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Resumen

Calculamos el momento dipolar cromomagnético del quark top, µ̂t , en el contexto del modelo
Bestest Little Higgs. Esta extensión del Modelo Estándar (ME) tiene como objetivo resolver
el problema de la jerarquía sin un ajuste fino, mediante la introducción de correcciones de 1
lazo a la masa del bosón de Higgs a través de los compañeros del quark y bosones de norma
pesados. Encontramos que el valor resultante más grande para el dipolo cromomagnético es
µ̂t ∼−10−4 y el más bajo es alrededor de −10−5, principalmente debido al bosón de Higgs
del Modelo Estándar, que se acopla tanto al quark superior del ME como a sus socios pesados.
Además, presentamos una amplia variedad de nuevas reglas de Feynman involucradas en
nuestro cálculo.

Palabras clave: Cromodipolo magnético, Modelo Estándar, Jerarquía, Extensión.

Abstract

We calculate the chromomagnetic dipole moment of the top quark, µ̂t , in the context of
the Bestest Little Higgs model. This extension of the Standard Model (SM) aims to solve
the hierarchy problem without fine-tuning, by introducing 1-loop corrections to the Higgs
boson mass through the quark partners and heavy gauge bosons. We find that the largest
resulting value for the chromomagnetic dipole is µ̂t ∼ −10−4 and the smallest is around
−10−5, mainly due to the Standard Model Higgs boson, which couples to both the top quark
of the ME and its heavy partners. Furthermore, we introduce a wide variety of new Feynman
rules involved in our calculus.
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Capítulo 1

Introducción

1.1 Última partícula descubierta

El último gran evento en la física de partículas de altas energías fue la confirmación de
la existencia del bosón de Higgs [1] en el CERN. Su deducción teórica en la década de
1960 [2] impulsó enormemente el desarrollo de la física al explicar el origen de la masa de las
partículas conocidas hasta ese momento por debajo de la escala electrodébil [3]. Antes del
año 2000 ya se había medido la masa de los quarks y los leptones, así como de los bosones
W± y Z0, vigorizando la búsqueda de la partícula faltante.

En combinación con los esfuerzos experimentales también aparecieron teorías completas
y efectivas que intentaban explicar el origen de la masa del bosón de Higgs así como muchas
otras propiedades antes de 2012. Por ejemplo, en dimensiones extras en el marco de una
teoría efectiva [4] se pretendía sustituir todo el esquema del bosón de Higgs por bosones de
norma del tipo Kaluza-Klein. También en dimensiones extras en [5] se intentaba atacar el
problema de la jerarquía y el bosón de Higgs introduciendo una exponencial en una métrica
cosmológica. En una versión Mínima Súpersimétrica del Modelo Estándar [6] se analiza
y compara la fenomenología conocida hasta ese momento con un posible escenario para
descubrir el potencial de Higgs. En [7] mediante una teoría de gran unificación (TGU) se
calcula una masa para el higgs de 200 ∼ 280 GeV. Otros modelos más exóticos como [8]
proponían incluir dos dimensiones compactificadas junto a las cuatro dimensiones del
espacio-tiempo en una distancia de ∼ 1 mm y de ahí derivar toda la física.

Varios de estos modelos introducían nuevas partículas más allá del Modelo Estándar (ME)
proporcionando en consecuencia mucha fenomenología que permitía imponer acotamientos
sobre las partículas exóticas y sus propiedades físicas. Se ha continuado con este método de
investigación sobre modelos más actualizados cuyo objetivo principal es extender el ME. En
este sentido surgieron los modelos basados en algunos multipletes de Higgs (descendientes de

1



Introducción

la súpersimetría) con diferentes propiedades y una fenomenología variada e interesante como
los modelos del pequeño Higgs (Little Higgs) [9] y sus variantes [10] como el Bestest Little
Higgs (BLH) [11], cuya aplicación al Cromodipolo Magnético del quark top abordaremos en
esta tesis.

Actualmente, con la masa del bosón de Higgs en ∼ 125.1 GeV [12] aun quedan varios
temas por cubrir en el ME. Uno de los más investigados e interesantes es el de la jerarquía de
masas que guarda una íntima relación con la masa del bosón de Higgs.

1.2 Jerarquía de masas

Entendemos por jerarquía de masas o el problema de la jerarquía cuando la diferencia entre
las magnitudes de dos escalas de energía en una teoría como el ME son muy diferentes.
Por ejemplo, la diferencia entre la magnitud de las masas del electrón, los neutrinos y la
masa del quark top nos conduce al problema del sabor [13]. De este modo podemos hablar
de la jerarquía entre la escala electrodébil, Mv = 246 GeV, y la escala de gran unificación
MT GU = 1016 GeV donde supuestamente las interacciones electromagnética, débil y fuerte
tendrán magnitudes equivalentes y se regirán bajo un mismo grupo de simetría. Una jerarquía
semejante podría ocurrir al considerar la escala de Planck, MPl = 1019 GeV, a cuyo nivel se
encontraría la unificación de las cuatro interacciones fundamentales.

El proponer una nueva escala Λ de energía a la cual debe operar el ME significa que éste
sólo es una teoría efectiva a baja energía y que deberían aparecer nuevas partículas con masas
proporcionales a dicha escala. Lo anterior también implica estabilizar la escala electrodébil
en cada orden perturbativo debido a que la masa del higgs adquiere correcciones cuadráticas
proporcionales a la nueva escala, es decir (δMH0/MH0)2 ∝ Λ2 [14].

Si consideramos estrictamente el ME entonces los neutrinos no tienen masa1 y solamente
contamos con 19 parámetros medidos experimentalmente, Tabla 1.1, cuyos orígenes teóricos
no se han descubierto, aumentando de esta manera las razones para buscar teorías extendidas.
En este contexto, podemos observar que las masas de los fermiones son proporcionales a la
escala electrodébil, m f ∼ Mv, y están protegidas por la simetría quiral que sólo se rompe por
el parámetro de masa, de tal forma que las correcciones radiativas permanecen pequeñas:
δm f ∝ m f logΛ/m f , llegando a desaparecer cuando m f → 0, el límite exacto para la simetría
quiral. Lo mismo pasa con la masa del fotón que está protegida por la simetría de norma
manteniéndola cero en todos los órdenes perturbativos. Esta es la idea principal con la masa
del bosón de Higgs y las nuevas teorías más allá del Modelo Estándar puesto que no tiene
una simetría que la proteja.

1El considerar la masa de los neutrinos distinta de cero nos lleva a una extensión del ME y nueva física.
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1.2 Jerarquía de masas

Tabla 1.1 Parámetros del Modelo Estándar

Parámetros Descripción Valor [17] Unidad

Me Mµ Mτ Leptones cargados 0.511 105.7 1780 MeV
Mu Md Ms Quarks 2.16 4.67 93 MeV
Mc Mb Mt Quarks 1.27 4.19 173.5 GeV
θ12 θ23 θ13 Ángulos CKM 13.1◦ 2.4◦ 0.2◦

δ Ángulo violación CP 0.995
g′ g gs Acoplamientos de norma 0.357 0.652 1.221

θQDC Ángulo QCD ∼ 0
v VEV 246 GeV

mH0 Masa del Higgs ∼ 125 GeV

Una posibilidad a la que se ha recurrido para mantener la estabilidad electrodébil es el
ajuste fino2, con la cual se deduce que los parámetros en el lagrangiano están ajustados de tal
forma que se puede sostener la masa del higgs en 125 GeV, sin embargo, este esquema debe
contar con la afortunada coincidencia de la cancelación de hasta 32 dígitos, M2

Pl/M2
v ∼ 1032,

en cada orden perturbativo. Si buscamos una constante κ de tal forma que logramos la
igualdad entre las contribuciones a la masa del higgs y la nueva escala de energía Λ,

δM2
H0 = κΛ

2, (1.1)

entonces nuestra constante κ deberá tener un orden de 10−32 para la escala de Planck, lo cual
no es muy probable de obtener. Por lo que se ha llegado a la conclusión de que si ocurriera tal
cancelación entonces debe existir física desconocida detrás de tan sorprendente hecho [15].
Por otro lado, si mantenemos κ ∼ 10−2 obtenemos, a partir de la Ec. (1.1), una escala de
energía máxima alrededor de Λ ∼TeV [16], precisamente en el nivel donde las teorías más
recientes pretenden encontrar nueva física.

Otra posibilidad para mantener la masa del higgs a la escala electrodébil ha sido
considerar una simetría que la proteja de las correcciones radiativas más intensas. Para
esto se tienen candidatos como la Súpersimetría donde una transformación de simetría sobre
un campo escalar lo convertiría en un fermión el cual quedaría protegido por la simetría quiral.
De esta manera se establece una relación simétrica entre fermiones y bosones surgiendo
súperpartículas con iguales masas y cargas. Al aplicar este modelo al ME se obtiene una
versión mínima súpersimétrica, sin embargo esta teoría tiene una anomalía cuántica ya que
los quarks tipo down y los leptones no tienen masa y se requieren más bosones de Higgs por
lo que se introducen dos dobletes y a partir de ellos se construye toda esta versión mínima

2fine-tuning

3



Introducción

del ME. Actualmente ha disminuido la investigación teórica en Súpersimetría por la falta
de evidencia experimental ya que en colisiones protón-protón a

√
s = 13 TeV y con una

luminosidad integrada de 137 fb−1 como en el experimento CMS3 [18] no han aparecido las
s-partículas que se esperaban.

Para solucionar el problema de la jerarquía, los modelos LH y el modelo BLH del tipo
dos dobletes de Higgs, implementan un rompimiento colectivo de simetría a una o dos escalas
( f ,F) mayores que la electrodébil Mv con lo cual generan nuevas partículas que anulan las
contribuciones cuadráticas divergentes a 1 lazo a la masa del higgs como lo veremos en el
Capítulo 3.

1.3 Naturalidad y el BLH

El hecho de que el Modelo Estándar pudiera ser una teoría válida hasta la escala de Planck
sin que alguna simetría proteja las masas de las partículas escalares nos conduce al problema
de la naturalidad [19] como lo mencionamos en la sección anterior con la quiralidad. Desde
otra perspectiva podemos plantear la pregunta del por qué la masa del higgs se mantiene
por debajo de la escala Mv y no es desbordada por las correcciones radiativas hasta órdenes
de magnitud de miles de TeVs. Si el efecto de la naturalidad está actuando para la masa
del higgs entonces es una propiedad que se debe cumplir a cualquier escala de energía Λ

y en especial en teorías más allá del ME en el orden de Λ ∼ 10 TeV como las teorías del
pequeño Higgs. Podemos medir la naturalidad de un parámetro observado (µ) en un modelo
dado [20] cuantificando las contribuciones de otros estados (δ µ) mediante el radio∣∣∣∣δ µ2

µ2

∣∣∣∣ (1.2)

Por ejemplo, en el BLH se tienen los campos pesados A0, H ′ y H± que podrían contribuir
al H0, Sección 3.5. En el Modelo Estándar podemos medir las contribuciones cuadráticas
divergentes a la masa del higgs mediante la Ec. (1.2), Sección 2.5.

La importancia fundamental de la relación (1.2) es que nos permite imponer restricciones
realistas sobre los rangos de los parámetros de un modelo extendido. En este estudio, todo
el espacio de parámetros está calculado en base a la Ec. (1.2), Sección 4.1. Por lo que,
manteniendo un valor bajo para esta relación no solamente garantizamos la naturalidad
del modelo sino la ausencia del ajuste fino. En los primeros modelos LH las grandes
contribuciones de los bosones de norma pesados o exóticos restringían demasiado el espacio
de parámetros o de lo contrario aumentaban el ajuste fino aún a nivel de árbol, Sección 4.2.

3Compact Muon Solenoid.
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1.3 Naturalidad y el BLH

En el BLH al elegir dos escalas de rompimiento separadas, las contribuciones de los bosones
pesados no restringen el modelo y se mantiene la naturalidad.

Hemos organizado los temas abordados en esta tesis de la siguiente manera: En el
Capítulo 2 hacemos una breve introducción a los sectores del Modelo Estándar que utilizamos
en el BLH y las contribuciones cuadráticas divergentes al bosón de Higgs, en el Capítulo 3
describimos razonablemente el Modelo Bestest Little Higgs, los sectores que utilizamos para
el estudio del Cromodipolo Magnético y el origen de sus reglas de Feynman, en el Capítulo
4 desarrollamos el espacio de parámetros y la fenomenología para el BLH y en el Capítulo 5
damos las conclusiones de este trabajo.

5





Capítulo 2

Modelo Estándar

2.1 Introducción.

Fue a mediados de la década de 1970 cuando el Modelo Estándar de las partículas subatómicas
comenzó a tomar relevancia en el medio académico respectivo. Al principio, Steven Weinberg
desarrollaba las bases de las interacciones débiles [21] y Abdus Salam lo seguía muy de
cerca [22] pero no llamaban mucho la atención. El medio científico y la investigación
se encaminaba hacia los modelos que habían dominado en la década de 1950 como la
electrodinámica cuántica y la teoría de la interacción de cuatro fermiones en un punto.
Sin embargo se acumulaban las pruebas experimentales sobre la violación de simetrías
como la extrañeza [23], P, PT [24], y CP en las interacciones débiles [25]. Además se
consideraba que al tener una simetría exacta que se rompiera espontáneamente entonces
resultaría experimentalmente en una simetría aproximada [26].

A partir del teorema de Goldstone [27] se abren líneas de investigación que aprovechan
las simetrías de los lagrangianos y se descubren relaciones contundentes como resultado
de las representaciones de los grupos que contienen esas simetrías con lo que Weinberg,
Salam, Gell-Mann y otros comienzan a trabajar en grupos tales como SU(2)× SU(2) y
SU(3) con miras a la unificación de la electrodinámica y las interacciones débiles, así como
la estructuración de las interacciones fuertes. Finalmente, la inclusión del mecanismo de
Higgs [2] para dotar de masa a las partículas que se conocían hasta ese momento definía la
manera en la que se plantearía la investigación en partículas a través del Modelo Estándar.
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Modelo Estándar

2.2 Estructura algebraica

El grupo de simetría del ME está conformado por SU(3)C ×SU(2)L×U(1)Y donde C denota
color, L indica que sólo se actúa en los estados izquierdos e Y significa hipercarga. A partir
del grupo de simetría se visualizan ocho bosones de norma sin masa de SU(3)C, tres del
grupo SU(2)L y uno del grupo U(1)Y . Es conveniente describir las partes que no son bosones
de norma con las representaciones y la carga de estos grupos de simetría como tripletes de
números [28]. Por ejemplo para nuestro grupo de simetría, tenemos

(1,2,−1/2)⊕ (1,1,1)⊕ (3,2,1/6)⊕ (3̄,1,1/3) (2.1)

donde 1 en la primera o segunda entrada simboliza que el campo es un singlete bajo SU(3)C
o bajo SU(2)L, y el valor en la tercera entrada representa la hipercarga bajo U(1)Y . Los
números cuánticos, de acuerdo a su parte derecha o izquierda para los quarks y leptones
respectivamente, se presentan en la Tabla 2.1.

Tabla 2.1 Números cuánticos de quarks y leptones

(i = 1,2,3) SU(3)C SU(2)L U(1)Y

QiL 3 2 +1/6
liL 1 2 −1/2
uiR 3 1 +2/3
diR 3 1 −1/3
eiR 1 1 −1

2.3 Teoría Electrodébil

El grupo de simetría que representa la parte electrodébil del ME está dado por SU(2)L ×
U(1)Y , en este caso se utiliza el mecanismo de Higgs para obtener una teoría de norma con
un doblete escalar complejo de Higgs φ cuya representación está dada por (2,−1/2). φ nos
proporcionará un potencial que romperá espontáneamente la simetría del vacío y nos dará su
valor de expectación para dotar de masa a los bosones de norma. Para comenzar, se requieren
los generadores de SU(2) en la representación 2

T a
2 =

1
2

τ
a (2.2)
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2.3 Teoría Electrodébil

donde τa son las matrices de Pauli, y también ocupamos los campos de norma W a
µ . Aquí, el

generador de U(1)Y es

Y =C

(
1 0
0 1

)
(2.3)

donde C es la hipercarga −1/2, además elegimos que el campo de norma de U(1)Y sea Bµ .
De esta forma podemos escribir la derivada covariante correspondiente

(Dµφ)i = ∂µφi − i
[
gW a

µ T a
2 +g′BµY

]
i j

φ j (2.4)

donde g y g′ son las constantes de acoplamiento asociadas con SU(2)L ×U(1)Y . Ahora
expandimos la segunda parte de la derivada covariante a la forma matricial

gW a
µ T a

2 +g′BµY =
g
2
(W 1

µ τ
1 +W 2

µ τ
2 +W 3

µ τ
3)− g′

2
Bµ12×2

=
1
2

(
gW 3

µ −g′Bµ g(W 1
µ − iW 2

µ )

g(W 1
µ + iW 2

µ ) −gW 3
µ −g′Bµ

)
. (2.5)

Por lo que, la derivada covariante completa está dada por

(Dµφ)i =

(
Dµφ1

Dµφ2

)
=

∂µφ1 +
i
2
(gW 3

µ −g′Bµ)φ1 +
ig
2
(W 1

µ − iW 2
µ )φ2

∂µφ2 +
ig
2
(W 1

µ + iW 2
µ )φ1 +

i
2
(gW 3

µ +g′Bµ)φ2

 . (2.6)

El lagrangiano de φ con su parte cinética y el potencial tiene la forma

Lφ =−1
2

Dµφ
†
i Dµ

φi −V (φ †,φ), (2.7)

donde

V =
1
4

λ

(
φ

†
φ − 1

2
v2
)2

. (2.8)

Sabemos que para λ > 0 podemos calcular el mínimo dado por

|φ |= v√
2
. (2.9)

De aquí tenemos que

⟨0|φ |0⟩= ⟨φ⟩= 1√
2

(
v
0

)
(2.10)
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Modelo Estándar

Ahora debemos expandir φ alrededor de este vacío

φ(x) =
1√
2

(
v+h(x)

0

)
(2.11)

donde h(x) es un campo escalar real. Sustituyendo en la Ec. (2.6), reemplazando φ1 por
1√
2
h(x) y φ2 por 0, y por último sustituyendo en el lagrangiano de la Ec. (2.7), se tiene

L⟨φ⟩ =−1
8

(
v 0

)( gW 3
µ −g′Bµ g(W 1

µ − iW 2
µ )

g(W 1
µ + iW 2

µ ) −gW 3
µ −g′Bµ

)2(
v
0

)
. (2.12)

El lagrangiano (2.12) se puede reescribir como

L⟨φ⟩ =−1
8

v2V T
µ


g2 0 0 0
0 g2 0 0
0 0 g2 −g′g
0 0 −g′g g′2

V µ , (2.13)

donde V T
µ = (W 1

µ ,W
2
µ ,W

3
µ ,Bµ). A partir de la matriz (2.13), tenemos sus eigenvalores

0,−1
8v2g2,−1

8v2g2,−1
8v2(g′2 +g2), y podemos normalizar los eigenvectores para Aµ y Zµ

V T
A =

1√
g′2 +g2

(0,0,g′,g), V T
Z =

1√
g′2 +g2

(0,0,g,−g′) (2.14)

Ahora se define el ángulo de mezcla débil

tanθW =
g′

g
, (2.15)

así como

sW = senθW =
g′√

g′2 +g2
, cW = cosθW =

g√
g2 +g2

(2.16)
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2.3 Teoría Electrodébil

En este momento ya se pueden definir los campos de norma de la manera usual a partir de
las combinaciones lineales de la matriz (2.12)

W+
µ =

1√
2
(W 1

µ − iW 2
µ ), (2.17)

W−
µ =

1√
2
(W 1

µ + iW 2
µ ), (2.18)

Zµ = cWW 3
µ − sW Bµ , (2.19)

Aµ = sWW 3
µ + cW Bµ . (2.20)

Para obtener las masas de los campos de norma reescribimos la matriz (2.12) con las
definiciones anteriores

− 1
8

g2
(

v 0
)( 1

cW
Zµ

√
2W+

µ√
2W−

µ a22

)2(
v
0

)
=−M2

wW+µW−
µ − 1

2
M2

ZZµZµ , (2.21)

donde a22 siempre será multiplicado por cero por lo que no es necesario escribir todos los
términos. De esta manera, tenemos las masas

MW =
gv
2
, MZ =

v
2

√
g′2 +g2. (2.22)

Recordemos que Aµ no adquirió masa y queda la simetría de U(1) sin romperse por lo que
tenemos el campo y el grupo de norma del Electromagnetismo, respectivamente. Así que
a altas energías por arriba de v = 246 GeV sólo tenemos el campo de Higgs y los cuatro
bosones de norma sin masa (W 1

µ ,W
2
µ ,W

3
µ ,Bµ) que se comportan como fotones. De esta

forma, por encima de la escala de rompimiento de simetría domina la Teoría Electrodébil y
por debajo se manifiesta una simetría rota con la fuerza Débil y otra, con la no rota, la fuerza
Electromagnética.

El siguiente paso es encontrar los términos cinéticos para los cuatro campos de norma.
No es objetivo de este estudio detallar su construcción así que simplemente escribimos el
lagrangiano correspondiente

LCin =−1
4

W µν
a W a

µν −
1
4

BµνBµν , (2.23)

donde

W a
µν = ∂µW a

ν −∂
a
ν Aµ − igεabcW b

µW c
ν ,

Bµν = ∂µBν −∂νBµ . (2.24)
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Modelo Estándar

2.4 Cromodinámica cuántica

Nuestro principal objetivo es el estudio del cromodipolo magnético del quark top en el
modelo BLH por lo que en esta sección nos enfocamos en la parte dentro del Modelo
Estándar que le corresponde a estas partículas. Los quarks están representados por el SU(3)C
con seis sabores diferentes que se dividen en tres generaciones y spin 1/2. Abordaremos
sólo la primera generación ya que el tratamiento en el ME es el mismo para las otras dos.

Sean (Q, ū, d̄) los quarks que se encuentran en la representación (3,2,+1/6), (3̄,1,−2/3)
y (3̄,1,+1/2) respectivamente en SU(3)C × SU(2)L ×U(1)Y , donde Q es un doblete de
SU(2)L

Q =

(
u
d

)
. (2.25)

En la Ec. (2.25) sólo se representa la parte izquierda de u y d por lo que no utilzamos los
subíndices descriptivos en los siguientes cálculos como en la Tabla 2.1. Ahora escribimos las
derivadas covariantes de los tres campos

(DµQ)αi = ∂µQαi − igSAa
µ(T

a
3 )

β

αQβ i − igW a
µ (T

a
2 )

j
i qβ j − ig′

(
1
6

)
BµQαi, (2.26)

(Dµ ū)α = ∂µ ūα − igSAa
µ(T

a
3 )

α

β
ūβ − ig′

(
−2

3

)
Bµ ūα , (2.27)

(Dµ d̄)α = ∂µ d̄α − igSAa
µ(T

a
3 )

α

β
d̄β − ig′

(
1
3

)
Bµ d̄α , (2.28)

donde i es un índice de SU(2)L y α es un índice de SU(3)C escrito como superíndice para 3̄
y como subíndice para 3. La acción de los ocho generadores de SU(3)C sobre 3 se debe a T a

3 ,
y sobre 3̄ se debe a T a

3̄ =−(T a
3 )

∗, en esta ocasión Aa
µ es el campo de los gluones. Para las

masas de los quarks se incluyen términos de Yukawa acoplando estos campos con el Higgs

LYuk =−y′ε i j
φiQα jd̄α − y′′φ †iQα jūα +h.c. (2.29)

Rompiendo la simetría de la Ec. (2.29) de acuerdo a la Ec. (2.11), tenemos

LYuk = − 1√
2

y′(v+h)
(

dα d̄α + d̄†
αd†α

)
− 1√

2
y′′(v+h)(uα ūα + ū†

αu†α)

= − 1√
2

y′(v+h)D̄αDα − 1√
2

y′′(v+h)Ū αUα , (2.30)
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2.5 Boson de Higgs y el problema de la jerarquía

donde los campos de Dirac para u y d están dados como

Dα =

(
dα

iσ2d∗
α

)
, Uα =

(
uα

iσ2u∗α

)
. (2.31)

Las masas para u y d están dadas por

Md =
y′v√

2
, Mu =

y′′v√
2
. (2.32)

Para encontrar la forma de la carga Q partimos de la parte izquierda de la Ec. (2.5) con a = 3
y las formas inversas de las ecuaciones (2.17) a (2.20)

gW 3
µ T 3 +g′BµY =

e
sW

(sW Aµ + cW Zµ)T 3 +
e

cW
(cW Aµ − sW Zµ)Y

= e(Aµ + cotθW Zµ)T 3 + e(Aµ − tanθW Zµ)Y

= e(T 3 +Y )Aµ + e(cotθW T 3 − tanθWY )Zµ

= eQAµ +
e

sW cW
(T 3 − s2

W Q)Zµ (2.33)

de donde es claro que Q = T 3 +Y . También hemos utilizado la relación

g =
e

senθW
, (2.34)

donde e es la carga eléctrica. De esta manera, las cargas de los quarks están dadas por medio
de

Qu =+
2
3

u, Qd =−1
3

d, Qū =−2
3

ū, Qd̄ =−1
3

d̄. (2.35)

2.5 Boson de Higgs y el problema de la jerarquía

El bosón de Higgs se ha convertido en una fuente de inspiración para construir extensiones
del Modelo Estándar, una de las motivaciones principales son las correcciones radiativas
a 1 lazo que recibe su masa desnuda a nivel de árbol, Fig. (2.1). Este problema, conocido
como jerarquía o ajuste fino agrega una divergencia cuadrática al higgs. Si se calculan están
correcciones, la masa del higgs queda como

M2
H0 = (M2

H0)desnuda +δM2
H0 (2.36)
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λ
H

H
H

H

H
H H

H

g2

W

W

W

g g

f

f

yfyf

H

Fig. 2.1 Contribuciones a 1 lazo a la masa del Higgs.

Hasta este punto no hemos deducido la masa del higgs pero lo podemos hacer sustituyendo
la Ec. (2.11) en la Ec. (2.8), lo que nos proporciona

V (φ †,φ) =
1
4

λv2h2 +
1
4

vh3 +
1

16
λh4, (2.37)

donde el primer término de la segunda parte de (2.37) nos da la masa del higgs a nivel de
árbol

MH0 =

√
λ

2
v. (2.38)

De esta ecuación tenemos la expresión analítica para la masa desnuda del higgs y las
correcciones a 1 lazo están dadas por

δM2
H0 =

GFΛ2

4
√

2π2

(
6M2

W +3M2
Z +M2

H0 −12M2
t
)
+ · · · (2.39)

donde GF es la constante de Fermi y la escala Λ no interviene en la divergencia de los
términos de masa adicionales en la Ec. (2.39), [29]. Para cancelar los términos divergentes se
pueden agregar otros términos que cancelen precisamente las contribuciones a δM2

H0 donde
al tener, por ejemplo, Λ = 1019 GeV volveríamos a la discusión de la sección 1.2. Por esta
y otras razones que abordamos en la sección 1.3 es que se han buscado alternativas más
prácticas como los modelos Little Higgs, lo que nos llevará a mostrar las ventajas de una de
sus variantes: el modelo Bestest Little Higgs [11], en lo que resta de este trabajo.
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Capítulo 3

Modelo Bestest Little Higgs

3.1 Estructura no-lineal sigma

Sabemos que los modelos del tipo Little Higgs (LH) [10] [30] [31] [9] fueron desarrollados
para manejar el problema de la jerarquía de masas introduciendo una simetría global cuyo
rompimiento es llevado a cabo por dos operadores que se aplican a dos subgrupos de simetría
diferentes para evitar que cualquiera de ellos pueda generar el potencial de Higgs por
separado.

En el caso del modelo Bestest Little Higgs (BLH) [11], la gran diferencia respecto a
los primeros modelos LH es que el rompimiento colectivo de simetría se hace mediante
un proceso modular, por debajo de la escala de composición Λ ∼ 10 TeV, introduciendo
dos campos sigma no-lineales con dos escalas de rompimiento diferentes, ( f ,F), lo que
permite dotar a los bosones exóticos con masas del orden gEW F , proporcionando la libertad
de incrementar F ya que no afecta a la masa de los tops exóticos que sólo dependen de f .
En este modelo, el higgs es un pseudo bosón de Nambu-Goldstone (PBNG) conteniendo
dos dobletes de higgs, los cuales adquieren un acoplamiento cuártico colectivo mediante un
singlete PBNG electrodébil. También se incluyen PBNGs ligeros.

En términos de grupos se sigue el espacio del grupo producto lateral SO(6)A ×
SO(6)B/SO(6)V que nos señala que después del rompimiento global de la simetría
SO(6)A ×SO(6)B, a la escala f , esta se degrada a SO(6)V . En este esquema se introduce el
campo no-lineal sigma que se transforma como

Σ → GAΣG†
B, (3.1)

donde se cumple G† = GT , ya que los elementos de SO(6) son reales y por lo tanto Σ es
una representación real de S0(6)× SO(6). Cuando el campo sigma adquiere un valor de
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expectación del vacío (VEV),
⟨Σ⟩= 16×6, (3.2)

los 15 PBNGs se pueden parametrizar en la forma

Σ = eiΠ/ f e2iΠh/ f eiΠ/ f , (3.3)

donde las matrices Π y Πh son matrices imaginarias de 6×6 antisimétricas

Π =

φaT a
L +ηaT a

R 0 0
0 0 iσ/

√
2

0 −iσ/
√

2 0

 , (3.4)

Πh =
i√
2

 04 h1 h2

−hT
1 0 0

−hT
1 0 0

 . (3.5)

Los hi son 4-multipletes de S0(4) que también se pueden definir como dobletes de SU(2)L.
El singlete que ayuda a obtener el acoplamiento cuártico colectivo es σ . Los φa forman
un triplete electrodébil con hipercarga cero y los ηa se transforman como un triplete bajo
SU(2)R. El bloque superior S0(4) en cada S0(6) se puede descomponer en el producto
SU(2)L × SU(2)R con los seis generadores T a

L y T a
R (A.1). También se norma débilmente

la combinación diagonal de SU(2)LA y SU(2)LB identificando esto con el grupo de norma
SU(2)L del ME. De la misma manera, se norma la combinación diagonal de la tercera
componente de SU(2)R, (T 3

RA +T 3
RB), identificándola con la hipercarga del ME.

Esta parametrización preserva la simetría Σ → ΣT que implica Π →−Π y Πh →−Πh

sobre los PBNGs.
Un punto importante en la construcción del modelo BLH es la generación del

acoplamiento cuártico de Higgs, para lo cual se necesitan dos operadores especiales donde
cada uno rompe una parte de la simetría global, y ninguno por sí sólo permite que el higgs
adquiera un potencial. Estos se definen como

P5 = diag(0,0,0,0,1,0), P6 = diag(0,0,0,0,0,1), (3.6)

y el potencial colectivo cuártico está dado por

V4 =
1
4

λ65 f 4Tr(P6ΣP5Σ
T )+

1
4

λ56 f 4Tr(P5ΣP6Σ
T ) (3.7)

=
1
4

λ56 f 4(Σ56)
2 +

1
4

λ65 f 4(Σ65)
2.
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3.2 Potencial escalar

En la Ec. (3.7), el término con λ65 rompe la simetría SO(6)A × SO(6)B hacia
SO(5)A6 × SO(5)B5 y el término con λ56 degrada la simetría global a SO(5)A5 × SO(5)B6.
Explícitamente, sólo permanecen los términos (5,6) y (6,5) de los productos de matrices.
De esta manera se protege a h1 y h2 permitiendo que σ adquiera un potencial. Sustituyendo
la parametrización (3.3) en la Ec. (3.7) y expandiendo en potencias [32], se tiene

V4 =
λ65

2

(
f σ +

1√
2

hT
1 h2 + . . .

)2

+
λ56

2

(
f σ − 1√

2
hT

1 h2 + . . .

)2

. (3.8)

A partir de este potencial se obtiene la masa para el singlete σ

m2
σ = (λ65 +λ56) f 2, (3.9)

donde podemos observar que no se generó otra masa para el higgs. En cada término de la Ec.
(3.8) aparece un elemento cuártico de los higgses que puede desplazarse de dicho potencial
mediante σ → σ ± hT

1 h2√
2 f

. Al integrar σ , se tiene

V4 =
λ56λ65

λ65 +λ56
(hT

1 h2)
2 =

1
2

λ0(hT
1 h2)

2. (3.10)

La Ec. (3.10) tiene la forma correcta para un potencial colectivo cuártico, ya que cuenta
con dos acoplamientos para el término cuártico hT

1 h2. Esto permite que todo el potencial
sea cero si cualquiera de los VEVs de los higgses lo es. Si hacemos Σ → KΣK donde
K = diag(1,1,1,1,1,−1) observamos que la Ec. (3.7) respeta esta simetría discreta y no se
generan diagramas peligrosos1 en el potencial de Higgs para el singlete σ .

3.2 Potencial escalar

En los escalares del bloque superior izquierdo de la matriz (3.4) no tenemos interacciones
de norma y éstos deben manifestarse como bosones de Goldstone, por lo que se utiliza un
término de ruptura de simetría adicional [11]

− f 2

4
Tr


m2

4 ·14×4 0 0
0 m2

5 0
0 0 m2

6

 ·Σ

 , (3.11)

1Tadpoles.
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Modelo Bestest Little Higgs

este operador romperá explícitamente todas las simetrías axiales dotando con una masa
positiva a los escalares. Para provocar el rompimiento electrodébil de simetría también se
requiere añadir el potencial

VBµ
= m2

56 f 2
Σ56 +m2

65 f 2
Σ65 (3.12)

=
√

2(m2
65 −m2

56) f σ − (m2
56 +m2

65)h
T
1 h2 + . . .

que genera la masa de Higgs hT
1 h2.

El operador de la Ec. (3.11) no es invariante si normamos SU(2)A y SU(2)B en SO(4)A×
SO(4)B por separado, por lo que debemos incluir el segundo campo sigma no-lineal ∆ junto
a Σ para reproducir las masas

VRS =− f 2

4
m2

4Tr
(

∆
†M26ΣM†

26 +∆M26Σ
†M†

26

)
− f 2

4
(
m2

5Σ55 +m2
6Σ66

)
. (3.13)

Aquí, ∆ degrada la simetría global SU(2)C × SU(2)D a la simetría diagonal SU(2)V a la
escala F > f . Este campo está definido como

∆ = e2iΠd/F , Πd = χa
τa

2
, a = 1,2,3. (3.14)

La matriz Πd está dada en términos de los tripletes escalares χa y las matrices de Pauli τa.
La matriz M26 tiene la forma [32]

M26 =
1√
2

(
0 0 1 i 0 0
1 −i 0 0 0 0

)
, (3.15)

ésta preserva las simetrías de norma en la Ec. (3.13). Si expandimos ∆ en series de potencias
y sustituímos en la Ec. (3.13), obtenemos para los términos de masa

VRS =
1
2

m2
φ φ

2
a +

1
2

m2
ηη

2
a +

1
2

m2
1hT

1 h1 +
1
2

m2
2hT

2 h2 +
1
4
(m2

5 +m2
6)σ

2. (3.16)

Es importante destacar las masas que han obtenido los campos h1, h2, φa y ηa

m2
φ = m2

η = m2
4, (3.17)

m2
1 =

1
2
(m2

4 +m2
5), (3.18)

m2
2 =

1
2
(m2

4 +m2
6). (3.19)
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3.2 Potencial escalar

En la Ec. (3.16) encontramos una contribución a la masa del σ dada por 1
2(m

2
5 +m2

6) pero ya
que m5 y m6 pueden elegirse pequeñas en comparación con la escala electrodébil se descartan
al compararlas con la escala f ∼ 1 TeV.

Finalmente podemos formar el potencial escalar completo

V =V4 +VRS +VBµ
. (3.20)

En el modelo BLH se considera al escalar σ el campo más pesado por lo que debemos
integrarlo en la Ec. (3.20). Esto lo podemos realizar minimizando el potencial en la misma
ecuación respecto de σ y sustituyendo el resultado de nuevo en la Ec. (3.20), con lo que
obtenemos

VHiggs =
1
2

m2
1hT

1 h1 +
1
2

m2
2hT

2 h2 −BµhT
1 h2 +

1
2

λ0
(
hT

1 h2
)2
, (3.21)

donde

Bµ = 2
λ56m2

65 +λ65m2
56

λ56 +λ65
, (3.22)

y el término λ0 se definió en la Ec. (3.10). Necesitamos que m2
1 y m2

2 sean positivas para que
el potencial tenga un mínimo, además se debe cumplir Bµ > m1m2 para que el origen sea
inestable y se rompa la simetría electrodébil [11]. De acuerdo a la invarianza de norma de
SU(2) elegimos que las primeras componentes de h1 y h2 adquieran VEVs

v2
1 = ⟨h11⟩2 =

1
λ0

m2

m1
(Bµ −m1m2), (3.23)

v2
2 = ⟨h21⟩2 =

1
λ0

m1

m2
(Bµ −m1m2). (3.24)

A pesar de las pequeñas correcciones radiativas cuárticas y correcciones de orden v/ f a estos
VEVs, se mantiene la forma de las Ecs. (3.23), (3.24) de donde se cumplen las relaciones

v2 = ⟨h11⟩2 + ⟨h21⟩2 ≃ (246 GeV )2, (3.25)

tanβ ≡ ⟨h11⟩
⟨h21⟩

=
m2

m1
. (3.26)

Al reemplazar los dobletes de Higgs por sus VEVs hi1 → hi1+vi, i = 1,2, en el potencial de
la Ec. (3.21) y diagonalizando la matriz escalar, las componentes de h1 y h2 se combinan para
obtener los tres bosones de Goldstone (G±,G0) que originan los tres bosones electrodébiles
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del ME (W±,Z0), así como sus masas y las de los bosones H0, A0, H±, y H ′, [11]

MG0 = MG± = 0, (3.27)

M2
A0 = M2

H± = m2
1 +m2

2, (3.28)

M2
H0,H ′ =

Bµ

sen2β
∓
√

B2
µ

sen2 2β
−2λ0Bµv2sen2β +λ 2

0 v4sen2 2β . (3.29)

3.3 Sector de norma

En el BLH se tiene un rompimiento colectivo de simetría mediante dos campos sigma
no-lineales [11]. Σ rompe la simetría global SO(6)A × SO(6)B hacia la diagonal y ∆

rompe la simetría global SU(2)C × SU(2)D también hacia la diagonal a las escalas f y
F , respectivamente. Para relacionar estos dos modelos sigma normamos SU(2)LA en SO(6)A

y SU(2)C en SU(2)A, así mismo SU(2)LB y SU(2)D con SU(2)B. Ya que los dos campos
sigma rompen dos simetrías globales separadas SU(2)× SU(2) hacia la diagonal SU(2)
también debemos esperar dos conjuntos de tripletes ligeros de bosones de Nambu-Goldstone.
En este caso, sólo un conjunto de tripletes será comido porque las dos simetrías globales
SU(2)×SU(2) están normadas con los mismos bosones de norma SU(2)A ×SU(2)B. Para
los bosones de norma fuera de la diagonal de SU(2), tenemos contribuciones a las masas
desde ambos modelos sigma, las cuales son proporcionales a F ∼

√
f 2 +F2, sin embargo,

F puede tomarse tan grande como sea necesario para evitar el ajuste fino.
El lagrangiano para el sector de norma está definido como

L =
f 2

8
Tr
(

DµΣ
†Dµ

Σ

)
+

F2

4
Tr
(

Dµ∆
†Dµ

∆

)
, (3.30)

donde las derivadas covariantes están dadas por [32]

DµΣ = ∂µΣ+ igAAa
1µT a

Σ− igBΣAa
2µT a + ig′

[
B3

µT ′ 3,Σ
]
, (3.31)

Dµ∆ = ∂µ∆+ igAAa
1µ

τa

2
∆− igB∆Aa

2µ

τa

2
, (3.32)

en este caso, gA y Aa
1µ

(a = 1,2,3) son el acoplamiento de norma y el campo asociados con
SU(2)LA mientras gB y Aa

2µ
son el acoplamiento de norma y el campo asociados con SU(2)LB,

por otro lado, g′ y B3
µ son el acoplamiento de hipercarga y su campo, respectivamente. Las

expresiones para los campos Aa
1µ

, Aa
2µ

y B3
µ , en términos de los eigenestados de masa, se

encuentran en el apéndice B.1.
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3.4 Sector fermiónico

Los eigenestados de masa de los bosones de norma se calculan mediante el cambio
hi1 → hi1 +vi (i = 1,2) en el lagrangiano de la Ec. (3.30) y expandiendo en series de v2

f para

después diagonalizar hasta O
(

v4

f 2

)
[32][33]. Las masas de los bosones de norma del ME, γ ,

W± y Z0, así como los bosones exóticos del BLH, W ′ ± y Z′, están dados por las expresiones

M2
γ = 0, (3.33)

M2
Z0 =

1
4

v2(g2 +g′ 2)− (g2 +g′ 2)

(
2+

3 f 2

f 2 +F2 (s
2
g − c2

g)
v4

48 f 2

)
, (3.34)

M2
W =

1
4

g2v2 −g2
(

2+
3 f 2

f 2 +F2 (s
2
g − c2

g)
v4

48 f 2

)
, (3.35)

M2
Z′ =

1
4
(g2

A +g2
B)( f 2 +F2)− 1

4
g2v2 (3.36)

+

(
2g2 +

3 f 2

f 2 +F2 (g
2 +g′ 2)(s2

g − c2
g)

v4

48 f 2

)
,

M2
W ′ =

1
4
(g2

A +g2
B)( f 2 +F2)−M2

W , (3.37)

el acoplamiento electrodébil de SU(2) se define en términos de gA y gB como, [11]

1
g2 =

1
g2

A
+

1
g2

B
. (3.38)

El ángulo de mezcla θg en sg y cg está dado como

sg = senθg =
gA√

g2
A +g2

B

, cg = cosθg =
gB√

g2
A +g2

B

. (3.39)

3.4 Sector fermiónico

Para la fenomenología del BLH la parte más interesante es el sector de los fermiones porque
son el quark top y el quark bottom los que tendrán la conexión más fuerte con los fermiones
y bosones exóticos de este modelo [34][35][32][33]. Necesitamos expresar los quarks del
ME mediante un multiplete de SO(6)A y otro de SO(6)B para construir las interacciones
de Yukawa. Estos van a contener dos singletes y dos dobletes de SU(2)L, para SO(6)A

tenemos [11]

QT =

(
1√
2
(−Qa1 −Qb2),

i√
2
(Qa1 −Qb2),

1√
2
(Qa2 −Qb1),

i√
2
(Qa2 +Qb1),Q5,Q6

)
,

(3.40)
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donde Qa = (Qa1,Qa2) es un doblete con hipercarga −1
2 y Qb = (Qb1,Qb2) es el otro doblete

con hipercarga 1
2 . Q5 y Q6 son los singletes mencionados bajo el producto SU(2)L ×

SU(2)R ≡ SO(4). Si normamos una combinación lineal del generador T 3
R con la simetría

global U(1)X del sector fermión entonces podemos relacionar Qa con un doblete de quarks
del ME con hipercarga 1

6 ,
TY = T 3

R +TX , (3.41)

eligiendo como 2
3 la carga Q en U(1)X se reproduce la hipercarga deseada para Qa.

La representación de los quarks en SO(6)B tiene una forma semejante a QT

(Uc)T =

(
1√
2
(−Uc

b1 −Uc
a2),

i√
2
(Uc

b1 −Uc
a2),

1√
2
(Uc

b2 −Uc
a1),

i√
2
(Uc

b2 +Uc
a1),U

c
5 ,U

c
6

)
,

(3.42)
en este multiplete los dobletes de SU(2)L están intercambiados, la hipercarga para Uc es −1

2 .
Al lagrangiano que contiene el acoplamiento de Yukawa con el quark top [11] le agregamos
el término que también nos dará el acoplamiento con el quark bottom cuyas interacciones
con las partículas exóticas del BLH también necesitamos

Lt = y1 f QT SΣSUc + y2 f Q′ T
a ΣUc + y3 f QT

ΣU ′ c
5 + yb f qT

3 (−2iT 3
R Σ)Uc

b +H.c. (3.43)

donde los multipletes primados Q′
a y U ′ c

5 se consideran incompletos pero con las mismas
hipercargas, 2

3 y −1
3 respectivamente, el multiplete (Uc

b )
T tiene hipercarga 1

3 pero también
contiene el quark b derecho. Explícitamente están definidos como

Q′T
a =

1
2
(−Q′

a1, iQ
′
a1,Q

′
a2, iQ

′
a2,0,0), (3.44)

U ′cT
5 = (0,0,0,0,U ′c

5,0), (3.45)

(Uc
b )

T = (0,0,0,0,bc,0). (3.46)

En el lagrangiano de la Ec. (3.43) se usa la matriz S = diag(1,1,1,1,−1,−1) de SO(6) para
romper las simetrías SO(6)A y SO(6)B y q3 es un doblete izquierdo con la tercera generación
de quarks del ME e hipercarga 2

3 .
Para conocer los eigenestados de masa de los fermiones después del rompimiento

espontáneo de simetría electrodébil se vuelve a hacer el cambio hi1 → hi1 + vi (i = 1,2),
sustituyendo en el lagrangiano de la Ec. (3.43). Después de expandir en series y diagonalizar
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3.4 Sector fermiónico

se tienen las masas2 (ver apéndice en [32])

M2
t = y2

t v2
1, (3.47)

M2
b = y2

bv2
1 −

2y2
b

3sen2β

v4
1

f 2 , (3.48)

M2
T = (y2

1 + y2
2) f 2 +

9v2
1y2

1y2
2y2

3

(y2
1 + y2

2)(y
2
2 − y2

3)
, (3.49)

M2
T 5 = (y2

1 + y2
3) f 2 − 9v2

1y2
1y2

2y2
3

(y2
1 + y2

3)(y
2
2 − y2

3)
, (3.50)

M2
B = (y2

1 + y2
2) f 2, (3.51)

M2
T 6 = M2

T 2/3 = M2
T 5/3 = y2

1 f 2. (3.52)

El acoplamiento de Yukawa para el quark top está definido como

y2
t =

9y2
1y2

2y2
3

(y2
1 + y2

2)(y
2
1 + y2

3)
. (3.53)

En el esquema del rompimiento colectivo de simetría para el modelo BLH destaca la
propiedad de que los acoplamientos de Yukawa (y1,y2,y3) deben ser distintos de cero para
establecer el lagrangiano de la Ec. (3.43). Otra característica interesante es la dependencia
respecto de f en todas las masas de los quarks a excepción de la masa del top, la cual debe
permanecer constante en el valor experimental. Por último, cabe señalar explícitamente que
los quarks sólo dependen de la escala f mientras los bosones de norma también dependían
de la escala F .

3.4.1 Sector de corriente

Las interacciones de los bosones de norma con los fermiones provienen del lagrangiano

L = iQ†
τ̄

µDµQ+ iQ′†
aτ̄

µQ′
a − iUc†

τ
µDµUc − iU ′c†

5 τ
µDµU ′c

5 − iUc†
b τ

µDµUc
b . (3.54)

donde τ̄µ ,τµ son las matrices de Pauli y las derivadas covariantes están definidas como [32]

2El tratamiento para los quarks ligeros y los leptones se puede ver también en [11].
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DµQ = ∂µQ+ igAAa
1µT aQ+ ig′B3

µ

(
T ′3 +

2
3
16×6

)
Q, (3.55)

DµQ′
a = ∂µQ′

a + igAAa
1µT aQ′

a +
ig′

6
B3

µQ′
a, (3.56)

DµUc = ∂µUc + igAAa
2µT aUc + ig′B3

µ

(
T ′3 − 2

3
16×6

)
Uc, (3.57)

DµU ′c
5 = ∂µU ′c

5 −
2ig′

3
B3

µU ′c
5, (3.58)

DµUc
b = ∂µUc

b +
ig′

3
B3

µUc
b . (3.59)

Ya se habían definido los campos primados y no primados como multipletes incompletos
y completos respectivamente, así como sus acciones en los grupos SO(6)A y SO(6)B. Los
campos Aa

1,2µ
y B3

µ y las matrices T a,T ′a pueden verse en el apéndice B.1.
En la Tabla 3.1 resumimos los números cuánticos de los fermiones (multipletes) en el

modelo BLH, [32]. El operador de hipercarga en este caso está dado por

Y = T 3
R +TX = QEM −T 3

L . (3.60)

Tabla 3.1 Números cuánticos de los multipletes en el BLH

(i = 1,2,3) TX T 3
R T 3

L Y QEM

Qa1 +2/3 −1/2 +1/2 +1/6 +2/3
Qa2 +2/3 −1/2 −1/2 +1/6 −1/3
Qb1 +2/3 +1/2 +1/2 +7/6 +5/3
Qb2 +2/3 +1/2 −1/2 +7/6 +2/3
Q5 +2/3 0 0 +2/3 +2/3
Q6 +2/3 0 0 +2/3 +2/3
Q′

a1 +2/3 −1/2 +1/2 +1/6 +2/3
Q′

a2 +2/3 −1/2 −1/2 +1/6 −1/3

Uc
a1 −2/3 +1/2 +1/2 −1/6 +1/3

Uc
a2 −2/3 +1/2 −1/2 −1/6 −2/3

Uc
b1 −2/3 −1/2 +1/2 −7/6 −2/3

Uc
b2 −2/3 −1/2 −1/2 −7/6 −5/3

Uc
5 −2/3 0 0 −2/3 −2/3

Uc
6 −2/3 0 0 −2/3 −2/3

U ′c
5 −2/3 0 0 −2/3 −2/3

bc 1 +1/3 0 +1/3 +1/3
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3.5 Correcciones radiativas

3.5 Correcciones radiativas

3.5.1 Potencial de Coleman-Weinberg

Las correcciones radiativas a un lazo es un tema muy interesante en el modelo BLH y en
cada uno de sus sectores es posible calcular esas contribuciones [11] mediante el potencial
de Coleman-Weinberg [36].

VCW =
Λ2

32π2 Str
(
M2(Σ)

)
+

1
64π2 Str

[
M4(Σ)

(
log
(

M2(Σ)

Λ2

)
− 1

2

)]
, (3.61)

donde Str es la súper traza [37][11].

3.5.2 Correcciones sobre σ

Las correcciones cuadráticamente divergentes al potencial de la Ec. (3.7) están representadas
por el término [11]

− 3 f 2Λ2

16π2

(
λ65∑

65

2
+λ56∑

56

2

)
, (3.62)

que es de la misma magnitud pero de signo contrario que la versión a nivel de árbol. De esta
manera, el campo σ no presenta divergencias a 1 lazo. Las divergencias logarítmicas del
mismo potencial cuártico se mantienen pequeñas y suprimidas por potencias de 1/ f , [11].

3.5.3 Correcciones de norma

Los lazos de Z y W contribuyen con términos de masa cuadráticamente divergentes de 1 lazo
al potencial de Higgs [11], Ec. (3.21), mediante la expresión

9g2Λ2

128π2

(
hT

1 h1 +hT
2 h2
)
, (3.63)

para eliminar estas divergencias se necesitaría que las masas de los bosones de norma de la
teoría tuvieran varios TeV de magnitud, lo que obligaría a aumentar bastante la escala f y
arruinar posiblemente el ajuste fino, sin embargo, en el modelo BLH esto se remedia con el
rompimiento colectivo de simetría y los dos nuevos acoplamientos de norma gA y gB. De esta
forma, cualquier corrección radiativa para el potencial de Higgs será proporcional a uno de
los acoplamientos pero no a los dos, y no se genera un potencial a partir de las interacciones
de norma a 1 lazo.
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La principal corrección logarítmicamente divergente al potencial de Higgs por parte del
sector de norma está dado por

−3g2
Ag2

BF2

64π2 f 2 log
(

Λ2

M2
W ′

)[ 1
16(h

T
1 h1 +hT

2 h2)
2 + 1

2φaφ a(hT
1 h1 +hT

2 h2)+
1
3(φaφ a)2]

+
9g2

Ag2
B

512π2 log Λ2

M2
W ′
( f 2 +F2)

(
hT

1 h1 +hT
2 h2 +

8
3φaφ a) (3.64)

La ecuación (3.64) tiene contribuciones muy pequeñas que se pueden despreciar [11].

3.5.4 Correcciones sobre la hipercarga

Las correcciones a 1 lazo para el potencial escalar provenientes de la hipercarga está
cuantitativamente representada por

− 3g′2Λ2

32π2 f 2

[1
3(η

2
1 +η2

2 )
2 + 1

3(η
2
1 +η2

2 )η
2
3 +

1
2(η

2
1 +η2

2 )(h
T
1 h1 +hT

2 h2)
]

+
3g′2Λ2

32π2

[
η2

1 +η2
2 +

1
4(h

T
1 h1 +hT

2 h2)
]
. (3.65)

Las contribuciones de estos términos de masa cuadráticamente divergentes no causa
problemas al potencial de Higgs (3.21), también existen aportaciones logarítmicas pero
son aún más pequeñas [11].

3.5.5 Correcciones a los fermiones

En el caso de los fermiones el acoplamiento de Yukawa del quark top no genera divergencias
cuadráticas o logarítmicas, por lo que la corrección finita a la masa del higgs está dada por

Vyt =− 3 f 2

16π2 9
|y1|2|y2|2|y3|2
|y2|2 −|y3|2

log
|y1|2 + |y2|2
|y1|2 + |y3|2

hT
1 h1. (3.66)

Este resultado nos permitirá encontrar una región válida en el espacio de parámetros del
modelo donde se definirá el rango de la escala f de tal manera que no incremente el ajuste
fino en la teoría. Por otro lado, los demás quarks y leptones contribuyen con términos de
masa cuadráticamente divergentes δm2 al Higgs [11]

Vql =− 3Λ2

16π2 |y|
2hT

1 h1, (3.67)
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donde y es el acoplamiento de Yukawa para los fermiones ligeros cuya magnitud es irrelevante
numéricamente, y Λ es la escala de corte de la teoría, Λ = 4π f ≃ 10 TeV. Las contribuciones
de las correcciones radiativas a m1 en el sector fermiónico generan un incremento en el ajuste
fino que requiere el modelo, dicha medida está dada por el radio entre la variación δv2 sobre
la misma v2

Ψ =

∣∣∣∣δv2

v2

∣∣∣∣ . (3.68)

Para medir explícitamente las contribuciones mencionadas sobre m1 en la Ec. (3.68), tenemos

Ψ =

∣∣∣∣ ∂v2

∂m2
1

δm2
1

v2

∣∣∣∣ , (3.69)

donde aplicamos la primera parcial sobre la Ec. (3.24) y considerando que tanβ = v1
v2

, se
tiene

∂v2

∂m2
1
=− 1

λ0 cos2 β
. (3.70)

Por otro lado, sabemos que la variación sobre la masa m1 en el lagrangiano de la Ec. (3.21)
tiene la forma

1
2
(m2

1 +δm2
1)h

T
1 h1, (3.71)

por lo que de la Ec. (3.66), surge la expresión

δm2
1 =−27 f 2

8π2
|y1|2|y2|2|y3|2
|y2|2 −|y3|2

log
|y1|2 + |y2|2
|y1|2 + |y3|2

. (3.72)

Sustituyendo (3.72) y (3.70) en (3.69), conseguimos una expresión sencilla para medir el
ajuste fino

Ψ =
27 f 2

8π2v2λ0 cos2 β

|y1|2|y2|2|y3|2
|y2|2 −|y3|2

log
|y1|2 + |y2|2
|y1|2 + |y3|2

. (3.73)

La Ec. (3.73) es la pieza clave para construir un espacio de parámetros válido para el BLH,
ya que se deben buscar numéricamente (y1,y2,y3) de tal forma que al lado de ( f ,λ0,β ) se
mantenga Ψ ∼ 1. En [32] y [33] trabajan con Ψ ∼ 10 debido a que sólo consideran procesos
a nivel de árbol. En el capítulo 4 mostramos los resultados numéricos, en gran parte basados
en la Ec. (3.73).
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Capítulo 4

Fenomenología del Modelo BLH

4.1 Espacio de parámetros

Para este modelo como para todos los del tipo LH se requiere dar valores convenientes
a los parámetros libres de acuerdo a los datos experimentales más actualizados, como en
el caso de los bosones exóticos pesados [38][39]. También es necesario considerar las
contribuciones que pueden aumentar el ajuste fino, Ψ ∼ 1, en todos los sectores, sobre todo
en el top a partir de la Ec. (3.73) donde los acoplamientos de Yukawa (y1,y2,y3) también
deben satisfacer la Ec. (3.47) con los valores 0 < yi < 1. Por lo tanto, debemos encontrar una
solución simultánea a las ecuaciones (3.28) y (3.29) para que λ0, MH ′ , MA0 y β satisfagan las
restricciones MH0 = 125.1 GeV, λ0 < 4π , tanβ ≳ 1, y

(tanβ )2 <

2+

(
1−

M2
H0

M2
A0

) 1
2
(

1−
M2

H0

4πv2

) 1
2

M2
H0

M2
A0

(
1+

M2
A0 −M2

H0

4πv2

) −1, (4.1)

[34]. Los resultados de dicha búsqueda se muestran en la Tabla 4.1 donde se utilizaron
y2 = 0.7 y y3 = 0.9. Para calcular las masas de los campos escalares (φ ,η) a partir de la Ec.

(3.28) y m2 = m1 tanβ , tenemos la relación

MA0 =
√

m2
1 +m2

2 =
√

m2
1(1+ tan2 β ) = m1 secβ . (4.2)

Utilizando el intervalo de valores para MA0 encontramos el rango de valores para m1 y m2

Tabla 4.2. Ya que m4 es un parámetro libre, su masa se fija en 30 GeV [11][34] y esto nos

29



Fenomenología del Modelo BLH

Tabla 4.1 Parámetros del Modelo BLH (1).

Parámetro Unidad

1.35 ≤ β ≤ 1.49 rad
1 ≤ λ0 < 4π -

0.3374 ≤ y3 ≤ 0.3287 -
1 ≤ Ψ ≤ 3 -

307.25 ≤ MA0 ≤ 1693.04 GeV
916.1 ≤ MH ′ ≤ 1900.33 GeV

conduce a Mη0 = 30 GeV gracias a la Ec. (3.17), sin embargo no podemos hacer lo mismo
con Mφ 0 debido a que φ 0 sí recibe correcciones radiativas por arriba de la escala electrodébil
que no pueden despreciarse [32]. Por otro lado, las ecuaciones (3.18) y (3.19) nos permiten
calcular los rangos de valores para m5 y m6, Tabla 4.2, a partir de éstos ya no podemos
despreciar sus contribuciones a la masa de σ , Ec. (3.16).

Las masas de los campos escalares siguientes contienen las correcciones radiativas a 1
lazo en términos de las escalas de rompimiento f y F , [33],

M2
φ 0 =

16
3

F2 3g2
Ag2

B
32π2 Log

(
Λ2

M2
W ′

)
+m2

4
f 4 +F4

F2( f 2 +F2)
, (4.3)

M2
φ± =

16
3

F2 3g2
Ag2

B
32π2 Log

(
Λ2

M2
W ′

)
+m2

4
f 4 + f 2F2 +F4

F2( f 2 +F2)
, (4.4)

M2
η± = m2

4 +
3 f 2g′2

64π2
Λ2

F2 . (4.5)

donde Λ = 4π f , g es la constante de estructura de SU(2) y las (gA,gB) están asociadas con
SU(2)A × SU(2)B. A partir de la Ec. (3.38) con la constante de estructura g = 0.6528 y
haciendo gA = gB, obtenemos gA = gB ≃ 0.9231 en el límite de la paridad T cuando los
bosones exóticos se desacoplan de los higgses [11]. De esta manera, se puede definir el
ángulo de mezcla θg

tanθg =
gA

gB
= 1 ⇒ θg =

π

4
. (4.6)

Otro párametro dentro del modelo BLH es el ángulo de mezcla α [11] entre el H0 y el
H ′ definido como, Tabla 4.2,

tanα =
1

Bµ −λ0v2sen2β

Bµ cot2β +

√
B2

µ

sen22β
−2λ0Bµv2sen2β +λ 2

0 v4sen22β

 .

(4.7)
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4.1 Espacio de parámetros

Tabla 4.2 Parámetros del Modelo BLH (2).

Parámetro Unidad

67.29 ≤ m1 ≤ 136.64 GeV
299.79 ≤ m2 < 1687.52 GeV
90.31 ≤ m5 ≤ 190.89 GeV
422.91 ≤ m6 ≤ 2386.33 GeV
−0.1783 ≤ α ≤ 0.04722 rad
182677 ≤ Bµ ≤ 291763 -

Mη0 30 GeV

Finalmente, dentro de los parámetros del modelo necesitamos la masa del singlete σ a
partir de la Ec. (3.9) y el último término del potencial de la Ec. (3.13),

M2
σ = (λ56 +λ65) f 2 +

1
4
(m2

5 +m2
6). (4.8)

En la Ec. (4.8) debemos señalar un límite para el primer término de la derecha, considerando
que λ0 < 4π [34], tenemos

λ0 < λ56 +λ65 < 8π < 16π
2, (4.9)

1 <
λ56 +λ65

λ0
<

16π2

λ0
,

1 <
λ56 +λ65

2λ0
<

16π2

λ0(8π −λ0)
,

de la última desigualdad de la Ec. (4.9) y la Ec. (3.28) podemos escribir la Ec. (4.8) como

M2
σ = 2Rσ λ0 f 2 +

1
2
(M2

A0 −M2
η0), (4.10)

donde

1 < Rσ <
16π2

λ0(8π −λ0)
. (4.11)

En nuestro caso, ya que λ0 ≃ 4π , tenemos que Rσ ∼ 1. Cabe mencionar que los valores
y1 = 0.7 y y2 = 0.9 en la ecuación (3.73) nos proporcionan el rango para y3 de la Tabla 4.2 y
el rango de valores para el acoplamiento de Yukawa

0.70457 ≤ yt ≤ 0.71975. (4.12)
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4.2 Diagramas y Amplitudes del CDM

Desde que Julian Schwinger1 calculó la contribución a 1 lazo para el momento anómalo
magnético del electrón en 1948 [40] se ha diversificado tanto el cálculo como la medición
experimental a diferentes partículas del ME como el neutrón [41], o el quark b [42]. También
para partículas en modelos extendidos como en el mínimo supersimétrico para el muón [43],
o el bottom en seis dimensiones [44].

En este estudio usamos el modelo BLH para obtener el cromodipolo magnético del quark
top, de esta manera calculamos todas las contribuciones válidas a 1 lazo con los quarks y
bosones exóticos, Tabla 4.3.

Tabla 4.3 Fermiones y bosones.

Quarks Carga Bosones Carga

t T +2/3 H0 Z0 0
b B −1/3 W± H± ±1
T 5 T 6 +2/3 H ′ Z′ 0

T 23 +2/3 A0 φ 0 0
T 53 +5/3 φ± η± ±1

η0 0

Los diagramas que se utilizaron en los cromodipolos se muestran en la Figura 4.1, donde
no aparece η± ya que su aportación es cero a 1 lazo. En [33] y [32] parametrizan los
acoplamientos de Yukawa, (y1,y2,y3), mediante dos ángulos para encontrar curvas de nivel
de la Ec. (3.73) cuyas superficies funcionan como espacios de parámetros válidos. Sus
cálculos a nivel de árbol no contemplaban correcciones radiativas y manejaban el valor
Ψ ∼ 10 lo que les daba resultados aceptables. En [11], el autor menciona que una cantidad
de Ψ ∼ 2 contribuye con el 50% sobre el ajuste fino por lo que en nuestro cálculo hemos
restringido el espacio de parámetros de tal forma que 1 < Ψ < 3, ver la sección 4.1.

Las contribuciones al cromodipolo magnético del quark top en el modelo extendido se
han cuantificado de la siguiente manera

µ̂t = ∑
i

µ̂t(Si)+∑
i

µ̂t(Vi). (4.13)

A partir de los diagramas 4.1 podemos construir las amplitudes correspondientes a las
contribuciones escalares y de norma, Ecs. (4.14) y (4.15), utilizando las reglas de Feynman
del Apéndice C.

1ae = 0.0011614
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4.2 Diagramas y Amplitudes del CDM

Si(k) tA(p
′)tB(p)

Qi(k + p′)Qi(k + p)

gµ(q)

(a)

Vi(k) tA(p
′)tB(p)

Qi(k + p′)Qi(k + p)

gµ(q)

(b)

Fig. 4.1 (a) Contribuciones escalares, Si. (b) Contribuciones de norma, Vi.

M µ

t (Si) = ∑
j

µ
2ε

∫ dDk
(2π)D ū(p′)

(
f ∗Si

+ f ∗Pi
γ

5
)

δAα1

[
i
/k+ /p ′+mQ j

(k+ p′)2 −m2
Q j

δα1α3

]

×
(
−igsγ

µT a
α2α3

)[
i
/k+ /p+mQ j

(k+ p)2 −m2
Q j

δα3α4

](
fSi + fPiγ

5
)

×δα4Bu(p)

(
i

k2 −m2
Si

)
. (4.14)

En la amplitud (4.14), fS y fP hacen referencia a los acoplamientos escalares y
pseudoescalares de los vértices, respectivamente.

M µ

t (Vi) = ∑
j

µ
2ε

∫ dDk
(2π)D ū(p′)γa1

(
f ∗Vi

+ f ∗Ai
γ

5
)

δAα1

[
i
/k+ /p′+mQ j

(k+ p′)2 −m2
Q j

δα1α3

]

×
(
−igsγ

µT a
α2α3

)[
i
/k+ /p+mQ j

(k+ p)2 −m2
Q j

δα3α4

]
γ

a2
(

fVi + fAiγ
5
)

×δα4Bu(p)

[
i

k2 −m2
Vi

(
−gα1α2 +

kα1kα2

m2
Vi

)]
. (4.15)

En la amplitud (4.15), fV y fA tienen el mismo propósito de representar los acoplamientos
vectoriales y axiales, respectivamente. En el caso del fotón no se tiene parte longitudinal en
el propagador.
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Fenomenología del Modelo BLH

El cálculo de las amplitudes se hizo con los paquetes FeynCalc 9.0 [45] y Package-X [46]
para Mathematica 11.

El lagrangiano del CDM está definido como [47][48][49]

Le f = −1
2

q̄Aσ
µν

(
µq + idqγ

5
)

qBGa
µνT a

AB, (4.16)

donde T a
AB representa el color de los generadores de SU(3)C, A y B simbolizan los índices

de color, σ µν ≡ i
2 [γ

µ ,γν ], µq es el factor de forma cromomagnético que conserva CP, dq

es el factor de forma cromoeléctrico que viola CP, y Ga
µν = ∂µga

ν −∂νga
µ −gs fabcgb

µgc
ν es

el campo del gluón. En el contexto del ME, el CDM se induce a 1 lazo [50], mientras
que el CDE surge a tres lazos [51]. Además, es habitual en la literatura definir dipolos
adimensionales para los quarks [52][47][48][49], de la forma

µ̂q ≡
mq

gs
µq , d̂q ≡

mq

gs
dq , (4.17)

donde mq es la masa del quark, gs =
√

4παs es la constante asociada con SU(3), αs representa
la constante de acoplamiento fuerte.

Es particularmente de interés el hecho de que en el BLH las contribuciones a 1 lazo para
el cromodipolo eléctrico (CDE) son idénticamente cero tanto para la parte escalar en la Ec.
(4.14)

d̂t(Si) = κi( f ′iP fiS + fiP f ′iS),

= 0, (4.18)

como para la parte vectorial en la Ec. (4.15)

d̂t(Vi) = κ
′
i ( f ′iV fiA − f ′iA fiV )

= 0, (4.19)

donde κ,κ ′ ∈C son factores globales y los factores de forma fiP,iP′ y fiS,iS′ siempre dependen
de la escala f ∈ [1,4.5] TeV. Esto nos confirma que debido a las simetrías del modelo BLH
no existe violación CP a 1 lazo.

En el caso del cromodipolo magnético (CDM) se obtienen estructuras similares pero
diferentes de cero. La contribución de los campos escalares a partir de la Ec. (4.14) está dada
por

µ̂t(Si) = ζi( f ′iP fiS − fiP f ′iS), (4.20)
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4.3 Contribuciones escalares al CDM

y la contribución de los campos de norma a partir de la Ec. (4.15) tiene la forma

µ̂t(Vi) = ζ
′
i ( f ′iV fiA − f ′iA fiV ), (4.21)

donde ζ ,ζ ′ ∈ C.

4.3 Contribuciones escalares al CDM

El cálculo de las amplitudes arroja las correcciones a 1 lazo para cada diagrama donde
participan los campos exóticos con los campos del ME. La información en las gráficas
siguientes muestra la contribución de cada quark pesado con los campos escalares y de norma
tanto del BLH como del ME cuando β = 1.35 rads y β = 1.49 rads. En el primer caso, la
escala de energía f puede crecer hasta 4.5 TeV alcanzando Ψ = 2 lo cual no representa un
problema en el ajuste fino [11] pero la masa de A0 apenas sobrepasa los 300 GeV lo que
experimentalmente está sobrepasado. En el segundo caso, la escala f puede crecer hasta
2750 GeV y Ψ = 2 pero en este caso la masa del A0 alcanza los 1693 GeV, lo que sobrepasa
los datos experimentales más actualizados que la sitúan hipotéticamente alrededor de 1000
GeV. Estos rangos se presentan en la Tabla 4.1.
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Fig. 4.2 (a) Contribuciones de A0 a µ̂t . (b) Contribuciones de A0 a µ̂t

En la gráfica (4.2) es evidente el efecto de desacoplo a un ángulo β mayor donde T 6 se
mantiene casi sin cambios con la aportación positiva más grande. En el caso de la gráfica
(4.2a) la aportación negativa del top es la más destacada y se vuelve casi cero con β = 1.49.

En la gráfica (4.3) el cambio es muy pequeño entre los dos ángulos, manteniéndose T 5 y
T 23 con las mayores aportaciones negativa y positiva respectivamente.
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Fig. 4.3 (a) Contribuciones de H0 a µ̂t . (b) Contribuciones de H0 a µ̂t .
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Fig. 4.4 (a) Contribuciones de H ′ a µ̂t . (b) Contribuciones de H ′ a µ̂t .

En la gráfica (4.4) también es evidente el desacoplo para una β mayor donde T 6 aumenta
su contribución negativa y los demás quarks pesados, incluido el top, tienden a cero.

La gráfica (4.5) muestra una señal más intensa en β = 1.35 del quark pesado T 53 que es
el único que acopla con H±.
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Fig. 4.5 (a) Contribuciones de H± a µ̂t . (b) Contribuciones de H± a µ̂t .
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Fig. 4.6 (a) Contribuciones de σ a µ̂t . (b) Contribuciones de σ a µ̂t .

El campo escalar σ es de especial interés pues es la partícula más pesada en el modelo
BLH, además de que no contribuye con términos cuadráticos divergentes [11]. Como
podemos ver en la gráfica (4.6) todos los compañeros del top acoplan con él, exceptuando
T 53, b y B. En este caso el acoplamiento más fuerte es con el quark exótico T 6 con una
mínima diferencia entre los dos ángulos.
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Fig. 4.7 (a) Contribuciones de φ 0 a µ̂t . (b) Contribuciones de φ 0 a µ̂t .

El campo φ 0 muestra cinco acoplamientos en la gráfica (4.7). En este caso, las
aportaciones de los cuatro quarks exóticos y el top del ME son exactamente las mismas en
β = 1.35 y β = 1.49.

El único acomplamiento del quark pesado T 53 con el campo φ± tiene la misma intensidad
para los ángulos β en la gráfica (4.8).

El campo η0, Fig. (4.9), tiene los mismos acoplamientos y casi con las mismas
intensidades que φ 0 y σ . Igualmente, el cambio de ángulo no afectó las señales de los
quarks exóticos ni del quark top sobre η0.
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Fig. 4.8 (a) Contribuciones de φ± a µ̂t . (b) Contribuciones de φ± a µ̂t .

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

-0.00005

-0.00004

-0.00003

-0.00002

-0.00001

0.00000

f [TeV ]

μ
t
(η

0
)

β=1.35

T

T
5

T
6

T
23

t

(a)

1.0 1.5 2.0 2.5 3.0 3.5

-0.00005

-0.00004

-0.00003

-0.00002

-0.00001

0.00000

f [TeV ]

μ
t
(η

0
)

β=1.49

T

T
5

T
6

T
23

t

(b)

Fig. 4.9 (a) Contribuciones de η0 a µ̂t . (b) Contribuciones de η0 a µ̂t .

4.4 Contribuciones vectoriales al CDM

A continuación se muestran los resultados para los bosones de norma y sus aportaciones al
cromodipolo magnético del quark top. De la misma forma que en la Sección 4.3, mostramos
las gráficas para β = 1.35 y β = 1.49 radianes debido a las características de Ψ y MA0 en
cada rango, Tabla 4.1. En general, todas las masas crecen y presentan rangos más acordes a
los datos experimentales actuales.
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Fig. 4.10 (a) Contribuciones de Z0 a µ̂t . (b) Contribuciones de Z0 a µ̂t .
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4.4 Contribuciones vectoriales al CDM

En la gráfica (4.10) tenemos la contribución de cuatro quarks exóticos sin la participación
de B y T 53. Las intensidades de las cuatro señales son casi las mismas para ambos ángulos β

destacando la aportación positiva de T 23 y la negativa de T 5.
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Fig. 4.11 (a) Contribuciones de Z′ a µ̂t . (b) Contribuciones de Z′ a µ̂t .

En la gráfica (4.11), los acoplamientos del Z′ tienen contribuciones muy pequeñas a
excepción del quark pesado T 5. Por otro lado, es evidente que las señales permanecen iguales
bajo el cambio del ángulo β y los incrementos que esto conlleva para las masas de todas las
partículas.
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Fig. 4.12 (a) Contribuciones de γ a µ̂t . (b) Contribuciones de γ a µ̂t .

En las gráficas (4.12) sólo tenemos las contribuciones de los quarks exóticos T , T 5 y T 23,
de los cuales destaca la intensidad del T 5 que se mantiene igual para ambos ángulos β .
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Fig. 4.13 (a) Contribuciones de b a µ̂t . (b) Contribuciones de b a µ̂t .

En la gráfica (4.13) tenemos al W ′± con la única contribución positiva al CDM dada por
el quark b. Los demás quarks exóticos no participan ya que sus vértices son cero o están muy
suprimidos a órdenes por arriba de 1/ f 3. Debemos mencionar que de manera análoga, el W±

del ME, tampoco tiene acoplamientos con los quarks pesados dado que ni la masa del top ni
la del bottom tienen dependencia en órdenes de 1/ f . En [34] se muestran contribuciones a la
masa del W a O(1/ f 2) en el modelo BLH, sin embargo su contribución es indistinguible a 1
lazo.

4.5 Contribuciones totales

En la gráfica (4.14) mostramos la suma de todas las contribuciones escalares al µ̂t para
β = 1.35 y β = 1.49, según la Ec. (4.13). Debemos remarcar el hecho de que en esta parte
escalar no figuraron los quarks b y B, ni siquiera en los campos que permitían el cambio de
sabor como H± o φ± ya que los vértices que los incluyen aparecen también en función de
otros campos de cuatro o más interacciones. En otros casos aparecen en términos más allá
del O( 1

f 2 ) cuyas aportaciones al CDM están por abajo de 10−25.
Entre las dos curvas en la gráfica (4.14) se encuentra toda una sucesión de curvas en

el rango 1.35 ≤ β ≤ 1.49. Este comportamiento demuestra la coherencia del espacio de
parámetros, Sección 4.1, y la importancia del ángulo β como el parámetro con el rango más
sencillo sobre el cual modificar el resto de valores del BLH.

La suma de todas las aportaciones vectoriales para los dos ángulos β se muestran en la
gráfica (4.15).

En las aportaciones vectoriales a cada bosón de norma, Sección 4.4, observamos que
todas tenían casi el mismo comportamiento en β = 1.35 y en β = 1.49, esto es más evidente
en la gráfica (4.15) donde sólo se muestra una diferencia casi nula entre ambas curvas,
situación que también muestra la coherencia del espacio de parámetros en este caso. La señal
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Fig. 4.14 Suma de todas las contribuciones escalares a µ̂t .
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Fig. 4.15 Suma de todas las contribuciones vectoriales.
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de ambas curvas cambia de positiva a negativa alrededor de f = 1.5 TeV manteniéndose con
pocos cambios hasta f = 4.5 TeV.

Numéricamente, en la Tabla 4.4 se muestran las contribuciones escalares y vectoriales al
CDM.

Tabla 4.4 Valores numéricos de µ̂t(S) y µ̂t(V )

µ̂t(S) µ̂t(V )

f (GeV) β = 1.35 β = 1.49 β = 1.35 β = 1.49

1.0 −1.833×10−4 −1.392×10−3 5.6×10−5 5.79×10−5

1.5 −1.191×10−4 −6.512×10−5 −1.88×10−6 −7.55×10−7

2.0 −9.179×10−5 −3.851×10−5 −1.55×10−5 −1.47×10−5

2.5 −7.727×10−5 −2.587×10−5 −1.91×10−5 −1.85×10−5

3.0 −6.852×10−5 −1.883×10−5 −1.96×10−5 −1.91×10−5

3.5 −6.277×10−5 −1.448×10−5 −1.9×10−5 −1.86×10−5

4.0 −5.876×10−5 −1.159×10−5 −1.81×10−5 −1.78×10−5

4.5 −5.583×10−5 −9.565×10−6 −1.72×10−5 −1.69×10−5

La suma de µ̂t(S) y µ̂t(V ) se encuentra en la gráfica (4.16). Nuevamente, la forma casi
idéntica de las curvas de µ̂t para β = 1.35 y β = 1.49 muestra la continuidad del espacio de
parámetros del BLH. Como era de esperar, cuando el ángulo β es mayor, la curva tiende a
cero conforme crece f .
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Fig. 4.16 Suma de todas las contribuciones escalares y vectoriales al µ̂t en el modelo BLH.
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4.5 Contribuciones totales

En la Tabla 4.5 se encuentran parte de los valores entre 1.0 y 4.5 TeV para el µ̂t total
en el BLH. El valor a un TeV es aproximado comparado con el valor del CDM actual para
el ME de −0.024 reportado en [53]. De esta manera, la fenomenología del cromodipolo
magnético nos muestra una variedad grande de posibilidades para las posibles masas de las
partículas exóticas y también para los bosones del modelo.

Aparte de los resultados principales también se encontró en esta sección que el
cromodipolo eléctrico es cero en este modelo y se actualizaron los valores que constituyen el
espacio de parámetros de acuerdo a los nuevos rangos y restricciones experimentales. De
suma importancia ha sido el cuadrar todas las variables del modelo para obtener resultados
que no contribuyan en el ajuste fino, Ψ ∼ 1, y mantengan la escencia de este modelo para
explicar y fundamentar con nueva física el problema de la jerarquía de masas.

Tabla 4.5 Valores numéricos del µ̂t en el modelo BLH.

µ̂t

f (GeV) β = 1.35 β = 1.49

1.0 −1.272×10−4 −8.131×10−5

1.5 −1.209×10−4 −6.588×10−5

2.0 −1.073×10−4 −5.331×10−5

2.5 −9.641×10−5 −4.441×10−5

3.0 −8.813×10−5 −3.796×10−5

3.5 −8.183×10−5 −3.313×10−5

4.0 −7.694×10−5 −2.942×10−5

4.5 −7.305×10−5 −2.647×10−5

Como observamos en la Tabla 4.5, el µ̂t va del orden −10−4 a 1 TeV hasta −10−5 a 4.5
TeV en el rango 1.39 ≤ β ≤ 1.45.

4.5.1 Espacio de parámetros extendidos

Otro espacio de parámetros donde se busco solución a este problema [54], considera el
intervalo f ∈ [2,4] TeV. Dando de esta manera una variabilidad diferente pero encontrando
resultados muy parecidos, lo que fortalece la autoconsistencia del modelo y su aplicabilidad.

En la gráfica (4.17) las señales más intensas de signo negativo corresponde al bosón
de Higgs y en la gráfica (4.18) la contribución más fuerte es la del Z0, este es el mismo
comportamiento del espacio de parámetros de esta tesis. En la gráfica (4.19) observamos la
suma de todas las aportaciones al CDM del quark top entre −1.8×10−5 y −6×10−6, un
orden de magnitud más abajo que en nuestros parámetros.
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Fig. 4.17 Contribuciones escalares a µ̂t en f ∈ [2,4] TeV.
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Fig. 4.18 Contribuciones vectoriales a µ̂t en f ∈ [2,4] TeV.
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De esta forma hemos llegado a la parte final de este estudio donde el objetivo principal
era obtener un valor para el cromodipolo magnético del quark top en un modelo extendido
del tipo Little Higgs.
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Capítulo 5

Conclusiones

El mayor paso en el desarrollo teórico del modelo BLH, a partir de los lagrangianos y los
avances encontrados en la literatura, consistió en generar computacionalmente los vértices de
Feynman para las interacciones escalares y de norma con los quarks y bosones del ME, y los
quarks y bosones exóticos del BLH. El encontrar una expresión para los vértices en series de
potencias de las escalas de rompimiento f y F , también implicó discernir correctamente la
mejor manera de acotar esas expresiones.

En la parte numérica, el reto se presentó al construir un espacio de parámetros coherente
y acotado por los resultados experimentales. Este modelo resultó altamente restrictivo en casi
todos sus parámetros debido a la interdependencia entre ellos. Por otro lado, la programación
de los algoritmos para calcular cientos de veces los diagramas a 1 lazo para el cromodipolo
magnético del quark top requirió bastante trabajo humano y tiempo de cómputo.

Hemos confirmado del cálculo a 1 lazo que el cromodipolo eléctrico en este modelo es
cero debido a la estructura que presentan los factores de forma fS, fP, fV , fA. Este resultado
nos señala dos puntos importantes:

1. No se tiene violación CP a 1 lazo en el modelo BLH, y

2. Las simetrías del modelo extienden esta característica del ME hacia el BLH
fortaleciendo su poder predictivo.

De las contribuciones parciales al µ̂t por parte de los campos vectoriales tenemos
resultados tanto de signo positivo como de signo negativo y de magnitud muy parecida
a sus análogos escalares con el mismo tipo de contribuciones numéricas. Es importante
señalar que las señales vectoriales se mantuvieron prácticamente iguales para β = 1.35 que
para β = 1.49, mientras en las señales escalares este comportamiento lo mostraron sólamente
η0, φ 0, φ± y σ .
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Conclusiones

En la gráfica (4.16) de las contribuciones totales al CDM domina la forma de las
contribuciones escalares como se puede verificar de la Fig. (4.14), esto muestra la importancia
de las correcciones escalares.

En los resultados escalares no hubo participación del quark b ni de su compañero
extendido B, en la parte vectorial sólo participa el b con el W ′. Es necesario mencionar que
el W± no tuvo contribuciones al CDM debido a la ausencia de la escala f en las masas del t
y del b.

Podemos resumir los aspectos más importantes sobre el cromodipolo magnético en este
estudio de la siguiente manera:

1. Las contribuciones vectoriales se mantienen en el orden 10−5 para la escala f ∈ [1,4.5]
GeV,

2. La escala F siempre se mantuvo en 5 TeV,

3. Las contribuciones escalares van del orden de 10−4 hasta 10−5,

4. Todos los compañeros extendidos del quark t contribuyen, siendo el T 5 y el mismo t
los más dominantes en todas las correcciones,

5. El quark exótico B no tiene aportaciones al µ̂t , solamente el b,

6. La señal más fuerte corresponde al T 5 con el Higgs de −10−4.

El valor experimental más reciente para el cromodipolo magnético es de −0.024 [53].
Este resultado debe ser parte del obtenido en el BLH al ser éste una extensión del ME.
Podemos enfatizar la correspondencia que existe con nuestros resultados de signo negativo
para el µ̂t y una diferencia de dos órdenes a tan sólo 1 TeV para f .
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Apéndice A

Generadores de grupo

A.1 Generadores de SU(2)

El grupo SO(4) se puede representar como el producto SU(2)L ×SU(2)R, de esta manera,
los generadores de SU(2) en términos de SO(4) están dados por [11]

T 1
L =

i
2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , T 1
R =

i
2


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 (A.1)

T 2
L =

i
2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , T 2
R =

i
2


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 (A.2)

T 3
L =

i
2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , T 3
R =

i
2


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 (A.3)

A.2 Generadores de SO(6)

Generadores de SO(6) para a = 1,2,3 [11]

T a =

(
T a

L 02×2

02×2 02×2

)
, T ′ a =

(
T a

R 02×2

02×2 02×2

)
. (A.4)
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Apéndice B

Eigenestados

B.1 Campos Aµ y Bµ

Se presentan los campos de los eigenestados de los bosones de norma del BLH, éstos se
tomaron del apéndice en [32].

A1
1 =

1√
2

[(
cg − sgcW xW

v2

f 2 +F2

)
(W++W−) (B.1)

+

(
sg − cgcW xW

v2

f 2 +F2

)
(W ′++W ′−)

]
,

A1
2 =

1√
2

[(
sg − cgcW xW

v2

f 2 +F2

)
(W++W−) (B.2)

−
(

cg − sgcW xW
v2

f 2 +F2

)
(W ′++W ′−)

]
,

A2
1 =

1√
2

[(
cg − sgcW xW

v2

f 2 +F2

)
(W+−W−) (B.3)

+

(
sg + cgcW xW

v2

f 2 +F2

)
(W ′+−W ′−)

]
,

A2
2 =

1√
2

[(
sg + cgcW xW

v2

f 2 +F2

)
(W+−W−) (B.4)

−
(

cg + sgcW xW
v2

f 2 +F2

)
(W ′+−W ′−)

]
,
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Eigenestados

A3
1 = cgsW γ +

(
cgcW − sgxW

v2

f 2 +F2

)
Z +

(
sg + cgcW xW

v2

f 2 +F2

)
Z′, (B.5)

A3
2 = sgsW γ +

(
sgcW − cgxW

v2

f 2 +F2

)
Z +

(
−cg + sgcW xW

v2

f 2 +F2

)
Z′, (B.6)

B3 = cW γ − sW Z − sW xW
v2

f 2 +F2 Z′. (B.7)

donde θW es el ángulo de Weinberg

sW = senθW =
g′

g2 +g′2
, cW = cosθW =

g′

g2 +g′2
, xW =

1
2cW

sgcg(s2
g − c2

g). (B.8)
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Apéndice C

Reglas de Feynman

Las reglas de Feynman utilizadas en los cálculos de esta tesis se muestran a continuación.
Debido a la extensión de dichas reglas hemos sustituido ciertos grupos de variables como
las diferentes y′s por Y ′s mayúsculas y poder mostrar el contenido. También se usan PL y PR

para representar los proyectores izquierdo y derecho, respectivamente.

Y1 =
√

y2
1 + y2

2, Y2 =
√

y2
1 + y2

3, Y3 = 2y2
1 − y2

3, Y4 = y2
1 + y2

3 , Y5 = y2
2 + 3y2

3,

Y6 =
√

f 2 +F2, PL = 1
2(1− γ5), PR = 1

2(1+ γ5)
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Reglas de Feynman

Tabla C.1 Vértices con el escalar A0

Vértices A0

A0tt̄
−icβ (PL+PR)y2y3(4MW sβY3Y2+3 f gy1Y4)

2 f gY1Y 3/2
4

A0tT̄
−icβ

f g(y2
1+y2

2)
3/2Y 3/2

4

(
2 f gPR(2y4

1 + y2
1y2

2 − y4
2)y3Y4 +2MW sβ y1Y2

(
−2PRy3(−y4

1 + y4
2 + y2

1y2
3 + y2

2y2
3)−PLy2

(
2y4

1 +2y2
2y2

3 + y2
1(2y2

2 +11y2
3)
)))

A0tT̄ 5 icβ

2 f gY1Y 3/2
4 (−y2

2+y2
3)

(
f gPLy2(y2

2 − y2
3)(2y4

1 + y2
1y2

3 − y4
3)

+MW PRsβ y1Y1y3

(
2y2

2y2
3 +4y4

3 − y8
2y4

3Y2 + y6
2y6

3Y2 +2y10
1 (y2

2 − y2
3)Y2

+y8
1Y2(3y4

2 + y2
2y2

3 −4y4
3)−2y6

1y2
3Y2(−3y4

2 +2y2
2y2

3 + y4
3)(−y6

2

+y4
1y2

2Y2 + y4
2y2

3 +3y2
2y4

3 −3y6
3)−2y2

1(8y2
2 −2y2

3 + y8
2y2

3Y2 − y6
2y4

3Y2)
))

A0tT̄ 6 iy1
2 f g

(
2 f gPLsβ y2

Y1
+MW PRy3

(8c2
β

Y2
+ s2

β

(
2y8

1 − y2
1y6

2 +3y4
1y2

2y2
3

−y6
2y2

3 − 4
Y2
+ y6

1(3y2
2 +2y2

3)
)))

A0tT̄ 23 icβ

f gY1Y 3/2
4

(
f gPRy1Y1y3Y4 +MW sβY2

(
2PRY1y3(y2

1 − y2
3)

+PL(−4y3
1y2 +5y1y2y2

3)
))
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Tabla C.2 Vértices con el escalar H ′

Vértices H ′

H ′tt̄
(PL+PR)sα y2y3(4MW sβY3Y2+3 f gy1Y4)

2 f gY1Y 3/2
4

H ′tT̄ sα

2 f g(y2
1+y2

2)
3/2Y 3/2

4

(
f gPR(2y4

1 + y2
1y2

2 − y4
2)y3Y4

+2MW sβ y1Y2

(
−2PRy3(−y4

1 + y4
2 + y2

1y2
3 + y2

2y2
3)

−PLy2
(
2y4

1 −4y2
2y2

3 + y2
1(2y2

2 +5y2
3)
)))

H ′tT̄ 5 sα

2 f gY1Y 3/2
4 (−y2

2+y2
3)

(
f gPLy2(y2

2 − y2
3)(−2y4

1 − y2
1y2

3 + y4
3)

+MW PRsβ y1Y1y3

(
−10y2

2y2
3 +4y4

3 − y8
2y4

3Y2 + y6
2y6

3Y2 +2y10
1 (y2

2 − y2
3)Y2(3y4

2

+y8
1Y2 + y2

2y2
3 −4y4

3)−2y6
1y2

3Y2(−3y4
2 +2y2

2y2
3 + y4

3)+ y4
1y2

2Y2(−y6
2

+y4
2y2

3 +3y2
2y4

3 −3y6
3)+ y2

1(8y2
2 +4y2

3 −2y8
2y2

3Y2 +2y6
2y4

3Y2)
))

H ′tT̄ 6 − y1
f g

(
8cβ MW PRsα y3

Y2
+ cα

(
2 f gPLy2

Y1
+MW PRsβ y3

(
−2y8

1

+y2
1y6

2 −3y4
1y2

2y2
3 + y6

2y2
3 − 4

Y2
− y6

1(3y2
2 +2y2

3)
)))

H ′tT̄ 23 1
f gY1Y 3/2

4

(
f gPRsαy1Y1y3Y4 +MWY2

(
2cαcβ PLy1y2Y4

+sαsβ

(
PLy1y2(2y2

1 −7y2
3)+2PRY1y3(y2

1 − y2
3)
)))
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Reglas de Feynman

Tabla C.3 Vértices con el escalar H0

Vértices H0

H0tT̄ cα

2 f gY 3/2
1 Y 3/2

4

(
−
(

f gPR(2y4
1 + y2

1y2
2 − y4

2)y3Y4
)

+2MW sβ y1Y2

(
2PRy3(−y4

1 + y4
2 + y2

1y2
3 + y2

2y2
3)

+PLy2
(
2y4

1 −4y2
2y2

3 + y2
1(2y2

2 +5y2
3)
)))

H0tT̄ 5 cα

2 f gY1Y 3/2
4 (−y2

2+y2
3)

(
f gPLy2(y2

2 − y2
3)(2y4

1 + y2
1y2

3 − y4
3)

−MW PRsβ y1Y1y3

(
−10y2

2y2
3 +4y4

3 − y8
2y4

3Y2 + y6
2y6

3Y2

+2y10
1 (y2

2 − y2
3)Y2 + y8

1Y2(3y4
2 + y2

2y2
3 −4y4

3)
−2y6

1y2
3Y2(−3y4

2 +2y2
2y2

3 + y4
3)+ y4

1y2
2Y2(−y6

2 + y4
2y2

3

+3y2
2y4

3 −3y6
3)+ y2

1(8y2
2 +4y2

3 −2y8
2y2

3Y2 +2y6
2y4

3Y2)
))

H0tT̄ 6 sα

2 f gY1Y 3/2
4 (−y2

2+y2
3)

(
f gPLy2(y2

2 − y2
3)(−2y4

1 − y2
1y2

3 + y4
3)

+MW PRsβ y1Y1y3

(
−10y2

2y2
3 +4y4

3 − y8
2y4

3Y2 + y6
2y6

3Y2 +2y10
1 (y2

2 − y2
3)Y2(3y4

2

+y8
1Y2 + y2

2y2
3 −4y4

3)−2y6
1y2

3Y2(−3y4
2 +2y2

2y2
3 + y4

3)+ y4
1y2

2Y2(−y6
2

+y4
2y2

3 +3y2
2y4

3 −3y6
3)+ y2

1(8y2
2 +4y2

3 −2y8
2y2

3Y2 +2y6
2y4

3Y2)
))

H0tT̄ 23 1
f gY1Y 3/2

4

(
2cβ MW PLsαy1y2Y 3/2

4 − cα

(
f gPRy1Y1y3Y4

+MW sβY2
(
PLy1y2(2y2

1 −7y2
3)+2PRY1y3(y2

1 − y2
3)
)))
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Tabla C.4 Vértices con el escalar H ′

Vértices H ′

H ′tt̄
(PL+PR)sα y2y3(4MW sβY3Y2+3 f gy1Y4)

2 f gY1Y 3/2
4

H ′tT̄ sα

2 f g(y2
1+y2

2)
3/2Y 3/2

4

(
f gPR(2y4

1 + y2
1y2

2 − y4
2)y3Y4

+2MW sβ y1Y2

(
−2PRy3(−y4

1 + y4
2 + y2

1y2
3 + y2

2y2
3)

−PLy2
(
2y4

1 −4y2
2y2

3 + y2
1(2y2

2 +5y2
3)
)))

H ′tT̄ 5 sα

2 f gY1Y 3/2
4 (−y2

2+y2
3)

(
f gPLy2(y2

2 − y2
3)(−2y4

1 − y2
1y2

3 + y4
3)

+MW PRsβ y1Y1y3

(
−10y2

2y2
3 +4y4

3 − y8
2y4

3Y2 + y6
2y6

3Y2 +2y10
1 (y2

2 − y2
3)Y2(3y4

2

+y8
1Y2 + y2

2y2
3 −4y4

3)−2y6
1y2

3Y2(−3y4
2 +2y2

2y2
3 + y4

3)+ y4
1y2

2Y2(−y6
2

+y4
2y2

3 +3y2
2y4

3 −3y6
3)+ y2

1(8y2
2 +4y2

3 −2y8
2y2

3Y2 +2y6
2y4

3Y2)
))

H ′tT̄ 6 − y1
f g

(
8cβ MW PRsα y3

Y2
+ cα

(
2 f gPLy2

Y1
+MW PRsβ y3

(
−2y8

1

+y2
1y6

2 −3y4
1y2

2y2
3 + y6

2y2
3 − 4

Y2
− y6

1(3y2
2 +2y2

3)
)))

H ′tT̄ 23 1
f gY1Y 3/2

4

(
f gPRsαy1Y1y3Y4 +MWY2

(
2cαcβ PLy1y2Y4

+sαsβ

(
PLy1y2(2y2

1 −7y2
3)+2PRY1y3(y2

1 − y2
3)
)))

Tabla C.5 Vértices con el escalar σ

Vértices σ

σtt̄ −3cβ MW (PL+PR)y1y2y3√
2 f gY1Y2

σtT̄ −cβ MW PR(2y2
1−y2

2)y3√
2 f gY1Y2)

σtT̄ 5 cβ MW PLy2(2y2
1+5y2

3)√
2 f gY1Y2

σtT̄ 6

√
2MW sβ

(
−
(

PLy1y2(y2
1−2y2

3)
)
+2PRY1y3Y4

)
f gY1Y4

σtT̄ 23 −
√

2cβ MW PRy1y3
f gY2
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Reglas de Feynman

Tabla C.6 Vértices con el escalar φ 0

Vértices φ 0

φ 0tt̄
3iFMW (PL+PR)sβ y1y2y3

2 fY6gY1Y2

φ 0tT̄
−iFMW PRsβ (2y2

1−y2
2)y3

2 fY6gY1Y2

(
−1+ y8

1Y2 + y6
2y2

3Y2 +3y4
1y2

2Y2
(
y2

2 + y2
3
)

+y6
1Y2
(
3y2

2 + y2
3
)
+ y2

1y4
2Y2Y5

)
φ 0tT̄ 5 iFMW PLsβ y2Y3

2 fY6gY1Y2

φ 0tT̄ 6 icβ FMW PLy1y2
fY6gY1

φ 0tT̄ 23 iFMW PRsβ y1y3
fY6gY2

Tabla C.7 Vértices con el escalar η0

Vértices η0

η0tt̄
−3iMW (PL+PR)sβ y1y2y3

2 f gY1Y2

η0tT̄
iMW PRsβ (2y2

1−y2
2)y3

2 f gY1Y2

(
−1+ y8

1Y2 + y6
2y2

3Y2 +3y4
1y2

2Y2
(
y2

2 + y2
3
)

+y6
1Y2
(
3y2

2 + y2
3
)
+ y2

1y4
2Y2Y5

)
η0tT̄ 5 −iMW PLsβ y2Y3

2 f gY1Y2

η0tT̄ 6 −icβ MW PLy1y2
f gY1

+y2
1y6

2 −3y4
1y2

2y2
3 + y6

2y2
3 − 4

Y2
− y6

1(3y2
2 +2y2

3)
)))

η0tT̄ 23 −iMW PRsβ y1y3
f gY2
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Tabla C.8 Vértices con Z0

Vértices Z0

ZtT̄
icp(−1+γ5)γµ sβ sW v(2y2

1−y2
2)y3

24 f g′(y2
1+y2

2)Y2

(
−3g2(y2

1 + y2
2)

3Y 3/2
4

+g′2
(
−8+ y8

1Y2 + y6
2y2

3Y2 +3y4
1y2

2Y2(y2
2 + y2

3)

+y6
1Y2(3y2

2 + y2
3)+ y2

1y4
2Y2Y5

))
ZtT̄ 5 icpγµ sβ sW v

12 f g′Y1Y 3/2
4

(
−3g2(1+ γ5)y2Y3Y2 +g′2

(
−2y2

1
(
−4(−1+ γ5)Y1y3

+3(1+ γ5)y2Y2
)
+ y2

3
(
8(−1+ γ5)Y1y3 +3(1+ γ5)y2Y2

)))
ZtT̄ 6 −icβ cp(1+γ5)(g2+g′2)γµ sW vy2

2 f g′Y1

ZtT̄ 23 icp(−1+γ5)(g2+g′2)γµ sβ sW vy3
2 f g′Y2

Tabla C.9 Vértices con Z′

Vértices Z′

Z′tt̄ icpg(1+γ5)gAγµ

4gB

Z′tT̄
icpg(−1+γ5)gBγµ sβ v(2y2

1−y2
2)(y

2
1+y2

2)
2y3Y4

8 f gA

Z′tT̄ 5 −icpg(1+γ5)gAγµ sβ vy2Y3
4 f gBY1Y4

Z′tT̄ 6 −icβ cpg(1+γ5)gAγµ vy2
2 f gBY1

Z′tT̄ 23 −icpg(−1+γ5)gBγµ sβ vy3
2 f gAY2

Tabla C.10 Vértices con γ

Vértices γ

γtT̄ −ig
6 f (y2

1+y2
2)Y2

(
(−1+ γ5)γµsβ sW v(2y2

1 − y2
2)y3

(
−2+ y8

1Y2 + y6
2y2

3Y2+

3y4
1y2

2Y2(y2
2 + y2

3)+ y6
1Y2(3y2

2 + y2
3)+ y2

1y4
2Y2Y5

))
γtT̄ 5 −2ig(−1+γ5)γµ sβ sW vy3

3 fY2
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Reglas de Feynman

Tabla C.11 Vértices con H±, φ± y W ′±

Vértices

H±tT̄ 53 3
√

2cβ MW PLsβ y1y2y2
3

Y1( f gy2
1+ f gy2

3)

φ±tT̄ 53 −i
√

2FMW PRsβ y1y3
fY6gY2

W ′±tb̄ ig√
2
PRγµ

64



Índice analítico

Abdus Salam, 7
Acoplamiento ED, BLH, 21
Acoplamiento Yukawa, top BLH, 23
Acoplamientos de Yukawa, ME, 12
Ajuste fino, 3
Amplitud escalar, 33
Amplitud vectorial, 33
Angulo de mezcla débil, ME, 10
Angulo de mezcla, BLH, 21

Bosón de Higgs, 13
Bosón de Nambu-Goldstone, 15

Campos de norma W±,Z, 11
Campos sigma no-lineales, 15
Constantes acoplamiento, ME, 9
Correcciones σ , BLH, 25
Correcciones al Higgs, 13
Correcciones de norma, BLH, 25
Correcciones fermiones, BLH, 26
Correcciones hipercarga, BLH, 26
Correcciones radiativas, BLH, 25
Cromodipolo eléctrico, CDE, 34
Cromodipolo magnético, 34

Definición carga Q, 13
Definición masas (u,d), 13
Definición masas W±,Z , 11
Definición masas tops, BLH, 23
Derivada covariante, ED, 9

Derivadas covariantes CDC, 12
Diagramas escalar y vectorial, 32
dimensiones compactificadas, 1
Dimensiones extras, 1
Dipolos adimensionales, 34
Divergencia cuadrática, Higgs, 13

Escala Λ, 2
Escala Λ, valor, 3
Escala Mv, 2
Escala de GU, 2
Escala de Planck, 2
Espacio de parámetros, BLH, 29
Existencia del Higgs, 1

Fermiones y bosones BLH, 32

Generación acoplamiento cuártico, 16
Generador de U(1)Y , 9
Generadores TL,TR del BLH, 16
Generadores de SU(2)L, 8
Generadores de SU(3)C, 12
Gluones, 12
Grupo de simetría del ME, 8

Hipercarga, ME, 8

Jerarquía de masas, 2
Jerarquía y modelos LH, 15

Kaluza-Klein, 1

65



Índice analítico

Lagrangiano cromodipolo, 34
Lagrangiano sector de norma, BLH, 20

Masa del Higgs, 3
Masa del singlete σ , 30
Masa desnuda del Higgs, 14
Masas H0,A0,H±,H ′ , 19
Masas bosones de norma, BLH, 21
Matrices Pi y Pih, 16
Matrices de Pauli, 8
Mecanismo de Higgs, 7
Medida del ajuste fino, BLH, 27
Modelos del pequeño Higgs, 2
Modelos LH y BLH, 4
MSME, 1
Multipletes hi, 16
métrica cosmológica, 1
Mínimo de V , ME, 9

Números cuánticos, BLH, 24
Números cuánticos, ME, 8

Operador hipercarga, BLH, 24
Origen teórico del Higgs, 1

Parámetros del BLH, parte 1, 29
Parámetros del BLH, parte 2, 30
Parámetros del ME, 3
PBNG’s parametrizados, 16
Potencial V , ME, 9
Potencial VB, 18
Potencial Coleman-Weinberg, 25
Potencial cuártico, BLH, 17
Potencial de Higgs, BLH, 19
Potencial del BLH, 19
Problema de la jerarquía, 2
Problema del sabor, 2

Quarks, 12

Quarks de SO(6)A, 21
Quarks de SO(6)B, 22

Resultados escalares, 35
Resultados vectoriales, 38

s-partículas, 4
Schwinger, Julian, 32
Sector de corriente, BLH, 23
Sector fermión, BLH, 21
Simetría aproximada, 7
Simetría de custodia, Higgs, 3
Simetría de norma, 2
Simetría exacta, 7
Simetría quiral, 2
Singlete σ , 16
Steven Weinberg, 7
Súpersimetría, 3

Teorema de Goldstone, 7
Teoría de GU, 1
Teoría Electrodébil, 8
Terminos cinéticos W±,Z, 11
Término λ0, 19

Valores numéricos CDM, 43
Versión MSME, 3
VEV de Σ, 15
VEV’s para el BLH, 19
Violación de simetrías, 7

66


	Contenido
	Lista de figuras
	Lista de tablas
	1 Introducción
	1.1 Última partícula descubierta
	1.2 Jerarquía de masas
	1.3 Naturalidad y el BLH

	2 Modelo Estándar
	2.1 Introducción.
	2.2 Estructura algebraica
	2.3 Teoría Electrodébil
	2.4 Cromodinámica cuántica
	2.5 Boson de Higgs y el problema de la jerarquía

	3 Modelo Bestest Little Higgs
	3.1 Estructura no-lineal sigma
	3.2 Potencial escalar
	3.3 Sector de norma
	3.4 Sector fermiónico
	3.4.1 Sector de corriente

	3.5 Correcciones radiativas
	3.5.1 Potencial de Coleman-Weinberg
	3.5.2 Correcciones sobre 
	3.5.3 Correcciones de norma
	3.5.4 Correcciones sobre la hipercarga
	3.5.5 Correcciones a los fermiones


	4 Fenomenología del Modelo BLH
	4.1 Espacio de parámetros
	4.2 Diagramas y Amplitudes del CDM
	4.3 Contribuciones escalares al CDM
	4.4 Contribuciones vectoriales al CDM
	4.5 Contribuciones totales
	4.5.1 Espacio de parámetros extendidos


	5 Conclusiones
	Referencias
	Apéndice A Generadores de grupo
	A.1 Generadores de SU(2)
	A.2 Generadores de SO(6)

	Apéndice B Eigenestados
	B.1 Campos  y 

	Apéndice C Reglas de Feynman
	Índice analítico

