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Abstract
In high-dimensional quantum systems, qudits offer a richer resource than traditional
two-dimensional qubits, increasing the capacity of quantum channels and enhancing the efficiency
of fault-tolerant quantum computation. These advantages can be utilized to solve complex
problems across various fields. In the paper, we propose a 2-qudit controlled-NOT (CNOT) gate
in a 4× 4-dimensional space and a 3-qudit controlled-controlled-NOT (Toffoli) gate in a
4× 4× 4-dimensional space, both equipped with error-heralded units. Our designs do not require
auxiliary photons or extra negatively charged nitrogen-vacancy (NV−) center, resulting in saving
resources. Moreover, since the imperfect NV−-cavity interaction processes are predicted in
real-time by sensitive single-photon detectors, both high-dimensional CNOT and Toffoli gates
boast robust fidelities using existing technology. Furthermore, our protocols simplify circuits with
error-heralded units, significantly contributing to the effectiveness of quantum information
technology and paving the way for advanced high-dimensional quantum computing.

1. Introduction

Quantum computing offers substantial advantages over classical computing, enabling solutions to previously
intractable problems across various fields [1]. Quantum logic gates are at the core of many quantum
computing tasks [2–6]. Traditional two-dimensional quantum gates, such as one-qubit X gate, two-qubit
controlled-NOT (CNOT) gate, and three-qubit controlled-controlled-NOT (Toffoli) gate, perform logic
operations on a qubit system (represented by |0⟩ and |1⟩) [7–9]. These gates allow for the construction of
arbitrary quantum operations and serve as benchmarks for universal quantum computation [10, 11].
However, these gates face limitations in large-scale quantum computing due to fidelity issues and resource
constraints. Beyond two-dimensional qubits, qudit systems with d (where d> 2) dimension have emerged as
valuable resources, extending the capacity to encode and process information more efficiently in
high-dimensional quantum systems [12–15]. The larger Hilbert space offered by qudits presents several
advantages over qubits. This expanded space simplifies the construction of quantum gates [16–18], improves
the efficiency of fault-tolerant quantum computation [19, 20], increases quantum channel capacity [21, 22],
and enhances communication security [23–25]. Additionally, qudits enable stronger violations of Bell-type
inequalities [26–28] and exhibit greater resilience to noise [29–31]. Qudit-based quantum information
technology (QIT) has been both theoretically explored and experimentally implemented across various
physical systems [32–41].

The CNOT and Toffoli gates have wide-ranging applications, including quantum algorithms [42],
quantum error correction [43], quantum arithmetic operations [44], and fault-tolerant quantum computing
[45]. Numerous theoretical approaches have been developed to realize these gates in various physical systems
[46–58]. Experimentally, the CNOT and Toffoli gates have been implemented in nuclear magnetic resonance
[59], linear optics [60], trapped ions [61], circuit quantum electrodynamics [62], neutral atoms [63], and
silicon spin qubits [64]. In 2024, Nie et al examined the exact implementation of the n-Toffoli gate and the
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n-controlled U gate using quantum circuits composed solely of single-qubit gates and CNOT gates [65].
These linear and nonlinear quantum gates are encoded using binary variables [66]. The standard
2× 2-dimensional CNOT gate and 2× 2× 2-dimensional Toffoli gate are expressed as
U2

CNOT|x,y⟩= |x,(x+ y)%2⟩ and U2
Toffoli|x,y,z⟩= |x,y,(z+ xy)%2⟩, respectively, where x,y,z ∈ {0,1}, and

% denotes the modulo operation [67–69]. As circuit complexity grows, the limitations of traditional
two-dimensional gates become more apparent, driving the need for more advanced gate designs. In 2023, Zi
et al presented a linear-size synthesis scheme for Toffoli gate on d-dimensional (d> 2) qudits using just one
ancilla [70]. Specifically, the d-dimensional CNOT and Toffoli gate can be expressed as
Ud

CNOT|x,y⟩= |x,(x+ y)%d⟩ and Ud
Toffoli|x,y,z⟩= |x,y,(z+ xy)%d⟩, where x,y,z ∈ {0,1, . . .,d− 1}. Gao et al

put forward 2× 2× 4-dimensional Toffoli gate in orbital angular momentum degrees of freedom of a single
photon assisted by entangled states with the low efficiency 1/172 [71]. Operating in a larger Hilbert space,
high-dimensional CNOT and Toffoli gates can process more information through parallel quantum
channels. The increased dimensionality not only enables more complex computations but also enhances
processing power, underscoring the need to further explore the construction of high-dimensional CNOT and
Toffoli gates with improved fidelity and efficiency.

Hybrid quantum gates, involving various types of qubits, have garnered significant attention [72–75].
These hybrid gates facilitate the transfer of quantum states between quantum processors and memories, as
well as the generation of entangled states between memory and processor units [76, 77]. A key component in
the construction of hybrid quantum gates is the electron spin of the negatively charged nitrogen-vacancy
(NV−) center, which supports optical initialization and enables fast single-qubit operations [78–81].
Moreover, the electron spins of NV− centers can maintain millisecond-scale coherence times, ensuring the
successful operation of quantum gates [82]. NV− centers have proven to be highly effective in applications
[83–85]. To date, single-qubit, universal multi-qubit, and CNOT gates have been successfully implemented
on the electron spin platform of NV− centers [86–89]. Building on this foundation, we aim to utilize the
hybrid photon-NV− center system to establish high-dimensional CNOT and Toffoli gates.

In this paper, we present two novel approaches to realizing deterministic hybrid CNOT and Toffoli gates
in 4× 4 and 4× 4× 4 dimensions, respectively, using error-heralded quantum units without the need for
auxiliary qubits. In our high-dimensional CNOT gate scheme, the electron-spin states of two NV− centers
and the polarization-spatial states of a single photon are used to encode the target and control qudits,
respectively. Crucially, detectors of three error-predicted units allow for the immediate detection of errors
caused by imperfect interactions between photons and NV− centers.

The paper is organized as follows. An NV− center is introduced briefly in section 2. In section 3,
error-predicted units, i.e. Ii, Mi, Ni, are presented. In section 4, the 4× 4-dimensional CNOT gate is
presented and the 4× 4× 4-dimensional Toffoli gate is introduced in section 5. We provide a brief discussion
and a summary in section 6.

2. An NV− center

To advance quantum information, establishing a link between individual spins and single photons is
essential. This is achieved through the use of an NV− center, as shown in figure 1(a), positioned within a
single-sided optical cavity. The system consists of four components, including a substituted nitrogen atom,
electrons contributed by two types of atoms, and a vacancy. The cavity features a bottom mirror that is fully
reflective and a top mirror that is partially reflective. The energy levels of the NV− center are intricate,
shaped by the complex interaction of electron-nuclear coupling and optical transitions. In the ground state,
spin–spin interactions cause a splitting into |0⟩ (withms = 0) and |±⟩ (withms =±1), separated by a 2.87
GHz zero-field splitting. One of the excited states, |A2⟩= (|E−⟩|+⟩+ |E+⟩|−⟩)/

√
2, captures both

spin–orbit and spin–spin effects, exhibiting symmetric properties that ensure stability. The orbital states
|E±⟩|(Js =±1) represent the coupling dynamics between the resonator and the NV− center system. The
optical transition between the spin states |+⟩ ↔ |A2⟩ (or |−⟩ ↔ |A2⟩) is facilitated by the absorption or
emission of left- (right-) circularly polarized photons, |R⟩ (|L⟩). The efficiency of this process is enhanced
when the NV− center is embedded in a frequency-degenerate two-mode cavity. The Hamiltonian for the
cavity-NV−-center system, within the rotating wave approximation, is expressed as

Ĥ= h̄ωs|A2⟩⟨A2|+ h̄ωc,Lâ
†
LâL + h̄ωc,Râ

†
RâR

+ h̄g
(
âLσ̂+ + â†Lσ̂− + âRσ̂

†
+ + â†Rσ̂+

)
, (1)

here ωs, ωc,L, and ωc,R represent the photon and cavity frequencies linked to the NV− center, while σ̂+(σ̂
†
+)

and σ̂−(σ̂
†
−) correspond to the raising and lowering of energy levels in the NV− center, respectively. The
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Figure 1. Schematic diagrams of the error-predicted (a) Ii unit, (b) Mi unit and (c) Ni unit. PBS represents a polarization beam
splitter, which transmits the horizontal-polarized photon |H⟩ and reflects a vertical-polarized photon |V⟩. X is a half-wave plate,
which performs bit-flip operation on the photon σ

p
x = |H⟩⟨V|+ |V⟩⟨H|. D is a single-photon detector. WFC is a wave-form

corrector that executes the coefficient variation |H⟩ (|V⟩)→ r−(∆)|H⟩(|V⟩).

operators âR and âL (along with their adjoints, â†R and â†L) act as annihilation (creation) operators for the
cavity field. Additionally, g is the coupling strength between the single-sided cavity and the NV− center.

When the input photon couples with NV−-cavity system, the Heisenberg equations of the system and
input and output relation of field operators are [90]

dâ

dt
=−

[
i(ωc −ω)+

κ+κs
2

]
â− gσ̂−

√
κâin −

√
κs ŝin,

dσ̂

dt
=−

[
i(ωs −ω)+

γ

2

]
σ̂− gσ̂zâ+

√
γσ̂zN̂,

âout = âin +
√
κâ. (2)

The noise operator is N̂, while âin, âout, and ŝin represent the input, output, and side-leakage field operators,
respectively. γ is the decay rate of the NV− center population. Furthermore, the population inversion
operator for the system is given by σ̂z = σ̂+σ̂− − σ̂−σ̂+. Under weak excitation conditions, where
⟨σ̂z⟩=−1, the reflection coefficient r(ω,g) for a photon interacting with the unidirectional cavity-NV−

system is determined as

r(ω,g) =

[
i(ωs −ω)+ γ

2

][
i(ωc −ω)− κ

2 +
κs
2

]
+ g2[

i(ωs −ω)+ γ
2

][
i(ωc −ω)+ κ

2 +
κs
2

]
+ g2

. (3)

When ωc = ωs, the reflection coefficient is simplified to

r(∆,g) =

(
i∆+ γ

2

)(
i∆− κ

2 +
κs
2

)
+ g2(

i∆+ γ
2

)(
i∆+ κ

2 +
κs
2

)
+ g2

. (4)
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Here,∆= ωc −ω = ωs −ω represents the detuning between the incident photon and the cavity mode.
Assuming g is zero, indicating no coupling between the photon and the NV− center, the uncoupled
reflection coefficient r(∆,0) is expressed as

r(∆,0) =
i∆− κ

2 +
κs
2

i∆+ κ
2 +

κs
2

. (5)

Due to the spin-selection rule and cavity quantum electrodynamics effects, r(∆,g) represents the reflection
coefficient in the coupled state, while r(∆,0) represents the reflection coefficient in the uncoupled state.
Considering that the photon in |L⟩-polarized state interacts with the NV−-cavity system, wherein the NV−

spin is initially in the state |ψ⟩= α|+⟩+β|−⟩, with the sum of the squares of the coefficients, |α|2 + |β|2,
equaling 1. The state of the photon-spin system evolves into |ψ ′⟩= |L⟩[r(∆,g)α|+⟩+ r(∆,0)β|−⟩]/√p0.
Here, p0 = |r(∆,g)α|2 + |r(∆,0)β|2 quantifies the probability that the photon is reflected by the NV−-cavity
system. When a vertically polarized photon, i.e. |V⟩=−i(|R⟩− |L⟩)/

√
2, interacts the NV−-cavity system

with the NV− spin initially set in the state |1⟩= (|+⟩+ |−⟩)/
√
2 or |0⟩= (|+⟩− |−⟩)/

√
2, the resulting

entangled state of the whole system adheres to the following principles

|V⟩|1⟩ → [ir+ (∆) |V⟩|1⟩+ r− (∆) |H⟩|0⟩]/
√
p1,

|V⟩|0⟩ → [ir+ (∆) |V⟩|0⟩+ r− (∆) |H⟩|1⟩]/
√
p1. (6)

Here, |H⟩= (|R⟩+ |L⟩)/
√
2, r±(∆) = [r(∆,0)± r(∆,g)]/2, and p1 = [|r(∆,0)|2 + |r(∆,g)|2]/2 represents

the probability that the photon interferes in the reflection geometry.

3. Error-heralded units

3.1. Ii unit
Based on the interaction rules in equation (6) between single photon and the spin of NV− centers mentioned
earlier, now the Ii unit is introduced, where the subscript i represents the electron spin of ith NV− center.
Assuming the initial state of the NV−

i center is |+⟩i ( |−⟩i), and the photon is set to the |V⟩-polarized state,
the process depicted on the right of figure 1(a) unfolds. In the circuit, the polarizing beam splitter (PBS)
transmits (reflects) |H⟩(|V⟩)-polarized photons, and the half-wave plate (X) fixed at θ = 45◦ facilitates the
interconversion, i.e. |H⟩ ↔ |V⟩. Once the photon enters the circuit, it interacts with the spin of the NV−

i

center. Consequently, the hybrid state of the electron spin and the photon is evolved into superposition states

|V⟩|+⟩i → ir+ (∆) |V⟩|+⟩i + r− (∆) |H⟩|+⟩i,
|V⟩|−⟩i → ir+ (∆) |V⟩|−⟩i − r− (∆) |H⟩|−⟩i. (7)

As shown in equation (7), ignoring the electron spin states, the photon generates two different polarization
state outputs. Specifically, the |V⟩-polarized state is reflected by the PBS and then detected by detector D,
indicating an error occurrence with an efficiency of |r+(∆)|2. In this case, both the polarization state and the
electron spin stay the same. On the other hand, if detector D does not react, this indicates the successful
transmission of the |H⟩-polarized photon through the PBS with an efficiency of |r−(∆)|2. This principle
underpins the operation of the error-heralded unit. Ultimately, the |H⟩-polarized photon, after passing
through the X, undergoes a bit-flip operation, i.e. |H⟩ ↔ |V⟩. When the detector D is not triggered, the
hybrid state of the system in the transmission path evolves into

|V⟩|+⟩i → r− (∆) |V⟩|+⟩i,
|V⟩|−⟩i →−r− (∆) |V⟩|−⟩i. (8)

Apparently, after the PBS passively filters out the erroneous entangled state, the value of |r−(∆)|may vary
with different factors, such as the frequency detuning∆/κ, the cavity decay rate κs/κ, and the coupling rate
g/κ. However, it primarily affects the efficiency of the photon-spin interaction as a global coefficient.

3.2. Mi unit
The Mi and Ni units, which incorporate the Ii unit, possess the same error-heralded functionality.
Furthermore, the design of the Mi and Ni units can effectively simplify the circuits for high-dimensional
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quantum gates. Therefore, it is essential to elaborate on the design of their quantum circuits and their
specific functions.

For the Mi unit illustrated in figure 1(b), consider that the initial spin state of the NV−
i -cavity system is

|+⟩ (|−⟩), and the photon is set to the |H⟩- (|V⟩-)polarized state. After the photon passes through left-side
PBS, its |H⟩-polarization state undergoes the wave-form corrector (WFC), which executes the coefficient
variation from |H⟩(|V⟩) to r−(∆)|H⟩(|V⟩), and the |V⟩-polarization state undergoes Ii unit, then they
converge on right-side PBS. If the detector D of the Ii unit remains inactive, the hybrid state of photon and
the NV−

i center undergoes evolution into

|H⟩|+⟩i → r− (∆) |H⟩|+⟩i,
|H⟩|−⟩i → r− (∆) |H⟩|−⟩i,
|V⟩|+⟩i → r− (∆) |V⟩|+⟩i,
|V⟩|−⟩i →−r− (∆) |V⟩|−⟩i. (9)

If before and after the input photon interacts with the Mi unit, it undergoes Hadamard operations Hp

with the half-wave plate (H) fixed at θ = 22.5◦, facilitating the transformation, i.e. |H⟩ Hp

−→ (|H⟩+ |V⟩)/
√
2

and |V⟩ Hp

−→ (|H⟩− |V⟩)/
√
2, the modification (Hp → interaction with Mi unit→Hp) results in the hybrid

state of the system without D triggered evolving into

|H⟩|+⟩i → r− (∆) |H⟩|+⟩i,
|H⟩|−⟩i → r− (∆) |V⟩|−⟩i,
|V⟩|+⟩i → r− (∆) |V⟩|+⟩i,
|V⟩|−⟩i → r− (∆) |H⟩|−⟩i. (10)

According to equation (10), if the spin state is |−⟩i, the polarization state of the photon is flipped; otherwise,
it remains unchanged. This condition serves as the prerequisite for the accurate classification of control
qudits of high-dimensional quantum gates.

Similarly, if before and after the input photon interacts with the Mi unit, the electron spin of the NV−
i

center of the Mi unit executes Hadamard operation He
i via a π/2 microwave pulse [91], i.e.

|+⟩
He

i−→ 1/
√
2(|+⟩+ |−⟩)i and |−⟩

He
i−→ 1/

√
2(|+⟩− |−⟩)i, this modification (He

i → interaction with Mi

unit→He
i ) results in the hybrid state of the system without D triggered evolving into

|H⟩|+⟩i → r− (∆) |H⟩|+⟩i,
|H⟩|−⟩i → r− (∆) |H⟩|−⟩i,
|V⟩|+⟩i → r− (∆) |V⟩|−⟩i,
|V⟩|−⟩i → r− (∆) |V⟩|+⟩i. (11)

According to equation (11), if and only if the polarization state is |V⟩, the spin state of the NV−
i center is

flipped. The rules serve as the precise operation of target qudits of 4-dimensional quantum gates.
In a word, the Mi unit combining with two types of Hadamard operations Hp on the photon and He on

the electron spin of the NV−
i center, performs two key functions: (a) if the spin state of the NV−

i center is
|−⟩(|+⟩), the photon’s polarization state is flipped (unchanged); (b) if the photon’s polarization state is |V⟩
(|H⟩), the spin state of the NV−

i center is flipped (unchanged).

3.3. Ni unit
For the Ni unit illustrated in figure 1(c), assuming the initial states of the NV−

i center and input photon are
the same as the Mi unit. The |H⟩-polarized photon, transmitted by the left-side PBS, sequentially passes
through the X, Ii unit, and another X. Meanwhile, the |V⟩-polarized photon, reflected by the left-side PBS,
only passes through the WFC before merging with the |H⟩-polarized photon at the right-side PBS. After this
process, if the D of Ii unit is not triggered, the hybrid state of the system is evolved into

|H⟩|+⟩i → r− (∆) |H⟩|+⟩i,
|H⟩|−⟩i →−r− (∆) |H⟩|−⟩i,
|V⟩|+⟩i → r− (∆) |V⟩|+⟩i,
|V⟩|−⟩i → r− (∆) |V⟩|−⟩i. (12)

5
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Obviously, the function of Ni unit is the exact opposite of the function of Mi unit. Further, if before and after
the input photon interacts with the Mi unit, the electron spin of the NV−

i center of the Mi unit executes
Hadamard operation He

i , this modification (He →interaction with Ni unit→He) results in the hybrid state of
the system without D triggered evolving into

|H⟩|+⟩i → r− (∆) |H⟩|−⟩i,
|H⟩|−⟩i → r− (∆) |H⟩|+⟩i,
|V⟩|+⟩i → r− (∆) |V⟩|+⟩i,
|V⟩|−⟩i → r− (∆) |V⟩|−⟩i. (13)

Equation (13) realizes the desired functionality of the Ni unit. If and only if the photon’s polarization is |H⟩,
the electron-spin state of the NV−

i center is flipped.
The three error-predicted units, i.e. Ii, Mi, Ni, described here can be used to construct error-predicted

high-dimensional CNOT and Toffoli gates below, playing a crucial role in the simplification of the quantum
circuits.

4. 4× 4-dimensional CNOT gate

So far, we have successfully designed the error-heralded units, denoted as Ii, Mi, and Ni units. In this section,
we provide a comprehensive description of the protocol for implementing an error-heralded hybrid 2-qudit
CNOT gate within a 4× 4-dimensional Hilbert space. The operational principle of the high-dimensional
CNOT gate is defined as U4

CNOT|c, t⟩= |c,(t+ c)%4̂⟩, where c, t ∈ {0̂, 1̂, 2̂, 3̂}. Here, c represents the control
qudit, while t represents the target qudit. The four-dimensional control qudit of the CNOT gate is encoded
in the hybrid polarization-spatial state of a single photon A, as follows

|Ha1⟩ → |0̂⟩c, |Va1⟩ → |1̂⟩c, |Ha2⟩ → |2̂⟩c, |Va2⟩ → |3̂⟩c, (14)

where a1 and a2 represent two spatial states of the single photon. Simultaneously, the four-dimensional target
qudit is encoded in the electron-spin states of two NV−

1 and NV−
2 centers as

| −−⟩12 → |0̂⟩t, | −+⟩12 → |1̂⟩t,
|+−⟩12 → |2̂⟩t, |++⟩12 → |3̂⟩t. (15)

Considering that control and target qudits are initially prepared in arbitrary states |ϕ⟩c and |ϕ⟩t,
respectively, i.e.

|ϕ⟩c = α1|Ha1⟩+α2|Va1⟩+α3|Ha2⟩+α4|Va2⟩
= α1|0̂⟩c +α2|1̂⟩c +α3|2̂⟩c +α4|3̂⟩c,

|ϕ⟩t = β1| −−⟩12 +β2| −+⟩12 +β3|+−⟩12 +β4|++⟩12
= β1|0̂⟩t +β2|1̂⟩t +β3|2̂⟩t +β4|3̂⟩t, (16)

where the coefficients are required to satisfy the normalization condition |A1|2 + |A2|2 + |A3|2 + |A4|2 = 1
(A= α,β). The construction of a high-dimensional CNOT gate necessitates the accurate classification of
control qudits and precise tuning of target qudits. We will subsequently detail the four steps involved in both
processes.

Firstly, as illustrated in figure 2, the single photon in the spatial modes a1 and a2 encounters the leftmost
PBSs, splitting the spatial modes of the photon into four distinct spatial modes: a11, a12, a21, and a22. The
splitting, governed by the photon’s polarization states, initiates the preliminary classification of the four
control qudits. Subsequently, before and after the input photon in spatial modes a12 and a22 interacts with
the NV−

2 center of I2 unit, the electron spin of the NV−
2 center of the I2 unit executes Hadamard operation

He
2, that is, H

e
2 → interaction with I2 unit→He

2. Meanwhile, the input photon in the spatial modes a11 and
a21 passes through respective WFC. According to the rules specified in equation (8), the initial state
|Ψ0⟩= |ϕ⟩c ⊗ |ϕ⟩t of the hybrid system is converted into

|Ψ1⟩= r− (∆)[(α1|Ha11⟩+α3|Ha21⟩)⊗ |φ⟩t
+(α2|Va12⟩+α4|Va22⟩)⊗ (β1| −+⟩12
+β2| −−⟩12 +β3|++⟩12 +β4|+−⟩12)] . (17)

6
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Figure 2. Schematic diagram of the high-dimensional CNOT gate.

In evidence, when the control qudit is in the state |Va12⟩ or |Va22⟩, the electron-spin state of the NV−
2 center

of target qudit is flipped, |−⟩2 ↔ |+⟩2.
Secondly, before and after the photon in spatial modes a12 and a22 interacts with the NV−

2 center of M2

unit, the Hadamard operations Hp with left and right Hs are applied to the photon, that is, Hp → interaction
with M2 unit→Hp. Meanwhile, the photon in the spatial modes a11 and a21 passes through respective WFC.
Consequently, by virtue of the rules specified in equation (10), the entire system transitions into the new
state

|Ψ2⟩= r−(∆)2 [(α1|Ha11⟩+α3|Ha21⟩)⊗ |φ⟩t
+(α2|Va12⟩+α4|Va22⟩)⊗ (β1| −+⟩12 +β3|++⟩12)
+(α2|Ha12⟩+α4|Ha22⟩)⊗ (β2| −−⟩12 +β4|+−⟩12)] . (18)

Obviously, when the spin state of the NV−
2 center of target qudit is |−⟩2, the polarization state of the control

qudit in the spatial modes a12 and a22 is flipped, |V⟩ → |H⟩.
Thirdly, the photon in spatial mode a11 passes through the WFC, the photon in spatial modes a12 and a22

directly interacts with the NV−
1 center of the N1 unit and the M1 unit, respectively, and the photon in spatial

mode a21 passes through a series of operations: X→ interaction with I1 unit→ another X. Before and after
these operations, the electron spin of the NV−

1 center undergoes Hadamard operation He
1. As a result of the

photon-NV−
1 center interactions, the state is transformed into

|Ψ3⟩= r− (∆)
3
[α1|Ha11⟩⊗ |φ⟩t

+α2|Va12⟩⊗ (β1| −+⟩12 +β3|++⟩12)
+α2|Ha12⟩⊗ (β2|+−⟩12 +β4| −−⟩12)
+α3|Ha21⟩⊗ (β1|+−⟩12 +β2|++⟩12 +β3| −−⟩12 +β4| −+⟩12)
+α4|Va22⟩⊗ (β1|++⟩12 +β3| −+⟩12)
+α4|Ha22⟩⊗ (β2| −−⟩12 +β4|+−⟩12)] . (19)

Through the step, precise control over the target qudit is achieved.
Fourthly, after the photon undergoes the same operation as the second step, the spatial modes a11 and

a12, along with a21 and a22, are merged into the designated spatial modes a1 and a2 using the rightmost PBSs,
leading to the modification of equation (19) to

|Ψ4⟩= r− (∆)
4
[α1|Ha1⟩⊗ |φ⟩t

+α2|Va1⟩⊗ (β1| −+⟩12 +β2|+−⟩12 +β3|++⟩12 +β4| −−⟩12)
+α3|Ha2⟩⊗ (β1|+−⟩12 +β2|++⟩12 +β3| −−⟩12 +β4| −+⟩12)
+α4|Va2⟩⊗ (β1|++⟩12 +β2| −−⟩12 +β3| −+⟩12 +β4|+−⟩12)]

7
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= r− (∆)
4 [
α1|0̂⟩c ⊗

(
β1|0̂⟩t +β2|1̂⟩t +β3|2̂⟩t +β4|3̂⟩t

)
+α2|1̂⟩c ⊗

(
β1|1̂⟩t +β2|2̂⟩t +β3|3̂⟩t +β4|0̂⟩t

)
+α3|2̂⟩c ⊗

(
β1|2̂⟩t +β2|3̂⟩t +β3|0̂⟩t +β4|1̂⟩t

)
+α4|3̂⟩c ⊗

(
β1|3̂⟩t +β2|0̂⟩t +β3|1̂⟩t +β4|2̂⟩t

)]
= r− (∆)

4
(
α1|0̂⟩cX0

4 +α2|1̂⟩cX1
4 +α3|2̂⟩cX2

4 +α4|3̂⟩cX†
4

)
|ϕ⟩t, (20)

where X0
4 represents no operation and the X1

4, X
2
4, and X†

4 represent three four-dimensional single-qudit
operations on the target qudit. The four-dimensional X1

4 and X2
4 gates introduce the clockwise cycle

operations: X1
4|l⟩= |(l+ 1̂)%4̂⟩ and X2

4|l⟩= |(l+ 2̂)%4̂⟩ (l= 0̂, 1̂, 2̂, 3̂), effectively shifting each target qudit to
its first- and second-nearest counterparts, respectively. Conversely, the X†

4 gate, i.e. |l⟩= |(l− 1̂)%4̂⟩, effects
the shift in the counterclockwise direction. Their matrix representations are

X0
4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, X1
4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

,

X2
4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, X†
4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

. (21)

After completing the aforementioned four steps, we have successfully modulated the target qudit to the
desired state and finalized the design of the high-dimensional CNOT gate, corresponding matrix
representation with the specified 16 basis expressed as

CNOT=


X0
4 0 0 0
0 X1

4 0 0
0 0 X2

4 0

0 0 0 X†
4

. (22)

5. 4× 4× 4-dimensional Toffoli gate

Next, we present a comprehensive description for implementing an error-heralded hybrid 3-qudit Toffoli
gate within a 4× 4× 4-dimensional Hilbert space. The operational principle of the high-dimensional Toffoli
gate is articulated as U4

Toffoli|c1, c2, t⟩= |c1, c2,(t+ c1 ∗ c2)%4̂⟩, where c1, c2, t ∈ {0̂, 1̂, 2̂, 3̂}. Here, c1 and c2
denote the first and second control qudits, respectively, while t signifies the target qudit. The first
four-dimensional control qudit of the high-dimensional Toffoli gate is encoded in the polarization-spatial
states of the single photon B, i.e.

|Hb1⟩ → |0̂⟩c1 , |Hb2⟩ → |1̂⟩c1 , |Vb1⟩ → |2̂⟩c1 , |Vb2⟩ → |3̂⟩c1 . (23)

Simultaneously, the second control qudit is encoded in the electron-spin states of two NV−
3 and NV−

4

centers, i.e.

| −−⟩34 → |0̂⟩c2 , | −+⟩34 → |1̂⟩c2 ,
|+−⟩34 → |2̂⟩c2 , |++⟩34 → |3̂⟩c2 . (24)

The four-dimensional target qudit is also encoded in the electron-spin states of two NV−
5 and NV−

6 centers,
i.e.

| −−⟩56 → |0̂⟩t, | −+⟩56 → |1̂⟩t,
|+−⟩56 → |2̂⟩t, |++⟩56 → |3̂⟩t. (25)

Assuming that the initial entanglements of four NV− centers and the photon B are arbitrary, denoted as

|φ⟩c1 = µ1|Hb1⟩+µ2|Hb2⟩+µ3|Vb1⟩+µ4|Vb2⟩
= µ1|0̂⟩c1 +µ2|1̂⟩c1 +µ3|2̂⟩c1 +µ4|3̂⟩c1 ,

|φ⟩c2 = ν1| −−⟩34 + ν2| −+⟩34 + ν3|+−⟩34 + ν4|++⟩34

8
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Figure 3. Schematic diagram of the accurate classification and coarse tuning of the high-dimensional Toffoli gate.

= ν1|0̂⟩c2 + ν2|1̂⟩c2 + ν3|2̂⟩c2 + ν4|3̂⟩c2 ,
|φ⟩t = ξ1| −−⟩56 + ξ2| −+⟩56 + ξ3|+−⟩56 + ξ4|++⟩56

= ξ1|0̂⟩t + ξ2|1̂⟩t + ξ3|2̂⟩t + ξ4|3̂⟩t, (26)

where the coefficients satisfy the normalization condition |K1|2 + |K2|2 + |K3|2 + |K4|2 = 1, (K= µ,ν,ξ ).
The construction of the high-dimensional Toffoli gate unfolds in eight steps provided in figures 3 and 4, as
detailed below, where the four steps are involved in each process. The figure 3 sets up precise classification for
control qudits and coarse tuning for target qudits. The figure 4 conducts more precise operation on the
target qudit and merges the previously split spatial modes, effectively implementing the high-dimensional
Toffoli gate.

5.1. Accurate classification and coarse tuning
Firstly, as depicted in figure 3, photon B traveling along spatial modes b1 and b2 passes through the leftmost
PBSs, resulting in a split into four distinct spatial modes: b11, b12, b21, and b22. This division, dictated by the
photon’s polarization state, finalizes the preliminary classification of the first control qudit. Then photon B in
spatial mode b1 directly passes through the WFC, simultaneously, before and after photon B in spatial modes
b12, b21, and b22 interacts with the NV−

4 center of M4 unit, the Hadamard operations Hp with left and right
Hs are applied to photon B, that is, Hp → interaction with M4 unit→Hp. By the rules in equation (10), the
initial state |Φ0⟩= |φ⟩c1 ⊗ |φ⟩c2 ⊗ |φ⟩t of the hybrid system is converted into

|Φ1⟩= r− (∆)[µ1|Hb11⟩⊗ |φ⟩c2
+(µ2|Hb21⟩+µ3|Vb12⟩+µ4|Vb22⟩)⊗ (ν2| −+⟩34 + ν4|++⟩34)
+(µ2|Vb21⟩+µ3|Hb12⟩+µ4|Hb22⟩)⊗ (ν1| −−⟩34 + ν3|+−⟩34)]
⊗ |φ⟩t. (27)

Secondly, photon B traveling along spatial modes b21 and b22 passes through the intermediate PBSs,
resulting in a division into four spatial modes: b121, b

2
21, b

1
22, and b222. Then photon B in spatial modes b11, b12,

b121, and b222 directly passes through the respective WFC, simultaneously, before and after photon B in spatial
modes b221 (traversing X) and b122 interacts with the NV−

6 center of I6 unit, the Hadamard operation He
6 is

executed on the electron spin of the NV−
6 center, that is, He

6 → interaction with I6 unit→He
6. Following the

9
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procedure, the state of the entire system is transformed into

|Φ2⟩= r− (∆)
2{[

µ1|Hb11⟩⊗ |φ⟩c2 +
(
µ2|Vb121⟩+µ3|Hb12⟩+µ4|Hb222⟩

)
⊗ (ν1| −−⟩34 + ν3|+−⟩34)
+µ3|Vb12⟩⊗ (ν2| −+⟩34 + ν4|++⟩34)]⊗ |φ⟩t
+
(
µ2|Vb221⟩+µ4|Vb122⟩

)
⊗ (ν2| −+⟩34 + ν4|++⟩34)

⊗(ξ1| −+⟩56 + ξ2| −−⟩56 + ξ3|++⟩56 + ξ4|+−⟩56)} . (28)

In evidence, if and only if the control qudit is in the |Vb221⟩ or |Vb122⟩, the electron-spin state of the NV center
of target qudit is flipped, |−⟩6 ↔ |+⟩6.

Thirdly, photon B in spatial modes b11 and b12 directly passes through respective WFC, simultaneously,
before and after photon B in other spatial modes b121, b

2
21, b

1
22, and b222 interacts with the NV−

3 center of M3

unit, the Hadamard operations Hp with left and right Hs are applied to photon B, that is, Hp → interaction
with M3 unit→Hp. By the rules in equation (10), resulting in the state of the hybrid system

|Φ3⟩= r− (∆)
3{[

µ1|Hb11⟩⊗ |φ⟩c2 +
(
µ2|Hb121⟩+µ3|Hb12⟩+µ4|Vb222⟩

)
⊗ ν1| −−⟩34 +

(
µ2|Vb121⟩+µ3|Hb12⟩+µ4|Hb222⟩

)
⊗ ν3|+−⟩34

+µ3|Vb12⟩⊗ (ν2| −+⟩34 + ν4|++⟩34)]⊗ |φ⟩t +
[(
µ2|Hb221⟩

+µ4|Hb122⟩
)
⊗ ν2| −+⟩34 +

(
µ2|Vb221⟩+µ4|Vb122⟩

)
⊗ ν4|++⟩34

]
⊗(ξ1| −+⟩56 + ξ2| −−⟩56 + ξ3|++⟩56 + ξ4|+−⟩56)} . (29)

At this juncture, we have successfully classified for the two control qudits. This classification is essential for
executing subsequent operations on the target qudit, contingent upon the various combinations of control
qudits.

Fourthly, photon B traveling along spatial modes b221 and b122 passes through the rightmost PBSs, splitting
into four spatial modes again: b2121, b

22
21, b

11
22, and b1222. Then photon B in spatial modes b11, b12, b121, and b222

directly passes through the respective WFC, simultaneously, before and after photon B in spatial modes b2121,
b2221, b

11
22, and b1222 interacts with the NV−

6 center of M6 unit, Hadamard operations Hp with left and right Hs
are applied to photon B, that is, Hp → interaction with M6 unit→Hp. By the rules in equation (10), the state
of |Φ3⟩ evolves into

|Φ4⟩= r−(∆)4
{[
(µ1|Hb11⟩⊗ |φ⟩c2 +(µ2|Hb121⟩+µ3|Hb12⟩+µ4|Vb222⟩)

⊗ ν1| −−⟩34 +(µ2|Vb121⟩+µ3|Hb12⟩+µ4|Hb222⟩)⊗ ν3|+−⟩34
+µ3|Vb12⟩⊗ (ν2| −+⟩34 + ν4|++⟩34)]⊗ |φ⟩t +

[
(µ2|Hb2121⟩

+µ4|Hb1122⟩)⊗ ν2| −+⟩34 +(µ2|Vb2221⟩+µ4|Vb1222⟩)⊗ ν4|++⟩34
]

⊗ (ξ1| −+⟩56 + ξ3|++⟩56)+
[
(µ2|Vb2121⟩+µ4|Vb1122⟩)⊗ ν2| −+⟩34

+(µ2|Hb2221⟩+µ4|Hb1222⟩)⊗ ν4|++⟩34
]
⊗ (ξ2| −−⟩56 + ξ4|+−⟩56)

}
. (30)

An analysis of equation (30) reveals that classification utilizing the electron spin of the NV−
6 center in the

target qudit is employed. This division segments the system into eight distinct parts, facilitating more precise
manipulation on the specific target qudit.

By implementing the four outlined steps, we have subdivided the initial two spatial modes into eight,
achieving precise classification of the two control qudits and making initial adjustments to the target qudit.
The subdivision into eight spatial modes enables more precise operations on the target qudit, playing a
pivotal role in the construction of the high-dimensional Toffoli gate.

5.2. Precise operation and spatial-mode fusion
As depicted in figure 4, we conduct more precise operations on the target qudit and merge the previously
split spatial modes, effectively completely implementing the high-dimensional Toffoli gate. The process is
delineated in four distinct steps.

Fifthly, photon B in spatial mode b11 passes through the WFC, the photon in spatial modes
b12,b121,b

21
21,b

22
21 and b1122,b

12
22,b

2
22 interacts with NV−

5 center of the M5 and N5 units, respectively. Before and
after these operations, the electron spin of the NV−

5 center undergoes Hadamard operation He
5.

Consequently, the state |Φ⟩4 is transformed into

10
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Figure 4. Schematic diagram of the precise operation and spatial-mode fusion of the high-dimensional Toffoli gate.

|Φ5⟩= r− (∆)
5{

[µ1|Hb11⟩⊗ |φ⟩c2 +
(
µ2|Hb121⟩+µ4|Vb222⟩

)
⊗ ν1| −−⟩34

+µ3|Hb12⟩(ν1| −−⟩34 + ν3|+−⟩34)]⊗ |φ⟩t +µ2ν2|Hb2121⟩|−+⟩34
⊗ (ξ1| −+⟩56 + ξ3|++⟩56)+µ2ν2|Vb2121⟩|−+⟩34
⊗ (ξ2|+−⟩56 + ξ4| −−⟩56)+µ2ν4|Vb2221⟩|++⟩34
⊗ (ξ1|++⟩56 + ξ3| −+⟩56)+µ2ν4|Hb2221⟩|++⟩34
⊗ (ξ2| −−⟩56 + ξ4|+−⟩56)+

(
µ2ν3|Vb121⟩|+−⟩34

+µ4ν3|Hb222⟩|+−⟩34
)
⊗ (ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56

+ξ4| −+⟩56)+µ3|Vb12⟩(ν2| −+⟩34 + ν4|++⟩34)⊗ (ξ1|+−⟩56
+ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)+µ4ν2|Hb1122⟩|−+⟩34
⊗ (ξ1|++⟩56 + ξ3| −+⟩56)+µ4ν2|Vb1122⟩|−+⟩34
⊗ (ξ2| −−⟩56 + ξ4|+−⟩56)+µ4ν4|Vb1222⟩|++⟩34
⊗ (ξ1| −+⟩56 + ξ3|++⟩56)+µ4ν4|Hb1222⟩|++⟩34
⊗(ξ2|+−⟩56 + ξ4| −−⟩56)} . (31)

According to equation (31), the two target spins are transformed into their desired states, thereby completing
all necessary precise operations on the target qudits. Subsequently, we merge the eight distinct spatial modes
b11, b12, b121, b

21
21, b

22
21, b

11
22, b

12
22, and b222 into the original two spatial modes denoted as b1 and b2, through the

following three steps.
Sixthly, after photon B undergoes the same operation as the fourth step, by the help of the leftmost PBSs,

the spatial modes b2121 and b2221, along with b1122 and b1222, are merged into the designated spatial modes b221 and
b122, respectively, resulting in

|Φ6⟩= r− (∆)
6{[

µ1|Hb11⟩⊗ |φ⟩c2 +
(
µ2|Hb121⟩+µ4|Vb222⟩

)
⊗ ν1| −−⟩34

+ µ3|Hb12⟩(ν1| −−⟩34 + ν3|+−⟩34)]⊗ |φ⟩t +
(
µ2ν2|Hb221⟩|−+⟩34

+µ4ν4|Vb122⟩|++⟩34
)
⊗ (ξ1| −+⟩56 + ξ2|+−⟩56 + ξ3|++⟩56

+ξ4| −−⟩56)+
(
µ2ν4|Vb221⟩|++⟩34 +µ4ν2|Hb122⟩|−+⟩34

)
⊗ (ξ1|++⟩56 + ξ2| −−⟩56 + ξ3| −+⟩56 + ξ4|+−⟩56)

11
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+
(
µ2ν3|Vb121⟩|+−⟩34 +µ4ν3|Hb222⟩|+−⟩34

)
⊗ (ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)
+µ3|Vb12⟩(ν2| −+⟩34 + ν4|++⟩34)
⊗(ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)} . (32)

Seventhly, after photon B undergoes the same operation as the third step and photon B in spatial mode
b221 undergoes X, the spatial modes b121 and b221, along with b122, and b222, are integrated into the designated
spatial modes b21 and b22, respectively, using the intermediate PBSs, which facilitates the system’s evolution
into

|Φ7⟩= r− (∆)
7 {[µ1|Hb11⟩⊗ |φ⟩c2 +(µ2|Vb21⟩+µ4|Hb22⟩)

⊗ν1| −−⟩34 +µ3|Hb12⟩(ν1| −−⟩34 + ν3|+−⟩34)]
⊗ |φ⟩t +(µ2ν2|Hb21⟩|−+⟩34 +µ4ν4|Vb22⟩|++⟩34)
⊗ (ξ1| −+⟩56 + ξ2|+−⟩56 + ξ3|++⟩56 + ξ4| −−⟩56)
+ (µ2ν4|Hb21⟩|++⟩34 +µ4ν2|Vb22⟩|−+⟩34)
⊗ (ξ1|++⟩56 + ξ2| −−⟩56 + ξ3| −+⟩56 + ξ4|+−⟩56)
+ (µ2ν3|Vb21⟩|+−⟩34 +µ4ν3|Hb22⟩|+−⟩34)
⊗ (ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)
+µ3|Vb12⟩(ν2| −+⟩34 + ν4|++⟩34)
⊗(ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)} . (33)

Eighthly, after photon B undergoes the same operation as the first step, the spatial modes b11 and b12,
along with b21 and b22, are consolidated into the designated spatial modes b1 and b2, respectively, by the
rightmost PBSs, leading to the modification of equation (33) to

|Φ8⟩= r− (∆)
8 {[µ1|Hb1⟩⊗ |φ⟩c2 +µ2ν1|Hb2⟩|−−⟩34 +µ3|Vb1⟩

⊗(ν1| −−⟩34 + ν3|+−⟩34)+µ4ν1|Vb2⟩|−−⟩34]⊗ |φ⟩t
+(µ2ν2|Hb2⟩|−+⟩34 +µ4ν4|Vb2⟩|++⟩34)
⊗ (ξ1| −+⟩56 + ξ2|+−⟩56 + ξ3|++⟩56 + ξ4| −−⟩56)
+ (µ2ν3|Hb2⟩|+−⟩34 +µ4ν3|Vb2⟩|+−⟩34)
⊗ (ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)
+ (µ2ν4|Hb2⟩|++⟩34 +µ4ν2|Vb2⟩|−+⟩34)
⊗ (ξ1|++⟩56 + ξ2| −−⟩56 + ξ3| −+⟩56 + ξ4|+−⟩56)
+µ3|Vb1⟩(ν2| −+⟩34 + ν4|++⟩34)
⊗(ξ1|+−⟩56 + ξ2|++⟩56 + ξ3| −−⟩56 + ξ4| −+⟩56)} . (34)

Based on the encoded input state |Φ0⟩, |Φ8⟩ is expressed as

|Φ ′
8⟩= r− (∆)

8{[
µ1|0̂⟩c1 ⊗

(
ν1|0̂⟩c2 + ν1|1̂⟩c2 + ν2|2̂⟩c2 + ν4|3̂⟩c2

)
+ν1

(
µ2|1̂⟩c1 +µ3|2̂⟩c1 +µ4|3̂⟩c1

)
|0̂⟩c2 +µ3ν3|2̂⟩c1 |2̂⟩c2

]
⊗
(
ξ1|0̂⟩t + ξ1|1̂⟩t + ξ2|2̂⟩t + ξ4|3̂⟩t

)
+
(
µ2ν2|1̂⟩c1 |1̂⟩c2 +µ4ν4|3̂⟩c1 |3̂⟩c2

)
⊗
(
ξ1|1̂⟩t + ξ2|2̂⟩t + ξ3|3̂⟩t + ξ4|0̂⟩t

)
+
(
µ2ν3|1̂⟩c1 |2̂⟩c2 +µ3ν2|2̂⟩c1 |1̂⟩c2 +µ3ν4|2̂⟩c1 |3̂⟩c2 +µ4ν3|3̂⟩c1 |2̂⟩c2

)
⊗
(
ξ1|2̂⟩t + ξ2|3̂⟩t + ξ3|0̂⟩t + ξ4|1̂⟩t

)
+
(
µ2ν4|1̂⟩c1 |3̂⟩c2 +µ4ν2|3̂⟩c1 |1̂⟩c2

)
⊗
(
ξ1|3̂⟩t + ξ2|0̂⟩t + ξ3|1̂⟩t + ξ4|2̂⟩t

)}
.

= r− (∆)
8{[

µ1|0̂⟩c1 ⊗
(
ν1|0̂⟩c2 + ν1|1̂⟩c2 + ν2|2̂⟩c2 + ν4|3̂⟩c2

)
+ν1

(
µ2|1̂⟩c1 +µ3|2̂⟩c1 +µ4|3̂⟩c1

)
|0̂⟩c2 +µ3ν3|2̂⟩c1 |2̂⟩c2

]
X0
4
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+
(
µ2ν2|1̂⟩c1 |1̂⟩c2 +µ4ν4|3̂⟩c1 |3̂⟩c2

)
X1
4 +

(
µ2ν3|1̂⟩c1 |2̂⟩c2

+µ3ν2|2̂⟩c1 |1̂⟩c2 +µ3ν4|2̂⟩c1 |3̂⟩c2 +µ4ν3|3̂⟩c1 |2̂⟩c2
)
X2
4

+
(
µ2ν4|1̂⟩c1 |3̂⟩c2 +µ4ν2|3̂⟩c1 |1̂⟩c2

)
X†
4

}
|φ⟩t. (35)

It is clear that the hybrid 4× 4× 4-dimensional Toffoli gate, as outlined in equation (35), has been
successfully implemented with unity fidelity even under the imperfect NV−-cavity interaction and ignoring
photon loss. The corresponding matrix representation of the 4× 4× 4-dimensional Toffoli gate, with the
specified 64 basis, is expressed as

X0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 X0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 X0

4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 X0

4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 X0

4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 X1

4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 X2

4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 X†
4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 X0
4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 X2
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 X0
4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 X2
4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 X0
4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 X†
4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 X2
4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X1
4



. (36)

6. Discussion and summary

So far, we have realized deterministic hybrid CNOT and Toffoli gates in 4× 4 and 4× 4× 4 dimensions,
respectively, using error-heralded quantum units without the need for auxiliary qubits, where the control
qudit is encoded in the spatial-polarization states of one photon, and the target qudit is encoded in the
electron-spin states of two NV− centers. In two protocols, during imperfect photon scattering process, errors
from non-ideal scattering three units, i.e. Ii, Mi, Ni of high-dimensional CNOT and Toffoli gates are passively
filtered by the PBS. For instance, in equation (7), the PBS passively filters out the incorrect |V⟩ state
components while transmitting the useful |H⟩ state components to X. The response of D is solely used to
indicate the presence of errors, and its efficiency does not impact the fidelity. As a result, the fidelities of these
gates, keeping in error-predicted way, have near unity ignoring photon loss, in principle, but their efficiencies
can be impacted.

We mainly focus on discussion on the efficiencies of the high-dimensional CNOT and Toffoli gates. The
target qudits of the CNOT and Toffoli gates encode information using electron-spin states within two
separate NV−-cavity systems, eliminating the need for auxiliary entangled states or additional qudits. NV−

center offers several advantages over a qudit-based system, including long coherence times (over 10 ms) at
room temperature, rapid spin-state manipulation (sub-nanosecond), and fast readout (100 µs) via
microwave excitation [82]. The interaction between photons and electron spin is a pivotal aspect of our
protocols and can be further enhanced by coupling the NV− center to a frequency-degenerate cavity.
Furthermore, photon-spin hybrid entangled states have been successfully demonstrated for NV− center
system under both strong and weak coupling regimes [92].

The efficiencies for the error-heralded CNOT and Toffoli gates are η1 = r−(∆)8 and η2 = r−(∆)16,
respectively, where they are affected by the factor |r−(∆)|. Further, according to
|r−(∆)|= 1√

2
[r(∆,0)− r(∆,g)], the frequency detuning∆, the cavity-decay rate κs/κ, the ratio between

coupling strength and decay rate g/κmay involve it. In practical experiments, γ = 0.01κ can be achieved.
The efficiencies η1 and η2 vs the factor g/κ with the resonant frequency∆= 0 shown in figure 5(a) and the
frequency detuning condition∆=±g shown in figure 5(b) taking the case cavity-decay rate κs/κ= 0. In
evidence, the efficiencies η1 and η2 increase significantly as g/κ increases. For instance, in figure 5(a), raising
g/κ from 0.70 to 2.40 results in efficiencies improvements from 95.98% and 92.12% to 99.65% and 99.30%,
respectively. Furthermore, in the case of κs/κ= 0.01, figure 5(c) illustrates the relationship between the
efficiencies and the factor g/κ at∆= 0, while figure 5(d) shows the relationship between the efficiencies and
the factor g/κ at∆=±g. In figure 5(c), raising g/κ from 0.70 to 2.40 results in efficiency improvements for
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Figure 5. The relation between the efficiencies η1 and η2 and the coupling rate g/κ for the following conditions: (a)∆= 0 and
κs/κ= 0; (b)∆=±g and κs/κ= 0; (c)∆= 0 and κs/κ= 0.01; (d)∆=±g and κs/κ= 0.01. Here, we take γ = 0.01κ.

η1 and η2 from 88.60% and 78.49% to 92.02% and 84.68%, respectively. It is evident that under the
frequency detuning condition∆=±g, the efficiencies of the two gates are reduced compared to those under
the resonance condition∆= 0, yet they remain operational in figures 5(b) and (d). Overall, in addition to
achieving a fidelity of one, our protocol also demonstrates high efficiency, laying a foundation for
advancements in the field of high-dimensional quantum computing.

Our proposed method is not limited to NV centers but possesses broad applicability to other physical
platforms with analogous level structures, such as ion traps, superconducting qubits, atoms, and quantum
dots. In our demonstration, a composite system comprising two two-level systems (i.e. two ground states of
two NV centers, yielding a total of 2× 2= 4 Hilbert space) possesses a four-dimensional Hilbert space
identical to that of a native four-level qudit, signifying an identical theoretical capacity for information
storage and processing. Evidently, the utilization of native qudits offers more advantages, such as more
compact information encoding, potentially diminishing the requisite number of quantum information
carriers. However, in certain physical implementations, the precise control of multiple low-dimensional
systems can be more established and tractable than the direct fabrication and manipulation of a
high-dimensional native qudit possessing an equivalent number of levels. For instance, the control
methodologies for the NV centers, utilized as qubits, are already comparatively advanced. Consequently, our
proposed protocols, within the context of current technological capabilities, may provide a more
experimentally practical route towards the realization of high-dimensional quantum logic gates. The physical
realization and precise control of quantum systems endowed with multiple stable energy levels typically
present greater challenges compared to the implementation and control of two-level qubits, and multi-level
systems often exhibit heightened sensitivity to environmental noise and decoherence, thereby posing
significant impediments to their practical implementation. Thus, employing mature qubit technologies to
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synthesize qudits could offer a more pragmatic approach for investigating the distinctive features of
qudit-based computation in the near term.

If a native four-level system is utilized as the target qudit, the four levels naturally exist within a single
quantum entity, obviating the need to construct coupling between two qubits. The complexity thus shifts
from controlling the interaction between two qubits to directly controlling a single multi-level system. For
certain specific qudit operations, a native four-level system might allow for the direct driving of desired
transitions using single or fewer control pulses. For example, a meticulously designed microwave or laser
pulse can directly induce a transition between energy levels |1⟩ and |3⟩ without needing to pass through
intermediate levels or a combination of multiple qubit operations. This could potentially lead to a higher
efficiency of high-dimensional gate operation. However, in native four-level systems, the spacing between
energy levels may also be non-uniform, with some levels potentially being closer to each other. Precisely
driving a specific transition without affecting other nearby transitions necessitates control fields of very high
precision. Moreover, as energy levels are typically anharmonic, the transition frequencies for
|0⟩ → |1⟩, |1⟩ → |2⟩, and |2⟩ → |3⟩ are all distinct, exacerbating the challenge of constructing
high-dimensional quantum gates. Moreover, higher energy levels are generally more susceptible to
decoherence and relaxation than the ground and first excited states. In native four-level systems, if higher
excited states are utilized, the lifetimes of these states may be shorter, thereby limiting gate fidelity. In
summary, if a native four-level system with an ideal energy level structure and good coherence properties can
be identified, and if high-precision selective control pulses can be realized, then gate implementation might
become simpler and faster due to more direct transition pathways. Conversely, if non-ideal level spacing leads
to significant crosstalk, or if higher energy levels suffer from severe decoherence, or if precise multi-frequency
control is difficult to achieve, then the control complexity for a native four-level system could be substantial.

In summary, we have successfully constructed qudit-based 4× 4-dimensional CNOT gate and 4× 4×
4-dimensional Toffoli gate for the photon-NV− center hybrid system, capitalizing on the state-selected
reflection property of the NV− center confined within a one-sided cavity. Compared to traditional 2-qubit
CNOT and Toffoli gates, the target and control qudits of these high-dimensional gates are encoded in the
electron-spin states of NV− centers and the polarization-spatial states of single photon, respectively. The
encoding leads to lower resource overhead and decoherence, and shorter operation times, enabling storage
and ultrafast QIT without auxiliary entangled states or additional qudits. Furthermore, the high-dimensional
CNOT and Toffoli gates provide increased experimental flexibility, enhancing efficiency and fidelity under
current technological capabilities and boosting the practical speed of quantum computing. The proposed
protocol significantly impacts the effectiveness of QIT and establishes a clear pathway for advancing
high-dimensional quantum computing, offering enhanced processing capabilities and superior performance.
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