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Thermomagnetic properties 
and its effects on Fisher 
entropy with Schioberg 
plus Manning‑Rosen potential 
(SPMRP) using Nikiforov‑Uvarov 
functional analysis (NUFA) 
and supersymmetric quantum 
mechanics (SUSYQM) methods
I. B. Okon 1, C. A. Onate 2, R. Horchani 3*, O. O. Popoola 4, E. Omugbe 5, E. S. William 6, 
U. S. Okorie 7, E. P. Inyang 8, C. N. Isonguyo 1, M. E. Udoh 1, A. D. Antia 1, W. L. Chen 9, 
E. S. Eyube 10, J. P. Araujo 11 & A. N. Ikot 12

Thermomagnetic properties, and its effects on Fisher information entropy with Schioberg plus 
Manning-Rosen potential are studied using NUFA and SUSYQM methods in the presence of the 
Greene-Aldrich approximation scheme to the centrifugal term. The wave function obtained was used 
to study Fisher information both in position and momentum spaces for different quantum states by 
the gamma function and digamma polynomials. The energy equation obtained in a closed form was 
used to deduce numerical energy spectra, partition function, and other thermomagnetic properties. 
The results show that with an application of AB and magnetic fields, the numerical energy eigenvalues 
for different magnetic quantum spins decrease as the quantum state increases and completely 
removes the degeneracy of the energy spectra. Also, the numerical computation of Fisher information 
satisfies Fisher information inequality products, indicating that the particles are more localized in 
the presence of external fields than in their absence, and the trend shows complete localization of 
quantum mechanical particles in all quantum states. Our potential reduces to Schioberg and Manning-
Rosen potentials as special cases. Our potential reduces to Schioberg and Manning-Rosen potentials 
as special cases. The energy equations obtained from the NUFA and SUSYQM were the same, 
demonstrating a high level of mathematical precision.
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Over the years, devices that enable quantum information to be coherently transferred between topological and 
conventional materials have been studied by various researchers1. These materials contained an electromagnetic 
field, which serves as a fundamental carrier of information, capable of transmitting a modulated signal and col-
lecting data about the propagation channel itself2. This was made possible by the foundations of information 
theory by Fisher3 in his classical measurement theory, which he used for estimating ultimate quantum limits that 
allow for known local changes in density4. The context was also examined by Shannon5 in his study. The Shannon 
entropy is a global measure of electron density that plays a significant role in the assessment of uncertainty and 
provides a source of information about atomic, molecular, and nuclear systems6–8.

These theoretic tools provide a deeper understanding of density functional and electron correlation in study-
ing the structure and dynamics of the atomic system9. Quantum information theory has proven to be extremely 
useful in a wide range of fields, such as Physics, Chemistry, Biology, Medicine, Computer science, neural net-
works, linguistics, and other social sciences10. They are commonly used in quantum physics to analyze quan-
tum steering11, quantum entanglement12, quantum revivals13, quantum communication14, atomic ionization 
properties15, and other phenomena. In wave mechanics, the solutions of the eigenfunctions of the Schrödinger 
equation under a potential energy barrier are essential because the entropic functionals are presented in terms of 
probability densities in the position and momentum spaces16. Several research have been carried out on Shannon 
entropy and Fisher information with physically motivated potential models, like the class of Yukawa potential17, 
Screened Coulomb potential9, generalized hyperbolic potential18, screened Kratzer potential19, Frost-Musulin 
potential20, hyperbolic potential21, and many others.

The Manning-Rosen potential is a significant exponential-type potential proposed by Manning and Rosen22 
in 1933 to explain the vibrational behavior of the model of the diatomic molecule23. The form of this potential 
model is given by24

where c1 and c2 are potential strength parameters, and α represents the screening parameter while r is the inter-
particle distance. The Schioberg potential, proposed in 1986, is another intriguing potential. This potential 
describes the molecular vibrations of diatomic molecules accurately more than the Morse function and represents 
suitably intermolecular interactions between particles25. The potential model is of the form26

where D is the potential depth, α is the screening parameter and δ0 is the potential parameter that determines 
the size of the potential and can also serve as optimizing parameter. Recently, there has been a surge of interest 
in incorporating at least two potentials. The goal of combining at least two potential models is to provide more 
physical application and analysis to existing molecular physics studies. Also, it is well-known that the potential 
energy functions with more parameters have a tendency to fit experimental data better than those with fewer 
parameters27–29. Many scholars have conducted extensive research in both relativistic and non-relativistic regimes 
to explore these potentials30–38.

In recent times, research indicates that the addition of external fields to potential functions on quantum 
systems has demonstrated its potency in controlling certain behaviors of systems and molecules39. The Aharo-
nov–Bohm (AB) effect, discovered in 196140, occurs when a moving charge is transformed by scalar and vector 
potentials that appear in the Schrödinger equation (SE) even in the absence of external EM fields41. Since then, 
many studies have analyzed a bound state of a charged particle moving in a potential vector and scalar poten-
tial. A realistic description of the external EM field effects on quantum systems is provided by the Stark42 and 
Zeeman43 effects. In the Stark effects, an external electric field is applied to the electrically neutral hydrogen 
atom, causing it to experience a zero net force, resulting in a shift in the energy levels. On the other hand, Zee-
man effects occur when an atom is exposed to a uniform magnetic field. These interactions have similar effects 
in that they cause the energy levels to split and shift44. External fields have previously been studied by a wide 
range of quantum mechanical phenomena in many areas, including physics, chemistry, biology, material science, 
engineering, mathematics45–51 and others.

Considering the vast applicability of the Manning-Rosen and Schioberg potentials, it is necessary to investi-
gate the bound state solutions of the two-dimensional (2D) SE with the combined potential under the influence 
of external magnetic and Aharonov–Bohm (AB) fields and their effects on the Shannon entropy and Fisher 
information for some selected diatomic molecules. The bound state solutions will be obtain using the Nikiforov-
Uvarov-Functional Analysis (NUFA) and supersymmetric quantum mechanics (SUYSQM) methods.

This paper is organized as follows: first, we provide detailed solutions to the 2D SE with Manning-Rosen plus 
Schioberg potential (SPMR) in the presence of magnetic and Aharonov–Bohm (AB) flux fields using the NUFA 
method. Second, we used the SUYSQM method to obtain the analytical solution of the SE with the combined 
potential in the presence of magnetic and Aharonov–Bohm (AB) flux fields. Also, the normalized wavefunction 
obtained is applied to investigate the Shannon entropy and Fisher information in the presence and absence of 
external magnetic and Aharonov–Bohm (AB) flux fields. Finally, the concluding remarks. The SPMR is of the 
form.
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Nikiforov‑Uvarov‑Functional Analysis (NUFA) method
The Nikiforov-Uvarov Functional Analysis (NUFA) method recently developed by Ikot et al.52 has been very help-
ful in providing solutions for exponential type potentials both in relativistic and nonrelativistic wave equations 
When using this method to solve either the Schrödinger or Klein–Gordon equation, the energy eigen equation is 
directly presented in a factorized, closed and compact form. This gives the method an edge over other methods. 
Meanwhile, the NUFA theory involves solving second order Schrödinger-like differential equation through the 
analytical combination of Nikiforov-Uvarov (NU) method and functional analysis approach53–55. NU is applied 
to solve a second-order differential equation of the form

where σ(s) and σ̃ (s) are polynomials at most degree two and τ̃ (s) is a first-degree polynomial. Tezean and Sever56 
latter introduced the parametric form of NU method in the form

whereαi and ξi(i = 1, 2, 3) are all parameters. The differential Eq. (3) has two singularities which is at s → 0 and 
s → 1

α3
 thus, the wave function can be expressed in the form.

Substituting Eq. (6) into Eq. (5) and simplifying culminate to the following equation,

Equation (7) can be reduced to a Guassian- hypergeometric equation if and only if the following functions 
vanished

Applying the condition of Eq. (8) and Eq. (9) into Eq. (7) results into Eq. (10)

The solutions of Eqs. (8) and (9) are given as
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Equation (10) is the hypergeometric equation type of the form

where a, b and c are given as follows:

Setting either a or b equal to a negative integer – n, the hypergeometric function f(s) turns to a polynomial 
of degree n. Hence, the hypergeometric function f(s) approaches finite in the following quantum condition, 
i.e.,a = −n where n = 0, 1, 2, 3 . . . nmax or b = −n.

Using the above quantum condition,

By simplifying Eq. (18), the energy eigen equation using NUFA method is given as

By substituting Eqs. (9) and (10) into Eq. (6), the corresponding wave equation for the NUFA method as

Thermomagnetic energy spectra of 2‑dimensional Schrödinger equation under the influence 
Aharanov‑Bohm (AB) flux and external magnetic field using NUFA.  The thermomagnetic energy 
spectra of 2-Dimensional Schrödinger equation under the influenced of AB and Magnetic field with SPMR 
potential can be obtained from charged particle Hamiltonian operator of the form

Enm is the thermomagnetic energy spectra,  e and µ represent the charge of the particle and the reduced 
mass respectively. c is the speed of light. Meanwhile, The vector potential −→A =
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)
 can be written as 

the superposition of two terms such that −→A = −→
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The Laplacian operator and the wave function in cylindrical coordinate is given as
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where m represents the magnetic quantum number. Substituting Eqs. (23) and (22) into Eq. (21) and with much 
algebraic simplification gives rise to the Schrödinger -like equation of the form

where ξ = �AB
φ0

 is an absolute value containing the flux quantum φ0 = hc
e  . The cyclotron frequency is represented 

by ωc = e�B
µc . Equation (24) is not exactly solvable due to the presence of centrifugal barrier 1

r2
 . In order to provide 

an analytical approximate solution to Eq. (24), we substitute the modified Greene-Aldrich approximation of the 
form  1
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2 into Eq. (24) to deal with the centrifugal barrier. Also, using the coordinate transformation  

s = e−αr together with the approximation term, Eq. (24) reduced to the hyper-geometric equation of the form

where

Comparing Eq. (25) with NUFA differential equation in Eq. (5), the following polynomial equations can be 
obtained.
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Substituting the parameters of Eq. (26) into Eq. (33), the thermomagnetic energy equation become

The 2D nonrelativistic energy eigen equation can be obtained with the condition that ωc = ξ = 0 , m = l + 1
2
.

Then Eq. (34) become

Special cases.  Schioberg potential.  Substituting c1 = c2 = 0.into Eq.  (3), then, the potential reduces to 
Schioberg potential given as

Substituting the same condition to Eq. (34) gives the energy-eigen equation for Schioberg potential under 
the influence of magnetic and AB field as

Manning‑Rosen potential.  Substituting D = 0 into Eq.  (3), then the potential reduces to Manning-Rosen 
potential of the form

Substituting the same condition to Eq. (34) gives the energy eigen equation of Manning-Rosen potential 
under the influence of magnetic and AB fields as

(33)

ε2 = 1

4





�
n+ 1

2
+ 1

2

�
16χ1σ

2
0 − 4χ2 + 4χ5 + 4χ6 − 4χ3 + 4χ4 + 1

�2

+ χ2 − χ5 + χ6 − 4χ1σ0

�
n+ 1

2
+ 1

2

�
16χ1σ

2
0 − 4χ2 + 4χ5 + 4χ6 − 4χ3 + 4χ4 + 1

�





2

+ 2χ1σ0 − χ1 − χ1σ
2
0 − χ6

(34)

Enm = h2α2

2µ

�
(m+ ξ)2 − 1

4

�
+ D(σ0 − 1)2

− h2α2

8µ






n+ 1

2
+ 1

2

�
32µDσ 2

0

h2α2
− 8µc1

h2α2
− 8µc2

h2α2
+ 4µ2ω2

c

h2α2
+ 4(m+ ξ)2 + 8µωc

hα
(m+ ξ)



2

+2µc1

h2α2
− µ2ω2

c

h2α2
− 8µDσ0

h2α2
+ (m+ ξ)2 − 1

4�
n+ 1

2
+ 1

2

�
32µDσ 2

0

h2α2
− 8µc1

h2α2
− 8µc2

h2α2
+ 4µ2ω2

c

h2α2
+ 4(m+ ξ)2 + 8µωc

hα (m+ ξ)

�





2

(34a)

Enm = h2α2l(l + 1)

2µ
+ D(σ0 − 1)2

− h2α2

8µ





�
n+ 1

2
+ 1

2

�
1+ 32µDσ 2

0

h2α2
− 8µc1

h2α2
− 8µc2

h2α2
+ 4l(l + 1)

�2
+ 2µc1

h2α2
− 8µDσ0

h2α2
+ l(l + 1)

�
n+ 1

2
+ 1

2

�
1+ 32µDσ 2

0

h2α2
− 8µc1

h2α2
− 8µc2

h2α2
+ 4l(l + 1)

�





2

(34b)V(r) = D

[
1− σ0

(
1+ e−αr

1− e−αr

)]2
.

(34c)

Enm = h2α2

2µ

�
(m+ ξ)2 − 1

4

�
+ D(σ0 − 1)2

− h2α2

8µ





�
n+ 1

2
+ 1

2

�
32µDσ 2

0

h2α2
+ 4µ2ω2

c

h2α2
+ 4(m+ ξ)2 + 8µωc

hα (m+ ξ)

�2
− µ2ω2

c

h2α2
− 8µDσ0

h2α2
+ (m+ ξ)2 − 1

4

�
n+ 1

2
+ 1

2

�
32µDσ 2

0

h2α2
+ 4µ2ω2

c

h2α2
+ 4(m+ ξ)2 + 8µωc

hα (m+ ξ)

�





2

(34d)V(r) = −
(
c1e

−2αr + c2e
−αr

(
1− e−αr

)2

)



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8193  | https://doi.org/10.1038/s41598-023-34521-0

www.nature.com/scientificreports/

Using Eq. (20), the wave function can be presented in a factorized form as

where

Equation (36) can be expressed in terms of Jacobi polynomial as

Equation (38) can be normalized using the expression

Using Mathematica 10.0 version, the normalized wave function for ground states, first excited state, second 
excited state and third excited quantum state can be obtained as follows:

Thermomagnetic energy spectra of 2‑dimensional Schrodinger equation 
under the influence Aharanov‑Bohm (AB) flux and external magnetic field using 
super symmetric quantum mechanics approach
The supersymmetric approach deals with partner Hamiltonian of the form

where p is the momentum and V(x) is the effective potential. The effective potential can be expressed in terms 
of super potential as

The ground state energy is obtained as
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where N is the normalization constant which for a very simple case can be determined using the expression

However, the super potential satisfies the shape invariance condition

where a1 is a new set of parameter determines from the old set a0 through the mapping f : a0 → a1 = f (a0).
The total supersymmetric energy is defined as

While higher order state solutions are obtained through the expression

where A+(ak) is a raising ladder operator expressed as

Also, the Schrodinger equation under super symmetric quantum mechanics approach is arranged in the form

With the help of approximation to centrifugal term, Eq. (24) can be re- arranged as follows

Equation (53) can then be compared to Eq. (52) such that

The proposed super potential that is suitable for the effective potential is given as

The supersymmetric partner potential can be obtained as follows :
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The ground state energy can be obtained by solving the associated Riccati equation. Hence, the supersym-
metric partner potential of Eq. (56) has a null ground state energy which implies that

Expanding Eq. (58) in ascending powers of exponent gives rise to three simultaneous equations of the form

The ground state energy is calculated using Eq. (61). Substituting Eq. (61) into (60) as well as Eq. (61) into 
(59) and simplifying gives the following equation

Adding Eq. (62) to Eq. (63) and simplifying gives a quadratic equation of the form:

The solution to Eq. (64) is

Using Eq. (63), the constant f  can be evaluated as

The excited state energy is calculated using shape invariance condition

If g = g0 , g1 = g0 + 1 , gn = g0 + αn . Then using Eq. (67), then, the shape invariance condition equation 
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We can then construct the supersymmetric partner potentials of the form

Recall that g = g0 , gn = g0 + αn = g + αn . Using Eq. (74), the higher order supersymmetric energy can 
be evaluated as

Meanwhile, the total energy is the ground state energy plus higher order supesymmetric energy

Substituting Eqs. (61) and (75) together with Eq. (66) into Eq. (76) and simplifying gives the total energy as

(69)

V−
�
r, ξ ,ωc , g1

�
= Veff (r, ξ ,ωc)−

2µDσ 2
0

�2
+ 4µDσ0

�2
− α2

�
(m+ ξ)2 − 1

4

�

+ 1

4



g1 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g1





2

(71)

R
�
g1
�
= V+

�
r, ξ ,ωc , g0

�
− V−

�
r, ξ ,ωc , g1

�

⇒ 1

4



g0 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g0





2

− 1

4



g1 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g1





2

(72)

R
�
g2
�
= V+

�
r, ξ ,ωc , g1

�
− V−

�
r, ξ ,ωc , g2

�

⇒ 1

4



g1 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g1





2

− 1

4



g2 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g2





2

(73)

R
�
g3
�
= V+

�
r, ξ ,ωc , g2

�
− V−

�
r, ξ ,ωc , g3

�

⇒ 1

4



g2 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g2





2

− 1

4



g3 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g3





2

(74)

R
�
gn
�
= V+

�
r, ξ ,ωc , gn−1

�
− V−

�
r, ξ ,ωc , gn

�

⇒ 1

4



gn−1 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

gn−1





2

− 1

4



gn ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

gn





2

(75)

Enk =
1

4



g0 ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

g0





2

−1

4



gn ±

α2
�
2µc1
�2α2

− 8µDσ0
�2α2

− µ2ω2
c

�2α2
+ (m+ ξ)2 − 1

4

�

gn





2

(76)Ẽnm =
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Using the supersymmetric mapping gn :→ g + αn with the total energy expressed as Ẽnm =
(
2µEnm
�2 − 2µD

�2

)
 , 

Eq. (77) now become

Substituting the value of g from Eq. (65) into Eq. (78) and factorizing gives

With a high level of analytical mathematical accuracy, it can be shown that the energy eigen equation obtained 
through (NUFA) as shown in Eq. (34) reproduces the exact results obtained through SUSYQM as shown in 
Eq. (79). This further confirms the accuracy of NUFA method in providing bound state solutions to exponential 
type potentials. Equation (79) can be presented in a more simplified form as:

where

Thermomagnetic properties
The thermodynamic properties of quantum systems can be obtained from the exact partition function given by
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kT where k and T are Boltzmann constant and absolute temperature respectively. 

In the classical limit, the summation in Eq. (82) can be replaced with an integral:

Using Eq. (83), the partition function can be expressed as
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where ρ = n+ δ.
Using Mathematica 10.0 version, Eq. (84) can be evaluated as

Using Eq. (85), other thermo-magnetic properties can be obtained as follows

(a)	 Vibrational internal mean energy. The vibrational internal mean energy44 is defined as

(b)	 Free energy. The vibrational free energy44 is evaluated as

(c)	 The magnetization at finite temperature44 is given as

(d)	 Magnetization of a system at zero temperature in a state ( n,m ) is defined by44 as

(e)	 Magnetic susceptibility44 at finite temperature is given as

(f)	 Persistent current

(g)	 The entropy44 of the thermo-magnetic system is given as

(h)	 Specific heat capacity44of the system is given as

Fisher information entropies
In this section, we shall examine the effects of the Aharanov-Bohm (AB) flux and external magnetic field on 
Fisher information entropy using the proposed potential. Fisher and other quantum information entropies meas-
ure the spread of probability distribution for an allowed quantum mechanical state in a D-dimensional space57–59. 
Fisher information has a lot of applications, including the characterizing of complex signals of quantum mechani-
cal systems, derivation of the equation of motion60, investigating the behavior of stock market patterns61 as well as 
providing useful information about localization of quantum mechanical particles in a bounded potential well62. 
Fisher entropy expressed in terms of both momentum and position spaces63,64 are:

For 2-Dimensional Schrodinger wave equation, the Fisher uncertainty product satisfies the inequality65
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For a two dimensional problem, the momentum space wave function is expressed as

where the solution of the angular part is expressed interms of Bessel function as

and J|m|
(
pr
)
 is the Bessel function of order m.

The momentum space wave function is either obtained through a Fourier transform or through expectation 
value expression. For the purpose of this work, we shall be considering the simplest case where the magnetic 
quantum spin m = 0 . Therefore, for momentum space wave function in 2D for m = 0 , is calculated using expec-
tation value equation of the form

Analytical evaluation of Fisher information entropies for some quantum state.  The normal-
ized ground state wave function under the influenced of Aharanov-Bohm flux and external magnetic field is 
presented in Eq. (39). The gradient of the normalized ground state wave function is given as

Substituting Eq. (100) into Eq. (94) gives the fisher information in position space as

Using Eq. (99), Fisher information in momentum space expressed in terms of polygamma function by the 
help of Mathematica 10.0 version is given as

Using the same procedure, we can obtain Fisher information for other quantum states. For n = 1 , the Fisher 
information for both position and momentum spaces are given as

where
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where the polygamma function is generally expressed as

Results and discussion
Figures 1a–d are the plots of variation of thermomagnetic energy spectra against the screening parameter in the 
absence of AB and magnetic field, the presence of the only magnetic field, the presence of only AB field and the 
presence of both magnetic and AB fields, respectively. In Fig. 1a–d, the bound state energy spectral diagrams all 
increases monotonically with increasing values of the screening parameter ( α ) in such a unique and quantized 
manner.

Figure 2a, b are the variation of wave function plot against the radial distance in the absence of both AB and 
magnetic field and the variation of probability density plot against the radial distance in absence of both AB 
and magnetic field, respectively. In Fig. 2a, the wave function showcases intertwining multiple sinusoidal curves 
representing the different quantum states. In Fig. 2b, the probability density plots in the absence of AB and 
magnetic field show a normal distribution curve with multiple peaks, each depicting a different quantum state. 
It is interesting to note that in Fig. 2a, the ground state has the lowest peak, while the highest state ( n = 3 ) has 
the highest peak. Figure 2b agreed excellently with the theoretical and experimental descriptions of probability 
density. It is expected that in an ideal condition, the peak of the probability density plot should increase as the 
quantum state increases. This is only possible because in Fig. 2a and b, the wave function and probability density 
plots are carried out in the absence of AB and magnetic field respectively.

Figure 3a, b are the variations of the wave function and the probability density plots against the radial distance 
in the presence of magnetic field. Figure 3a shows a periodic and sinusoidal wave function similar to Fig. 2a. 
However, in Fig. 3b, there is distortion in the probability distribution curves because of the presence of mag-
netic field. The presence of the magnetic field does not allow uniform distribution of probability density plots 
in increasing order of the quantum state whose highest peak supposed to occur at ( n = 3 ). However, in Fig. 3b, 
n = 2 has the highest peak, followed by n = 0 before n = 3 . The disorderliness, ambiguity and distortions in the 
peaks clearly show the effect of magnetic field.

Figure 4a, b are the variation of the wave function and probability density plots against the radial distance in 
the presence of AB field, respectively. Figure 4a and b has similar explanation to Fig. 3a and b when the distor-
tions to the probability density plot are affected by the presence of Aharonov-Bohm flux field.

Figure 5a, b show how the wave function and probability density varied with radial distance in the presence 
of both magnetic and AB fields . Under the influence of AB and magnetic fields, the wave function in Fig. 5a is 
sinusoidal and periodic. .However, in Fig. 5b, something fascinating occurs. The peaks of probability density 
plot for quantum state ( n = 1 ) are almost the same as n = 2 , i.e., the combined effect of AB and magnetic effect 
establish quantum state equivalence.

Figure 6a–d are the plot of partition function against magnetic flux (ωc) for different values of inverse tem-
perature parameter (β) , plot of partition function against AB flux (ξ) for different values of inverse temperature 
parameter ( β ), plot of partition function against inverse temperature parameter ( β ) for fixed value of ωc and  ξ 
but for different values of maximum vibrational quantum number ( � ) and plot of partition function against the 
maximum vibrational quantum number ( �)for fixed value of ωc and  ξ but for different values of inverse tem-
perature parameter ( β ), respectively. In Fig. 6a, the partition function starts from the negative y-axis an increase 
exponentially with increasing value of the magnetic field. The same explanation occurs in Fig. 6d where the 
partition function increases exponentially with an increase in maximum vibrational quantum number.
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In Fig. 6b, the partition function rises monotonically with unique spacing before reaching a peak value with 
local maximum turning point at ξ = 40 . In Fig. 6c, the partition function increases monotonically with an 
increase in inverse temperature parameter.

Figure 7a–d are the plot of vibrational mean energy against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) , plot of vibrational mean energy against AB flux (ξ) for different values of inverse 
temperature parameter ( β ), plot of vibrational mean energy against inverse temperature parameter ( β ) for fixed 
value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ) and plot of vibrational 
mean energy against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different 
values inverse temperature parameter ( β ) respectively.

In Fig. 7a, the vibrational mean energy showcase a parabolic curve which increases with an increase in 
magnetic field. In Fig. 7b, the vibrational mean energy increases monotonically before converging at ξ = 6 with 
increase in AB flux. Also, the vibrational mean energy increases uniquely from the origin with quantized spacing, 
in an increasing value of inverse temperature parameter as shown in Fig. 7c. Correspondingly, the vibrational 

Figure 1.   Variation of thermomagnetic energy spectra against the screening parameter in (a) the absence of 
AB and Magnetic field, (b) the presence of only magnetic field; (c) the presence of only AB field and (d) the 
presence of both magnetic and AB field.
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Figure 2.   (a) The variation of wave function plot against the radial distance in the absence of both AB and 
magnetic field. (b) The variation of probability density plot against the radial distance in absence of both AB and 
magnetic field.

Figure 3.   (a) The variation of wave function plot against the radial distance in the presence of magnetic field. 
(b) The variation of probability density plot against the radial distance in the presence of magnetic field.
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mean energy also increase with increasing value of maximum vibrational quantum number as presented in 
Fig. 7d.

Figure 8a–d are the plot of vibrational heat capacity against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) , plot of vibrational heat capacity against AB flux (ξ) for different values of inverse 
temperature parameter ( β ), plot of vibrational heat capacity against inverse temperature parameter ( β ) for fixed 
value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ) and plot of vibrational 

Figure 4.   (a) The variation of wave function plot against the radial distance in the presence of AB field. (b) The 
variation of probability density plot against the radial distance in the presence of AB field.

Figure 5.   (a) The variation of wave function plot against the radial distance in the presence of both magnetic 
and AB field. (b) The variation of probability density plot against the radial distance in the presence of both 
magnetic and AB field.
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heat capacity against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different 
values inverse temperature parameter ( β ) respectively.

In Fig. 8a, the vibrational heat capacity increases monotonically with increase in magnetic field. In Fig. 8b, the 
vibrational heat capacity shows symmetrical curves with common converged maximum point at ξ = 45 . This 
maximum point divides the curves into equal half both in a decreasing and increasing value of ξ . The physical 
interpretation of Fig. 8b is that heat capacity from the concept of molecular vibration relates to the kinetic energy 
of the molecules of the system. So, the Fig. 8b completely shows that with the influence of Aharanov-Bohm 
flux field, the kinetic energy of the molecules of the system remains constant during molecular vibrations. This 
explains why there is a symmetrical curves both at the left and right hand side of the thermomagnetic plot. In 
Fig. 8c, the vibrational heat capacity is a parabolic curve that concaves upward with minimum turning point at 
β = 0.0005 K−1 before rising to various local maximum turning points in increasing value of β , before converg-
ing at β = 0.004 K−1 . In Fig. 8d, the specific heat capacity increases asymmetrically to various unique maximum 
point before converging at � = 1000 with increasing value of maximum vibrational quantum number.

Figure 6.   (a) Plot of partition function against magnetic flux (ωc) for different values of inverse temperature 
parameter (β) . (b) Plot of partition function against AB flux (ξ) for different values of inverse temperature 
parameter ( β ). (c) Plot of partition function against inverse temperature parameter ( β ) for fixed value of ωc and  
ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of partition function against 
the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different values inverse 
temperature parameter ( β).
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Figure 9a–d are plot of vibrational entropy against magnetic flux (ωc) for different values of inverse tempera-
ture parameter (β) , plot of vibrational entropy against AB flux (ξ) for different values of inverse temperature 
parameter ( β ), plot of vibrational entropy against inverse temperature parameter ( β ) for fixed value of ωc and  
ξ but for different values of maximum vibrational quantum number ( � ) and plot of vibrational entropy against 
the maximum vibrational quantum number ( � ), for fixed value of ωc and  ξ but for different values inverse tem-
perature parameter ( β ) respectively. In Fig. 9a and d, the vibrational entropy increases exponentially with an 
increase in magnetic field and maximum vibrational quantum number respectively. In Fig. 9b, the vibrational 
entropy rises to the peak with maximum turning point at ξ = 35 before slopping in a divergence manner with 
distinct spacing between the spectral curves. In Fig. 9c, the vibrational entropy increases exponentially with an 
increase in inverse temperature parameter.

Figure 10a–d are plot of vibrational Free energy against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) , plot of vibrational Free energy against AB flux (ξ) for different values of inverse 
temperature parameter ( β ), plot of vibrational Free energy against inverse temperature parameter ( β ) for fixed 

Figure 7.   (a) Plot of vibrational mean energy against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) . (b) Plot of vibrational mean energy against AB flux (ξ) for different values of inverse 
temperature parameter ( β ). (c) Plot of vibrational mean energy against inverse temperature parameter ( β ) 
for fixed value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of 
vibrational mean energy against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but 
for different values inverse temperature parameter ( β).
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value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ) and plot of vibrational 
Free energy against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different 
values inverse temperature parameter ( β ) respectively. Figure 10a–d has similar explanation to Fig. 9a–d.

Figure 11a–d. are plot of magnetization against magnetic flux (ωc) for different values of inverse temperature 
parameter (β) , plot of magnetization against AB flux (ξ) for different values of inverse temperature parameter 
( β ), plot of magnetization against inverse temperature parameter ( β ) for fixed value of ωc and  ξ but for different 
values of maximum vibrational quantum number ( � ) and plot of magnetization against the maximum vibra-
tional quantum number ( � ) for fixed value of ωc and  ξ but for different values inverse temperature parameter 
( β ) respectively. In Fig. 11a, c and d, the magnetization increases exponentially with an increase in ωc , β and  � 
respectively. However, in Fig. 11b the influence of AB field produces normal distribution curves with distinct 
peaks corresponding to the values of inverse temperature parameter ( β).

Figure 12a–d are plot of magnetic susceptibility against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) , plot of magnetic susceptibility against AB flux (ξ) for different values of inverse 

Figure 8.   (a) Plot of vibrational heat capacity against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) . (b) Plot of vibrational heat capacity against AB flux (ξ) for different values of inverse 
temperature parameter ( β ). (c) Plot of vibrational heat capacity against inverse temperature parameter ( β ) 
for fixed value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of 
vibrational heat capacity against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but 
for different values inverse temperature parameter ( β).
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temperature parameter ( β ), plot of magnetic susceptibility against inverse temperature parameter ( β ) for fixed 
value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ) and plot of magnetic 
susceptibility against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different 
values inverse temperature parameter ( β ) respectively. In Fig. 12a, the magnetic susceptibility increases mono-
tonically from zero into diverging curves. In Fig. 12b, the magnetic susceptibility produces sinusoidal curves with 
discontinuity at ξ = 50 . In Fig. 12c, the magnetic susceptibility rises to attain various local maximum point at 
precisely β = 0.125 K−1 . Also, in Fig. 12d, the magnetic susceptibility increases exponentially with an increase 
in maximum vibrational quantum number.

Figure 9.   (a) Plot of vibrational entropy against magnetic flux (ωc) for different values of inverse temperature 
parameter (β) . (b) Plot of vibrational entropy against AB flux (ξ) for different values of inverse temperature 
parameter ( β ). (c) Plot of vibrational entropy against inverse temperature parameter ( β ) for fixed value of ωc and  
ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of vibrational entropy against 
the maximum vibrational quantum number ( � ), for fixed value of ωc and  ξ but for different values inverse 
temperature parameter ( β).
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Figure 13a–d are plot of persistent current against magnetic flux (ωc) for different values of inverse tempera-
ture parameter  (β) , plot of persistent current against AB flux (ξ) for different values of inverse temperature 
parameter ( β ), Fig. 13c plot of persistent current against inverse temperature parameter ( β ) for fixed value of 
ωc and  ξ but for different values of maximum vibrational quantum number ( � ) and plot of persistent current 
against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different values inverse 
temperature parameter ( β ) respectively. In Fig. 13a and d, the persistent current increases asymptotically from 
the origin with increasing value of magnetic field and maximum upper bound vibrational quantum number. 
In Fig. 13b, the persistent current rises from the origin to exhibits various maximum points before concaving 
upward with unique minimum points with maximum at ξ = 45 . In Fig. 13c, the persistent current increases 
from the vertical axis in a quantized form before diverging into various spectral curves with increasing value of β.

Figure 14a–c are the plot of position space Fisher entropy against the screening parameter for n = 0 , the plot 
of momentum space Fisher entropy against the screening parameter for n = 0 and the plot of product of position 

Figure 10.   (a) Plot of vibrational Free energy against magnetic flux (ωc) for different values of inverse 
temperature parameter (β) . (b) Plot of vibrational Free energy against AB flux (ξ) for different values of inverse 
temperature parameter ( β ). (c) Plot of vibrational Free energy against inverse temperature parameter ( β ) 
for fixed value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of 
vibrational Free energy against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but 
for different values inverse temperature parameter ( β).
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and momentum space Fisher entropy against the screening parameter for n = 0 respectively. In Fig. 14a, the 
position space Fisher entropy increases linearly with an increase in the screening parameter, while the momen-
tum space and its product increases exponentially with an increase in the screening parameter ( α ) as shown in 
Fig. 14b and c respectively.

Figure 15a–c are the plot of position space Fisher entropy against the screening parameter for n = 1 , the plot 
of momentum space Fisher entropy against the screening parameter for n = 1 and the plot of product of position 
and momentum space Fisher entropy against the screening parameter for n = 1 respectively. Figure 15a–c has 
the same explanation as Fig. 14a–c.

Figure 16a–c are the plot of position space Fisher entropy against the screening parameter for n = 2, plot of 
momentum space Fisher entropy against the screening parameter for n = 2 and the plot of product of position 

Figure 11.   (a) Plot of magnetization against magnetic flux (ωc) for different values of inverse temperature 
parameter  (β) . (b) Plot of magnetization against AB flux (ξ) for different values of inverse temperature 
parameter ( β ). (c) Plot of magnetization against inverse temperature parameter ( β ) for fixed value of ωc and  
ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of magnetization against 
the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different values inverse 
temperature parameter ( β).
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and momentum space Fisher entropy against the screening parameter for n = 2 respectively. Figure 16a–c has 
the same explanation as Fig. 14a–c.

Figure 17a–c are the plot of position space Fisher entropy against the screening parameter for n = 3, the plot 
of momentum space Fisher entropy against the screening parameter for n = 3  and the plot of product of posi-
tion and momentum space Fisher entropy against the screening parameter for n = 3 respectively. In Fig. 17a, 
the position space entropy increases exponentially with an increase in the value of α . However, in Fig. 17b and 
c, there is abnormally which makes the plot to decrease with decreasing value of α with respect to momentum 
space and its products respectively.

Table 1 is the numerical bound state solution for the proposed potential under the influence of AB and 
Magnetic field for fixed magnetic quantum number but with varying principal quantum number. In Table 1, it 
can be observed that when both fields are deactivated, i.e., AB and magnetic fields are zero, the energy spectra 
degenerate; thus, as the number of quantum states increases, the energy spectra decrease. When only the AB 
field was applied to the quantum system, it resulted in quasi-degeneracy, and the energy spectra decreased with 

Figure 12.   (a) Plot of magnetic susceptibility against magnetic flux (ωc) for different values of inverse 
temperature parameter  (β) . (b) Plot of magnetic susceptibility against AB flux (ξ) for different values of inverse 
temperature parameter ( β ). (c) Plot of magnetic susceptibility against inverse temperature parameter ( β ) 
for fixed value of ωc and  ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of 
magnetic susceptibility against the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but 
for different values inverse temperature parameter ( β).
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increasing quantum states. When only the magnetic field is activated, the system produces a similar effect, but 
this time degeneracy is gradually eliminated. When both fields are activated, the combined effects completely 
eliminates degeneracy from the quantum system’s energy spectra. All computation were carried out using the 
following constant physical parameters: c1 = c2 = 1, σ0 = 0.5, � = µ = 1,α = 0.2, c = 1.

Tables 2, 3, 4 and 5 are the numerical computation for position, momentum, and products Fisher entropy 
under the influence of AB and magnetic field for n = 0 to n = 3 , respectively. In these Tables, it is clear that our 
results obey Heisenberg uncertainty principles in which there is uncertainty in the simultaneous measurement of 
the position and momentum of quantum mechanical particles. The numerical results also show that as the values 

Figure 13.   (a) Plot of persistent current against magnetic flux (ωc) for different values of inverse temperature 
parameter  (β) . (b) Plot of persistent current against AB flux (ξ) for different values of inverse temperature 
parameter ( β ). (c) Plot of persistent current against inverse temperature parameter ( β ) for fixed value of ωc and  
ξ but for different values of maximum vibrational quantum number ( � ). (d) Plot of persistent current against 
the maximum vibrational quantum number ( � ) for fixed value of ωc and  ξ but for different values inverse 
temperature parameter ( β).
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for position Fisher entropy increase, the momentum values decrease with an increase in screening parameters. 
This trend holds for all quantum states in the absence of both magnetic and AB fields, only magnetic fields, only 
AB fields, and the combined influence of both magnetic and AB fields.

Correspondingly, our numerical results in all quantum states satisfy the 2D local Fisher uncertainty product 
inequality expressed as ( I(ρ)I(γ ) ≥ 16 as shown in Tables 2, 3, 4 and 5 for all quantum states. All our results 
clearly show that as the quantum state increases, the values of position increases, while that of momentum and 
product values decrease. The Fisher product values in all quantum states clearly show the localization of the 
quantum mechanical particles both in the absence and presence of magnetic and AB fields. Finally, the numeri-
cal results from their product indicate that the particle is more localized when the combined effect of AB and 
magnetic fields on the entropy than the absence of both fields, as shown by ( ( I(ρ)I(γ ) ≥ 16).

Conclusion
In this work, we study analytical solutions, thermomagnetic properties, and its effect on Fisher information 
entropy with Schioberg plus Manning-Rosen potential using the Nikiforov-Uvarov functional analysis and Super-
symmetric quantum mechanics methods. We obtained the energy equation in a closed and compact form both in 
NUFA and SUSYQM and applied the solution to study partition function and other thermomagnetic properties.

The trend of thermomagnetic plots is in excellent agreement with the work of existing literature. Using the 
normalized wave function, we obtained the wave function and probability density plots and applied them to study 
Fisher information entropy in position and momentum spaces. The numerical results show that the combined 
impact of the magnetic and AB flux fields completely removes the degeneracy on the energy spectra and that 
increasing the screening parameter increases the position of Fisher entropy while decreasing its momentum, 
satisfying the 2D local Fisher uncertainty product condition. It also causes both localization and delocalization 
of quantum particles. Meanwhile, as the quantum state increases under the combined influence of magnetic and 

(a) (b)

(c)

Figure 14.   (a) The plot of position space Fisher entropy against the screening parameter for n = 0 . (b) The 
plot of momentum space Fisher entropy against the screening parameter for n = 0 . (c) The plot of product of 
position and momentum space Fisher entropy against the screening parameter for n = 0.
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AB fields, the results of Fisher entropies and the product increase. Finally, the proposed potential reduces to 
Schioberg and Manning-Rosen potential as special cases. The wave function and probability density plots were 
obtained using Maple 10,0 software, while the position and momentum Fisher entropies were obtained using a 
well-designed Mathematica program.

Data availability
The data available in this manuscript are obtained using maple and Mathematica programme from the resulting 
energy eigen equation.

Received: 20 February 2023; Accepted: 3 May 2023

(a) (b)

(c)

Figure 15.   (a) The plot of position space Fisher entropy against the screening parameter for n = 1 . (b) The 
plot of momentum space Fisher entropy against the screening parameter for n = 1 . (c) The plot of product of 
position and momentum space Fisher entropy against the screening parameter for n = 1.
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(a) (b)

(c)

Figure 16.   (a) The plot of position space Fisher entropy against the screening parameter for n = 2 . (b) The 
plot of momentum space Fisher entropy against the screening parameter for n = 2 . (c) The plot of product of 
position and momentum space Fisher entropy against the screening parameter for n = 2.
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(a) (b)

(c)

Figure 17.   (a) The plot of position space Fisher entropy against the screening parameter for n = 3 . (b) The 
plot of momentum space Fisher entropy against the screening parameter for n = 3 . (c) The plot of product of 
position and momentum space Fisher entropy against the screening parameter for n = 3.

Table 1.   Numerical bound state solution for the proposed potential under the influence of AB and Magnetic 
field.

m n ξ = ωc = 0 ξ = 0.2,ωc = 0 ξ = 0,ωc = 0.2 ξ = 0.2,ωc = 0.2

0

0 − 0.90133601 − 0.90184811 − 0.89816015 − 0.90059738

1 − 2.43479386 − 2.43548836 − 2.43180819 − 2.43426196

2 − 3.97979520 − 3.98031212 − 3.97664018 − 3.97911044

3 − 5.53577109 − 5.53629036 − 5.53262704 − 5.53511371

− 1

0 − 0.91413788 − 0.90952922 − 0.90133601 − 0.89865265

1 − 2.44783595 − 2.44320564 − 2.43497386 − 2.43228286

2 − 3.99271706 − 3.98806518 − 3.97979520 − 3.97709679

3 − 5.54875214 − 5.54407895 − 5.53577109 − 5.33065400

1

0 − 0.91413788 − 0.91977099 − 0.92058755 − 0.92814565

1 − 2.44783595 − 2.45349560 − 2.43497386 − 2.43228286

2 − 3.99271706 − 3.99840302 − 3.99932855 − 4.00696761

3 − 5.54875214 − 5.55446409 − 5.55544480 − 5.56312395
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Table 2.   Numerical values for position, momentum and products Fisher entropy under the influence of AB 
and Magnetic field for n = 0.

α

ξ = ωc = 0 ξ = 0,ωc = 0.2 ξ = 0.2,ωc = 0 ξ = ωc = 0.2

I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I(γ ) I
(

p
)

I(γ ) ≥ 16

0.1 0.190558 1076.98 205.22715 0.18993 1082.04 205.51186 0.190594 1076.82 205.23544 0.190269 1080.82 205.64654

0.2 0.408783 279.481 114.24708 0.40751 280.724 114.39671 0.409079 279.323 114.26517 0.409170 280.026 114.57824

0.3 0.654802 128.777 84.32344 0.65285 129.319 84.42643 0.655806 128.319 84.42643 0.656610 128.794 84.56743

0.4 0.928695 75.0143 69.66541 0.92606 75.3134 69.74488 0.931095 74.8544 69.44516 0.933376 74.8739 69.88550

0.5 1.230510 49.6664 61.11500 1.22718 49.8541 61.17995 1.235230 49.5054 61.15056 1.239610 49.4658 61.31830

0.6 1.560270 35.5478 55.62019 1.55622 35.7754 55.67439 1.568470 35.4856 55.65809 1.575560 35.4210 55.80791

0.7 1.917600 27.0456 51.87238 1.91319 27.1373 51.91881 1.931050 26.8823 51.91107 1.941490 26.8070 52.04552

0.8 2.303560 21.3661 49.21809 2.29805 21.4347 49.25801 2.323190 21.2017 49.25558 2.337600 21.1221 49.37502

0.9 2.717000 17.4064 47.29319 2.71076 17.4594 47.32319 2.745080 17.2411 47.32819 2.764100 17.1605 47.43334

1.0 3.158240 14.5274 45.88102 3.15125 14.5692 45.91119 3.196900 14.3610 45.91068 3.221150 14.2811 46.00157

Table 3.   Numerical values for position, momentum and products Fisher entropy under the influence of AB 
and Magnetic field for n = 1.

α

ξ = ωc = 0 ξ = 0,ωc = 0.2 ξ = 0.2,ωc = 0 ξ = ωc = 0.2

I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16

0.1 0.62863 1130.46 710.63542 0.55935 1254.06 701.45469 0.62873 1130.31 22,024.4819 0.62782 1134.05 711.97927

0.2 1.45190 297.293 431.63971 1.17879 358.994 423.17854 1.45274 297.154 431.68750 1.45277 297.754 432.56808

0.3 2.46684 136.589 336.94321 1.85599 177.313 329.09115 2.46965 136.462 337.01338 2.47242 136.602 337.73752

0.4 3.67059 78.6762 288.78807 2.58877 108.710 281.42519 3.67714 78.5601 288.87649 3.68441 78.579 289.51725

0.5 5.06060 51.2734 259.47417 3.37509 74.8220 252.53098 5.07318 51.1675 259.58194 5.08663 51.1478 260.16993

0.6 6.63467 36.1291 239.70864 4.21306 55.3381 233.14274 6.65603 36.0321 239.83074 6.67729 35.9999 240.38177

0.7 8.39101 26.8697 225.46392 5.10091 42.9848 219.26159 8.42432 26.7804 225.60666 8.45494 26.7452 226.12906

0.8 10.3282 20.7901 214.72431 6.03699 34.5987 208.87201 10.3770 20.7077 214.88380 10.4155 20.6732 215.32171

0.9 12.4451 16.5809 206.35096 7.01975 28.6112 200.84347 12.5134 16.5045 206.52741 12.5672 16.4721 207.00818

1.0 14.7410 13.5443 199.65653 8.04777 24.1672 194.49207 14.8331 13.4731 199.84784 14.9005 13.4432 200.31040

Table 4.   Numerical values for position, momentum and products Fisher entropy under the influence of AB 
and Magnetic field for n = 2.

α

ξ = ωc = 0 ξ = 0,ωc = 0.2 ξ = 0.2,ωc = 0 ξ = ωc = 0.2

I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16 I
(

p
)

I(γ ) I
(

p
)

I(γ ) ≥ 16

0.1 1.14998 1166.80 1341.79666 1.14706 1171.26 1343.50549 1.15015 1166.65 1341.8225 1.14871 1170.14 1344.15152

0.2 2.82094 306.016 863.25278 2.81553 306.951 864.22975 2.82231 305.895 863.33052 2.82264 306.416 864.90206

0.3 4.99644 139.322 696.11401 4.9890 139.672 696.82360 5.00091 139.220 696.22669 5.00608 139.338 697.53178

0.4 7.66194 79.4702 608.89590 7.65295 79.6384 609.46869 7.67219 79.3840 609.04913 7.68512 79.4040 610.22927

0.5 10.8054 51.3227 554.56230 10.7953 51.4154 555.04467 10.8248 51.2484 554.75368 10.8482 51.2393 555.85417

0.6 14.4173 35.8696 517.14278 14.4066 35.9256 517.56575 14.4498 35.8049 517.37364 14.4863 35.7871 518.42267

0.7 18.4903 26.4822 489.66382 18.4792 26.5183 490.03697 18.5402 26.4252 489.92849 18.5923 26.4057 490.94269

0.8 23.0187 20.3557 488.56175 23.0077 20.3802 468.90153 23.0910 20.3052 468.86737 23.1610 20.2864 483.23110

0.9 27.9985 16.1376 451.82859 27.9879 16.1547 452.13612 28.0986 16.0923 452.17110 28.1887 16.0750 453.13335

1.0 33.4271 13.1099 438.22593 33.4170 13.1224 438.51124 23.5606 13.0691 307.91584 33.6728 13.0535 439.54789
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