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INTRODUCTION
In what follows, most of the information will be brought without proofs.

Although the methods are exposed for cases relevant to the octet model only,
they may be generalized for any semi-simple group in quite a simple fashion.

1. THE ADJOINT REPRESENTATION OF SU(3)

This group is generated by the following infinitesimal operators:

100 000
H ={0-10),H=(010}
000/ 0 0-1
=/0 01 000 010
Eil={000}, E2=({001). E={000]},
000 000 000
000 000 000
Ef=looo}, BE={000) E={100
100 010 000

The operators T, = (1/2)H;, T, = Eé and T_ = E} generate the isospin group.
The H’s and the E’s operate on covariant as well as on contravariant vectors.
Let x1, x2 and x3 be the basic contravariant vectors and y;, y; and y3 the
basic covariant ones. The results are shown in Table I,

The results of all other operations are 0.

The representations of SU(3) on the x’s and the y's are contravariant
to each other. '

Consider the direct product of the x-space and the y-space; this consti-
tutes a basis for another representation of SU(3) which is, however, reducible.
In order to carry on the reduction one has to know the way infinitesimal oper-
ators act on a product. The rule is:

0. (v1vz) = (Oevy)vy +v4(0-vy). (1)
O an infinitesimal operator similar to the operation of a derivative;

the extension to products with any number of factors is obvious. Choose the
following basis:
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L]
#

NI73)(xty, +xPy, +x%ys),
a =xlys; a; =xPyy; gy =xlyy; ay =J{IJ6)(x'y; + 2Py, - 2:%y;); (2)
V720t yy - x2y2); 26 = ¥yis 2y = Xyy5 3 = ¥y

TABLE I

&

EFFECT OF THE OPERATORS H AND E ON VECTORS x AND y

13 _ 1 t 1 i
Egx” =x Ezy1 = -ys Hyx" = x Hiyy = -y1
2.3 _ .2 2 _ 2 _ 2
E3x” =x Ezys = -ys Hyx" = -x Hiys = ¥
121 I 2 2
E;x =x Esyy = -y2 Hpx™ = x Hpye = -y,
2.1 _ 2 2 _ 3 _ .3
E;jx" =x Eiy, =-y1 Hpx™ = -x Hays = y3
5.2 _ 3 s
Ezx =x E2¥3 = -¥a
31 3 s
Ejx" =x Eiys = -y1

It follows from (1) that the vector I is invariant under SU(3). Similarly,
the vectors aj(1 <is8) span a space which is irreducible under SU(3). The
effect of the H's and the E’s in this 8-dimensional space is shown in Table II.

TABLE 11

EFFECT OF THE OPERATORS H AND E IN A 8-DIMENSIONAL SPACE

E; ag > -¥(37/a,y Ei az - -a; E; ay —»2a;
a5 V(17D a; ay > V(372 az ag—»>-V2ay
ag — -3y ag > V(172 2, ag > V2ag
a7 »ag a7 > V(37D ay - W17 a5 ag — "ay
ag (372 ay + V{172 as 43 > ag

E: ay (37D a,y - 11/, E; 41 —»-ag Ei )3,
ay - -ag ay »-V(37/D ay + Y(172) a4 ay V225
ag —»ay ay - (372 a, ag > V22
ay > Y377 ag a5 -{(1/2) 2, a1 —»>-ag
a5 » V(1/2) 2 4 —>ag

Hy a;-a55 ap—»>-ay; 23523, a5->-235; a;-»a; ; ag--dg
Hy a;-sap; a;-»2a3,; 25-5-a3; ag-ag; aq —»-2a7; ag->-ag

The results of all other operations are 0.
By the definition of weights, the correspondence between weights and
vectors of this representation is:
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ay 2y ag ay a5 ag aq ag
(11 (2-1) (12 (0 (00) (1-2 (-21) (-1-1)

The representation is called '"'the adjoint representation' because its non-
vanishing weights are the roots of the group SU(3). They correspond to the
E’s in the following way: ’

E} E3 E} .Ef Ej Ef
(11 (2-1) (12 (1-2) (-21) (-1-1)

2. WEIGHT DIAGRAMS OF IRREDUCIBLE REPRESENTATIONS OF SU(3);
MULTIPLICITY

Let £ be the lattice of all points (A,u) in plane, where) andy are integers
and A-p is divisible by 3. If both X and u are non-negative, there is an ir-
reducible representation of SU(3), the highest weight* of which is (A,u), and
this representation appears in the reduction of a certain product of the form:

T)X@Q1)X...X(11).

Conversely, if an irreducible representation appears in the decomposition
of such a product, its highest weight (X, u) is such that A,p = 0 and A-u is
divisible by 3.

Given (A,u), draw the hexagon defined by the points:

)y o+ )y, @ o-x-p)y (X x+p), (X-p, A, (-2

It is readily seen that all these points belong to{ . Every point of L lying
on the sides or inside the hexagon is a weight of the representation (A, u);
no weight of the representation lies outside the hexagon. The hexagonshrinks
into a triangle when either A = 0 oru = 0; yet the statement remains true.
Different vectors of an irreducible representation may correspond to
"the same weight; e.g. a4 and a; in the adjoint representation correspond
both to (0 0). The number of independent vectors corresponding to a weight
is called the multiplicity of this weight. '
Suppose A2y > 0, and consider the set weights:

(Ax IJ): (l" 11/-‘ - 1): (A' 2,[.1 - 2), se e (A-[J, 0).

One may draw for each such weight a hexagon in a way similar to theoriginal
one; e.g., (A- 1, u - 1) determines the six points:

(A'l'lv"l)t (7\+#-2a'-'u+1). (‘A+1: >t+“'2)»(ﬂ'1: 'X'IJ+2):

(X - +2, A1), (- +1, -2 +1).

* A weight (o, B) is positive when either «+ B >0 or a+ B = 0, B >0. (o B)is higher than(y, 5)when
(a- y B - & is positive. :
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The rule is that all weights lying on the (A - k, u - k) hexagon have multi-
plicity k + 1; and those lying on the innermost triangle or inside it have the
multiplicityu +1.

Whenyu = A > 0 we deal with a set of weights:

ow)y (M- p-1),..0 (0, p-2);

yet the rule remains unchanged. Similarly, when either A =0 ory = 0, we
have a triangle and the multiplicity of each weight is 1.

Example: (5, 2) defines a hexagon the vertices of which are (5, 2), (7, -2),
(2,-7), (-5,7), (-7,5), (-2, -5). (Its weights diagram is drawn in Fig.1).

Fig. 1

The weights diagram of the representation (2 2)

3. THE CALCULATION OF THE REPRESENTATIONS
(a) Example

As weights have in general multiplicity > 1, one has to use additional
quantum numbers in order to specify uniquely a vector corresponding to a
given weight. It was shown by Racah that one needs (N - 3£)/2 such additional
quantum numbers for a group of order N and rank £. In the case of SU(3) we
have (N - 312)/2 =1, and the labeling according to T2 solves the problem.

The following lemma is important for calculation: If the vector I m>
corresponds to the weight m, the vector Eq | m > corresponds to the weight
m +to.

Proof: HiEy| m> = [HiEy] | m> + EGHi| m> = (o + mj)Ey| m> Q.E.D.

It follows that knowing a vector of the representation corresponding to
a given weight, we may ""walk' all over the diagram with the aid of the E’s
and get vectors corresponding to all other weights of this representation.
The method seems to be best explained by an example. We have:
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(L1)X(11)=(22)+(30)+(03)+(11)+(11)+(00).... (3)
Let aj and bk (1 < i, k < 8) épan the bases of the two representations appear-
ing on the left and suppose one has to calculate the basis of (2 2). Thevectors
belonging to this basis are combinations of products of the form a; bk in such
a way that each combination corresponds to a definite weight and has a defi-
nite T. It is readily seen that the weight corresponding to a product is the
sum of the weights which correspond to the factors. Hence a;b; is the only
product which corresponds to (2 2).

By Table Il and using (1):
T_(aiby) = agby *a1by; T-(aghy Ta1bp) =2 agb;.

J{1]2)(a;bs +ayby) corresponds to (3 0), agb, to (4 -2). It can be seen from
Fig. 2 that together with a;b; they form an isospin triplet, because

THaiby) = T_(azby) = 0.

CAn
N

Fig.2

The weights diagram of the representation (2 2)

The vector

\Hl; Z;Eg(albl) =\/11;2;(a1b3 + aabl)

corresponds to (0 3). Together with:
/T NI 2Nas by +azbg)=(1/3)(a1bs + agby) - J(I/6)(agb; +agby),

J72)T. W(1]3) (a1 bs +asby) - J(I/6)(azbs +azby)] =J{1/6)(aybs + agh;)

, +/(173)(azbs +asby),
JOA3T. W{i]6)(aybs +aghy) +J{1]/3)(azbs +asby)] =J(1/2)(azbs + aghy),
which correspond to (1'1), (2 -1) and (3 -3) respectively, they form anisospin
quartet. However, the multiplicity of (1 1) (and of (2 -1)) is 2; i,e. (1 1)

corresponds to another vector with a different T. Certainly, this T is 1/2.
The vector
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-Ef(a1by) =J(3/2)(arbs +agby) +J{1]2)(a;bs +asby)

corresponds also to (1 1), and therefore it is a combination of the T = 3/2
and T = 1/2 vectors corresponding to (1 1). By the Grahm-Schmidt procedure
one finds the T = 1/2 vector, which is orthogonal to the T = 3/2 one:

JUIT30)(3/13/2)(a, by +a,by) +JT1/2)(aybs +agby) +(azby +agh,))

Operating on this by T_ we get the second member of the doublet:

J(1730){(a, bg +agb, ) +3/(3/2)(ayb, +a,b,) - J(1/2)(aybs +azb,)3.

which is the second vector corresponding to (2 -1).
The vector

~1/2)E3N{1]2)(ay by +azby) = agb,

corresponds to (-2, 4). Together with N® Ti{azb,) where i =1,2,3,4 and
where N® are normalization factors we get an isospin quintet. The T =1
vector which corresponds to (-1, 2) is obtained by operating with E on the
T = 1/2 vector corresponding to {1 1)* ;the other members of the triplet
are obtained with the aid of T .

Operating with E} on the T = 1/2 vector corresponding to (1 1) we get
a combination of the T = 1 and T = 0 vectors which correspond to (0 0). By
the Grahm-Schmidt method we again pick out the T = 0 vector.

The continuation of the procedure is obvious (Fig. 3).

Fig. 3

' The root diagram.

(b) The general method

In order to perform the decomposition of {A; X5)X(uyu,) one needs the
following information:

(1) The representations (A;),) and {u;u,) of the E’s. The bases of these
representations consist of polynomials in baryons, antibaryons, mesons
and vector-mesons. Therefore rule (1) may be used to get these represen-
tations. ¥*¥

* The reason is that E; {as well as B, E3, EJ) can change T only by %.
*% However, G, Racah calculated explicit formulae for the matrix-¢lements of the E’s in any imreduble
representation {private communication).
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w

(2) Which representations appear in the decomposition. Define:

P(x) = (1/2)(| x| + %),

A=y D30 - Ag) +lug + p) - (g - v2)L(L/3)[(2A +2y)
t{2u1 tug) - (203 tv3)]],

B =gy (PLY - vy) +(1/2)PUL/3)|[(0 +225) - 20wy - ug) - (v1 +2u,)|
vy - MNLL/3[20y - Ap) + (21 Fpg) - (2w )] (1/3)[ (A - Xp)
+ (1 2up) - (1 +203)]13. s

The number of times (v;v,) appears in (A 23 )X(uiug) is P(A - B +1).

(3) The vector corresponding to the maximal weight of such a represen-
tation. Let £ be a weight of (A X;) and m a weight of (uyu,) such thatg +m =
{vivy). If | £, Ty > is a vector of the basis of (x;13) corresponding to £,
and T m, Ty > a vector of the basis of (u3u,) corresponding to m, then the
product | L, Ty >'E: T, > corresponds to (vivy).

We look for a linear combination of such products which is the vector
corresponding to the highest weight of (v;v,). Such a combination mustvanish
under E}, Ef and E}, as follows from the lemma of part (a) (since {v; +1,
vy t1), (v1 +2, vy - 1) and (v; - 1, v, + 2) are not weights of the represen-
tation (v;vy). The combination will also vanish under Et, if v, =0, andunder
E§ if vy = 0. Considering the coefficients of the combination, we get for them
a set of homogeneous equations when E}, E% and E} (may be E, or E§ also)
are applied. If the solution is not unique, the representation (vivy) occurs
several times, and one chooses an appropriate basis arbitrarily.

Example: The vector corresponding to the highest weight of (1 1) in the de-
composition of (1 1) X (1 1). This vector is of the form:

afa;bg)t B(agbg) +y(agby) +8(agby) +e(agby) +¢(azby).
It will vanish under the operations of E}, E} and E}. Hence:
Ej : -J(3/2)(e +6){(aby) - J{1]2)(B + €)(arby) = 0,
EZ : -J(3/2)ala; by) +J(172)B(a1bz) - ¥{azby) - J{3/2}6(azby),
+J{1/2)e(azby) - €larby) =0,
E} : -J2 Blagbs) +v(arbs) -2 e (azby) +¢(azby) = 0.
From these equations we get:
JB72)(e +8) +J(I]2)(B +¢€) = 0,
-N(B3/2e +JI]2)8 - ¢ = 0,
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- v-J(372)s +J{1]2)c = 0,
-J2B +v =0,
-JZe +¢

The set of solutions is two dimensional. Adding the condition y = ¢ or
v = -¢ one gets two mutually orthogonal solutions.

0.

4. REMARKS

(1) According to the usual exposition of the Lie theory one should write
Eq 3y instead of E}, Eg :1) instead of E} etc.. The present notation empha-
sizes the fact that the E’s operate in a 3-dimensional vector space.

(2) The highest weights (A,u) are associated with Young-schemes. An
irreducible representation of SU(3) may be characterized by a Young-scheme
of not more than 3 rows. Denoting this scheme by [a; a3a3] (where a; is
. the length of the i’th row) we have A =a; - a;, u = a; - ag.

(3) As T+ and T-. commute with the hypercharge, it follows that vectors
belonging to the same isospin multiplet have the same hypercharge.

(4) The decomposition procedure described above does not determine
any general phase convention.



