ23ū03(0)

⎞⎟⎟⎟⎠+ O

(
1

k2

)⎤⎥⎥⎥⎦ e4ik2t, (156)

⎛⎜⎜⎝
Ψ13
Ψ23
Ψ33
Ψ43

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+
2∑

s=1

1

ks

⎛⎜⎜⎜⎜⎜⎝
Ψ

(s)
13

Ψ
(s)
23

Ψ
(s)
33

Ψ
(s)
43

⎞⎟⎟⎟⎟⎟⎠+ O

(
1

k3

)

+

⎡⎢⎢⎢⎣ 1

2ik

⎛⎜⎜⎜⎝
0

0

0

α13ū01(0) + α23ū02(0) + α33ū03(0)

⎞⎟⎟⎟⎠+ O

(
1

k2

)⎤⎥⎥⎥⎦ e4ik2t (157)

and

⎛⎜⎜⎝
Ψ14
Ψ24
Ψ34
Ψ44

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠+
2∑

s=1

1

ks

⎛⎜⎜⎜⎜⎜⎝
Ψ

(s)
14

Ψ
(s)
24

Ψ
(s)
34

Ψ
(s)
44

⎞⎟⎟⎟⎟⎟⎠+ O

(
1

k3

)
+

⎡⎢⎢⎢⎣ i

2k

⎛⎜⎜⎜⎝
u01(0)

u02(0)

u03(0)

0

⎞⎟⎟⎟⎠+ O

(
1

k2

)⎤⎥⎥⎥⎦ e−4ik2t. (158)

Similarly to Eqs. (150)–(153) for μ2(0, t, k), we also know that the function μ(x, t, k) = μ3(L, t, k)
at x = L satisfies the t-part of Lax pair (149).
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The first column of Eq. (149) with μ = μ3 yields

φ11,t(t, k) =(2kv01 + iv11)φ41 − iφ11(α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03)

−iφ21(α12|v01|2 + α22v01v̄02 + ᾱ23v01v̄03) − iφ31(α13|v01|2 + α23v01v̄02 + α33v01v̄03),

φ21,t(t, k) =(2kv02 + iv12)φ41 − iφ11(α11v02v̄01 + ᾱ12|v02|2 + ᾱ13v02v̄03)

−iφ21(α12v02v̄01 + α22|v02|2 + ᾱ23v02v̄03) − iφ31(α13v02v̄01 + α23|v02|2 + α33v02v̄03),

φ31,t(t, k) = (2kv03 + iv13)φ41 − iφ11(α11v03v̄01 + ᾱ12v03v̄02 + ᾱ13|v03|2)
−iφ21(α12v03v̄01+α22v03v̄02+ᾱ23|v03|2)−iφ31(α13v03v̄01+α23v03v̄02+α33|v03|2),

φ41,t(t, k) =φ11[α11(2kv̄01 − iv̄11) + ᾱ12(2kv̄02 − iv̄12) + ᾱ13(2kv̄03 − iv̄13)]

+φ21[α12(2kv̄01 − iv̄11) + α22(2kv̄02 − iv̄12) + ᾱ23(2kv̄03 − iv̄13)]

+φ31[α13(2kv̄01 − iv̄11) + α23(2kv̄02 − iv̄12) + α33(2kv̄03 − iv̄13)]

+iφ41[4k2 + α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03 + α12v02v̄01

+α22|v02|2 + ᾱ23v02v̄03 + α13v03v̄01 + α23v03v̄02 + α33|v03|2].
(159)

The second column of Eq. (149) with μ = μ3 yields

φ12,t(t, k) =(2kv01 + iv11)φ42 − iφ12(α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03)

−iφ22(α12|v01|2 + α22v01v̄02 + ᾱ23v01v̄03) − iφ32(α13|v01|2 + α23v01v̄02 + α33v01v̄03),

φ22,t(t, k) =(2kv02 + iv12)φ42 − iφ12(α11v02v̄01 + ᾱ12|v02|2 + ᾱ13v02v̄03)

−iφ22(α12v02v̄01 + α22|v02|2 + ᾱ23v02v̄03) − iφ32(α13v02v̄01 + α23|v02|2 + α33v02v̄03),

φ32,t(t, k) = (2kv03 + iv13)φ42 − iφ12(α11v03v̄01 + ᾱ12v03v̄02 + ᾱ13|v03|2)
−iφ22(α12v03v̄01 + α22v03v̄02 + ᾱ23|v03|2) − iφ32(α13v03v̄01 + α23v03v̄02 + α33|v03|2),

φ42,t(t, k) =φ12[α11(2kv̄01 − iv̄11) + ᾱ12(2kv̄02 − iv̄12) + ᾱ13(2kv̄03 − iv̄13)]

+φ22[α12(2kv̄01 − iv̄11) + α22(2kv̄02 − iv̄12) + ᾱ23(2kv̄03 − iv̄13)]

+φ32[α13(2kv̄01 − iv̄11) + α23(2kv̄02 − iv̄12) + α33(2kv̄03 − iv̄13)]

+iφ42[4k2 + α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03 + α12v02v̄01

+α22|v02|2 + ᾱ23v02v̄03 + α13v03v̄01 + α23v03v̄02 + α33|v03|2].
(160)
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480 Z. YAN

The third column of Eq. (149) with μ = μ3 yields

φ13,t(t, k) =(2kv01 + iv11)φ43 − iφ13(α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03)

−iφ23(α12|v01|2 + α22v01v̄02 + ᾱ23v01v̄03) − iφ33(α13|v01|2 + α23v01v̄02 + α33v01v̄03),

φ23,t(t, k) =(2kv02 + iv12)φ43 − iφ13(α11v02v̄01 + ᾱ12|v02|2 + ᾱ13v02v̄03)

−iφ23(α12v02v̄01 + α22|v02|2 + ᾱ23v02v̄03) − iφ33(α13v02v̄01 + α23|v02|2 + α33v02v̄03),

φ33,t(t, k) = (2kv03 + iv13)φ43 − iφ13(α11v03v̄01 + ᾱ12v03v̄02 + ᾱ13|v03|2)
−iφ23(α12v03v̄01 + α22v03v̄02 + ᾱ23|v03|2) − iφ33(α13v03v̄01 + α23v03v̄02 + α33|v03|2),

φ43,t(t, k) =φ13[α11(2kv̄01 − iv̄11) + ᾱ12(2kv̄02 − iv̄12) + ᾱ13(2kv̄03 − iv̄13)]

+φ23[α12(2kv̄01 − iv̄11) + α22(2kv̄02 − iv̄12) + ᾱ23(2kv̄03 − iv̄13)]

+φ33[α13(2kv̄01 − iv̄11) + α23(2kv̄02 − iv̄12) + α33(2kv̄03 − iv̄13)]

+iφ43[4k2 + α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03 + α12v02v̄01

+α22|v02|2 + ᾱ23v02v̄03 + α13v03v̄01 + α23v03v̄02 + α33|v03|2].
(161)

The fourth column of Eq. (149) with μ = μ3 yields

φ14,t(t, k) =(2kv01 + iv11)φ44 − iφ14(4k2 + α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03)

−iφ24(α12|v01|2 + α22v01v̄02 + ᾱ23v01v̄03) − iφ34(α13|v01|2 + α23v01v̄02 + α33v01v̄03),

φ24,t(t, k) =(2kv02 + iv12)φ44 − iφ14(α11v02v̄01 + ᾱ12|v02|2 + ᾱ13v02v̄03)

−iφ24(4k2+ α12v02v̄01+ α22|v02|2+ ᾱ23v02v̄03)−iφ34(α13v02v̄01+ α23|v02|2+ α33v02v̄03),

φ34,t(t, k) = (2kv03 + iv13)φ44 − iφ14(α11v03v̄01 + ᾱ12v03v̄02 + ᾱ13|v03|2)
−iφ24(α12v03v̄01+ α22v03v̄02+ ᾱ23|v03|2)−iφ34(4k2+ α13v03v̄01+ α23v03v̄02+ α33|v03|2),

φ44,t(t, k) =φ14[α11(2kv̄01 − iv̄11) + ᾱ12(2kv̄02 − iv̄12) + ᾱ13(2kv̄03 − iv̄13)]

+φ24[α12(2kv̄01 − iv̄11) + α22(2kv̄02 − iv̄12) + ᾱ23(2kv̄03 − iv̄13)]

+φ34[α13(2kv̄01 − iv̄11) + α23(2kv̄02 − iv̄12) + α33(2kv̄03 − iv̄13)]

+iφ44[α11|v01|2 + ᾱ12v01v̄02 + ᾱ13v01v̄03 + α12v02v̄01

+α22|v02|2 + ᾱ23v02v̄03 + α13v03v̄01 + α23v03v̄02 + α33|v03|2].
(163)

Similarly, we can also obtain the asymptotic formulae for φij, i, j = 1, 2, 3, 4. Substituting these
formulae into Eq. (148a) and using the assumption that the initial and boundary data are compatible at
x = 0 and x = L, we find the asymptotic result (68) of c14(t, k) for k → ∞. Similarly we can also show
that Eqs. (69) and (70) hold for c24(t, k) and c34(t, k) as k → ∞.
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRÖDINGER EQUATIONS 481

Similarly, we have the global relation (59) under the vanishing initial data as

c41(t, k) = −Ψ44(t, k)(α11φ̄14 + α12φ̄24 + α13φ̄34)e
−2ikL

+Ψ41(t, k)
[
α11(α11φ̄11 + ᾱ12φ̄12 + ᾱ13φ̄13) + α12(α11φ̄21 + ᾱ12φ̄22 + ᾱ13φ̄23)

+α13(α11φ̄31 + ᾱ12φ̄32 + ᾱ13φ̄33)
]+ Ψ42(t, k)

[
α11(α12φ̄11 + α22φ̄12 + ᾱ23φ̄13)

+α12(α12φ̄21 + α22φ̄22 + ᾱ23φ̄23) + α13(α12φ̄31 + α22φ̄32 + ᾱ23φ̄33)
]

+Ψ43(t, k)
[
α11(α13φ̄11 + α23φ̄12 + α33φ̄13) + α12(α13φ̄21 + α23φ̄22 + α33φ̄23)

+α13(α13φ̄31 + α23φ̄32 + α33φ̄33)
]
,

(164)

c42(t, k) = −Ψ44(t, k)(ᾱ12φ̄14 + α22φ̄24 + α23φ̄34)e
−2ikL

+Ψ41(t, k)
[
ᾱ12(α11φ̄11 + ᾱ12φ̄12 + ᾱ13φ̄13) + α22(α11φ̄21 + ᾱ12φ̄22 + ᾱ13φ̄23)

+α23(α11φ̄31 + ᾱ12φ̄32 + ᾱ13φ̄33)
]+ Ψ42(t, k)

[
ᾱ12(α12φ̄11 + α22φ̄12 + ᾱ23φ̄13)

+α22(α12φ̄21 + α22φ̄22 + ᾱ23φ̄23) + α23(α12φ̄31 + α22φ̄32 + ᾱ23φ̄33)
]

+Ψ43(t, k)
[
ᾱ12(α13φ̄11 + α23φ̄12 + α33φ̄13) + α22(α13φ̄21 + α23φ̄22 + α33φ̄23)

+α23(α13φ̄31 + α23φ̄32 + α33φ̄33)
]
,

(165)

c43(t, k) = −Ψ44(t, k)(ᾱ13φ̄14 + ᾱ23φ̄24 + α33φ̄34)e
−2ikL

+Ψ41(t, k)
[
ᾱ13(α11φ̄11 + ᾱ12φ̄12 + ᾱ13φ̄13) + ᾱ23(α11φ̄21 + ᾱ12φ̄22 + ᾱ13φ̄23)

+α33(α11φ̄31 + ᾱ12φ̄32 + ᾱ13φ̄33)
]+ Ψ42(t, k)

[
ᾱ13(α12φ̄11 + α22φ̄12 + ᾱ23φ̄13)

+ᾱ23(α12φ̄21 + α22φ̄22 + ᾱ23φ̄23) + α13(α12φ̄31 + α22φ̄32 + ᾱ23φ̄33)
]

+Ψ43(t, k)
[
ᾱ13(α13φ̄11 + α23φ̄12 + α33φ̄13) + ᾱ23(α13φ̄21 + α23φ̄22 + α33φ̄23)

+α33(α13φ̄31 + α23φ̄32 + α33φ̄33)
]
,

(165)

where φ̄ij = φ̄ij(t, k̄) = φij(t, k̄), such that we can show that Eqs. (71)–(73) hold for c4j(t, k), j = 1, 2, 3
as k → ∞. �

B. The proof of Proposition 4.2

Proof. We can show that Eqs. (75) and (76) hold by means of Eqs. (35) and (36) with T replaced by
t, i.e. S(k) = e−2ik2tσ̂4μ−1

2 (0, t, k) and SL(k) = e−2ik2tσ̂4μ−1
3 (L, t, k) and the symmetry relation (32).

Moreover, Eqs. (77)–(80) for Ψij(t, k), i, j = 1, 2, 3, 4 can be obtained by using the Volteral integral
equations of μ2(0, t, k). Similarly, the expressions of φij(t, k), (i, j = 1, 2, 3, 4) can be found by means
of the Volteral integral equations of μ3(L, t, k).

In what follows we show that Eqs. (81)–(91) hold, i.e. the maps hold between Dirichlet and Neumann
boundary conditions.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/427/6218143 by EM

BL user on 28 N
ovem

ber 2024



482 Z. YAN

(i) The Cauchy’s theorem is employed to study Eq. (62) to generate

iπΨ
(1)
44 (t) = −

(∫
∂D2

+
∫

∂D4

)
[Ψ44(t, k) − 1]dk =

(∫
∂D1

+
∫

∂D3

)
[Ψ44(t, k) − 1]dk

=
∫

∂D3

[Ψ44(t, k) − 1]dk −
∫

∂D3

[Ψ44(t, −k) − 1]dk =
∫

∂D3

Ψ44−(t, k)dk,

(166)

and

iπΨ
(2)
14 (t) =

(∫
∂D1

+ ∫
∂D3

) [
kΨ14(t, k) + i

2 u01(t)
]

dk =
∫

∂D3

[
kΨ14(t, k) + i

2
u01(t)

]
−

dk

=
∫

∂D0
3

{
kΨ14(t, k) + i

2
u01(t) + 2e−2ikL

Σ−(k)

[
kΨ14(t, k) + i

2
u01(t)

]}
−

dk + C1(t)

=
∫

∂D0
3

Σ+
Σ−

(kΨ14− + iu01)dk + C1(t),

(167)

where we have introduced the function C1(t) as

C1(t) = −
∫

∂D0
3

{
2e−2ikL

Σ−

[
kΨ14(t, k) + i

2
u01(t)

]}
−

dk.

We use the global relation (148a) to further reduce C1(t) in the form

C1(t) =−
∫

∂D0
3

{
2e−2ikL

Σ−

[
kΨ14(t, k) + i

2
u01(t)

]}
−

dk

=
∫

∂D0
3

{
2e−2ikL

Σ−

[
−kc14 + Ψ

(1)
14 + Ψ

(1)
14 φ̄

(1)
44

k
− (α11φ̄

(1)
41 + ᾱ12φ̄

(1)
42 + ᾱ13φ̄

(1)
43 )e2ikL

]}
−

dk

−
∫

∂D0
3

{
2e−2ikL

Σ−

[
Ψ

(1)
14 φ̄

(1)
44

k
+
(
α11(kφ̄41−φ̄

(1)
41 )+ᾱ12(kφ̄42−φ̄

(1)
42 )+ᾱ13(kφ̄43−φ̄

(1)
43 )
)

e2ikL

]}
−

dk

+
∫

∂D0
3

{
2ke−2ikL

Σ−

[
Ψ14(φ̄44 − 1) − [

(Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

+Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]
e2ikL

]}
− dk.

(168)
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By applying the Cauchy’s theorem and asymptotics (68) to Eq. (168), we find that C1(t) can
reduce to

C1(t) = −iπΨ
(2)
14 −

∫
∂D0

3

{
i

2
u01φ̄44− + 2i

Σ−

[
α11

(−ikφ̄41− + α11v01 + α12v02 + α13v03

)
+ᾱ12

(−ikφ̄42−+ ᾱ12v01+ α22v02+ α23v03

)+ᾱ13

(−ikφ̄43−+ ᾱ13v01+ ᾱ23v02+ α33v03

)]}
dk

+
∫

∂D0
3

2k

Σ−

[
Ψ14(φ̄44 − 1)e−2ikL − (Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

−Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) − Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]
− dk.

(169)

It follows from Eqs. (167) and (169) that we have

2iπΨ
(2)
13 (t) =

∫
∂D0

3

[
Σ+
Σ−

(kΨ14−+ iu01) − i

2
u01φ̄44−

]
dk

+
∫

∂D0
3

2i

Σ−

[
α11

(−ikφ̄41− + α11v01 + ᾱ12v02 + ᾱ13v03

) + ᾱ12(−ikφ̄42− + α12v01

+α22v02 + ᾱ23v03) +ᾱ13

(−ikφ̄43− + α13v01 + α23v02 + α33v03

)]
dk

+
∫

∂D0
3

2k

Σ−

[
Ψ14(φ̄44 − 1)e−2ikL − (Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

−Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) − Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]
− dk.

(170)

Thus substituting Eqs. (166) and (170) into the third one of system (64), we can get Eq. (81). Similarly,
we can also show that Eqs. (82) and (83) hold.

To use Eq. (67) to verify Eq. (84) for v11(t) we need to find these functions φ
(1)
44 (t, k) and φ

(2)
14 (t, k).

Applying the Cauchy’s theorem to Eq. (65), we have

iπ [α11φ
(2)
14 +ᾱ12φ

(2)
24 + ᾱ13φ

(2)
34 ]

=
∫

∂D3

[
α11(kφ14(t, k) − φ

(1)
14 ) + ᾱ12(kφ24(t, k) − φ

(1)
24 ) + ᾱ13(kφ34(t, k) − φ

(1)
34 )
]
− dk,

=
∫

∂D0
3

{
α11

[
kφ14(t, k)−φ

(1)
14 − 2e2ikL

Σ−
(kφ14−φ

(1)
14 )

]
+ᾱ12

[
kφ24(t, k)−φ

(1)
24 −2e2ikL

Σ−
(kφ24−φ

(1)
24 )

]
+ᾱ13

[
kφ34(t, k) − φ

(1)
34 − 2e2ikL

Σ− (kφ34 − φ
(1)
34 )
]}

− dk + C2(t),

=
∫

∂D0
3

−Σ+
Σ−

[
α11(kφ14− − 2φ

(1)
14 ) + ᾱ12(kφ24− − 2φ

(1)
24 ) + ᾱ13(kφ34− − 2φ

(1)
34 )
]

dk + C2(t),

(171)

where we have introduced the function C2(t) as

C2(t) =
∫

∂D0
3

{
2e2ikL

Σ−

[
α11(kφ14 − φ

(1)
14 ) + ᾱ12(kφ24 − φ

(1)
24 ) + ᾱ13(kφ34 − φ

(1)
34 )
]}

−
dk.
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We use the global relation (163) to further reduce C2(t) in the form

C2(t) =
∫

∂D0
3

{
2

Σ−

[
−kc̄41(t, k̄) −

(
α11φ

(1)
14 + ᾱ12φ

(1)
24 + ᾱ13φ

(1)
34

)
e2ikL

−Ψ̄
(1)
44

(
α11φ

(1)
14 + ᾱ12φ

(1)
24 + ᾱ13φ

(1)
34

)
e2ikL

k + (α2
11 + |α12|2 + |α13|2)Ψ̄ (1)

41

+(α11ᾱ12 + ᾱ12α22 + ᾱ13α23)Ψ̄
(1)
42 +(α11ᾱ13 + ᾱ12ᾱ23 + ᾱ13α33)Ψ

(1)
43

]}
− dk

+
∫

∂D0
3

{
2

Σ−

[
Ψ̄

(1)
44

(
α11φ

(1)
14 + ᾱ12φ

(1)
24 + ᾱ13φ

(1)
34

) e2ikL

k

+(α2
11 + |α12|2 + |α13|2)(kΨ̄41 − Ψ̄

(1)
41 ) + (α11ᾱ12 + ᾱ12α22 + ᾱ13α23)(kΨ̄42 − Ψ̄

(1)
42 )

+(α11ᾱ13 + ᾱ12ᾱ23 + ᾱ13α33)(kΨ̄43 − Ψ̄
(1)
43 )

]}
− dk

+
∫

∂D0
3

2k

Σ−

{
(1 − Ψ̄44)(α11φ14 + ᾱ12φ24 + ᾱ13φ34)e

2ikL

+Ψ̄41

[
α11(α11(φ11 − 1) + α12φ12 + α13φ13) + ᾱ12(α11φ21 + α12(φ22 − 1) + α13φ23)

+ᾱ13(α11φ31 + α12φ32 + α13(φ33 − 1))
]+ Ψ̄42

[
α11(ᾱ12(φ11 − 1) + α22φ12 + α23φ13)

+ᾱ12(ᾱ12φ21 + α22(φ22 − 1) + α23φ23) + ᾱ13(ᾱ12φ31 + α22φ32 + α23(φ33 − 1))
]

+Ψ̄43

[
α11(ᾱ13(φ11 − 1) + ᾱ23φ12 + ᾱ33φ13) + ᾱ12(ᾱ13φ21 + ᾱ23(φ22 − 1) + α33φ23)

+ᾱ13(ᾱ13φ31 + ᾱ23φ32 + α33(φ33 − 1))
]}

− dk.
(172)

We need to further reduce C2(t) by using the asymptotics (71) and the Cauchy’s theorem such that we
have C2(t) in the form

C2(t) = −iπ [α11φ
(2)
14 + ᾱ12φ

(2)
24 + ᾱ13φ

(2)
34 ] −

∫
∂D0

3

i

2
Ψ̄

(1)
44−(α11v01 + ᾱ12v02 + ᾱ13v03)dk + I1(t).

(173)

It follows from Eqs. (171) and (173) that we have

2iπ [α11φ
(2)
14 +ᾱ12φ

(2)
24 + ᾱ13φ

(2)
34 ]

=−
∫

∂D0
3

Σ+(k)

Σ−(k)

[
α11(kφ14− + iv01) + ᾱ12(kφ24− + iv02 + ᾱ13(kφ34− + iv03)

]
dk

−
∫

∂D0
3

i

2
Ψ̄

(1)
44−(α11v01 + ᾱ12v02 + ᾱ13v03)dk + I1(t),

(174)

where I1(t) is given by Eq. (86). Similarly, we can also the expressions of iπ [α12φ
(2)
14 +α22φ

(2)
24 +ᾱ23φ

(2)
34 ]

and 2iπ [α13φ
(2)
14 + α23φ

(2)
24 + α33φ

(2)
34 ] such that we can show that Eq. (84) holds.
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(ii) We now deduce the Dirichlet boundary problem given by Eqs. (88)–(90) at x = 0 from the
Neumann boundary problem. It follows from the first one of Eq. (64) that u01(t) can be expressed by

means of Ψ
(1)
14 . Applying the Cauchy’s theorem to Eq. (62) yields

iπΨ
(1)
14 (t) =

(∫
∂D1

+
∫

∂D3

)
Ψ14(t, k)dk =

∫
∂D3

Ψ14−(t, k)dk

=
∫

∂D0
3

[
Ψ14−(t, k) + 2

Σ−(k)
(e−2ikLΨ14)+

]
dk + C3(t) =

∫
∂D0

3

Σ+(k)

Σ−(k)
Ψ14+dk + C3(t),

(175)

where C3(t) is defined by

C3(t) = −
∫

∂D0
3

2

Σ−(k)
(e−2ikLΨ14)+dk. (176)

By applying the global relation (148a), the Cauchy’s theorem and asymptotics (68) to Eq. (176), we
find

C3(t) = −
∫

∂D0
3

2

Σ−
(e−2ikLΨ14)+dk

=
∫

∂D0
3

2

Σ−

[
−c14e−2ikL − (α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

]
+ dk

+
∫

∂D0
3

2

Σ−

[
Ψ14(φ̄44 − 1)e−2ikL − [

(Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

+Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]]

+ dk

= −iπΨ
(1)
14 −

∫
∂D0

3

2

Σ−
(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)+dk

+
∫

∂D0
3

2

Σ−

{
Ψ14(φ̄44 − 1)e−2ikL − [

(Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

+Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]}

+ dk.

(177)

Eqs. (175) and (178) imply that

2iπΨ
(1)
14 (t) =

∫
∂D0

3

[
Σ+(k)

Σ−(k)
Ψ14+ − 2

Σ−
(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)+

]
dk

+
∫

∂D0
3

2

Σ−

{
Ψ14(φ̄44 − 1)e−2ikL − [

(Ψ11 − 1)(α11φ̄41 + ᾱ12φ̄42 + ᾱ13φ̄43)

+Ψ12(α12φ̄41 + α22φ̄42 + ᾱ23φ̄43) + Ψ13(α13φ̄41 + α23φ̄42 + α33φ̄43)
]}

+ dk.

(178)

Thus, substituting Eq. (178) into the first one of Eq. (64) yields Eq. (88). Similarly, by applying the
expressions of Ψ

(1)
24 (t) and Ψ

(1)
34 (t) to the second one of Eq. (64), we can show that Eqs. (89) and (90)

hold.
Similarly we also can show that the Dirichlet boundary problem given by Eq. (91) at x = L holds

from the Neumann boundary problem. �
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486 Z. YAN

C. The proof of Theorem 5.3

Proof. By means of the global relation (59) and Proposition 5.1, we can show that the spectral functions
S(k) and SL(k) are defined by Eqs. (75) and (76) with Ψ (t, k) and φ(t, k) given by Eq. (108a) and (108b),
respectively.

(i) We firstly consider the Dirichlet problem. It follows from the global relation (59) with the
vanishing initial data

c(t, k) = μ2(0, t, k)eikLσ̂4μ−1
3 (L, t, k), (179)

that we find

c̃j4(t, k) = −Ψ̃3×3MT ¯̃
φT

4j(t, k̄)e2ikL + Ψ̃j4
¯̃
φ44(t, k̄), (180a)

c̃4j(t, k) = Ψ̃4jMT ¯̃
φT

3×3(t, k̄)MT − Ψ̃44
¯̃
φT

j4(t, k̄)MTe−2ikL, (180b)

Substituting Eqs. (118a) and (118b) into Eq. (181a) yields

MT ¯̃̂
LT

4je
2ikL − ˆ̃Lj4 = k ˆ̃Gj4 − kMT ¯̃̂

GT
4je

2ikL + F̃j4(t, k) − c̃j4(t, k), (181)

where F̃j4(t, k) is given by Eq. (120). Eq. (181) with k → −k further yields

MT ¯̃̂
LT

4je
−2ikL − ˆ̃Lj4 = −k ˆ̃Gj4 + kMT ¯̃̂

GT
4je

−2ikL + F̃j4(t, −k) − c̃j4(t, −k). (182)

It follows from Eqs. (181) and (182) that we get

ˆ̃Lj4 = kΣ+
Σ−

ˆ̃Gj4 − 2k

Σ−
MT ¯̃̂

GT
4j + 1

Σ−

{
[F̃j4(t, k) − c̃j4(t, k)]e−2ikL

}
− . (183)

Multiplying Eq. (183) by ke4ik2(t−τ) with 0 < τ < t and integrating them along ∂D0
1 with respect to

dk, respectively, can yield∫
∂D0

1

ke4ik2(t−τ) ˆ̃Lj4dk =
∫

∂D0
1

e4ik2(t−τ) k2Σ+
Σ−

ˆ̃Gj4dk −
∫

∂D0
1

e4ik2(t−τ) 2k2

Σ−
MT ¯̃̂

GT
4jdk

+
∫

∂D0
1

ke4ik2(t−τ)

Σ−
[F̃j4(t, k)e−2ikL]−dk,

(184)

where ∫
∂D0

1

ke4ik2(t−τ)c̃j4−(t, k)dk =
∫

∂D0
1

ke4ik2(t−τ)(c̃j4(t, k)e−2ikL)−dk = 0

in terms of their analytical properties in D0
1.
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Based on these conditions given by Eqs. (123) and (124), Eq. (184) can become

π

2
L̃j4(t, 2τ − t) =2

∫
∂D0

1

k2Σ+
Σ−

[∫ τ

0
e4ik2(t−τ)G̃j4(t, 2s − t)ds − G̃j4(t, 2τ − t)

4ik2

]
dk

−4
∫

∂D0
1

k2MT

Σ−

⎡⎣∫ τ

0
e4ik2(t−τ) ¯̃GT

4j(t, 2s − t)ds −
¯̃GT
4j(t, 2τ − t)

4ik2

⎤⎦ dk

+
∫

∂D0
1

k

Σ−
e4ik2(t−τ)[F̃j4(t, k)e−2ikL]−dk.

(185)

We choose the limit τ → t of Eq. (185) with the initial data (110) and use Proposition 5.2 to find

π

2
L̃j4(t, t) =2 lim

τ→t

∫
∂D0

1

k2Σ+
Σ−

[∫ τ

0
e4ik2(t−τ)G̃j4(t, 2τ − t)dτ − G̃j4(t, 2τ − t)

4ik2

]
dk

−4 lim
τ→t

∫
∂D0

1

k2MT

Σ−

⎡⎣∫ τ

0
e4ik2(t−τ) ¯̃GT

4j(t, 2s − t)ds −
¯̃GT
4j(t, 2τ − t)

4ik2

⎤⎦ dk

+ lim
τ→t

∫
∂D0

1

k

Σ−
e4ik2(t−τ)[F̃j4(t, k)e−2ikL]−dk

=
∫

∂D0
1

{
Σ+
Σ−

[
k2 ˆ̃Gj4(t, t) + i

2
G̃j4(t, t)

]
− 2MT

Σ−

[
k2 ¯̃̂
GT

4j(t, t) + i

2
¯̃GT
4j(t, t)

]
+ ik

2
uT

0

(
ˆ̃G44 − ¯̃̂

G44

)
+ k

Σ−

(
F̃j4e−2ikL

)
−

}
dk.

(186)

Since the initial data (110) are of the form

L̃j4(t, t) = i

2
uT

1 (t) = i

2
(u11(t), u12(t), u13(t))

T , (187)

thus we know that Eq. (128a) holds by means of Eqs. (186) and (187).
To show Eq. (128b) we rewrite Eq. (180b) in the form

¯̃cT
4j(t, k̄) = MT φ̃3×3MT ¯̃

Ψ T
4j(t, k̄) − MT φ̃j4

¯̃
Ψ T

44(t, k̄)e2ikL. (188)

We substitute Eqs. (118a) and (118b) into Eq. (188) to have

−¯̃̂
LT

4j + MT ˆ̃Lj4e2ikL = k
¯̃̂
GT

4j − kMT ˆ̃Gj4e2ikL + F̃4j(t, k) − ¯̃cT
4j(t, k̄), (189)

where F̃4j(t, k) is given by Eq. (121). Eq. (189) with k → −k yields

−¯̃̂
LT

4j + MT ˆ̃Lj4e−2ikL = −k
¯̃̂
GT

4j + kMT ˆ̃Gj4e−2ikL + F̃4j(t, −k) − ¯̃cT
4j(t, −k̄). (190)

It follows from Eqs. (189) and (190) that we have

MT ˆ̃Lj4 = 2k

Σ−
¯̃̂
GT

4j − kΣ+
Σ−

MT ˆ̃Gj4 + 1

Σ−
[F̃4j(t, k) − ¯̃cT

4j(t, k̄)]−. (191)
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488 Z. YAN

We multiply Eq. (191) by ke4ik2(t−τ) with 0 < τ < t, integrate them along ∂D0
1 with respect to dk

and use these conditions given by Eqs. (123) and (124) to yield

π

2
MT L̃j4(t, 2τ − t) =−2

∫
∂D0

1

k2Σ+
Σ−

MT

[∫ τ

0
e4ik2(t−τ)G̃j4(t, 2s − t)ds − G̃j4(t, 2τ − t)

4ik2

]
dk

+4
∫

∂D0
1

k2

Σ−

⎡⎣∫ τ

0
e4ik2(t−τ) ¯̃GT

4j(t, 2s − t)ds −
¯̃GT

4j(t, 2τ − t)

4ik2

⎤⎦ dk

+
∫

∂D0
1

k

Σ−
e4ik2(t−τ)F̃4j−(t, k)dk,

(192)

where we have used the relation

∫
∂D0

1

k

Σ−
e4ik2(t−τ) ¯̃cT

4j−(t, k̄)dk = 0

due to the analytical property of the integrand in D0
1.

We consider the limit τ → t of Eq. (192) with the initial data (110) and use Proposition 5.2 to find

π

2
MT L̃j4(t, t) =∫

∂D0
1

{
−Σ+

Σ−M
T
[
k2 ˆ̃Gj4(t, t) + i

2 G̃j4(t, t)
]

+ 2

Σ−

[
k2 ¯̃̂

GT
4j(t, t) + i

2
¯̃GT

4j(t, t)

]
+ ik

2
MTvT

0

( ˆ̃G44 − ¯̃̂
G44

)
+ k

Σ−
F̃4j−(t, k)

}
dk.

(193)

Since the initial conditions are of the form

L̃j4(t, t) = i

2
vT

1 (t) = i

2
(v11(t), v12(t), v13(t))

T , (194)

thus we get Eq. (128b) by combining Eqs. (194) and (195).
(ii) We now turn to consider the Neumann problem. It follows from Eqs (181), (182), (189) and

(190) that we have

ˆ̃Gj4 = 1

kΣ−

{
Σ+

ˆ̃Lj4 − 2MT ¯̃̂
LT

4j +
[
(F̃j4(t, k) − c̃j4(t, k))e−2ikL

]
+

}
, (195a)

ˆ̃Gj4 = 1

kΣ−

{
2MT ¯̃̂

LT
j4 − Σ+

ˆ̃Lj4 + MT
[
F̃4j(t, k) − ¯̃cT

44(t, k̄)
]
+

}
. (195b)
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We multiply Eqs. (195a) and (195b) by ke4ik2(t−τ) with 0 < τ < t, integrate them along ∂D0
1 with

respect to dk and use these conditions given by Eqs. (123) and (124) to yield

π

2
G̃j4(t, 2τ − t) =

∫
∂D0

1

2Σ+
Σ−

[∫ τ

0
e4ik2(t−τ)L̃j4(t, 2s − t)ds − L̃j4(t, 2τ − t)

4ik2

]
dk

−
∫

∂D0
1

4MT

Σ−

⎡⎣∫ τ

0
e4ik2(t−τ) ¯̃LT

4j(t, 2s − t)ds −
¯̃LT
4j(t, 2τ − t)

4ik2

⎤⎦ dk

+
∫

∂D0
1

e4ik2(t−τ)

Σ−
(F̃j4e−2ikL)+dk,

(196a)

π

2
G̃j4(t, 2τ − t) =

∫
∂D0

1

4MT

Σ−

⎡⎣∫ τ

0
e4ik2(t−τ) ¯̃LT

j4(t, 2s − t)ds −
¯̃LT

j4(t, 2τ − t)

4ik2

⎤⎦ dk

−
∫

∂D0
1

2

Σ−

[∫ τ

0
e4ik2(t−τ)L̃4j(t, 2s − t)ds − L̃4j(t, 2τ − t)

4ik2

]
dk

+
∫

∂D0
1

MT

Σ−
e4ik2(t−τ)F̃4j+dk,

(196b)

where we have used the analytical property of the matrix-valued functions∫
∂D0

1

1

Σ−
e4ik2(t−τ)(c̃j4(t, k)e−2ikL)+dk =

∫
∂D0

1

1

Σ−
e4ik2(t−τ) ¯̃cT

4j+(t, k̄)dk = 0.

We consider the limits τ → t of Eqs. (197a) and (197b) with the initial data (110) and use
Proposition 5.2 to find

π

2
G̃j4(t, t) =

∫
∂D0

1

[
Σ+
Σ−

ˆ̃Lj4 − 2MT

Σ−
¯̃̂
LT

4j + 1

Σ−
(F̃j4e−2ikL)+

]
dk, (197a)

π

2
G̃j4(t, t) =

∫
∂D0

1

(
2MT

Σ−
¯̃̂
LT

j4 − 1

Σ−
ˆ̃L4j + MT

Σ−
F̃4j+

)
dk. (197b)

Since the initial conditions are of the forms

G̃j4(t, t) = uT
0 (t) = (u01(t), u02(t), u03(t))

T ,

G̃j4(t, t) = vT
0 (t) = (v01(t), v02(t), v03(t))

T ,
(198)

thus we can find Eqs. (129a) and (129b) using Eqs. (198a) and (198b). This completes the proof of the
Theorem. �
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