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Resumen

Calculamos el momento dipolar cromomagnético del quark top, fi;, en el contexto del modelo
Bestest Little Higgs. Esta extension del Modelo Estdndar (ME) tiene como objetivo resolver
el problema de la jerarquia sin un ajuste fino, mediante la introduccién de correcciones de 1
lazo a la masa del bosén de Higgs a través de los compafieros del quark y bosones de norma
pesados. Encontramos que el valor resultante mds grande para el dipolo cromomagnético es
fi; ~ —10*y el miés bajo es alrededor de —10~, principalmente debido al bosén de Higgs
del Modelo Estandar, que se acopla tanto al quark superior del ME como a sus socios pesados.
Ademds, presentamos una amplia variedad de nuevas reglas de Feynman involucradas en

nuestro calculo.

Palabras clave: Cromodipolo magnético, Modelo Estdndar, Jerarquia, Extension.

Abstract

We calculate the chromomagnetic dipole moment of the top quark, [I;, in the context of
the Bestest Little Higgs model. This extension of the Standard Model (SM) aims to solve
the hierarchy problem without fine-tuning, by introducing 1-loop corrections to the Higgs
boson mass through the quark partners and heavy gauge bosons. We find that the largest
resulting value for the chromomagnetic dipole is fI; ~ —10~* and the smallest is around
—107>, mainly due to the Standard Model Higgs boson, which couples to both the top quark
of the ME and its heavy partners. Furthermore, we introduce a wide variety of new Feynman

rules involved in our calculus.
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Capitulo 1

Introduccion

1.1 Ultima particula descubierta

El dltimo gran evento en la fisica de particulas de altas energias fue la confirmacién de
la existencia del bosén de Higgs [1] en el CERN. Su deduccién tedrica en la década de
1960 [2] impuls6é enormemente el desarrollo de la fisica al explicar el origen de la masa de las
particulas conocidas hasta ese momento por debajo de la escala electrodébil [3]. Antes del
afio 2000 ya se habia medido la masa de los quarks y los leptones, asi como de los bosones
W+ 'y 79, vigorizando la bisqueda de la particula faltante.

En combinacidén con los esfuerzos experimentales también aparecieron teorias completas
y efectivas que intentaban explicar el origen de la masa del bos6n de Higgs asi como muchas
otras propiedades antes de 2012. Por ejemplo, en dimensiones extras en el marco de una
teoria efectiva [4] se pretendia sustituir todo el esquema del bosén de Higgs por bosones de
norma del tipo Kaluza-Klein. También en dimensiones extras en [5] se intentaba atacar el
problema de la jerarquia y el bosén de Higgs introduciendo una exponencial en una métrica
cosmoldgica. En una version Minima Supersimétrica del Modelo Estandar [6] se analiza
y compara la fenomenologia conocida hasta ese momento con un posible escenario para
descubrir el potencial de Higgs. En [7] mediante una teoria de gran unificaciéon (TGU) se
calcula una masa para el higgs de 200 ~ 280 GeV. Otros modelos mds exdticos como [8]
proponian incluir dos dimensiones compactificadas junto a las cuatro dimensiones del
espacio-tiempo en una distancia de ~ 1 mm y de ahi derivar toda la fisica.

Varios de estos modelos introducian nuevas particulas més alld del Modelo Estdndar (ME)
proporcionando en consecuencia mucha fenomenologia que permitia imponer acotamientos
sobre las particulas exoticas y sus propiedades fisicas. Se ha continuado con este método de
investigacion sobre modelos mds actualizados cuyo objetivo principal es extender el ME. En

este sentido surgieron los modelos basados en algunos multipletes de Higgs (descendientes de
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la sipersimetria) con diferentes propiedades y una fenomenologia variada e interesante como
los modelos del pequefio Higgs (Little Higgs) [9] y sus variantes [10] como el Bestest Little
Higgs (BLH) [11], cuya aplicacion al Cromodipolo Magnético del quark top abordaremos en
esta tesis.

Actualmente, con la masa del bosén de Higgs en ~ 125.1 GeV [12] aun quedan varios
temas por cubrir en el ME. Uno de los més investigados e interesantes es el de la jerarquia de

masas que guarda una intima relacion con la masa del bosén de Higgs.

1.2 Jerarquia de masas

Entendemos por jerarquia de masas o el problema de la jerarquia cuando la diferencia entre
las magnitudes de dos escalas de energia en una teoria como el ME son muy diferentes.
Por ejemplo, la diferencia entre la magnitud de las masas del electrén, los neutrinos y la
masa del quark top nos conduce al problema del sabor [13]. De este modo podemos hablar
de la jerarquia entre la escala electrodébil, M, = 246 GeV, y la escala de gran unificacién
Mrgu = 10'° GeV donde supuestamente las interacciones electromagnética, débil y fuerte
tendrdn magnitudes equivalentes y se regirdn bajo un mismo grupo de simetria. Una jerarquia
semejante podria ocurrir al considerar la escala de Planck, Mp; = 10'° GeV, a cuyo nivel se
encontraria la unificacién de las cuatro interacciones fundamentales.

El proponer una nueva escala A de energia a la cual debe operar el ME significa que éste
sOlo es una teoria efectiva a baja energia y que deberian aparecer nuevas particulas con masas
proporcionales a dicha escala. Lo anterior también implica estabilizar la escala electrodébil
en cada orden perturbativo debido a que la masa del higgs adquiere correcciones cuadraticas
proporcionales a la nueva escala, es decir (§Mpyo/Mpy0)? oc A% [14].

Si consideramos estrictamente el ME entonces los neutrinos no tienen masa' y solamente
contamos con 19 pardmetros medidos experimentalmente, Tabla 1.1, cuyos origenes tedricos
no se han descubierto, aumentando de esta manera las razones para buscar teorias extendidas.
En este contexto, podemos observar que las masas de los fermiones son proporcionales a la
escala electrodébil, my ~ M, y estan protegidas por la simetria quiral que s6lo se rompe por
el pardmetro de masa, de tal forma que las correcciones radiativas permanecen pequefias:
omys ocmyglogA/my, llegando a desaparecer cuando m — 0, el limite exacto para la simetria
quiral. Lo mismo pasa con la masa del fotén que estd protegida por la simetria de norma
manteniéndola cero en todos los 6rdenes perturbativos. Esta es la idea principal con la masa
del boson de Higgs y las nuevas teorias mas alla del Modelo Estandar puesto que no tiene

una simetria que la proteja.

'El considerar la masa de los neutrinos distinta de cero nos lleva a una extensién del ME y nueva fisica.



1.2 Jerarquia de masas

Tabla 1.1 Parametros del Modelo Estandar

Parametros Descripcion Valor [17] Unidad
M, M, M; Leptones cargados 0.511 1057 1780 MeV
M, M; M Quarks 2.16  4.67 93 MeV
M. M, M, Quarks 1.27 419 173.5 GeV
01, 63 6053 Angulos CKM 13.1° 24°  0.2°

5 Angulo violacién CP 0.995
g g gs Acoplamientos de norma 0.357 0.652 1.221
8opc Angulo QCD ~0
v VEV 246 GeV
Mo Masa del Higgs ~ 125 GeV

Una posibilidad a la que se ha recurrido para mantener la estabilidad electrodébil es el
ajuste fino?, con la cual se deduce que los pardmetros en el lagrangiano estén ajustados de tal
forma que se puede sostener la masa del higgs en 125 GeV, sin embargo, este esquema debe
contar con la afortunada coincidencia de la cancelacion de hasta 32 digitos, MIZJZ /Mv2 ~ 1032,
en cada orden perturbativo. Si buscamos una constante k de tal forma que logramos la
igualdad entre las contribuciones a la masa del higgs y la nueva escala de energia A,

M}y = KA?, (1.1)

entonces nuestra constante k deberd tener un orden de 10732 para la escala de Planck, lo cual
no es muy probable de obtener. Por lo que se ha llegado a la conclusion de que si ocurriera tal
cancelacion entonces debe existir fisica desconocida detras de tan sorprendente hecho [15].
Por otro lado, si mantenemos k ~ 10~2 obtenemos, a partir de la Ec. (1.1), una escala de
energia maxima alrededor de A ~TeV [16], precisamente en el nivel donde las teorias mas
recientes pretenden encontrar nueva fisica.

Otra posibilidad para mantener la masa del higgs a la escala electrodébil ha sido
considerar una simetria que la proteja de las correcciones radiativas mas intensas. Para
esto se tienen candidatos como la Supersimetria donde una transformacién de simetria sobre
un campo escalar lo convertiria en un fermidn el cual quedaria protegido por la simetria quiral.
De esta manera se establece una relacion simétrica entre fermiones y bosones surgiendo
superparticulas con iguales masas y cargas. Al aplicar este modelo al ME se obtiene una
version minima stpersimétrica, sin embargo esta teoria tiene una anomalia cudntica ya que
los quarks tipo down y los leptones no tienen masa y se requieren mas bosones de Higgs por

lo que se introducen dos dobletes y a partir de ellos se construye toda esta version minima

’fine-tuning
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del ME. Actualmente ha disminuido la investigacién tedrica en Stpersimetria por la falta
de evidencia experimental ya que en colisiones protén-protén a /s = 13 TeV y con una
luminosidad integrada de 137 fb~! como en el experimento CMS? [18] no han aparecido las
s-particulas que se esperaban.

Para solucionar el problema de la jerarquia, los modelos LH y el modelo BLH del tipo
dos dobletes de Higgs, implementan un rompimiento colectivo de simetria a una o dos escalas
(f,F) mayores que la electrodébil M, con lo cual generan nuevas particulas que anulan las
contribuciones cuadrdticas divergentes a 1 lazo a la masa del higgs como lo veremos en el

Capitulo 3.

1.3 Naturalidad y el BLH

El hecho de que el Modelo Estdndar pudiera ser una teoria vélida hasta la escala de Planck
sin que alguna simetria proteja las masas de las particulas escalares nos conduce al problema
de la naturalidad [19] como lo mencionamos en la seccidn anterior con la quiralidad. Desde
otra perspectiva podemos plantear la pregunta del por qué la masa del higgs se mantiene
por debajo de la escala M, y no es desbordada por las correcciones radiativas hasta érdenes
de magnitud de miles de TeVs. Si el efecto de la naturalidad estd actuando para la masa
del higgs entonces es una propiedad que se debe cumplir a cualquier escala de energia A
y en especial en teorias mas alla del ME en el orden de A ~ 10 TeV como las teorfas del
pequeiio Higgs. Podemos medir la naturalidad de un parametro observado (tt) en un modelo
dado [20] cuantificando las contribuciones de otros estados () mediante el radio

e

" (1.2)

Por ejemplo, en el BLH se tienen los campos pesados A?, H' y H* que podrian contribuir
al H, Seccién 3.5. En el Modelo Estdndar podemos medir las contribuciones cuadraticas
divergentes a la masa del higgs mediante la Ec. (1.2), Seccién 2.5.

La importancia fundamental de la relacion (1.2) es que nos permite imponer restricciones
realistas sobre los rangos de los pardmetros de un modelo extendido. En este estudio, todo
el espacio de parametros estd calculado en base a la Ec. (1.2), Seccién 4.1. Por lo que,
manteniendo un valor bajo para esta relacion no solamente garantizamos la naturalidad
del modelo sino la ausencia del ajuste fino. En los primeros modelos LH las grandes
contribuciones de los bosones de norma pesados o exdticos restringian demasiado el espacio

de pardmetros o de lo contrario aumentaban el ajuste fino atn a nivel de drbol, Seccién 4.2.

3Compact Muon Solenoid.



1.3 Naturalidad y el BLH

En el BLH al elegir dos escalas de rompimiento separadas, las contribuciones de los bosones
pesados no restringen el modelo y se mantiene la naturalidad.

Hemos organizado los temas abordados en esta tesis de la siguiente manera: En el
Capitulo 2 hacemos una breve introduccion a los sectores del Modelo Estandar que utilizamos
en el BLH y las contribuciones cuadraticas divergentes al bosén de Higgs, en el Capitulo 3
describimos razonablemente el Modelo Bestest Little Higgs, los sectores que utilizamos para
el estudio del Cromodipolo Magnético y el origen de sus reglas de Feynman, en el Capitulo
4 desarrollamos el espacio de parametros y la fenomenologia para el BLH y en el Capitulo 5

damos las conclusiones de este trabajo.






Capitulo 2

Modelo Estandar

2.1 Introduccion.

Fue a mediados de la década de 1970 cuando el Modelo Estandar de las particulas subatémicas
comenzd a tomar relevancia en el medio académico respectivo. Al principio, Steven Weinberg
desarrollaba las bases de las interacciones débiles [21] y Abdus Salam lo seguia muy de
cerca [22] pero no llamaban mucho la atencion. El medio cientifico y la investigacion
se encaminaba hacia los modelos que habian dominado en la década de 1950 como la
electrodindmica cudntica y la teoria de la interaccién de cuatro fermiones en un punto.
Sin embargo se acumulaban las pruebas experimentales sobre la violaciéon de simetrias
como la extrafieza [23], P, PT [24], y CP en las interacciones débiles [25]. Ademds se
consideraba que al tener una simetria exacta que se rompiera espontineamente entonces
resultaria experimentalmente en una simetria aproximada [26].

A partir del teorema de Goldstone [27] se abren lineas de investigacién que aprovechan
las simetrias de los lagrangianos y se descubren relaciones contundentes como resultado
de las representaciones de los grupos que contienen esas simetrias con lo que Weinberg,
Salam, Gell-Mann y otros comienzan a trabajar en grupos tales como SU(2) x SU(2) y
SU(3) con miras a la unificacion de la electrodindmica y las interacciones débiles, asi como
la estructuracion de las interacciones fuertes. Finalmente, la inclusion del mecanismo de
Higgs [2] para dotar de masa a las particulas que se conocian hasta ese momento definia la

manera en la que se plantearia la investigacion en particulas a través del Modelo Estandar.
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2.2 Estructura algebraica

El grupo de simetria del ME est4 conformado por SU (3)¢ x SU(2)r X U(1)y donde C denota
color, L indica que s6lo se actua en los estados izquierdos e Y significa hipercarga. A partir
del grupo de simetria se visualizan ocho bosones de norma sin masa de SU(3)¢, tres del
grupo SU (2), y uno del grupo U (1)y. Es conveniente describir las partes que no son bosones
de norma con las representaciones y la carga de estos grupos de simetria como tripletes de

nimeros [28]. Por ejemplo para nuestro grupo de simetria, tenemos
(1,2,-1/2)@(1,1,1)®(3,2,1/6) ®(3,1,1/3) 2.1)

donde 1 en la primera o segunda entrada simboliza que el campo es un singlete bajo SU (3)¢
o bajo SU(2)r, y el valor en la tercera entrada representa la hipercarga bajo U(1)y. Los
nimeros cuanticos, de acuerdo a su parte derecha o izquierda para los quarks y leptones

respectivamente, se presentan en la Tabla 2.1.

Tabla 2.1 Nimeros cudnticos de quarks y leptones

(i=1,2,3) SUB)e SUQ2), U(l)y

Oir 3 2 +1/6
i 1 2 12
UiR 3 1 —|—2/3
d; 3 1 —1/3
€iR 1 1 —1

2.3 Teoria Electrodébil

El grupo de simetria que representa la parte electrodébil del ME estd dado por SU(2);, x
U(1)y, en este caso se utiliza el mecanismo de Higgs para obtener una teoria de norma con
un doblete escalar complejo de Higgs ¢ cuya representacién estd dada por (2,—1/2). ¢ nos
proporcionard un potencial que romperd espontdneamente la simetria del vacio y nos dard su
valor de expectacion para dotar de masa a los bosones de norma. Para comenzar, se requieren

los generadores de SU(2) en la representacion 2

¢ = —1° (2.2)



2.3 Teoria Electrodébil

donde 7¢ son las matrices de Pauli, y también ocupamos los campos de norma Wj. Aqui, el

10
Y:C(O 1) (2.3)

donde C es la hipercarga —1/2, ademds elegimos que el campo de norma de U(1)y sea By.

generador de U(1)y es

De esta forma podemos escribir la derivada covariante correspondiente
(Dud)i = i —i [WTS +'BuY | 0, 2.4)

donde g y g’ son las constantes de acoplamiento asociadas con SU(2);, x U(1)y. Ahora
expandimos la segunda parte de la derivada covariante a la forma matricial

/
8 il 2.2 3.3y 8
ngflsza—Fg/BMY = §<W/~‘TI+WMT +W#T )—EB“]IZXQ
- 1 gWﬁ—g'B” g(WJ—iWﬁ) (2.5)
2 \gWi+iWi) —gW;—¢'By

Por lo que, la derivada covariante completa estd dada por

i ig :
(Du0) (Du¢1) 1+ i(gwﬁ —&'Bu)o1 + E(Wﬁ — W) 2.6)
u i = = 7 . l A
Dy 0o + Eg(WJ +W2)01+ 5 (W3 +8'Bu)2
El lagrangiano de ¢ con su parte cinética y el potencial tiene la forma
1
Ly =—3Du0/D"6;=V(97,0), @.7)
donde
v=la(ote-La) (2.8)
=7 V- .
Sabemos que para A > 0 podemos calcular el minimo dado por
%
= —. 2.9
9] NG (2.9)
De aqui tenemos que
I (v
0lo10) = = 2.10
(016/0) = (9) ﬁ<0> 210



Modelo Estandar

Ahora debemos expandir ¢ alrededor de este vacio

¢ (x) = 1 <v+g(x>> (2.11)

donde Ah(x) es un campo escalar real. Sustituyendo en la Ec. (2.6), reemplazando ¢; por
Lh(x) y ¢ por 0, y por dltimo sustituyendo en el lagrangiano de la Ec. (2.7), se tiene

V2
2
1 W2 —¢'B wl—iw?
Zipy =3 (V 0) a8 Ch 8 M l,“) ") (2.12)
8 g(Wu +1W“) —gW,; —¢g'By 0
El lagrangiano (2.12) se puede reescribir como
g2 0 0 0
1 0 g 0 0
9%@) = __VZV.UT s 2 /
8 0 0 ¢ -g'g
0 0 —gg ¢g°

VH (2.13)

donde V/JT = (Wl} ) Wﬁ,Wﬁ,B“). A partir de la matriz (2.13), tenemos sus eigenvalores

0, —%vzgz, —%vzgz, —%vz (¢ 24 g%), y podemos normalizar los eigenvectores para AuyZ,

1 1
VAT = —(0707g/7g)7 VZT = —(0707g7 _gl) (214)
g7 +g? g% +g?
Abhora se define el dngulo de mezcla débil

/

tan Oy = & (2.15)
8

asi como

(2.16)
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2.3 Teoria Electrodébil

En este momento ya se pueden definir los campos de norma de la manera usual a partir de

las combinaciones lineales de la matriz (2.12)

(W, —iWy), 2.17)

=
Hﬁl|>—
0

_ PR

W, = E(WJ—HWH), (2.18)
Zy = cwW, —swBy, (2.19)
Ay = swW;+cwBy. (2.20)

Para obtener las masas de los campos de norma reescribimos la matriz (2.12) con las

definiciones anteriores

1, L7y 2w/ e 2ot Lo
- 0) ew — MWW — ~M2ZMZ, 221
8% <v V2W, o ax 0 i weomEm K 22D

donde ay; siempre serd multiplicado por cero por lo que no es necesario escribir todos los

términos. De esta manera, tenemos las masas
v 2 2
My = My = 3 g +g°. (2.22)

Recordemos que Ay, no adquirié masa y queda la simetria de U (1) sin romperse por lo que
tenemos el campo y el grupo de norma del Electromagnetismo, respectivamente. Asi que
a altas energias por arriba de v = 246 GeV sélo tenemos el campo de Higgs y los cuatro
bosones de norma sin masa (Wﬁ,Wﬁ,Wﬁ,B“) que se comportan como fotones. De esta
forma, por encima de la escala de rompimiento de simetria domina la Teoria Electrodébil y
por debajo se manifiesta una simetria rota con la fuerza Débil y otra, con la no rota, la fuerza
Electromagnética.

El siguiente paso es encontrar los términos cinéticos para los cuatro campos de norma.
No es objetivo de este estudio detallar su construccion asi que simplemente escribimos el

lagrangiano correspondiente

1 1
Zein= =3 Wa " Wiy — 1B Buv, (2.23)
donde
Wiy = 0uWy — 9fAu — igean Wi Wy,

11



Modelo Estandar

2.4 Cromodinamica cuantica

Nuestro principal objetivo es el estudio del cromodipolo magnético del quark top en el
modelo BLH por lo que en esta seccion nos enfocamos en la parte dentro del Modelo
Estandar que le corresponde a estas particulas. Los quarks estan representados por el SU(3)¢
con seis sabores diferentes que se dividen en tres generaciones y spin 1/2. Abordaremos
sOlo la primera generacion ya que el tratamiento en el ME es el mismo para las otras dos.
Sean (Q, ii,d) los quarks que se encuentran en la representacién (3,2, +1/6), (3,1,—2/3)

y (3,1,41/2) respectivamente en SU(3)¢c x SU(2); x U(1)y, donde Q es un doblete de

SU(2)L
u
0= (d> . (2.25)

En la Ec. (2.25) s6lo se representa la parte izquierda de u y d por lo que no utilzamos los
subindices descriptivos en los siguientes calculos como en la Tabla 2.1. Ahora escribimos las

derivadas covariantes de los tres campos

; 1
(DuQ)ai = 3ani—igSAZ(Tf)gQﬁi—igWﬁ(Tza){fZﬁj—igl <—)BuQai, (2.26)

6
2
(Dyit)* = dyi®* — igSAﬁ(Tf)ga —ig’ (_5) By, (2.27)
_ _ _ 1 _
(Dypd)* = 9yd* — igSAZ(T;')gdﬁ —ig’ (5) B,d"”, (2.28)

donde i es un indice de SU(2); y « es un indice de SU(3)c escrito como superindice para 3
y como subindice para 3. La accién de los ocho generadores de SU (3)¢ sobre 3 se debe a Ty,
y sobre 3 se debe a I = —(T4")*, en esta ocasién Aj; es el campo de los gluones. Para las

masas de los quarks se incluyen términos de Yukawa acoplando estos campos con el Higgs
Lk = —Y'€7910ajd* —"9" Qi + h.c. (2.29)
Rompiendo la simetria de la Ec. (2.29) de acuerdo a la Ec. (2.11), tenemos

_ 1 .
Ly = ———=y (v+h) (dada +d_2dm> — Ey”(v-l—h)(uaﬁa + b u’®)

_g_
[\

— —ﬁy’(v +h) 2% Do — %y”(v + 1)U Uy, (2.30)

12



2.5 Boson de Higgs y el problema de la jerarquia

donde los campos de Dirac para u y d estan dados como

da Ug
Dy = U= . 231
* <i62d§> * <i0'2u2;> 231

Las masas para u y d estdn dadas por

y/V B yHV

o M=

Para encontrar la forma de la carga Q partimos de la parte izquierda de la Ec. (2.5) cona =3

M, = (2.32)

y las formas inversas de las ecuaciones (2.17) a (2.20)

e e
gWiT? +¢'BY = J(SWA# +ewZy)T? + J(CwA‘u —swZy)Y

= e(Ay +cot GWZM)T3 +e(Ay —tanBwZy,)Y
= (T’ +Y)A, +e(cotOyT? —tan By Y)Z,
e
= eQA+—(T° —s3,0)Zy (2.33)
SwcCw

de donde es claro que Q = T2 + Y. También hemos utilizado la relacién

e

&= senBy’

(2.34)

donde e es la carga eléctrica. De esta manera, las cargas de los quarks estdn dadas por medio
de
2 1

2 1 - _
= —_ = —— = ——1u = ——Ad. 2.
Ou +3u, Qd 3d, Qi 3u, Qd 3d (2.35)

2.5 Boson de Higgs y el problema de la jerarquia

El bosén de Higgs se ha convertido en una fuente de inspiracion para construir extensiones
del Modelo Estdndar, una de las motivaciones principales son las correcciones radiativas
a 1 lazo que recibe su masa desnuda a nivel de arbol, Fig. (2.1). Este problema, conocido
como jerarquia o ajuste fino agrega una divergencia cuadrética al higgs. Si se calculan estan

correcciones, la masa del higgs queda como

MI%IO = (MI%IO>desnuda + 5M[%10 (2.36)
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Modelo Estandar

H/ \ W
\
\ /71 H H
H _ _ _ _~_,_~7_ _ _ _ _ _ _ _ — H
Y 9>
w /
H H
H —_—- o — —_ o — —_ H
g g Yy Yy
%% f

Fig. 2.1 Contribuciones a 1 lazo a la masa del Higgs.

Hasta este punto no hemos deducido la masa del higgs pero lo podemos hacer sustituyendo

la Ec. (2.11) en la Ec. (2.8), lo que nos proporciona

4 1 1 1
f o212 3 b
V(oT,¢) = 47w Wi+ 16/Ih , (2.37)

donde el primer término de la segunda parte de (2.37) nos da la masa del higgs a nivel de

My = \/gv. (2.38)

De esta ecuacion tenemos la expresion analitica para la masa desnuda del higgs y las

arbol

correcciones a 1 lazo estdn dadas por

GpA?

SMpy = ———
H ™ 4\/212

(6Mi, +3M% + Mz — 12M7) + - -- (2.39)
donde Gr es la constante de Fermi y la escala A no interviene en la divergencia de los
términos de masa adicionales en la Ec. (2.39), [29]. Para cancelar los términos divergentes se
pueden agregar otros términos que cancelen precisamente las contribuciones a 5M]210 donde
al tener, por ejemplo, A = 10'® GeV volverfamos a la discusién de la seccién 1.2. Por esta
y otras razones que abordamos en la seccion 1.3 es que se han buscado alternativas mas
practicas como los modelos Little Higgs, lo que nos llevard a mostrar las ventajas de una de
sus variantes: el modelo Bestest Little Higgs [11], en lo que resta de este trabajo.

14



Capitulo 3

Modelo Bestest Little Higgs

3.1 Estructura no-lineal sigma

Sabemos que los modelos del tipo Little Higgs (LH) [10] [30] [31] [9] fueron desarrollados
para manejar el problema de la jerarquia de masas introduciendo una simetria global cuyo
rompimiento es llevado a cabo por dos operadores que se aplican a dos subgrupos de simetria
diferentes para evitar que cualquiera de ellos pueda generar el potencial de Higgs por
separado.

En el caso del modelo Bestest Little Higgs (BLH) [11], la gran diferencia respecto a
los primeros modelos LH es que el rompimiento colectivo de simetria se hace mediante
un proceso modular, por debajo de la escala de composicién A ~ 10 TeV, introduciendo
dos campos sigma no-lineales con dos escalas de rompimiento diferentes, (f,F), lo que
permite dotar a los bosones ex6ticos con masas del orden ggw F', proporcionando la libertad
de incrementar F ya que no afecta a la masa de los tops exéticos que sélo dependen de f.
En este modelo, el higgs es un pseudo bosén de Nambu-Goldstone (PBNG) conteniendo
dos dobletes de higgs, los cuales adquieren un acoplamiento cudrtico colectivo mediante un
singlete PBNG electrodébil. También se incluyen PBNGs ligeros.

En términos de grupos se sigue el espacio del grupo producto lateral SO(6)4 X
SO(6)p/SO(6)y que nos sefiala que después del rompimiento global de la simetria
SO(6)4 x SO(6)p, alaescala f, esta se degrada a SO(6)y. En este esquema se introduce el

campo no-lineal sigma que se transforma como
T — GAXGl, 3.1)

donde se cumple G' = G, ya que los elementos de SO(6) son reales y por lo tanto X es
una representacion real de SO(6) x SO(6). Cuando el campo sigma adquiere un valor de
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Modelo Bestest Little Higgs

expectacion del vacio (VEV),
(X) = Tgxe, (3.2)

los 15 PBNGs se pueden parametrizar en la forma

5 — oU/F 200/ i1/ (3.3)

donde las matrices I1 'y I1;, son matrices imaginarias de 6 x 6 antisimétricas

0T} + NaTy 0 0
= 0 0 ic/V2|, (3.4)
0 —ic/vV2 0
. 04 hy hy
My=— |- 0 o0]. (3.5)

V2

—hl 0 0

Los h; son 4-multipletes de SO(4) que también se pueden definir como dobletes de SU(2).
El singlete que ayuda a obtener el acoplamiento cuértico colectivo es ¢. Los ¢, forman
un triplete electrodébil con hipercarga cero y los 1, se transforman como un triplete bajo
SU(2)g. El bloque superior SO(4) en cada SO(6) se puede descomponer en el producto
SU(2)r x SU(2)g con los seis generadores 7/ y Tg (A.1). También se norma débilmente
la combinacién diagonal de SU(2)74 y SU(2).p identificando esto con el grupo de norma
SU(2); del ME. De la misma manera, se norma la combinacién diagonal de la tercera
componente de SU(2), (T3, + Tip), identificdndola con la hipercarga del ME.

Esta parametrizacion preserva la simetria ¥ — X7 que implica IT — —ITy IT, — —II,,
sobre los PBNGs.

Un punto importante en la construccion del modelo BLH es la generacion del
acoplamiento cudrtico de Higgs, para lo cual se necesitan dos operadores especiales donde
cada uno rompe una parte de la simetria global, y ninguno por si s6lo permite que el higgs

adquiera un potencial. Estos se definen como
Ps = diag(0,0,0,0,1,0), Ps=diag(0,0,0,0,0,1), (3.6)
y el potencial colectivo cudrtico estd dado por

1 1
Vs = 4—1165f4Tr(P6ZP52T)+Zl56f4Tr(P5EP6ZT) (3.7)
1

= 1156f4(256)2+%l65f4(265)2-
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3.2 Potencial escalar

En la Ec. (3.7), el término con Ags rompe la simetria SO(6)4 x SO(6)p hacia
SO(5)a6 X SO(5)ps y el término con Asgq degrada la simetria global a SO(5)45 x SO(5) -
Explicitamente, s6lo permanecen los términos (5,6) y (6,5) de los productos de matrices.
De esta manera se protege a i1 y hy permitiendo que ¢ adquiera un potencial. Sustituyendo
la parametrizacién (3.3) en la Ec. (3.7) y expandiendo en potencias [32], se tiene

1 2 Lse 1 2
f6+%h1h2+... +5 fc—ﬁhlhfr... . (3.8)

A partir de este potencial se obtiene la masa para el singlete &

_ e

Vi="3

mg = (Aes + Ase) f2, (3.9)

donde podemos observar que no se generé otra masa para el higgs. En cada término de la Ec.
(3.8) aparece un elemento cuartico de los higgses que puede desplazarse de dicho potencial

. nr . .
mediante ¢ — 0 =+ \1[—21; Al integrar o, se tiene

Vi AseAes

1
i (W hy)? = ZAo(hT mo)?. (3.10)

2

La Ec. (3.10) tiene la forma correcta para un potencial colectivo cudrtico, ya que cuenta
con dos acoplamientos para el término cudrtico thhz. Esto permite que todo el potencial
sea cero si cualquiera de los VEVs de los higgses lo es. Si hacemos ¥ — KXK donde
K =diag(1,1,1,1,1,—1) observamos que la Ec. (3.7) respeta esta simetria discreta y no se

generan diagramas peligrosos! en el potencial de Higgs para el singlete ©.

3.2 Potencial escalar

En los escalares del bloque superior izquierdo de la matriz (3.4) no tenemos interacciones
de norma y éstos deben manifestarse como bosones de Goldstone, por lo que se utiliza un

término de ruptura de simetria adicional [11]

£ mi-lys O O
-7 0 m: 0 |-Zf, (3.11)
0 0 mZ

Tadpoles.
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este operador rompera explicitamente todas las simetrias axiales dotando con una masa
positiva a los escalares. Para provocar el rompimiento electrodébil de simetria también se
requiere afadir el potencial

Vg, = mief*Lse+misf Les (3.12)

u
= V2(mgs—m3g) fo — (m3g+mgs)h hy+ ...

que genera la masa de Higgs thhz.

El operador de la Ec. (3.11) no es invariante si normamos SU (2)4 y SU(2)p en SO(4)4 X
SO(4)p por separado, por lo que debemos incluir el segundo campo sigma no-lineal A junto
a X para reproducir las masas

2 2

Vis — —meﬁTr (A*M%ZMZT6 +AM262TM§6) _ f? (m2Ess +m2Ze6) (3.13)

Aqui, A degrada la simetria global SU(2)¢ x SU(2)p a la simetria diagonal SU(2)y a la

escala F > f. Este campo esta definido como
; T,
A= ?Ma/F Hdzxq“, a=1,2,3. (3.14)

La matriz I1; estd dada en términos de los tripletes escalares , y las matrices de Pauli 7,,.

La matriz Myg tiene la forma [32]

1 fO 0O 1 i 00
Mo = —= ! , (3.15)
V2\l =i 0000

ésta preserva las simetrias de norma en la Ec. (3.13). Si expandimos A en series de potencias

y sustituimos en la Ec. (3.13), obtenemos para los términos de masa

1 1 1 1 1
Vs = 5mg @ + smy; +zmihl b +5m3hlhy + 2 (mE +mg)e®. (3.16)

Es importante destacar las masas que han obtenido los campos Ay, hy, ¢, y N,

my = my=mj, (3.17)
1

m = E(mﬁ—km%), (3.18)
1

m; = E(mﬁ—km%). (3.19)
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3.2 Potencial escalar

En la Ec. (3.16) encontramos una contribucién a la masa del ¢ dada por %(m% + m%) pero ya
que ms y mg pueden elegirse pequefias en comparacion con la escala electrodébil se descartan
al compararlas con la escala f ~ 1 TeV.

Finalmente podemos formar el potencial escalar completo
V =V4+Vgrs+Va,. (3.20)

En el modelo BLH se considera al escalar o el campo mds pesado por lo que debemos
integrarlo en la Ec. (3.20). Esto lo podemos realizar minimizando el potencial en la misma
ecuacion respecto de o y sustituyendo el resultado de nuevo en la Ec. (3.20), con lo que
obtenemos

1 1 1 2
—m3hT hy + Emghg hy — Byhl hy + 40 (hlha)”, (3.21)

VHiggs = )

donde 5 )
/'L56m65 + )’65m56

Ase +Ags

y el término Aq se definié en la Ec. (3.10). Necesitamos que m% y m% sean positivas para que

B“:

(3.22)

el potencial tenga un minimo, ademas se debe cumplir B;, > mm; para que €l origen sea
inestable y se rompa la simetria electrodébil [11]. De acuerdo a la invarianza de norma de
SU(2) elegimos que las primeras componentes de A y i, adquieran VEVs

1 mp

vi = <h11>2=Em—1(3u—m1m2), (3.23)
1
Vo= <h21>2:EZ—;(B“—m1m2). (3.24)

A pesar de las pequefias correcciones radiativas cudrticas y correcciones de orden v/ f a estos

VEVs, se mantiene la forma de las Ecs. (3.23), (3.24) de donde se cumplen las relaciones

Vo= (h11)? 4 (hy1)? ~ (246 GeV)?, (3.25)
_ () _m
tanff = )~y (3.26)

Al reemplazar los dobletes de Higgs por sus VEVs h;j1 — hj; +v;, i = 1,2, en el potencial de
la Ec. (3.21) y diagonalizando la matriz escalar, las componentes de /; y &, se combinan para

obtener los tres bosones de Goldstone (G*,G®) que originan los tres bosones electrodébiles
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del ME (Wi,ZO), asi como sus masas y las de los bosones H°, A%, H* y H', [11]

Mg = Mg =0, (3.27)
M2 — MR — R

a0 = Mpe=mi+mj, (3.28)

M? _ B B 2B v2sen2B + A2visen?2 3.29

W = senZB:F sen22/3_ AoByvisen2f3 + Agvisens2f3. (3.29)

3.3 Sector de norma

En el BLH se tiene un rompimiento colectivo de simetria mediante dos campos sigma
no-lineales [11]. X rompe la simetria global SO(6)4 x SO(6)p hacia la diagonal y A
rompe la simetria global SU(2)¢ x SU(2)p también hacia la diagonal a las escalas 'y
F, respectivamente. Para relacionar estos dos modelos sigma normamos SU (2)4 en SO(6)4
y SU(2)c en SU(2)4, asi mismo SU(2)p y SU(2)p con SU(2)p. Ya que los dos campos
sigma rompen dos simetrias globales separadas SU(2) x SU(2) hacia la diagonal SU(2)
también debemos esperar dos conjuntos de tripletes ligeros de bosones de Nambu-Goldstone.
En este caso, s6lo un conjunto de tripletes serd comido porque las dos simetrias globales
SU(2) x SU(2) estan normadas con los mismos bosones de norma SU(2)4 x SU(2)p. Para
los bosones de norma fuera de la diagonal de SU(2), tenemos contribuciones a las masas
desde ambos modelos sigma, las cuales son proporcionales a F' ~ \/W sin embargo,
F puede tomarse tan grande como sea necesario para evitar el ajuste fino.
El lagrangiano para el sector de norma esté definido como

f? F? .
& =1 Tr (DX DPE) + - Tr (DuA'DHA), (3.30)

donde las derivadas covariantes estdn dadas por [32]

DuE = OuE-+igaAl, TS —igpTAS, T +ig [BiT”,Z], 3.31)
. ™ ¢
DyA = auA—f—lgAAm?A—lgBAAz“?, (3.32)

en este caso, g4 y A r (a=1,2,3) son el acoplamiento de norma y el campo asociados con
SU(2)ra mientras gz y A5, son el acoplamiento de norma y el campo asociados con SU(2) s,
por otro lado, g’ y Bi son el acoplamiento de hipercarga y su campo, respectivamente. Las
expresiones para los campos Ai’”, Agu y B}, en términos de los eigenestados de masa, se
encuentran en el apéndice B.1.
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3.4 Sector fermionico

Los eigenestados de masa de los bosones de norma se calculan mediante el cambio
hiy — hi1 +v; (i =1,2) en el lagrangiano de la Ec. (3.30) y expandiendo en series de ? para
después diagonalizar hasta & ( ) [32][33]. Las masas de los bosones de norma del ME, 7,

Wy Z0, asi como los bosones exdticos del BLH, W/ * y Z’, estan dados por las expresiones

M; = 0, (3.33)
1 312 v
MZ, = V(g 2 (53— C3) = 3.34
70 4V (g +g g +g ( + +F2 )48f2 ) ( )
1 3f v
1 1
My = J(&h+gn)(f2+F) - Zgzvz (336)
312 v
202 2 B 2
1
My = 283 +8p)(f*+F?) — Miy, (337)
el acoplamiento electrodébil de SU(2) se define en términos de g4 y gg como, [11]
1 1 1
- ==+t (3.38)
8 81 8B
El dngulo de mezcla 6, en s, y ¢, estd dado como
s = senBy = g4 cg = cosB, = 85 (3.39)

\/ & +&3 \/ & +&3

3.4 Sector fermionico

Para la fenomenologia del BLH la parte mds interesante es el sector de los fermiones porque
son el quark top y el quark bottom los que tendrdn la conexién mds fuerte con los fermiones
y bosones exéticos de este modelo [34][35][32][33]. Necesitamos expresar los quarks del
ME mediante un multiplete de SO(6) y otro de SO(6)p para construir las interacciones
de Yukawa. Estos van a contener dos singletes y dos dobletes de SU(2)r, para SO(6)4

tenemos [11]

o = (7( Qa1 — Om), %(Qal —sz)yi(Qaz—le)

5 L\/—<Qa2+le) Q5,Q6),

(3.40)
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donde Q, = (Qu1,Qu42) es un doblete con hipercarga —% y Op = (Qp1, Op2) es el otro doblete
con hipercarga % Os y Qg son los singletes mencionados bajo el producto SU(2); x
SU(2)g = SO(4). Si normamos una combinacién lineal del generador 73 con la simetrfa
global U(1)x del sector fermién entonces podemos relacionar Q, con un doblete de quarks
del ME con hipercarga %,

Ty = Tj + Tx, (3.41)

eligiendo como % la carga Q en U(1)x se reproduce la hipercarga deseada para Q,.
La representacién de los quarks en SO(6)p tiene una forma semejante a Q7
U = (5 (U5~ U 75 (U5 = U 5 U5~ Ui 5 U+ U S0 )
(3.42)
en este multiplete los dobletes de SU(2);, estan intercambiados, la hipercarga para U es —%.
Al lagrangiano que contiene el acoplamiento de Yukawa con el quark top [11] le agregamos
el término que también nos dard el acoplamiento con el quark bottom cuyas interacciones

con las particulas exdticas del BLH también necesitamos
L =01 fQ STSU +y2fQ (XU  +y3fQ"EU'S +ypf 5 (—2TRE)Us + Hoc.  (3.43)

donde los multipletes primados @}, y U’¢ se consideran incompletos pero con las mismas
hipercargas, % y —% respectivamente, el multiplete (U,f)T tiene hipercarga % pero también
contiene el quark b derecho. Explicitamente estan definidos como

1 ) .
Q/Z = E(_Q;leﬁllaQlaZle;bOvO)a (344)
v = (0,0,0,0,U',0), (3.45)
5" = (0,0,0,0,5°,0). (3.46)

En el lagrangiano de la Ec. (3.43) se usa la matriz § = diag(1,1,1,1,—1,—1) de SO(6) para
romper las simetrias SO(6)4 y SO(6)p y g3 es un doblete izquierdo con la tercera generacién
de quarks del ME e hipercarga %

Para conocer los eigenestados de masa de los fermiones después del rompimiento
espontdneo de simetria electrodébil se vuelve a hacer el cambio h;; — h;; +v; (i = 1,2),

sustituyendo en el lagrangiano de la Ec. (3.43). Después de expandir en series y diagonalizar
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se tienen las masas? (ver apéndice en [32])

M = ¥, (3.47)
2y2 V4
M; = ypi— b1 3.48
92y2y2y2
Mp = I+ 55— (3.49)
07 +32) (65 —¥3)
912y2y2)2
Mis = 0T+ — 55—, (3.50)
! 07 +53) (3 = ¥3)
Mz = (i+3)f% (3.51)
Mis = M,y =Ms;=yif (3.52)
El acoplamiento de Yukawa para el quark top estd definido como
2= 9yiv2y3 353
C = . .
0F +33) 0F +33)

En el esquema del rompimiento colectivo de simetria para el modelo BLH destaca la
propiedad de que los acoplamientos de Yukawa (y;,y2,y3) deben ser distintos de cero para
establecer el lagrangiano de la Ec. (3.43). Otra caracteristica interesante es la dependencia
respecto de f en todas las masas de los quarks a excepcion de la masa del top, la cual debe
permanecer constante en el valor experimental. Por dltimo, cabe sefalar explicitamente que
los quarks s6lo dependen de la escala f mientras los bosones de norma también dependian
de la escala F.

3.4.1 Sector de corriente
Las interacciones de los bosones de norma con los fermiones provienen del lagrangiano
& =iQ" "D, 0+ it — iU "D, U — iU’gTr“DMU’g — iU M DLUS.  (3.54)

donde 7#, T son las matrices de Pauli y las derivadas covariantes estdn definidas como [32]

2El tratamiento para los quarks ligeros y los leptones se puede ver también en [11].
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. . 3 2

D’uQ = 8”Q+ngA”fuT“Q+zg’BfL (T/ +§]16><6) 0, (3.55)

./

. 1

DLO, = a”Q;ﬂgAA?MT“Q;JF%BzQ;, (3.56)

2
DU = 8”Uc+igAA§uT“UC+ig’BZ (T’3—§]16x6) U¢, (3.57)
/¢ I 2ig/ 3 y0C

D”Us - 3“U5—TB”U 59 (358)
ig'

DuUf = 8”U§+?BzU,§. (3.59)

Ya se habian definido los campos primados y no primados como multipletes incompletos
y completos respectivamente, asi como sus acciones en los grupos SO(6)4 y SO(6)p. Los
campos Acf,z wy Bz y las matrices 7%, T'" pueden verse en el apéndice B.1.

En la Tabla 3.1 resumimos los nimeros cudnticos de los fermiones (multipletes) en el
modelo BLH, [32]. El operador de hipercarga en este caso estd dado por

Y=T3 +Tx = Qem —T;. (3.60)

Tabla 3.1 Numeros cudnticos de los multipletes en el BLH

(i=1,2,3) Ty T3 T} Y Orum

Qa1 +2/3 —1/2 +1/2 +1/6 +2/3
Qa2 +2/3 —1/2 —-1/2 +1/6 —1/3
b1 +2/3 +1/2 +1/2 +7/6 +5/3
On2 +2/3 +1/2 —1/2 +7/6 +2/3
Qs +2/3 0 0 +2/3 +2/3
Qs +2/3 0 0 +2/3 +2/3
O +2/3 —1/2 +1/2 +1/6 +2/3
0 +2/3 —1/2 —1/2 +1/6 —1/3

U¢, —2/3 +1/2 +1/2 —1/6 +1/3
Us, —2/3 +1/2 -1/2 -1/6 —2/3
U¢, —2/3 —1/2 +1)2 -1/6 —-2/3
Us, —2/3 —1/2 —1)2 -1/6 -5/3
% —2/3 0 0 —2/3 —2/3
5/66 _3/3 0 0 _2/3 _2/3
¢ /30 0 2/3 —2/3
be 1 +1/3 0  +1/3 +1/3
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3.5 Correcciones radiativas

3.5 Correcciones radiativas

3.5.1 Potencial de Coleman-Weinberg

Las correcciones radiativas a un lazo es un tema muy interesante en el modelo BLH y en
cada uno de sus sectores es posible calcular esas contribuciones [11] mediante el potencial
de Coleman-Weinberg [36].

Vew = A—zSt (M*(%)) + LSrr {M“(Z) <10g <M2(z)) — 1)] , (3.61)

3212 6472 A? 2

donde Str es la super traza [37][11].

3.5.2 Correcciones sobre ¢

Las correcciones cuadraticamente divergentes al potencial de la Ec. (3.7) estan representadas

por el término [11]
32A? 2 2
BT (7%52 +As6)." | (3.62)
65 56
que es de la misma magnitud pero de signo contrario que la version a nivel de arbol. De esta

manera, el campo ¢ no presenta divergencias a 1 lazo. Las divergencias logaritmicas del

mismo potencial cudrtico se mantienen pequefas y suprimidas por potencias de 1/f, [11].

3.5.3 Correcciones de norma

Los lazos de Z y W contribuyen con términos de masa cuadraticamente divergentes de 1 lazo
al potencial de Higgs [11], Ec. (3.21), mediante la expresion

(hTh1 +hhy), (3.63)

para eliminar estas divergencias se necesitaria que las masas de los bosones de norma de la
teoria tuvieran varios TeV de magnitud, lo que obligaria a aumentar bastante la escala f'y
arruinar posiblemente el ajuste fino, sin embargo, en el modelo BLH esto se remedia con el
rompimiento colectivo de simetria y los dos nuevos acoplamientos de norma g4 y gp. De esta
forma, cualquier correccion radiativa para el potencial de Higgs serd proporcional a uno de
los acoplamientos pero no a los dos, y no se genera un potencial a partir de las interacciones
de norma a 1 lazo.
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La principal correccion logaritmicamente divergente al potencial de Higgs por parte del

sector de norma estd dado por

38282F2 B
~oan2yr 02 iz, ) [To (AT h +h3ha)? 4300 (i + o) +3(0a9)’]

9g18%
51272

+ log 25 (f2+ F2) (hThy + hS hy + $649°) (3.64)
W/

La ecuacion (3.64) tiene contribuciones muy pequeiias que se pueden despreciar [11].

3.5.4 Correcciones sobre la hipercarga

Las correcciones a 1 lazo para el potencial escalar provenientes de la hipercarga estd

cuantitativamente representada por

3g/2A2
Sy BT 4 5 (F 4 mdmi 4 3 (07 n3) ([ A+ hho)
3 /2A2
+ 5 i nd + S+ W o)) (3.65)

Las contribuciones de estos términos de masa cuadriticamente divergentes no causa
problemas al potencial de Higgs (3.21), también existen aportaciones logaritmicas pero

son ain mas pequeias [11].

3.5.5 Correcciones a los fermiones

En el caso de los fermiones el acoplamiento de Yukawa del quark top no genera divergencias

cuadréticas o logaritmicas, por lo que la correccidn finita a la masa del higgs estd dada por

3 2 2 2 2 2 2
v, = 7 o1l yal7lysl o v~ + ly2

. =— W hy. (3.66)
16m2° [ya2—[ys2 P+ lysl2

Este resultado nos permitird encontrar una region valida en el espacio de parametros del
modelo donde se definira el rango de la escala f de tal manera que no incremente el ajuste
fino en la teorfa. Por otro lado, los demds quarks y leptones contribuyen con términos de

masa cuadriticamente divergentes m? al Higgs [11]

3N

2, T
= hih 3.67
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3.5 Correcciones radiativas

donde y es el acoplamiento de Yukawa para los fermiones ligeros cuya magnitud es irrelevante
numéricamente, y A es la escala de corte de la teorfa, A = 47xf ~ 10 TeV. Las contribuciones
de las correcciones radiativas a m en el sector fermidnico generan un incremento en el ajuste

fino que requiere el modelo, dicha medida estd dada por el radio entre la variacién §v? sobre

la misma v?

S5v?

1%

Para medir explicitamente las contribuciones mencionadas sobre m en la Ec. (3.68), tenemos

p—
8m% V2

(3.69)

donde aplicamos la primera parcial sobre la Ec. (3.24) y considerando que tan 8 = :—;, se

tiene 92
% 1
= — . 3.70
om? Apcos? B (3.70)

Por otro lado, sabemos que la variacién sobre la masa m; en el lagrangiano de la Ec. (3.21)

tiene la forma

1
5(m%+6m%)h{h1, (3.71)

por lo que de la Ec. (3.66), surge la expresion

2 272 P Plysl? . 2+ el
omy = ———5 2 51 2 2"
872 [y2|* — |ys| [y1]%+ |y3]

(3.72)

Sustituyendo (3.72) y (3.70) en (3.69), conseguimos una expresion sencilla para medir el

ajuste fino
_ 2712 |y1|2|yz|2|y3|2l 1]+ [y2]?
8m2v2 20 cos? B [y22 — 3?7 |y1]* 4 [yal?

La Ec. (3.73) es la pieza clave para construir un espacio de pardmetros valido para el BLH,

(3.73)

ya que se deben buscar numéricamente (y1,y,y3) de tal forma que al lado de (f, Ao, B) se
mantenga W ~ 1. En [32] y [33] trabajan con ¥ ~ 10 debido a que s6lo consideran procesos
a nivel de arbol. En el capitulo 4 mostramos los resultados numéricos, en gran parte basados
en la Ec. (3.73).
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Capitulo 4

Fenomenologia del Modelo BLH

4.1 Espacio de parametros

Para este modelo como para todos los del tipo LH se requiere dar valores convenientes
a los parametros libres de acuerdo a los datos experimentales mds actualizados, como en
el caso de los bosones exoticos pesados [38][39]. También es necesario considerar las
contribuciones que pueden aumentar el ajuste fino, ¥ ~ 1, en todos los sectores, sobre todo
en el top a partir de la Ec. (3.73) donde los acoplamientos de Yukawa (yy,y>,y3) también
deben satisfacer la Ec. (3.47) con los valores 0 < y; < 1. Por lo tanto, debemos encontrar una
solucion simultdnea a las ecuaciones (3.28) y (3.29) para que Ag, My, M40 y P satisfagan las
restricciones Myo = 125.1 GeV, Ag < 4m, tanff > 1,y

1
M\ Mg,
2+ (1 1
M? 4mv?
(tanB)? < A°

D=

—1, 4.1
M3, 4mv?

[34]. Los resultados de dicha biisqueda se muestran en la Tabla 4.1 donde se utilizaron

y2 =0.7y y3 =0.9. Para calcular las masas de los campos escalares (¢, 7n) a partir de la Ec.

(3.28) y my = m tan 3, tenemos la relacion

MAO:\/m%+m%:\/m%(1+tan2[3)=mlsec[3. (4.2)

Utilizando el intervalo de valores para M40 encontramos el rango de valores para m; y mp
Tabla 4.2. Ya que m4 es un parametro libre, su masa se fija en 30 GeV [11][34] y esto nos
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Tabla 4.1 Parametros del Modelo BLH (1).

Parametro Unidad
1.35 < B < 1.49 rad
1 < A < 4m -
03374 < y; < 0.3287 -
1 < ¥ < 3 -
307.25 < My < 1693.04 GeV
916.1 < My < 1900.33 GeV

conduce a Mo = 30 GeV gracias a la Ec. (3.17), sin embargo no podemos hacer lo mismo
con Mo debido a que ¢ s recibe correcciones radiativas por arriba de la escala electrodébil
que no pueden despreciarse [32]. Por otro lado, las ecuaciones (3.18) y (3.19) nos permiten
calcular los rangos de valores para ms y mg, Tabla 4.2, a partir de éstos ya no podemos
despreciar sus contribuciones a la masa de o, Ec. (3.16).

Las masas de los campos escalares siguientes contienen las correcciones radiativas a 1

lazo en términos de las escalas de rompimiento f'y F, [33],

16 ,3g2g> A? fH+Ft
2 2-5A5B 2
M¢0 = ?F WLog M‘%V, +m4m, (43)
16 ,3g%¢2 A? fA4+f2F?+F4
My = —F*2ALL 7 44
o+ 37 322 M2, TR (R 4
3f2g/2 AZ
2 _ 2
Mni - M4+Wﬁ (45)

donde A =4xf, g es la constante de estructura de SU(2) y las (ga,gp) estan asociadas con
SU(2)4 x SU(2)p. A partir de la Ec. (3.38) con la constante de estructura g = 0.6528 y
haciendo g4 = gp, obtenemos g4 = gp =~ 0.9231 en el limite de la paridad T cuando los
bosones exdticos se desacoplan de los higgses [11]. De esta manera, se puede definir el
angulo de mezcla 6,

tanf, =4 =1 = %zg. (4.6)
8B

Otro parametro dentro del modelo BLH es el dngulo de mezcla « [11] entre el HO y el
H' definido como, Tabla 4.2,

1 B
— 2 2.4 2
tano = B — Aovsen2B By cot2f3 + \/sen22ﬁ —2A0Byvesen23 + Agvisen®23

4.7)
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4.1 Espacio de parametros

Tabla 4.2 Parametros del Modelo BLH (2).

Parametro Unidad

67.29 < m < 136.64 GeV

299.79 < mp < 1687.52 GeV

90.31 < ms < 190.89 GeV

42291 < mg < 2386.33 GeV

—0.1783 < a< 0.04722  rad
182677 < By < 291763 -

Mno 30 GeV

Finalmente, dentro de los pardmetros del modelo necesitamos la masa del singlete o a
partir de la Ec. (3.9) y el dltimo término del potencial de la Ec. (3.13),

1
Mg = (Ase+Ags)f> + 7 (m5 +mg). (4.8)

En la Ec. (4.8) debemos sefalar un limite para el primer término de la derecha, considerando
que Ag < 471 [34], tenemos

Ao < Ase+Aes < 8m < 1672, (4.9)
2
1 Ase + Aes < 16w ’
Ao Ao
1 Ase + Aes < 1672
220 Ao(8m —Ao)’
de la dltima desigualdad de la Ec. (4.9) y la Ec. (3.28) podemos escribir la Ec. (4.8) como
1
MZ =2RsAof* + 5(MjO — M), (4.10)
donde 5
167
l<Re < ——+—. (4.11)
T 28— )

En nuestro caso, ya que Ay =~ 471, tenemos que Rs ~ 1. Cabe mencionar que los valores
y1 =0.7y y» =0.9 en la ecuacién (3.73) nos proporcionan el rango para y3 de la Tabla 4.2 y
el rango de valores para el acoplamiento de Yukawa

0.70457 <y; <0.71975. (4.12)
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4.2 Diagramas y Amplitudes del CDM

Desde que Julian Schwinger! calculé la contribucién a 1 lazo para el momento anémalo
magnético del electron en 1948 [40] se ha diversificado tanto el cdlculo como la medicién
experimental a diferentes particulas del ME como el neutrén [41], o el quark b [42]. También
para particulas en modelos extendidos como en el minimo supersimétrico para el muén [43],
o el bottom en seis dimensiones [44].

En este estudio usamos el modelo BLH para obtener el cromodipolo magnético del quark
top, de esta manera calculamos todas las contribuciones validas a 1 lazo con los quarks y

bosones exoticos, Tabla 4.3.

Tabla 4.3 Fermiones y bosones.

Quarks Carga \ Bosones Carga

t T +2/3 | HY Z° 0
b B -1/3 | W* H* +1
75 T +2/3 | H 7 0
T3 42/3 | A ¢° 0
T3 4+5/3 | ¢F n* +1
n° 0

Los diagramas que se utilizaron en los cromodipolos se muestran en la Figura 4.1, donde
no aparece 1= ya que su aportacion es cero a 1 lazo. En [33] y [32] parametrizan los
acoplamientos de Yukawa, (y1,y2,y3), mediante dos dngulos para encontrar curvas de nivel
de la Ec. (3.73) cuyas superficies funcionan como espacios de pardmetros validos. Sus
célculos a nivel de arbol no contemplaban correcciones radiativas y manejaban el valor
W ~ 10 lo que les daba resultados aceptables. En [11], el autor menciona que una cantidad
de ¥ ~ 2 contribuye con el 50% sobre el ajuste fino por lo que en nuestro cdlculo hemos
restringido el espacio de pardmetros de tal forma que 1 <YW < 3, ver la seccién 4.1.

Las contribuciones al cromodipolo magnético del quark top en el modelo extendido se

han cuantificado de la siguiente manera
=Y 0 (S)+ Y (V). (4.13)
i i

A partir de los diagramas 4.1 podemos construir las amplitudes correspondientes a las
contribuciones escalares y de norma, Ecs. (4.14) y (4.15), utilizando las reglas de Feynman
del Apéndice C.

la, =0.0011614
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9u(q)

(a) (b)

Fig. 4.1 (a) Contribuciones escalares, S;. (b) Contribuciones de norma, V;.

Z.Uze Sa(p') (fs, +fPY5) OAqy |1

PO g
(ot =m0

k—Fp-i-n’IQl
(—zng“ 062052) m6a3a4 <fS,»+fP,~'}'5)
X5a4BM(p) (m) . (414)
Si

En la amplitud (4.14), fs y fp hacen referencia a los acoplamientos escalares y

pseudoescalares de los vértices, respectivamente.

2 dk_ ) k4 +mg,
(fv, + fa, 7’5> OAq, |1 it p)— Qj5a1a3]
+p+
(—zgsy” a2a3) (kk_f_pﬁ)—mQéQ.SWOm] »}ﬂz (fV, +fAiy5>
I koy ko,
><5a43u(p) []{2——}’}1‘2/1 <—ga1a2+ m‘z/l )] . (415)

En la amplitud (4.15), fy y fa tienen el mismo propdsito de representar los acoplamientos
vectoriales y axiales, respectivamente. En el caso del fotén no se tiene parte longitudinal en

el propagador.
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El célculo de las amplitudes se hizo con los paquetes FeynCalc 9.0 [45] y Package-X [46]
para Mathematica 11.
El lagrangiano del CDM est4 definido como [47][48][49]

1_ .
Ly = —5aa0" (uq+ldqy5>qBszT,fB, (4.16)

donde T representa el color de los generadores de SU(3)c, A y B simbolizan los indices
de color, 6*¥ = L[y*,7"], i, es el factor de forma cromomagnético que conserva CP, d,
es el factor de forma cromoeléctrico que viola CP, y Gy, = dugy — dy gh—8s fabcgz g5 es
el campo del gluén. En el contexto del ME, el CDM se induce a 1 lazo [50], mientras
que el CDE surge a tres lazos [51]. Ademads, es habitual en la literatura definir dipolos
adimensionales para los quarks [52][47][48][49], de la forma

o, ="y d,="4q4 @.17)
q_gs 7 q_gs 7 .

donde m, es 1a masa del quark, g, = V4o es la constante asociada con SU (3), o representa
la constante de acoplamiento fuerte.

Es particularmente de interés el hecho de que en el BLH las contribuciones a 1 lazo para
el cromodipolo eléctrico (CDE) son idénticamente cero tanto para la parte escalar en la Ec.
(4.14)

d,(S,') = Ki(fi/PfiS‘Ffini/S)v
— 0, (4.18)

como para la parte vectorial en la Ec. (4.15)

di(Vi)) = & (fyfia— fiafv)
= 0, (4.19)

donde x, k" € C son factores globales y los factores de forma fip;p' y Jfis.is' siempre dependen
de la escala f € [1,4.5] TeV. Esto nos confirma que debido a las simetrias del modelo BLH
no existe violacién CP a 1 lazo.

En el caso del cromodipolo magnético (CDM) se obtienen estructuras similares pero
diferentes de cero. La contribucion de los campos escalares a partir de la Ec. (4.14) estd dada
por

:(Si) = Ci(fipfis — firfis) (4.20)
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y la contribucion de los campos de norma a partir de la Ec. (4.15) tiene la forma
(Vi) = & (fiv fia = finf), 4.21)

donde §,{’ € C.

4.3 Contribuciones escalares al CDM

El cédlculo de las amplitudes arroja las correcciones a 1 lazo para cada diagrama donde
participan los campos exéticos con los campos del ME. La informacion en las gréficas
siguientes muestra la contribucion de cada quark pesado con los campos escalares y de norma
tanto del BLH como del ME cuando 8 = 1.35 rads y B = 1.49 rads. En el primer caso, la
escala de energia f puede crecer hasta 4.5 TeV alcanzando ¥ = 2 lo cual no representa un
problema en el ajuste fino [11] pero la masa de A” apenas sobrepasa los 300 GeV lo que
experimentalmente estd sobrepasado. En el segundo caso, la escala f puede crecer hasta
2750 GeV y ¥ = 2 pero en este caso la masa del A? alcanza los 1693 GeV, lo que sobrepasa
los datos experimentales mas actualizados que la sitian hipotéticamente alrededor de 1000

GeV. Estos rangos se presentan en la Tabla 4.1.

: - : =149
oo LS oo e
og 8288883 .............................. 75 252 0.00002 [ - 75
e I L Toeom | e .
gee | T I
1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5
f[Tev] -t f[TeV] ot
(a) (b)

Fig. 4.2 (a) Contribuciones de A? a fI,. (b) Contribuciones de A” a [

En la grifica (4.2) es evidente el efecto de desacoplo a un angulo 8 mayor donde 7° se
mantiene casi sin cambios con la aportacion positiva mas grande. En el caso de la gréifica
(4.2a) la aportacion negativa del top es la mds destacada y se vuelve casi cero con 3 = 1.49.

En la grifica (4.3) el cambio es muy pequefio entre los dos dngulos, manteniéndose 77 y
T?3 con las mayores aportaciones negativa y positiva respectivamente.
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0.00005 7
L 0.00000 [ s
o~ 000000 Rt
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=< -0.00005} ,~
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—0.00010 | /

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

f[TeV]

(b)

Fig. 4.3 (a) Contribuciones de H a fi,. (b) Contribuciones de H a fi;.

p=1.35
—T

0.000000. B=1.49
—5.x1075 e T
~ —0.000010 { .7 _—
= 0000015 : 4 s
Z —0.000020 ¢
= -0.000025 | .
—0000030 /T T
-0.000035 £ I N )
1.015202530354045 ~~ T
f[TeV] —_
(b)

Fig. 4.4 (a) Contribuciones de H' a fI;. (b) Contribuciones de H' a fl,.

En la grifica (4.4) también es evidente el desacoplo para una 8 mayor donde 7° aumenta

su contribucién negativa y los demds quarks pesados, incluido el top, tienden a cero.

La grifica (4.5) muestra una sefial més intensa en B = 1.35 del quark pesado T que es

el tinico que acopla con H*.
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Fig. 4.5 (a) Contribuciones de H* a fl,. (b) Contribuciones de H* a ;.
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4.3 Contribuciones escalares al CDM
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Fig. 4.6 (a) Contribuciones de & a [I;. (b) Contribuciones de ¢ a [I;.

El campo escalar o es de especial interés pues es la particula més pesada en el modelo

BLH, ademds de que no contribuye con términos cuadraticos divergentes [11]. Como
podemos ver en la gréfica (4.6) todos los compafieros del top acoplan con €l, exceptuando

T3, by B. En este caso el acoplamiento mds fuerte es con el quark exético 7° con una

minima diferencia entre los dos dngulos.

0 = R —— ﬁ=135 0 T s e ﬁ:149
~ —sx107 T T _ -5.x1077 7 — T
S 5 2 / 5
S -ixw0% /] T s -1xw0% /] = T
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—2ox107 M ” o108 ”
1.01.52.0253.0354045 —== T 101.52.0253.0354045 —== T
f[TeV] —— ¢ f[TeV] ——— ¢
(a) (b)

Fig. 4.7 (a) Contribuciones de ¢ a fi;. (b) Contribuciones de ¢° a ;.

El campo ¢" muestra cinco acoplamientos en la grifica (4.7). En este caso, las

aportaciones de los cuatro quarks exoticos y el top del ME son exactamente las mismas en
B=135y B =1.49.

El tinico acomplamiento del quark pesado 73 con el campo ¢ tiene la misma intensidad
para los dangulos 3 en la grafica (4.8).

El campo 1Y, Fig. (4.9), tiene los mismos acoplamientos y casi con las mismas
intensidades que ¢° y o. Igualmente, el cambio de 4dngulo no afecté las sefiales de los
quarks exéticos ni del quark top sobre n°.
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Fig. 4.9 (a) Contribuciones de n° a f1,. (b) Contribuciones de n° a ;.

4.4 Contribuciones vectoriales al CDM

A continuacion se muestran los resultados para los bosones de norma y sus aportaciones al
cromodipolo magnético del quark top. De la misma forma que en la Seccion 4.3, mostramos
las gréficas para B = 1.35 y B = 1.49 radianes debido a las caracteristicas de ¥ y Mo en
cada rango, Tabla 4.1. En general, todas las masas crecen y presentan rangos mas acordes a
los datos experimentales actuales.
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Fig. 4.10 (a) Contribuciones de Z° a fi;. (b) Contribuciones de Z° a fi,.
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4.4 Contribuciones vectoriales al CDM

En la grifica (4.10) tenemos la contribucién de cuatro quarks exéticos sin la participacion

de By T°3. Las intensidades de las cuatro sefiales son casi las mismas para ambos dngulos 3

destacando la aportacién positiva de 723 y la negativa de 7.
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Fig. 4.11 (a) Contribuciones de Z" a fi;. (b) Contribuciones de Z’ a f1,.

En la grifica (4.11), los acoplamientos del Z’ tienen contribuciones muy pequefias a
excepcion del quark pesado T°. Por otro lado, es evidente que las sefiales permanecen iguales

bajo el cambio del dngulo B y los incrementos que esto conlleva para las masas de todas las

particulas.
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Fig. 4.12 (a) Contribuciones de ¥ a [I;. (b) Contribuciones de ¥ a fi,.

En las grificas (4.12) sélo tenemos las contribuciones de los quarks exéticos T, T° y T2,

de los cuales destaca la intensidad del 7> que se mantiene igual para ambos dngulos f3.
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Fig. 4.13 (a) Contribuciones de b a [I,. (b) Contribuciones de b a [,.

En la grafica (4.13) tenemos al W’ * con la tnica contribucién positiva al CDM dada por
el quark b. Los demds quarks exdticos no participan ya que sus vértices son cero o estin muy
suprimidos a 6rdenes por arriba de 1/f>. Debemos mencionar que de manera analoga, el W+
del ME, tampoco tiene acoplamientos con los quarks pesados dado que ni la masa del top ni
la del bottom tienen dependencia en érdenes de 1/ f. En [34] se muestran contribuciones a la
masa del W a @(1/£?) en el modelo BLH, sin embargo su contribucién es indistinguible a 1

lazo.

4.5 Contribuciones totales

En la grifica (4.14) mostramos la suma de todas las contribuciones escalares al [I, para
B =135y B =1.49, segin la Ec. (4.13). Debemos remarcar el hecho de que en esta parte
escalar no figuraron los quarks b y B, ni siquiera en los campos que permitian el cambio de
sabor como H™ o ¢ ya que los vértices que los incluyen aparecen también en funcién de
otros campos de cuatro o mds interacciones. En otros casos aparecen en términos mas alla
del & (fiz) cuyas aportaciones al CDM estdn por abajo de 102>,

Entre las dos curvas en la grafica (4.14) se encuentra toda una sucesién de curvas en
el rango 1.35 < 8 < 1.49. Este comportamiento demuestra la coherencia del espacio de
parametros, Seccion 4.1, y la importancia del angulo B como el pardmetro con el rango mas
sencillo sobre el cual modificar el resto de valores del BLH.

La suma de todas las aportaciones vectoriales para los dos dngulos 8 se muestran en la
gréfica (4.15).

En las aportaciones vectoriales a cada bosén de norma, Seccién 4.4, observamos que
todas tenian casi el mismo comportamiento en f = 1.35 y en 8 = 1.49, esto es mas evidente
en la grafica (4.15) donde s6lo se muestra una diferencia casi nula entre ambas curvas,

situacion que también muestra la coherencia del espacio de pardmetros en este caso. La sefial
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Fig. 4.15 Suma de todas las contribuciones vectoriales.
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de ambas curvas cambia de positiva a negativa alrededor de f = 1.5 TeV manteniéndose con

pocos cambios hasta f = 4.5 TeV.

Numéricamente, en la Tabla 4.4 se muestran las contribuciones escalares y vectoriales al

CDM.
Tabla 4.4 Valores numéricos de (i, (S) y (V)

2 (S) | (V) |
f(GeV) | B=135 B =149 | B=135 B=149 |
1.0 —1.833x107% | —1.392x 103 || 5.6x107° 5.79x 107
1.5 —1.191x107% | —=6.512x 1077 || —1.88x107° | —7.55x 10~
2.0 —9.179x 1075 | =3.851x 1077 || =1.55x 107> | —1.47 x 107
2.5 —7.727 %1073 | =2.587x 1079 || —=1.91x 107> | —1.85x 1073
3.0 —6.852%x 1075 | —1.883x 107 || —=1.96x 107> | —1.91 x 107
3.5 —6.277x107° | —1.448%x 1070 || —1.9%x107° | —1.86x 107°
4.0 —5.876x 1073 | —1.159x 1075 || —1.81x107° | —1.78 x 1073
4.5 —5583%x1079 | —9.565x 1070 || —1.72x 107 | —1.69 x 1077

La suma de [I;(S) y f;(V) se encuentra en la grafica (4.16). Nuevamente, la forma casi

idéntica de las curvas de fI; para f = 1.35 y B = 1.49 muestra la continuidad del espacio de

parametros del BLH. Como era de esperar, cuando el angulo 8 es mayor, la curva tiende a

cero conforme crece f.
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Fig. 4.16 Suma de todas las contribuciones escalares y vectoriales al [I; en el modelo BLH.
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4.5 Contribuciones totales

En la Tabla 4.5 se encuentran parte de los valores entre 1.0 y 4.5 TeV para el [, total
en el BLH. El valor a un TeV es aproximado comparado con el valor del CDM actual para
el ME de —0.024 reportado en [53]. De esta manera, la fenomenologia del cromodipolo
magnético nos muestra una variedad grande de posibilidades para las posibles masas de las
particulas exdticas y también para los bosones del modelo.

Aparte de los resultados principales también se encontré en esta secciéon que el
cromodipolo eléctrico es cero en este modelo y se actualizaron los valores que constituyen el
espacio de pardmetros de acuerdo a los nuevos rangos y restricciones experimentales. De
suma importancia ha sido el cuadrar todas las variables del modelo para obtener resultados
que no contribuyan en el ajuste fino, ¥ ~ 1, y mantengan la escencia de este modelo para

explicar y fundamentar con nueva fisica el problema de la jerarquia de masas.

Tabla 4.5 Valores numéricos del [I; en el modelo BLH.

| f |

f(GeV)| B=135 | B=149 |
1.0 —1272x107% | —8.131 x 1073
1.5 —1.209x 10~* | —6.588 x 107
2.0 —1.073x107% | —=5.331 x 107
2.5 —9.641 x 1072 | —4.441 x 1077
3.0 —8.813x 1072 | —=3.796 x 107
3.5 —8.183x 1072 | —=3.313x 107>
4.0 —7.694 x 107> | —2.942 x 1077
4.5 —7.305x 1072 | —2.647 x 107

Como observamos en la Tabla 4.5, el i, va del orden —10~* a 1 TeV hasta —107> a 4.5
TeV en el rango 1.39 < B < 1.45.

4.5.1 Espacio de parametros extendidos

Otro espacio de parametros donde se busco solucién a este problema [54], considera el
intervalo f € [2,4] TeV. Dando de esta manera una variabilidad diferente pero encontrando
resultados muy parecidos, lo que fortalece la autoconsistencia del modelo y su aplicabilidad.

En la grifica (4.17) las sefiales mds intensas de signo negativo corresponde al bosén
de Higgs y en la grifica (4.18) la contribucién més fuerte es la del Z°, este es el mismo
comportamiento del espacio de parametros de esta tesis. En la gréfica (4.19) observamos la
suma de todas las aportaciones al CDM del quark top entre —1.8 x 107> y —6 x 107, un

orden de magnitud més abajo que en nuestros parametros.
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4.5 Contribuciones totales
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Fig. 4.19 Contribucién total a {I; en f € [2,4] TeV.

De esta forma hemos llegado a la parte final de este estudio donde el objetivo principal
era obtener un valor para el cromodipolo magnético del quark top en un modelo extendido
del tipo Little Higgs.
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Capitulo 5
Conclusiones

El mayor paso en el desarrollo tedrico del modelo BLH, a partir de los lagrangianos y los
avances encontrados en la literatura, consisti6 en generar computacionalmente los vértices de
Feynman para las interacciones escalares y de norma con los quarks y bosones del ME, y los
quarks y bosones exdticos del BLH. El encontrar una expresion para los vértices en series de
potencias de las escalas de rompimiento f y F, también implicé discernir correctamente la
mejor manera de acotar esas expresiones.

En la parte numérica, el reto se presentd al construir un espacio de pardmetros coherente
y acotado por los resultados experimentales. Este modelo result6 altamente restrictivo en casi
todos sus pardmetros debido a la interdependencia entre ellos. Por otro lado, la programacién
de los algoritmos para calcular cientos de veces los diagramas a 1 lazo para el cromodipolo
magnético del quark top requirié bastante trabajo humano y tiempo de cémputo.

Hemos confirmado del cdlculo a 1 lazo que el cromodipolo eléctrico en este modelo es
cero debido a la estructura que presentan los factores de forma fs, fp, fv, f4. Este resultado

nos sefiala dos puntos importantes:
1. No se tiene violacién CP a 1 lazo en el modelo BLH, y

2. Las simetrias del modelo extienden esta caracteristica del ME hacia el BLH

fortaleciendo su poder predictivo.

De las contribuciones parciales al I, por parte de los campos vectoriales tenemos
resultados tanto de signo positivo como de signo negativo y de magnitud muy parecida
a sus andlogos escalares con el mismo tipo de contribuciones numéricas. Es importante
sefialar que las sefiales vectoriales se mantuvieron practicamente iguales para § = 1.35 que
para B = 1.49, mientras en las sefiales escalares este comportamiento lo mostraron s6lamente

n% ¢% ¢*y 0.

47



Conclusiones

En la grafica (4.16) de las contribuciones totales al CDM domina la forma de las
contribuciones escalares como se puede verificar de la Fig. (4.14), esto muestra la importancia
de las correcciones escalares.

En los resultados escalares no hubo participacion del quark b ni de su compafiero
extendido B, en la parte vectorial s6lo participa el b con el W’. Es necesario mencionar que
el W* no tuvo contribuciones al CDM debido a la ausencia de la escala f en las masas del ¢
y del b.

Podemos resumir los aspectos més importantes sobre el cromodipolo magnético en este

estudio de la siguiente manera:

1. Las contribuciones vectoriales se mantienen en el orden 107> para la escala f € [1,4.5]
GeV,

2. Laescala F siempre se mantuvo en 5 TeV,
3. Las contribuciones escalares van del orden de 10~* hasta 1072,

4. Todos los compaiieros extendidos del quark ¢ contribuyen, siendo el 7° y el mismo ¢

los mas dominantes en todas las correcciones,
5. El quark exdtico B no tiene aportaciones al [I;, solamente el b,
6. La sefial mds fuerte corresponde al T con el Higgs de —10~%.

El valor experimental mas reciente para el cromodipolo magnético es de —0.024 [53].
Este resultado debe ser parte del obtenido en el BLH al ser éste una extensién del ME.
Podemos enfatizar la correspondencia que existe con nuestros resultados de signo negativo
para el [I; y una diferencia de dos 6rdenes a tan sélo 1 TeV para f.
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Apéndice A

Generadores de grupo

A.1 Generadores de SU(2)

El grupo SO(4) se puede representar como el producto SU(2); x SU(2)g, de esta manera,
los generadores de SU (2) en términos de SO(4) estan dados por [11]

0 0 01 0 0 0 —1
ilo 0 10 ilo o 1 o0
T! == . Ti=- Al
=210 =100 R=210 =1 0 0 @A)
1 0 00 1 0 0 0
0 01 0 00 -1 0
ilo 00 —1 iloo o —1
T? = - . Te=- A2
=211 00 o0 R=2110 0 o (A-2)
0 10 0 01 0 0
01 0 0 0 -1 0 0
il-1 0 0 0 ilt o 0 o
T3:_ , T3:_ A.3
L7210 0o o 1 BR=210 0o o 1 (A-3)
0 0 —1 0 0 0 —1 0

A.2 Generadores de SO(6)

Generadores de SO(6) paraa =1,2,3 [11]

4 0 78 0
(S B P AL B e B (A4)
02x2 02x2 02x2 02x2
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Apéndice B

Eigenestados

B.1 Campos A,y B,

Se presentan los campos de los eigenestados de los bosones de norma del BLH, éstos se

tomaron del apéndice en [32].

1 V2 _
A% = ﬁ {(Cg—SgCWXWW) (W+_|_W )
2
1%
+ (sg — CgCWXW —f2 e
1 v? 4 _
Ay = 2 Sg_CgCWxWW Wr4+w™)
2
1%
— (Cg — SgCwXw —f2 n 2
» 1 V2 I _
Al = ﬁ Cg—SgCWXWW (W —W)
2
v
+ (Sg‘f‘CgCWXWW
2 1 VZ 4 _
Az = E Sg‘i‘CgCWXWW (W —-W )
2
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Eigenestados

V2

A? = Cgswy+ (cgcw — SgXw Jm) Z+ (sg + cgcwxw

A3 = v
2 = SgSwY+ | SgCw — Cgxw Iz

B3 . vz /
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donde Oy es el dngulo de Weinberg
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Apéndice C
Reglas de Feynman

Las reglas de Feynman utilizadas en los célculos de esta tesis se muestran a continuacion.
Debido a la extension de dichas reglas hemos sustituido ciertos grupos de variables como
las diferentes y's por Y's mayusculas y poder mostrar el contenido. También se usan P, y Py

para representar los proyectores izquierdo y derecho, respectivamente.

Yi=/y+yh Yo=4/y+yi Ys=27—y3 Ya=yi+yi, Ys=y3+3)3
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Reglas de Feynman

Tabla C.1 Vértices con el escalar A?

Vértices A0
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Tabla C.2 Vértices con el escalar H'

Vértices H
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Reglas de Feynman

Tabla C.3 Vértices con el escalar H°
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Tabla C.4 Vértices con el escalar H'
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Reglas de Feynman

Tabla C.6 Vértices con el escalar ¢°
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Tabla C.8 Vértices con Z°
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Reglas de Feynman

Tabla C.11 Vértices con HE, ¢+ y W'*
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