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Abstract: Despite the huge number of studies of the three-body problem in physics and mathematics,
the study of this problem remains relevant due to both its wide practical application and taking into
account its fundamental importance for the theory of dynamical systems. In addition, one often has to
answer the cognitive question: is irreversibility fundamental for the description of the classical world?
To answer this question, we considered a reference classical dynamical system, the general three-body
problem, formulating it in conformal Euclidean space and rigorously proving its equivalence to the
Newtonian three-body problem. It has been proven that a curved configuration space with a local
coordinate system reveals new hidden symmetries of the internal motion of a dynamical system,
which makes it possible to reduce the problem to a sixth-order system instead of the eighth order.
An important consequence of the developed representation is that the chronologizing parameter of
the motion of a system of bodies, which we call internal time, differs significantly from ordinary time
in its properties. In particular, it more accurately describes the irreversible nature of multichannel
scattering in a three-body system and other chaotic properties of a dynamical system. The paper
derives an equation describing the evolution of the flow of geodesic trajectories, with the help of
which the entropy of the system is constructed. New criteria for assessing the complexity of a
low-dimensional dynamical system and the dimension of stochastic fractal structures arising in
three-dimensional space are obtained. An effective mathematical algorithm is developed for the
numerical simulation of the general three-body problem, which is traditionally a difficult-to-solve
system of stiff ordinary differential equations.

Keywords: classical three-body problem; irreversibility; three-dimensional manifold; entropy of
low-dimensional system; complexity; chaos; stochastic fractal; stiff ODEs system

1. Introduction

The initial formulation of the three-body problem in physics and mechanics was to
describe the trajectories of particles with point masses by Newton’s equations of motion,
taking into account the fact that particles interact according to Newton’s law of universal
gravitation, when the initial positions and velocities of the bodies are given [1]. Over time,
it became clear that the three-body problem describes a significant number of elementary
atomic-molecular processes known to us, which stimulated new research of problem taking
into account the multichannel scattering of three bodies (see diagram in Figure 1) and the
three-particle interaction between them [2]. It is obvious that in this case the computational
complexity of the problem increases significantly for a number of well-known reasons,
especially if we take into account that in many cases elementary processes are irreversible,
whereas it is well known that in classical mechanics the time is reversible. Recall that this
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follows from the mathematical formulation of classical mechanics, time t enters through the
second-order operator ∂2/∂t2, which means that the operator and, accordingly, the Equation
are invariant under the transformation t → −t. In this regard, the paper [3] pose a
reasonable question to researchers, namely: is irreversibility fundamental to the description
of the classical world? Note that this question turns out to play a key role in solving the
problem of matching the quantum-classical transition [4,5]. In other words, new research,
in addition to the goal of reducing the mathematical complexity of the problem, should
answer a number of conceptual questions, and primarily the question of the irreversibility
of a number of classical elementary atomic-molecular processes associated with time.
Ideally, time as a measure of the movement of a dynamical system should accurately reflect
the speed, nature and peculiarities of the changes occurring in the system.

Recall that time is one of the basic concepts of philosophy and physics. This is a
measure of the duration and continuous existence of all material objects, a characteristic of
the sequential change in their states in processes and the processes themselves, occurring
in an obviously irreversible sequence from the past, through the present to the future [6–8].
However, as is rightly noted in the work [9], various physical theories, old and new, “do
not fit together” with respect to some fundamental concepts and phenomena, in particular,
determinism and the irreversibility of time.

Figure 1. The problem of multichannel scattering in a classical three-body system can be represented
in the most general form, as shown in the diagram, where 1, 2 and 3 denote interacting particles,
brackets (· · ·) denote a coupled system of two bodies, and (· · ·)∗ and (· · ·)∗∗ denote accordingly
some short-lived coupled three-body system.

The twentieth century saw two fundamental revolutions in physics—relativity and
quantum theory. If in the theory of relativity time was equated in status to coordinates and
Minkowski space was introduced with four-dimensional invariant interval that determines
the distance between two events, then in quantum mechanics it remained within the
framework of Newton’s classical definition [10]. In any case, it can be said that these
new concepts did not significantly change the above classical or Newtonian definition
of time. In particular, relativistic mechanics only deforms and compresses time without
affecting its essence - one-dimensionality, homogeneity and continuity. Unlike the ability
of a body to move in opposite directions in space, time is usually considered to have only
one dimension and one direction, despite the fact that most laws of physics allow that
any process can occur in both forward and backward directions. In modern physics, there
are only a small number of known physical phenomena that violate the reversibility of
time, which presupposes the presence of a directionality or arrow of time. Let us recall that
well-known examples of the arrow of time are [11–17]:

• Time arrow, characteristic of expanding waves (such as light or sound emanating from
a source).
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• The arrow of time associated with the growth of entropy in an isolated system accord-
ing to the second law of thermodynamics.

• The arrow of time associated with the irreversibility of measurements in quan-
tum mechanics.

• The arrow of time associated with the preference for a certain direction of time in weak
interactions in particle physics (CP symmetry breaking).

• The cosmological arrow of time, which is associated with the expansion of the Universe
after the Big Bang.

• An arrow of time that arises from the delay effect associated with the charged parti-
cle’s electromagnetic radiation reaction, causing it to “remember” the history of its
dynamics [18].

• Irreversibility and the arrow of time are characteristic of quantum systems immersed in a
fundamental environment, such as a continuously fluctuating quantum vacuum [19,20].
These systems can be called complex or whole system, which is more than the sum of
their parts [17].

Note that the fundamentality of the various arrows of time and their interrelationship
is a hotly debated topic in modern theoretical physics (see, for example, [21]).

Our main goal is to study the issue of irreversibility in classical mechanics and the
role of time, or more precisely, the parameter of chronologization of the motion stages
of a classical dynamical system. To do this, we consider the general classical three-body
problem, which is quite well studied and in a certain sense is a reference example of a
dynamical system.

Recall that the study of the three-body problem for celestial mechanics is still in
demand, both from the point of view of finding new periodic trajectories [22,23] and in
studying the dynamics of supermassive stellar systems that curve space, which automati-
cally makes interaction three-particle [24].

It should also be noted that this problem plays an important role in the context of
quantum-classical matching during the transition of a complex dynamical system from
the region of quantum motion to the region of classical chaotic motion (Poincaré systems).
In addition, the study of this problem is of great practical importance since a significant
amount of the scientific and technical information about atomic-molecular processes known
and used by us can be described within the framework of the three-body model (see,
for example, [25]).

It is important to recall that geometrization methods for dynamical problems have
long been used by many researchers to justify the description of the irreversible and chaotic
nature of dynamical systems using statistical methods [4,5,26–31].

A mathematical feature of the three-body problem is that it is generally described by an
eighth-order system of stiff differential equations, the stability of which requires calculations
with a very small time step. The problem becomes even more complicated when we
consider a multichannel scattering problem, taking into account arbitrary, including three-
particle interactions, which is typical for all atom-molecular processes. In this case, as a rule,
over a wide range of initial data of the problem, the system exhibits chaotic behavior. Note
that, due to these difficulties, no reliable solver has yet been created for mass calculations
of multichannel atom-molecular processes.

In other words, new studies of the three-body problem are highly relevant both from
the point of view of identifying new features of dynamic systems and for creating an
effective mathematical tool for numerical modeling of the problem.

To study this question, we recently considered the multichannel scattering in a three-
body system (see diagram in Figure 1), formulating it in a conformal Euclidean–Riemannian
space associated with the potential energy surface of the system of interacting bodies [5].
The developed representation made it possible to identify two new hidden symmetries of
the internal motion of a three-body system and thereby reduce the number of equations
of motion to six instead of the usual eight. Note that when moving to a local reference
system, a new parameter of the chronologization of the phases of motion of the dynamical
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system “s” appears in the problem. This parameter, as we will see below, in the global
coordinate system s 7→ s (where s is the chronolization parameter in the global coordinate
system) actually represents the trajectory of the center of mass of the three-body system
in the three-dimensional configuration space, which we will further call internal time . It
is obvious that the internal time s will be multidimensional, non-uniform and oriented,
whereas in classical mechanics the time “t” has an absolute value and does not depend on
the processes occurring in the system.

All this ultimately leads to a more accurate description of the stages of evolution
of an irreversible system, in this case the process of multichannel scattering in a three-
body system (see diagram in Figure 1). The article derives an Equation for the density
distribution of geodesic trajectories in phase space, on the basis of which the entropy of
the trajectory flow is constructed. The new definition of entropy differs from the definition
of Kolmogorov-Sinai [32–34] and Pesin [35] entropy as applied to dynamical systems
and allows one to strictelly construct a measure of the complexity of a low-dimensional
dynamical system. A new definition of the dimension of the fractal structure of the
internal time of the restricted three-body problem, different from the Hausdorff-Besicovitch
criterion, was also investigated and given. As numerous numerical experiments show,
the internal time s immersed in three-dimensional space always has a dimension less than
one and is equal to 0.89.
The article is organized as follows:

In Section 1, we briefly introduce the role of time and, in general, the chronologizing
parameter for the description of dynamic systems, in particular, using the example of a
three-body classical system in classical mechanics.

In Section 2, we present the problem statement and derive differential equations
describing the motion of three bodies in a local coordinate system, as well as an underdeter-
mined system of algebraic equations that allows us to construct transformations between
local and global coordinate systems in differential form. An integral representation for the
three-dimensional internal time of a three-particle dynamical system in global coordinates
Jacobi is constructed.

In Section 3, we present mathematical algorithms for organizing simulation of the
problem on high-performance computing machines. A mathematical algorithm for cal-
culating three-dimensional manifolds is described in detail, using which two complete
members of different families of manifolds are calculated and visualized. A mathematical
algorithm has been created for solving the trajectory problem in a local coordinate system,
the potentials of pair interactions between particles have been specified, and the initial
conditions for solving Cauchy problem have been formulated.

In Section 4, we analyze in detail the mechanisms of occurrence of randomness in the
geodesic trajectories of a deterministic dynamical system and formulate a criterion for the
divergence of two close geodesic trajectories, similar to the Lyapunov exponent. A system
of stochastic differential Equations is determined, with the help of which an second-order
partial differentialEquation is obtained that describes the evolution of the distribution of
conditional probability in the flow of geodesic trajectories.

In Section 5, we define the nonstationary probability distribution and the normal prob-
ability distribution in a geodesic trajectory flow. By analogy with Shannon’s entropy, we
define the entropy of a low-dimensional dynamical system and its measure of complexity.
A formula is obtained to calculate the region of classical chaos in phase space. An analogue
of the Lyapunov exponential for the wave function of a quantum three-body system has
been determined.

In Section 6, the properties of the internal time of a restricted three-particle prob-
lem on manifolds A1 and B1, respectively, are investigated using numerical simulation.
The divergence of close internal times on the specified manifolds is investigated, and the
corresponding Lyapunov exponents are calculated. This section also provides numerical
calculations of the dimension of fractal internal times from their length.
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In Section 7, we discuss the obtained theoretical and numerical results and outline
directions for future research.

2. Formulation of the Problem

In the 20th century, physics experienced a qualitative transition from the simplic-
ity of reductionism to the complexity of chaos theory, which ultimately fundamentally
changed our understanding of complex phenomena, ushering in the development of a new
discipline—complexity science. Note that pioneering work on chaos theory was carried
out by H. Poincaré when studying the three-body problem of celestial mechanics [36]. He
showed that even simple deterministic systems can exhibit aperiodic, chaotic behavior that
is very sensitive to initial conditions, which in turn challenged Laplace’s philosophical
view of a deterministic universe [37].

In the present work, we consider a more general formulation of the three-body prob-
lem, namely, multichannel scattering (see diagram in Figure 1) with arbitrary interactions
potential between bodies, including taking into account three-particle interactions. In par-
ticular, the solution of the problem requires 18 (6 × 3) first integrals of motion. In general,
as E. Bruns [38] showed (see also the book [39]), the n-body problem with n ≥ 3, taking
into account the binary interaction between particles, admits only 10 first integrals and
is thus not integrable. It should be noted that although the three-body problem is non-
integrable, in some special cases, it is possible to calculate analytical solutions, the so-called
homographic solutions (see for example [40]). Nevertheless, it is worth noting a clear example
from classical mechanics that demonstrates the chaotic behavior of a system even in the
case of four coupled first-order ordinary differential equations derived from Hamilton’s
equations of motion.

As recently shown in [5], a representation developed on the basis of the formulation
of the three-body problem on a conformally Euclidean space associated with the poten-
tial energy surface of the system of bodies allows one to discover new hidden internal
symmetries of the dynamical system. Note that this makes it possible to carry out a more
complete integration in the general case of the non-integrable three-body problem and
reduce it to a 6th order system instead of the usual 8th order. In the local reference frame

{x̄} = (x1, x2, x3) ∈ M(3)
t , the dynamical system is described by the following set of

first-order stiff ordinary differential equations (ODEs):











ζ̇1 = a1
{

(ζ1)2 − (ζ2)2 − (ζ3)2 − Λ2}+ 2ζ1{a2ζ2 + a3ζ3}, ζ1 = ẋ1,

ζ̇2 = a2
{

(ζ2)2 − (ζ3)2 − (ζ1)2 − Λ2}+ 2ζ2{a3ζ3 + a1ζ1}, ζ2 = ẋ2,

ζ̇3 = a3
{

(ζ3)2 − (ζ1)2 − (ζ2)2 − Λ2}+ 2ζ3{a1ζ1 + a2ζ2}, ζ3 = ẋ3,

(1)

where M(3)
t is a bundle of the three-dimensional manifold M(3), which is defined by the

metric tensor gij({x̄}) = g({x̄})δij, i, j = 1, 2, 3. In the system of Equation (1) ζ̇ i = dζ i/ds
denotes the derivative with respect to the chronolizing parameter “s”, which is determined
using the sum of integrals in the local coordinate system {x̄}:

s({x̄}) =
3

∑
i=1

∫ √

g({x̄})dxi. (2)

In addition, the following notations are made:

ai({x̄}) = −∂ ln
√

g({x̄})
∂xi

, Λ({x̄}) = J

g({x̄}) , g({x̄}) = [E − U({x̄})]
U0

> 0. (3)

where J = const denotes the total angular momentum of three-body system, E = const
and U({x̄}) are the total energy and potential energy of the system of bodies, respectively,
U0 = max U({x̄}) = const, and δij is the Kronecker delta.
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It is easy to check that the system of Equation (1) is invariant under the change s → −s,
i.e., is reversible with respect to the chronolizing parameter or the internal time in the local
reference frame s({x̄}). Note that s({x̄}) being a function of local coordinates and during
the evolution of a dynamical system represents a continuous and one-dimensional curve,
which in all features is equivalent to the definition of the usual time, i.e., s({x̄}) ≡ t.

For a comprehensive and detailed study of the properties of the internal time s({ρ̄}),
we need to move to the global or Jacobian coordinate system {ρ̄} = (ρ1, ρ2, ρ3) ∈ R3, where
R3 is a three-dimensional Euclidean space (see Figure 2). Recall that only in this system,
one can reproduce the explicit form of the metric tensor element g({x̄}) = g({ρ̄}) and
get the opportunity to study the structure and the nature of the chronological parameter
s({ρ̄}).

Figure 2. In the Cartesian coordinate system (X, Y, Z), the Jacobi coordinates {ρ̄} = (ρ1, ρ2, ρ3) are
shown, where the colored circles indicate bodies 1, 2 and 3, and the colorless circle respectively
indicates the center of mass of bodies 2 and 3.

A completely different picture emerges when considering the chronologizing parame-
ter in the global coordinate system s({ρ̄}). During the evolution of the dynamical system,
this parameter, as a continuous curve, will fill the space R3, in some sense similar to the
three-dimensional Hilbert curve [41]. Moreover, its two-dimensional projections can have
non-trivial topological features characterized by Betti number [42], and metric properties
will be described by invariant measures and fractal dimensions [43]. In what follows,
the chronologizing parameter in the global system s({ρ̄}), which is diametrically different
from the usual time “t”, will be called the internal time of the three-body dynamical system.

As shown, transformations between local {x̄} and global {ρ̄} coordinate systems can
be represented only in differential form [5]:











dρ1 = α1dx1 + α2dx2 + α3dx3,

dρ2 = β1dx1 + β2dx2 + β3dx3,

dρ3 = λ1dx1 + λ2dx2 + λ3dx3,

(4)

where the coefficients (α1, · · ·, β1, · · ·, λ3) are solutions of an underdetermined system of
algebraic equations of the following form:

α2
1 + β2

1 + λ2
1 = g({ρ̄}), α1α2 + β1β2 + λ1λ2 = 0,

α2
2 + β2

2 + λ2
2 = g({ρ̄}), α1α3 + β1β3 + λ1λ3 = 0,

α2
3 + β2

3 + λ2
3 = g({ρ̄}), α2α3 + β2β3 + λ2λ3 = 0. (5)

It is not difficult to verify that the system of Equation (5), which consists of 6 Equations
and 9 unknowns, can generate three-dimensional oriented smooth manifolds R(3), which
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are immersed in nine-dimensional Euclidean space R9. The number of such manifolds can
be easily calculated using the well-known combinatorial formula Cm

n = n!
m!(n−m)! , which

determines the number of n-permutations of the set m. Considering that n = 9 denotes
the number of unknowns, and m = 6, respectively, the number of equations, then the
generated manifolds will be 84. As the analysis of the symmetry properties of the system
of Equations shows (5), only four families of manifolds are possible.

For definiteness, below we will consider the first two families, each of which consists
of six manifolds; A = (A1,A2,A3,A4,A5,A6) and B = (B1,B2,B3,B4,B5,B6), where
each family member is determined by three independent parameters, such as:

A =
{

(α1, α2, α3), (β1, β2, β3), (λ1, λ2, λ3), (α1, β1, λ1), (α2, β2, λ2), (α3, β3, λ3)
}

,

and respectively for the family:

B =
{

(α1, β2, λ3), (α1, β3, λ2), (α2, β1, λ3), (α2, β3, λ1), (α3, β1, λ2), (α3, β2, λ1)
}

.

Finally, we can combine each family of manifolds as a direct sum of sets:

R(3)
A

∼=
6
⋃

i=1

R(3)
Ai

, R(3)
B

∼=
6
⋃

i=1

R(3)
Bi

.

In a similar way, we can construct different families of manifolds.
It is important to note that each manifold of a given family is also surrounded by

two additional manifolds, the direct products of which form a nine-dimensional manifold.

In particular, the manifold R(3)
A1

= R(3)
(α1,α2,α3)

is surrounded by two additional manifolds

R(3)
(β1,λ2,β3)

and R(3)
(λ1,β2,λ3)

, which can be combined using the direct product R(9)
A1

= R(3)
A1

×
R(3)

(β1,λ2,β3)
× R(3)

(λ1,β2,λ3)
. Below we will call R(9)

A1
a complete member of the A family.

As for the complete member of the family B, it can be represented in the form R(9)
B1

=

R(3)
B1

×R(3)
(α2,β3,λ1)

×R(3)
(α3,β1,λ2)

, where R(3)
B1

= R(3)
(α1,β2,λ3)

.
Now let us move on to constructing the form of internal time in the global coordinate

system s({ρ̄}). Using the inverse transformation, we can express increments in local
coordinates in terms of increments in global Jacobi coordinates:











dx1 = ᾰ1dρ1 + ᾰ2dρ2 + ᾰ3dρ3,

dx2 = β̆1dρ1 + β̆2dρ2 + β̆3dρ3,

dx3 = λ̆1dρ1 + λ̆2dρ2 + λ̆3dρ3,

(6)

where the coefficients (ᾰ1, · · ·, ᾰ3, · · ·, λ̆3) are determined by the following formulas:

ᾰ1 = (β2λ3 − β3λ2)A, ᾰ2 = (β3λ1 − β1λ3)A, ᾰ3 = (β1λ2 − β2λ1)A,

β̆1 = (α3λ2 − α2λ3)A, β̆2 = (α1λ3 − α3λ1)A, β̆3 = (α2λ1 − α1λ2)A,

λ̆1 = (α2β3 − α3β2)A, λ̆2 = (α3β1 − α1β3)A, λ̆3 = (α1β2 − α2β1)A, (7)

in addition, A = 1/[α1β2λ3 + α2β3λ1 + α3β1λ2 − α1β3λ2 − α2β1λ3 − α3β2λ1] is a determi-
nant. Now, taking into account the Equation (2), for internal time we get the following
expression:

s({ρ̄}) = s0 + α
∫ ρ1

ρ0
1

√

ḡ({ρ̄})dρ1 + β
∫ ρ2

ρ0
2

√

ḡ({ρ̄})dρ2 + λ
∫ ρ3

ρ0
3

√

ḡ({ρ̄})dρ3, (8)

where the following notations are made; α = ∑
3
i=1 ᾰi, β = ∑

3
i=1 β̆i and λ = ∑

3
i=1 λ̆i.
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Note that the internal time s({ρ̄}) in the form of a curve in three-dimensional space
appears in the asymptotic subspace (in), then goes into one of the asymptotic subspace
(out), while it is wound in a complicated way around of the selected curve si, i = 1, 3
connecting two asymptotic subspaces (see Figure 3).

Figure 3. The set of smooth curves s = (s1, s2, s3, s4) connecting the asymptotic subspace (in),
in which the three-body system 1 + (23) is grouped, with other asymptotic subspaces (out), where
the particles are grouped as follows: 1+ (23), (12) + 3, (13) + 2, and 1+ 2+ 3. The distance between
particles “i” and “j” in the Cartesian coordinate system is given by the expression rij({ρ̄}) (i, j =

1, 2, 3, i ̸= j), and r0
ij - the average distance between particles in the corresponding pairs. During the

scattering process, the three-dimensional internal time s({ρ̄}), which has an arrow, selects a specific
asymptotic subspace for transition, which in some conditions may be random.

Thus, we have formulated all the necessary mathematical formulas for studying
the general three-body problem (see diagram in Figure 1) by calculating the trajectory

of the reduced mass of three bodies µ0 =
√

m1m2m3
m1+m2+m3

, where m1, m2 and m3, in three-

dimensional configuration space R3.

3. Mathematical Algorithm for Numerical Simulation of the Three-Body Problem

3.1. Model of Pair Interaction Potentials Between Particles

As we see, the system of ordinary differential Equation (1) can be simulated numer-
ically after specifying the interaction potential between bodies in the global coordinate
system. In particular, for the sake of certainty, we will assume that the interaction between
two arbitrary pairs of bodies is determined by the Morse potential, which is characteristic
of short-range intermolecular forces:

U(rij) = U
(0)
ij

[

1 − exp
{

−bij(rij − r0
ij)
}]2, i, j = 1, 2, 3, i ̸= j, (9)

where rij is the distance between particles “i” and “j”, the term U
(0)
ij = const denotes the

depth of the interaction potential, bij > 0 is a certain constant specific to a particular pair
of interacting particles and r0

ij is the equilibrium communication distance. Recall that the
Morse potential is often used in molecular physics because it well describes the interaction
of two atoms in a bound state within a diatomic molecule.
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Note that these potentials must be written in Jacobi coordinate system, which can be
done using the following coordinate transformations:

r12 =
√

ρ2
1 + (µ−ρ2)2 − 2µ−ρ1ρ2 cos ϑ,

r13 =
√

ρ2
1 + (µ+ρ2)2 + 2µ+ρ1ρ2 cos ϑ, r23 = ρ2, (10)

where µ− = m3/(m2 + m3) and µ+ = m2/(m2 + m3), in addition, m2 and m3 are the
particle masses.

To carry out specific calculations it is necessary to determine the full potential of
interaction between particles g({ρ̄}) = [E − U12({ρ̄)− U13({ρ̄)− U23({ρ̄)]. Using the data
Table 1, it is possible to calculate the energy surface of an elementary process, i.e., construct
the metric function g({ρ̄}) (see Figure 4), which is a necessary condition for the complete
formulation of a mathematical problem and its preparation for numerical modeling.

Table 1. Parameters for determining the total interaction potential of a model three-body system.

U
(0)
12 = U

(0)
13 = U

(0)
23

b12 = b13 = b23 r0
12 = r0

13 = r0
23 E

1 0.25 2.0 2.5
1 0.25 2.0 3.5

Figure 4. Energy surface of interaction particles for three different scattering angles. Recall that ρ3 in
Jacobi coordinates determines the scattering angle, i.e., ρ3 = ϑ (see Figure 2).

Recall that the energy surface plots with data from the second row of Table 1 are not
given here, since they are similar to the previous one and only are slightly shifted upward
due to the large energy value.

3.2. Underdetermined Algebraic Equations and 3D-Manifolds Generated by Them

As we have seen, a system of underdetermined algebraic Equation (5) plays a key
role in transformations between local and global coordinate systems. It is convenient to
study this system by writing it in a dimensionless form, in which all the geometric and
topological properties of the manifolds generated by it are preserved:

ᾱ2
1 + β̄2

1 + λ̄2
1 = 1, ᾱ1ᾱ2 + β̄1 β̄2 + λ̄1λ̄2 = 0,

ᾱ2
2 + β̄2

2 + λ̄2
2 = 1, ᾱ1ᾱ3 + β̄1 β̄3 + λ̄1λ̄3 = 0,

ᾱ2
3 + β̄2

3 + λ̄2
3 = 1, ᾱ2ᾱ3 + β̄2 β̄3 + λ̄2λ̄3 = 0, (11)

where ᾱi = ᾱi/g({x̄}), β̄i = β̄i/g({x̄}) and λ̄i = λ̄i/g({x̄}), where i = 1, 2, 3.
First, the values for the selected triple of parameters are set. By arbitrarily setting

their values from the interval (−1,+1), we can determine the values of the remaining six
parameters. Solutions to each triple of parameters generate three-dimensional manifolds,
the number of which, as indicated above, is equal to 84. Note that we do not consider
possible complex solutions to system (11). Depending on the initial triples of parameters
specified, the methods for finding the values of the remaining parameters differ significantly
from each other. Let us briefly consider the case of specifying (ᾱ1, ᾱ2, ᾱ3), which requires
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an iterative approach. Note that the calculation algorithm itself belongs to the family of
gradient methods—the method of conjugate directions.

After a random selection of parameter values (ᾱ1, ᾱ2, ᾱ3), the system of Equation (11) is
completely determined, i.e., becomes an algebraic system of six Equations with six unknowns
(β̄1, β̄2, β̄3; λ̄1, λ̄2, λ̄3) that can be solved exactly. In particular, from the Equation (11) one
can obtain:

g1 = β̄2
1 + λ̄2

1 − (1 − ᾱ2
1) = β̄2

1 + λ̄2
1 − C1, C1 = 1 − ᾱ2

1,

g2 = β̄2
2 + λ̄2

2 − (1 − ᾱ2
2) = β̄2

2 + λ̄2
2 − C2, C2 = 1 − ᾱ2

2,

g3 = β̄2
3 + λ̄2

3 − (1 − ᾱ2
3) = β̄2

3 + λ̄2
3 − C3, C3 = 1 − ᾱ2

3,

g4 = ᾱ1ᾱ2 + β̄1 β̄2 + λ̄1λ̄2 = β̄1 β̄2 + λ̄1λ̄2 + C4, C4 = ᾱ1ᾱ2,

g5 = ᾱ1ᾱ3 + β̄1 β̄3 + λ̄1λ̄3 = β̄1 β̄3 + λ̄1λ̄3 + C5, C5 = ᾱ1ᾱ3,

g6 = ᾱ2ᾱ3 + β̄2 β̄3 + λ̄2λ̄3 = β̄2 β̄3 + λ̄2λ̄3 + C6, C6 = ᾱ2ᾱ3. (12)

For further research, we introduce new notations:

g =











g1
g2
...

g6











, x =











β̄1
β̄2
...

λ̄3











.

We set the objective function K(x):

K(x) =
6

∑
i=1

[gi(x)]
2 =

(

g · g
)

. (13)

Let us define the gradient of the function K(x):

∇K(x) =

















∂K
∂x1

∂K
∂x2
...

∂K
∂x6

















= 2

















2g1 β̄1 + g4 β̄2 + g5 β̄3
2g2 β̄2 + g4 β̄1 + g6 β̄3
2g3 β̄3 + g5 β̄1 + g6 β̄2
2g1λ̄1 + g4λ̄2 + g5λ̄3
2g2λ̄2 + g4λ̄1 + g6λ̄3
2g3λ̄3 + g5λ̄1 + g6λ̄2

















= 2W ′K(x),

where W ′ is the transposed Jacobian matrix W:

W =

















2β̄1 0 0 2λ̄1 0 0
0 2β̄2 0 0 2λ̄2 0
0 0 2β̄3 0 0 2λ̄3
β̄2 β̄1 0 λ̄2 λ̄1 0
β̄3 0 β̄1 λ̄3 0 λ̄1
0 β̄3 β̄2 0 λ̄3 λ̄2

















, W ′ =

















2β̄1 0 0 β̄2 β̄3 0
0 2β̄2 0 β̄1 0 β̄3
0 0 2β̄3 0 β̄1 β̄2

2λ̄1 0 0 λ̄2 λ̄3 0
0 2λ̄2 0 λ̄1 0 λ̄3
0 0 2λ̄3 0 λ̄1 λ̄2

















.

In iterative methods, the main difficulty usually lies in the correct choice of the initial
approximation. For the general case, we do not have a clearly defined criterion for setting
such initial values. Therefore, we set the initial approximation x(0) as follows:

x(0) =













β̄
(0)
1

β̄
(0)
2
...

λ̄
(0)
3













,

β̄
(0)
1 = ±

√

(1 − ᾱ2
1)/2, λ̄

(0)
1 = ±β̄

(0)
1 ,

β̄
(0)
2 = ±

√

(1 − ᾱ2
2)/2, λ̄

(0)
2 = ±β̄

(0)
2 ,

β̄
(0)
3 = ±

√

(1 − ᾱ2
3)/2, λ̄

(0)
3 = ±β̄

(0)
3 .

(14)
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The signs in the initial approximation x(0) of system (14) are set randomly, but so that
for the first three approximations and the next three values the signs are not the same. This
is due to the form of the last three equations of system (12).

Finally, we can set the calculation algorithm:

x(n+1) = x(n) + δnp(n), p(n) = −∇K(x(n)) + γn−1p(n−1), n = 1, 2, ... (15)

where p(n) is the direction of descent, δn is the step of descent and the coefficient γn, which
is defined below in step 4.

1. We set the initial approximation p(0):

p(0) = −∇K(x(0)), n = 0,

2. Determine the next value x(1):

x(1) = x(0) + δ0p(0).

The value of the descent step δn (n ⩾ 0) is searched numerically until the condition
is met:

K(x(n) + δnp(n)) < K(x(n)), ∇K(x(n)) = 2W ′(x(n))g(x(n)).

3. We calculate the term p(1):

p(1) = −∇K(x(1)) + γ0p(0).

4. The coefficients γn−1 are calculated using the formula:

γn−1 =

[(

∇K(x(n)),∇K(x(n))
)

−∇K(x(n−1))
]

|∇K(x(n−1))|2
, n ⩾ 1,

5. For subsequent n we repeat steps 2-4 until the condition |∇K(x(n))| ⩽ ε1, where ε1 is
the specified accuracy.

After obtaining a chain of approximations x(n) upon reaching the end condition of
iterations 5, we refine the initial initial data (ᾱ1, ᾱ2, ᾱ3). Note that the following notations
are used above:

|y|2 =
6

∑
i=1

y2
i , (a, b) = ∑ aibi.

The refined initial approximation is obtained from the correction of the initial data
parameters (ᾱ1, ᾱ2, ᾱ3) according to the original scheme (14). This is justified by the fact
that initially the value of the triple of parameters is chosen randomly.

Then we carry out the next stage of iterations using the described method 1–5. The end
of such an outer iteration occurs when the condition is met; |∇K(x(n))| ⩽ ε2.

In order to avoid excessive iteration steps or looping, an additional limitation on the
number of iterations is introduced. Recall that during the calculations the values were
specified ε1 = 10−9 and ε2 = 10−18. Such values make it possible to determine the roots of
the algebraic system (11) with an accuracy at which gi ≈ 10−10, i = 4, 5, 6 and gi ≈ 10−16,
i = 1, 2, 3 for the system (12).

The solution of Equations system (11) for the original triplets (β̄1, β̄2, β̄3) and (λ̄1, λ̄2, λ̄3)
is similar to the method described above. To illustrate the calculations, we present here
two complete members of the families of manifolds A and B (see Figures 4 and 5), on which
we will further study the dynamics of the classical three-body system.
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Figure 5. A manifold of the family A, which has the form R(3)
(β1,λ2,β3)

(sphere) and two additional

manifolds surrounding it from left to right R(3)
(β1,λ2,β3)

and R(3)
(λ1,β2,λ3)

. Combining these manifolds
by a direct product, we obtain a complete member of the family A, which can be represented in the

following form R(9)
A1

= R(3)
(β1,λ2,β3)

×R(3)
(β1,λ2,β3)

×R(3)
(λ1,β2,λ3)

.

3.3. Mathematical Algorithm for Modeling a Trajectory Problem

Let us rewrite the system of differential Equation (1) in a local coordinate system.
In general, it can be represented as follows:

dY

dt
= Φ(t; u, v, w, x1, x2, x3), (16)

where u = ẋ1, v = ẋ2 and w = ẋ3, in addition, the following notations are introduced:

Y =

















u
v
w

x1

x2

x3

















, Φ =

















Φ1
Φ2
Φ3
Φ4
Φ5
Φ6

















=

















a1(u
2 − v2 − w2 − Λ2) + 2u(a2v + a3w)

a2(v
2 − w2 − u2 − Λ2) + 2v(a3w + a1u)

a3(w
2 − u2 − v2 − Λ2) + 2w(a1u + a2v)

u
v
w

















. (17)

For the system of differential Equation (16), the Cauchy problem with initial conditions
is posed:

Y(t0) = Y0. (18)

According to the Runge–Kutta method, the approximate value of Yi+1 is calculated
using the formulas with a step ∆t:

Yi+1 = Yi + ∆Yi, i = 0, 1, 2, ... (19)

where

∆Yi =
1
6

[

k
(j)
1 + 2k

(j)
2 + 2k

(j)
3 + k

(j)
4

]

, j = 1, 6. (20)

In addition, the following notations are made in (19):

k
(j)
1 = ∆t · Φ

j(ti, ui, vi, wi, x1
i , x2

i , x3
i ),

k
(j)
2 = ∆t · Φ

j
[

ti +
∆t

2
, ui +

k
(1)
1
2

, vi +
k
(2)
1
2

, wi +
k
(3)
1
2

, x1
i +

k
(4)
1
2

, x2
i +

k
(5)
1
2

, x3
i +

k
(6)
1
2

]

,

k
(j)
3 = ∆t · Φ

j
[

ti +
∆t

2
, ui +

k
(1)
2
2

, vi +
k
(2)
2
2

, wi +
k
(3)
2
2

, x1
i +

k
(4)
2
2

, x2
i +

k
(5)
2
2

, x3
i +

k
(6)
2
2

]

,

k
(j)
4 = ∆t · Φ

j
[

ti + ∆t, ui + k
(1)
3 , vi + k

(2)
3 , wi + k

(3)
3 , x1

i + k
(4)
3 , x2

i + k
(5)
3 , x3

i + k
(6)
3

]

. (21)

Note that during calculations the calculation step remains constant, equal to ∆t = 10−4.
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Solving the system of Equations (16) and (17) we obtain the trajectory of the center
of mass of the three-body system in the local coordinate system. For the final presen-
tation of the results, they must be presented in the system of Jacobi variables (global
variables). Using differential representations for global coordinates (4), we can write the
following expressions:

ρ1 = ρ01 +
∫ x1

x1
0

α1dx +
∫ x2

x2
0

α2dy +
∫ x3

x3
0

α3dz = ρ01 + α1∆x1 + α2∆x2 + α3∆x3,

ρ2 = ρ02 +
∫ x1

x1
0

β1dx +
∫ x2

x2
0

β2dy +
∫ x3

x3
0

β3dz = ρ02 + β1∆x1 + β2∆x2 + β3∆x3,

ρ3 = ρ03 +
∫ x1

x1
0

λ1dx +
∫ x2

x2
0

λ2dy +
∫ x3

x3
0

λ3dz = ρ03 + λ1∆x1 + λ2∆x2 + λ3∆x3, (22)

where ∆x1 = x1 − x1
0, ∆x2 = x2 − x2

0 and ∆x3 = x3 − x3
0, in addition, {x̄0} = (x1

0, x2
0, x3

0)
and {ρ̄0} = (ρ01, ρ02, ρ03) denote the initial coordinate values in the local and global
coordinate systems, respectively.

In the same way, we can define equations for velocities in global coordinate system
using increments of velocities in local coordinates:











ρ̇1 = ρ̇01 + α1∆u + α2∆v + α3∆w,

ρ̇2 = ρ̇02 + β1∆u + β2∆v + β3∆w,

ρ̇3 = ρ̇03 + λ1∆u + λ2∆v + λ3∆w,

where ρ̇01, ρ̇02 and ρ̇03 denote the components of the initial velocity of the center of mass of
a three-body system in global coordinates.

The initial value of the coordinate of the phase point in the local system {x̄0} =
(x1

0, x2
0, x3

3) at moment s = 0 must correspond to the initial value {ρ̄0} = (ρ01, ρ02, ρ03) at
moment t = 0. Due to the specifics of calculating such evolutionary problems, the initial
values {x̄} and { ˙̄x} can be taken as the values of the coordinates and velocity of the point
of the previous step of the system calculation at the moment t = t0 + ∆t, where ∆t is the
time step for the local coordinate system, t0 is the origin of the count at this step.

For definiteness, we will assume that the three bodies have the same masses and at
the moment t = 0 form an equilateral triangle in the Cartesian coordinate system. In this
case, the initial values of the Jacobi coordinates will be as follows:

ρ1|t=0 = ρ01 =

√
3

2
, ρ2|t=0 = ρ02 = 1, ρ3|t=0 = ρ03 =

π

2
. (23)

It is very important now to synchronize the initial coordinate values in the Jacobi

system {ρ̄} ∈ R(3) and in the local coordinate system {x̄} ∈ R(3)
F , where F = (A1; B1)

describes two families of manifolds. Using Equations (6) and (7), we can write the fol-
lowing transformations for the position and velocity of the reduced mass µ0 in the local
coordinate system:

x1|t=0 = x1
0 = ᾰ1ρ01 + ᾰ2ρ02 + ᾰ3ρ03, ẋ1|t=0 = u̇0 = ᾰ1ρ̇01 + ᾰ2ρ̇02 + ᾰ3ρ̇03,

x2|t=0 = x2
0 = β̆1ρ01 + β̆2ρ02 + β̆3ρ03, ẋ2|t=0 = v̇0 = β̆1ρ̇01 + β̆2ρ̇02 + β̆3ρ̇03,

x3|t=0 = x3
0 = λ̆1ρ01 + λ̆2ρ02 + λ̆3ρ03, ẋ3|t=0 = ẇ0 = λ̆1ρ̇01 + λ̆2ρ̇02 + λ̆3ρ̇03. (24)

Thus, now we have all the tools to organize the numerical integration of the trajectory
problem in the global Jacobi coordinate system.
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4. Geodesic Trajectories Flow in the Phase Space

4.1. Lyapunov Exponent for Geodesic Trajectories Flow

As the analysis shows, a multichannel process (see Figure 1) in a three-body system is
not only irreversible in the general case, but can also exhibit random behavior during its
evolution. To study the nature of motion in a three-particle dynamical system, one can, like
the Lyapunov exponent [44], introduce a parameter showing the degree of divergence of
close geodesic trajectories. In particular, the average growth rate of the distance between
neighboring trajectories of the center of mass of bodies system is determined by the leading
Lyapunov exponent, which for a long (but not too long) time t can be estimated as:

ϵ(t) ≃ 1
t
· ln

∥

∥

∥

∆s(t)

∆s(0)

∥

∥

∥, (25)

where s ≡ t is one-dimensional and homogeneous time, and ∆s(t) = s(t)− s
′(t) denotes

the difference of two close internal times or geodetic trajectories, in addition, ∆s(0) ≪ 1 is
the distance between two trajectories at the initial moment t = 0. In what follows, ϵ(t) will
be called the leading time-dependent Lyapunov exponent. Note that the time-dependent
Lyapunov exponent, as we will see below, will play a key role in studying the properties of
the geodesic trajectories flow in phase space.

Definition 1. Let us call the standard leading Lyapunov exponent the parameter characterizing the

asymptotic behavior of the sequence
∥

∥

∆s(t)
∆s(0)

∥

∥:

ϵ := lim
t→∞

[

1
t
· ln

∥

∥

∥

∆s(t)

∆s(0)

∥

∥

∥

]

, t ̸= 0, (26)

where a := b means that a is assumed to be equal to b and the constant ϵ = const, which can be
either positive or negative and equal to 0.

4.2. Equation of Motion of Geodesic Trajectories Flow in Phase Space

Since the system of Equations (1) is rigid and, moreover, nonlinear, it is very difficult to
expect that to solve it it will always be possible to create a more or less reliable mathematical
algorithm that will ensure the stability of numerical calculations. In the case when the time-
dependent Lyapunov exponent is positive, that is ϵ(t) > 0 (see (25)), the system experiences
chaotic motion, so it makes sense not to study the problem of single geodesic trajectories,
but to consider the evolution of the flow of geodesic trajectories on the corresponding
three-dimensional manifolds.

In other words, it makes sense to consider a trajectory problem with a random external
influence, which for the three-body problem can be written as a system of stochastic
differential Equations of the Langevin type (see also Equations of motion in conformal
Euclidean space (1)):

żµ = Aµ({x̄}, { ˙̄x}) + f µ(t), µ = 1, 6, (27)

where the following notations are made for the independent variables:

{z} =
(

z1 = ẋ1; z2 = ẋ2; z3 = ẋ3; z4 = x1; z5 = x2; z6 = x3)

and for the terms Aµ({x̄}, { ˙̄x}) included in the Equation (27), respectively, the follow-
ing notations:











A1 = a1
{

(ẋ1)2 − (ẋ2)2 − (ẋ3)2 − Λ2}+ 2ẋ1{a2 ẋ2 + a3 ẋ3}, A4 = x1,

A2 = a2
{

(ẋ2)2 − (ẋ3)2 − (ẋ1)2 − Λ2}+ 2ẋ2{a3 ẋ3 + a1 ẋ1}, A5 = x2,

A3 = a3
{

(ẋ3)2 − (ẋ1)2 − (ẋ2)2 − Λ2}+ 2ẋ3{a1 ẋ1 + a2 ẋ2}, A6 = x3.

(28)
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For definiteness, below we will use a random Gauss-Markovian process as the forces
f µ(t):

⟨ f µ(t)⟩ = 0, ⟨ f µ(t) f µ(t′)⟩ = ϵ(t) δ(t − t′), (29)

where ϵ(t) > 0 is the degree of the random process, which in the problem under considera-
tion is a time-dependent Lyapunov exponent (see Equation (25)).

Thus, in the deterministic three-body problem, randomities have been identified that
arise due to the influence of the nonlinearity of the Equations (1)) and the underdetermina-
tion of the system of algebraic Equations (5), providing transitions between the local and
global coordinate systems. To carry out analytical studies, we assumed that the emerging
randomness f µ(t) obeys the Gauss-Markovian process and are generated from a single
source. Recall that this approach is in some sense equivalent to the statistical approach
implemented in [29], where the exact but unknown evolution of the scalar curvature is
replaced by a statistical approximation.

To exclude the occurrence of other unnatural random influences on the dynamical
system, the Equations (27)–(29) must be defined in a local coordinate system along regular

curves on the manifolds R(9)
A1

and R(9)
B1

, respectively.

Theorem 1. If we assume that geodesic trajectories in phase space are described by the Equations (27)
and (28), and random forces satisfy the correlation conditions (29), then the geodesic flow in phase
space will satisfy the following Fokker-Planck type equation:

∂P
∂t

=
6

∑
µ=1

{

ϵ(t)
∂2

∂z2
µ
+

∂

∂zµ
Aµ({z})

}

P . (30)

Proof. Let us consider the following functional that describes the evolution of the condi-
tional probability distribution of a geodesic flow in phase space:

P({z}, t; {z′}, t′) =
〈 6

∏
µ=1

δ[zµ(t)− zµ(t′)]
〉

. (31)

Differentiating expression (31) with respect to the usual time “t”, taking into account
Equations (27) and (28), we obtain:

∂tP({z}, t; {z′}, t′) = −
6

∑
ν=1

∂zν

〈

zν
t

6

∏
µ=1

δ[zµ(t)− zµ(t′)]
〉

=

6

∑
ν=1

∂zν

{

A({z}, {ż})P({z}, t; {z′}, t′) +
〈

f (t)δ[zµ(t)− zµ(t′)]
}

, (32)

where

A({z}, {ż}) =











A1({z}, {ż}),
· · · ,

A6({z}, {ż}).
(33)

Taking into account that the random process f (t) satisfies the correlation relations (29),
we can calculate the second term in expression (32). In particular, using Wick’s theorem for
an arbitrary functional N({z}, f (t)), one can obtain:

〈

f (t)N({z}, t; {z′}, t′)
〉

= 2
〈

δN

δ f (t)

〉

= 2
∂

∂zµ

〈

δzµ(t)

δ f (t)
δ(zµ(t)− zµ(t′)

〉

. (34)
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Recall that {z} = (z1, · · ·, z6) denotes a set of stochastic functions whose variational
derivatives with respect to the independent random force f (t) are defined as follows:

〈

δzµ(t)

δ f (t)

〉

= ϵ(t) · sgn(t − t′) + O(t − t′). (35)

After carrying out the regularization procedure in the sense of the Fourier expansion,
we find its value at the time:

t = t′ : sgn(0) =
1
2

. (36)

Taking into account the Equalities in (32)–(36) for the conditional probability, we obtain
the Fokker–Planck Equation of the form (30).

Note that the equation for the evolution of the probability density of the flow of
geodesic trajectories (30) in phase space is given in local coordinates {x̄}, in which the
chronolization parameter “t” varies as ordinary, one-dimensional and homogeneous time
along the numerical axis from the past to the future through the present. Using coordinate
transformations (4), one can specify the interaction potential between particles in global
Jacobi coordinates {ρ̄} and calculate the evolution of the flow of geodesic trajectories in
the phase space in local coordinates, including when a dynamical system passes from
one asymptotic subspace to another. Finally, we note that using direct (4) and inverse (6)
coordinate transformations, one can calculate the evolution of the probability density
distribution in global, Jacobi coordinates, i.e., find P̆({ρ̄}, { ˙̄ρ}, t).

5. Entropy of the Flow of Geodesic Trajectories and Complexity Criterion

Shannon entropy is an effective dynamical indicator that provides a direct measure
of the rate of diffusion of geodesic flow, hence the time scale of instabilities encountered
when dealing with chaos. Note that this allows us to more reliably explain the nature of a
nonlinear dynamical system characterized by complexity and nonequilibrium.

Definition 2. Let us call the probability density of the geodesic flow in phase space the expression:

P0({z}, t) = P({z}, t; {z′}, t′)
∣

∣

{z′}=0, t′=0, (37)

which is normalized to unity.

Definition 3. Let us call the equilibrium probability distribution of geodesic flow in phase space
the expression:

P̄0({z}, t) = P({z}, t; {z′}, t′)
∣

∣

[ϵ=ϵ0, {z′}=0, t′=0], (38)

where ϵ0 =
∫ T

0 ϵ(t)dt
/

T, in addition, T denotes some finite time interval.

By analogy with Shannon entropy [45], which characterizes the average rate of infor-
mation creation by a stochastic data source, for a continuous flow of geodesic trajectories of
a low-dimensional dynamical system, entropy can be introduced in the form:

S(t) = −
∫

R6
P0({z}, t) lnP0({z}, t)dz1· · ·dz6, (39)

where R6 ∋ z1, z6 denotes the phase space.

The Three-Body Problem as a Low-Dimensional System with Complexity

The complexity of systems is usually associated with the difficulty of understanding
and describing them. However, after Kolmogorov formulated the concept of computational
complexity [46], it became clear that the complexity of a system could be associated with
information [47]. Subsequently, complexity also became associated with open systems
and with the unpredictable behavior of highly nonlinear systems [48,49]. Recently a new
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meaning has emerged regarding systems theory [50], which states that complexity is half
the way to “equilibrium” and “disequilibrium” [51]. As we noted above, in a three-particle
system, under certain conditions, non-integrability and chaos can arise. In this case, it is
convenient to describe the dynamical system in phase space using probabilistic methods
(see (30)).

Since a three-particle dynamical system under certain conditions can have probabilistic
properties, then for it, by analogy with a statistical ensemble, a criterion or measure of
complexity can be introduced:

C(t) = S(t)K(t), (40)

where S(t) is “information”, which is defined by the Equation (39) and a shift from
the quilibrium probability distribution (38) or “disequilibrium" K(t), which is defined
as follows:

K1/2(t) =
∣

∣

∣

∫

R6
∆P0({z}, t)dz1· · ·dz6

∣

∣

∣, (41)

where ∆P0({z}, t) = P0({z}, t)− P̄0({z}, t).
Fundamentally important information about the behavior of the quantum three-body

problem can be obtained by integrating the probability distribution of the geodesic flow
over phase space:

I0(t) =
∫

R6
P̆0({z}, t)dz1· · ·dz6, (42)

where P̆0({z}, t) is the probability distribution normalized to unity at the initial time t = 0.
Recall that the integral (42) determines the average volume of the phase space subject

to classical chaos. In the case, when the classical region of chaos in the phase space exceeds
the size of the quantum cell h̄n (where 2n is the dimension of the phase space), which in this
case is equivalent to the inequality I0(t) > h̄3, then quantum averaging does not eliminate
chaos in the quantum system (see [52]). Moreover, in this case, the main object of quantum
mechanics—the wave function of the system—becomes chaotic. It is obvious that in this
case the quantization of the classical dynamical system must be carried out differently from
the standard approach [5].

In this case, for low-dimensional quantum chaotic systems, a criterion similar to the
Lyapunov exponent can be determined. In particular, for finite time intervals this exponent
can be determined by the following formula:

ϵq(t) ≃
1
t
· ln

∥

∥

∥

∥

δΨ(s)

δΨ(0)

∥

∥

∥

∥

, δΨ(s) =
∫

M(3)
∆Ψ(s)dz4dz5dz6, t ̸= 0, (43)

while in the limit of large times the exponent will tend to a finite limit:

ϵq := lim
t→∞

[

1
t
· ln

∥

∥

∥

∥

δΨ(s)

δΨ(0)

∥

∥

∥

∥

]

, t ̸= 0, (44)

where Ψ(s, {z̄}) is the wave function of a three-body system, and ∆Ψ(s) = [Ψ(s, {z̄})−
Ψ(s′, {z̄})] denotes the difference between two wave functions that were close at the initial
time s = 0 and {z̄} = (z4, z5, z6).

6. Calculation of the Internal Time of the Restricted Three-Body Problem
and Discussions

If we use the data from the first rows of Tables 1 and 2, and also consider the initial
configuration of the three bodies given in (23), then, obviously, the system of bodies will
be in a bound state throughout the entire time of movement since the binding energy
will be greater than the kinetic energy at finite distances (restricted three-body problem).
In particular, by calculating the internal time of a dynamical system on complete members
of the families of manifolds A1 and B1 (see Figures 5 and 6) using the algorithm given in
Section 5, we find their three-dimensional images (see Figure 7).
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Table 2. For the initial velocities { ˙̄ρ} and the moment of inertia of the three-body system J we use the
following values.

ρ̇1|t=0 = ρ̇01 ρ̇2|t=0 = ρ̇02 ρ̇3|t=0 = ρ̇03 J

0.01 0.01 0.10 0.30
0.30 0.50 0.40 0.60
1.00 0.80 0.60 0.80

Figure 6. A manifold of the family B, which has the form R(3)
(α1,β2,λ3)

(two three-dimensional pyramids

fastened together) and two additional manifolds surrounding it from left to right R(3)
(α2,α3,β3)

and

R(3)
(β1,λ1,λ2)

. Combining these manifolds by a direct product, we obtain a complete member of the

family B, which can be represented in the following form R(9)
B1

= R(3)
(α1,β2,λ3)

×R(3)
(α2,β3,λ1)

×R(3)
(α3,β1,λ2)

.

Figure 7. Internal time of three particles for three different initial data on two different complete
terms of the manifolds A1 and B1. On the plots, blue and red colors indicate internal times that were
calculated on the manifolds A1 and B1, respectively. Each point of internal time, if projected onto the
coordinate axes, determines the configuration of three particles at a given moment.

Analysis of the calculations shows that when using the above initial data, the resulting
trajectories indeed describe a restricted three-body problem, however, their nature is chaotic.
To make sure that the system’s motion is truly chaotic, Lyapunov exponents are calculated
for two trajectories whose initial data are close and differ by 10−2. Recall that geodesic
trajectories are calculated both on the manifold A1 and on B1, see Figures 8 and 9.
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Figure 8. On the left are plots of two internal times s1({ρ̄})-(red curve) and s2({ρ̄})-(blue curve),
which were obtained by calculating on the A1 manifold with initial conditions differing by 10−2.
On the right is a plot of the Lyapunov exponent versus time. As can be clearly seen from the plot,
the Lyapunov exponent very slowly tends to zero.

Figure 9. On the left are plots of two internal times s1({ρ̄})-(red curve) and s2({ρ̄})-(blue curve),
which were obtained by calculating on the B1 manifold with initial conditions differing by 10−2.
On the right is a plot of the Lyapunov exponent versus time.

Note that as the usual calculation time “t” increases, the internal time s({ρ̄}) in
all considered cases fills the global three-dimensional space like the three-dimensional
Hilbert curve [41], but with the only difference that now the filling occurs chaotically
and inhomogeneously.

It is known, the Lyapunov exponent is an important indicator of the behavior of a
dynamical system. In particular, when it is positive, i.e., ϵ(t) > 0, then we can talk about
the chaotic behavior of the system of particles. As calculations on both manifolds show
(see Figures 8 and 9), the Lyapunov exponent is positive. Moreover, for both cases under
consideration, depending on the usual time “t”, both Lyapunov exponents very slowly
tend to zero. Note that such a fairly stable behavior of the Lyapunov exponent is very
important for deriving Equations for the probabilistic distribution of the flow of geodesic
trajectories in phase space (30). The latter, in turn, makes it possible to construct the entropy
of a low-dimensional dynamical system (39), estimate the measure of its complexity (40)
and, finally, estimate the degree of its “disequilibrium” (41).

Important characteristics of the internal time of a restricted three-body problem are its
macroscopic and microscopic structures in three-dimensional space.

As calculations show, the internal time for the selected initial data continuously fills a
certain restricted three-dimensional region, which most likely indicates a certain degree
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of ergodicity of the dynamical system. In any case, to be sure of the ergodicity of a low-
dimensional dynamical system, it is necessary to carry out additional detailed calculations
and studies. It is very possible that for the system under consideration there will be areas
of initial data where the ergodicity of the system will be partially or completely violated,
for example, in the case of detection of periodic trajectories. However, all this is the subject
of new, more detailed research.

Now let us move on to the question, namely: does the random curve have a character-
istic feature on large scales?

In particular, as can be seen from the plots in Figures 8 and 9, internal time at different
scales is rather random self-similar three-dimensional curves, similar to stochastic fractals,
which are known to be non-deterministic [53]. In this regard, a natural question arises: is
there any universal characteristic of the three-dimensional random structure formed by
internal time?

As well-know, the Hausdorff–Besicovitch exponent is used to determine the dimension
of algebraic or geometric fractals, and therefore we cannot use it to calculate the dimension
of structures such as a three-dimensional random curve, which is internal time [54]. Recall
that random fractals use stochastic rules; for example, Lévy flight, self-avoidance walks,
Brownian motion trajectories and Brownian tree, etc. The structure we are studying is close
to the concept of the trajectory of Brownian motion, which is a random fractal. Taking this
into account, we propose a new criterion for determining the dimension of a stochastic
three-dimensional fractal structure.

Definition 4. Let us call the dimension of a stochastic three-dimensional fractal structure the
following expression:

D(t) = ln
{

1
t

∣

∣

∣

∫ t

0
s(t′)dt′

∣

∣

∣

}

/

ln t. (45)

Using the data from the third row of Table 2, we calculated the internal time on the
families of manifolds A1 and B1 (see Figure 10). As can be seen from the second figure,
internal time as a function of ordinary time is a monotonic function in both cases considered,
however, as numerical calculations show, non-monotonic dependencies are also possible,
in the case of other initial data. In the third figure on the left, the dimension of fractal
structures filling the three-dimensional space of two internal times is calculated. It is shown
that the dimension of both structures tends to its limiting asymptotic value D = 0.89 at
t ≥ 5 · 103.

Figure 10. On the left in the first figure, internal times s1({ρ̄})-(red curve) and s2({ρ̄})-(blue curve)
are shown that were calculated on the manifolds’ families A1 and B1 for the same initial data using
the third line of Table 2. The second plot from the left shows the internal time s(t) depending the
ordinary time “t” for the two marked families of manifolds. As can be seen from the graph, internal
time can be either positive or negative. The third figure from the left shows the dimensionality of the
structures formed by internal times in three-dimensional space.
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In the end, we note that, as preliminary calculations show, the asymptotic value of the
dimension of internal time’ structures in a number of areas of the initial data of the problem
can change and even significantly. We will not touch on these problems, since they require
more detailed study.

7. Conclusions

We recently consideried the general three-body problem, which, on the one hand, is
quite well studied in classical mechanics and mathematics, and on the other hand, is a
referance example of a low-dimensional dynamical system with complexity, a number of
aspects of which still remain unexplored [5]. Recall that the problem was formulated in
conformal Euclidean space, which is associated with the potential energy of the system of
bodies and reflects all its features. This formulation of a deterministic problem allows us to
identify new hidden symmetries of the internal motion of a dynamical system and reduce
its description in the general case to a sixth-order system instead of an eighth-order one (1),
even in the case where the interaction potential is three-particle.

It is shown that a new parameter for chronologizing events of a dynamical system—
internal time s({ρ̄}), which represents the trajectory of the effective mass of a system of
bodies µ0, in contrast to the usual time “t” has a number of unusual properties. In particular,
as calculations show, for the restricted three-body problem, the parameter s({ρ̄}) is in the
general case irreversible, multidimensional, inhomogeneous and oriented (has an arrow),
which allows the system to choose the preferred asymptotic scattering subspace during the
evolution process (see diagram in Figures 1 and 3). In other words, a classical dynamical
system consisting of three or more bodies always has a hidden, so-called internal time
s({ρ̄}) 7→ s(t), which formally has all the above properties.

The work examines in detail the mechanism of the occurrence of randomness in the
geodesic trajectory problem of a deterministic system. Recall that the transition to a global
reference system is due to the need to perform calculations, which is provided by an
underdetermined system of nonlinear algebraic Equation (5). Within the framework of the
representation of internal time, a Lyapunov exponent ϵ(t) (see (25)) dependent on ordinary
time is obtained, which determines the rate of divergence of close geodesic trajectories in
the flow. Assuming that the randomness in the system has a Gauss-Markovian character
with the fluctuation power ϵ(t), stochastic differential Equations of Langevin type are
written for the motion of the representing point with effective mass µ0. Using these SDEs,
a second-order partial differential Equation is obtained that describes the evolution of the
probability density of the flow of geodesic trajectories in phase space.

An important achievement of the work is that if we use the representation of internal
time to construct the corresponding quantum problem, then we can, without violating
the well-known Arnold-Berry theorem [52] in the limit ℏ → 0, move from the region of
quantum motion to the region of classical chaotic Poincaré motion, and thereby rigorously
solve the problem of quantum-classical matching. In other words, it is precisely this
formulation that in certain cases can lead to chaos in the behavior of the wave function
of a deterministic quantum system. Let us recall that the criterion for the emergence of
quantum chaos is the inequality I0(t) > ℏ3, where I0(t) is the volume of the classical chaos
region in the phase space.

To verify and test the developed representation using numerical methods, a case
was considered in which the interaction between bodies was described using short-range
Morse potentials, which is typical for molecular systems. For definiteness, we carried out
calculations on two complete members of the families of manifolds A1 and B1.

Based on the fact that under certain initial conditions a restricted three-body problem
arises, we conducted a detailed study of the properties and structure of three-dimensional
internal time, which describes, on the other hand, the trajectory of the effective mass µ0 in
global space {ρ̄} ∈ R3. As numerical experiments have shown, even in this particular case,
internal time s(t), in depending of usual time “t” fills three-dimensional space chaotically
and inhomogeneously. The work studies in detail the issue of the dimension of stochastic
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fractals generated by a dynamical system and defines a new criterion for it (see Definition 4).
As shown, for large times t ≥ 5 · 103 the dimension of three-dimensional structures formed
by internal time in the case of both manifolds is approximately equal D = 0.89.

We expect that the study of the scattering problem in a three-body system within the
framework of a new representation [5] will reveal new interesting features of internal time
s(t), in particular, it will clearly demonstrate the actions of the arrow of internal time when
choosing a specific type of elementary atomic-molecular reaction or a certain scattering
subspace (see Figure 1).

In conclusion, we note that the developed approach, together with the created algo-
rithm, for the first time provides real opportunities to numerically study a multichannel
atomic-molecular process with a given accuracy within the framework of classical mechan-
ics, taking into account the difficulties inherent in integrating stiff systems of ordinary
differential equations. The new approach to the geometrization of a dynamical system
allows all studies to be carried out not only qualitatively, but also quantitatively in the
multidimensional space of the observer, which is extremely important for solving real
problems. The approach and the ideas developed in it can be easily generalized to the
many-body problem.

And finally, the developed approach may be interesting for studying the dynamics of
three massive stellar formations that strongly bend the surrounding space. It is obvious
that in such a restricted three-body problem there can be no binary interactions between the
bodies and, accordingly, the usual approaches of celestial mechanics must be unacceptable.
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