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1 Introduction

Our object in this paper is to construct the small-x infinite momentum wavefunction of a
hadron in QCD for those soft gluons reasonably well localized in a small transverse area. To
make the problem of transverse spatial localization simple we choose the large-x part of our
hadron to be a heavy quark-antiquark state, an “onium” state. (This device has previously
been used by Balitsky and Lipatov[1] in their work on the Balitsky, Fadin, Kuraev, Lipatov
(BFKL)[1-3] pomeron.) The radius of the onium state then naturally furnishes an infrared
cutoff, and if this cutoff is sufficiently large perturbation theory applies. The accuracy of our
approximation is leading logarithmic. That is, for the component of the wavefunction having
n soft gluons, with momentum between zp and p, where p is the onium momentum, we
calculate only the (o #n 1/25)™ contribution to the square of the infinite momentum onium
wavefunction.

In our construction of the square of the onium wavefunction having n soft gluons, we
find it convenient to label the gluons by a longitudinal momentum z;p and a transverse
coordinate x; with i = 2,3 - - - n + 1. The transverse coordinate representation is especially
useful because one can view the i gluon as being emitted from the heavy quark-antiquark
pair and gluons go, g3, - - - gi—1 with the spatial coordinates of these “sources” being frozen
during the emission of the gluon g;.

The motivations for trying to construct the soft gluon part of the infinite momentum
wavefunction are severalfold. (i) The infinite momentum wavefunction, at leading logarith-
mic level, should allow one to reproduce results usually obtained from the BFKL equation
when one uses that wavefunction to calculate a scattering amplitude. (ii) Two, and more,
pomeron exchange amplitudes should be easily accessible from the infinite momentum wave-
function. (iii) When used in a scattering the infinite momentum wavefunction, at leading
logarithmic level, should give a good estimate of the production of very larger numbers of
minijets, numbers far above the average in a high energy event. (iv) If the wavefunction
could be constructed at next-to-leading logarithmic accuracy one would be able to extract
corrections[4-6), of higher order in « to the BFKL pomeron trajectory.

We have succeeded in writing a nonlinear equation for the generating functional of the n-
gluon component of the square of the soft gluon wavefunction at leading logarithmic accuracy
in the large N, limit. This equation is given below in eq.(20). Also, in sec.4, we have shown
that (20) yields results corresponding to the BFKL pomeron when the gluon density is
calculated.

Eq.(20) has a form remarkably close to that which occurs in the decay of a jet[7,8].
Indeed, eq.(20) defines a branching process which could be implemented by a Monte Carlo
simulation much as is done in jet physics. It is quite remarkable that there exists a classical
branching process which gives, eractly, the leading logarithmic soft gluon wavefunction,
including arbitrary numbers of soft gluons.

Our derivation of the BFKL equation,(29), seems much simpler than previous derivations
appearing in the literature. Our form for the BFKL kernel K given in eq.(30), as p — 0, also
apears different from the usual forms used, although (34) shows that indeed it is the ususal
kernel.



2 Lowest Order Onium Wavefunction

In this section, we shall derive the small-x part of an onium wavefunction in the
approximation where only one soft gluon is present. We shall first exhibit this wavefunction
in momentum space and then in a mixed representation using transverse coordinate and
longitudinal momentum variables.

2.1 The Onium Wavefunction Without Soft Gluons

To set notation and normalization, we begin with the onium wavefunction containing no
soft gluons. The light-cone wavefunction is ¥ag(k, 2) where 21 = k14 /p+ and a and B are
heavy quark and antiquark spinor indices. ¥ is illustrated in Fig.1. It will be convenient to
use transverse coordinate variables which are introduced according to

d%k
1/&(:2 (Ll;.lyzl) = (2 )12 zkl mlw(O) (kl’zl) (]‘)

where we may suppose that the quark, p-k, has transverse coordinate x = 0 while the
antiquark has x = x;. Our normalization is

/ @k, / dn®(k,, 21) /d :1:1/ d21®(zy, 1) = 1 @)
where
O (ky, 21) = Z | ¢5) (kr, 20) 2 3)
and
2O (g;,2;) = Zﬁ | vz, z1) |2 | ()

o is illustrated in Fig.2, where the two vertical lines indicate that two energy denominators,
one for ¢ and one for ¥*, are included, distinguishing ®© from a simple time-ordered-
product.

2.2 The Momentum Space Wavefunction with One Soft Gluon

The order & momentum space wavefunction with one soft gluon has contributions which
are illustrated in Fig.3. Call 25 = ko /p,. We suppose 25/2; and 2,/(1 ~ 2;) are both much
less than 1. This defines the gluon &, as a soft gluon. It is straightforward to calculate the
contributions of the graphs in Fig.3 and one finds

a k
lb(l) (k17&2; Z},Zz) = = 29Ta[¢((1(2(kl7z1) - wg)ﬁ)(kl +E2121)] _2—2__ (5)
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where a is the color index of the emitted gluon, 7% a color matrix, and ¢} the polarization
vector of the soft gluon with helicity A. For SU(3) color 7° = A*/2. At this one gluon level
® takes the form

1d a
W (ky,2) = ] d*k; / i Z | 11)(1) (k1 kay 21,2) 7 (6)

We note that the integration over the region k, — 0 is convenient due to the color neutrality
of the onium state. The k,— integral in (6) is ultraviolet divergent, as expected, though this
divergence will disappear when the light-cone wavefunction is used to calculate observables.
. We shall later insert a cutoff to regulate ultraviolet divergences. We have put a cutoff, 2,
on the zo- integration in (6). Again this cutoff will not appear in physical quantities. We
always work in the leading logarithmic approximation in z-integrals in which spirit we have
set the upper limit of the z-integral to be 2; in (6).

2.3 The Coordinate Spat:e Wavefunction with One Soft Gluon

Although one can deal with the one soft gluon part of the onium wavefunction
in momentum space it is extremely difficult to deal with more than one soft gluon in the
momentum representation. For that reason we now introduce the transverse coordinate
representation in the one gluon approximation. The key to the simplicity of ® in coordinate
space is to recall that the transverse coordinate positions of the quark and antiquark are
frozen during the time of emission of the soft gluon, ko. If we describe the wavefunction in
terms of a quark at x = x, = 0, an antiquark at x = x; and a gluon at x = x,, then the
wavefunction corresponding to (5) is

a ko dPky e povik. ary
0 (21, 223 21, 22) = (2@22 (zw)";e‘&l 2tk 2Ok ko: 2, 22). )
Using the explicit form given in (6) we find
gl z
0 (@1, 2o 21, 72) = — (O)(xi,zl)(‘ 21) (8)

where Xo0 = Xy — Xo and Xo; = Xo — X;. The x99/x3, term in (8) corresponds to graph A of
Fig.3 while the x,,/x2, term corresponds to graph B.

Corresponding to 1 in momentum space we can calculate &) in transverse coor-
dinate space. Thus

1 dz a
o0 (g, 2) = [z [ 52 Z | 9" (@, 221 2122) I ©)
with a trace over color indices implicit in (9). We ﬁnd

o 22 7['2 :C20.'1321
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The simplicity of (10), as compared to (5) and (6), is that the soft gluons factorize more
completely from the quark and antiquark in transverse coordinate space.

It will turn out convenient to write d®x; in terms of dxio and dxao, where xi; =] x;; | .
If one writes

d’zs = zp dxe ddp = Jdz1 dTog (11)
with ¢ the angle between x,, and x;p, then
4 122
V(@21 + 220)? — 23)[a% — (221 — T20)?]

where an extra factor of 2 is included in (12) to take into account the region m < ¢ < 27 as
wellas 0 < p <.

(12)

J(le,xzo) =

3 The Onium Wavefunction to All Orders of
Soft Gluons |

In this section we shall generalize (10) to include n soft gluons ks, k3 -+ - kn4y ordered
according to 2o >> 23 >> 24+ >> z,41 where, as usual, z; is the fraction of the original
momentum p, carried by the i gluon. We shall also evaluate " only in the large N.
limit. It is not clear whether 1/N, corrections take a simple form.

To see how to treat color factors return to the expression on the right-hand side of
(10). We may rewrite the integrand as

aCp x5,  aCp 1 2221'&20+_1_)

2(“‘““

. (13)
z3 T3 Tho 3o

72 xR xd 07w
The first term on the right-hand side of (13) comes from the square of term A of Fig.3 while
the second term comes from the interference between A and B, and the third term comes
from the square of term B. Viewing the color part of the gluon line as a quark-antiquark pair
the first, second and third terms on the right-hand side of (13) are illustrated in Fig.4 as A,
B and C respectively. From these figures it is clear that each term has the same color factor,
N, = 2Cp. The minus sign for the second term on the right-hand side of (13) corresponds
to interference between emission off a particle and off an antiparticle.

In order to see what happens at higher orders we now consider the two soft gluon
component of the onuim wavefunction. If the second soft gluon, gz, is emitted off the first
soft gluon, gs, it is useful to consider the emission as consisting of two parts corresponding
to emission off the quark or antiquqark “components” of g,. Of course the only difference
between these two terms is in the color structure, but a proper organization of the color
factors is crucial in obtaining a simple form for the final answer. Due to the large N, limit
the number of graphs is strongly limited.

For example, when g3 is emitted off the original heavy quark or the antiquqark part of
g2 it must be re-absorbed (the complex conjugate amplitude in the formula for ) only by
the original heavy quark or by the antiquark part of go. But emission off the antiquark part
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of g5 is eractly the same as an emission of an actual antiquark when z3/2; << 1. Thus, the
net result, in calculating ®® | for emission off the original heavy quark and the antiquark
part of g, is simply the factor

aCp a3 dz

J{(x30, T30) dx3pdx 14
7r2 33:250 1'%2 23 (307 32) 304£32- ( )

A similar result comes from emission off the original heavy antiquark and the quark compo-
nent of g,. The sum of both terms gives the following expression for ®®.

4aCfp ,1 J(Z20, T
8% (z,,21) = (D)5l (a1/20) 9Oy, 21)ad, [ dao dra *——(xf"xz”)
20721
J(z30, Z32) T3 J(z ,x x2
[/d.’liaodﬂfsz ( 302 322) 20 4 /dxszdl‘sl (=22 31) 2. (15)
T5025 z328

It is convenient to view the sequential emission of soft gluons pictorially as shown in
Fig.5. Term A of that figure shows first the gluon gs being emitted off the heavy quark, 0
in the figure, and off the heavy antiquark, 1 in the figure. Then the gluon g3 is emitted off
the heavy quark and the antiquark part of go. Term B in the figure illustrates gluon gz being
emitted off the heavy antiquark and the quark part of g,.

The formula for further emissions is now straightforward to write down. In order
to organize the expressions it is useful to write an integral equation for the generating
functional of the light-cone wavefunction of the onium. To that end, define ®(x;, 21, u(x, 2))
by the equation '

6 ) )
(I)g)zhu:’p‘vz
Sulan D) Bulgnz) | Sulgmy ) U@

=™ (2, Ly, - Tnt1; 21,22 Znt) (16)

where ™ is the square of the wavefunction for the heavy quark-antiquark pair along with n

gluons having transverse coordinates Xo,Xs -+ Xn4; and momentum fractions zq, 23, *** Zn41-
Let

Q(zy, 21,u) = 3 )(xl 21)Z(z1,Zo, 21, 1) (17

then Z obeys

($2,22)Z(Z‘2,$1, ZQ,U)Z($2, Zg,’u.)

(18)
In (18) we have, temporarily, gone back to using d®x, as the coordinate measure, though
when actual calculations are done we shall use (11) and (12) to evaluate d®x,.
Eq.(18) is not quite complete, even in the leading logarithmic aproximation. Our
normalization is such that ® should obey

2
aCr d“z, 21 dzz
Z(JJ], 121, 'U,) I+ 2 .’Ifg} / 2
™ Tpg T21 z0 Z9
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' 1
/dz—x-I/O dZ] é(zl)zl’u)l u=1 =1 (19)

while it is easy to check that (17) and (18) do not give such a ¢. The problem is apparent.
Eqs.(17) and (18) give the probabilities for real gluon emissions, but they do not account
for the leading logarithmic virtual corrections. The virtual corrections are determined most
easily by enforcing (19), order by order in perturbation theory. In order to do this it is now
important to cut off the ultraviolet divergences present in (18) when xg and/or xo; go to
zero. We define a region R(xg,X10) by simply requiring that xz0 > p and x;0 2> p.p is a fixed
quantity taken to be small compared to the average radius of the onium state. Then the
complete formula for Z is

_ 4aCr, i a Cp /Zl dzy
Z@l&o,zla 'U.) - Cil'p{ - en( 0 )en(zl/zo)} + 2 2 22 JR(z20,10)
4aC z d*z.,x?
exp{— an(%)en(zl/h)}x%o ! :E%lf u(Zy, 22) 2 (X2, L1, 22,U) Z(Z20 Lo, 22,u).  (20)

The form of the virtual corrections in (20) is not difficult to determine. When u=1
it must be true that Z=1 since the production of soft gluons cannot change the inclusive
probability of having a heavy quark-antiquark pair with relative separation x; and anti-
quark momentum fraction z;. Thus ®(x;,21,u = 1) = ®@(x,,2,) and by (17) this implies
Z(x10,21,1) = 1. It is straightforward to check that the form of the virtual corrections we
have taken satisfies this conservation of probability constraint.

The form of the generating functional, (17) and (20), is very very close to that which
occurs in the decay of a jet[9]. In each case one can follow the perturbative evolution through
a “classical” cascade of sequential parton decays. There are, however, essential differences.
In the present circumstance one is constructing the square of the onium wavefunction, in-
cluding an arbitrary number of virtual gluons, while in the jet cascades the final multiparton
system is a system of essentially free partons which undergo a simple hadronization to be-
come actual physical particles. A key issue in the present case is how to free the virtual
partons. Also, the time-like coherent cascades are built around the leading double logarith-
mic approximation. Next-to-leading terms, the modified leading logarithmic approximation
(MLLA), can also be included in time-like partonic cascades but only for quantities where
azimuthal averaging of the parton splittings is assumed[9]. In the present case the series is
a leading single logarithmic series, in the longitudinal momentum, and the classical partonic
cascade, determined by (17) and (20), gives the series exactly in the large N, approximation.



4 The Balitsky, Fadin, Kuraev, Lipatov (BFKL)
Pomeron

In order to illustrate the fact that (20) contains the physics of the BFKL Pomeron
we shall calculate the unintegrated gluon distribution[10,11}], F, of the onuim state. We
take the magnitude of the transverse momentum of the unintegrated gluon to be Q with
p << 1/Q ~ R with R the radius of the onuim state. At lowest order in «

2a C 1

2P, @) = = [o(Quu)ds [ dne®(@,2) (21)
0

where the exact form of v is not of concern here, and where we take z to be the longitudinal

momentum fraction to be consistent with our previous notation. (Our notation is such that

in case Q?R? >> 1 F is given simply by

F&,@) = Q56 Q) 22)

with G the usual gluon distribution in an onium state. ¥(QR) — 1 when QR — o0 .)
Then F can be written in terms of an amplitude T according to

1
2P(5,QY) = [ da [ dz 802y, z) T(ew,25Q,2) (23)
where
) . 2a Cp 4aCp Z10 4aCr 2 dz
T(.’L‘m,zl, Q, Z) = T U(me)exp{ - En( P )En(zl/z)} -+ ﬂ_ /z. 2_2
4 o CF T10 ~
/ 6:L‘p{- fn(——)aen(21/22)}K($1o, .'L‘lg)dxlzT(.’L‘m, 22, Q, Z) (24)
R(z20,%10) ™ p .
with
R 1 IE%O
(5510,5312) = 5; /R m J($21, Z20) dZ20. (25)

The form of K is evident from a comparison of the kernel in (20) with (11). Eq.(24) reflects
the fact that the measured gluon may be the first gluon emitted, the first term on the right-
hand side of (25), or that it may be found in either of the Z’s in the second term on the
right-hand side of (20). The factor of 2 in front of the second term on the right-hand side of
(24) comes from the choice of which of the two Z’s the measured gluon comes from.

In order to solve (24), it is convenient to define Y = ¢n 2,/2,y = n 22/z and to note
that

T(l‘]o,Zl;Q,Z) = T(Y) QxIO)y (26)

at least when p is very small. Write



T(Y,Qz10) = [ e T,(Qax0) @7)

where the w-integral goes parallel to the imaginary axis and to the right of any singularities
in 7,,. Substituting (27) into (24) one finds

20 C‘p v(Qz10) 4 aCp K(z10,712) T (212Q)
T.(Qx1) = P "WCEEn(xm/p) + - f 12" awc in(tn/p) (28)
Equation (28) can be rewritten as
2aC 4aC
Tw(Qz10) = awF’v(me) +22 F/dxlzK(ﬂilo,l‘m)T (212Q) (29) -
where
K(x10,Z12) = R(xlo,fﬂlz) — 6(z10 — Z12) €n(T10/p)- (30)
In fact, when p = 0 K is the BFKL kernel. To see this use the identity{12]
N 1
- bdb Jo(b .’1’,'01) Jo(b JJQQ) Jo(b .’1312) =
2 ‘/0 \/[(11321 + @20)2 — 23| [xo — (Z21 — 220)?].
Then, (12), (25), (29) and (30) give
K (or0,212) = 210 / bdb[(1) + €n2 — €n bzo] Jo(bz10)Jo(b212) (31)

where ¢¥(x) = I"(z)/I'(z). In arriving at (31) we have used

dx % P
[T 52 Rtwa) = Jim ([ dow 2k do(ba) — [ dam 235" So(bzm)}  (32)

and
'(A/2)
T - A/2)

We have also set Jo(bza) = 1 in the second term on the right-hand side of (32) an approxi-
mation which neglects terms linear in p.
From (31) and (33), it is straightforward to show that

/0 " g0 75 Jo(bmag) = 27 (33)

/ dz12 K(x10, $12)$'1\2 = x{A) xi\o (39)
with

X() = B(1) — (1~ /2) — Z6(/2), @)



which equations show the equivalence of K with the usual BFKL kernel. Thus in order to
solve (29) one writes

T.(z1o Q) = %(Q 3310))‘ Thw (36)

where the A-integral runs parallel to the imaginary axis. Substituting (36) into (29) and
using (34) gives

2« CF U
Ty, = . 37
A T w——‘“"wcﬁ X(/\) ( )
From (27), (36) and (37), we find
A2aC « Cp
T(Y,Qx10) = % e n(Qz10)* 64 EXNY (38)
which integral is easily evaluated in the saddle point approximation about A = 1,
aCrpv glap—1)Y
T=—2— Qo (39)
™ V7@ CrlBY |
With ap = £2CE ¢n2. Substituting (39) into (23) gives
2 o Cpv glep=1Y
2F(2,Q%) = —— (QR) : (40)
/7 a Cr¢(3)Y
where
1
R = 2 / d*zy0 dz1 10 D210, 21) (41)

is the average transverse radius of the onium state, and now Y = #nl/z.
Comparing (40) and (21) we see that the effect of the soft gluons in the onium
wavefunction leads to an enhancement of F by a factor proportional to

Q R e(ap—l)Y

Vra Ne C(3)Y

a factor normally associated with the zero momentum transfer BFKL pomeron.

(42)
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