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INTRODUCTION

In what fo llow s, m ost o f the in form ation  w ill be brought without p roo fs . 
Although the m ethods are exposed fo r  ca ses  relevant to the octet m odel only, 
they m ay be gen era lized  fo r  any sem i-s im p le  group in quite a sim ple fashion.

1. THE ADJOINT REPRESENTATION OF SU(3)

This group is  generated by the follow ing in fin itesim al operators:

The op era tors  Tz = ( l /2 )H i ,  T + = E?> and T_ = Ef generate the isospin  group. 
The H’ s and the E ’-s operate on covariant as w ell as on contravariant v e cto rs . 
L et x1 , x2 and x3 be the basic  contravariant v ecto rs  and y i , y2 and y3 the 
b a sic  covariant on es . The resu lts are  shown in T able I.

The resu lts o f  a ll other operations are 0.
The representations o f SU{3) on the x ’ s and the y*s are contravariant 

to each other.
C onsider the d ire ct product o f  the x -sp a ce  and the y -sp a ce ; this consti­

tutes a basis  fo r  another representation  o f SU(3) which :is, how ever, reducible. 
In o rd e r  to ca rry  on the reduction one has to know the way infin itesim al op er­
ators act on a product. The ru le is :

O an in fin itesim al op era tor  s im ila r  to the operation  of a derivative; 
the extension  to products with any num ber o f fa cto rs  is  obvious. Choose the 
follow ing b a s is :

O  • (v x v 2 ) = ( O .v J v j j  + v 1 ( 0 . v 2 ) . ( 1)
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I = s /( l /3 ) (x 1y1 + x2 y2 + x 3y3 ),

ai = x 1 y 3 ; a2 = x 2 y 3 ; a3 = x x y 2 i a4 = v/ ( l / 6 ) (x 1 y i  + x 2 y 2 -  2x3 y s ) ; (2) 

as = > / ( l / 2 ) (x 1 y i  -  x 2 y 2 ) ; ae = x 2 y 1 ; a7 = x® y2 ; a8 = x 3y t .

TABLE I

E FFE CT OF THE OPERATORS H AND E ON VECTORS x AND y
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_ 1 3 „1E3x -  X 3 yi -  -ys HjX = x H iyi = -y i
E?X> = X iII

eüj’ .1 2 2 HjX = -x Hi Yz = ys
E2V  
^  1

= X E2yi = - i t  
2

u 2 2H2 x = x H2yz = -yz
Eax

3 2E2x
3 1 EjX

-  X

-  X 

= X

Ety2 = - yi

e! yj = -y j 

E?ys = -y i

H2 x = -x n 2ys = ys

It fo llow s from  (1) that the v ecto r  I is  invariant under SU(3). S im ilarly, 
the v e c to rs  a i(1 ^ i^ 8 )  span a space which is irredu cib le  under SU(3). The 
e ffect o f the H 's  and the E ’ s in th is 8-d im ensional space is  shown in Table ü .

TABLE II

E FFE C T OF THE OPERATORS H AND E IN A 8-DIMENSIONAL SPACE

Es a4 ->-,frS7 Z)a 1 E23 a3 -> -a l E,1 a2 -> a!

a5 -> - V ( l /2j a 1 a4 -V (3 /2 ) a2 35 -> V"2 a3

ae -» " a2 a5 _» V (T/Sj a2 a6 -> V"2 35

a7 -> a3 a7 V(3/2) a4 - 'fUM a5 a3 ->

a8 V(3 /2 ) a4 + V ( l /2) a5 a8 —* a6

E? -V(3 /2 ) a4 - V( 1 /2 ) 35 Eg ai -*• -as Ei al-> a2

a2 -> -a6 a2 ~^(3/2) a4 + VTT72) as a3 ^ - / 2 a5

a3 -> a7 a4 -> iT(3/2) a7 a5 -> V"2 a6

^4 V (3/2) a8 a5 -> - V ( l / 2)a 7 a7 -> -a 8

a5 V ( l /2) a8 a6 a8

Hj aj -> a j; a2 -> “a2 ; a3 2^2 j a6 <—̂ ™2s6 * a7 “>a7 » a8 -> “a8
H2 a1 _>a1; a2 2a2; a3 -> ~a3; a6 a6 ; a7 “ 2a7 ; a8 -> "a8

The resu lts o f a ll other operations are 0.
B y the definition  o f weights, the correspon dence  between weights and 

ve cto rs  o f this representation  is :
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a2 a3 a4 a5 ag a7 a8
(1 1) (2 -1 ) (-1  2) (0 0) (0 0) (1 -2) (-2  1) (-1  -1 )

The representation  is  ca lled  "the adjoint representation" because its non­
vanishing weights are the roots  o f the group SU(3). They correspond to the 
E 's  in the follow ing way:

E3 Ejj E2 El  EI E j
( 1 1 ) ( 2 - 1 ) ( - 1 2 ) ( 1 - 2) ( - 2  1 ) ( - 1 - 1 )

2. WEIGHT DIAGRAMS O F IRREDUCIBLE REPRESENTATIONS OF SU(3); 
M U LTIPLICITY

L et £  be the la ttice  o f  a ll points [X,p)  in plane, where X andp are integers 
and X-p is  d iv is ib le  by 3. If both X and ß are non-negative, there is  an i r ­
redu cib le  representation  o f  SU(3), the highest weight* o f which is [X,p),  and 
this representation  appears in the reduction o f a certain  product o f the form :

(1 1) X (1 1) X . . .  X (1 1).

C onversely , if  an irred u cib le  representation  appears in the decom position  
o f such a product, its highest weight (X,p)  is  such that X, p > 0 and X-p is 
d iv is ib le  by 3.

Given (X,p) ,  draw the hexagon defined by the points:

(X,ß) ,  (X + p, -p) ,  (p, -X - p) ,  (-X, X +p) ,  { - X - p ,  X), { - p - X ) .

It is  read ily  seen  that a ll these points belong to 4, .  E very point o f ^  lying 
on the s id es o r  inside the hexagon is  a weight o f the representation  (X, p);  
no weight o f the representation  lie s  outside the hexagon. The hexagon shrinks 
into a triangle when either X = 0 o r j i  = 0 ; yet the statement rem ains true.

D ifferent v e cto rs  o f an irred u cib le  representation  m ay correspond to 
the sam e weight; e .g .  a4 and a$ in the adjoint representation  correspond 
both to (0 0 ). The num ber o f independent v ectors  corresponding to a weight 
is  ca lled  the m u ltip licity  o f  this weight.

Suppose X > p >  0, and con sid er the set weights:

(X, p) ,  (X -  1, p -  1), (X - 2, p - 2), . . . .  (X - p,  0).

One m ay draw fo r  each such weight a hexagon in a way sim ilar  to the original
one; e . g . ,  ( X - l , / u - l )  determ ines the six  points:

(X -  1. p -  1), (X +p  - 2, --p + 1), (-X  + 1, X +p -  2), {p - 1, -X -  p + 2),

(-X  -lß + 2 , X -  1), (~p + 1 , -X + 1).

*  A weight (a, ß) is positive when either a + B >0 or a + ß = 0, ß>0 .  (a, 8) is higher than (y, a) when 
(a - y> Ö -  6) is positive.
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The rule is  that a ll weights lying on the (X - k, ^ - k) hexagon have multi­
p lic ity  k + 1; and those lying on the innerm ost triangle o r  inside it have the 
m ultip licity  /j + 1.

When ß s X > 0 we deal with a set o f  weights:

(X, ß ) f (X -  1, ß -  1 ) , . . .  (0, ß -  X);

yet the rule rem ains unchanged. S im ilarly , when either X = 0 o r j j  = 0, we 
have a triangle and the m ultip licity  o f each weight is  1.

E xam ple: (5, 2) defines a hexagon the v ertices  of which are (5, 2), (7, -2), 
(2 , -7 ) ,  ( -5 ,7 ) ,  ( -7 ,5 ) ,  ( - 2 , - 5 ) .  (Its weights diagram  is  drawn in F ig . l ) .

Fig. 1

The weights diagram of the representation (2 2)

3. THE CALCULATION OF THE REPRESENTATIONS

(a) Exam ple

A s weights have in general m ultip licity  > 1, one has to use additional 
quantum num bers in o rd e r  to sp ecify  uniquely a vecto r  corresponding to a 
given weight. It was shown by Racah that one needs (N - 3 i ) /2  such additional 
quantum num bers fo r  a group o f o rd er  N and rank i .  In the case  o f SU(3) we 
have (N - 3j0)/2  = 1, and the labeling accord ing to T 2 so lves the problem .

The follow ing lem m a is  im portant fo r  calculation : If the vecto r  | m >  
corresp on d s to the weight m , the v e c to r  E a | m > correspon ds to the weight 
m + a .

P roo f: H iEa| m >  = [H jE a] | m > +E„Hj| m >  = {ai + m i)E a | m > Q .E .D .

It fo llow s that knowing a v ecto r  o f  the representation corresponding to 
a given weight, we may "w alk" a ll o v e r  the diagram  with the aid o f the E ’ s 
and get v e c to rs  corresponding  to a ll other weights of this representation.
The method seem s to be best explained by an exam ple. We have:
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(1 1) X (1 1) = (2 2) + (3 0) + (0 3) + (1 1) + (1 1) + (0 0 ) ____ (3)

Let ai and bk (1 s i, k s 8) span the bases o f the two representations appear­
ing on the le ft and suppose one has to calcu late the basis o f (2 2). The vectors  
belonging to this basis  are com binations o f products o f the form  a, bk in such 
a way that each com bination corresp on d s to a definite weight and has a defi­
nite T . It is  readily  seen that the weight corresponding to a product is the 
sum o f the weights which corresp on d  to the fa cto rs . Hence a jb i is  the only 
product which corresp on d s  to (2 2).

B y Table Hand using (1):

T_(a j  b i ) = a2bi + a^b2> T_(a2bj + ajbz)  -  2 a2b2-

4 ( l / 2 ) ( aib2 + a2b i)  corresp on d s to (3 0), a2b 2 to (4 -2 ) . It can be seen from  
F ig . 2 that together with axb i they form  an isosp in  trip let, because

Fig. 2

The weights diagram of the representation (2 2)

The v ecto r

■s/ ( l /  2)E| (ax b j ) = \l(1 / 2)(ai b3 + a3b i)  

corresp on d s to (0 3). T ogether with:

-v/PT^T.s/TTT^Xaj b3 + a 3b1)= vrfI73)(a1b5 + a5b]. ) - JTT ß)(a2b3 + a 3b2 ), 

■JJXß)T. [JJJJTUeubs + a 5b1) -J T T ß )(a 2b3 + a 3b2 )] = ,/TT76](a1b6 t a ^ )

V T l/3 )(a 2 bs + a 5b2 ),

4 U ß ) T .  [v /(l /6 )(ai b6 + a 6b !)  +v/TT73)(a2b5 + a 5b2)] = J (T [2)(a2b6 + a 6b2 ),

which correspon d  to (1 1 ) , (2 -1 ) and (3 -3 ) respectively , they form  an isospin  
quartet. H ow ever, the m ultip licity  o f (1 1) (and o f (2 -1 )) is  2; i . e .  (1 1) 
corresp on d s to another v ecto r  with a different T . Certainly, this T is 1 /2 . 
The v e c to r
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-E ft a ib i )  = *JT3j2)(a.i b4 + a4b !)  +>JTT]D(a1 b5 + a5 b !)

corresp on d s also to (1 1), and th erefore  it is a com bination of the T = 3 /2  
and T = 1 /2  v e cto rs  corresponding to (1 1). By the Grahm -Schm idt procedure 
one finds the T = 1 /2  v ecto r , which is  orthogonal to the T = 3 /2  one:

■>/(l/30)(3s/(3 /2 )(a 1b4 + a4 b j)  + ^ (1 / 2)(aj bg + a jb i )  t ^ b j  + a3 b2)}

Operating on this by T . we get the second m em ber o f the doublet:

+ a 6b1) +3/{372)(a2 b4 + a 4b2j - ^f(I72l(a2 b5 + a5b2)}.

which is  the second  v ecto r  corresponding to (2 - 1 ).
The v e c to r

- s / ( l / 2 )E ;» /(l /  2)(ai b3 + 3 3 ^ )  = a3 b3

corresp on d s  to (-2 , 4). T ogether with NM T*(a3 b3) where i = 1, 2, 3, 4 and 
where are norm alization  fa ctors  we get an isospin  quintet. The T = 1 
v e c to r  which corresp on d s  to (-  1, 2) is  obtained by operating with E| on the 
T = 1 /2  v e c to r  corresponding  to (1 1)* ;the other m em bers of the triplet 
are obtained with the aid o f T .

O perating with E j on the T  = 1 /2  v ecto r  corresponding to (1 1) we get 
a com bination o f the T = 1 and T = 0 v ecto rs  which correspond to (0 0). By 
the G rahm -Schm idt method we again p ick  out the T = 0 vector .

The continuation o f the p rocedu re  is  obvious (F ig . 3).

Fig. 3 

The root diagram.

(b) The general method

In o rd e r  to p erform  the decom position  o f (X1 X2 )X(^1 /u2) one needs the 
follow ing inform ation:

(1) The representations ( X ^ )  and Ip,Xß 2) ° f  the E ’ s . The bases o f these 
representations con sist o f polynom ials in baryons, antibaryons, m esons 
and v e c to r -m e so n s . T h ere fore  rule (1) m ay be used to get these represen ­
ta tion s.**

*  The reason is that E* (as well as El, Ej, Ej1) can change T only by i .
^-'However, G. Racah calculated explicit formulae for the matrix-elements of the E's in any irreduble 

representation (private communication).
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(2) W hich representations appear in the decom position . Define:

P(x) = (1/2)(| x| + x ) ,

A = Min Ĉ -i (1 / 3 ) [  (Xj -  X2 ) + { (ll + ^ 2 ) - (Vl - v 2 ) ] , ( ! / 3)[ (2Xl + X 2 )

+ (3u i + ß2 ) - (21/! + V2 )] ],

B  = Mo-x Cp [ ( X i  -  I / i )  + ( 1 / 2 ) P ( ( 1 / 3 ) | ( X 1 + 2 X 2 ) -  2 (m ! - M2) -  ( y t + 2 i/ 2 )|

+ (vi - X1 ))] ,(1 /3 )[2 (X 1 - X2 ) + ( ^ x + M2) - (2vi + r/2)] ( l /3 ) [  (Xx - X2)

+  (ß  1 +  2 ) -  ( v i  +  2 v 2 ) ] ]  . '

The num ber of tim es {v\v2 ) appears in (Xj X2 )X(/ui^2) is  P(A  - B + 1 ).
(3) The v ecto r  corresponding  to the m axim al weight of such a represen ­

tation. L et i  be a weight o f (Xi X2 ) and m a weight o f ( ß i ß 2 ) such th ati +  m = 
(i/l v%). If | I  , T j > is a v e c to r  o f the basis o f (XiX2) corresponding to t ,  
and I m, T 2 >  a v ecto r  o f the basis of { ß i ß 2 ) corresponding to m, then the 
product | I ,  T j > | m, T 2 > corresp on d s to ( v i v2 ).

We look  fo r  a linear com bination o f such products which is the vector 
corresponding  to the highest weight o f (i/1 v2). Such a com bination must vanish 
under E j , E§ and E J, as fo llow s from  the lem m a o f part (a) (since (i/j + 1 , 
v2 + 1 ), (vi + 2 , v2 -  1 ) and (vi - 1, v 2 + 2) are not weights of the represen ­
tation (i/1 y2 ). The com bination w ill also vanish under E f , if v2 = 0, and under 
E| if  vy = 0 .  C onsidering the coe ffic ien ts  o f the com bination, we get fo r  them 
a set o f hom ogeneous equations when E^, E§ and E£ (m ay be EJ, o r  E| also) 
are applied. If the solution is  not unique, the representation ( v i v2 ) occu rs 
severa l tim es, and one ch ooses an appropriate basis arb itrarily .
Exam ple: The v e c to r  corresponding  to the highest weight o f (1 1) in the de­
com position  of (1 1)X  (1 1). This v e c to r  is o f the form :

a (a 1 b4)+ ß (a 1 b5 ) + 7 (a2 b3 ) + 6 (a4bx) + £ (35 ^ )  + £(a3 b2 ).

It w ill vanish under the operations o f E 3, E§ and E2 . Hence:

E* : -JJ3J2)(a + 6) (a ib i )  - J U / 2j(ß + 0 ^ ^ )  = 0 ,

EI : - « / p / 2 )a (a ib2) +sfH7 2 )ß(a 1 b2 ) -  7(a2b i)  -  a a ^ ) ,

+ J (T ]Y je(a2b1) -  ? (a !b 2) = 0,

E2 : -J 2  ß(aj b3 ) + 7 ^  b3 ) -  J2 e (a3 b i ) + ? (a 3 b i ) = 0- 

F rom  these equations we get:

\I(3 / 2)(a + 6) +%/(l /2 )(ß  + e) = 0 ,
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- 7 -  sl(3/2)5 + s/XT7 2 )e = 0 ,

- s [ 2 ß  + 7  = 0 ,

- n/2 6  + ?  = 0 .

The set o f solutions is  two d im ensional. Adding the condition 7  = f  or
7  * one gets two m utually orthogonal solutions.

4 . REMARKS

(1) A ccord in g  to the usual exposition  o f the L ie  theory one should write 
E (i i) instead o f E j , E(2 -i) instead o f  E§ e t c . . The present notation empha­
s ize s  the fact that the E ’ s operate in a 3-dim ensional vecto r  space .

(2) The highest weights (A,n) are associated  with Y oun g-sch em es. An 
irred u cib le  representation  o f SU(3) m ay be ch aracterized  by a Young-schem e 
o f not m ore  than 3 row s . Denoting this schem e by [ax a2 a3 ] (where aj is
the length o f the i ’ th row ) we have X = ai -  a2 , /J = a2 -  a3 .

(3) A s T+ and T . com m ute with the hypercharge, it follow s that vectors  
belongiiig to the sam e isosp in  m ultiplet have the sam e hypercharge.

(4) The decom position  procedu re  d escribed  above does not determ ine 
any gen era l phase convention.


