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The general three-component nonlinear Schrodinger (gtc-NLS) equations are completely integrable and
contain the self-focusing, defocusing and mixed cases, which are applied in many physical fields. In
this paper, we would like to use the Fokas method to explore the initial-boundary value (IBV) problem
for the gtc-NLS equations with a 4 x 4 matrix Lax pair on a finite interval based on the inverse
scattering transform. The solutions of the gtc-NLS equations can be expressed using the solution of a
4 x 4 matrix Riemann—-Hilbert (RH) problem constructed in the complex k-plane. The jump matrices
of the RH problem can be explicitly found in terms of three spectral functions related to the initial
data, and the Dirichlet-Neumann boundary data, respectively. The global relation between the distinct
spectral functions is also proposed to derive two distinct but equivalent types of representations of
the Dirichlet—Neumann boundary value problems. Particularly, the relevant formulae for the boundary
value problems on the finite interval can generate ones on the half-line as the length of the interval
closes to infinity. Finally, we also analyse the linearizable boundary conditions for the Gel’fand-Levitan—
Marchenko representation. These results will be useful to further study the solution properties of the IBV
problem of the gtc-NLS system by using the Deift—Zhou’s nonlinear steepest descent method and some
numerical methods.

Keywords: general three-component nonlinear Schrodinger equations; initial-boundary value prob-
lem; inverse scattering; Riemann—Hilbert problem; global relation; Dirichlet and Neumann problems;
Gel’fand-Levitan—-Marchenko representation.

1. Introduction

In the field of nonlinear integrable systems, there are some powerful approaches to study their integrable
properties. Particularly, in 1967, Gardner et al. (1967) first presented the celebrated inverse scattering
transform (IST, also called the nonlinear Fourier transform) to analytically study the initial value (IV)
problem of the integrable Korteweg—de Vries (KdV) equation. After that, the IST has been applied to
the IV problems of other many integrable nonlinear partial differential equations (PDEs) starting from
their matrix Lax pairs (Lax, 1968), such as the nonlinear Schrodinger (NLS) equation, modified KdV
equation, sine-Gordon equation, AKNS system, KP equation, etc. (see, e.g. Ablowitz & Segur, 1981;
Ablowitz & Clarkson, 1991; Zakharov & Shabat, 1972, 1973, and the references therein). In 1992—-1993,
Deift & Zhou (1992, 1993) used the IST to present the nonlinear steepest descent method (an asymptotic
method) to explicitly explore the long-time asymptotics of the Cauchy problems of (1+41)-dimensional
integrable nonlinear PDEs in terms of matrix Riemann—Hilbert (RH) problems, defined as (Deift &
Zhou, 1992, 1993; Its, 2003) follows: let X' be an oriented contour in the complex k-plane (X might
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have points of self-intersection and might have more than one connected component), and J(k) being a
map from X into an invertible matrix. The RH problem given by (X, J) is to find a 2 x 2 matrix-valued
meromorphic function M (k) satisfying the following three properties:

e Analyticity: M(k) is analytic forkink € C\ X;

o Jump condition: MY (k) = M~ (k)J(k) for k € I, where the limits M™ (k) and M~ (k) of M (k)
from the plus and minus sides of X, respectively;

e Normalization condition: M(k) — 1 as k — oo.

In 1997, inspired by the well-known IST, Fokas (1997) introduced a new unified approach (alias
the Fokas method) studying the initial-boundary value (IBV) problems of both linear and integrable
nonlinear PDEs on the half-line and the finite interval (Fokas, 2000, 2002, 2008; Pelloni, 2015). The
Fokas method was regarded as a significant extension of IST from the IV problems to the IBV problems
and further developed by him and his collaborators (see Fokas, 2008, and the reference therein). The
main three steps of the Fokas method for the analysis of an IBV problem for an integrable nonlinear
PDE for u(x, f) with the Lax pair on a finite region 2 = {(x, #)|x € [0, L], t € [0, T]} are listed as follows
(see, e.g. Fokas, 2008; Boutet de Monvel ef al., 2006):

e Step 1: Based on the simultaneous spectral analysis of the associated Lax pai, a RH
formulation is given under the assumption of existence and can be determined by the distinct
spectral functions arising from the various initial and boundary value conditions, where these
spectral functions are not independent, but they satisfy some identity, i.e. the so-called global
relation. As a result, u(x, t) can be expressed by the solution of the RH problem;

e Step 2: Existence under the assumption that the spectral functions satisfy the global relation.
As a result, one can have u(x,t) is defined globally for all 0 <t < T, 0 < x < L, solves the
given nonlinear PDE and satisfies the initial value conditions.

e Step 3: The key study of the global relation generating the Dirichlet-Neumann map. For
the given a subset of the boundary values (e.g. Dirichlet boundary conditions or Neumann
boundary conditions) as boundary conditions, one can use the global relation to characterize
the remaining part of the boundary values (e.g. Neumann boundary conditions or Dirichlet
boundary conditions) by the appropriate symmetries of spectral functions and the use of
Cauchy’s theorem and Jordan’s lemma from complex analysis.

Notice that the results for the IBV conditions in the limit L — oo can reduce to the corresponding ones
on the half-line (see, e.g. Fokas, 2002, 2008; Fokas et al., 2005; Boutet de Monvel et al., 2004; Lenells,
2008, 2011a, and the references therein).

The Fokas method used in the integrable nonlinear PDEs with the matrix Lax pairs admits the two
major breakthroughs (Fokas, 1997, 2008):

e On the one hand, the Fokas method was based on the idea of integrating the associated matrix
Lax pairs simultaneously, as opposed to separately what was performed in the classical IST
method (Gardner et al., 1967; Ablowitz & Segur, 1981).

e On the other hand, the Fokas method was the exploitation of the complex spectral plane as a
means of eliminating certain unknown boundary values that arise in the solution representation
formulae by integrating the matrix Lax pairs.

20z J9qWISAON 8Z UO Josn TN Ad €181.29//2F/€/98/2101MEABWEWI/WOD dNO"0IWSpEoe)/:SAY WO} POPEOJUMOQ



INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER EQUATIONS 429

Since the Fokas method was first announced in 1997, it has been applied to a variety of distinct
settings regarding the type of linear and integrable nonlinear PDEs with distinct domains and IBV
conditions. For example, it can be used to study some physically significant integrable nonlinear PDEs
with 2 x 2 matrix Lax pairs on the half-line and the finite interval (e.g. the NLS equation, Fokas,
1997; Fokas et al., 2005; Fokas & Its, 1996; Kamvissis, 2003; Fokas & Its, 2004; the derivative NLS
equation, Lenells, 2008, 2011a; the sine-Gordon equation, Fokas & Its, 1992; Pelloni, 2005; the KdV
equation, Fokas & Its, 1994; the mKdV equation, Boutet de Monvel et al., 2006, 2004, 2003a; Ernst
equations, Lenells, 2011b; Lenells & Fokas, 2011; and etc., Boutet de Monvel & Kotlyarov, 2000;
Boutet de Monvel et al., 2003b; Fokas, 2005; Treharne & Fokas, 2008; Fokas & Lenells, 2012; Lenells
& Fokas, 2012a,b). Most notably, it has been successfully applied to integrable nonlinear PDEs with
3 x 3 matrix Lax pairs like the Degasperis—Procesi equation on the half-line (Lenells, 2012, 2013).
After that, the idea for the 3 x 3 Lax pairs was also applied to other integrable nonlinear PDEs with
3 x 3 matrix Lax pairs, such as the Sasa—Satsuma equation (Xu & Fan, 2013), the coupled nonlinear
Schrodinger equations (Biondini & Bui, 2012; Geng et al., 2015; Xu & Fan, 2016a; Tian, 2017) and
the Ostrovsky—Vakhnenko equation (Xu & Fan, 2016b). More recently, it was also successfully used to
the integrable nonlinear PDEs with 4 x 4 matrix Lax pairs such as the spin-1 Gross—Pitaeviskii system
(Yan, 2017, 2019).

As is well known, as a universal physical model, the standard dimensionless NLS equation

iqg,+q., —20lq’g=0, o==1, qx1) €Clx1] (1)

can be used to describe the propagation of slowly varying nonlinear wave envelopes in dispersive media
and appears in various backgrounds, such as nonlinear optics, deep ocean, Bose—Einstein condensates,
acoustics, plasma physics and even finance (Ablowitz & Segur, 1981; Ablowitz & Clarkson, 1991;
Zakharov, 1972; Sulem & Sulem, 1999; Agrawal, 2013; Osborne, 2009; Pitaevskii & Stringari, 2016;
Yan, 2010). Eq. (1) is completely integrable and possesses a 2 x 2 Lax pair (Zakharov & Shabat, 1972).
If the wave propagations in an isotropic medium are extended to ones in an anisotropic medium, and g
is a sum of two left- and right-hand polarized waves ¢; and ¢,, then the coupled NLS equations (also
the Manakov system) were presented by Manakov (1974)

1q1: + G — 205119, 2+ 52|¢]2|2)CI1 =0,
2

iqy + Ga — 205111 > + 5319, M)gy =0, 515 = £1,
which contain the self-phase modulation (SPM, e.g. |qj|2
|qj|2q3 —;) and can be used to describe the nonlinear pulse propagation in birifrangent, single-mode fibers
(Menyuk, 1987), an ultrashort light pulse or continuous wave beam propagating in a monomode optical
fibre (Agrawal, 2013), matter waves in the two-component Bose—Einstein condensates (Pitaevskii &
Stringari, 2016) and the evolution of slowly varying two-phase standing waves in deep water (Roskes,
1976a, 1984). System (2) is also completely integrable and admits a 3 x 3 matrix Lax pair (Manakov,
1974). Moreover, Manakov (1974) also presented the three propagating waves in a nonlinear fiber
described by a three-component (n = 3) NLS system

g;) and cross-phase modulation (XPM, e.g.

iq, + 4., —2(qAqNq =0, q=(q.92.93). A =diag(s;.s.53), 5; € R, 3)
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and even the n-component NLS system (Roskes, 1976b; Ablowitz et al., 2004) defined by Eq. (3) with
q = (91,93, --.q,) and A = diag(s,, sy, ..., s,) with sj € R. System (3) can also be used to discuss the
launching and propagation of waves along the three spines of an alpha helix in protein (Scott, 1982,
1984). The three-component and n-component NLS systems are both completely integrable.

Recently, except for the effects of the SPM and XPM appearing in the above-mentioned systems
(2) and (3), if the pair- and three-tunneling effects (Albiez et al., 2005; Folling et al., 2007) are also
considered, then the dynamics of a three-component system can be described by a general three-
component nonlinear Schrodinger (gtc-NLS) system (Wang et al., 2010)

iq1, + G — 211 1gy 1?4+ anlgs|* + as3lgs|* + 2Re (@129,95 + 133,95 + 33293 ] 41 =0,
iqy; + Goue — 2[111q > 4 algy* + a33lq31* + 2Re (@153, + @133193 + @239293)] 42 = 0, (4)

iq3; + Q3 — 2 [01110 2 + @l @yl + a331q31* + 2Re (@153,95 + 133,93 + @233293)] 43 = 0,

where q; = qj(x, 1),j = 1,2,3 denote the complex-valued fields, the overbar denotes the com-
plex conjugate, Re (-) denotes the real part of a function and the six complex-valued coefficients
ozij’s (1 <i <j < 3) of interactions form a 3 x 3 Hermitian-unitary matrix

%1 %2 %3

T 2
M = M' = (zllz 0_[22 05X N M =1 (5)
03 O3 Q33

The gtc-NLS system contains the group velocity dispersion (GVD, i.e. g;,,), self-phase modulation
(SPM, e.g. |qj|2qj), cross-phase modulation (XPM, e.g. |qj|2qs, Jj # ), pair-tunneling modulation
(PTM, e.g. quc"js, J # ) and three-tunneling modulation (TTM, e.g. q;g,43). System (4) can be used
to describe the wave propagations of three modes with four types of modulations containing the SPM,
XPM, PTM and TTM in the nonlinear optics, acoustics, deep ocean, Bose—Einstein condensates, etc.
(Sulem & Sulem, 1999; Agrawal, 2013; Pitaevskii & Stringari, 2016; Roskes, 1976b; Ablowitz et al.,
2004; Whitham, 1999). Particularly, the tunneling modulations could make the system generate the
distinct wave structures (Wang et al., 2010). It is easy to see that system (4) is an extension of system
(3). System (4) can reduce to the distinct models for the choices of six parameters oy 1<i<j<3),
such as

o The three-component focusing NLS system for ;; = —1 and o; = 0 with i < j (Manakov,
1974; Scott, 1982, 1984);

e The three-component defocusing NLS system for «;; = 1 and o;; = 0 with i < j (Biondini et
al., 2016);

o The three-component mixed NLS system for (o;; = —1, oty = az3 = 1) or (a1 =1, ayy =
o33 = —1) and a; = 0 with i < j (Zhang & Yan, 2018);

e The three-component NLS system with only tunneling modulations for «;; = 0 (Wang ez al.,
2010);

e Other types of general three-component NLS systems;
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e The general two-component NLS system containing the Manakov system (Manakov, 1974) for
q;=0.

Recently, the three-component defocusing NLS equations with nonzero boundary conditions were
studied via the IST (Biondini et al., 2016). More recently, the novelly integrable nonlocal version of
Eq. (4) were found (Yan, 2015, 2016, 2018). It is still an important subject to study the solutions of the
gtc-NLS system (4).

To the best of our knowledge, there was no report on the IBV problems of the integrable gtc-NLS
system (4) with 4 x 4 matrix Lax pairs on the finite interval before even if we recently investigated the
IBV problems for the spin-1 Gross—Pitaevskii system with 4 x 4 matrix Lax pairs on the half-line (Yan,
2017) or the finite interval (Yan, 2019). The aim of this paper is to apply the Fokas method to analyse
the IBV problems for the integrable gtc-NLS system with a 4 x 4 matrix Lax pair on a finite region
2 ={(x,0]|x € [0,L], t € [0, T]}, with L > 0 being the length of the interval and T > 0 being the fixed
finite time. The extension will contain some novelties from the 2 x 2 and 3 x 3 matrix Lax pairs to 4 x 4
ones, but the two key steps of this Fokas method (Fokas, 1997, 2000, 2002, 2008) are similar: (i) finding
an integral representation of the solution in terms of a matrix RH problem formulated in the complex
k-plane (k is a spectral parameter of the associated Lax pair). The integral representation in general
contains the unknown boundary data such that this expression of the solution is not effective yet; (ii)
applying a global relation between the distinct spectral function matrices to find the unknown boundary
value conditions. The representation of the unknown boundary values in general involves the solution
of a nonlinear problem. But this problem for the linearizable boundary conditions can be ignored since
the unknown boundary values can be avoided in terms of only algebraic operations (Fokas, 2008).

In this paper, we would like to investigate the gtc-NLS system (4) with the following IBV problems:

Initial conditions: qj(x,t =0) = qoj(x), j=1,2,3,
Dirichlet boundary conditions: qj(x =0,1) = qu(t), qj(x =L = voj(t), j=12,3, (6)
Neumann boundary conditions: qjx(x =0, = ulj(t), qjx(x =L,t) = vlj(t), j=12,3,

where the initial data 40 (x) and Dirichlet and Neumann boundary data U; (1), Voj (t) and u, j ®), v, j (1),
Jj = 1,2, 3 are sufficiently smooth and compatible at points (x, ) = (0,0), (L, 0), respectively. Of course,
the relevant formulae for the IBV problems on the finite interval can generate ones on the half-line as
the length L of the interval approaches to infinity. It should be pointed out that the results about the
4 x 4 Lax pair differ from the previous ones for the cases of 2 x 2 and 3 x 3 matrix Lax pairs, and our
results can reduce to the corresponding ones of some above-mentioned special three-component NLS
systems, and the known results of some special cases such as the Manakov system and other general
two-component coupled NLS equations.

The rest of this paper is organized as follows. In Sec. 2, we investigate the spectral analysis of the
associated 4 x 4 matrix Lax pair of Eq. (4), such as the eigenfunctions, the spectral functions arising
from the initial conditions and Dirichlet-Neumann boundary conditions, the jump matrices and the
global relation between the distinct spectral functions. Sec. 3 gives the corresponding 4 x 4 matrix
RH problem by means of the jump matrices obtained in Sec. 2. Moreover, we can find the solution
(41, q,,q3) given by Eq. (57) can be expressed by using the obtained 4 x 4 matrix RH problem. The
solution (57) will be useful to further study the long-time asymptotics for the solution of the gtc-NLS
system via the Deift-Zhou method (Deift & Zhou, 1992, 1993), or the numerical method (Trogdon,
2013) starting from the above-obtained RH problem. In Sec. 4, a global relation is used to establish
the map between the Dirichlet and Neumann boundary values. Particularly, the relevant formulae for
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boundary value problems on the finite interval can reduce to ones on the half-line as the length L
of the interval approaches to infinity. In Sec. 5, we present the Gelfand—Levitan—-Marchenko (GLM)
representation of the eigenfunctions in terms of the global relation. Moreover, we also show that the
GLM representation is equivalent to one obtained in Sec. 4. Moreover, we also give the linearizable
boundary conditions for the GLM representation. Finally, some conclusions and discussions are given
in Sec. 6.

2. The spectral analysis of a 4 x 4 matrix Lax pair
2.1 The definition and boundedness of modified eigenfunctions

The gtc-NLS system (4) is just the compatible condition, vy, = V,,, of a set of linear PDEs (also called
a4 x 4 matrix Lax pair) (Ablowitz et al., 2004; Wang et al., 2010)

U +ikoyy = U, DY,
(N

wt + 21](20‘41# = V(-x9 t, k)lp’

where ¥ = ¥ (x, 1, k) is a complex 4 x4 matrix-valued or 4 x 1 vector-valued eigenfunction, k € C is a
spectral parameter, o, = diag(1, 1,1, —1) and the 4 x 4 matrices U and V are defined as

0 0 0 g
Ux. 1) 0 0 O @D ) = AU + Vo) )
X, - 0 O 0 q3 (x’ t) b} X, I, - X, 0 X, 1),

pl(-x’t) p2(x’ t) p3(x7 t) 0

with py (x, 1) = o019y + @ 12Gy + %13G3, Pr(X, 1) = @) + apqy + 0x3q3, P3(x, 1) = ay3q; + o34, +
a33é3, and

91P1 91P2 91P3 —q1x
) 5 | 92P1 92P2 92P3 —4ox

Vo, 1) = —i(U, + U)oy = —i ) ©))
q3P1 43P2 43P3 —q3x

Pic Pu Pae —(@1P1 + @py +4303)
Let the modified eigenfunction 1 (x, t, k) be
(et k) = Y (x, 1, k)l ket 2nos, (10)
such that the Lax pair (7) becomes the equivalent form for w(x, t, k)

{ /’Lx + lk[04, /'l/] = U(-x, t)“s
(1)

1y + 2ikP [0y, n] = Vx 1, k),
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(L, T

(X, t) (X, t) (X) t) (X, t)

'Y1 YZ 'Y3 Y4

Fic. 1. Contours y;(j = 1,...,4) from (x}, ) to (x, 1) in the region £2 = {(x,H)|x € [0,L],7 € [0, T]}.

where [0y, t] = o4t — poy. Let 0, denote the commutator with respect to o, and the operator acting
on a4 x 4 matrix X by 6,X = [04, X] such that e?*X = % Xe™, then the Lax pair (11) can be written
as a full derivative form

d [e"<’“+2"2’>3m(x, ‘) k)] = Wx 1, k), (12)

where the exact one-form W (x, ¢, k) is of the form
Wx, 1, k) = e+ 1 pdx + V(x, 1, k)t (x, 1, ). (13)
For any point (x,7) in the region 2 = {(x,t)|x € [0,L], ¢t € [0,T]}, let {yj}‘l1 be four contours

connecting fours vertexes (x;,#;) = (0,7), (x5,%) = (0,0), (x3,13) = (L,0), (x4,%4) = (L, T) to (x,1),
respectively (see Fig. 1). Then, one can have the following inequalities on these contours:

vy (0,T) = (x,0), x—&6>0, t—7 <0,
yyi (0,0) = (x,0), x—£>0, t—1 >0,
y3: (L0 — (x,), x—§ <0, t—71 >0,
va: (LT — (x,0), x—§6 <0, t—7<0.

(14)

By means of the Volterra integral equation, it follows from Egs. (12) and (13) that the four
eigenfunctions {u j}‘I‘ on the four contours {yj}‘l‘ can be written as

D _
w06 1,k) =T, + / o RNTyy £ 7 k), (15)

(xj,7)

where I, is a 4 x 4 identity matrix, the integral is over a piecewise smooth curve from (xj, tj) to (x,t) and
Wix, 1, k) is given by Eq. (13) with u(x, t, k) replaced by (X, 1, k). Since the one-form Wj’s are closed,
thus 41;’s are independent of the path of integration, and we now choose the paths of integration to be
parallel to the x and ¢ axes. It follows from Eq. (15) with the chosen paths of integration that the four
columns of the matrix 14;(x, 7, k) contain the following exponentials:

[l : PRO—OTHO—D j— 123 415 = 1,2,3, (16a)

[Mj]4 . e—2ik(x—§)—4ik2(t—r)’ e—2ik(x—$)—4ik2(t—t)’ e—2ik(x—$)—4ik2(z—t),j =1,2,3,4. (16b)
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Im k

Re k

F1G. 2. The domains D, (n = 1,2, 3,4) in the complex k-plane.

To analyse the bounded regions of these obtained eigenfunctions {,uj}zl‘, we need to use the curve

{k € CI(Ref(k)(Regk)) = 0, f(k) = ik, glk) = ikz} to separate the complex k-plane into four
regions (see Fig. 2):

D, ={keCJ|Ref(k) <0, Reg(k) <0}, D, ={ke C|Ref(k) <0, Reg(k) > 0},

(17)
Dy ={k e C|Ref(k) > 0, Reg(k) <0}, Dy ={ke C|Ref(k) >0, Reg(k) > 0},
which imply that D; and D5 (D, and D,) are symmetric about the origin.
Thus it follows from Eqgs. (14), (16) and (17) that the regions are presented below:
py s (foNg fong . foNgy. fyNg) = (Dy,D,,D,,D;),
/~’L2 : (f— ﬂg—’f— ﬂg_’f— mg—’f-l,- mg+) = (Dl’Dl’DlsD4)’ (18)

M3 : (f+ mg—9f+ mg—’f+ mg—,f— ﬂg+) = (D39D33D3,D2)7
Byt (F N8y i Ny [ N8y foNgl) = (Dy, Dy, Dy, Dy),

where the different columns of eigenfunctions {u j}‘l‘ are bounded and analytic in the complex k-plane,
fr:=Ref(k) >0,f_ :=Ref(k) <0, g, :=Reg(k) >0and g_ :=Reg(k) <O0.

2.2 The new matrix-valued functions M,’s and jump matrices

To construct the jump matrix in a RH problem, we introduce the solutions M,,(x,#,k) (n = 1,2,3,4) of
Eq. (11) as

s,j=1,2,3,4, (19)

ns

(M,);(x.1. k) = 8,; + / (e—"<k’f+2’<2’>34wn(g,r,k)) , keD
My y
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where BSj = 1fors =, BSJ- = O fors # j, W, (x,t,k) is given by Eq. (13) with u(x,,k) replaced with
M, (x,1,k), and the contours (y”)sj’s are given by

vy, as Ref (k) > Re]?(k) and Re g (k) < Regj(k),

v», as Ref, (k) > Re fj(k) and Re g (k) > Re gj(k),

"y = (20)
v3, as Ref, (k) < Refl-(k) and Re g (k) > Regj(k),

V4, as Ref (k) < Re];(k) and Re g (k) < Re gj(k),

for k € D,, where f| ; 5(k) = —f4(k) = —ik, and g, , 3(k) = —g4(k) = —2ik>.

Notice that to distinguish (y") sj’s to be the contour y; or y, for the special cases, Ref, (k) = Re J; (k)
and Re g, (k) = Re gj(k) in Eq. (20), we choose them in these cases as y; (or y,), which must appear in
the matrix y"; otherwise, we choose them in all these cases as the same y; (or y,).

It follows from the definition (20) of (y")sj that y" (n = 1,2, 3,4) can be written explicitly as

Ya Y4 V4 V2
y1= Ya Y4 Va4 V2 i

Ya Y4 Va4 V2

Ya Va Y4 Va4

2 .1 3 _ NT 4 INT
V=Y ooy ¥V =00 vI=0)0 @D

PROPOSITION 2.1 For the matrix-valued functions M, (x,t,k) (n = 1,2,3,4) defined by Eq. (19) for
k € D, and (x,1) € $2, and any fixed point (x,t), M, (x,t,k)’s are the bounded and analytic functions of
k € D, away from a possible discrete set of singularity {k;} at which the Fredholm determinants vanish.
Moreover, M, (x, t,k)’s admit the bounded and continuous extensions to Dn and

1
Mn(x,t,k):]l4+0(z), keD,, k— oo, n=12734. (22)

Proof. Similarly to the proof for the case of the 3 x 3 matrix Lax pair in (Lenells, 2012, 2013), we can
also show the boundedness and analyticity of M,. The substitution of

5 20
M, 0k
we k) = M, (51,0 = MO, 1,0 + > Mi@th)
— K
J:

into the x-part of the Lax pair (11) yields Eq. (22). (]

The above-defined matrix-valued functions M,’s can be used to formulate a 4 x 4 matrix RH
problem. We introduce the spectral functions S, (k) (n = 1,2,3,4) by

S (ky=M,(x=0,t=0k), keD, n=1234 (23)

n
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Let M(x,t, k) denote the sectionally analytic function on the Riemann k-sphere, which is equivalent to
M, (x,t,k) for k € D,.. Then M (x, t, k) solves the jump equations

M, (x,t,k) = M, (x,t,k)J],,, (x,t,k), keD,ND,, nm=1273,4, n#m, (24)

with the jump matrices J,,,, (x, ¢, k) defined by
]mn(x’ t, k) — e*i(kx+2k2t)cf4 [Sy;] (k)Sn (k)]ei(kx+2k2t)o’4 ) (25)

2.3 The minors or the transpose of the adjugates of eigenfunctions

To conveniently calculate the spectral functions S, (k) in the following sections, we need to use the
cofactor matrix X4 (or the transpose of the adjugate) of a 4 x 4 matrix X defined as

m“(X) _mlz(X) m13(X) —m14(X)

ad_](X)T — XA — _m2l(X) m22(X) —My3 (X) m24(X) ’ (26)
my (X) —myp(X)  myz(X) —may(X)

—my (X)  mypX) —myz(X)  myy(X)

where m;;(X) denotes the (ij)-th minor of X and (X*)7X = adj(X)X = det X.
It follows from the Lax pair (7) that the eigenfunction {M}f‘

Lax equation

}‘1¥ of the matrices {,uj(x, t, k)}‘l‘ satisfy the

[ I’L? - lk[04, MA] = _UT(-x7 I)M/A»
27)

it = 2ikoy, ptl = =V (x, 1, k)ut,

whose solutions can be written as

) = Iy [ ORI [T ¢ e VT n e i 6rb. =123, C8)
'

in terms of the Volterra integral equations.
It is easy to check that the regions of boundedness of u;‘ are given by

wi(x,t,k) is bounded for k € (D5, D3, D5,D,),
p4 (x,t,k) is bounded for k € (D,,Dy,D,, D),
ug‘(x, t,k) is bounded for k € (D,,D,,D,,D5),

/Lﬁ(x, t,k) is bounded for k € (D|,D,D,D,),

which are symmetric ones of I about the Re k-axis (cf. Eq. (18)).
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2.4  Symmetries of eigenfunctions

Let
Ux,1,k) = —iko, + U(x,1), V(x,1,k) = 2ik*o, + V(x,1,k). (29)
in the Lax pair (7). Then we have
PUCLOP = —U 6k, PVa.LbP = —V(xLk7, (30)
where the symmetric matrix P is taken as

oy dpp ‘Ells 0
oy dy 0y 0
o3 a3 a3z 0
0O 0 0 -1

P?=1, P="P". (31)

Notice that the used symmetric matrix P differs from the diag ones used in the cases of 3 x 3 Lax pairs
(Biondini & Bui, 2012; Geng et al., 2015; Xu & Fan, 2016a; Tian, 2017).
Based on Egs. (27) and (30) we have the following proposition:

PROPOSITION 2.2 The matrix-valued eigenfunctions ¥ (x, t, k) of the Lax pair (7) and Mj(x, t,k) of the
Lax pair (11) both possess the same symmetric relations

-1 - B P, u! —Puonk) P, j= (32)
Ytk = PYn k) P k) = Puytank) Pooj=1,2,3.4,

Moreover, In the domains where @ ; is bounded, we have

1
Mj(x,t,k)z]Ll—i—O(z), k— oo, j=1,2,3,4 (33)

and det[uj(x, t,k)] =1(G = 1,2,3,4) since the traces of the matrices U(x, t, k) and V(x, t, k) are zero.

2.5 The relations between spectral functions and jump matrices J,,,

Since these functions ,uj(x, t,k), j=1,2,3,4 are dependent, thus one can define the three 4 x 4 matrix-
valued functions S(k), s(k) and S(k) between j, and Wjs j = 1,3,4 in the forms (cf. Fig. 3)

1 G, k) = oy (x, 1, kye T RF2E0T 5 k),

136, 1K) = iy (x, 1, k)e T RFR0G 5(1) (34)

(G, k) = o (x, 1, k) e~ TR 2ENTa ()
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t
puaf m
S(k) Si.(k)
H2 ".U:; ‘

F1G. 3. The relations among uj(x, tk),j=1,2,3,4.

Evaluating system (34) at (x,7) = (0,0) and the three equations in system (34) at (x,7) =
(0,7), (L,0), (L, T), respectively, yields

S(k) = 111 (0,0,k) = 2K 7%, 71(0, T, k),
s(k) = p3(0,0,k) = e* 1L, 0,k), (35)
S(h) = 114(0,0,k) = el FA2KTT 2L T k),

Except for the defined three relations, it follows from Egs. (34) and (35) that we can find other three
relations:

o The relation between 5 (x, 1, k) and 114 (x, ¢, k):
1y (5, 1K) = gus (x, 1, k) e IR DARE DG (1 T ) = ug (x, 1, k)e IR D+22M0 g, (k)
with
Sp(k) = 11y (L, 0,k) = 2% T% 7V (L, T, k), (36)
o The relation between puq (x,2,k) and py(x, £, k):
3 (e, k) =y (x, 1, e I RHRTRS (k) S(k) = S (k)s(k), (37
o The relation between g (x, 2, k) and py(x, 2, k):
[y (e 1K) = g (6, 1, K)e TR0 g gy g (k) = STU RS (). (38)
It follows from Eqgs. (35) and (36) that we have the relation
S(k) = s(k)eL%4 s, (k). (39)

The map of these relations among ;s is exhibited in Fig. 3.
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According to the definitions (15) of ,uj’s, Eq. (35) and (36) imply that

L Lo -1

s(k) =1, — /0 el’kf‘“(UM)(s,o,k)ds:[H4+ /0 e”“‘”(Uuz)@,o,k)ds] ,
T oo T o !

S(ky =1, — / AT (V)0 7, k)dE = [H4+ / e*k ’““(Vuz)(o,r,k)dt} ,
0 0
T _ T -1

S, (k) =I, — / e2ik2m4(V,u4)(L,r,k)dr=|:]I4+ / e2”‘2“’4(Vu3)(L,r,k)dr] , (40)
0 0

L T
S(k) =1, — / T (U, (8,0, k)dE — M4 / AT (V1 (L T, kydr

0 0
a2 L PPN T 2~ -
=[H4+e2’k T3 / MM (Upy) (&, T, k) dE + / 2k f”4<Vu2)(o,r,k>dr} ,
0 0

which can lead to G(k) and sy(k) in terms of Egs. (37) and (38), where ujz(O, Lk), j, =
1,2, Mj3(L’ 1,k), j3 = 3,4, W, (x,0,k), j; = 2,3,4, upy(x,T,k), 0 < x < L,0 <t < T are defined by
the integral equations

10,1,k = I+ / ¢ 2RDT (V) (0,7, 0 dT, (0,0, K) =1, + / e HR=D5 (y11,)(0, 7, k),
T 0

t > t . .
iyt k) = T+ / e AR5 (v (L7 T, g (L1 k) =T+ / ¢ =05 (v (L, 7, Kyde,
0 T

X N X o
[y (x,0,k) = I+ / M (U,y) (£,0,k0dE,  pus(x,0,k) =T, + / M (Upy) (E,0,k)dE,
0 L

X =R . =R T . =R
14 (x,0,k) = I, + / M (Upy)(€,0,k)de — e~ *x—1% / AT (V) (L, T, k) dr,
L 0

X T
e MR Upy) (6, T k) dg + e / ¢TI (Vi) 0. 7. b

1y (6 T, ) = H4+/
0 0

It follows from the properties of I and pL/A that the spectral functions {S(k), s(k), S(k), S; (k)} and
{SA(k), s1(k), SA(k), S (k)} have the following boundedness:

[ S(k), Sy (k),and SfL‘(k) are bounded for k € (D,UD,,D,UD,,D,UD,,D;UD5),
s(k) is bounded for k € (D; UD,,D3;UD,,D3;UD,,D; UD,),
S(k) is bounded for k € (D,4,D4,D,4,D,),
SA(k) is bounded for k € (D; UD5,D; UD5,D, UD5,D,UD,),
sA(k) is bounded for k € (D; UD,,D; UD,,D; UD,,D;UD,),
| SA(k) is bounded for k € (D,,D,,D,,Ds).
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PROPOSITION 2.3 The matrix-valued functions S, (x,t,k) (n = 1,2, 3,4) defined by

M, (1, 5) = py(x, 1, ke ®et205ag 1y ke D (41)

ns

with M, given by Eq. (19) can be determined by the entries of the data S(k) = (Sl-j) axa> S(k) = (sl-j) dxds
and S(k) = (Sij)4x4 given by Eq. (35) as follows:

St S12 513 Sl
ST A
Si1 Sz Si3 0 ( 24)44
Syt Sy Sy 0 $21 S22 523 STs Y
Si(k) =1 S31 Sz S35 (1) ’ Sy(k) = Sa4 “ols
N N N —
S41 Sup Sy3 3T B (sTsAy
My, (S) 44
S41 S42 543 m
n S) n S) n S
(D g12) 13 11448) 111244(5) 7143 44(S) Siy
3 3 30 S S Syq Sy
;21) S§22) 5523> S04 N1 44(S) N 44(S) 1p344(S) S
Sy S35 S5 sa 131 44(S) 133 44(S) 133 44(S) s
34
S§41) S§42) S;43) Sua 864 864 864 S
44
where n; ; ;... (X) denotes the determinant of the sub-matrix generated by choosing the cross

elements of i; ,th rows and j; ,th columns of X (Yan, 2019), i.e.

n. . (X) = ‘ Xiji Xinjs
1J1,12J2 .. . .
2J1 2]2

and

SUb Moy ()94 (8) — m34(5)”11,34(s) + m44(5)”11,44(s)
3=

(sT54) '

§@ _ M4 (S)ny 14(8) — M3y (S)ng; 34(8) 4 1My (S)ng; 44(5)
P (sTS%) 123
§B _ M4 (S)nz; 14(8) — Moy (S)nz; 24 (8) + Mgy (S)ng; 44 (s) T

3 (sTsA) ’

S _ M4 (S)nyy 14(5) — Mg (S)ng; 24(5) + m34(S)ny; 34(s)
L 3 (STSA)44 ’
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Proof. 'We introduce the matrix-valued functions R,(k),S,(k),T,(k) and P,(k),n = 1,2,3,4) by
M, (x,1,k) and uj(x, t,k)

M, (6, 1,K) = oy (1, e EREINR, ),
M, (x,t,k) = py(x, t, k)e (K+2k0045 (),

) _ 43
M,y (x5, 1,6) = py(x, 1, k)e i EFRDTT (o), @
M, (x, 1,k) = 1y (x, 1, k)e iR +208p (1),
It follows from Eq. (43) that we have the relations
R, (k) = FTFM (0,T,k),  S,(k) = M,(0,0,k),
(44)

T, (k) = e M, (L,0,k), P,(k) = & MT2KD0pM (LT, k),
and

S(k) = 11(0,0,k) = S, (R, ' (k),
s(k) = p3(0,0,k) = S, (0T, ' (k), (45)
S(k) = 114(0,0,k) = S, (k)P ' (k),

which can in general generate the functions {R,,S,, T,, P, } for the given functions {s(k), S(k), S(k)}.
Moreover, we can also determine some entries of {R,,S,,T,, P,} as

(R, (0); =0, if (Y™ =7,
(S, (0); =0, it (") =va,
(Tn(k))ij = (Sij, if ()’n)ij =73
(P = 850 1F (") = v

(46)

in terms of Egs. (19) and (43). Thus it follows from systems (45) and (47) that we can obtain
Eq. (42). O

2.6 The global relation between the distinct spectral functions

The definitions of the above-mentioned spectral functions S(k), s(k), S; (k) and S(k) imply that they are
not independent. It follows from Egs. (34) and (36) that

gt k) = py(x 1, ke RTR0TS (k) = 1, (x, 1, k)e T RH R [5(k) MBS, ()]

. ~ Y 47
= 1y 061, K)e 0T[5 () (k)L S (k) @

which leads to the global relation
(T, k) = g (0, T, k) = e 2R T[S ()5 (ke P45, ()], (48)

by evaluating Eq. (47) at the point (x,#) = (0,T) and using 14 (0,T,k) = 1.
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2.7 The residue conditions for M,

Since w, (x, ¢, k) is an entire function, it follows from Eq. (41) that M, (x, t, k) only have singularities at
the points where the S, (k)’s have singularities. We find from the expressions of S, (k) given by Eq. (42)
that the possible singularities of M,, are listed as follows:

e [M], could admit the poles in D, at the zeros of m,, (S)(k);

e [M], could have the poles in D, at the zeros of (S7s%),4(k);

e [M];, I =1,2,3 could possess the poles in D at the zeros of (sTSA)44 k);
e [M],, I =1,2,3 could have the poles in D, at the zeros of Sy, (k).

We introduce the above-mentioned possible zeros by {kj}N , and suppose that they satisfy the
following condition.

ASSUMPTION 2.4 Suppose that
e my,(S)(k) has the n possible simple zeros in D; denoted by {k~}"1

o (8Ts%),, (k) has the n, — n, possible simple zeros in D, denoted by {k; }n e

o (sTsh 44 (k) has the n; — n, possible simple zeros in D5 denoted by {k }n Y

e Sy4(k) has the N — n3 possible simple zeros in D, denoted by {k; }n3 I

and that none of these zeros coincide. Moreover, none of these functions are assumed to have zeros on
the boundaries of D,’s (n = 1,2, 3,4).
We can deduce the residue conditions at these zeros by the following expressions:

PROPOSITION 2.5 Let {Mn}‘l1 be the eigenfunctions given by Eq. (19) and suppose that the set {kj}llV of
singularities is as the above-mentioned Assumption 2.4. Then we have the following residue conditions
forM,:

Ny, 23(S)(k )[Ml (k )]1 ni 23(8)(]‘ )[Ml (k )]2"‘"]1 zz(S)(k )[M1 (k )]3 29(k)
m44(S) (k; )m34(S)(k) (49)

for 1<j<ny, keD,

Resk:kj[Ml =

[Mz (k,)] 1 [514(16./)”22,43 (s) (k,) - 524 (kj)nlz,43 (s) (k,) +S44 (kj)n12,23 (s) (k/)]

(SfSA)44(kj)m34(S)(kj)e*w(kj)
My () 1S 14 (Kngy 43 (8) () = Spg (kg 43 (8) (k) +Sq (ko3 (9) (k)]

(ST54) 44 () (5) (e 204 (50)
[Mz(k )] [S14(k )n21 42(5)(k) 524(k )n” 42(5) (k )+S44(k )n11 22(5)(k )]

(S75) 44 (k) my () (ke =20 &)

>

for ny+1=<j<n, kebD,,
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myy S) (kj)n41,14 () (kj) —Myy ) (kj)”l41,24 () (kj) +myy ) (kj)n41,34 () (kj)

(STSA)44(kj)S44(kj)eze(kj) 51
x[M3kj)]4, for ny+1<j<n3, keD;, [=1273,

Resy_y,[M3]=

Sy k)
ReSk:k,-[Mﬂz:—S“’—(]C’)[M4(kj)]4e—29<kf>, for my+1<j<N, keD, [=123, (52
44 (K;

where the overdot stands for the derivative with resect to the parameter k and 6 = 0(k) = —i(kx+ 2k>7).

Proof. 1t follows from Egs. (41) and (42) that the four columns of M, are given by the matrices , and
Sy (k)

[M1 ]j = [M2]1S1j + [/1«2]252]- + [M2]3S3j + [M2]4S4j3_29, j=12,3, (53a)
o]y

M, = R 53b

(M]y My S) (53b)

the four columns of M, are given by the matrices ., and S, (k)

[Mz]j = [Mz]lslj + [Mz]zszj + [M2]3S3j + [u2]4s4je_29, Jj=12.73, (54a)
M), = [M%]ASM 20 [/*%]2524 20 [M%]3S34 2 [M%]jsu’ (54b)
(S"sM) 44 (STs4) 44 (STs4) 44 (S"sY) 44
the four columns of M5 are given by the matrices ., and S5 (k)
1j 2j 3j 45 _ .
[M3]; = (1021185 + [100oS5 + (151385 + [l 85 e, j=1,2.3, (552)
(M3], = [M2]1514€26 + [M2]2324629 + [M2]3S34€29 + (19145445 (55b)
and the four columns of M, are given by the matrices 1, and S, (k)
11j,44(S) 19;44(S) n344(S)
ARV mah—g oy —g— j=123 (56a)
44 44 44
[M4]4 = [M2]1814€29 + [M2]2824€26 + [1102]383462(9 + [M2]4S44s (56b)

For the case that kj € D, is a simple zero of m,(S)(k), it follows from Eq. (53a) that we have
[Mz]j»j = 1,2,4 and then substitute them into Eq. (53b) to yield

M, = n1223S) M)y — 1y 23S) My +nyy 0 (S)IM, 15 20 als
14 M3y (S)my, (S) M34(S)

i

whose residue at k; yields Eq. (49) for k; € D, respectively.
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Similarly, we solve Eq (54a) for [i,];, j = 1,2, 4, and then substitute them into Eq (54b) to yield

[M3]1[S1412.43(8) — Span2.43(8) + Saanyp23(s)] 20

M1, =
Moy (STSA)44’"34(S)
My 15[S147191,43(5) — Spanty1,43(8) + Saantyi 23(5)] o2
(STSA)44m34(S)
[M3]3[S14791 42(5) — Sp4n11 42(8) + Saan11220)] o5 [142]5 o9
+ TA e~ — e
(875%) 44mm34(5) m3,(s)

whose residues at k; yield Eq. (50) for k; € D,, respectively. Similarly, we can show Eq. (51) for k; € D3
and Eq. (52) for k; € D by analysing Egs. (552)—(56b). g

3. The 4 x 4 matrix RH problem

By using the district contours y; (j = 1,2,3,4), the integral solutions of the revised Lax pair (11) and
S, due to {S(k), s(k),S(k),S; (k)}, we have defined the sectionally analytic functions M, (x,t,k) (n =
1,2,3,4), which solve a 4 x 4 matrix RH problem. This RH problem can be formulated on the basis of
the initial and boundary data of the functions g, (x, ), g,(x,t) and g5(x, ). Thus the solution of Eq. (4)
for all values of x, ¢ can be refound by solving the RH problem.

THEOREM 3.1 Let (q;(x,1),q,(x,1),q3(x,1)) be a solution of Eq. (4) in the interval domain 2 =
{(x,0)|x € [0,L], t € [0,T]}. Then it can be reconstructed from the initial data qj(x,t =0) = qoj(x), j=
1,2, 3, Dirichlet boundary data qj(x =0,1) = uoj(t), qj(x =Lt = voj(t), j = 1,2,3 and Neumann
boundary data qjx(x = 0,1 = ulj(t), qjx(x =L,1) = vlj(t), j = 1,2,3. We can use the initial and
boundary data to define the jump matrices J,,,, (x, 1, k), (n,m =1, ...,4) given by Eq. (25) as well as the
spectral functions S(k), s(k) and S(k) defined by Eq. (35). Assume that the possible zeros {kj}11V of the

functions m,,(S)(k), (STs*)44(k), (s7S),4(k) and S, (k) are as in Assumption 2.4. Then the solution
(q,(x,1), g5(x, 1), q3(x, 1)) of Eq. (4) is given by M (x, ¢, k) in the form

qj(x, 1) =2i lim (kM(x,1,k));4, j=1,2,3, (57)
k— 00

where M (x, t, k) satisfies the following 4 x 4 matrix RH problem:

e M(x,1,k) is sectionally meromorphic on the Riemann k-sphere with jumps across the contours
D,UD,, (n,m=1,..,4) (see Fig. 2);

e Across the contours Dn U Dm (n,m=1,...,4), M(x,t, k) satisfies the jump condition (24);
e The residue conditions of M (x, t, k) are satisfied in Proposition 2.5;

o M(x,t,k) =1, + O(1/k) ask — oo.

Proof. System (57) can be deduced from the large k asymptotics of the eigenfunctions. We can follow
the similar ones in Fokas (2002); Fokas et al. (2005) to show the rest proof of the Theorem. Il

REMARK 3.2 The result (57) will be useful to further study the long-time asymptotics for the solution
of the gtc-NLS system via the Deift—Zhou method (Deift & Zhou, 1992, 1993), or the numerical method
(Trogdon, 2013) starting from the above-obtained RH problem.
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4. The nonlinearizable boundary conditions

The main difficulty of IBV problems is to find the boundary values for a well-posed problem.
All boundary value conditions are required for the definition of S(k) and S; (k), and hence for the
formulation the RH problem. Our main conclusion exhibits the unknown boundary condition on basis
of the prescribed boundary condition, the initial condition and the solution of a system of nonlinear
integral equations.

4.1 The generalized global relation

By evaluating Eqgs. (47) and (48) at the point (x,#) = (0,7), we have the global relation between the
spectral functions

c(t.k) = (0.1, ke 2P s (k) 7S, (k) (58)
which and Eq. (36) lead to the global relation in the form

c(t, k) =115(0, 1, k)e =204 (k) kP4 2154 1 (L, 1K)

= 1150, 1, k) [~ 2K (k)[4 1T (L, 1, K)]. ©2)

Thus, the column vectors [c(z,k)];, j = 1,2, 3 are analytic and bounded in D, away from the possible

—2ikL . .
(HET) as k — oo, and the column vector [c(t, k)], is analytic and

bounded in D; away from the possible zeros of m144(S) (k) and of order O( 1+7:ikL) as k — 00,

zeros of Sy, (k) and of order O

4.2 Asymptotic behaviors of eigenfunctions

It follows from the Lax pair (11) that the eigenfunctions {uj}‘l1 possess the following asymptotics (as
k — 00):
U] O] 0} U]
Hitt Mo M3 Mg
2 )] O] 0] )
1| Hj21 M2 M3 Mjoa 1
weth=L+> a1 o o o o |Tos
=1 Hijz1 Hjza M3z Kz

0] 0] ) 0]
Mjar Mjan Mjaz Mjag

(€4)) (x,1) (x,1) i
) ) ) !
/ A / AYYS / ATE: ) q
(xotj) (5,1 (5,17
(x,t) (.0 (.0 i
(€8 (n (1) l
/ A5 / 45 / A3 71
1 (.7 (x,7) (5.1
(x,1) (x,1) (.0 i
(e8] (e8] (1) !
/ Az / A3, / Ass 513
(1)) (xj,7) (xj,7)

i i (x,1)
i l ! (1)
2P1 P2 5P3 / Ay
2 2 (
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(x,1) (.0 (x,0)
2) 2) 2 2
/ Ay / A1, / A3 Hj14
(xj,7) (xj.7) (xj,7)
x,0) (x,t) (x,1)
2 ) 2) 2
/ 45 / A5 / Ay Hjoa
1 (x.t7) () ()

K2 @ @ @
) 2 2 (2)
/ A3 / A3 / Az 34

(x.17) (1)) (5517

1
+0()-

(1)
) ) ) 2)
Mja1 Hja2 M43 / Ay
(1))
(60)
where we have introduced the following functions:
AD = L ey ] dr, j.1=1,23
i = S4ipidx E(ijlx_q]'xpl) o j =123,
P 3 13 (61)
1 _
A = =5 Doapidx+ 5 D Py — pg .
j=1 j=1
and
(1) PO (1)
@ _1 1 / nH @ 1 i )
0 ~q;+ =4 Ay, WO =-pr+=>p AW 1=1,2,3,
][4 4 Ix 21 1 (Xj’[j) 44 ]4[ 4 Ix 2; s (_xj’[j) sl
.3
1 i 0
(2) 1)
Ay’ = |:qu101)€+ Eqs zpn/ A dx
n=1 7 O5h)
1 3 1 3 (€] (D
+ 17 |90 T aupe—ia i D ap; | + 5 2 @pn—dap) | A pdsi=1.2.3,
j=1 n=1 Xjolj
13
(2) AD
4 () = |:Z sz%x ZP[%/ 44:| dx
=1 5.1
113 - . 3 2 13 xf) "
1 D i —irna) +il Dopar) |+ Ez(plf’hx ) t Ay de.
I=1 I=1 =1 Xty

The functions {/1, i = uﬂ)(x HY, s=1,2are independent of k.
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We define the functions {¥;;(z, k)};1 =1 as

[ l l l
lpl(]) ( l) lpl(z) ( l) ‘1’1(3) ( l) lp1(4) ( l)

2
1 W (1) W) (1) (1 1
01 = e =Tk 3 | A0 O 0 V0 | o). @

vcf? 0 w5 O w0 v o

Based on the asymptotics of Eq. (60) and the boundary data at x = 0, we find

v () = ——uo,(r)

w0 = ;uoj%ﬁ), =123,

w0 = [“11“01(0 + Gyl (1) + @3l (1)] s

O [0112%1 (1) + @iy (1) + Gzl (1)]
Wy (1) = [0‘13”01(f)+“23”02(t)+“33”03(t)]

t
NCE /0 {“11[“11’_401(’)+5‘12’_402(’)+5‘13’7‘03(t)]+“12 [ev1itor (1) +orgs iy (1) + 33 ()]

gy o3 (1) + ozl (1) + asziios ()] — ugy [ay ity (1) + @ity () + @350

—ttg [0y () + iy (1) + Gzt 3(1) ] — gy [ory300y (1) 4 ezt (1) + zitg3 (1] }df

(63)
Thus we have the the boundary data at x = 0:
uy: () = 20w (1), uy () = 4'1/(2)(t) + 2iug, OW (1), j=1,2,3 (64)
o\l) = 21¥;4 7 1), 1j 0j\D¥y (1), J=1,2,0.

Similarly, we assume that the asymptotic formula of p5(L, 1, k) = {¢U (t, k)}l 1 is of the form

ORI O O ARG,
S A O DRSO RIAG)

u3(L,t, k) = (¢sj(t, )gwa =1, + Z ﬁ +0 (—) (65)
=10 ol 9@ ¢D @ 630

o0y D0 o) o)1)
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By using the asymptotics of Eq. (60) and the boundary data at x = L, we find

i
b (1) = —3 ;0.
1 1

@ n .
0 = oy L, =123

M i - _— -
by () = 5 11901 (1) + @y Vp (1) + @373 (1],
45(1)(0 _! 12701 (1) + 02V (1) + Gz V3 (1],

2 (66)

‘154%) 0= % [13701 (1) + a3V (1) + 33705 ,

1 [ _ o o _ B o
4’(1) = /0 {Vu [et11701 (1) @127 (1) +G13703 ()] 415 [ 1271 (1) + Vi (1) 4G5 V3 (1) ]

V13 [@13701 (1) + Q3700 (1) + a33V03(0) | — vy [ V11 (0) + @ a0 (1) + @13913(0)]

—vog [ty (1) + oy P1 (1) + @313 (0] =3 [e13¥11 (1) + arg3¥15 (1) + 33713 ()] }d’
which generates the following expressions for the boundary values at x = L:

vgi(D) = 2ip ) (0. vy =495 (1) + 2iv (08 (0. j=1.2.3. (67)

For the vanishing initial values, it follows from Eq. (60) that we have the following asymptotics of
the global relation cj4(t, k) and c4j(t, k),j=1,2,3.

PROPOSITION 4.1 Let the initial and Dirichlet boundary conditions be compatible at points x = 0, L
(i.e. qoj(O) = uOJ(O) at x = 0 and 905 (L) = Voj Oy atx =1L, j=1,2,3). Then, the global relation (60)
with the vanishing initial data zmplles that the large k behaviors of ¢y (t,k) and cy;(t,k),j = 1,2,3 are
of the forms

C14(lv k) =

w D . w® 1y Dgh o 1
k k2 k3

1
[0‘114541 + 1Py + @304

2 2
3 [a11¢ +0‘12¢( : +0‘13¢( :

(N (€8] (D (1 (1) (D) - (1)
+ ¥ (“11¢ +“12¢42 +a30,4 ) ¥, (“12¢41 +oaxdy, +°‘23¢43)

1 .
+ (a13¢ oy + a33¢<“)] +0 (k3)] Lk — oo, (68)
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Cou(t, k) =

(1 (2) (1 z (1)
ul el (L
k K2 K3

7(2)

5} [0‘12¢41 +0‘22¢42 + @343

(1 !
B {“12‘754(11) + 0‘22‘1’ )+ “23‘15( : L L
k k

| ! | 1 | | 1 !
+ ‘1’2(1) (0‘11‘15( ) +0‘12¢( : +0‘13¢( )) l1’2(2) (0‘12¢( ) +0‘22¢( ) +0‘23¢( ))

+ vy (a13¢(1) +oydly + a33¢(1))] +0 (k3) ] A k= oo, (69)

(334(t, k) =

&) @) (1 2(1)
Vo aa +WaP o( L
k k2 K3

~(1) ~(1)
a +a ' to
. [ 13941 23Z’ 33%13 + ol [a13¢ + a23¢>(2) + 0633¢(2)

1 —(1 - 1 1 1 1
+ v (a11¢‘(‘1) +afy, + 136 )) + 5y (0‘12‘7’( "oyl +andy >)
I\ o
1 1
+ 0 (sdyy) + by +ssdly)) | + 0 (k3)] ALk oo, (70)

(1) (1)
o P4 o qb +a D3y 2 5 2
c41(t,k)=—[ I -2 - [a11¢()+a12¢()+a13¢()

1 .
1 1 1 1 -
+w,) (a“¢>( '+ a0y + 305 ))] +0 (k3)] e 2kL

l 2 2 2ygM G D
+ A (afy + logol” + a3 )Wy + (oo + g + 3093) ¥y,
1
1 2
(a3 + o3 + 0‘130‘33)'1’4(3)] T [(0‘121 + o, + |0‘13|2)‘1’4(1)
@ el
+ (o app + oy + o3093) Wy + (a3 + o3 + o3033) Y3
(H () , = () (1) —(1)
+ ¥y [“11 (“11‘1511 + o0, +0‘13¢13) +oapp (“11‘1521 + o0y + o303 )
Z(1) Z(1) (€9 (1) (1)
o3 (0‘114’31 + o3 + o305, )] + ¥y, [0‘11 (0‘124’11 + oty +axd; )
Z() - (1) (1) (1)
+ay, (“12‘1’21 +aydyy +axdy ) + a3 (“12¢31 + o3y + o33, )]
(N (D) (1) (1) ()
+ ¥y [“11 (“13‘1’11 +ap3pyy +os3hs ) +oap (“13‘1521 + o308y + arz3hsy )

1
+Oll3 (0[13¢)31 + a23¢(1) + 0!33¢(1))] +0 (k3) k — oo, (71)
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C42(t,k) = — { X

Z.YAN

_ -a !
0‘12¢§4) + 0‘224’ )+ “23‘15( )

7(2)
ta [“12¢14 +oyndyy +ondy;
(D (n (1) Z(1) —2ikL
+¥y (0‘12‘15 + oy, +axdy )] +0 (k*) } e
1 1 _ - _ 1
+ - {(|0‘12|2 + 0‘%2 + |“23|2)‘1’4(2) + (0‘110‘12 + a0y + 0‘130{23)4’4(1)

+ (@03 + apay; + 0‘230‘33)‘1’43 + 5 [(|0‘12| + a3, + logs] )lp4(2)

+ (o 8y + @1pliyy + 3003 W7 + (0‘12“13 +aypay + 0‘23“33)‘1’43

M| = () - (), = (1) (1)
+ ¥y, [“12 (“11¢11 +apg), a3 ) toap (“11¢21 +0‘12¢22 + 13053 )
1 1 1 1
oy (a11¢31 + 85 + &30 ))] +wy) [0112 (0‘12¢11 +agly + 30! ))
(1) 7(1) - (1) (1) 7(1)
+ay (a12¢21 + aydy, +apd;; ) + a3 (“12¢31 + 0‘22‘75 ns 3033 )]

(€8] (1) Z(D) (D) (1) (1)
+ Y3 [“12 (“13¢11 + a3y + o33, )+“22 (“13¢21 + 0305, + 33053 )

+0oty3 (a13¢31 + 0123(]5(1) + a33¢(1>)] + 0 (k3) k — oo,

-y - 1
&30y + 0‘23¢’ )+ 0‘33¢( )

2 2
[ 3¢1 +0‘23¢’( ) +0‘33¢( )

1 (- 1 1 i
+l1/4(4) (O{l3¢ + 0[2';47( ) + 0[33¢( ))] + 0 (kS)] e 2ikL
l 2 20 2 - = = w
+ — (Uosl” + lags|™ + o33 ¥,3" + (0‘110‘13 + 003 + ay3033) ¥y

2 2 2 2)
+ (@300, + oppap3 + “130‘23)‘1’42 +t 5 2 [(|°‘13| + lags|” + a33) Y3

S o o @

+ (o 0y + 00, + “1%“23)‘1’ 41 (@3 + agpons + an3033) W3

+l1/(1 + (1)+— Z() +a ‘(1)+— ‘(1)+— ()
ACIE “11¢11 Ay + o303 a3 |19y + A ks + X305,

—(D) (D) (1 Z(1) Z(D
o33 (O‘11¢31 +op¢3, + ay305; )]+‘1/42 [0‘13 (a12¢11 +ayd)y +axd); )
- Z(D) (1) - (1) (D) () - ()
+ay; (0‘12¢21 + @ty +axd;; ) + o33 (“124’31 +ayds, +axds; )]

(1) 7 (1) 7(1) ()
+ Y3 [“13 (0‘134511 + o)y + o333 ) + a3 (a13¢21 + o3, + az3)3 )

+o35 (Ot13¢_’§11) + a23¢ + a33¢(1))] +0 (k3) k — oo.

(72)

(73)
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Proof. This proof of this proposition is presented in Appendix A. (]

4.3 The relation between Dirichlet and Neumann boundary value problems

In what follows we show that the spectral functions S(k) and S; (k) can be expressed in terms of the
prescribed Dirichlet and Neumann boundary data and the initial data using the solution of a system of
integral equations. Introduce the new notations as

Fo(t,k) = F(t,k) £ F(1,—k), X, (k) = ¥ £ ¢72kL, (74)

The sign 9D; stands for the boundary of the jth quadrant D;, oriented so that D; lies to the
left of BDj. BDg denotes the boundary contour that does not contain the zeros of X (k) and
aDy = —aD\.

PrOPOSITION 4.2 Let qoj(x) = qj(x,t =0) =0, j=1,2,3 be the initial data of Eq. (4) on the interval
x €[0,L]and T < oc. (i) For the Dirichlet problem, the boundary data uoj(t) and voj(t) G=1,2,3)on
the interval t € [0,T) are sufficiently smooth and compatible with the initial data qq;(x), (j = 1,2,3)
at points (x5,1,) = (0,0) and (x3,t3) = (L,0), respectively, i.e. uoj(O) = qoj(O), voj(O) = qoj(L),j =
1,2,3; (ii) For the Neumann problem, the boundary data ulj(t) and voj(t) (G = 1,2,3) on the interval
t € [0,T) are sufficiently smooth and compatible with the initial data 90;(x), (G = 1,2,3) at the origin
(x5,1,) = (0,0) and (x5,t3) = (L, 0), respectively.

For simplicity, let ny3 44(S) (k) have no zero in the domain D,. Then the spectral functions S(k) and
Sy (k) are defined by

U (T, k) Wy (T, k) W5, (T, k) ¥y (T, k)

. U (T, k) Wor(T, k) War(T, k) Wur(T, k)
S(k)=€21k2m4 D 12 ) 22 ) 32 ) 42 e, (75)
Vi3(T, k) Wp(T, k) Wi(T, k) Wy5(T,k)

U, (T, k) Wy (T, k) Wy (T, k) Wy (T, k)

¢11(T. k) ¢y (T, k) ¢3(T. k) ¢4y (T, k)
5, (=7 | p ¢12<T,1:<) ¢22(TJ:«> ¢32(T,1:c) ¢42<T,1:<> sl 6

¢14(T’ ]_{) ¢24(T7 ]_C) ¢34(T9 ]_C) ¢44(T’ ]_()
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4

where the matrix P is given by Eq. (31), and the complex-valued functions {¥;(z,k)}; i

following system of integral equations:

| have the

t
Y, k) =1 +/0 [Qkug; + iuy )Wy — 0y (et gy |* =+ gy ity + @3t itg3)
—i'p21(0‘12|”01|2+“22”01ﬁ02+5‘23“01ﬁ03)—i‘1’31(0‘13|”01|2+O‘23“01’202+O‘33”015‘03)](@k)df’
t
Yy, (1, k) =/ [Qkugy + it )Wy — 19 (0t ugnity; + &yplugy | + @)3itg5it03)
0
— W0ttt g+l g |+ @ oais) — W@ 3t i+ alas gy |+ a3 ugais)] @ ) d,
t
31,4 (1, k) =/0 [Qhutgy + iuy3)Wyy — 10y (et gyt + &yptgaiiy + 31131
— W (et s+ g s ity g3 %) — W3 (ot g g 03 gy gy t-ats3 gy )] @ K)d T,
v, k= | fREOry iy, — il %1, (2Kity, — i %, (2Kt — i
s (k)= [ e {1l Qkitg; — ityy) + @y Qkitgy — iityy) + &3 (kitgy — iity3)]
0
+ ¥y, [a12(2kb_t01 —iugy) + a22(2kﬁ02 —iup,) + 5(23(2kﬁ03 — iliy3)]
+ g la3 Ckingy — iugy) + o3 (2kingy — iuy,) + o33 (2kugz — iitg3)]
. 2, - _ - - -
+ iy Loy lugy |7 + opug gy + 03t gz + ot
+ gyl |* + @3ty + a3itgaitg; + elstigsitgy + o33 ligs 71}z, bdr, 77
! 2
Yot k) :/ [Qhugy + iy )Wy — W5 (ayy lugy |* + &yt ity + &3t ig3)
0
— W (@3 gy |+ttt oGty tgs) — W) (@3 gy I ataing gy Hatszing gs)] @ K)de,
t
Yoo (1,k) =1 +/ [Qhugy + iuyy) Wy — iW5 (it + 5‘12|”02|2 + 03U lig3)
0
— W) (ot oty gy |-G o tgs) — W (@3t g +0ta it |+ szt g )| @ k) d,
t
W3, (1, k) =/O [Qkugy + ity 3) Wy — 1% (0t ugaity; + &yptg3itgy + &3 lgs]”)
— W) (o gy e i3 ltgy s g3 ) — iWss (@ ttga g Htasttgs iy taras lugs 1)) @, k)de,
t
ik2(f— - — — — — — — —
Wy, (k) = / MDY oy (2Kt — ity ,) + Gy (Kidg, — iityy) + G153 (2Kidg; — iity3)]
0

+ W layy (Ckugy — iy ) + apy (2kitgy — iltyy) + 0y (2kitgz — itty3)]

+ Wsplay3(2kugy — iuyy) + aps3 (Ckigy — itty,) + o33 (2kitgy — iity3)]
. 2 - - - _ _

+ Wl lugy 1™ 4 agoug gy + y3ug g3 + otpUgp g

2, - _ _ _ 2
+ o gy |© 4 Qs + @3tz + Aaztigsiiy + a3 ligs |71} (T, k)dT, (78)
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t
¥y3,(1,k) :/0 [@kugy + ity ) Wy3 — i3 (g lugy | + &y atgy ity + @31, )
— W) (ot gy I epgttg Hgy+Grys g o) — W3 (@3 litgy [Pzt gyttt ligy)| @ k) d,
t
Wo3,(1, k) 2/0 [@kuugy + i) Wyy — iWy3(ag ugait) + @1 lugy|” + @y3ugpigs)
— i3 (@ i+l gy |+ @3 o is) — W33 (@ 3gatg 1+t gy I s igs)] @ k),
t
W33,(1,k) =1 +/o [(kuugs + ing3) W3 — iWy3(ay g3ty + &yptigitgy + @y3lugsl”)
— W55 (ot g3+ s it Gos s 1) — W33 (o 33 g+ s s gtz ugs )] @, K)d,
V3,4t k) :/0’ e4ik2(1_r){‘1’13[°‘11(2k'301 — iityy) + @y 2kitgy — iltyp) + &y3(2kigy — ing3)]

+ Yozl ki) — ity ) + gy (2kitgy — dity,) + 3 (2kitgz — iuy3)]

+ Wasla3 (Zkingy — iy ) + g3 kitgy — iity,) + o33(2kitg3 — itty3)]
. 2 = - - - -

+ iWyslony g lugy |” + oty iy + y3ug1 g3 + otpUgp gy

2, - _ _ _ 2
+ g lugn|” + Azt + o3tz + Qaztigsiigy + aazligs| 1} (T, k)de, (719)

and

V14,8, K) :/Ot 974%20%)[(2]‘”01 + iy )Wy — P14 lug |” + @ypttg By + @3t g3)

— W4 (g [P @yt Hgyt @3ty Hoy) — W34 (3 gy P4 @zt gyt assuig, gy )| @, K)dT,
Y2448, k) :/0’ 9_4ik2(l_r)[(2k“02 + i) Wy — W14 (0g uplig) + @palugal® + @ 5tg)itgs)

— 1%y (et it 0t |y |+ @3 gt ) — Wy (et syl 0ty Hop | a3 gy lg)] @, K)dT,
V34,8, k) Z/OI 5_4ik2(t_r)[(2kuo3 + iuy3) Wy — iP14(0 uosiigr + @paigsiigy + @y3lugs )

— W (g g+ ey s ot @3 g3 1) — W34 (303 g+ a3 s gt o33 s )] @, K)dT,

t

lI/44’t(t, k)y=1 +/() {11/14[05“(2/(1101 —iuyy) + oy kg, — iug,) + o3 (2kingy — iuy3)]

+ Woaloyy (kitgy — ididyy) + gy (2Kidgy — iikyp) + g3 (2Kidgy — ity 3)]

+ Wayloy3(2kitgy — iityy) + a3 (2kitgy — ithyp) + at33(2Kitg; — iy3)]
. 2, - - - - -

+ iWaaloylug) |7 + ogpug gy + ay3Ug) g3 + ot

+ g | + Gsutgniioy + o33ty + aztiggiiy + 33lig 1} (z. b)de. (80)

The functions {¢;(t, k)};1 iy are of the same integral equations (77)—(80) by replacing the functions

{1u%j,3’;1j} with {Voj’ v]j}’ (=123)ie ¢ij(t’ k) = (pij(t’ k)’{uol(t):vol(t),u11(t):v11(t)}’ (j=12341=
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(1) For the given Dirichlet problem, the unknown Neumann boundary data {u;;(¢) }J:.;] and {vy;(r) },3=1 ,
0 <t < T can be given by

X -
ull(t) :/BDO [ + (klpl4_ + inl) + ”Ol (2l1/44_ — ¢44_)} dk
3 _

2

X
4 -

+ - [oryy (—ikpyy— + yyvor + v + @13v03)

Dg JTE_

a1y (—ikdyo_ + @1avo1+ aavon + ea3Vs) +03 (—ikas_ 4 @13V0; + A3vn + @33v03) ] dk

4k v . 1 —2ikL __ v, —1 e S Y.
+ - 14(Pgq — De (Y11= Doy 1941 + Q1204 + X13¢43)
BDg ity _

— Wy (ayp0g) + Abay + X343) —Wi3(@ 13041 + aa3buy + a33843)] dk,
81)

| 2 -
+ .
12() /(; g i 2 ( 24— l 02) 01( 44— 44_)

4 _
+ a1y (—iky_ 4+ o11vy1 + 019V + 013V,
/aDg Ty [ (—ikdy 11Vo1 + a12vn + @13v03)

- _ _ . _ _ (82)
gy (—ikpar_+0 12V 0 Vip +0a3Vs) +8o3 (—ikys_+3vo1 a3 vor a3 ves)] dk

4k n kL - _ - _-
+ e [‘1’24(‘1544 — De — (@14 + 0Py + X 3043)
0 _

— (W= 1)(@20y1 + @by + A343) — W3 (013041 + r3yy + a33043)] _ dk,

X

23, , ]
u3(t) = 0 | (kW34 +iugs) + g3 QW — ¢yy_) | dk
Dy

4 o
+/ = [er13 (—ikyy— + oty yvor + eipvop + 13v03)
oDy TE_

. _ . _ _ (83)
gy (—ikan @ 1Vo 10 Vgn +3ves) 033 (—ikas G5 Vg3 ver Fa33ves) | dk

4k /7 n _ 1 —2ikL ./ n by n by n
+ , 34(Pgq — De 310011 P41 + X 2Pg + 013043)
aDg l77.'2_
— W (y0y; + Wby + Xp3by3) — (W33 — D304 + r3dyy + az343)] _ dk,

and

2

2 .

vy = 4¢) + = /a L otaandh =123, (84)
3
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER EQUATIONS 455

where
(2) .
b1y Six Pra— + vy Vot v 1)
1 i
O * % v, | — @ dk+=—| Lt
P24 | = 4 /aDg 5 |Ma- v 44— | Vo2 o 2O
¢ k34— + ivog Y03 L
with

2 - .
1) =/ , [—2 [ty + lorgp|* + lorg3 1) (kP + i@y gy + oyt + ey31403))
oDy

(0 @y + Gy + @13003) (kW + i(&)ug; + @yt + Xp3it3))
(o @3 + @3 + @p3053) (kW5 + i()3ug; + A3ty + 0‘33”03))]}‘1]‘

2k z - - 2ikL
+ = 1= (@) 1@14 + X phog + Aj3¢34)e
apY 2

F 0y [y (g @y — D) + ey + ap3¢13) + &y ¢y + @y (dyy — 1) + ay3003) (83)

a3 (@ b3y + by + ap3(dy3 — D] 4+ Pa e @10 (011 — 1) + andin + ar3y3)
15 (@15¢y) + @ (Byy — 1) + ag3hp3) + @13(@1p03, + gy + a3 (d33 — )]

F s @3By — 1) + @g3b1y + a33013) + @12 (@136 + An3(dyy — 1) + a33653)

Fa3(@3¢3; + a3¢3; +az3(ds3 — 1))]]_‘”"

2 - .-
1, (1) =/ , IE—[(O‘%z a3y + logs D) (kyy - + i@ pug; + gty + 0p3tt3))
apd | 2
(o 0y + a3y + Aa3033) (KW _ + i(a ugy + ogpgp + o3U03))
(9@ 3 + @3 + Ag3033) (kW5 + i(&y3ug; + A3ty + 0‘33”03))]}dk
2k - _ 2ikL
+ - {(1 — W) (a2P14 + pdpy + ax334)e
ap) 2
+9y, [op (@ (@) — 1) + apdyy + @3013) + agy(agdyy + oy — 1) + ay3003)
s (e 31 + b3 + ai3(Pa3 — D]+ Pp[ap(@1p(¢1; — 1) 4+ andip + ar3by3)
g (@15 + @ (Byy — 1) + ag3h03) + @3 (@103 + aoazy + a3 (d33 — )]

FWs [0 (@13(dyy — 1) + Gz + @33013) + @ (@131 + X3 (dyy — 1) + a33¢23)

Fay3 (@ 331 + Ap303; + a33(h33 — 1))]}_dk’
(86)
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2 - . _
I;(n) :/ . [_E [(fy + 03y + lorgs [P (kW3 + i@y3u0; + Epstigy + t333))
oDy

(o3 4 @3 + @y3003) KWy + i(@ ) + pattgy + ay3103))
(35 + Qg3 + @y3003) (KW + i(@ypug; + gty + a23“03))]}dk

2k - 2ikL
+ - {(1 — W) (03014 + @30y + a3334)e
D) 2

FUy [ag3 @y — 1) +apabiy + a13613) + ag3 (@ ¢y +app(yy — D +ap3¢y;) (87)

oy (a3 + o b3+ ai3(P3y — D]+ Pp[a3(@1p(¢r — D)+ angip + axbis)

a3 (@1p¢y) + @ (Byy — 1) + ap3ha3) + 033 (X1031 + agpsy + @333 — )]

+‘1_’43[“13(5‘13(¢11 — D)+ o+ o33¢13) +on3(@305; + ap3(Py — 1) + a3323)

Fas3 (@3¢5 + do3dsy + as3(ds;3 — 1))]}_dk'

(i) For the known Neumann problem, the unknown Dirichlet boundary data {uoj(t)};=1 and

{voj(t) };:1, 0 < t < T can be determined by

1 L
ugy (1) = / e [ 2, Wiay — 20y gy + @by + @13043) 4 | dk
oDy T2

2 . . e
+/300 . {'1’14(¢44 = De 2 — [y — D@1y + @12dar + @ 13043)
QX

T (@12hsy + ooy + Ao3baz) + Wi3(@p3dy; + a3y + 0‘33‘1_543)]}+ dk,

1 _ L
Uy (1) = / T (24 ¥oup — 20012041 + 0gpdyy + Gp3hy3) | dk
oDy T2 _

2 _ . I
+/ e {‘1/24(4744 = D — [Wyy (1841 + G1pbay + @ 13Pa3)
ap§ T2 _

+(Wyy — D)(@ay; + Wrnday + Ta3bs3) + oz (e3¢a1 + a3 + 0‘33‘1343)]}+ dk

1 - - _
Uos () = / ST [ 2, Wsuy — 200 304 + @3y + a33043) | dk
apy T2

2 i} . L
+/ s {‘1’34(4544 — e P — [W3 (@)1 ¢4y + @240 + @13043)
ap§ T2

F W3 (2Ba1 + b + Gr3az) + (W33 — D@34 + aa3dy + 0‘33‘1343)]}+ dk

(88)

(89)

(90)
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and
vou (1) = 21y, vop () = 2iy) s (1) = 2ipyy). O
where
$1 Drar G
¢§411) - _ﬁ 009 i_:r b4y | dk+ jz\j—n JL® |,
$3) ‘ P J3()
with

2 _ _ _ _ _
Ji (0 =/a , 2—[(04%1 ool + o)Wy + (g @ + &g + @)3053) Py ¢
py X_
(@ @3 + Q@3 + @13033) g3, Jdk
2 - - - kL
+ —{(1 — W) (o P14 + @0y + 334)e
apY 2
FWy [ (g (@) — D) 4 app¢1 + ay3013) + (¢ + app(do — 1) + @1363)
a3 (@ by + by + op3(dy3 — D]+ Pa o @0 (¢y; — 1) + agdyn + ax3013)
15 (@150 + @0 (Byy — 1) + a3h03) + @13(@10031 + anpsy + W3 (33 — )]

FWys[ey 1 (@3(Byy — 1) + ap3in + @33¢13) + &0 (@ 13091 + X3 (Byy — 1) + a3303)

For3(Q3031 + 303, + a33(d33 — 1))]}+dk’

2 _ _ _ —
S () :/300 E_[(“%z + gy + o3 [H Py + (o 0y + Gy + G330ay) Py

0 X

(@903 + aplns + Gp3033) W3, Jdk
2 = - 2ikL
+ — {(1 — W) (@ p@14 + ooy + dp3h3s)e

apY 2_
FWy [agp(ay @y — D) + oy + ap3¢13) + @p (@ ¢y + @pp(dyy — 1) + ay3¢3)
a3 (@b + @by + op3(d33 — D]+ Wa 02 @10(0y1 — 1) + agdyn + ap3013)
00y (X191 + @ () — 1) + a3haz) + A3 (@1p31 + a3y + a3 (B33 — 1))]

FWs e (@3(hyy — 1) + G3in + @33¢13) + @0 (@130 + T3 (dyy — 1) + a3303)

Foy3 (3031 + 0335 + a33(d33 — 1))]}+dk’
(93)
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458 Z. YAN

2 _ i _
50 Z/BDO 2_[(“%2 +a, + |“23|2)‘1’43+ + (ag a3 + o003 + 03093) Wy
3

(3 + s + @13003) ¥y, dk

2 1 — kL
+ (I = W) (3014 + ap3oy + a33d3y)e
ap) X_
W a3y (@1 — D)+ apdiy +y3d13) +og3(0 10y T a1 — D+ a13¢03) (94
oy (@31 + @by + ag3(dys — D]+ W [03(@10 (011 — 1) + agdyn + an3013)
g3 (@1py) + @ (Byy — 1) + a3h3) + @33(@y003; + gy + ans(d33 — )]
+sa3@3(By; — 1) + Qg0 + @33013) + @03(@136; + Ax3(dyy — 1) + a33653)

o33 (3031 + 033y + az3(ds3 — 1))]}+dk’

where W), = Wy, (t,k), Gaq = B44(t, k) = ¢44(2, k) and other functions have the similar expressions.
Proof. The proof of the Proposition is given in Appendix B. U

REMARK 4.3 It follows from Proposition 4.2 that the well-defined boundary value data of the integrable
gtc-NLS system (4) are given, i.e. the generalized Dirichlet-Neumann map given by Eqgs. (81)—(87) and
the generalized Neumann—Dirichlet map given by Eqgs. (88)—(94) are established, respectively. These
obtained results can also provide one with more exact data to theoretically and numerically study the
solutions of the IBV problem of system (4).

4.3 The effective characterizations

Substituting the perturbated expressions for eigenfunctions and initial boundary conditions

Wtk = vk + ewNa )+ EvP e+ ij=1,23.4,

gtk = ol )+ o)+ 2o+ 1j=1,2.3.4, s
ug(t) = eu )+ 2l +-- . 5=0,1;j=1,2,3, )
vﬂﬂ:e&%ﬂ+¥%ﬂﬂ+ng s=0,1;j=1,2,3,

into Egs. (150)—(153), where € > 0 is a small parameter, we have these terms of O(1) and O(¢) as

%@zl,szzaa
o) : (96)

wl =0, ij=123.4i#}j
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1 1 .
will =wll =0, js=123,

!
11/[1 :/O ik (=) (Zku()j +m1j (r)ydr, j=1,2,3,

t
/0e4’k (= t) (Zkﬁgll]—m“])—i— 12(2k [1]—114[112]) (Zk g3 —lu%])](f)dt, ©7)
t
/€4lk2(t T) (2ku([)11]—1u“] +a22( [12]—1'12[112]) (2k g —lu13)](f)d7:
0

[1] 4k (1— =[1] _ .-[1]
Uys :/Oe k=t T)[(x13(2ku01 _”‘11)

wil!
O(e) :
v

oy (2Kl i ) ey (2l — il ) o)de.

4

Similarly, we can also obtain the analogous expressions for {¢>l.[j”} =l = 0,1 by means of the

boundary values at x = L, i.e. {vl[.;]},i =0,1;=1,2,3;1=0,1.
If we assume that m,,(S) has no zero, then we expand Egs. (81)—(84) to have

“11(’) / [

+ap, (_ikqu[é]— + 5‘12"5?!1] + 0‘22"&] + 0‘23"513]) ©8)

4 -
. [“11(—*4’4[{;]— + 0‘11V([)ri] + “12"3&1 + “13"([)'13])

+Ol13 (_lk¢43 + Ol13V01 + 0523\)02 + 0!';3\}03 )]} dk + LOTS

4
o) / [ i+ o) ik okl +anpfl + i) + ol
gl g [l [n] (99)
oy | =ik, + vy + vy + a3V

+ay3 (—lk¢43 + a13v01 + a23v02 + a33v )]} dk + LOTs,

] 1] 4 [n]
u13 () = (kWsy_ + iugs )dk + s [a13(—zk¢41 —i—a“vOl +0512v02 +a13v03)
tay; (—ikqﬂéf + 5‘12V([)ri] + azzvgé] + 0‘23"33]) (100)

+a33 (—1k¢43 + 0‘13"01 + oz23v02 + ot33v )]} dk + LOTs,

where the word ‘LOTs’ means ‘lower order terms’ standing for the result involving known terms of
lower order.
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460 Z. YAN

The terms of O(€") in Eqs. (77)—(80) and the similar equations for ¢ij yield

t
qzjg"](t, k) = /O o4k =) (Zku([)’}] +iu[1’;.]) (t)dr +LOTs, j=1,2,3,
t
(1, k) = / el oz“(Zkv["] + il o, @i+l + a2kl +w13) (t)dr + LOTs,
0

t -
otk = / el a12(2kv01 + i) g, @i+l + aps @il + i) [ (r)de + LOTs,
O -

t .
o,k / el oe13(2kv01 + i)y ki +ivt) + ags Kl +w[{;}) (t)dr + LOTs,
0

(101)
which can lead to
t s
lIij"j(t, k) = 4k / e 4k <’—f>u{;;‘(r)dr +LOTs, j=1,2,3,
0

¢["] t,k) = 4k/ —4il (=) (a v01 + a12v02 —|—a13vg§]) (t)dt + LOTs,

A (1.k) = 4k / 4k (1=1) (a 4 eyl +a23v{,’§]) (t)dr + LOTs,

A (1, k) = 4k / —4ik? (1) (al o 4 @yl +a33vg;1) (t)d + LOTs. (102)

It follows from system (102) that lll[ﬁ and ¢4[S]7, Jj = 1,2,3 can be generated at each step from the

[n]
1j

[n

known Dirichlet boundary data Ug, and v&f] such that we know that the Neumann boundary data u

[n]

can be given by Egs. (98)—(100). Slmllarly, we also show that the Neumann boundary data vy; can then
be determined by the known Dirichlet boundary data “0 Iand v([)"]
Similarly, the substitution of Eq. (95) into Eqs. (88) and (89) yields the terms of O(e") as
ey — [ [ Zr g 2 sl s gl s s | g s Lot 103
Uy (1) = e A 4+ T o (0‘11¢41 + ¢y + A3dy )_ + S (1032)
n] [ 2"1‘ lp[”] 2 7[n] 7[n] —~  7[n] 1 dk LOT 103b
“02 (0= Ea Uk T Ty (“12¢41 +ayndy, + Aoy, )_ + S, ( )
) [ 2y g2 sin] Sl ) | 4k + Lot 103
3(0 = 00 ESRE s 01304 + 030, +a33¢,3 ] + S, (103¢)
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Eq. (101) implies that

t
Wi (1, k) = 2i / e (1)dr + LOTs, j =1,2.3,
0

t .
¢41+(t k) = / e~ HE (D) (“11"11 o + a13v13) (t)dr + LOTs,
0
! 22
Py, (1K) = / et () ( a4+ aprly +a23v13) (t)dr + LOTs,
0

iz (1,5) = / e (“13V11) +an3viy + 0‘33"13) (r)dr + LOTs. (104)
0

It follows from system (104) that lI/["] and ¢['7] Jj = 1,2,3 can be generated at each step from the

4j+>
[n] [n]

known Neumann boundary data u[n] and Vi such that we know that the Dirichlet boundary data Ug;

can then be given by Egs. (103a)- (1030). Slmllarly, we also show that the Dirichlet boundary data v([);'.]

can then be determined by the known Neumann boundary data u["] and v["]

4.4 The large L limit from the finite interval to the half-line

The formulae for the initial and boundary value conditions uoj(t) and u; j(t), Jj = 1,2,2 of Proposition 4.2
in the limit L — oo can be extended to the corresponding ones on the half-line. Since when L — oo,

RROER

voi > 0, v;—0, j=123, i = O E(k)

) j as k— oo in Dz, (105)

Thus, according to Eq. (105), the L — oo limits of Egs. (81), (82), (88) and (89) yield the unknown
Neumann boundary data

2
(1) = —/ [uoj(lll44_ +1)— iklI/j4_] dk, j=1,2.3, (106)
7 JaDd
for the given Dirichlet boundary problem, and the unknown Dirichlet boundary data
() 1/ v, dk, j=1,2,3 (107)
Uy; = — i ) = 1,4,95,
0j 7w Jopy JjA+ J
for the given Neumann boundary problem.
5. The GLM representation and equivalence
In this section, we deduce the eigenfunctions ¥ (¢, k) and ¢ (¢, k) in terms of the GLM approach (Boutet
de Monvel & Kotlyarov, 2000; Boutet de Monvel ef al., 2003b; Fokas, 2005; Treharne & Fokas,

2008). Moreover, the global relation can be used to find the unknown Neumann (Dirichlet) boundary
values from the given Dirichlet (Neumann) boundary values by means of the GLM representations.
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462 Z. YAN

Moreover, the GLM representations are shown to be equivalent to the ones obtained in Sec. 4. Finally,
the linearizable boundary conditions are also presented for the GLM representations.

5.1 The GLM representation

PROPOSITION 5.1 The eigenfunctions W (t, k) and ¢ (t, k) possess the GLM representation

t

(k) =1, + / |:L(t, 5) + (k + éU(O)%) G, s):| e 2R (= Dou g, (108a)

—t
t

otk =1, + / [E(t, 5) + (k + %u“@) G(t, s):| 2k (s=Dou g (108b)

—t

where the 4 x 4 matrix-valued functions L(z,5) = (Ljj)44 and G(1,5) = (Gjj)4y4, —t < s < t satisfy a
Goursat system

L,(0,5)+04L, (1. )04 = iU Lit,5) = | (U0 4000, + U, U1 GG 5),

© (109)
G,(t,5) + 0,G,(t,8)0, = 2UOL(t,s) + io Uy ' G(t,5),
with the initial conditions
G41 (t, t) = alllleI (t) + &]217{02(t) =+ &1317{03 (t), G42(t, t) = 05121_401 (t) + azzﬁoz(t) + &23'7{03 (t),
Gy3(1,1) = a3ug (1) + ax3gy (1) + 3313 (1),
i . i _ o _
Lj4(t, = Eulj(t)’ Lji=1,23, L, = _5(0511’411(1) + Qo () + oy3uy53(1)),
i _ _ - i _ _ _
L42(t, t) = _5(a12M11(t)+a221412(t)+a23u13(t))3 L43(t, t) = —§(a13u11(l‘)+a23u12(l‘)+a33u13(t)),
(110)
0 0 0 ug; (1)
o_| O 0 0 up() O _ 170
v = 0 0 0 1o (1) ’ Ui =U {Poj ()= p1;(®), uoj()—uy;(1),j=1,2,3} (111)
Po1(®) por(®) pes® 0
with

Po1 = Qqjlgy + Qqpligy + Aq3llg3, Py = Qqpllgy + Aplhgy + Ap3linz, Po3 = Aq3lpy + Qp3liy + A33lp3,

P11 = Qqplyy + Qqplyy + Aq3lty3, Py = Aol + Qplhyy + Qp3lty3, Pi3 = Qq3ltyy + Qp3ltyy + A33l43,

Similarly, £(z, ), G(t,s) satisfy the similar Eqs. (109) and (110) with up; — v, uy; = vy, Uvo
Uuwb = U(0)| 0) _ Z/{)EL) _ 770

ug;—>vo;’ X - uX uj—>vy;’
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Proof. 'We assume that the function
t
Yt k) = e 20 4 / [Lo(t,5) + kG(1, 5)]e K74 ds, (112)
—t

satisfies the time-part of the Lax pair (7) with the boundary data ¥ (0,k) = I, at x = 0, where L (¢, 5)
and G(t, s) are the unknown 4 x 4 matrix-valued functions. We substitute Eq. (112) into the time-part of
Lax pair (7) with the boundary data (6) and use the identity

t . t
—2iksoq g * —2ik*to. 2ik’to. —2ik%so.
[{F(z, s)e 4ds = T8 |:F(t, He 4 — F(t,—t)e 1% — Lth(t, s)e 4d5] oy, (113)

where the function F(¢, s) is a4 x 4 matrix-valued function. As a consequence, we find

Lo(t,—t) + o4Ly(t, —t)o, = —iUOG(t, —1)o,, G(t,—1) + 0,G(t,—t)o, = 0,
Lo(t, 1) — o4Lo(1, D0, = iUOG(t, )0y + V", G(t1,1) — 0,G(t, )04 = 2U©,

) 0) (114)
Lo (8, 8) + 04l (8, $)oy = —iUV G (8, )oy + V" Ly(2, 5),
G,(1,) + 0,G,(t,9)a, = 2UOL(1,5) + V"G, 9),
where U is given by Eq. (111) and
Up1Po1 Up1Po2 Uo1P03 Uy
Véo) = —i(UO 4+ UM%, = —i Uo2Po1 Uo2Po2 H02P03 —Ug
UpzPo1 Uo3Po2 Uo3Po3 —U3
Pt Pu P —(gPoy F tgoPoy F tozPo3)
To reduce system (114) we further introduce the new matrix L(¢, s) as
70
L(t,s) = Ly(t,s) — EU 0,G(t, ), (115)

such that the first four equations of system (114) become

L(t, —t) + o,L(t, —1)o, =0, G(t,—1) + 0,G(t, o, = 0,
L(t, 1) — a,L(t, )0, = VS, G(t,1) — 0,G(t, D)0, = 20O,

which lead to Eq. (110), and from the last two equations of system (114) we have Eq. (109). By means
of transformation (10), i.e. (0,2, k) = ¥ (t,k) = ¥ (¢, k)eZikztzm, we know that ¥ (¢, k) is given by Eq.
(108a). Similarly, we can also show that Eq. (108b) holds. [l

For convenience, we rewrite a 4 x 4 matrix C = (Cjj)4,4 as

_ Gz Ca\ . . o
C= (Cij)4><4 = C C > C3><3 - (Cij)3><3? Cj4 - (C14a C24’ C34) 5 C4j = (C41, C42,C43).
4j 4
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The Dirichlet and Neumann boundary values at x = 0, L are simplified as

”j(t) = (ujl (t),ujz(t),uj3(t)), Vj(t) = (le (t),vjz(f),vﬂ(t))’j =1,2,3,

. 116
Wio(0) = (pj1 (0P (.M. WD) = PP Dopa )]y e s =0 13j = 1,2,3. 110
For a matrix-valued function F'(¢, s), we introduce the F (t,k) by
N t )
F(t,k) = / F(t,5)e** 6=Dgs. (117)
—t

Thus, the GLM expressions (108a) and (108b) of {¥;

j» ®;;} can be simplified as

- 2 i 2 2 ~ 2 I_ 2 2
W3X3(t’ k) - ]I + L3><3 - Eug(t)G4j + kG3x3, l1/44(t, k) - 1 + L44 + EMO(I)MGJLL + kG44,

- 2 j 2 2 - 2 i 2 2 )

(118a)
~ 2 i 2 2 ~ 2 i_ 2 2
¢3x3(l, k) =1 + 'C3><3 - Evg(t)ggy + kg3><3s ¢44(ta k) =1+ £44 + Evo(t)Mg/A + kg44,
. . (118b)
- 2 i 2 2 . 2 i_ 2 2 .
¢j4(t’ k) = £]4 — Evg(t)g44 + kgj4, ¢4j(t’ k) = [:4] + EVQ([)Mg3X3 + kg4j, J = 1,2, 3.
For the given Egs. (118a) and (119b) we have the following proposition:
PROPOSITION 5.2
ke4ik2(t—r) . ) ik A 3 k /- )
li - (F. —M) dk= / Bl (G- = (F —M) d, (119
= ) X ¢ - aptL 2 o \ Cas™Yaa )+ A - (1192)
. ket =) _ ik (A 3 k -
g2
im [ 7 (F.4e*2”¢) dk = / 1 ( .4e*2”‘L) dk, (119¢)
=1 Jopd X ! + apd X_ \/ +
li et Foodk L7 dk 119d
M oy m T oy T et oo

1

where the vector-valued functions Fj4 (t,k) and F 4j(t, k) G = 1,2,3) are defined by

2i

Fooo ¢ L qTEr T2k (7 i 12 2 2 iz o 2
Fig =50 Gag + Z MO G35 Mvge™ + | Ly — St Gy + kG | | Lag = 594 Mvg + kG
(L= 836144610 M7 (£ = 46T 0007 45T ) 2

(120)
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Fy=75 GszM“g+ %MTV89~44€2M+MT(E3x%—%"59~4j+kg~3x3)MT(£Zj_ %ngsM“g"'kGZj)(nl)
_MT (»514 - %Vgg‘44 + kgj4) (Z44 é 4MM0 + kG ) ezikL.
Proof. Similarly to the proof of Lemma 4.3 in Lenells & Fokas (2012b), we here show Eq. (119a)

in detail. Multiplying Eq. (120) by %64’7‘2(’_’) with 0 < 7 < f and integrating along along 8D(1) with
respect to dk can yield

/ k - r)(F o2y g = / %e4ik2(z—r)ugé44dk_/ k364ik2(t—r)é_4g544dk
DY > ap? 2 an? !

_/BDO ke ik (=) (Z,ﬂ e ) (f Q4Mv0)

1

RE, g2 o l(z @72 N2 2 (3 i3 g
+/31)0 ¢ e [(174 — 3o G44) Gas + Gy (/344 - EgﬂMVO)] dk

2k? 2 2 i 2 2 2 z iz
_/300 5 [(L3X3 - 5,45G4].) MIGL+ Gy g M (czj - §Q3TX3Mvg)] dk

To further analyse the above equation, the following identities are introduced:

\S) |

(122)

4 4ik2(t—1) _ | 2F@t2t -1, 0 <1t <1,
_/Dl ke Fodk =1 g ooi iy (123)

and

K2 k2 T “ Ft 2t —t
/ 4lk (t— ‘[)F(t k)dk _ 2/ - / e4lk2(t_r)F([, 2-,: _ I)dT _ (—T) dk, (124)
DO E X 0

dD(l) _ 4lk2

which also hold for the cases that £— is taken place by B2 or k2.
It follows from the first integral on the RHS of Eq. (122) and Eq. (123) that we have

- ik 4ia20-1) TA o T _ i orz

}ll)nt BD? Ee M0G44dk = }ll)nt 7“0 G22(t, 2T — t) = ZM0G44(t, t), (1253)
fim [ Rpweo s goo [ KrE = TrE o (125b)
1 Jog 0044 oo 2 0044 g 40 Caa(L. D).

Therefore, we know that the first integral on the RHS of Eq. (122) yields the following two terms:

ik 4 2 ik ik 12
lim [ ZeDTG, dk = / e 4dk‘ / SlGudl . (20
2 ap? 2 (12sa)  Jap? 2 (125b)

T—>1 0
D] 1
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Nowadays we study the second integral on the RHS of Eq. (122). It follows from the second integral
on the RHS of Eq. (122) and Eq. (124) that we have

. 2 2 ro. - 2
— /aD() k3€4lk2(t_r)Gj4g44dk =-2 /E)DO k3A e4lk2(s_r)Gj4(t7 2s — t)g44dek
1 1

> _ 127)
T N G2t — 0] 3 (
— _2/ ) B |:/ e4zk2(s7r)Gj4(t’ 2t — fds — 144—k2:| Gqdk.
aD" 0 !

Thus we take the limit t — ¢ of Eq. (127) to have

~

- 3 4ik-0 5 5 37 k 13
Dy D]

T—>1 3D(l)

Finally, following the proof in Lenells & Fokas (2012b) we can show the limits t — ¢ of the rest
three integrals (i.e. the third, fourth and fifth integrals) of Eq. (122) can be deduced by simply making
the limit T — ¢ inside the every integral, i.e. no additional term arises in these integrals. For example,

A

lim [ ke (=) (Lj4 - %ug 6;44)(544 - %éjﬁMvg ) dk

T—>1 aD(l)
2 i T2 2 i ET T
= /BDO k (L]4 — 5“0 G44)(£44 — Egj4MVO) dk.
1

Thus, this completes the proof of Eq. (119a). Similarly, we can show that Egs. (119b), (119¢) and (119d)
also hold. O

THEOREM 5.3 Let qoj(x) = qj(x,t =0) =0,j = 1,2,3 be the initial data of Eq. (4) on the interval
x € [0,L) and T < oo. For the Dirichlet problem, the boundary data uoj(t) and voj(t) (G =1,2,3)on
the interval t € [0,T) are sufficiently smooth and compatible with the initial data qjo(x) (j = 1,2,3) at
the points (x,,1,) = (0,0) and (x3,t3) = (L,0), respectively. For the Neumann problem, the boundary
data ulj(t) and vlj(t) (G = 1,2,3) on the interval t € [0,T) are sufficiently smooth and compatible with
the initial data qoj(x) (G = 1,2,3) at the points (x,,1,) = (0,0) and (x3,13) = (L, 0), respectively. For
simplicity, let ny3 44(S)(k) have no zero in the domain D. Then the spectral functions S(k) and S; (k)
are defined by Egs. (75) and (76) with ¥ (t, k) and ¢ (t,k) given by Eq. (108a) and (108b).

(i) For the given Dirichlet boundary values u,(¢) and v,(#), the unknown Neumann boundary values
uy () and v, (¢) are given by

4 [z i 2MTT 52 i
uj (1) = E/ap(; [E_f [k Gyt 1) + 5ug(t)] -5 [k Gaj(t,0) + S Mg ()

(128a)

ik 2 2 k - .
+§“g (G44 - g44) + = [Fj4€_2lkL]_ dk,
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_4 2 (24 i r MTT H2p Lo
Vi T = P /313? [—2— [k gj4(t, nH+ §V0 (t)] + Sl k™Gy;(t,1) + EMuo(t)

(128b)
Lk 2 ko s
—_ VO 944 G44 + E_M F4]_ dk,

(ii) For the given Neumann boundary values u, () and v, (), the unknown Dirichlet boundary values
ug (1) and v (¢) are given by

2 o2 o2MT 5 1 ,
T _ + —2ikL
) == /a . [2—_LJ.4 - =Ll = (Fj4e i )J dk, (1292)
2 oMz, 1 s M
vg(;)=;/wo[ L~ SR — Ly + N F4j+} dk, (129b)
1 _

where F (1, k) and F,;(1, k) are defined by Egs. (120) and (121).
Proof. The proof of this Theorem is given in Appendix C. (]

5.2 The equivalence of two distinct representations

We now show that the above-mentioned GLM representation for the Dirichlet and Neumann boundary
data in Theorem 5.3 is equivalent to one in Proposition 4.2.

Case i). From the Dirichlet boundary conditions to the Neumann boundary ones

It follows from Eqs. (118a) and (118b) that we obtain

1 - 2 1

4= 7Y Gy = 3l J= 1,2,3, Gy =

\Ql)

1 2 1 -
% Uy . Gyu= §C¢44—~ (130)

Substituting Eqs. (120) and (130) into Eq. (128a) yields

4 x 5 i 2MT
ul (t)—m /BD?[E—J“[kZGﬂ(t,t)—i-Eug(t)} R |:kzg4](t N+ = Mvo(t)]

[@4@44 — De 2 _ (g — H)MTJ:{,]_] dk

2 k 2
+ikug Gy + E“g Gas + >
B (131)

_ 22, 7 4iMT o= 1, :
_/a im)’] [kd/4 + it (t)] + Ty [k¢4j— +iMygy (’)] gt Q¥ — by

4k -~ = _oi - =
o [u{,4(¢44 — De K — (g 4 — ]I)MT@{]]_] dk.

Since the integrand in Eq. (131) is an odd function about k, which makes sure that the contour E)D(l)
can be replaced by aD?, thus we can find the same Neumann boundary data ulj(t) G = 1,2,3) at
x = 0 given by Eqgs. (81)-(83) from Eq. (131). Similarly, we can also find the Neumann boundary data
vlj(t) (=1,2,3) at x = L given by Eq. (84) from Eq. (128b).
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Case ii). From the Neumann boundary conditions to the Dirichlet boundary ones
Egs. (118a) and (118b) imply that

e

1- i 2 2 1= iz
o= 5 (LK) + Ui Gag, L= 20, (10 + 26T, M{. (132)

The substitution of Egs. (132) and (120) into Eq. (129a) yields

2 .2 oMTE 1 .
T _ = 47 = AT - - ,—2ikL
W”D'_nLAD?[E Lu— =5 5@4-217(Eﬁe )+]dk

(133)
>, - ZMT = 2 ~ = _ Y - =
:/900{71;_ Vit~ 0w Diji E5E [%’4((1’440’]()_1)6 2kL_(W3X3_H4)MT¢‘{i]+]dk'

Since the integrand in Eq. (133) is an odd function about k, which makes sure that the contour BD(I)

can be replaced by 9DY, thus Eq. (133) yields the Dirichlet boundary values ugi(1), j = 1,2,3 again.
Similarly, we can also deduce the Dirichlet boundary values vOj(t), j=1,2,3 from Eq. (129b).

5.3 Linearizable boundary conditions for the GLM representation

In what follows we further explore the linearizable boundary conditions for the GLM representation
given in Theorem 5.3.

PROPOSITION 5.4 Let g;(x,t = 0) = q(;(x), j = 1,2,3 be the initial conditions of the gtc-NLS equation
(4) on the interval x € [0, L], and one of the following two boundary conditions: (i) Dirichlet boundary
conditions at x = 0, L, qj(x =0,1) = uoj(t) = 0 and qj(x =Lt = voj(t) =0,j=1,2,3; (ii) Robin
boundary conditions x = 0, L, qjx(x =0, — qu(x = 0,1 = ulj(t) — Xuoj(t) =0,j=1,2,3and
qjx(x =L — z?qj(x =L = vlj(t) — z?voj(t) =0, j = 1,2, where x and ¥ are both real parameters.
Then the eigenfunctions W (t,k) and ¢ (t, k) can be expressed as

@ . s
L.~ L
wm@=m+(§”:”), (134a)
L4j Lyy
ot k) =1, + £?3%4, (134b)
54]‘ Lyy

where the 4 x 4 matrix-valued function L(z,s) = (Ll-j) 4xa4 satisfies a reduced Goursat system

Ly + Lyysy = iu] (OLyje Ly, + Lagy = =it (0 MLy, 135)

Liy — Liyy = iu] (OLyy, Ly — Ly = ity OMLyy3, j=1,2,3

with the initial data (cf. Eq. (110))

- ~ = i ~ i_
Ly s3(t, =) = 03,3, Lyy(t,—) =0, Ly(t,0) = EulT(t)’ Ly(t,0) = —Eul(t)./\/l. (136)
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Similarly, the 4 x 4 matrix-valued function L(¢,s) = (Eij) 4xa Satisfies the analogous system (135) with
u, (1) replaced by v, (9.

(ii)
. s i g2 :
w(z,k)=]14+(L2X3 ff“)+ T2 00% ; e (137a)
4 Laa Gy Sig (MG
_ £3x3 5'4 —ivg(t)ij kg:j4
ptk)y=1L+ | 2% 7 |+ 2 , (137b)

E4j Ly kG4j %‘_’Q(I)MQJA

where the 4 x 4 matrix-valued functions L(t,s) = (Lij) axa and G(t,s) = (Gl-j)4>< 4 satisfy the reduced
nonlinear Goursat system

Lysss+ Lyusy = i 0Ly + 3 [ (0 = u )i 0 MuG ()| Gy,

1]

- _ ~ 1r1.. _ _ -
s+ Lugg = —ixiigOO ML - 5 [luo(t)M + g (Ml (t)uo(t)M] Gy,

(138)
Ligy — Ligg = ixug OLyy, Ly, — Ly = —ixitg(D MLy 3,
Giay = Gy = 2uf DLy, Gy — Gy = 201y (DML,
with the initial data (cf. Eq. (110))
- - - i - i
Ly 5(t,—1) = 03,3, Lyy(t,—1) =0, Ly(t,1) = _X”g([)s Ly(t, 1) = —= xup(HHM,
* * ! 2 ! 2 (139)

Gyt 1) = ul (1), Gy(t,1) = ity M.

Similarly, the 4 x 4 matrix-valued functions L(t,s) = (/.Zl-j)4x4 and G(t,s) = (Qij)4x4 satisfy the similar
system (138) with uy(t) and y replaced by v (1) and 1, respectively.

Proof. Let us show that the linearizable boundary data correspond to the special cases of Proposition
5.1.
Case i) The Dirichlet zero boundary data q; x=0,0 = uoj(t) = 0. It follows from the second one

of system (109) that Gij(t, s) satisfy

Gy + Gayze = itf] (G, Gygy + Gy = —itty (N MGy, (140)
Gj4t - Gj4s = i”lT(’)G44’ G4jt - G4js = _iﬁl(t)MG3><3’ J=123,

with the initial data (cf. Eq. (110))

Ga3(t,—1) = 03,3, Guu(t,—1) =0, Gy(t,0) =0y, Gy(t,1) =0y, j=1,2,3.  (141)
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Thus the unique solution of Eq. (140) is trivial, i.e. G3,3(1,8) = 0, Gy(1,8) = 0, Gy(t,8) =

0, 6440, s) = 0 such that Eq. (108a) reduces to Eq. (134a) and the condition (109) with (110) becomes
(135) with (136). Similarly, for the Dirichlet zero boundary data qj(x =L, = voj(t) =0,j=1,2,3,
we can also show Eq. (134b).

Case ii) Consider the Robin boundary data qjx(x =0,1)— qu(x =0, =u j(t) — xuoj(t) =0, (=
1,2,3), i.e. the Dirichlet and Neumann boundary data have the linear relation

uy (1) = xug(r). (142)

Let a4 x 4 matrix Q(t, s) be O(¢,s) = 2L(t,s) — ixo,G(t, s) be the linear combinations of L and G.
Then

Q3><3(I’S) = 22’3)(3(t9 S) - iXG3><3(t9 S), Q44(t9 S) = 2Z44(t’ S) + iXé44(t9 S)’
(143)

Qi (t,8) = 2Ly (1,5) — ixGy(t, ), Quy(t,8) = 2Lyy(1,8) + ix Gyy(t,9), j=1,2,3.

It follows from Eq. (109) and (143) with Eq. (142) that Qij(t, s), Gl-j(t, s), i,j = 1,2 satisfy

Q3x3t + Q3x3s = I:lug(l‘) — ug(t)ﬁo(t)/\/lug(t) + qug(l‘)] é4j,

Opar — Opas = | (1) — uf Dt Muf (1) + X% 0] G,

Q4jt - Q4js = [—ﬁo(f)M”g(l)ﬁo(t)M — ity (DM + Xzﬁo(t)M] Gsy3s (144)

Ou + Oas = |~ ip(OMUG 0itg ()M — g ) M + 1 (O M] Gy,
Gixs+ Gauzy = uf 00y, Gy + Gugy = gD MOy,

é]'41 - éj4s = ”g(I)qu 64,'; - G4js = itg(OMQ3,3. j = 1,2.3,
with the initial data (cf. Eq. (110))

Gans(t,=0) = 05,5, Guy(t, =0 =0, Gyuy(t.0) = uf (1, Gyt = ip(OM,

. . i . (145)

Thus the unique solution of Eq. (144) is trivial, i.e. Q/4(t, §) = Q4j(t, s) = G3X3(t, s) = (~}44(t, s) =0
such that Eq. (108a) reduces to Eq. (137a) and the condition (109) with Eq. (110) becomes Eq. (138)
with Eq. (139). Similarly, for the Robin boundary data 9jx (x=L,1)— z?qj (x=L1 = j t)— z?voj 1) =
0,j=1,2,3,1ie.v{(t) = P?vy(t), we can also show Eq. (137b). Il

Based on the Theorem 5.3 and Proposition 5.4, we have the following Proposition.
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PROPOSITION 5.5 For the linearizable Dirichlet boundary data uy(t) = vy(t) = 0, we have the Neumann
boundary data u,(t) and v ():

4 -~ = 4i -~ =
0 =7 [ kG- Lodk 0= [ k0 - Lok (146)
D oD

i
T b4
where

li/j4t + 4’7‘2‘5’;4 = iu] (1) (Pyy + 1), d;j4t + 4ik2¢;j4 =il (1) ( Py + 1), j=12,3, (147
@44, = _ll:ll (I)Mlp]4, (5444 - _l\-/l (I)M(z]“

REMARK 5.6 Although the Fokas method has been used to investigated some integrable nonlinear PDEs
with 2 x 2 or 3 x 3 matrix Lax pairs, our results for the gtc-NLS equation (4) with a 4 x 4 matrix Lax
pair differ from the known ones. Particularly, the found symmetry (31), the matrices S, the 4 x 4 RH
problem and nonlinearizable boundary conditions all differ from ones appearing in the coupled NLS
systems with 3 x 3 Lax pairs (Xu & Fan, 2016a; Tian, 2017).

6. Conclusions and discussions

In conclusion, the well-known inverse scattering transform can be used to solve the initial value
problems of some integrable nonlinear PDEs with Lax pairs such as the KdV equation, NLS equation,
mKdV equation, sine-Gordon equation, AKNS system, KP equation, Camassa—Holm equation, etc. The
Fokas method is a powerful approach studying the IBV problems of linear and integrable nonlinear
PDEs. In this paper, based on the IST, we have investigated the IBV problem for the gtc-NLS system
with a 4 x 4 Lax pair on a finite interval by using the Fokas method. The 4 x 4 matrix Lax pair
of the gtc-NLS system can be regarded as the 4 x 4 generalization of the 3 x 3 Lax pairs for the
DP equation (Lenells, 2012, 2013), the Sasa—Satsuma equation (Xu & Fan, 2013) and two-component
coupled NLS equations (Biondini & Bui, 2012; Geng et al., 2015; Xu & Fan, 2016a; Tian, 2017). By the
Fokas method, we find that the solutions of the gtc-NLS system can be formulated using the solution
of a 4 x 4 matrix RH problem constructed in the complex k-plane. The relevant jump matrices with
explicit (x, f)-dependence of the matrix RH problem can be explicitly found in terms of three spectral
functions {s(k), S(k), S; (k)} arising from the initial data, and Dirichlet-Neumann boundary conditions
at x = 0, L, respectively. The global relation is also proposed to derive two distinct but equivalent
types of representations of the Dirichlet-Neumann boundary value problems. Particularly, the relevant
formulae for the boundary value problems on the finite interval can generate ones on the half-line as the
length of the interval closes to infinity. Finally, we also analyse the linearizable boundary conditions for
the GLM representation.
Particularly, we have the following conclusions:

e For the given the initial conditions g;(x, 0) = qo;(x), we have the spectral function matrix
s(k). For the given Dirichlet and Neumann boundary conditions at x = 0, ¢;(x = 0,1) =
uoj(t), qjx(x =0,7) = ulj(t), j = 1,2,3, we have the spectral function matrix S(k). Similarly,
the Dirichlet and Neumann boundary conditions at x = L, q; x=L1 = Voj 0, qjx(x =Lt =
vij (1), j = 1,2,3, we have another spectral function matrix S; (k);
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e Given the Dirichlet boundary conditions, qj(x = 0,1 = uoj(t), qj(x = L,t) = voj(t), j =
1,2, 3, one can determined the Neumann boundary conditions qjx(x =0,1) = u j(t), qjx(x =
L,t) = v;(1), j = 1,2,3 given by Eqs. (81)~(87) by means of the global relation between the
distinct spectral function matrices. Conversely, the corresponding result also holds;

e For the given spectral function matrices {s(k), S(k), S; (k)}, a matrix RH problem for M (x, ¢, k)
can be defined such that the functions qj(x, 1), j = 1,2,3 expressed by means of M(x, 1, k) can
be shown to satisfy system (4) and the IBV conditions given by Eq. (6).

Based on the corresponding RH problem, these above-obtained results may be used to further study
the long-time asymptotics of the solution by means of the Deift-Zhou’s nonlinear steepest descent
approach (Deift & Zhou, 1992, 1993) and some numerical methods (Trogdon, 2013). Moreover, the
analogous analysis of the Fokas method can also be used to explore the IBV problems for other
integrable nonlinear evolution PDEs with 4 x 4 matrix Lax pairs both on the the half-line and the finite
interval, such as the three-component derivative NLS system, the three-component high-order NLS
system and the three-component mKdV system. These important issues will be further implemented in
future.
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A. The proof of Proposition 4.1

Proof. The global relation (59) under the vanishing initial data can be simplified as

Cra(tK) =W (1, )Py (1K) — XMW (1K) (0t By (8, K) + Gy (8, K) + G343 (2, K))
+W, (8, k)((¥12¢_)41 (t,k) + 0522‘5420, k) + 0_623(1_’43 (t,k))

FW3 (1K) (o341 (1K) + 0304 (1K) + a3343(1,K)) ],
Cos(t,K) =W (1,5 by (k) — XMWy (1K) (0 Py (1, K) + 610 (8, K) + Gy30043(2,K))

+Woy (1, k) (019 Pay (1 §) + Qo s (1, k) + Gaz bz (1K)

F W5 (1, k) (@301 (1K) + @345 (1, k) + 330431, K))],
34 (1K) = Way (1, )by (1. k) — X HE[ W5 (1,K) (0t By (8, K) + Gy (8, K) + G343 (2, K))

+Wss (2, k)(a12¢_)41 (t,k) + 0122‘2’42(& k) + 55235543 (t,k))
F W33 (1, k) (0t 34 (1, k) + g3y (1,6) + a33043(1.6))].

where ¢;;(1,k) = ¢;;(t, k).
Recalling the time-part of the Lax pair (11)

1y + 2iK [0y, 1] = V(x, 1, k).
It follows from the first column of Eq. (149) with i = ., that we have

Vi1 k) = Chkugy + iug )Wy — ¥ (o lug, |2+ @ yug gy + @30, ig3)

475

(148a)

(148b)

(148c)

(149)

. 2 - - - . 2 - -
— 1% (alugy | + aputg gy + aazug Ug3) — W3y (y3lug; |+ apzig gy + o33 Up3),

Wy, (0, k) = 2kugy + i)Wy — iy (@ ugpitgr + @y lugy |* + &30 8g3)

. - 2 - - . - 2 -
— 1% (it + g lugy |7 + dazugpitgs) — W3 (3t itg) + psligs |~ + a3zugpii3),

Wy, (6,k) = (2kugy + iwy3) Wy — i) (@ ugaitg) + @patgaitgy + @3 lugs]?)

. - - - 2 . - - 2
— 1% (put3ity) + apptigslgy + dps3lugs|™) — W3 (ysugsiin) + ap3tigzilgy + ot33litgs]”),

Yy (6 =y Loy kg — ity ) + oo Rkitgy — iuyy) + o3 (2kigs — iuy3)]
+Wso [o, Rkt — Tty ) 4 otyy Lkingy — ittyy) + apz (2kigy — iity3)]
+'1/31 [Ol13(2k1201 — i[{]]) + (¥23(Zkl_402 — iljllz) + C(33(2k17i03 — ”213)]

N 2 2 - - - - -
HiWy (4K + oy |ugy | + agpug gy + 03001 Uz + X pptgr it

2, = . . . 2
o g |7 + zitgpityz + ay3ttg3itg) + Qpsitgsiigy + s3lugs |7l

(150)
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The second column of Eq. (149) with = u, yields

Wy, (1, k) = Qhutgy + iuy )Wy — Wy lugy | + @ypttg Tgy + @3ty ig3)

— i (ot ity |* + gttty + Gpsitgyitg) — Wy (a3 lutg 1P + casingy ity + 33ty itgs),
W (1,K) = 2kt + itty3) Wy — %15 (0t ity + &yl |* + @y3u021dg3)

— i (ot + s ity |* + Gsitgnitgs) — W3y (a3t + e ity |* + e33itgnitgs),
W, (1,K) = Qhutgy + iug3) Wy — W (@) g3itg + & yathositgy + &y3lugs 1)

— i) (ool + Aoy + G itz |*) — Wy (a3t + gty + ez litgs]),
Wi, (0. k) =Woloy (kitgy — diayy) + ayp (2kitgy — itdyy) + a3 (2kitgy — ity3)]

FWolory (2kitgy — didyy) + 0ty (2kidy — ittyp) + Qo3 (2kitgy — iity3)]

FW3slor3(2kingy — iiayy) + g3 (2kitgy — ittyy) + 33 (2king; — ity3)]

FiWg [4K% oy lugy [P + Gy oy + @301 g3 + oty

2, = . . - 2
Fag lug |7 + azugy itz + oy3ugsity + stz + 33]up3 |71
(151)

The third column of Eq. (149) with . = u, yields

W3, (1 k) = Qhugy + ity )Wy — i%y5(0yy lugy 12 4 &ypug gy + @301 )

—iWss (@ yplugy * + agtig gy + Qnsttgyitgy) — iWa3(@y3lug 1P + anzitg gy + @3ty its),
W3 (1, k) = Qhugy + it )Wy — i%y5(ay gt + @yalugy | + @y3ugpi3)

—iWss (@) gpitgy + g lugn]® + Qnstigaitgy) — i35 (@ 3ugaitg; + aslugy | + @s3ugaites),
W3, (1,k) = kg + iuy3)Wyy — i¥3 (@ ugsiig + @atigsitgy + &y3lugs 1)

—iWs5 (@ plgsitgy + apttgsiigy + Gos ligs|*) — iW33(3g3ig; + Aaztigsitgy + a3 ligs]?),
l1143J(l‘, k) =W 3lay Qkugy —iuyy) 4+ oy kg, — itgy) + o3 (2kigy — iity3)]

FWoslayp (2kugy —iuyy) + gy (2kingy — i) + p3(2kingy — iy3)]

+Wssla3(2kugy — iuyy) + ay3(2kingy — i) + 33 (2kingy — iy3)]

il (412 + gy 1P+ @t gy + @303 + @ptigyilg)

2, = . . . 2
Fag lug |7 + azugyttps + oy3ug3ity + stz + 33]up3 |71
(152)
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The fourth column of Eq. (149) with u = u, yields

Wiy, (1 k) = Qhutgy + ity )Wy — i1 (4k% + oy lugy 1> + @yatgy g + &3t ig3)

—iWs, (g lugy P + @ttty + Qpsttgyitgs) — iWag(@y3lug |* + anzutg gy + @3ty i3),
Wy (1, k) = Rkt + i)Wy — iW4 (@ ity + 1plugn]® + @y3ugpits)

— W, (4K% gl 0 g | G5t ti3) — Wy (3 gy +0a3 ligy | + 3805 10g3),
Wiy (k) = Qhatgy + ity )Wy — iW (@ ugsitg; + &yptigsitg + &3 lugs]*)

— W), (g3 ity + s gtz s ) — Wy (4 a3 g3ty + o3 thgsiigy + o33 gz ),
Wpa (1, K) =Wglony ) kingy — duyy) + 0y (2kidgy — ittyp) + 013 (2kidgs — itty3)]

FWoulayp (2kingy — iy ) + otgy (2kitgy — i) + 0ty3(2Kkitgy — ilty3)]

FWaylo 3 (kg — i) + ayy Ckitgy, — ittgy) + ot33(2kingy — iuy3)]

iy Loy lugy |2 + @ity + @130, i3 + 0gptigpiig) + s lugy |

- - - - 2
a3tz + oy3ug3i0; + oa3UgzUgy + a33ig3] 7.

(153)
Suppose that lI/jl ’s,j = 1,2,3,4 are of the forms
’! ®  ap® b b
| ap () | apl Y 12 4ik%t
Yy
where the 4 x 1 column vector functions a, j(t), b, j(t) (G =0,1,...,) are independent of k.
By substituting Eq. (154) into Eq.(150) and using the initial conditions
a10(0) + b1(0) = (1,0,0,0)", a;,(0) + b, (0) = (0,0,0,0)",
we have
()
v
lI/l] 1 11
7 0 21| el 1
21 — — —
11131 10 +st l]I(S) +0(k3)
‘1’41 0 s=1 31
(s)
Vi
0
1 0 1 2
— o) | 155
+| 5 0 + (kz) e (155)

01U (0) + a5t (0) + 033 (0)
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Similarly, it follows from Eqs. (151)—(153) that we have the asymptotic formulae for ¥;;, i =
17 27 33 4;j = 2, 3, 4 in the fOrm

(s)
13
L4 1 ) l(%)
Upn | _ |0 1| ¥ 1
v, | 1O +ZE w® Ve
l[/42 0 s=1 32
(s)
Wy
0
1 0 1 ,
T 0 +0(ﬁ) Mkt (156)
o111 (0) + gyt (0) + 3143 (0)
(s)
v
Vi3 1 5 l(i)
Uy | | O 1 L2 1
Ui || O +ZE o +0 i3
s=1 33
l1/43 0 (s)
Y3
0
1 0 1 )
+| 57 o +0(p) Akt (157)
o301 (0) + a3t (0) + 33143 (0)
and
()
v, i Y4 11, (0)
2 (s) .
Wy, 0 1| ¥y 1 i | up(0) ! —4ik%t
= — o\ = — o\ = . (158
2 0 +§kﬁ ) TO\B) T % w0 | 7O\ | (15%)
Y 0 () 0
Yy

Similarly to Eqgs. (150)—(153) for u,(0,1,k), we also know that the function u(x, t,k) = us(L,1,k)
at x = L satisfies the ¢-part of Lax pair (149).
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The first column of Eq. (149) with i = 5 yields

G114t k) = Qhvgy + vy gy — iy (o1 1V 1> + &12v01 V02 + @13V01703)

—ihy; (ety3]vo1 I* + Vi Vp + Fa3vr To3) — i3 (eg31vo1 I* + a3V Vp + @33v1 703)s
Po1,, (k) = Rhvoy + ivi2)bay — iy (&1 1vaV01 + @12 lveo > + @13V02703)

—ihy; (et12V02701 + Ao Voo |* + @a3vigaPo3) — i3 (e13v02701 + a3V |* + @33v0703)s
P31, k) = kvos + iv13)day — iy (g1 vo3Vo; + @1oVesVor + &i31vosl®)

—ihy; (¢t12V03 V01 +a2V03 V00 +3 V31 ) i3 (1303701 F+3Vo3702 +t331v03 1),
G411, k) =y [y (2hvgy — ivyy) 4 @15 (2kvgy — 1p) + &13(2kVg; — ivy3)]

a1 la)a (2kvg) — V1) + g (2kvgy — i) + dp3(2kvgs — iVy3)]

+3[ay3(2kvg — ivy)) + ap3(2kvg, — ivy)) + o33 (2kvgs — iV3)]

. 2 2 - - - - -
iy [4k~ + oy Vo117 + &12v01 Vo + 1301 Vo3 + X 12V02V01

2, = - - - 2
o Vool ® 4 @p3voVo3 + @13V03V01 + o23vp3V02 + 331v0317]
(159)

The second column of Eq. (149) with u = 5 yields
G104 (1,K) = (2kvgy + ivi )by — ihyo (V1> + @12v01 Pon + @13V01703)
—ihy (@11 1> + @2V Vgp + @31 Vo3) — ihsp (43 1y >+ @a3vg; Vop + @33v01 7p3)
G2 (1,K) = (2kvgy + ivi2) by — ihyo (@ vaVo1 + @1alvoal® + &13V02703)
—ihy (@12v02V01 + @alVoal® + @3V0aTo) — ih3n(@13v0aV01 + @a3voal? + @33v02703)

B30, (1. k) = (kv + iv3)byy — ih1o (et Vo301 + @12Vo3702 + @131v031%)

—ighy (@12V03V01 + Vs + Aoz lvos|®) — ihsp(e13v3701 + @a3v03700 + @331v031%),
¢42,t(t, k) =¢poloy kvyy — ivyy) + @ (2kvgy — ivyy) + 0 3(2kvyy — iv13)]

Fnlay (2kvg) — vyy) 4 o (2kvgy — ivyp) + dp3(2kvg; — ivy3)]

F3alary3(2kvgy — vyy) + a3 (2kvgy — ivyp) + a33(2kvg; — ivy3)]

Fighao [4K% + g [voq 2+ @121 Vo + @13V01 703 + €12V 0201

2, = - - - 2
o Vool ” 4 @p3v0Vo3 + @13V03V01 + o23V3V00 + 331v0317]
(160)
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The third column of Eq. (149) with i = 5 yields

G134 (8,K) = (2kvg; + vy )by — i3 (V11> + @12v01 Vop + @13V0173)

— iy (@2]vo1 1> + @V  Ton + @31 Vo3) — i3 (3 1voy |2 + @a3vg1 Von + @33v01703)s
P23, (1, K) = (2kvgy + ivi2)dys — i3 (@ voaVor + @1alvoal® + @13v02703)

—ihy3 (@ 12V 02 V01 + A Voal® + @a3VgaTos) — i3 (@13v02701 + @a3lvoal® + @33V 00703)s
P33, (1K) = (2kvoy + iv13)das — i3y VosTor + F12Ve3V0n + @131V 1)

—ihy3(12V3V01 + XpVo3V0n + @3 lVos|®) — i3 (ey3v3V01 + @a3Vosvion + @3lveslS)s
by3, (1, k) =@ y3lay; (2hkvgy — Vi) + @15 (2kvgy — ivyp) + @3(2kvgs — ivy3)]

Fa3la)(2kvg; — vy ) + @y (2kvgy — V1) + @p3(2kvgs — ivy3)]

33l 3(2kvg; — vy ) + ay3(2kvgy — ivy5) + a33(2kvg; — ivy3)]

Fighy3 [4K + vy 2 + @12v01 Vop + @13V01 P03 + @12V0a Vo1

2, = - - - 2
o Vorl® + @x3v0Vo3 + @13ve3V01 + A3V03V02 + 331v0317]
(161)

The fourth column of Eq. (149) with u = u4 yields

P14, (k) = Qhvgy + vy sy — ib14(4k% 4y vy 1> + @12v1 V02 + @131 V03)

—ihyy (111 1> + @V Vop + @a3v1 Vg3) — idhaa (g3 1vy |2 + ea3v1Vn + @33v01 V03)s
P24, (1,K) = (2kvoy + iv12) by — ih14 (11 V2V01 + @ 1alvoal® + @ 13V02703)

—ighyy (4> + 13V V1 + W Vo | @3V V03) —ich3a (@13v 02701 + X3 Vo |+ @33v02703)5
B0, (1K) = (2kvos + iv13)bas — ih14 (@11 Vo301 + E12V03700 + @131v31%)

— iy (@12V03V01 F WapVo3Vn + @3 Vo3 ?) —igh3g (4> @ 13v3V01 + W33 Vgn + @331ve31%),
Pag (0, 5) =ylay 2kvg) — ivyy) + @ (2kvgy — Vi) + @y3(2kvgs — ivy3)]

Fpala o (2kvgy — V) + g (2kvgy — iV)) + dp3(2kvgz — iVy3)]

F3alo3(2kvg; — ivyy) + a3 (2kvgy — iVyy) + a33(2kvgz — iVy3)]

Figpaglay v 1> + @12v01Von + @131 03 + ¢12v02V01

2, = - - - 2
o Vool ® 4 @p3veaVos + a13V03V01 + oa3V3Von + 331vo3l7]
(163)

Similarly, we can also obtain the asymptotic formulae for ¢,-j, i,j = 1,2,3,4. Substituting these
formulae into Eq. (148a) and using the assumption that the initial and boundary data are compatible at
x = 0 and x = L, we find the asymptotic result (68) of ¢,4(t, k) for k — oo. Similarly we can also show
that Egs. (69) and (70) hold for c,4(t, k) and c34(2, k) as k — oo.
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER EQUATIONS 481
Similarly, we have the global relation (59) under the vanishing initial data as

Cq (1.h) = =W (1, k) (o By + pbay + t3h34)e 20
FW (10 [ (@ fyy + @rp + @13013) + A (@161 + F 1oy + F13¢03)
Fo3 (o b3y + Gpady + @13033)] + Paa (10 [og (@26)) + @y + @n3dy3)
oy (@) + pdy + Gazha3) + a3 (s + Ay + A3z
FWs (1 k) [ (@3¢ + ap3rn + a33013) + A (@3¢ + @3y + @33¢03)
o3 (@331 + eo3bp + az3s)],

(164)

Cap(t.k) = =Wy (1, k) (@014 + pyay + p3hzg)e 20
FW (R [ @ (1 fyy + @rp + @13013) + an (@161 + T 1oy + F13¢03)
oy (o b3y +@pabp + @13033)] + Paa (10 [G1 (@20 + @gadin + An3dys)
gy (@201 + Aoy + Ga3ha3) + 3 (@3 + a3y + A3z
FW3 (10 [@1 (@301 + ap3pin + a33013) + an (@130 + W3y + X33¢03)
oy (@303 + aa3hp + a33633)],

(165)

Ca3 (1K) = =Wy (1, k) (@3¢5 + Q3o + a33p3)e
FW (LR [ @3y Byy + @orn + @13013) + A3 (@191 + Ty + T 13¢03)
Fogz (o 31 + Gpadsy + @13¢33) | + W (0[5 (@100 + agadyy + dp3da)
3 (01 + by + @3ay) + a3 (@) + by + Aa3ay)]
FW (10 [ @3 (@3¢ + ap3in + a33013) + A3 (@130 + W3y + X33¢03)
Fog3 (@305 + aa3hp + a33633)],

(165)

where </3ij = ¢3,.j(t, k) = ¢, (1, k), such that we can show that Eqs. (71)—(73) hold for cyj(t,k), j =1,2,3
as k — oo. O

B. The proof of Proposition 4.2

Proof. We can show that Egs. (75) and (76) hold by means of Egs. (35) and (36) with T replaced by
t, ie. Sk) = ¢ 2ik* 5y ny 10,1,k) and Sk = 6_2”‘2’34#3_ Y(L,t,k) and the symmetry relation (32).
Moreover, Egs. (77)—(80) for l,I/ij(t, k), i,j = 1,2,3,4 can be obtained by using the Volteral integral
equations of u, (0,1, k). Similarly, the expressions of ¢,-j(f, k), (i,j = 1,2,3,4) can be found by means
of the Volteral integral equations of u5(L,?, k).

In what follows we show that Egs. (81)—(91) hold, i.e. the maps hold between Dirichlet and Neumann
boundary conditions.
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482 Z. YAN

(i) The Cauchy’s theorem is employed to study Eq. (62) to generate

— (/ +/ )[w44(z,k)— 11dk = (/ +/ )[W44(t,k) — 1]1dk
9D, 9Dy aD, D3

D3 D3 aD3

inw ) (1)
(166)

and

in w2 (1) = (3D1+faD3)[kl1/14(t o) + dugy (0] dk = /BD [kt]/m(t k) + u()l(t):| dk

/ —2ikL
(0]
D3

> (b
apg

——

kW4 (k) + u01 O+ —=—— |:k§[/14(t, k) + %MOI(I{H dk+Ci(»  (167)

M

where we have introduced the function C (¢) as

26—2ikL i
C,() = _/augl 5 |:kl1’14(t,k)+§u01(t)“dk.

We use the global relation (148a) to further reduce C, (¢) in the form

2672ikL i

52k 1 (1>¢(1) 1 1
:/ 0 —keyy + Wy + R = (0 8y @6y + @@l | 1o dk
oD

)

De—2ikL lp](i)(pﬁ) = 2Dy, = g7 7Dy = a7 (DN 2L
-/, > p +(a11(k¢41—¢41 )0 (kpgr—hyy )+t 3 (kys—y3 ))e dk

2ke—2ikL _ _ o o
+ADO H b)) [w14(¢44 - 1) - [(Wll - 1)(0(11(1)41 + Ol12¢42 + C(13¢43)
0 _

F W (0 0hyy + U Pay + An3Baz) + W3 (03041 + Up3Pay + a33d43) €]} _ dk.
(168)
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER EQUATIONS 483

By applying the Cauchy’s theorem and asymptotics (68) to Eq. (168), we find that C,(f) can
reduce to

. ) I - 2i I
C\() = —in¥, — /3D0 [5u01¢44_ +t5 [oy1 (—ikepyy— + v + @12v0 + @13v03)
3

+ayy (—ikyy A+ @yaVor + AapVor + @3v03) + 05 (—ikdys_ + @13vg+ Gazvea+ a33ves) |} dk

2k _ kL _ Z _ - _ -
+ 302 Wi4(pgy — e — (W) — Doy 04y + @204y + @13043)

— Wy (ay0g) + Ay + X3by3) — Wi3(@30y + @p3bs + 0‘33‘1_’43)]_ dk
(169)

It follows from Egs. (167) and (169) that we have

. ?) _ E+ . i -
3D(3) 2_ 2

2i - B B B -
+/a ; > —— [oyy (—ikpyy_ 4 ayyvor + @ppvon + @13v3) + @1a(—ikdyy  + ajpvg,

_ _ - (170)
vy + Gp3vos) a3 (—ikdys + ay3vg; + ap3vgy + @33vps) | dk

2k =20k _ z _ _ -
+ DOZ' W4 (¢gy — De — (W — Dy 941 + Q1040 + @13¢43)

— W (@paByy + Ay + Ar3dyz) — Yi3(@)38y; + ap3dy +az3dys)] dk

Thus substituting Egs. (166) and (170) into the third one of system (64), we can get Eq. (81). Similarly,
we can also show that Egs. (82) and (83) hold.

To use Eq. (67) to verify Eq. (84) for v;;(¢) we need to find these functions ¢f‘i) (t,k) and ¢§? (t,k).
Applying the Cauchy’s theorem to Eq. (65), we have

2 2
’77[0‘11¢14 a0, +0‘13¢( ]

:/BD [a“(k(pm([’ k= ¢S‘)) + k(1K) — ¢§1)) + o3 (kg3 (2, k) — ‘P(l))] dk,

2ikL

_ (n_ 262’“ (1y_2e (1)
- ayy| kp4(t, k) =y (k¢14 ¢14)+(¥12 kepyy (2, k) — Poy —bsy)

2 2ikL

+ay3 [k¢34(f’ k) — ¢(1) — (k34 — ¢(1))]}_ dk + Cy (1),

))
:/BDO —2—+ [“11(’“15147 —201)) + Gy (keppg - — 205)) + Gy (kepy — 2‘1’(1))] dk + G, (),

(171)

where we have introduced the function C, () as

207 My, = My, - m
G0 = / [ [0‘11(’“1514 — O1p) Faplkdyy — dyy) + ay3(key — ¢34 )” dk.
) | ¥ _
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484 Z. YAN

We use the global relation (163) to further reduce C,(¢) in the form

2 _ - o, - 1 j
Cz(t) =/ 0 [2— I:—kC41(t, k) - (a11¢§4) + a12¢ + 0513(15( )) e2lkL
apg | 2
- (1 H o, - 1 = (1
~,y (“11¢( Va0 + @304 )) + @)+l + Loy D)
_ _ _ _ __ _ )
(@ + @0 + @3 W) (@8 + @adns + 83033 ¥3 ]}7 dk

ZtkL

+/ 2 tp“)(a o+ a,ol) +a ¢(”)
BDg 2_ 44 11714 12%24 13 k

+(afy + logp? + e3P (k) — l1_’41 )+ (o1 @y + Gypayy + @y3003) (k¥ —

(1))

5 o - 7 = (1
(o103 + 0053 + 03033) (kW3 — ‘1’4(3))]}_ dk
2k 7 - . 2ikL
+ {(1 — W) (o P1y + Qpa0ps + ay3034)e
apY 2_

FWy [y (@ (@11 — 1)+ @ppdpy + ag3013) + @@ da) +@1p($r — D) + a13003)
+a 3931 + @pb3 +og3(ds3 — D] + Pl (@191 — 1) +aneiy + ap3éys)
Fa1p (@101 + (D — 1) + aa3h3) + @13(@10¢31 + s + (P33 — D))
AWy @13(¢11 — 1) + Gozbin + A33013) + Apa(@13¢01 + @3 (P — 1) + a3363)

+a,3(@ 303 + @303y + az3(h33 — )]} dk.
(172)

We need to further reduce C,(#) by using the asymptotics (71) and the Cauchy’s theorem such that we
have C,(¢) in the form

2 2 I -1 _ _
G0 = —l”[“11¢’14 + a5 ) +°‘13¢( '] _/ ~W,y) (o vop + dyavgy + @3ve3)dk + 1 (1)

apY 2
(173)
It follows from Egs. (171) and (173) that we have
2ilory 917 +&,05; + @305 |
== /DO i Eg [y (kg + ivgy) + Gyp (kepys_ + ivgy + @3 (ks + ivgy)] dk (174)

i g i _
_/31)0 3 4(4)_(0‘11"01 + vy + @y3v3)dk + 1, (1),
3

where I (¢) is given by Eq. (86). Similarly, we can also the expressions of i [a12¢ﬁ) +a22¢§? —1—0723(;5;?]
and 2im o 3¢1(i) + 0523(]551) + a33¢§?] such that we can show that Eq. (84) holds.
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(i) We now deduce the Dirichlet boundary problem given by Egs. (88)-(90) at x = 0 from the
Neumann boundary problem. It follows from the first one of Eq. (64) that u; (f) can be expressed by

means of llll(i). Applying the Cauchy’s theorem to Eq. (62) yields

inwy (1) =(/ +/ )wl4(t,k)dk=/ W, (1, kdk
aDy 0D3 D3

(175)
—/ [w (t,k) + 2 (e 2y ) ]dk+C(t)—/ E*—(k)lp dk + C5(1)
where C;(t) is defined by
2 .
C:i(t) = — — = (e ¥y dk. 176
3( ) /BDg R0 (e 14)+ ( )

By applying the global relation (148a), the Cauchy’s theorem and asymptotics (68) to Eq. (176), we
find

G

2 -2k
— — ¥4 dk
/a 0T (e 14)+

2 —2i n — - _ -
= / 3 [—C14e 2L (0104 + 0Py + a13¢43)] dk
apg > N

2 _ . _ o o
+/300 3 [‘1’14(‘1’44 — 1e 2 — (W11 — D@1 @41 + @120ay + ¥13643)
0 X_

FW o (@0 + Xy + A3bas) + Vi3 (@301 + aa3dy + 0‘334_543)]]+ dk 4
= —iry,,) _/ i(alléﬂ + @pay + @13Pa3) 4 dk
ap? X_
+/300 Ei {‘1’14(‘544 — De™ M — [y — Doy bay + @12¢gr + @13643)
0 X
FW (@0 + @by + A3bas) + Vi3 (@301 + aa3dy + 0‘33‘7343)]}+ dk.
Egs. (175) and (178) imply that
2im vy (1) = / [2+—(]()‘1’14+ - i(0‘114_541 +0pdp + &13¢;43)+:| dk
ap? L 2_ (k) X
(178)

2 - —2ik n - -
+/300 > {g/]4(¢44 — e — (W11 — D@ hag + @12Bay + ¥13643)
0 X

FW (@ 1a; + Aoy + Gozbaz) + Vi3 (@r3¢a; + @3day +a33043)] ), dk.

Thus, substituting Eq. (178) into the first one of Eq. (64) yields Eq. (88). Similarly, by applying the
expressions of llfz(i)(t) and W;i)(t) to the second one of Eq. (64), we can show that Egs. (89) and (90)
hold.

Similarly we also can show that the Dirichlet boundary problem given by Eq. (91) at x = L holds
from the Neumann boundary problem. (]
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486 Z. YAN

C. The proof of Theorem 5.3

Proof. By means of the global relation (59) and Proposition 5.1, we can show that the spectral functions
S(k) and S; (k) are defined by Eqs. (75) and (76) with ¥ (¢, k) and ¢ (¢, k) given by Eq. (108a) and (108b),
respectively.

(i) We firstly consider the Dirichlet problem. It follows from the global relation (59) with the
vanishing initial data

c(t k) = (0,1, )™ % N (L, 1, k), (179)

that we find
Cu(t,k) = =3 s MTGL (1, ) + Wy (1, ), (180a)
Cyj(t, k) = Wy MT T (1, ) MT — Wyl (1, ) MT e =L, (180b)

Substituting Egs. (118a) and (118b) into Eq. (181a) yields
MTLLAM — Ly = kGjy — kMTGLeP™ + Fiy (1 k) — G4 (8. k), (181)

where I:*j4 (t, k) is given by Eq. (120). Eq. (181) with k — —k further yields

MTLLe M — Ly = —kGjy + kM GLe ™+ Foy(t,—k) — 8y (1, —k). (182)

It follows from Egs. (181) and (182) that we get

2 2k 2 1 - B Y
Ljy = Gy — 5 MIGh+ — {(Fat. = Gl (183)

Multiplying Eq. (183) by ke***@=%) with 0 < 7 <  and integrating them along aDY with respect to
dk, respectively, can yield

A 2 A 2 X
/ ke4ik2(z—r)ij4dk =/ e4ik2(t—r)k Xy C‘j4dk _/ e4ik2(z—r)&MTg4Tjdk
D" D" > aD? 2

(184)

ket =) _
_|_/ , eE—[FjA‘(t’k)eszkL]_dk’
aD

1 —

where

/ ket (1 kdk = / ket @ (1, ke ) _dk = 0
oD, oD,

in terms of their analytical properties in D(l).
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Based on these conditions given by Eqs. (123) and (124), Eq. (184) can become

KX T Gy(t,2T — 1)
- ey 4ik (1—1) ¢ _ At — o
2 J4(t 2t —t) = /a o T |: /0 e Gy(t,2s — 1)ds e dk

YT - ; Gl (t,2t — 1
—a [ S| [ e ndna - nes - BOET0 e as)
aDy 0

> 4ik?

+/ Ek 4!/( (t— T)[F (t k)e—2lkL] dk
DO

We choose the limit T — ¢ of Eq. (185) with the initial data (110) and use Proposition 5.2 to find

T~ ) Be, [ [ ) - Gj4(t, 2t — 1)
ELJ-4([, t) —2_}1_)Int aD(]) bl [/0 e Gj4(t, 2t — t)d'[ - T dk

KRMT
—4 lim

oo G (1,2t — 1)
/ e4lk2(t_f)g4T-(t, 25 —fyds — 4" 7
T—t 3D0 )

o J 4il2

k.
+ lim AR (1, ke ™2 _dk

Tt 3DO
2y r 2MTT 5% j <
=/3D0 {z_ [sz/A(t’ n+ % 4t l)] - [kzglj(t, 1+ %ij(t, t)i|

ik k /- o
+5 0 (G44 944) + 5 (Fj4e M)_} dk.

Since the initial data (110) are of the form

- i 7 i r
Lig(.0) = Sl (1) = 5y (1), o (0, uy30)' (187)

thus we know that Eq. (128a) holds by means of Eqs. (186) and (187).
To show Eq. (128b) we rewrite Eq. (180b) in the form

Gtk = MP gy s MIBL (1, k) — MT g 0, (1 )™ (188)

We substitute Egs. (118a) and (118b) into Eq. (188) to have

—Ljj+ M" L™ = kGl — kMTGye?™ + F (e, k) — &4;(1, k), (189)

where F4j(t, k) is given by Eq. (121). Eq. (189) with k — —k yields

—L4/+MT£ ek — kG4J+kMTg e 2 Fyie, —k) — (e, —). (190)

It follows from Eqgs. (189) and (190) that we have
2k =

T4 kZJJr A 1 -

Y

(186)
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488 Z. YAN

We multiply Eq. (191) by ke* k0= with 0 < 7 < t, integrate them along 8D(1) with respect to dk
and use these conditions given by Eqs. (123) and (124) to yield

i < KX T . Gu(t,2t — 1)
ML ,2t =) =—2/3D0 - M [/0 MG 1,25 — ds — s | dk
1

(:;Zj(t, 27 — 1)

k2 LA =
+4 / — / ARG (125 — ds — —0—— | dk (192)
3D(1) > 0 v 4lk2

k 4k2 =
+ / — TR, (1 k)dk,
ap? 2

where we have used the relation

k. _ _
/ ; E—e‘“kz(’—%{j_ (t,k)dk = 0
aDy &

due to the analytical property of the integrand in D(l).
We consider the limit T — ¢ of Eq. (192) with the initial data (110) and use Proposition 5.2 to find

T ~ 2 . 2 2 | =
MLy 0) = [ [—%MT [k29j4(t, B+ 3G, t)] + 5 [kZGIj(t, D+ éGZj(t, t)]

_ 1
ik (A 2 k - (193)
+EM ) Q44 - G44 + E__F4j_ (l, k) dk.
Since the initial conditions are of the form
- i i
L, = v[(0) = S0 0,720, v13 ()7, (194)

thus we get Eq. (128b) by combining Egs. (194) and (195).
(i) We now turn to consider the Neumann problem. It follows from Eqs (181), (182), (189) and
(190) that we have

; 1 = T AT = - —2ikL

Gu= 15 [2+Lj4 oML+ [(1:].40, K — &1, k))e L , (1952)
5 1 Tir A Tz T 7
= {2/\4 L -5, Lo+ M [F4j(t, k) — L, k)]+ . (195b)
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We multiply Eqgs. (195a) and (195b) by ke* k0= with 0 < 7 < t, integrate them along 8D(1) with
respect to dk and use these conditions given by Eqs. (123) and (124) to yield

3 2 T 3 Ly(t,2t — 1)
5Giu(t,2t — 1) =/ = / e4’k2(t_T)Lj4(t, 2s — t)ds — 14,—2 dk
2 8D(1) 2_ 0 4ik

o : (1,2t — 1)
_/ 0 42/1 / e4zk2(t7r)£zt}(t, 25 — f)ds — % dk (196a)
an? X |Jo i

e4ik2 (t—1) ikl
- (Fe % dk,
+/BD(1) > Fae =04

S|

T 5 am’ 4zk2(t 07 T 14(t 2t -1
LA N La:(t,2T —t
_ / 2 / AREDF 005 s — M G (196b)
DO O 0 J 4ik2
+/ M 4lk (t— 'L’)F dk
DY T

where we have used the analytical property of the matrix-valued functions

/ D G e k= [ RO k=0,
D > aD? T

We consider the limits 7 — ¢ of Eqgs. (197a) and (197b) with the initial data (110) and use
Proposition 5.2 to find

T~ Typ M —2ikL

—Gj4(t’ t) —/BD(I) |:E__Lj4 ‘64] + _(F e )+ dk, (1973)
T s 2MTE. 1 MT~
=Gyt = L; Li —Fy ) dk.
Gt = | y ( o 4J+) (197b)

Since the initial conditions are of the forms
]4(f 1 = uy (f) = (ug; (1), upy (1), 1403(f))
(198)
Gt 1) = v{ (1) = (o, (1), v (D, vo3 (D)7,
thus we can find Egs. (129a) and (129b) using Eqgs. (198a) and (198b). This completes the proof of the
Theorem. u
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