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Thermomagnetic properties, and its effects on Fisher information entropy with Schioberg plus
Manning-Rosen potential are studied using NUFA and SUSYQM methods in the presence of the
Greene-Aldrich approximation scheme to the centrifugal term. The wave function obtained was used
to study Fisher information both in position and momentum spaces for different quantum states by
the gamma function and digamma polynomials. The energy equation obtained in a closed form was
used to deduce numerical energy spectra, partition function, and other thermomagnetic properties.
The results show that with an application of AB and magnetic fields, the numerical energy eigenvalues
for different magnetic quantum spins decrease as the quantum state increases and completely
removes the degeneracy of the energy spectra. Also, the numerical computation of Fisher information
satisfies Fisher information inequality products, indicating that the particles are more localized in

the presence of external fields than in their absence, and the trend shows complete localization of
quantum mechanical particles in all quantum states. Our potential reduces to Schioberg and Manning-
Rosen potentials as special cases. Our potential reduces to Schioberg and Manning-Rosen potentials
as special cases. The energy equations obtained from the NUFA and SUSYQM were the same,
demonstrating a high level of mathematical precision.
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Over the years, devices that enable quantum information to be coherently transferred between topological and
conventional materials have been studied by various researchers’. These materials contained an electromagnetic
field, which serves as a fundamental carrier of information, capable of transmitting a modulated signal and col-
lecting data about the propagation channel itself?. This was made possible by the foundations of information
theory by Fisher® in his classical measurement theory, which he used for estimating ultimate quantum limits that
allow for known local changes in density*. The context was also examined by Shannon® in his study. The Shannon
entropy is a global measure of electron density that plays a significant role in the assessment of uncertainty and
provides a source of information about atomic, molecular, and nuclear systems®.

These theoretic tools provide a deeper understanding of density functional and electron correlation in study-
ing the structure and dynamics of the atomic system’. Quantum information theory has proven to be extremely
useful in a wide range of fields, such as Physics, Chemistry, Biology, Medicine, Computer science, neural net-
works, linguistics, and other social sciences!®. They are commonly used in quantum physics to analyze quan-
tum steering'!, quantum entanglement'?, quantum revivals'®>, quantum communication'®, atomic ionization
properties', and other phenomena. In wave mechanics, the solutions of the eigenfunctions of the Schrodinger
equation under a potential energy barrier are essential because the entropic functionals are presented in terms of
probability densities in the position and momentum spaces'. Several research have been carried out on Shannon
entropy and Fisher information with physically motivated potential models, like the class of Yukawa potential/,
Screened Coulomb potential’, generalized hyperbolic potential'®, screened Kratzer potential'®, Frost-Musulin
potential®, hyperbolic potential*', and many others.

The Manning-Rosen potential is a significant exponential-type potential proposed by Manning and Rosen*
in 1933 to explain the vibrational behavior of the model of the diatomic molecule?. The form of this potential
model is given by**
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where ¢; and ¢; are potential strength parameters, and « represents the screening parameter while r is the inter-
particle distance. The Schioberg potential, proposed in 1986, is another intriguing potential. This potential
describes the molecular vibrations of diatomic molecules accurately more than the Morse function and represents
suitably intermolecular interactions between particles”. The potential model is of the form?
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where D is the potential depth, « is the screening parameter and 4y is the potential parameter that determines
the size of the potential and can also serve as optimizing parameter. Recently, there has been a surge of interest
in incorporating at least two potentials. The goal of combining at least two potential models is to provide more
physical application and analysis to existing molecular physics studies. Also, it is well-known that the potential
energy functions with more parameters have a tendency to fit experimental data better than those with fewer
parameters®’~?. Many scholars have conducted extensive research in both relativistic and non-relativistic regimes
to explore these potentials™-%,

In recent times, research indicates that the addition of external fields to potential functions on quantum
systems has demonstrated its potency in controlling certain behaviors of systems and molecules®. The Aharo-
nov-Bohm (AB) effect, discovered in 1961*°, occurs when a moving charge is transformed by scalar and vector
potentials that appear in the Schrédinger equation (SE) even in the absence of external EM fields*!. Since then,
many studies have analyzed a bound state of a charged particle moving in a potential vector and scalar poten-
tial. A realistic description of the external EM field effects on quantum systems is provided by the Stark*? and
Zeeman®’ effects. In the Stark effects, an external electric field is applied to the electrically neutral hydrogen
atom, causing it to experience a zero net force, resulting in a shift in the energy levels. On the other hand, Zee-
man effects occur when an atom is exposed to a uniform magnetic field. These interactions have similar effects
in that they cause the energy levels to split and shift*%. External fields have previously been studied by a wide
range of quantum mechanical phenomena in many areas, including physics, chemistry, biology, material science,
engineering, mathematics*~! and others.

Considering the vast applicability of the Manning-Rosen and Schioberg potentials, it is necessary to investi-
gate the bound state solutions of the two-dimensional (2D) SE with the combined potential under the influence
of external magnetic and Aharonov-Bohm (AB) fields and their effects on the Shannon entropy and Fisher
information for some selected diatomic molecules. The bound state solutions will be obtain using the Nikiforov-
Uvarov-Functional Analysis (NUFA) and supersymmetric quantum mechanics (SUYSQM) methods.

This paper is organized as follows: first, we provide detailed solutions to the 2D SE with Manning-Rosen plus
Schioberg potential (SPMR) in the presence of magnetic and Aharonov-Bohm (AB) flux fields using the NUFA
method. Second, we used the SUYSQM method to obtain the analytical solution of the SE with the combined
potential in the presence of magnetic and Aharonov-Bohm (AB) flux fields. Also, the normalized wavefunction
obtained is applied to investigate the Shannon entropy and Fisher information in the presence and absence of
external magnetic and Aharonov-Bohm (AB) flux fields. Finally, the concluding remarks. The SPMR is of the
form.
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Nikiforov-Uvarov-Functional Analysis (NUFA) method

The Nikiforov-Uvarov Functional Analysis (NUFA) method recently developed by Ikot et al.>* has been very help-
ful in providing solutions for exponential type potentials both in relativistic and nonrelativistic wave equations
When using this method to solve either the Schrédinger or Klein-Gordon equation, the energy eigen equation is
directly presented in a factorized, closed and compact form. This gives the method an edge over other methods.
Meanwhile, the NUFA theory involves solving second order Schrodinger-like differential equation through the
analytical combination of Nikiforov-Uvarov (NU) method and functional analysis approach®->>. NU is applied
to solve a second-order differential equation of the form

d*Y(s) | T) db(s) | G(s)
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where o (s) and & (s) are polynomials at most degree two and 7 (s) is a first-degree polynomial. Tezean and Sever®®
latter introduced the parametric form of NU method in the form
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wherea; and &;(i = 1, 2, 3) are all parameters. The differential Eq. (3) has two singularities which is ats — 0 and
s— a% thus, the wave function can be expressed in the form.
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Substituting Eq. (6) into Eq. (5) and simplifying culminate to the following equation,
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Equation (7) can be reduced to a Guassian- hypergeometric equation if and only if the following functions
vanished
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Applying the condition of Eq. (8) and Eq. (9) into Eq. (7) results into Eq. (10)
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The solutions of Egs. (8) and (9) are given as
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Equation (10) is the hypergeometric equation type of the form
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where a, b and c are given as follows:
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Setting either a or b equal to a negative integer - n, the hypergeometric function f(s) turns to a polynomial
of degree n. Hence, the hypergeometric function f(s) approaches finite in the following quantum condition,
ie,a=—nwheren =0,1,2,3... npax0rb = —n.

Using the above quantum condition,
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By simplifying Eq. (18), the energy eigen equation using NUFA method is given as
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By substituting Eqs. (9) and (10) into Eq. (6), the corresponding wave equation for the NUFA method as
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Thermomagnetic energy spectra of 2-dimensional Schrodinger equation under the influence
Aharanov-Bohm (AB) flux and external magnetic field using NUFA. The thermomagnetic energy
spectra of 2-Dimensional Schrédinger equation under the influenced of AB and Magnetic field with SPMR
potential can be obtained from charged particle Hamiltonian operator of the form

1 e-\2 1+eor\7? c1e729T 4 cpemer
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Eum is the thermomagnetic energy spectra, e and p represent the charge of the particle and the reduced
mass respectively. ¢ is the speed of light. Meanwhile, The vector potential A = (Ay, Ag,A;) can be written as
the su_ggrpositiogof two terms such that A = A; + A; is the vector potential with azimuthal componjntgsuch
that _A;l =and A, =, corresponding to the extra mggnetig)ﬂux gA B_genegted by a solenoid with V A$ =0
and B is the magnetic vector field accompanied by V x A} = B,V x A, = 0. The vector potential A can

then be expressed as
o Be—ar(ﬁ Dup . Be—ar(ﬁ [OFV: IR
A=(0, ——+ ——0,0 )| =| ———+ —
( 1 —eor + 2rr ¢ 1 —eor + 2rr ¢ @)

The Laplacian operator and the wave function in cylindrical coordinate is given as
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where m represents the magnetic quantum number. Substituting Egs. (23) and (22) into Eq. (21) and with much
algebraic simplification gives rise to the Schrodinger -like equation of the form
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where & = 245 js an absolute value containing the flux quantum ¢y = % The cyclotron frequency is represented
byw, = ;—é. %’quation (24) is not exactly solvable due to the presence of centrifugal barrier 2-In order to provide
an analytical approximate solution to Eq. (24), we substitute the modified Greene-Aldrich approximation of the

2
10‘77‘1')2 into Eq. (24) to deal with the centrifugal barrier. Also, using the coordinate transformation
—e

Rym(r) = 0.

form %2 =
s = e~ *" together with the approximation term, Eq. (24) reduced to the hyper-geometric equation of the form
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Comparing Eq. (25) with NUFA differential equation in Eq. (5), the following polynomial equations can be
obtained.

U = (82 + X1 +2x100 + X105 — X2 + x5)> Uz = (262 4251 — 2x10¢ + X3 — x4) 27)
Us = (82 + X1 — 2x100 + X105 + X6),a1 =0y =a3 =1

Using equation NUFA in Egs. (11), (12), (14), (15) and (16) the following polynomial equations can be
obtained
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11 3
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using Eq. (19), the thermo-magnetic energy eigen equation
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Substituting the parameters of Eq. (26) into Eq. (33), the thermomagnetic energy equation become
hzaz
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The 2D nonrelativistic energy eigen equation can be obtained with the condition thatw. = & = 0,m =1+ %
Then Eq. (34) become
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Special cases. Schioberg potential. Substituting c; = c; = O.into Eq. (3), then, the potential reduces to
Schioberg potential given as
14+eor\7?

Substituting the same condition to Eq. (34) gives the energy-eigen equation for Schioberg potential under
the influence of magnetic and AB field as

h2 2 ) )
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Manning-Rosen potential.  Substituting D = 0 into Eq. (3), then the potential reduces to Manning-Rosen

potential of the form
c e—Zar+C e or

(1—e)

Substituting the same condition to Eq. (34) gives the energy eigen equation of Manning-Rosen potential
under the influence of magnetic and AB fields as
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Using Eq. (20), the wave function can be presented in a factorized form as
W () = NuSP (1 = $)"T 2 Fy (a, b, 5) (36)
where
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Equation (36) can be expressed in terms of Jacobi polynomial as
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Equation (38) can be normalized using the expression
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Using Mathematica 10.0 version, the normalized wave function for ground states, first excited state, second
excited state and third excited quantum state can be obtained as follows:
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Thermomagnetic energy spectra of 2-dimensional Schrodinger equation

under the influence Aharanov-Bohm (AB) flux and external magnetic field using
super symmetric quantum mechanics approach

The supersymmetric approach deals with partner Hamiltonian of the form

pz
Hi=— 4 V(x). (44)
2m

where p is the momentum and V (x) is the effective potential. The effective potential can be expressed in terms
of super potential as

Ve (x) = ¢ (x) £ ¢/ (x) (45)
The ground state energy is obtained as

o L) =ce N (46)
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where N is the normalization constant which for a very simple case can be determined using the expression
X
N(x) = / @ (r)dr. (47)
xo

However, the super potential satisfies the shape invariance condition
Vi (a0, x) = V_(a1,x) + R(ay) (48)

where a is a new set of parameter determines from the old set gy through the mapping f : ag — a1 = f(ap).
The total supersymmetric energy is defined as

n
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While higher order state solutions are obtained through the expression
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where A (ay) is a raising ladder operator expressed as
i d
AT(ap) = =2 + d(a. x) (51)

Also, the Schrodinger equation under super symmetric quantum mechanics approach is arranged in the form

A*Rum -
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With the help of approximation to centrifugal term, Eq. (24) can be re- arranged as follows
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Equation (53) can then be compared to Eq. (52) such that
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The proposed super potential that is suitable for the effective potential is given as

—ar —ar
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The supersymmetric partner potential can be obtained as follows :
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Equation (56) obeys shape invariance condition
Vi(ra) = V-(raj1) + R(a)) (57)
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The ground state energy can be obtained by solving the associated Riccati equation. Hence, the supersym-
metric partner potential of Eq. (56) has a null ground state energy which implies that

V_(r) = Vg (r,&, ) — Eok

:>f2 B nge—ar gZe—Zar B age—ar
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Expanding Eq. (58) in ascending powers of exponent gives rise to three simultaneous equations of the form
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The ground state energy is calculated using Eq. (61). Substituting Eq. (61) into (60) as well as Eq. (61) into
(59) and simplifying gives the following equation
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Adding Eq. (62) to Eq. (63) and simplifying gives a quadratic equation of the form:
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gz_ag_(u« ¢, wel 2wa 2ue  2uaod 5)_’_0[2((”1_{_5)2_7)):0 (64)

h? h? h? h? h 4
The solution to Eq. (64) is

1 1 [32puDo} = 4plw?  8ucr  8ucy  Spwc(m+§) 5
g=o)yE 2\/ P T Re? Rl Rar T ke DM (65)

Using Eq. (63), the constant f can be evaluated as

2,2
[Sp.thao _ 2g2cl n uﬁczoc — A ((m+ 8 — %)]

=4 66
f=59"¢+ g (66)

The excited state energy is calculated using shape invariance condition
V- (r)é)wog) = Veﬁ(r)é)wc) _EO,k- (67)

Ifg=g0,8 =g +1, g =g + an. Then using Eq. (67), then, the shape invariance condition equation
become

2uDo?  4uDoy , 1
72 + 72 -« (m‘f‘f)—z

2| 2uc 8uuDag wrw? 2 1
o hzaé = ha? hzag +(m+$§) — 1

80

Vi (V,S,a)c,go) = Ve (.8, 00) —

(68)
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2uDo?  4puDo 1
Vf(ra%'awc:gl) =Veﬁ'(r)€>wc)_ e 0 + o 0 —az((m—l—é)z—z)

h? h?
2,2 69
Ll - - oo )
+ 48
& o
We can then construct the supersymmetric partner potentials of the form
R(gl) = V+(”>§>wc:g0) - V- (r,E,a)c,gl)
2.2
f | etRt - R e+ one e - ]
= —4 8
! £ (1)
2, 2
L L - G - b o2 -
— 738
g &
R(g) = Vi(r& wog) — V- (r.§ 0. 8)
2.2
f o etRt - R e o - ]
= =48
! 8 (72)
2.2
L L - G - b o2 - ]
—7\&
& @
R(g3) = V+ (7>§>wC>g2) - V- (r’é’wbg:i)
2.2
f Rl R R e -
= 4L
! & (73)
2, 2
L L R - e - ]
—7\8
& o
R(gn) = Vi (r& oo gn1) — Vo (1.6, gn)
2,2
) PG Ll R kit
= —94 &n—-1
4 &1 (74)
2.2
f el - e e 0
— 418 o

Recall that g = g9, g = g0 + an = g + an. Using Eq. (74), the higher order supersymmetric energy can
be evaluated as

2 2,2 2
2[2pe1 _ 8uDoy _ o} 2_ 1 2| 2ue; _ 8uDoy _ prog 2_ 1
1 { + o {hzuz h2a? e T (m+§) 4 1 4 A7 h2g2 2o e T (m+§) 1
8o ——9 &n
4

&0 4 &n

4
(75)
Meanwhile, the total energy is the ground state energy plus higher order supesymmetric energy

n
Enm = Z R(ay) = EOk + Enk (76)
k=1

Substituting Egs. (61) and (75) together with Eq. (66) into Eq. (76) and simplifying gives the total energy as

2[2 81D pro? 2 1
5 _2uDog _4uDoy  , 2 1\_1) L |24y — BP0 — 109 4 (m+ £)? — ]
nm = 2 - 2 +a’| (m+&)° — 1 _Z &n o

(77)
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Using the supersymmetric mapping g, :— g + an with the total energy expressed as E,,,,, = ( 7

Eq. (77) now become

( 2uEn,  2uD ) _

h? h?

2uDo? _ 4uDoy 4 a2<

1
2 72 n+ 67 - 7)

4

2uEnm

(¢ +an)

Substituting the value of g from Eq. (65) into Eq. (78) and factorizing gives

h2a2 2
Epm = (m+£&)* =~ ) + D+ Do — 2Doy

1 8ucy Suc;  4ulw

1 |32uDo} 2y
”+ziz¢w‘w‘w+ R L anr

(Wl+5)
2pcy ;Lza)f 8uDoy 1
h?o? 2a: R h2 ;. t(m +8)° — 1
8 32uD. 42 ?
)T P B g - R e s D

2uD
n )

(78)

(79)

With a high level of analytical mathematical accuracy, it can be shown that the energy eigen equation obtained
through (NUFA) as shown in Eq. (34) reproduces the exact results obtained through SUSYQM as shown in
Eq. (79). This further confirms the accuracy of NUFA method in providing bound state solutions to exponential

type potentials. Equation (79) can be presented in a more simplified form as:

Q
Epm = Q1 — n+46)+
nm Ql Q2 |:( ) (n + 5)
where
h2 2
Q= (( +£) - )+D+Dao —2Doy
h2a2
Q —
2 m
2uct pre?  8uDoy 5, 1
G=ld et e T T
1 1 [32uDo} 8uci  8ucy  4ulw? 2
°= 2 z\/ il e R A R CRL FaURL)

Thermomagnetic properties

(80)

(81)

The thermodynamic properties of quantum systems can be obtained from the exact partition function given by

A
Z(B) = Z e Phn (82)
where, 1 is an upper bound of the v1brat10nal quantum number obtained from the numerical solution of =0
givenas A= —8 + /Q3, 8 = kT where k and T are Boltzmann constant and absolute temperature respectlvely
In the classical limit, the summation in Eq. (82) can be replaced with an integral:
7
Z(B) = /e—ﬁE"dn. (83)

0

Using Eq. (83), the partition function can be expressed as
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i'/3<sz2+%)
sy = o [ 2o ), o
0

where p = n+ 4.
Using Mathematica 10.0 version, Eq. (84) can be evaluated as

e2ﬂQ2Q3*5Qlﬁ|:e2/3Q2Q3erf(\/%i+ L«/}—ﬂQz) +efzﬂQzQserf<«/%,1_ Qai«/:ﬂ(bﬂ

(85)
4/=PQ
Using Eq. (85), other thermo-magnetic properties can be obtained as follows
(a) Vibrational internal mean energy. The vibrational internal mean energy** is defined as
0
U(B,B, ®ap) = —@I”Z(/&B, Dap) (86)
(b) Free energy. The vibrational free energy** is evaluated as
1
F(B,B, P4p) = —Blﬂz(ﬁ,B, ®4p) (87)
(c) The magnetization at finite temperature** is given as
M8 @) = (e ) (BB o) 88
AR T g\ Z(B,B dap) ) 0B TP (88)
(d) Magnetization of a system at zero temperature in a state (1, m) is defined by* as
dE
Mnm(lgx (DAB) = agm (89)
(e) Magnetic susceptibility** at finite temperature is given as
9(B, B, Dap)
Xnm(B, B, ®ap) = 3B (90)
(f) Persistent current
e dF(B, B, Pap)
(g = —— > AR
0] e 9% (91)
(g) The entropy* of the thermo-magnetic system is given as
dZ(B,B,
Kin Z(6, B, @4p) — kp "2 L Pa0) 52)
(h) Specific heat capacity**of the system is given as
82
Co(, B, @) = kp* 55 In Z(B, B, @) (93)

Fisher information entropies

In this section, we shall examine the effects of the Aharanov-Bohm (AB) flux and external magnetic field on
Fisher information entropy using the proposed potential. Fisher and other quantum information entropies meas-
ure the spread of probability distribution for an allowed quantum mechanical state in a D-dimensional space™ .
Fisher information has a lot of applications, including the characterizing of complex signals of quantum mechani-
cal systems, derivation of the equation of motion®, investigating the behavior of stock market patterns®' as well as
providing useful information about localization of quantum mechanical particles in a bounded potential well®2.

Fisher entropy expressed in terms of both momentum and position spaces®>** are:

I(p) = 4 / IV (00 &) Par (94)
0

I(y) =4/|VW(P»wmé§)}2dp (95)
0

For 2-Dimensional Schrodinger wave equation, the Fisher uncertainty product satisfies the inequality®®
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I(p)I(y) > 16(Im| + 1)* (96)

For a two dimensional problem, the momentum space wave function is expressed as

00 27
Vo 0, 8) = (2711)3/2 / / an(i};)c’ . et (@tlrarag, 97)
00
where the solution of the angular part is expressed interms of Bessel function as
2
/ ellmorpreos 0=d)l g, = (—1)"27},, (pr)e™? (98)

0
and Jjs| (pr) is the Bessel function of order m.
The momentum space wave function is either obtained through a Fourier transform or through expectation
value expression. For the purpose of this work, we shall be considering the simplest case where the magnetic

quantum spin m = 0. Therefore, for momentum space wave function in 2D for m = 0, is calculated using expec-
tation value equation of the form

oo

I(y) = 4 / VY (r e &) Prdr (99)

0

Analytical evaluation of Fisher information entropies for some quantum state. The normal-
ized ground state wave function under the influenced of Aharanov-Bohm flux and external magnetic field is
presented in Eq. (39). The gradient of the normalized ground state wave function is given as

1 —ar —ar —% 7 —ar aF(2ﬁ+2n+2)
Vwo(r,a)c,é)z—i(e )ﬂ(l—e ) +7a(2(e —1),3—2)’]—1)’ W (100)

Substituting Eq. (100) into Eq. (94) gives the fisher information in position space as

2
a?(1+ 2T + 28T (2B + 20 +2)
I()mo = pras (101)
repre+2preg+2n+1)
Using Eq. (99), Fisher information in momentum space expressed in terms of polygamma function by the
help of Mathematica 10.0 version is given as

4+ 8p 3 (4(1 + 2y @0, 2;3)) N ((4 + 8y ©@0,1+28 + 2n))
(1428 +2n)° (1+28+2n) (1+28+2n)

+2+ 4y ?©0,28) — 401+ 2y Y 0,28)9 V(0,1 4 28 + 21)

+2(1 + 2@ (0,1 + 28 + 21)?

+Q2+4nyv@1,28) — 20 + 2y Q1,14+ 28 +21)

2

I(Y)n=0 = m

(102)
Using the same procedure, we can obtain Fisher information for other quantum states. For n = 1, the Fisher
information for both position and momentum spaces are given as

=261+ 2T (B + 2B + 2T (1 + 6mT (2n)
[p)n=1 = TG+ 202+ 2n) (103)

Eo+E81+82+E3+ 84+ 854+ 86+ 87

I n=1 =4
n=1 @214 28)(1 +27)(3 + 2 (3 + 28 + 21)?

(104)

where
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Eo = 86+ 948 — 642 + 42(47 + 568)n + 4(43 + 308)n% + 16(5 + B)n® + 16n*
_ Ba+ 28)? . (1428)(28 — 1)(1 +38) N 16(8 — 1)B(1 + 2B) N 8+ 8B(148% —5)
1+B+n)’ A+B+m (14284 2n) (1+28+2n)
8= (1+2B8)(3+28 +2)*(3+ 87 +49*) v ©(0,28)*
B> (44 + 400) + B(3 + 2n) (29 + 561 + 28n%)
+(1+m2G +20) (7 + 120 + 4n?) + 467 (28 + 495 + 2207 ) (0,1 + 28 + 21)
A+ B+ +28+2n)

1]

2(14+2n)(3+ 28+ 2n)

o]
«
Il

By =(1+28)G+28+2>(3+ 80+ 47*) ¥ @ (0,1 428 + 21)?

@+ BHMA 2B+ 2@+ 4G+ 28 + 209 0 (0,28)2(44 + d0m) |
°T {+ﬁ(3+2n)(29+567]+n2) }
86 = (1+n)(3+20) (7 + 120 + 4n*) + 487 (28 + 491 + 22%)

+ 14280+ B+ MG +2)A+28 420G+ 28 +2n)v Y 0,1+ 28 +2n)
Er = (1+2B)3+28 +2n)*(3+ 87+ 4n*) v (1,28)
+ @B -G +2B+2m)*(3+8n+477)y O 1,1+ 28 +21)

0]

(105)
where the polygamma function is generally expressed as
o
[t~ Le " Intdt
¥ @) =l @) = (106)
JElemtdt
0

Results and discussion

Figures 1a—d are the plots of variation of thermomagnetic energy spectra against the screening parameter in the
absence of AB and magnetic field, the presence of the only magnetic field, the presence of only AB field and the
presence of both magnetic and AB fields, respectively. In Fig. 1a-d, the bound state energy spectral diagrams all
increases monotonically with increasing values of the screening parameter («) in such a unique and quantized
manner.

Figure 2a, b are the variation of wave function plot against the radial distance in the absence of both AB and
magnetic field and the variation of probability density plot against the radial distance in absence of both AB
and magnetic field, respectively. In Fig. 2a, the wave function showcases intertwining multiple sinusoidal curves
representing the different quantum states. In Fig. 2b, the probability density plots in the absence of AB and
magnetic field show a normal distribution curve with multiple peaks, each depicting a different quantum state.
It is interesting to note that in Fig. 2a, the ground state has the lowest peak, while the highest state (n = 3) has
the highest peak. Figure 2b agreed excellently with the theoretical and experimental descriptions of probability
density. It is expected that in an ideal condition, the peak of the probability density plot should increase as the
quantum state increases. This is only possible because in Fig. 2a and b, the wave function and probability density
plots are carried out in the absence of AB and magnetic field respectively.

Figure 3a, b are the variations of the wave function and the probability density plots against the radial distance
in the presence of magnetic field. Figure 3a shows a periodic and sinusoidal wave function similar to Fig. 2a.
However, in Fig. 3b, there is distortion in the probability distribution curves because of the presence of mag-
netic field. The presence of the magnetic field does not allow uniform distribution of probability density plots
in increasing order of the quantum state whose highest peak supposed to occur at (n = 3). However, in Fig. 3b,
n = 2 has the highest peak, followed by n = 0 before n = 3. The disorderliness, ambiguity and distortions in the
peaks clearly show the effect of magnetic field.

Figure 4a, b are the variation of the wave function and probability density plots against the radial distance in
the presence of AB field, respectively. Figure 4a and b has similar explanation to Fig. 3a and b when the distor-
tions to the probability density plot are affected by the presence of Aharonov-Bohm flux field.

Figure 5a, b show how the wave function and probability density varied with radial distance in the presence
of both magnetic and AB fields . Under the influence of AB and magnetic fields, the wave function in Fig. 5a is
sinusoidal and periodic. .However, in Fig. 5b, something fascinating occurs. The peaks of probability density
plot for quantum state (n = 1) are almost the same as n = 2, i.e., the combined effect of AB and magnetic effect
establish quantum state equivalence.

Figure 6a-d are the plot of partition function against magnetic flux (w,) for different values of inverse tem-
perature parameter (8), plot of partition function against AB flux (§) for different values of inverse temperature
parameter (), plot of partition function against inverse temperature parameter () for fixed value of w; and &
but for different values of maximum vibrational quantum number (1) and plot of partition function against the
maximum vibrational quantum number (4)for fixed value of w. and & but for different values of inverse tem-
perature parameter (), respectively. In Fig. 6a, the partition function starts from the negative y-axis an increase
exponentially with increasing value of the magnetic field. The same explanation occurs in Fig. 6d where the
partition function increases exponentially with an increase in maximum vibrational quantum number.
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Figure 1. Variation of thermomagnetic energy spectra against the screening parameter in (a) the absence of
AB and Magnetic field, (b) the presence of only magnetic field; (c) the presence of only AB field and (d) the
presence of both magnetic and AB field.

In Fig. 6b, the partition function rises monotonically with unique spacing before reaching a peak value with
local maximum turning point at £ = 40. In Fig. 6c¢, the partition function increases monotonically with an
increase in inverse temperature parameter.

Figure 7a-d are the plot of vibrational mean energy against magnetic flux (w,) for different values of inverse
temperature parameter (), plot of vibrational mean energy against AB flux (&) for different values of inverse
temperature parameter (), plot of vibrational mean energy against inverse temperature parameter () for fixed
value of w; and & but for different values of maximum vibrational quantum number (1) and plot of vibrational
mean energy against the maximum vibrational quantum number (1) for fixed value of w. and £ but for different
values inverse temperature parameter () respectively.

In Fig. 7a, the vibrational mean energy showcase a parabolic curve which increases with an increase in
magnetic field. In Fig. 7b, the vibrational mean energy increases monotonically before converging at & = 6 with
increase in AB flux. Also, the vibrational mean energy increases uniquely from the origin with quantized spacing,
in an increasing value of inverse temperature parameter as shown in Fig. 7c. Correspondingly, the vibrational

Scientific Reports |

(2023) 13:8193 | https://doi.org/10.1038/s41598-023-34521-0 nature portfolio



www.nature.com/scientificreports/

(2) (b)

3.x107 9.5 107144
8.3 107144
2.x 10777 |
7 % 10-14_
. 6.% 10714
1.x 107" -
) ) el o
Woml ) W (7] .
0- ™~ 4% 10714
3.% 10714
-1.x 1077 2.x 107144
1.x 10714
-2.x 1071 T
T T T T T T T T T T T I:)_'|—|—|—|||||||
24 § 10 12 14 16 18 2 4 6 8 10 12 14 16 18
i »
—n=0,m(=0,§=0 — n=1,m{=0, E=0=0 — ] =D,mr=ﬂ, E=0=0 ====p :l,mr:O, E=0=0
—nzz,mczﬂ,gzﬂ —;jzs,mczﬂ,gz[]:ﬂ — |=2,mr=[|,§=[|=(] —n:j,mczﬂ,ng_l:(]
Figure 2. (a) The variation of wave function plot against the radial distance in the absence of both AB and
magnetic field. (b) The variation of probability density plot against the radial distance in absence of both AB and
magnetic field.
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Figure 3. (a) The variation of wave function plot against the radial distance in the presence of magnetic field.
(b) The variation of probability density plot against the radial distance in the presence of magnetic field.
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Figure 5. (a) The variation of wave function plot against the radial distance in the presence of both magnetic
and AB field. (b) The variation of probability density plot against the radial distance in the presence of both
magnetic and AB field.

mean energy also increase with increasing value of maximum vibrational quantum number as presented in
Fig. 7d.

Figure 8a-d are the plot of vibrational heat capacity against magnetic flux (w,) for different values of inverse
temperature parameter (8), plot of vibrational heat capacity against AB flux (§) for different values of inverse
temperature parameter (), plot of vibrational heat capacity against inverse temperature parameter () for fixed
value of w; and & but for different values of maximum vibrational quantum number (1) and plot of vibrational
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Figure 6. (a) Plot of partition function against magnetic flux (w,) for different values of inverse temperature
parameter (8). (b) Plot of partition function against AB flux (§) for different values of inverse temperature
parameter (). (c) Plot of partition function against inverse temperature parameter () for fixed value of w, and
& but for different values of maximum vibrational quantum number (4). (d) Plot of partition function against
the maximum vibrational quantum number (2) for fixed value of w. and & but for different values inverse
temperature parameter ().

heat capacity against the maximum vibrational quantum number (1) for fixed value of w. and & but for different
values inverse temperature parameter () respectively.

In Fig. 8a, the vibrational heat capacity increases monotonically with increase in magnetic field. In Fig. 8b, the
vibrational heat capacity shows symmetrical curves with common converged maximum point at £ = 45 . This
maximum point divides the curves into equal half both in a decreasing and increasing value of £. The physical
interpretation of Fig. 8D is that heat capacity from the concept of molecular vibration relates to the kinetic energy
of the molecules of the system. So, the Fig. 8b completely shows that with the influence of Aharanov-Bohm
flux field, the kinetic energy of the molecules of the system remains constant during molecular vibrations. This
explains why there is a symmetrical curves both at the left and right hand side of the thermomagnetic plot. In
Fig. 8¢, the vibrational heat capacity is a parabolic curve that concaves upward with minimum turning point at
B = 0.0005 K~ !before rising to various local maximum turning points in increasing value of 8, before converg-
ingat 8 = 0.004 K~ In Fig. 8d, the specific heat capacity increases asymmetrically to various unique maximum
point before converging at 4 = 1000 with increasing value of maximum vibrational quantum number.
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Figure 7. (a) Plot of vibrational mean energy against magnetic flux (w,) for different values of inverse
temperature parameter (). (b) Plot of vibrational mean energy against AB flux (§) for different values of inverse
temperature parameter (). (c) Plot of vibrational mean energy against inverse temperature parameter ()

for fixed value of w, and & but for different values of maximum vibrational quantum number (7). (d) Plot of
vibrational mean energy against the maximum vibrational quantum number (1) for fixed value of w, and & but
for different values inverse temperature parameter (f).

Figure 9a-d are plot of vibrational entropy against magnetic flux (w.) for different values of inverse tempera-
ture parameter (8), plot of vibrational entropy against AB flux (§) for different values of inverse temperature
parameter (B), plot of vibrational entropy against inverse temperature parameter (8) for fixed value of w. and
& but for different values of maximum vibrational quantum number (1) and plot of vibrational entropy against
the maximum vibrational quantum number (1), for fixed value of . and & but for different values inverse tem-
perature parameter () respectively. In Fig. 9a and d, the vibrational entropy increases exponentially with an
increase in magnetic field and maximum vibrational quantum number respectively. In Fig. 9b, the vibrational
entropy rises to the peak with maximum turning point at £ = 35 before slopping in a divergence manner with
distinct spacing between the spectral curves. In Fig. 9¢, the vibrational entropy increases exponentially with an
increase in inverse temperature parameter.

Figure 10a-d are plot of vibrational Free energy against magnetic flux (w.) for different values of inverse
temperature parameter (), plot of vibrational Free energy against AB flux (£) for different values of inverse
temperature parameter (), plot of vibrational Free energy against inverse temperature parameter () for fixed
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Figure 8. (a) Plot of vibrational heat capacity against magnetic flux (w,) for different values of inverse
temperature parameter (8). (b) Plot of vibrational heat capacity against AB flux (£) for different values of inverse
temperature parameter (). (c) Plot of vibrational heat capacity against inverse temperature parameter ()

for fixed value of w. and & but for different values of maximum vibrational quantum number (7). (d) Plot of
vibrational heat capacity against the maximum vibrational quantum number () for fixed value of w. and & but
for different values inverse temperature parameter (f).

value of w; and & but for different values of maximum vibrational quantum number (1) and plot of vibrational
Free energy against the maximum vibrational quantum number (4) for fixed value of w. and & but for different
values inverse temperature parameter () respectively. Figure 10a—-d has similar explanation to Fig. 9a-d.

Figure 11a-d. are plot of magnetization against magnetic flux (w,) for different values of inverse temperature
parameter (8), plot of magnetization against AB flux (&) for different values of inverse temperature parameter
(B), plot of magnetization against inverse temperature parameter () for fixed value of w. and & but for different
values of maximum vibrational quantum number (1) and plot of magnetization against the maximum vibra-
tional quantum number (/) for fixed value of w. and & but for different values inverse temperature parameter
(B) respectively. In Fig. 11a, c and d, the magnetization increases exponentially with an increase in w, S and 4
respectively. However, in Fig. 11b the influence of AB field produces normal distribution curves with distinct
peaks corresponding to the values of inverse temperature parameter ().

Figure 12a-d are plot of magnetic susceptibility against magnetic flux (w,) for different values of inverse
temperature parameter (f), plot of magnetic susceptibility against AB flux (§) for different values of inverse
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Figure 9. (a) Plot of vibrational entropy against magnetic flux (w,) for different values of inverse temperature
parameter (8). (b) Plot of vibrational entropy against AB flux (¢) for different values of inverse temperature
parameter (). (c) Plot of vibrational entropy against inverse temperature parameter () for fixed value of w. and
& but for different values of maximum vibrational quantum number (4). (d) Plot of vibrational entropy against
the maximum vibrational quantum number (1), for fixed value of w. and £ but for different values inverse

temperature parameter ().

temperature parameter (), plot of magnetic susceptibility against inverse temperature parameter () for fixed
value of w. and & but for different values of maximum vibrational quantum number (1) and plot of magnetic
susceptibility against the maximum vibrational quantum number (1) for fixed value of w. and & but for different
values inverse temperature parameter () respectively. In Fig. 12a, the magnetic susceptibility increases mono-
tonically from zero into diverging curves. In Fig. 12b, the magnetic susceptibility produces sinusoidal curves with
discontinuity at & = 50. In Fig. 12¢, the magnetic susceptibility rises to attain various local maximum point at
precisely B = 0.125 K. Also, in Fig. 12d, the magnetic susceptibility increases exponentially with an increase
in maximum vibrational quantum number.
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Figure 10. (a) Plot of vibrational Free energy against magnetic flux (w,) for different values of inverse

temperature parameter (). (b) Plot of vibrational Free energy against AB flux (§) for different values of inverse
temperature parameter (). (c) Plot of vibrational Free energy against inverse temperature parameter ()

for fixed value of w; and & but for different values of maximum vibrational quantum number (2). (d) Plot of
vibrational Free energy against the maximum vibrational quantum number (/) for fixed value of w. and & but
for different values inverse temperature parameter ().

Figure 13a-d are plot of persistent current against magnetic flux (w,) for different values of inverse tempera-
ture parameter (8), plot of persistent current against AB flux (§) for different values of inverse temperature
parameter (), Fig. 13c plot of persistent current against inverse temperature parameter () for fixed value of
wc and & but for different values of maximum vibrational quantum number (1) and plot of persistent current
against the maximum vibrational quantum number (£) for fixed value of w. and & but for different values inverse
temperature parameter () respectively. In Fig. 13a and d, the persistent current increases asymptotically from
the origin with increasing value of magnetic field and maximum upper bound vibrational quantum number.
In Fig. 13b, the persistent current rises from the origin to exhibits various maximum points before concaving
upward with unique minimum points with maximum at § = 45. In Fig. 13c, the persistent current increases
from the vertical axis in a quantized form before diverging into various spectral curves with increasing value of .

Figure 14a—c are the plot of position space Fisher entropy against the screening parameter for n = 0, the plot
of momentum space Fisher entropy against the screening parameter for » = 0 and the plot of product of position
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Figure 11. (a) Plot of magnetization against magnetic flux (w,) for different values of inverse temperature
parameter (B). (b) Plot of magnetization against AB flux (£) for different values of inverse temperature
parameter (). (c) Plot of magnetization against inverse temperature parameter () for fixed value of w, and
& but for different values of maximum vibrational quantum number (4). (d) Plot of magnetization against
the maximum vibrational quantum number (2) for fixed value of w. and & but for different values inverse
temperature parameter ().

and momentum space Fisher entropy against the screening parameter for n = 0 respectively. In Fig. 14a, the
position space Fisher entropy increases linearly with an increase in the screening parameter, while the momen-
tum space and its product increases exponentially with an increase in the screening parameter («) as shown in
Fig. 14b and c respectively.

Figure 15a—c are the plot of position space Fisher entropy against the screening parameter for n = 1, the plot
of momentum space Fisher entropy against the screening parameter for n = 1and the plot of product of position
and momentum space Fisher entropy against the screening parameter for n = 1 respectively. Figure 15a—c has
the same explanation as Fig. 14a-c.

Figure 16a-c are the plot of position space Fisher entropy against the screening parameter for n = 2, plot of
momentum space Fisher entropy against the screening parameter for n = 2 and the plot of product of position
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Figure 12. (a) Plot of magnetic susceptibility against magnetic flux (w,) for different values of inverse
temperature parameter (). (b) Plot of magnetic susceptibility against AB flux (§) for different values of inverse
temperature parameter (). (c) Plot of magnetic susceptibility against inverse temperature parameter ()

for fixed value of w. and & but for different values of maximum vibrational quantum number (7). (d) Plot of
magnetic susceptibility against the maximum vibrational quantum number () for fixed value of w. and & but
for different values inverse temperature parameter (f).

and momentum space Fisher entropy against the screening parameter for n = 2 respectively. Figure 16a—c has
the same explanation as Fig. 14a-c.

Figure 17a-c are the plot of position space Fisher entropy against the screening parameter for n = 3, the plot
of momentum space Fisher entropy against the screening parameter for » = 3 and the plot of product of posi-
tion and momentum space Fisher entropy against the screening parameter for n = 3 respectively. In Fig. 17a,
the position space entropy increases exponentially with an increase in the value of «. However, in Fig. 17b and
¢, there is abnormally which makes the plot to decrease with decreasing value of « with respect to momentum
space and its products respectively.

Table 1 is the numerical bound state solution for the proposed potential under the influence of AB and
Magnetic field for fixed magnetic quantum number but with varying principal quantum number. In Table 1, it
can be observed that when both fields are deactivated, i.e., AB and magnetic fields are zero, the energy spectra
degenerate; thus, as the number of quantum states increases, the energy spectra decrease. When only the AB
field was applied to the quantum system, it resulted in quasi-degeneracy, and the energy spectra decreased with
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Figure 13. (a) Plot of persistent current against magnetic flux (w,) for different values of inverse temperature
parameter (B). (b) Plot of persistent current against AB flux (¢) for different values of inverse temperature
parameter (). (c) Plot of persistent current against inverse temperature parameter () for fixed value of w. and
& but for different values of maximum vibrational quantum number (4). (d) Plot of persistent current against
the maximum vibrational quantum number (2) for fixed value of w. and & but for different values inverse
temperature parameter ().

increasing quantum states. When only the magnetic field is activated, the system produces a similar effect, but
this time degeneracy is gradually eliminated. When both fields are activated, the combined effects completely
eliminates degeneracy from the quantum system’s energy spectra. All computation were carried out using the
following constant physical parameters:c; = ¢; = 1,00 = 05,h=p =10 =02,c =1

Tables 2, 3, 4 and 5 are the numerical computation for position, momentum, and products Fisher entropy
under the influence of AB and magnetic field for n = 0ton = 3, respectively. In these Tables, it is clear that our
results obey Heisenberg uncertainty principles in which there is uncertainty in the simultaneous measurement of
the position and momentum of quantum mechanical particles. The numerical results also show that as the values
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Figure 14. (a) The plot of position space Fisher entropy against the screening parameter for n = 0. (b) The
plot of momentum space Fisher entropy against the screening parameter for n = 0. (c) The plot of product of
position and momentum space Fisher entropy against the screening parameter for n = 0.

for position Fisher entropy increase, the momentum values decrease with an increase in screening parameters.
This trend holds for all quantum states in the absence of both magnetic and AB fields, only magnetic fields, only
AB fields, and the combined influence of both magnetic and AB fields.

Correspondingly, our numerical results in all quantum states satisfy the 2D local Fisher uncertainty product
inequality expressed as (I(p)I(y) > 16 as shown in Tables 2, 3, 4 and 5 for all quantum states. All our results
clearly show that as the quantum state increases, the values of position increases, while that of momentum and
product values decrease. The Fisher product values in all quantum states clearly show the localization of the
quantum mechanical particles both in the absence and presence of magnetic and AB fields. Finally, the numeri-
cal results from their product indicate that the particle is more localized when the combined effect of AB and
magnetic fields on the entropy than the absence of both fields, as shown by ( (I(p)I(y) > 16).

Conclusion
In this work, we study analytical solutions, thermomagnetic properties, and its effect on Fisher information
entropy with Schioberg plus Manning-Rosen potential using the Nikiforov-Uvarov functional analysis and Super-
symmetric quantum mechanics methods. We obtained the energy equation in a closed and compact form both in
NUFA and SUSYQM and applied the solution to study partition function and other thermomagnetic properties.
The trend of thermomagnetic plots is in excellent agreement with the work of existing literature. Using the
normalized wave function, we obtained the wave function and probability density plots and applied them to study
Fisher information entropy in position and momentum spaces. The numerical results show that the combined
impact of the magnetic and AB flux fields completely removes the degeneracy on the energy spectra and that
increasing the screening parameter increases the position of Fisher entropy while decreasing its momentum,
satisfying the 2D local Fisher uncertainty product condition. It also causes both localization and delocalization
of quantum particles. Meanwhile, as the quantum state increases under the combined influence of magnetic and
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Figure 15. (a) The plot of position space Fisher entropy against the screening parameter forn = 1. (b) The
plot of momentum space Fisher entropy against the screening parameter for n = 1. (¢) The plot of product of
position and momentum space Fisher entropy against the screening parameter forn = 1.

AB fields, the results of Fisher entropies and the product increase. Finally, the proposed potential reduces to
Schioberg and Manning-Rosen potential as special cases. The wave function and probability density plots were
obtained using Maple 10,0 software, while the position and momentum Fisher entropies were obtained using a
well-designed Mathematica program.

Data availability

The data available in this manuscript are obtained using maple and Mathematica programme from the resulting
energy eigen equation.
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Figure 16. (a) The plot of position space Fisher entropy against the screening parameter for n = 2. (b) The
plot of momentum space Fisher entropy against the screening parameter for n = 2. (c) The plot of product of
position and momentum space Fisher entropy against the screening parameter for n = 2.
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Figure 17. (a) The plot of position space Fisher entropy against the screening parameter for n = 3. (b) The

E=0,w,=0 — €=0,w, =02 — £=02,0, =0
— £=02,w. =0.2

1.0

plot of momentum space Fisher entropy against the screening parameter for n = 3. (c) The plot of product of
position and momentum space Fisher entropy against the screening parameter forn = 3.

m n |E=w.=0 £=02,0,=0 |£E=0,0,=02 |£=02,0,=02
0 | -0.90133601 |-0.90184811 - 0.89816015 —0.90059738
1 | —2.43479386 | —2.43548836 —2.43180819 —2.43426196
0 2 | -3.97979520 | —3.98031212 —-3.97664018 —3.97911044
3 | =5.53577109 | —5.53629036 —5.53262704 —5.53511371
0 | -0.91413788 | —0.90952922 —-0.90133601 - 0.89865265
1 | —2.44783595 | —2.44320564 —2.43497386 —2.43228286
! 2 | —3.99271706 | —3.98806518 —3.97979520 —3.97709679
3 | —5.54875214 | —5.54407895 - 5.53577109 - 5.33065400
0 | -0.91413788 | —0.91977099 —0.92058755 —0.92814565
1 | —2.44783595 | —2.45349560 —2.43497386 —2.43228286
! 2 | =3.99271706 | —3.99840302 —3.99932855 —4.00696761
3 | —5.54875214 | — 5.55446409 — 5.55544480 - 5.56312395

Table 1. Numerical bound state solution for the proposed potential under the influence of AB and Magnetic

field.
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E=w.=0 E=0,0,=0.2 £E=02,0.=0 E=w.=0.2
a |I(p) I1(y) I(p)I(y) = 16 | I(p) 1(y) I(p)I(y) = 16 | I(p) 1(y) 1(p)I(y) = 16 1(y) I(p)I(y) = 16
0.1 |0.190558 |1076.98 | 205.22715 0.18993 | 1082.04 | 20551186 0.190594 | 1076.82 | 205.23544 0.190269 | 1080.82 | 205.64654
0.2 |0.408783 | 279.481 |114.24708 040751 | 280.724 |114.39671 0.409079 | 279.323 | 114.26517 0409170 | 280.026 | 114.57824
0.3 |0.654802 | 128.777 | 84.32344 0.65285 | 129319 | 84.42643 0.655806 | 128319 | 84.42643 0.656610 | 128.794 | 84.56743
0.4 |0.928695 75.0143 | 69.66541 0.92606 75.3134 | 69.74488 0.931095 74.8544 | 69.44516 0.933376 74.8739| 69.88550
0.5 | 1230510 49.6664| 61.11500 1.22718 49.8541| 61.17995 1.235230 49.5054 | 61.15056 1.239610 49.4658 | 61.31830
0.6 | 1560270 35.5478| 55.62019 1.55622 35.7754 | 55.67439 1.568470 35.4856 | 55.65809 1.575560 35.4210| 55.80791
0.7 | 1.917600 27.0456| 51.87238 1.91319 27.1373| 51.91881 1.931050 26.8823| 51.91107 1.941490 26.8070 | 52.04552
0.8 | 2303560 21.3661| 49.21809 2.29805 21.4347 | 49.25801 2.323190 21.2017 | 49.25558 2337600 21.1221| 49.37502
0.9 | 2717000 17.4064 | 47.29319 2.71076 17.4594 | 47.32319 2.745080 17.2411| 47.32819 2764100 17.1605| 47.43334
1.0 |3.158240 14.5274| 45.88102 3.15125 14.5692| 45.91119 3.196900 14.3610| 45.91068 3.221150 14.2811| 46.00157
Table 2. Numerical values for position, momentum and products Fisher entropy under the influence of AB
and Magnetic field for n = 0.
E=w.=0 E=0,0, =0.2 £E=02,0,=0 E=w.=0.2
a 1(p) I(y) 1(p)I(y) =16 | I(p) 1(y) 1(p)I(y) =16 | I(p) 1(y) I(p)I(y) =16 | I(p) 1() I(p)I(y) = 16
0.1 0.62863 | 1130.46 | 710.63542 0.55935 | 1254.06 | 701.45469 0.62873 | 1130.31 | 22,024.4819 0.62782 | 1134.05 | 711.97927
0.2 145190 | 297.293 |431.63971 1.17879 | 358.994 |423.17854 1.45274 | 297.154 | 431.68750 145277 | 297.754 | 432.56808
0.3 246684 | 136.589 | 336.94321 1.85599 177.313 | 329.09115 2.46965 | 136.462 | 337.01338 247242 | 136.602 | 337.73752
0.4 3.67059 | 78.6762 | 288.78807 2.58877 108.710 | 281.42519 3.67714 | 785601 | 288.87649 3.68441 78.579 | 289.51725
0.5 506060 | 51.2734 | 259.47417 3.37509 74.8220 | 252.53098 507318 | 51.1675| 259.58194 508663 | 51.1478 | 260.16993
0.6 6.63467 | 36.1291 | 239.70864 4.21306 55.3381 | 233.14274 6.65603 | 36.0321| 239.83074 6.67729 | 35.9999 | 240.38177
0.7 8.39101 26.8697 | 225.46392 5.10091 42,9848 | 219.26159 842432 | 26.7804| 225.60666 8.45494 | 26.7452 | 226.12906
0.8 10.3282 20.7901 | 214.72431 6.03699 34.5987 | 208.87201 10.3770 20.7077 |  214.88380 10.4155 20.6732 | 215.32171
0.9 12.4451 16.5809 | 206.35096 7.01975 28.6112 | 200.84347 12,5134 16.5045 |  206.52741 12.5672 16.4721 | 207.00818
1.0 14.7410 13.5443 | 199.65653 8.04777 24.1672 | 194.49207 14.8331 13.4731|  199.84784 14.9005 13.4432 | 200.31040
Table 3. Numerical values for position, momentum and products Fisher entropy under the influence of AB
and Magnetic field forn = 1.
E=w.=0 £ =0,0, =0.2 £E=02,0,=0 E=w. =02
o I(p) I(y) I(p)I(y) =16 |I(p) I(y) I(p)I(y) =16 |I(p) 1(y) I(p)I(y) =16 |I(p) 1(y) I(p)I(y) = 16
0.1 1.14998 |1166.80 | 1341.79666 1.14706 | 1171.26 | 1343.50549 1.15015 | 1166.65 | 1341.8225 1.14871 |1170.14 | 1344.15152
0.2 2.82094 | 306.016 | 863.25278 2.81553 | 306951 | 864.22975 2.82231 | 305.895 | 863.33052 2.82264 | 306.416 | 864.90206
0.3 499644 | 139322 | 696.11401 4.9890 139.672 | 696.82360 500091 | 139.220 | 696.22669 500608 | 139.338 | 697.53178
0.4 7.66194 |  79.4702 | 608.89590 7.65295 79.6384 | 609.46869 767219 | 79.3840 | 609.04913 7.68512 | 79.4040 | 610.22927
0.5 10.8054 51.3227 | 554.56230 10.7953 51.4154 | 555.04467 10.8248 51.2484 | 554.75368 10.8482 51.2393 | 555.85417
0.6 14.4173 35.8696 | 517.14278 14.4066 359256 | 517.56575 14.4498 35.8049 | 517.37364 14.4863 357871 | 518.42267
0.7 18.4903 26.4822 | 489.66382 18.4792 26.5183 | 490.03697 18.5402 26.4252 | 489.92849 18.5923 26.4057 | 490.94269
0.8 |23.0187 20.3557 | 488.56175 23.0077 20.3802 | 468.90153 23.0910 20.3052 | 468.86737 23.1610 20.2864 | 48323110
0.9 |27.9985 16.1376 | 451.82859 27.9879 16.1547 | 452.13612 28.0986 16.0923 | 452.17110 28.1887 16.0750 | 453.13335
1.0 |33.4271 13.1099 | 438.22593 33.4170 13.1224 | 438.51124 23.5606 13.0691 | 307.91584 33.6728 13.0535 | 439.54789
Table 4. Numerical values for position, momentum and products Fisher entropy under the influence of AB

and Magnetic field for n = 2.
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