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Abstract

Optimization and design of particle accelerators is chal-
lenging due to the large number of free parameters and
the corresponding lack of gradient information available
to the optimizer. Thus, full optimization of large beamlines
becomes infeasible due to the exponential growth of free
parameter space the optimization algorithm must navigate.
Providing exact or approximate gradient information to the
optimizer can significantly improve convergence speed, en-
abling practical optimization of high-dimensional problems.
To achieve this, we have leveraged state-of-the-art automatic
differentiation techniques developed by the machine learn-
ing community to enable end-to-end differentiable particle
tracking simulations. We demonstrate that even a simple
tracking simulation with gradient information can be used
to significantly improve beamline design optimization. Fur-
thermore, we show the flexibility of our implementation
with various applications that make use of different kinds of
derivative information.

INTRODUCTION

Particle accelerators are complex instruments with a large
number of free parameters. This aspect makes full optimiza-
tion of large beamlines extremely challenging. Gradient-
based optimization methods are powerful tools to solve high-
dimensional problems, but both analytical and numerical
differentiation scale poorly with the number of dimensions.
Automatic differentiation (AD) allows the evaluation of high-
dimensional derivatives efficiently and accurately, which is
why it is widely used in the machine learning (ML) commu-
nity [1]. Thus, differentiable accelerator models, i.e., mod-
els that support AD, can enable high-dimensional gradient-
based optimization in particle accelerators [2—4].

The idea of using AD in particle accelerator simulations
is not new [5-7]. Nevertheless, the scope of these imple-
mentations is to calculate arbitrary order Taylor polynomials
using forward mode AD. This sets a limitation on the flexi-
bility of AD usage and its extensibility to high-dimensional
optimization problems (>100D). In order to efficiently evalu-
ate gradients in high-dimensional input spaces, the tracking
code must support backward mode AD. Furthermore, effi-
cient higher-order derivative evaluation needs both forward
and backward mode AD. Thus, a more flexible implemen-
tation of AD in accelerator modeling is needed for high-
dimensional gradient based optimization.
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METHODS

Automatic Differentiation

Automatic differentiation (AD) is a family of techniques
used to evaluate partial derivatives of numerical computer
functions fast and accurately [1]. AD makes use of the
chain rule and the derivatives of the elementary operations
and functions that compose a numerical computation. This
procedure results in the computation of derivatives as fast as
the evaluation of the function times a small constant, and as
accurate as the working precision of the computation. There
are two main AD ‘modes’: forward mode and backward
mode. The choice depends on the dimensions z and m of the
function f : R” - R™ for which the Jacobian is evaluated.

Forward Mode AD In forward mode AD, the chain
rule computation order goes from inner to outer arguments.
In the limiting case where n = 1, the derivatives are com-
puted using a single forward pass through the composition
of the functions. In the case m = 1, it requires n different
evaluations. Thus, forward mode AD runs efficiently when
n < m.

Reverse Mode AD In reverse mode AD, the chain rule
computation order goes from outer to inner arguments. In
the limiting case where m = 1, the function is evaluated
first via a forward pass and the derivatives are computed
using a single backward pass through the composition of
the functions. Thus, reverse mode AD runs efficiently when
m « n. This is the reason why optimization problems with
large number of input parameters and a single loss function
use reverse mode AD instead of forward mode.

Library-Agnostic Particle Tracking in Python

Python is one of the most popular computer languages,
and the community develops various libraries that support
forward and reverse mode AD. Furthermore, some of these
libraries support GPU acceleration, just-in-time compilation
and many other ML tools. In order to make use of all of
these tools in particle accelerator modeling, we have devel-
oped Bmad-X [8]: a Python package with library-agnostic
tracking routines based on Bmad [9]. The code was tested
with different examples using the PyTorch library [10].

APPLICATIONS
High-Dimensional Gradient-Based Optimization

Consider a toy-model composed by ten quadrupoles with
tunable focusing strengths separated by drift segments of
equal length. At the beginning of the lattice (s = Om),
the beam has a non-round Gaussian distribution with r.m.s.

WEPA065
2797

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA065

MC5.D11: Code Developments and Simulation Techniques

2797

WEPA: Wednesday Poster Session: WEPA

WEPA065

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy
ISSN: 2673-5490

ISBN: 978-3-95450-231-8

beamsizes of o, = I mm and ¢, = 3mm. Suppose that
around beam with 0, = 0, = O = 1 mm is required
at the end of the beamline (s = 11 m). We want to find
a set of quadrupole strengths kg, ..., kg such that the beam
profile is as close as the target beam. This can be achieved
by minimizing the following loss function:

* = JA% + A% = ‘/(Ux N U‘argel)z + (Gy - Ularget)Z- (1

Since Bmad-X particle tracking supports reverse mode
AD, a gradient-based optimizer can be used to solve this
problem efficiently. Figure 1 shows the results using Py-
Torch’s implementation of the Adam optimizer [11], which
is an extension of stochastic gradient descent and is com-
monly used in the ML community. When initiallizing all
quadrupole strengths at zero, the optimizer converges to
a solution in less than a minute using a consumer-grade
Intel Core i7-12700K CPU. By contrast, optimizing with
gradient-based algorithms is infeasible when using numeri-
cal differentiation due to the large number of input variables.
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Figure 1: Gradient-based optimization of ten quadrupole
strengths to obtain a round beam downstream with r.m.s.
beam size of oy = 3mm. (a) Loss function and
quadrupole strengths vs. iteration number. (b) o, and o,
r.m.s. beam sizes vs. s position for the optimal quadrupole
configuration. (c) Upstream and downstream beam profiles
for the optimal quadrupole configuration.

Hessian Computation

It has been shown that Hessian information can speed up
Gaussian process optimizers in online particle accelerator
tuning [12]. A combination of forward and backward mode
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AD enables efficient computation of Hessians. Fortunately,
most of AD Python libraries have methods to compute the
Hessian efficiently since it is widely used in the ML com-
munity. Thus, Bmad-X can potentially be used for online
machine optimization.

As an example, the Hessian of the ten-quadrupole lattice
final beam size with respect to the quadrupole strengths was
computed:

9’0,

Wakj, l,]=0,...,9. (2)

Hess(o,);; =

The CPU times for this computation were 320 ms and 28 s
when using PyTorch’s Hessian and numerical differentiation
methods, respectively. Figure 2 shows the Hessian com-
putation time for numerical and automatic differentiation
versus the number of quadrupoles in the lattice. The expo-
nential grouth when using numerical differentiation makes
it impractical for large number of dimensions.
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Figure 2: Hessian computation time vs. number of free
parameters using numerical and automatic differentiation.
10,000 particles were tracked.

Model Calibration

It is possible to calibrate models by including misalign-
ments in Bmad-X beamline elements. As an example, con-
sider the beamline in Fig. 3 (a). The beamline is composed
by four quadrupoles with unknown transverse offsets and
tilts, and a screen that measures the transverse beam profile.
The offsets kick the beam transversely, and the tilts introduce
x-y correlations. This results in transverse displacements
and rotations that are functions of the quadrupole strengths,
offsets and tilts. Each quadrupole can be independently in-
creased and decreased once, resulting in eight beam profiles
observed downstream. Thus, it is possible to find the offsets
and tilts by minimizing a loss function that encapsulates the
divergence between simulated and observed beam profiles.

The loss function can be defined as the sum of the
Kullback-Leibler divergences [13] of the simulated and ob-
served images:

8 (u)
Z Z 047 log ( ] ) , 3)
n=1 iyj n
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where S,(f‘f) and 0;;;/') are the (i, ) pixel intensities of the nth
simulated and observed image respectively. In order to prop-
agate gradients of the loss function with respect to the offsets
and tilts, the simulated images must be differentiable. This
is achieved by doing a non-parametric estimation of a prob-
ability density function that represents the two-dimensional
histogram via kernel density estimation [14]. Figure 3 (b)
shows an example of kernel density estimation applied to a
beam histogram. The results after using the Adam gradient-
based optimizer are summarized in Fig. 4.

Figure 3: (a) Beamline cartoon for the model calibration ex-
ample. The beamline consists of four quadrupoles with
unknown transverse offsets 7,..., 7, and transverse tilts
01,...,04. (b) Particle count x-y histogram (left), and differ-
entiable version using kernel density estimation (right).
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Figure 4: Model calibration results. Iteration number vs.
x and y offsets (top/bottom left), tilts (top right), and loss
function (bottom right). Unknown offsets and tilts converge
to the ground truth values.
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Phase Space Reconstruction

Bmad-X has already been used to accurately reconstruct
the 4D phase space of a beam with simple diagnostics and
few observations in both experiment and simulation [15].
This method makes use of a neural network parametrization
of the initial beam phase space. Since neural networks have
a large number of free parameters, Bmad-X AD support is
essential in the reconstruction process. Additionally, the
library-agnostic approach of Bmad-X allows seamless inte-
gration between the neural network and the differentiable
simulations by using PyTorch, which also enables GPU sup-
port for hardware acceleration.

CONCLUSIONS

In this work, we have developed a library-agnostic imple-
mentation of Bmad tracking routines in Python. This allows
the use of libraries developed by the machine learning com-
munity in accelerator simulations. These libraries provide
forward and backward mode automatic differentiation sup-
port enabling high-dimensional gradient-based optimization
of beamlines, efficient Hessian computation for Gaussian
process optimizers, model misalignment calibration, and
phase-space reconstruction. Additionally, these libraries
provide seamless integration with neural networks, GPU
acceleration and other machine learning modules.
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