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So inexhaustible is nature’s fantasy, that no one will
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Abstract

Massive gravity is an extension of general relativity where the graviton,
which mediates gravitational interactions, has a non-vanishing mass. The
first steps towards formulating a theory of massive gravity were made by
Fierz and Pauli in 1939, but it took another 70 years until a consistent
theory of massive gravity was written down. This thesis investigates the
phenomenological implications of this theory, when applied to cosmology.
In particular, we look at cosmic expansion histories, structure formation,
integrated Sachs-Wolfe effect and weak lensing, and put constraints on
the allowed parameter range of the theory. This is done by using data
from supernovae, the cosmic microwave background, baryonic acoustic
oscillations, galaxy and quasar maps and galactic lensing.

The theory is shown to yield both cosmic expansion histories, galactic
lensing and an integrated Sachs-Wolfe effect consistent with observations.
For the structure formation, however, we show that for certain parameters
of the theory there exists a tension between consistency relations for the
background and stability properties of the perturbations. We also show
that a background expansion equivalent to that of general relativity does
not necessarily mean that the perturbations have to evolve in the same
way.

Key words: Modified gravity, massive gravity, cosmology, dark energy,
dark matter
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Svensk sammanfattning

Massiv gravitation &r en vidareutveckling av den allmanna relativitets-
teorin dér gravitonen, som férmedlar den gravitationella vaxelverkan, har
en massa. De forsta stegen till att formulera en teori for massiv gravi-
tation togs av Fierz och Pauli 1939, men det tog ytterligare 70 ar innan
en konsistent teori for massiv gravitation skrevs ned. Denna avhandling
undersoker de fenomenologiska konsekvenserna av denna teori, nir den
anvands inom kosmologi. Vi studerar i synnerhet kosmiska expansionhis-
torier, strukturformation, den integrerade Sachs-Wolfe effekten och svag
linsning, samt sdtter grénser pa teorins parametervirden. Detta gors
med hjalp av data fran supernovor, den kosmiska bakgrundsstralningen,
baryonisk-akustiska oscillationer, galax- och kvasarkataloger och galaktisk
linsing.

Vi visar att teorin ger kosmiska expansionshistorier, galaktisk linsning
och en integrerad Sachs-Wolfe effekt som alla 6verensstammer med ob-
servationer. For vissa parametrar finns dock en spénning mellan konsis-
tensrelationer for bakgrunden och stabilitetsegenskaper hos perturbation-
erna. Vi visar dven att en bakgrundsexpansion som ar ekvivalent med den
hos allmén relativitetsteori inte nodvandigtvis betyder att perturbation-
erna utvecklas pa samma sétt.

Nyckelord: Modifierad gravitation, massiv gravitation, kosmologi, mork
energi, mork materia
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Preface

This thesis deals with the phenomenological consequences of the recent
complete formulation of massive gravity. The thesis is divided into six
parts. The first part is a general introduction to the current cosmologi-
cal standard model, i.e. a universe dominated by dark matter and dark
energy. The second part describes Einstein’s theory of general relativity
and certain extensions that are commonly investigated. In part three we
describe, in more detail, massive gravity. Part four is the main part of
this thesis, where the cosmic tests of massive gravity are presented. In
part five we conclude and discuss possible future research directions. Part
six contains the papers constituting this thesis.

A note on conventions: We put ¢ = 1, and G is related to Planck’s
constant, which we keep explicit, as ]\4‘(]2 = 1/87G. The metric convention
is (=, +,+,+). In the papers included in this thesis, different notational
conventions for the two metrics ¢ and f have been used. In the thesis,
however, we will work with a single convention. The theory of massive
gravity contains two rank-2 tensor fields g and f. We will refer to both
of these as metrics, although it is only the tensor field that couples to
matter that properly should be called a metric. Furthermore, the theory
where f is a fixed metric is usually referred to as massive gravity (or
the de Rham-Gabadadze-Tolley theory), and when f is dynamical this is
dubbed massive bigravity (or the Hassan-Rosen theory). In this thesis
we will not be too strict concerning this terminological demarcation, and
refer to both cases as massive gravity. Bigravity will, however, always
refer to the case of a dynamical f.

Contribution to papers

Paper I presents the equations of motion for the cosmological background
expansion, studies their solutions and puts constraints on the parameter
space of the theory using recent data. I participated in the derivation and

xiii



study of the equations of motion. The main part of the paper was written
by Mikael von Strauss.

Paper II derives and studies the equations of motion for cosmological
perturbations. I worked on all aspects of the paper, in particular the
derivation of the equations of motions and their gauge invariant formu-
lation. Marcus Berg wrote the main part of the paper, but all authors
contributed to the final version.

Paper III derives linearized vacuum solution for spherically symmetric
spacetimes and presents the lensing formalism used for parameter con-
straints. I derived the first and second order solutions and did a lot of
the analytical work. I wrote the main part of the paper, except for the
data analysis which was written by Edvard Mortsell.

Paper IV derives and analyses the equations of motion for the cosmological
background expansion with a special type of matter coupling. I initiated
and performed a large part of the derivation and analysis, and am the
main author of the paper. The data analysis was written by Edvard
Mortsell.

Paper V studies the cosmological background solutions for the so-called
dRGT formulation of massive gravity, and with a special type of matter
coupling. I helped with the derivation and analysis of the equations of
motion, and participated in the final formulation of the paper, which was
mainly written by Adam Solomon.

Paper VI uses data from the cosmological microwave background and
galaxy clustering to analyse the viability of massive gravity. I initiated
the analysis, lead the numerical work and wrote the major part of the

paper.

Jonas Enander
Stockholm, January 2015
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Chapter 1

Warming up with gravity

We are usually told that when we drop a ball it will fall down. Things are
not so simple, however. Newtonian gravity was developed taking everyday
experiences into account: the trajectory of cannon balls on Earth, the
motion of the moon around the Earth and the motion of the Earth around
the sun. For these type of motions, Newton succeeded in answering two
questions: what kind of gravitational field does a given piece of mass
create, and how does another piece of mass move in that field?

Einstein also wrestled with and gave an answer to these questions,
and did so by enlarging the framework that Newton and Galileo had set
up. It turned out that not only do different lumps of mass create a gravi-
tational field, but all forms of energy do so. Even the random movements
of atoms within a gas and the momentum they carry contribute to grav-
ity. In everyday circumstances these effects are insignificant, but when
considering very dense and hot objects, such as stars, or the early stages
of the universe when it was dominated by light, these effects can become
important.

It turns out that in the long run it is the vacuum itself that will
dominate gravitationally. This might sound a bit weird; the vacuum is,
by definition, empty, so how can it have anything to do with gravity?
And shouldn’t the interaction between things be more important than
their interactions with nothing? Things are weirder yet; the gravitational
effect of the vacuum is not to make things fall towards each other, but
to make them move away from each other. Gravity becomes repulsive.
And repulsive gravity, to the best of our current knowledge, is the future,
dominant behaviour of the universe.

The reason that the vacuum gravitates is that it can have an energy
density (yes, this means that if you empty a box of everything, there will

3



4 Chapter 1. Warming up with gravity

still be some vacuum energy there that you can never get rid of). And it
turns out that the pressure of the vacuum is negative, unlike the familiar
case of a gas with positive pressure.

Gravity is thus a bit more involved than the dropping of balls would
indicate. It can be both attractive and repulsive. All forms of energy, even
the vacuum itself, will contribute to it. And since electric forces cancel
on average due to the presence of equal amounts of positive and negative
charge, gravity will dominate on scales larger than, say, one centimeter.
In particular, it will determine the global behaviour of our universe.

That the vacuum dominates the long term behaviour of the universe
was established in a series of observations during the end of the 20:th
century. Because of this, there was a strong impulse to re-examine our
understanding of gravity. Is general relativity really the correct descrip-
tion when it comes to the large-scale behaviour of the universe? How
well-tested is general relativity, considering that the most precise experi-
ments are carried out in the solar system? Theoretically, there were many
avenues to explore when it came to extensions of general relativity. This
thesis deals with one of them.

Many alternatives to general relativity that has been proposed during
the last two decades were introduced on an application level, in order to
address the question of the accelerated expansion of the universe. Mas-
sive gravity, which is the subject of this thesis, on the other hand, was
introduced from purely theoretical consistency requirements. The origi-
nal question addressed is rather simple. In general relativity, the particle
that is responsible for gravitational interactions is the massless graviton.
So what happens if one makes this particle massive? This scenario is
well understood in the case of photons. To within great experimental
precision, photons are massless. It is straightforward to write down the
theory of a massive photon, and derive the observational signatures (this
is exactly what has been done behind the statement ”the photon is mass-
less”; experimentalists have searched for the observational signatures of
a massive photon and found none). But for the graviton, it was for a
long time unclear how to write down the full theory which contained a
massive graviton. The issue was resolved, however, in 2011. Building on
earlier work, Fawad Hassan and Rachel Rosen, working at the Oskar Klein
Centre in Stockholm, wrote down the complete theory of massive gravity
[1, 2]. It was then only a question of working out the observational signa-
tures of this theory, and testing that against data. The primary tests for
any new theory of gravity are the cosmic expansion history, the amount of



structure formed in the universe, the spectrum of the cosmic microwave
background and bending of light around massive objects such as stars and
galaxies. In this thesis, all of these tests are applied to massive gravity in
order to see whether the theory can be excluded or not.

Before we go into the details of these tests, we give a brief account
of the two major unsolved puzzles in cosmology: dark matter and dark
energy.






Chapter 2

The universe as we know it

The science of cosmology has developed tremendously during the last
hundred years. The major shift in our understanding of the universe is
that it is not constant in time, but rather highly dynamical: the universe
is expanding. This expansion causes the universe to cool down, which
means that it must have been much hotter earlier. Since matter behaves
quite differently at different temperatures—which the example of boiling
water clearly shows—it is thus possible to talk about a natural history of
the universe.

The large scale structure of the universe is to a large extent governed
by two gravitational effects. On the one hand we have the expansion of
space, which makes objects, such as galaxies, recede from one another.
On the other hand, we have the attraction that gravity produces between
two objects, which makes them move towards each other. Measuring the
distribution and evolution of the large scale structure will thus give us
information about the interplay between these two effects, and how we
should model gravity in order to properly describe this interplay.

While the current level of the science of cosmology is truly a precision
science—in large parts thanks to the use of CCD cameras—this level of
precision has also cast doubts on our level of understanding of gravity.
From measurements of the expansion of space and gravitational attrac-
tion we infer that the energy content of the universe to roughly 95% is
unknown to us. We can see the gravitational effects of this content, but
we do not know what it is. This content also has two completely different
gravitational effects: Dark energy, which makes out about 70% of the to-
tal energy content, causes the expansion of the universe to accelerate. It
has an repulsive effect on objects not gravitationally bound to each other,
making them move apart at an increasing rate. Dark matter, on the other

7



8 Chapter 2. The universe as we know it

hand, is postulated from the fact that there appears to be “more” attrac-
tive gravity on scales ranging from galaxies to cluster of galaxies, than
what one would infer from the observed baryonic content.! Let us review
the evidence for these two unknown energy contents.

2.1 The case for more attractive gravity: dark
matter

Dark matter is usually postulated to be an as of yet unobserved parti-
cle that does not interact with light. Such a particle is, by itself, not
exotic; neutrinos are an example of a particle that interacts gravitation-
ally and weakly with other particles, but not electromagnetically. The
gravitational evidence for dark matter comes from the following areas:

Cosmic expansion Observation of the recession of galaxies from one
another gives a constraint on the total energy content of the universe.
This is further explained in section 7.1. These observations point towards
the existence of a matter component which makes out roughly 25% of
the total energy content. This matter component is not the same as the
observed baryonic component, which only accounts for roughly 20% of
the total matter content.

Cosmic microwave background Some unknown mechanism caused the
universe to be in a hot state roughly 13.7 billion years ago. In this hot
state all the particles that we know today intermingled: baryons, neu-
trinos, photons etc. The universe was completely smooth, with the ex-
ception of tiny fluctuations that would later form the seeds of galaxies.
Baryons and photons interacted frequently, forming an ionized plasma. As
the universe expanded, the plasma cooled down until it reached a stage
where the baryons could form neutral hydrogen as the photons stopped
interacting with them. These photons then started to free stream in the
universe, and are referred to as the cosmic microwave background. An-
alyzing their temperature distribution today gives detailed information
about the properties of the universe. In particular, they strongly point

!Baryons are particles consisting of three quarks, such as the proton and neutron.
They exist in the universe mostly in the form of hydrogen, and make out roughly 5%
of the energy content. By energy content we mean all forms of energy components:
baryonic matter, dark matter, light, neutrinos, dark energy, curvature etc.
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Figure 2.1. Observed rotational velocities of the galaxy NGC 6503 com-
pared to the expected velocities as inferred from the luminous and gaseous
baryonic mass. The dark matter component, in the form of a spherical
halo, is needed to produce the observed rotational velocities. Plot taken
from [3].

towards the existence of both dark matter and dark energy. The cosmic
microwave background is described further in section 8.3 and 9.1.

Galaxy formation The fluctuations in the baryon-photon plasma de-
scribed in the previous paragraph were extremely tiny at the time of
decoupling. The baryonic component started to collapse, but this col-
lapse would be far to slow to yield the galaxies and clusters of galaxies
that we see today if it only involved the baryons. Therefore, there has
to be a dark matter component that could start to grow earlier than the
baryonic component. The growth of baryonic matter in the early universe
is impeded through its coupling to light, so the dark matter component
indeed has to be “dark” and not couple to light.?

Galaxy dynamics Galaxies are gravitationally bound systems, with stars
and gas in bound orbits. Galaxies are usually gravitationally bound to

2A better wording would actually be “transparent”, since an object is dark because
of its absorption of light.



10 Chapter 2. The universe as we know it

Figure 2.2. The Bullet cluster is the cluster to the right; it collided
with the cluster to the left some 150 million years ago. The hot gas,
shown in pink, has been displaced from the center of the clusters due to
electromagnetic interaction. The dark matter distribution (blue), which
is inferred from lensing, follows the cluster centers and is not affected by
the interaction. Image Credit: NASA/CXC/CfA.

other galaxies in galaxy clusters. The observed motion of gas and stars
in the outer regions of galaxies, and also the observed motion of galaxies
in galaxy clusters, is not possible to produce through the baryonic mass
distribution within the galaxy or galaxy cluster. One has to postulate the
presence of more matter—once again dark matter, since it is not seen—in
order to set up stronger gravitational fields. The rotation curves of gas
and stars in the outer parts of spiral galaxies are nearly flat, and this can
be produced with a dark matter halo.

Light bending Since matter curves the surrounding spacetime, the tra-
jectories of light will also get curved as it passes nearby massive objects.
This effect is described in detail in section 10.2. Comparing the mass dis-
tribution inferred from lensing effects around galaxies and galaxy clusters,
with the observed mass distribution, gives yet another piece of evidence
for the existence of dark matter.

This evidence is particularly striking in the case of e.g. the Bullet
Cluster. In Fig. 2.2, the mass distribution inferred through lensing (blue)
is shown for two interacting galaxy clusters, together with the mass dis-
tribution of the hot gas (pink). One clearly sees how the gas is displaced
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because of the interaction between the two clusters, whereas the non-
interacting dark matter component resides in the center of the clusters.

It is important to note that none of the above properties tell us any-
thing about the particle properties of the putative dark matter particle,
expect that it should have non-relativistic velocities and not have any
strong self-interactions. It is perfectly possible that the particle does not
even exist, and that our theory of gravity is wrong, since it is basically
the demand for stronger gravitational fields on galactic scales and above
that calls for the introduction of a new particle. The consistent explana-
tion for a wide range of phenomena that the postulation of a dark matter
particle achieves is, however, a strong rationale for searching for it using
non-gravitational means.

2.2 The case for more repulsive gravity: dark
energy

One outstanding feature of the universe is that it is pretty empty, and that
it appears to become more and more empty over time as it expands. The
expansion rate of the universe is related to its energy content, and a major
discovery in the 90:s, awarded with the Nobel Prize in 2011, was that the
expansion rate of the universe is accelerating [4, 5]. A possible cause of
the acceleration is an energy component, which makes out roughly 70%
of the energy content of the universe, with negative pressure.

One candidate for this energy component is the vacuum itself. The
vacuum is normally thought of as empty and thus without any physical in-
fluence. Gravity, at least in the manner that Einstein introduced, couples
to all forms of energy, and if the vacuum has an energy density this can
have a gravitational influence. That the vacuum can have an energy den-
sity makes sense from the point of view of quantum field theory. Due to
Heisenberg’s uncertainty principle it is impossible for something to be at
perfect rest; there will always be a small residual motion present. The en-
ergy associated with this motion is called the zero-point energy. Adding
up all these energies gives, within the context of quantum field theory,
an energy density of the vacuum. Back-of-the-envelope calculations sug-
gest that this energy density should be on the order of the Planck scale,
whereas the observed energy density of the vacuum is some 120 orders of
magnitude smaller than that.
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The dark energy component gives rise to a repulsive form of gravity,
unlike the dark matter component which causes the more well-known case
of an attractive gravitational influence. As we saw in the previous section,
there are several independent gravitational probes that point towards the
existence of dark matter. The only inference of a dark energy component,
on the other hand, comes from the expansion history of the universe.
Dark energy does not have to be caused by the vacuum. It is possible
that our theory of gravity is incorrect; gravity might be insensitive to the
properties of the vacuum, and some other gravitational effect, or even
new matter fields, produce the accelerated expansion.

One of the key issues concerning dark energy is whether it is constant
in space and time—the true hallmark of a vacuum contribution—or if it
shows any variation. A non-constant dark energy component would e.g.
participate in the formation process of clusters and galaxies, as well as
alter the expansion history. Current observations are consistent with a
time-varying dark energy component.

The explanation of the inferred existence of dark matter and dark en-
ergy are the two outstanding problems facing cosmology today. In the
next part we will look deeper into the structure of Einstein’s theory of
general relativity and its possible extensions. We will then see why the
solution to the dark energy problem is a rather subtle affair, and whether
it could be addressed in the theory of massive gravity.



Part 11

Beyond Einstein
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Chapter 3

How general is general
relativity?

General relativity was introduced to the scientific community in Novem-
ber 1915, when Einstein presented his field equations to the Prussian
Academy of Science [6]. The major result of his new theory of gravity—
developed together with mathematicians like Marcel Grossmann and David
Hilbert—was that spacetime should not be regarded as a static back-
ground arena, but instead be promoted to a dynamical entity. Matter in
its various forms, e.g. rest energy, stresses, kinetic energy, curves space-
time, which in turn influences the motion of matter.

Mathematically, the curvature of spacetime is encoded in the metric
Juv, in the sense that spacetime distances are given by ds? = Juvdztdz”.
Matter, and its various forms of energy, is represented in the so-called
energy-momentum tensor 7),,. Einstein’s field equations, which relate
Guv t0 Ty, are

T

Mg

1
R/u/ - iRgltu =

where R, is the Ricci tensor and R the Ricci scalar. Mg2 determines
the coupling strength of gravity to matter, and is related to Newton’s
constant through

M21

= 2
9 8r@G (3.2)

The motion of test particles in the curved spacetime is on geodesics, i.e.
trajectories that extremize the spacetime distance. Einstein derived his

15



16 Chapter 3. How general is general relativity?

field equation by demanding that 7}, should satisfy
VT, =0, (3.3)

which is a condition related to energy-momentum conservation. Since

1
& <RW - 2RgW> —0 (3.4)

identically, one thus sees that energy-momentum conservation is a conse-
quence of the field equations.

Einstein did not believe that his field equations were the end of the
story. He wanted to incorporate the other forces of nature into a unified
geometric description. This turned out to be difficult, and historically
the theoretical and experimental investigations of the forces of nature
divided into two parts. Due to the weakness of gravitational effects on
microscopic scales, the particle physics community primarily studied the
electromagnetic, weak and strong interactions and developed a theoret-
ical framework, i.e. quantum field theory, suited for these interactions.
The gravitational force was instead primarily studied by astronomers and
cosmologist; theoretical developments crossed roads with the increased
amount of astronomical data that poured in due to technological advances
after the second world war. Unifying the treatment of gravity with that
of the other forces is not only an experimental problem; the theoretical
framework of gravity is very different from that of quantum field theory.
Even though the electromagnetic and weak forces could eventually be
joined into an electroweak description, there is as of yet no unification of
gravity with the other forces.

Today there are both theoretical and observational reasons why one
wants to go beyond Einstein’s original description of gravity. The ob-
servational reasons—i.e. dark matter and dark energy—were described
in the previous chapter. The theoretical reasons are threefold: 1) The
relationship between the vacuum and gravity is hard to reconcile with
the quantum description of vacuum fluctuations (this problem is also re-
lated to dark energy), 2) spacetime singularities seem to be ubiquitous
and 3) the quantization of general relativity does not lead to a theory
valid at all energy scales. In the next three sections we will briefly discuss
these points, and in section 3.4 we describe possible extensions of general
relativity.
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3.1 The cosmological constant problem

Adding a term Ag,,, to Einstein’s field equations does not spoil the iden-
tity (3.4), and energy-momentum conservation is thus still a consequence
of the field equations. In terms of the expansion history of the universe,
such a constant will cause the expansion to accelerate. It is therefore a
candidate for dark energy. The possible sources for A are three-fold:!
1) The cosmological constant term A in the gravitational Lagrangian
(L ~ R — 2A), which is a geometrical term describing spacetime cur-
vature in the absence of sources, 2) constant potential terms coming from
symmetry breaking phase transitions in the early universe (for example
the electroweak phase transition) and 3) zero-point fluctuations of quan-
tum fields. These zero-point fluctuations correspond to the energy density
of the vacuum.

The cosmological constant term A is a free parameter. Constant po-
tential terms are also free in the sense that one can add any constant term
to the potentials, but there will always be a shift in the potential mini-
mum during phase transitions, which should affect the expansion history.
Zero-point fluctuations of quantum fields generically give a too large value
compared to what is observed, but this value can always be subtracted by
a constant term in the Lagrangian. Such a subtraction, however, requires
a high degree of fine tuning.

Given that Einstein’s theory of gravity is correct, all of these three
sources combine to produce an effective cosmological constant. If the
observed accelerated expansion is due to the cosmological constant, it is
measured to be

A~ 10712202 (3.5)

where /p is the Planck length (equal to 1.61 x 10723 cm in anthropocentric
units).

An intriguing property concerning the value of the vacuum energy
density is that since it is constant throughout the history of the universe,
its effects are only becoming discernible as the radiation and matter en-
ergy densities have become diluted enough. Furthermore, in the future
the universe will be completely dominated by the vacuum energy density
and approach an asymptotic de Sitter universe. The situation is depicted
in Fig. 3.1. In a dark energy dominated future, different regions will
become causally disconnected, i.e. even in an infinite time span, light will

'A good review of the cosmological constant problem can be found in [7].
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| Planck

Figure 3.1. The contribution of the fractional energy Q4 to the total
energy content of the universe, as a function of the scale factor. Indicated
are the Planck era, electroweak phase transition and time of big bang
nucleosynthesis. Plot taken from [8].

not be able to go from one region to another. It will thus be impossible
to reconstruct the natural history of the universe. In some sense then, we
live in a privileged time where the matter and vacuum energy densities
are of roughly equal size. This is usually referred to as the “cosmic coinci-
dence problem”, even though there is no consensus that it truly represents
a physical problem.

The cosmological constant problem is in reality a host of problem:

e Given that the vacuum has an energy density, how does gravity
couple to it?

e Why is there such a high degree of fine-tuning required to reconcile
theoretical expectations with the observed value of the cosmological
constant (if dark energy is due to a cosmological constant).

e Why does gravity seem to be insensitive to shifts in the constant
potential terms that occurred in the early universe?

All of these problems are of course connected, and they strongly suggest
that whatever theory of gravity that will extend general relativity, it has
to shed new light on the relationship between gravity and the vacuum.
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3.2 Singularities

General relativity uses the framework of a curved spacetime to describe
gravity. Trajectories of particles in free fall occur on geodesics on that
spacetime, and the position of the particle along its trajectory can be de-
scribed by the proper time. It can occur, however, that for certain space-
times these geodesics are not complete, in the sense that the geodesics can
not be continued on the spacetime, even though the entire range of the pa-
rameter describing its trajectory has not been covered [9]. Such geodesic
incompleteness signals the presence of a singularity. A well-known exam-
ple is the singularity inside the Schwarzschild black hole, which can be
reached in a finite time. It can be shown that these singularities exist
under rather generic conditions. They are problematic in the sense that
they signal a breakdown of the spacetime description of gravity, and sug-
gest that close to these points one has to use some other framework than
general relativity for describing gravitational interactions.

3.3 Renormalizability

One striking fact about physics is that it is possible to describe natural
phenomena occurring at a certain length scale without having to care
about the details at smaller scales. We can, for example, study the be-
haviour of water waves without taking the detailed interactions of the
water molecules into account. In the context of particle physics, this
means that we can describe particle interactions at a given energy even
in the absence of a complete high-energy theory [10].

The exact relationship between an effective theory formulated for some
given energy range, and its underlying high-energy completion, is encapsu-
lated in the concept of renormalizability. Theories are classified as either
renormalizable or non-renormalizable. A renormalizable theory does not
contain an energy scale which signals its breakdown, i.e. where it needs to
be replaced by some high-energy theory. A non-renormalizable theory, on
the other hand, can only be treated as a low-energy effective theory. It has
a built-in energy scale, which gives a limit to its regime of applicability.
QCD is an example of the former, and general relativity an example of
the latter. This means that the quantized version of general relativity can
not be the fundamental theory of gravity (which also includes quantum
mechanical effects). Its applicability as a quantum theory breaks down at
the Planck scale. This is a strong theoretical hint that general relativity
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is only an effective, low-energy theory, and is thus not the final word on
our understanding of gravity.

3.4 Theoretical avenues beyond Einstein

We saw in the previous section that general relativity suffers from certain
drawbacks: it’s not a renormalizable upon quantization, does not lead to
singularity-free spacetimes and the relationship between gravity and the
vacuum is unclear. Also, the inferred existence of dark matter might be
because of our lack of understanding of gravity. Given these problems, it is
natural to ask what the viable extensions of general relativity are. In 1965,
Weinberg showed that general relativity is the unique Lorentz covariant
theory of an interacting massless spin-2 particle [11]. The uniqueness
property of general relativity was further investigated by Lovelock in [12,
13], where it was proven that Einstein’s field equations are the unique,
local, second order equations of motion for a single metric g,, in four
dimensions. This means that modifications of general relativity must
entail something of the following:?

1. Include higher derivatives than second order in the equations of
motion.

2. Introduce new dimensions.

3. Use more fields than just g,

4. Introduce non-local interactions.

5. Break Lorentz symmetry.

6. Abandon the metric description of gravity.

The first option is problematic, due to instabilities that arise when higher
order derivatives are included. The existence of these instabilities was
shown in the mid 19:th century by Ostrogradsky [15], and are most easily
seen in the Hamiltonian picture. It turns out that under certain gen-
eral conditions, higher order equations of motion leads to phase space
orbits that are unconstrained, which means that negative energies can
be reached. Coupling fields with higher order equations of motion to

2There exists several excellent reviews of modified gravity theories. In this chapter
we have followed [14].
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fields that have a Hamiltonian unbounded from below means that the
latter fields can acquire arbitrarily large energies due to interactions with
the former fields. Adding higher order curvature terms, such as R? or
R, R*, to the Lagrangian yields higher order equations of motion for
9w, which potentially can avoid the problematic Ostrogradsky instability
[16]. These higher order terms are expected if one regards general relativ-
ity as an effective field theory, with the Ricci scalar being the dominant
term at low energies. These higher order interactions have been studied
as a possible explanation of dark energy [17].

The second option introduces new spatial dimensions that either have
to be so small so that their effects are not seen in everyday life, or they
have to be so large and only restricted to gravitational interactions so
that their effects are only seen at cosmological distances. In braneworld
models all particles are confined to a brane with three spatial dimensions,
whereas gravity also has interactions in a higher-dimensional bulk. The
gravitational interactions will appear four dimensional up to a crossover
scale r., and beyond that they will be modified. The modifications depend
on the precise bulk and brane setup [18].

The third option, to add more fields, is the avenue taken in massive
gravity. Of course, one inevitably has to ask if the addition of more fields
really is a modification of general relativity, or if it is just new matter
fields one is adding. In massive gravity the extra field is f,,,. This means
that one has two rank-2 tensor fields present in the theory, and it is an
open question which one of them should be promoted to the metric used
to measure spacetime distances. This is further discussed in chapter 5.

The remaining options—mnon-local interactions, breaking of Lorentz
symmetry and abandoning the metric description—are rather exotic and
has appeared in a variety of forms in the literature [20, 21, 22]. We shall
have nothing further to say about them in this thesis.
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Chapter 4

The Hassan-Rosen theory

In this chapter we will introduce massive bigravity, also known as the
Hassan-Rosen theory. In the first section we describe how general rel-
ativity is the theory of a massless spin-2 particle.! We then describe,
in section 4.2, what the theory of a massive spin-2 particle should look
like around a Minkowski background. In section 4.3 we discuss the road
from the particle description in a Minkowski framework to the complete
non-linear theory. We pay attention to how it is done in general relativ-
ity and the potential pitfalls when using a massive spin-2 particle. We
finally state the full Hassan-Rosen theory in section 4.4. The question
of how to couple matter to gravity, and its impact on the equivalence
principles, is discussed in chapter 5, and important dualities, symmetries
and parameter choices are described in chapter 6.

4.1 Massless spin-2
The Lagrangian for general relativity is given by
M2
Ez—Tg\/—gR+£m, (4.1)

where Mg2 is the coupling constant between matter (given by the matter
Lagrangian L,,) and gravity. To look at the spin-2 structure of general

1'We base our exposition on [23] and [24].
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relativity, we expand the Lagrangian around flat space by decomposing
the metric as

Guv = Nuv + huu7 (42)

where |h,,| < 1. The Lagrangian then becomes
2

M 1 1
L=— Tg (—2&@”@%“” + 0 hyn 0 WM — 8,hM D, h + 28Ah0Ah>

1
_ ZhWTW’ (4.3)
where h = n*”h,,,, and the stress-energy tensor T#" is defined through

7 —_2 05m
M =g dgh

The equations of motion are obtained by varying with respect to h,:

(4.4)

ggfhaﬁ S (4.5)

where
£ = (nﬁanf) - naﬁn,w) O 0%8,—nf 0% 0,411, 0°0°+1°° 0,0, (4.6)
Applying 0* on both sides gives

oM =0, (4.7)
which is the flat space version of V#T},,, = 0. Energy-momentum conser-
vation is ”built into” general relativity from the beginning; we will see

later how this gets modified in massive gravity. If we make a small shift
of the coordinates x# — z# + ¢, the field hy, transform as

ha,B — ha,B + aagﬁ + 8,350(' (48)

The equations of motion are left invariant under this transformation,
which is due to the reparametrization invariance of general relativity.
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To show that the quadratic Lagrangian (4.3) describes a massless spin-
2 field, we choose the Lorenz gauge where

1
" (hW - 2n,wh) = 0. (4.9)

The trace reversed equations of motion becomes

1 1
Ohyw = ~ 575 <TW - anT) : (4.10)
g

The solution for Ay, is

1
i (2) =~ [ 4963 (2 =) Tas (). (411)
g
where
1

is the graviton propagator, and

1 dip 1
Gl =g ) = [ Gy (413)

om)t —p?

is the standard scalar propagator. Of the ten components of h,,, the
Lorenz gauge (4.9) fixes four. In vacuum, the equations of motion are
simply [Jh,,, = 0 in this gauge, and there is still a residual gauge freedom
left, since one can perform transformations for which [J¢# = 0. This can
be used to remove another four components. A standard choice is the
transverse-traceless gauge, in which

hou=0, h=0, 0"h, =0. (4.14)

In this gauge there are only two propagating degrees of freedom left, which
upon quantization exactly correspond to the two degrees of freedom of a
massless spin-2 particle, with helicities +2 (the helicity-2 nature of the
interaction can be inferred by studying the transformation properties of
the transverse-traceless part of hy,, under spatial rotations).
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4.2 Making the graviton massive

The quadratic Lagrangian (4.3) describes a massless spin-2 field. In 1939
Fierz and Pauli added a mass term in order to describe massive spin-2
fields [25, 26]. The mass term is

2

Lrp = —% (R h?™ = 1?) . (4.15)
The equations of motion are now given by
1
535%5 —m? (h;w - npuh) = _WTyw (4.16)
g

Comparing with the equation (4.5) for the massless field, we have two
important differences. First of all, the equations of motion are no longer
invariant under the gauge transformation

hag — hag + 0aép + 0péa- (4.17)

The massive spin-2 Lagrangian thus breaks the reparametrization invari-
ance that the massless spin-2 Lagrangian contained. Secondly, source
conservation is no longer automatically implied by the equations of mo-
tion, but has to be postulated. Indeed, when acting with 9" on both sides
of (4.16) one gets

oMhy, — Oyh = oMT,,. 4.18
© jz

m? M2
If one assumes that the source is conserved, then 0"h,, — d,h = 0, and
plugging this back into the equations of motion gives a constraint on h:

T
h=—3>—. 4.19
3MzFm?2 (4.19)
Using this once again in the equations of motion, they can be written in
the following form:

(O = m?) by = —]\;3 (TW - %UWT + Slmza#ayT) . (4.20)
In vacuum, we are thus left with the following equations:
h =0, (4.21)
0"hy, =0, (4.22)
(O —m?) hyw = 0. (4.23)

The first two equations removes five components of h,,, whereas the third
equation give the equation of motion for the remaining five components.
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These components are the five propagating degrees of freedom for the
massive spin-2 field, corresponding to helicities 2, £1 and 0, as compared
to the two degrees of the massless field.

The propagator for the massive spin-2 field can be attained by invert-
ing (4.20):

1 e
hyw = 2 /d4yGM5 (z —y; m2) Tog- (4.24)
g
Here
(03 « 1 (0%
G#E (z— y;m2) =G (z— y;m?) (5(u55) = 3] 6) (4.25)

is the massive graviton propagator, and

1

Gz —ym?) = 550 (@)
d4p 1 p(x—

is the propagator for a massive scalar. We see that in the limit m? — 0

lim G (z—y;m®) =G (x— 4.27
lm G (z—y;m®) =Gz —y) (4.27)
but
: a 2 o
n}%ILlOGMVﬁ (z —y;m?) # Gm,ﬁ (x —y) (4.28)

due to the factor of 1/3 in (4.25). There is thus, in the linearized frame-
work, no smooth limit to general relativity as the mass of the graviton
goes to zero. This is known as the van Dam-Veltman-Zakharov (vDVZ)
discontinuity, named after its original discoverers [27, 28] (see also [29]).

The culprit of the vDVZ-discontinuity can be traced to the helicity-
0 mode of the massive spin-2 field. This is most easily seen through
a Stilickelberg analysis, where the broken gauge invariance in the mas-
sive theory is restored by introducing auxiliary fields that carry the right
transformation properties. This allows for a smooth m? — 0 limit, and by
studying the residual fields and their interactions one can isolate the phys-
ical difference between the massive and massless theories. For example,
doing a Stiickelberg analysis of the Proca Lagrangian (i.e. the Lagrangian
for a massive photon), one sees that the helicity-0 mode, which carries the
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new longitudinal polarization, effectively decouples in the m? — 0 limit,
and one is therefore left with the original massless Maxwell Lagrangian
together with a non-interacting scalar field. Doing a similar analysis for
the Fierz-Pauli action one sees that there is a residual coupling left be-
tween the helicity-0 mode and the trace of the stress-energy tensor. The
m? — 0 limit is thus an interacting tensor-scalar theory.

Since the trace of the stress-energy tensor vanishes for light but not for
matter, the bending of light around a massive object will be different in
the tensor-scalar theory as compared to general relativity. More precisely,
one can show that there is a 25% discrepancy between the massive and
massless theory, irrespective of how small the graviton mass is. Measuring
such a discrepancy lies well within the capabilities of current observational
techniques, so at first sight, one would think that the theory of massive
gravity is ruled out. It turns out, however, that things are a bit more
subtle. Whereas it is correct that such a discrepancy exists, there also
exists a radius wherein non-linear effects have to be taken into account.
This radius was identified by Vainshtein in 1972, and is therefore known
as the Vainshtein radius [30]. Solar system observations lie well inside
such a radius. Vainshtein postulated that there could exist a non-linear
Vainshtein mechanism that produces a smooth limit to general relativity
in the limit of vanishing graviton mass. The observational consequences of
the vDVZ-discontinuity for bending of light outside the Vainshtein radius
is the subject of Paper III. This is further discussed in chapter 10.

4.3 The graviton vs. gravity

We saw that the field equations (4.5) implied conservation of energy-
momentum 0,T"” = 0. This can not be the complete story, however,
since the interaction between gravity and matter can remove energy from
the matter sources and radiate it away through gravitational waves. Also,
the full equations of motion for 7" must include the field h,,,,, which is not
the case of 9, 7" = 0. One therefore need to include higher order terms
in h,, in the action in order to arrive at a consistent theory of gravity.
This means, in particular, that self-interactions of the gravitational field
are introduced. This iterative procedure leads uniquely to the Einstein-
Hilbert action (4.1), up to boundary terms [31, 32].

When trying to add non-linear terms to the Fierz-Pauli action one has
to ensure, at each step, that the constraints that ensured five propagating
degrees of freedom is not lost. A problematic sixth degree of freedom with
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a negative kinetic term is usually referred to as a ghost. Such a degree of
freedom signals a pathology of the theory, since other fields can acquire
arbitrarily large energies from the field with negative kinetic energy. It
also leads to negative probabilities upon quantization, which is unphysical.
That such a field would show up for generic higher-order interactions was
shown by Boulware and Deser in [33]. The pathological sixth degree of
freedom is therefore referred to as the Boulware-Deser ghost.

The Fierz-Pauli action was written down using flat space as the back-
ground metric. For the fully non-linear theory, one has to introduce a
new rank-2 field f,, in order to create non-derivative terms with g, .
These terms will form the potential, and the terms have to be carefully
constructed in order to avoid the Boulware-Deser ghost. If the rank-2
field f,, transforms as a tensor, the general covariance of the theory is
restored. It is also possible to give dynamics to f.,.

The non-linear completion of the Fierz-Pauli action was studied in a
series of papers [34, 35, 36, 37]. The first correct potential in a certain
limiting case, and using a flat reference metric, was written down by de
Rham, Gabadadze and Tolley (dRGT) in [38]. The full non-linear action,
together with a proof that it was ghost-free, was written down by Hassan
and Rosen in [1, 39]. This was immediately generalized to arbitrary f,,
in [40] and to a bimetric framework, where f,,, was also given dynamics,
in [2, 41]. The possibility of having several interacting, dynamical rank-
2 fields was shown in [42]. The theory with a non-dynamical reference
metric f,,, is usually referred to as the dRGT theory. For dynamical
fuv, the theory is usually called Hassan-Rosen theory (and also massive
bigravity, or bimetric massive gravity). The potential term constructed
out of g, and f,, is the same in both cases.

4.4 The Hassan-Rosen action

The Hassan-Rosen action, without matter couplings, is

M2 M? <
5= [ [—;HRg MRy Y e (W—lf)] |
n=0

(4.29)
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Here

€0 (X) =

—_

a () =[x, ex)=, (X7 - [x7),

([X]3 ~3[X2] [X] +2 [X3]) . eq(X) =det X,
(4.30)

e3 (X) =

| =

where [X] = TrX. The action contains two Einstein-Hilbert terms for g
and f, and an interaction potential which depends on the square root of
g~ f, defined such that

Vo lfVeglf=g'f (4.31)

Five independent parameters (3,, characterize the potential. A priori they
can have any value, and ultimately they have to be constrained by com-
paring the predictions of the Hassan-Rosen theory with observations.

In the next chapter we describe possible matter couplings that one
could add to this action. Depending on the type of coupling the equations
of motion will obviously look different. In the specific phenomenological
applications, where we use different type of couplings, we will give the
equations of motion for the specific metric ansédtze under consideration.
Here we will instead just state the general equations of motion in vacuum:

1 m4 : n A _

Ry (9) — 59t (9) + 72 2 (=1)" BngurY iy, ( 9 1f> =0,
(4.32)

By (1)~ LR (1) + 15 3 (1) B fuay (Vig) =0

(2l 2 pv Mf2 — 4—nJpA (n)v g) =9
(4.33)
Here the Y matrices are given by

Yoy(X) =1,  Yq(X)=X-TI-e1(X),

Yoy (X)=X?—X-e1 (X)+1-e2(X),

Vi) (X) =X —X? e (X)+ X ez (X)—1-e3(X), (4.34)

where [ is the identity matrix. Taking the divergence of these two equa-
tions and using the Bianchi identity given in (3.4) leads to the following
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two constraints:

4 3
Egvg Z% (=1)" Bagin Y (Vo) =0, (4.35)
m4 2 : n A —1
ﬁ?vf Z{)(—l) Ba—nfurY(ny, <v f g) =0. (4.36)

These two equations are not independent of one another, which is a con-
sequence of the reparametrization invariance of the action. Furthermore,
they do not provide any new information as compared to the original
equations of motion (4.32-4.33), but they are still useful since they can
present the content of the equations of motion in a more manageable way.
The equations of motion contain in total 7 parameters: five S-parameters
and 2 coupling constants. It is possible to do various rescalings of the two
metrics and these parameters in order to reduce the number of free pa-
rameters. This is described in chapter 6.



34



Chapter 5

Adding matter

When the muon was discovered in 1936 Nobel laureate I.I. Rabi exclaimed
”who ordered that?”, since it was believed that the proton, neutron and
electron would be enough to describe the sub-atomic world. In a similar
way we can respond "who ordered a second metric?” when we see that
the construction of a theory of a massive graviton immediately introduces
a second rank-2 tensor.

Given that two dynamical rank-2 tensors fields g and f are present in
massive bigravity, we are confronted with the question of how to couple
matter to these two fields. In general relativity, all matter couples to
gravity in the same way (which is usually called the weak equivalence
principle) through a term \/—g¢Ly in the action. Since the rods and
clocks that are used to measure spacetime distances couple to g, one
usually refers to g as the metric. But now we have two fields, and coupling
matter to both of them would create an ambiguity; which one of g and f
should we promote to a metric that determines the spacetime structure?!

As if these conceptual difference were not enough, there are also the-
oretical consistency issues. The interaction potential between g and f
was carefully crafted to avoid the so-called ghost problem: a degree of
freedom with negative Hamiltonian that upon quantization gives rise to
negative probabilities. The matter coupling could ruin the constraint that
is necessary for the theory to be well-behaved.

Different couplings have been proposed in the literature, and in the
next section we will state the most common ones. Not all of them are
ghost-free, but this does not necessarily mean that they are excluded a

'Even though it is only the tensor field that couples to matter that should properly
be called a metric, we will use the somewhat incorrect language of referring to both g
and f as metrics.
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priori, since they could potentially still be considered to be effective field
theories below the energy threshold where the ghost appears. In sec-
tion 5.2 we will discuss how the couplings affect the different equivalence
principles closely related to the formulation of general relativity.

5.1 Matter couplings

In this section we go through some common couplings to matter. The
matter Lagrangians will depend on each of the two metrics or some com-
bination thereof. The matter fields are denoted by .

Singly coupling The most straightforward coupling is to just couple ei-
ther g or f to matter, through a term \/=g¢Lm, (g, ®) or v/— f L (fuv, P).
This is referred to as singly coupling (the introduction and ghost-free sta-
tus of this couplings was performed in the first formulation of the theory,
[2]). This coupling breaks the symmetry between g and f (see section
6.1, however, for a possible resolution), and one is left wondering why it
was, say, g instead of f that should couple to matter. The advantage
with coupling to only one of the rank-2 tensors is that this tensor is then
immediately promoted to the metric. This coupling is used in Paper I,
Paper II, Paper IIT and Paper VI.

Doubly coupling If one wants to couple both g and f to matter, there
are basically two options. The first is to couple g and f to different matter
sectors:

Sm = /d‘lx\/fgﬁl (G, ) +/d4x\/—7£2 (fuw, @) - (5.1)

Here £1 and L5 need not be of the same functional form. This type
of coupling will be ghost-free [2], and its phenomenology was explored
in [44]. Another option is to couple both g and f to the same matter
content:

S = / 0 G Lo (G ) + / Bo /=L (fun®).  (5.2)

This type of coupling is conceptually problematic, since neither g nor f
can be considered to be the metric. Instead, it turns out that one can
form a combination of them that will be a metric, but this metric will
depend on not only the position but also the velocity of the observer [45].
Furthermore, this coupling is not ghost-free [46, 47].
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Effective coupling Another coupling, proposed in [46], is to introduce
an effective metric, formed out of g and f in the following way:

98 = 02gu + 20890 X5 + B fun. (5.3)

We remind the reader that X = /g~1f. One can show that gX is a
symmetric tensor, and under the interchange g <> f and a < [, the
effective metric remains invariant (these dualities are described in more
detail in section 6.1). The matter coupling is now

m_/d4 V=g L0 (gw,, ) (5.4)

The advantage with the effective metric is that matter couples symmet-
rically do g and f, and there is thus only one metric. This coupling does
have a ghost, as shown in [48] (and also discussed in [49, 50, 51, 52, 53]),
but the coupling could potentially still be used effectively below the en-
ergy threshold of the ghost. This coupling is used in Paper IV and Paper
V.

Massless coupling The spin-2 content of massive bigravity can be ana-
lyzed through a decomposition of the metrics when linearizing it around
a Minkowski background. One then finds, as expected, that the theory
contains two massless helicity-2 modes and two massive helicity-2, two
massive helicity-1 and one massive helicity-0 mode. The theory thus con-
tains, in total, seven propagating degrees of freedom. Given this structure
it is natural to ask whether one can reformulate the theory so that it con-
tains one massless and one massive part, and if it is, then, possible to
only couple the massless part to matter. This was investigated in [43].
Linearizing ¢ and f as

_ 1 2_ C
G = Guv + E(Sgum fuw = G + ﬁf&fm,, (5.5)

where c is a proportionality constant between the two background metrics,
the massless and massive modes are given by

1 My
6Gul/ = 5 (69;“/ +c— 5f;w> ) (56)
M7 /Mg +1
1 M
M, = (5 Fur — cfégw,> . (5.7)
Mg

,/CZM]%/MgZ +1
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0G,, will satisfy the equations of motion for a massless field, and dM,,
the equations of motion for a massive field. A possible non-linear gener-
alization of the massless field 6G,, is

M;
G;w = g + 7f;w- (5-8)
Mg

There exists many different non-linear extensions of the massive mode
O0M,,,. One such example is

M,uy = .g,uoszé — CAuv- (59)

One could then couple matter to only the massless part of the theory,
through

S = / d*r/ G Ly (G, @) . (5.10)

In [43] it was shown that this type of coupling reintroduces the ghost.
From the analysis of the massive and massless decomposition, one sees
that if one couples to only g and f a given source will excite both the
massive and massless states.

5.2 Equivalence principles

Historically, the equivalence principles have played an important role in
the formulation of both Newtonian gravity and general relativity. Galileo
first pointed out that all bodies fall at the same rate under the influence
of gravity. This fact was used as an assumption in Newton’s formulation
of gravity, and explained by Einstein as the effect of geodesic motion in
a curved spacetime.

The modern formulation of the equivalence principles are as follows
(see [14, 54] for a review):

1. All bodies with the same initial position and velocity follow the
same trajectories.

2. Local non-gravitational experiments are velocity independent.

3. Local non-gravitational experiments are independent of position and
time.
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These principles give rise to a metric formulation of gravity, where tra-
jectories are given by geodesics, and local non-gravitational experiments
are described in the framework of special relativity. Point one is usually
called the weak equivalence principle. Point two and three assumes that
the constant of nature, such as the electromagnetic coupling strength,
mixing angles etc, are not space and time dependent. When point two
and three are also applied to gravitational experiments, they are referred
to as the strong equivalence principle. A time-varying Newton’s constant
is an example of a breaking of the strong equivalence principle.

Since the Hassan-Rosen theory contains two tensor fields, and allows
for several types of matter couplings, one naturally wonders what happens
with the equivalence principles. When coupling all matter to the same
tensor field, irrespective of this field is g or f or a combination thereof,
the weak equivalence principle will hold, since all matter will travel on
geodesics defined with respect to that tensor field.”? Non-gravitational
experiments will still be independent of velocity, position and time, since
one can always transform the field that matter couples to into a local
Lorentzian frame. Gravitational experiments can, however, look rather
different. Coupling the same matter to g and f in the same way is equiv-
alent to coupling matter to a so-called Finsler metric, which not only de-
pends on the observers spacetime position but also velocity. This would
break the strong equivalence principle. Also, Newton’s constant can, ef-
fectively, look different at different lengthscales, which would also break
the strong equivalence principle. We thus conclude that it is possible to
break the strong equivalence principle in the Hassan-Rosen theory, while
keeping the weak equivalence principle intact.

2 A caveat occurs if one only couples matter to one of the metrics, say g, and considers
f to be some kind of matter field. Since f then couples differently to the metric as
compared to other matter fields, this would imply a violation of the weak equivalence
principle. This is, however, somewhat of a terminological question, since one could
equally well consider f to be a part of the gravity sector.
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Chapter 6

Dualities and symmetries

6.1 Mapping the theory into itself

When using the effective metric described in section 5.1, the action is

M2 M;
§ ==t [ d'a/=detgR(g) - =L [ d'av/=det R ()
+m4/d4x\/—detgv (\/g‘lf;ﬁn)
+ [ d*z\/— det gegLom (gest, @) . (6.1)

Here the effective metric geg is defined in (5.3). The singly couplings can
be attained by putting either « or 5 to zero. Not all of the parameters
in the action are independent: It is possible to rescale the parameters
Mg,Mf,m2Bi,a and 3 together with g,, and f,, to effectively remove
certain parameters. The interaction potential satisfies

VodetgV (Vo F:8,) = Vet /v (Vg ). (62)

and using this property the action will be invariant as

Guv < ful/a Mg A Mfa a > f3, Bn — Ba—n- (63)

Under these scalings the effective metric will also remain invariant. The
meaning of these transformations is that there exists a duality in the ac-
tion, which maps one set of solutions of the theory, for a given set of
parameters, to another solution of the theory, with another set of param-
eters. Besides the theoretical interest, this is also of practical interest
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when performing parameter scans, since only a part of the parameter
space has to be investigated.

It turns out that not all of the parameters Mg, My, o, B are physically
meaningful. Due to the scaling properties (6.3) one can either use an
effective coupling constant Mg together with the ratio 5/a as the phys-
ically independent parameters (and since Mg can be absorbed in the
matter definition, only 3/« is important), or rescale away « and 8 and
use M, and My (and, once again, since one of them can be absorbed in
the matter definition, only their ratio matters). Both of these approaches
are physically equivalent, and one choice can be mapped to another (this
is described in detail in appendix A of Paper IV). The advantage of the
first choice is that there is only one coupling constant between gravity and
matter, and the single coupling limit is made explicit by either sending
the ratio §/« to zero or infinity. The advantage with the other choice is
that there is no ambiguity when defining the effective metric (since it does
not contain any free parameters), and M, and My have a straightforward
interpretation of how strong the respective metrics couple to matter. The
single coupling limit is not as transparent any more, however. Also, §/«
only appears in the matter sector, whereas My/M, appears in both the
matter sector and in the interaction terms.

Notice that due to the mapping (6.3) one can consider the case of
coupling only g to matter as equivalent to coupling only f to matter, but
using another set of §; parameters.

6.2 Special parameters

When coupling to matter through the effective metric, the theory has in
total six parameters: the five f3;:s together with the ratio 8/« or My /M,.
There is a famous saying by von Neumann: “With four parameters I can
fit an elephant, and with five I can make it wiggle its trunk.” What we
can do with the elephant using six parameters is beyond the scope of this
thesis, but clearly one has to consider if there are special parameter cases
that are worth special attention. We use the rescaling described in the
previous section, where 3/a is a free parameter rather than M /M,.

Vacuum energy The meaning of the different 8; parameters will depend
on the type of coupling. To beginning with, let us discuss which of the
parameters corresponds to a cosmological constant. In general relativ-
ity, the cosmological constant appears in the action as a numerical factor
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in front of the volume determinant \/—g. Since the matter Lagrangian
couples to gravity through the same term, the vacuum energy associated
with matter will appear from a gravitational point of view as a cosmo-
logical constant. The vacuum energy and cosmological constant are thus
indistinguishable in general relativity.

In massive bigravity, the vacuum energy is still associated with zero-
point matter fluctuations, and thus contribute a constant piece to the
matter Lagrangian. But since matter can couple in different ways to g and
f, the vacuum energy contribution can not straightforwardly be identified
with a cosmological constant contribution. Furthermore, the meaning of
the cosmological constant is ambiguous. If, as in general relativity, it is
the term that comes in front of the volume determinant that is identified
with the cosmological constant, then it is 8y and §4 that corresponds to
a cosmological constant for g and f, respectively. If, however, one looks
at the effective contribution that one has to cancel in order to have flat
space backgrounds, all of the 3; parameters will contribute.

Going back to the case of the vacuum energy, it will renormalize the
Bo or B4 term when coupling matter only to g or f, respectively. When
a, B # 0 in the effective metric, the vacuum energy will renormalize all
B; terms, which can be considered a drawback when using the effective
coupling. This is described in more detail in section 7.4.

Partially masslessness The parameter choice

B1= B3 =0, Bo = 3B2 = B (6.4)

is particularly intriguing since it gives rise to a new gauge symmetry at
the linear level, which is conjectured to hold non-linearly [55, 56, 57, 58,
59, 60, 61]. This symmetry would remove the helicity-0 mode of the
massive spectrum. This mode is responsible for the problematic vDVZ-
discontinuity and fifth forces, and the theory would, in this sense, be more
“well-behaved”. This gauge symmetry have been proven at the linear level
around proportional backgrounds, but the complete non-linear symmetry
has not been found. The imposition of these parameter values will have
different effects depending on the type of coupling, as described further
in section 7.4.

Maximally symmetric model For the parameter values

Bo = P, p1 = B3, a=p (6.5)
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the theory is maximally symmetric in the sense that a solution will be
mapped to itself under the transformation g., < fu, Bn = Bi—n, a <
B [58]. There is thus no distinction between the two metrics for these
parameter values. In the case of singly coupling, the parameter choice
Bo = B4 and 1 = [3 means that it does not matter if one couples g or f;
the equations of motion are the same.
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Cosmic phenomenology
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Chapter 7

Expansion histories

In this chapter we describe tests of massive gravity using cosmic expansion
histories. We start by discussing the meaning of cosmological expansion
and observational tests thereof in section 7.1. In section 7.2 we look at
the setup with a non-dynamical reference metric. After showing that it
generically is hard to get viable cosmologies in this setup, we turn to the
case of massive bigravity with a single matter coupling in section 7.3, and
a symmetric matter coupling in section 7.4.

7.1 Probing the universe to zeroth order

On length scales larger than roughly 100 Mpc the universe is statistically
homogenous and isotropic. This means that it looks—on average—the
same at each point and in each direction. It is not, however, true that
the universe looks the same at each point in time. The expansion of the
universe dilutes its matter content, and makes it cool down. The different
physical processes that occur at different temperatures makes the universe
highly asymmetric in time. The expansion of the universe is encoded in
the scale factor a(t); the fractional change in distances between time t;
and t9 is given by a(ta)/a(ty).
The line element for a homogeneous and isotropic universe is

ds? = —N2(t)dt? + a?(t)8;5da’ da’ . (7.1)

Here, and in the following, we assume a flat spatial geometry, which is in
good agreement with observations [62]. The lapse N(¢) can be rescaled
by a time reparametrization; common choices are cosmic time, for which
N(t) =1, or conformal time, for which N(¢) = a(t). The line element 7.1
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is known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.
The fractional expansion of the universe, in time units of Ndt, is given
by the Hubble function'

. (7.2)

H
alN

The Hubble function H, and thus the expansion history of the uni-
verse, will be affected by the energy content of the universe. The exact
form of this relationship depends on the nature of gravity, i.e. the rela-
tionship between energy content and spacetime curvature. Independent
measurements of the expansion history and the energy content of the uni-
verse are thus needed to properly understand the effect of gravitational
interactions on cosmological scales. Since not all of the energy content of
the universe can be observed directly, the approach used in practice is a
bit different: by reconstructing the expansion history one can infer, for
a given theory of gravity, what the energy content has to be (which in
the case of general relativity leads to the conclusion that dark matter and
dark energy has to constitute a large part of the energy content). If there
exists a viable background solution given the free parameters of the the-
ory, other observations—such as structure formation, lensing, planetary
orbits etc—then have to be supplemented to see if the inferred energy
content is plausible. If not, the theory of gravity under scrutiny can be
ruled out.

In order to determine the expansion history two distance measures are
most commonly used: luminosity and angular distances. The observed
flux F of photons and the luminosity L of an object are related by

L
= —. 7.3)
5 (
dmdy
This relationship defines the luminosity distance dy, which thus relates
the intrinsic brightness of an object to its observed brightness. It is given
by

di (2) = (1 + =) Hd(zz) (7.4)
0

!This definition means that H = é/a in cosmic time and H = a/a”® in conformal
time. Sometimes H is defined as a/a also in conformal time, which means that H is
then not a constant in a de Sitter spacetime. We therefore use the definition (7.2).
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in a flat universe. Observations of the light from objects with known
luminosity can thus be used to constraint the expansion history of the
universe. The angular distance is defined as

D
56’
where D is the proper size of an object and §6 the observed angle in the
sky. The angular distance is related to the luminosity distance through

da = (7.5)

dr,
dg = . .
A7 + z (7.6)
Here z is the redshift, defined through
z=a(t)™t -1, (7.7)

if we normalize a(t) such that it is unity today.

The definition of the FLRW metric and its relationship to the lumi-
nosity and angular distances does not depend on any other properties of
gravity except that it can be described by a metric. In order to use the
inferred expansion history to establish the energy content of the different
physical constituents of the universe—i.e. baryonic matter, light, neutri-
nos etc—one needs an equation, usually called the Friedmann equation,
that relates H and the energy density p. In general relativity, for example,
the Hubble function has a remarkably simple relationship to the energy
content of the universe:

8tG
H?* = —"p. (7.8)
3
Here p contains all energy components, including a vacuum energy den-
sity. The different energy components will evolve in time according to the

continuity equation:
) a
p+3_(p+p)=0. (7.9)

The pressure p will only become gravitationally important when the av-
erage kinetic energy is comparable to the rest energy of the species under
consideration. For baryonic matter the average velocities are too small
to produce any gravitational effect, and the pressure is therefore effec-
tively zero. For neutrinos, on the other hand, the average velocities are
close to the speed of light, and the pressure can therefore have a gravi-
tational impact. The relationship between the pressure and the energy
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density is specified through an equation of state p = p(p). This is usually
parametrized as

p = wp. (7.10)

For baryonic matter we have w = 0, for light w = 1/3 and for a constant
vacuum energy density w = —1.
The Friedmann equation (7.8) can be parametrized as

H? = H§ [Qn(1+2)° + Qy(1 4 2)* + Qe f(2)] (7.11)

W

where the subscripts “m”, “y” and “de” stand for matter (both baryonic
and dark), radiation and dark energy, respectively. Hy is the value of the
Hubble function today, i.e. at z = 0, and

_ 8rGpip

Q= ——, 7.12
= (712)
where p; o is the energy density of the i:th component today. Finally

z

f(z) =exp 3/

0

14w (2)
dz' 7.13
Tl (7.13)
gives the time evolution of a possible dark energy component. Considering
a flat universe, we must have

O + Q) + Qe = 1. (7.14)

Qm, ©Q, and Qg thus gives the fractional contributions to the energy
density today.

To discern the background cosmology and put constraints on the en-
ergy components of the universe, one primarily looks at Type Ia super-
novae (SNe Ia), the cosmic microwave background (CMB) and baryonic
acoustic oscillations (BAO).

Type la supernovae In binary star systems consisting of a white dwarf
that accretes gas from an accompanying star, a thermonuclear explosion
takes places when the white dwarf mass approaches the Chandrasekhar
mass M ~ 1.4Mg (the exact nature of this explosion and the binary
system that preceded it are unknown). The common physical origin of
the SNe Ia makes the peak luminosities of the events similar. Also, the
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scatter can be reduced even further using empirical correlations between
the peak luminosity, colour and the time evolution of the luminosity.
This standardization of the observed flux allows us to use (7.3) to infer
the luminosity distance and, since the luminosity distance depends on the
expansion history, observations of SNe Ia at different redshifts to probe

Current SNe Ia catalogues used for cosmological applications consists
of several hundred objects. Measurement uncertainties are mostly lim-
ited by systematics. The highest redshifts used in reconstructions of the
expansion history are z ~ 1, which corresponds to an age of the universe
of roughly six billion years.

Cosmic microwave background As photons decoupled from the pri-
mordial plasma some 13.4 billion years ago, they started to travel almost
freely in the universe, with the structure existing 300 000 years after the
big bang imprinted on their current distribution. The CMB is therefore
one of the primary probes in cosmology. It will be discussed more in
depth in section 8.3, and here we just mention how the CMB can be used
to probe the expansion history.

The region of space from which the observed decoupled photons have
travelled until they were observed is called the last scattering surface.
Prior to decoupling, the plasma experienced a series of oscillations; on the
one hand the plasma collapsed under its own gravity, on the other hand it
expanded due to the background expansion and photon pressure. These
oscillations were imprinted on both the photon and baryonic content at
the time of decoupling. The largest oscillation length at the time of
decoupling was roughly equal to the interaction length scale at that time,
i.e. how far perturbations in the plasma could have travelled since it was
first formed. This length scale is referred to as the sound horizon scale at
decoupling, and forms a “standard ruler” that can be used to probe the
evolution of distances from the time of decoupling until today.

Comparing the size of the sound horizon at decoupling and the angle
this size subtends in the CMB today, one can, from (7.5), infer an angular
distance to the last scattering surface. Since the angular distance depends
on the expansion history, observation of the angular size of the sound
horizon in the CMB thus allows for constraints on H(z) and the energy
content of the universe.
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Figure 7.1. 68% and 95% confidence contours for €, and Q5. The
equation of state of dark energy is assumed to be —1, and spatial curvature
is allowed for. JLA is the SNe Ia data set, compiled in [64], C11 the SNe
Ia data set compiled in [65], Planck+WP means Planck temperature and
WDMAP polarization measurements. The black dashed line signifies a flat
universe. One sees that CMB and BAO measurements alone strongly
favours a flat universe. Plot taken from [64].

Baryon acoustic oscillations The baryonic distribution at the time of
decoupling is imprinted on the large scale galaxy distribution today. In
particular, the standard ruler that the sound horizon size at decoupling
implies will also show up in the baryonic structure at later times. Measur-
ing this length scale at different redshifts is thus a probe of the expansion
history.

A galaxy catalogue will contain both angular positions and redshifts,
which can be combined into a “distance average” through the following
quantity:

c }1/3. (7.15)

Dy ()= a2 37
The factor of 1/H (z) comes from the fact that locally dr = dz/H (z).
The extra factor of z is purely conventional. Baryon acoustic oscillations
allows for measurements of the ratio between the sound horizon close
to decoupling and Dy (z). By observing how this ratio evolves between
different redshifts one can constrain the expansion history.
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Figure 7.2. 68% and 95% confidence contours for wy and w,, which
parametrize the equation of state of dark energy. The form of the
parametrization is given in (7.17). Union 2.1 [66] and SNLS [64] are
SNe Ta datasets. The dashed line corresponds to a cosmological constant.
Plot taken from [62].

The ACDM model Combining measurements of SNe Ta, BAO and the
CMB gives constraints on the different constituents of the universe and
their properties. Of primary interest is the Hubble constant Hy (the value
of the Hubble function today), the total matter content 2, and the dark
energy content {24.. Furthermore, one outstanding question is to know the
equation of state of dark energy. As of writing, the CMB measurements
by the Planck satellite provide the most stringent constraints on these
parameters [62]. A joint analysis of SNe Ia, BAO and the CMB, performed
in [64], gives

O = 0.31440.020,  wge = —0.994+0.069,  Hy = 67.3241.98.
(7.16)

These fits assume a flat universe and constant dark energy equation of
state wqe. In Fig. 7.1 the individual constraints from SNe Ia, CMB and
CMB+BAO are shown for a universe that allows curvature. One sees
that the CMB and BAO measurements alone are enough to constrain the
dark matter and dark energy components, favouring a flat universe.
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It is only one model, the cosmological constant, that predicts a con-
stant dark energy of state. One should therefore, in principle, fit the obser-
vational data to a time-varying equation of state. A common parametriza-
tion of the time variation of the equation of state of dark energy is

(7.17)

Wee (2) = wo +w .
de ( ) 0 a 1+ 2
In Fig. 7.2 constraints on wy and w, are shown. One sees that current
constraints on the properties of the dark energy components are weak;
while data is consistent with dark energy being a constant vacuum energy
component, it also allows for significant dynamics.

7.2 Cosmology with a non-dynamical reference
metric

The original formulation of massive gravity, usually referred to as de
Rham-Gabadadze-Tolley (dRGT) theory, does not contain any kinetic
term for the second metric f. Instead, f is fixed to a certain form, usu-
ally the flat Minkowski metric, by hand. The equations of motion thus
only determine g.

The search for cosmological solutions for this setup, with matter cou-
pling to g only, showed that the theory did not accommodate flat or closed
FLRW solutions [67]. While it is possible to have open FLRW solutions
[68, 69], these were shown to have instabilities [70, 71, 72, 73]. The intro-
duction of the effective metric, defined in (5.3), made it possible to couple
parts of the matter sector to g, and another part to the effective metric.
Reference [46], in which the effective metric was first introduced, also
explored the possibility of viable cosmologies using this coupling. The
perturbative stability of this setup was proved in [74]. It was shown in
Paper V, however, that only highly contrived setups, with a fine-tuned
scalar field potential, would yield a universe similar to that of ACDM.
This provides a strong incentive to let the f metric become dynamical,
since this leads to viable expansion histories using the standard techniques
of cosmology.

In the setup with a fixed reference metric and matter coupling to the
effective metric, given by

m
958 = aPgu + 20890 XS + B, X[ = ( g_177> . (7.18)

v
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the equations of motion are

3
(Xfl)(uanx)oz_i_mQ Z(_l)nﬁngaﬁ(Xfl)(uaYv)

(n)8
n=0

- “ ~1y(1_w)a v
Mgldet(an) (a(X ) TV 4 BT )

(7.19)

These equations were derived in [50]. Since X} is not symmetric, a further
simplification of the equations of motion is not possible. Using the FLRW
ansatz (7.30) for g,

d,s?] = _N? (t)dt2 + a2(t)5ijd$idl‘j, (7'20)

the effective metric becomes

dsj . = —Neg(t)dt* + alg (t)d;;da’ da’, (7.21)
where
Neg = aN + 3, aef = aa + 5. (7.22)

The Bianchi constraint is

m?M3,a>P(a)a = afa’gpa, (7.23)
where
262 | Bs
P(a) = — 4+ —. 7.24
@=p+22 45 (7.24)

We see that the possibility of a time-varying scale factor is highly re-
stricted. For example, if we assume the standard constant equation of
state p = wp, then (7.23) becomes

m?M3,a>P(a) = afwa’gp. (7.25)

p will only be a function of a (or, equivalently, aef), and unless the left
hand side has the same functional form for a as the right hand side,
eq. (7.25) is not consistent with a time variation of a. What this tells us
is that the pressure has to depend on the lapse, and not only the scale
factor, in order to have a time varying a. Physically, this corresponds
to two different scenarios. A perfect fluid could be affected by the global
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expansion, and it would then depend on the scale factor. But it could also
be affected by internal dynamics, such as the decay time of its constituent
particles. It would then also depend on its proper time coordinate, which
is Negdt. In this case, the pressure would also depend on the lapse.

One way to have a lapse-dependent pressure is to use a scalar field.
The stress-energy tensor for the scalar field is

1 v
THY ijﬁxvgﬁx — <2Vaxvg‘ﬁx + V(X)> ggﬁ, (7.26)

where V' = g/ Vel and V(x) is the potential of the scalar field. The
density and pressure associated to this scalar are

.2 .2

X X
+ V(X), Px

_ == —V(x). (7.27)
2NZ 2NZ

Px

As long as the potential is not independent of the lapse and x # 0, it can
be shown that this setup allows for a dynamical a.

In a realistic setup, however, one should also include other forms of
matter. In Paper V it was shown that in order to get sensible cosmolo-
gies, where the effective Hubble function does not display a pathological
behaviour, one needs highly contrived potentials for the scalar field. A
dynamical a is thus possible, but at the price of a fine-tuned potential.
Since standard techniques of cosmology, i.e. using only perfect fluids to
model the expansion history, is not applicable in the dRGT framework
with a effective metric, it is therefore natural to consider the scenario
where the second metric f is also dynamical.

7.3 Coupling matter to one metric

We now turn to the theory of massive bigravity to see how it modifies
the Friedmann equation (7.8). In this section we will couple only g to
matter through a term /—gLy, in the Lagrangian. This setup has also
been studied in [75, 76, 77, 78]. The equations of motion become, using
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the scaling described in section 6.1,

3

1 . T
Ruv 9) = 50w R(9) +m” 32 (-1)" g ¥y, (V1) = 375
n=0 g

(7.28)

3
R (1) = 5 fuu R (F) + 2 3 (1" Ban ¥y, (V) = 0.

n=0
(7.29)
For the background cosmology, we use the following ansatz:?
ds; = —NJdt* + a2d;jda’da’ | (7.30)
ds§ = —Nfdt2 + a}dijda’da’ (7.31)
The Hubble functions for the two metrics are defined as
H,= sz;g Hy = N‘;f;f. (7.32)

Since we only couple g to matter, it is ay and H, that are the relevant
functions when it comes to observables.

It turns out that the ratio between the two scale factors is an important
function, and we denote it by r:

af
=—. 7.33
r=1 (7.3
Defining the following parameter combinations:
Bo(r) = Bo + 3617 + 3Bar® + Bar®, (7.34)
Bi(r) = fir > +3B2r + 38317 + f, (7.35)
the two Friedmann equations become
p
3H} = e + m? By, (7.36)
3H} =m’B. (7.37)

2Notice that different notations and conventions are used in the different papers.
Throughout this thesis, we will use the same notation, however.
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Here p contains all energy components besides a constant vacuum energy
density, which is degenerate with the fp-term. The continuity equation
for the energy density still holds:

p+3g (p+p) =0. (7.38)
The Bianchi constraint gives

m? (B1 + 2Bar + Br?) (Nypay — Nyay) = 0. (7.39)

This constraint yields two possible solution branches. In the first branch,
obtained by putting the first parenthesis to zero, we get an algebraic
condition for a constant r. This branch is therefore called the algebraic
branch. This branch can be shown to yield solutions that are identical to
general relativity, with the addition of an effective cosmological constant
that the depends on the (; parameters. The massive fluctuations also
vanish in the algebraic branch.
In the second branch, we instead get

Ny (7.40)

Ny g
This branch is called the dynamical branch, since r can have a time evo-
lution. By combining (7.36) and (7.37), we get the following polynomial
equation for r:

P
2,2
Mgm

537“4+(3ﬁ2—ﬁ4)7“3+3(51—ﬁ3)7“2+< +ﬁo—3ﬁ2>r—ﬁ1=0

(7.41)

The background equations are thus solved by using (7.41) to determine r
in terms of p, and then using (7.36) to determine H,.

For an expanding universe, eq. (7.41) has two important limits: the
late universe when p — 0, and the early universe when p — oco. For the
late universe, we see that r will approach a constant, which means that
both the g- and f-metric will approach a de Sitter form in the future. For
the early universe, there are two possible asymptotic behaviours for 7.
One is that r goes to zero, i.e. ay < a4, which means that we will recover
the standard form of general relativity for H,. The other possibility is
that r goes to infinity, i.e. af > ag, in the early universe. Notice that
these respective scenarios tells us how the two scale factors evolve with
respect to one another in the early universe.
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Since (7.41) is a quartic polynomial, the general solution with arbi-
trary (; parameters is highly unwieldy. A comprehensive analysis was
performed in [78, 77], whereas Paper I focused on a few interesting pa-
rameter choices. Let us here focus on one of them. For 51 = 83 = 0, we
have that

30l (2) + o — 350
Ba — 352

(7.42)

and

H2 _ 64 P m2 (/8054 — 9/83) (7 43)

9 By —3B23M? 3(Bs—3B2) '
We see that the Hubble function will evolve exactly as in general relativity,
with an effective cosmological constant and a rescaled Planck mass for p.
This rescaling of the effective Planck mass is an interesting phenomenon
that could alleviate the need for dark matter for the expansion history.
In order to show this, one needs, however, spherically symmetric solution
in order to see what the local Planck mass becomes.

A full statistical analysis of the allowed [; parameter values was pre-
sented in [77]. For the minimal 8; models, where only one of the 3; is
non-vanishing, only the case of Sy and (1 could give good fits to data.
The case of [y is obvious, since this is degenerate with a ACDM universe.
(1 gives an effective, and observationally acceptable, dark energy compo-
nent. The By and (3 cases were observationally excluded. The case of
only (4 non-vanishing is automatically excluded, since this only gives a
cosmological constant contribution for f, which does not give a ACDM-
like behaviour for the expansion history. When including more than two
or more non-vanishing 5; parameters, almost all cases produced good fits
to data (the exceptions being when either Sy and 4, or 83 and (4 were
the only non-vanishing parameters).

7.4 Coupling matter to two metrics

When coupling matter to the effective metric

m
9o = &g + 20B9ua XS + B fu, Xl = ( g1 f) . (T.44)

v
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the equations of motion become [50] (again using the scalings described
in section 6.1)

3
(XG50 g (XX,
o« det geg

N MQQH det g

(a(x=1)0am 4 5T,

(7.45)

3
X(MQG;)Q'FmZ Z(_l)nﬁAL—nfaﬁX(#aY(’;))ﬁ

n=0

/8 detgeff
- T + gx (e Vi) 4
M2\ det f (a1 px0rare) (7.46)

Using the ansatz (7.30) and (7.31) for the g and f metric, the effective
metric becomes

ds?g = —N2dt? + a®6;jdx"da? (7.47)
where

N = aN, + BNy, (7.48)

a = aag+ Pay. (7.49)

Since matter couples to the effective metric, it is the expansion rate of
the effective metric that is observed, rather than that of g or f. We are
therefore interested in the behaviour of the effective Hubble function

a
= Na' (7.50)
The Bianchi-like constraint becomes
2
afa ) .
m2 (61a§ + 262agaf + Bga%) - % (Nfag - Ngaf) =0. (7.51)
eff

Just as in the case (7.39) of singly coupling, we get two possible branches.
Unlike in the case of singly coupling, however, where the algebraic branch
gave rise to expansion histories identical to that of ACDM, the phe-
nomenology when using the effective coupling is much richer. The possible
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expansion histories were explored in appendix C of Paper IV. Focusing
once again on the dynamical branch, for which

N .
kA (7.52)
Ny ag
the equations that determine H and r become
2 2
p 1 m?(Bo+1%By)

H? = a4+ Br) (a+ Br + , 7.53
GMlef( Ar) o Br™) 6 (o + Br)? (7.53)
0= ]\4'02& (o + Br)? (o — Br_l) +m? (Bo — T2B1) . (7.54)

Here p are all matter components, and they satisfy the continuity equation
with respect to the effective metric:

p+ 3% (p+p) =0. (7.55)

At first sight, (7.53) looks like the ordinary Friedmann equation, but with
a modulation of the effective Planck mass and a dynamical dark energy
component, both of which depend on r. The interpretation is not as
straightforward, however, since one can use (7.54) to rewrite (7.53) in
various ways.

In the early universe p — oo, and from (7.54) we must have either r —
B/a or r — —a/B. One can show that the later case is observationally
excluded. In the late universe, when p — 0, one possibility is that r goes
to a constant r. which solves

Barg 4 (362 — Ba) 12 + 3 (B1 — B3) 77 + (Bo — 3B2) re — B1 = 0. (7.56)

Another possibility is that » — oo in a way such that (7.54) is still sat-
isfied. Disregarding the latter case, r will always be finite, starting from
B/a and ending at r.. The late time asymptotic behaviour for such a
universe is that of a de Sitter spacetime, with cosmological constant

m? (B + (Bo +3B2) e + 3 (B1 + B3) 2 + (382 + Ba) r2 + Bar]

A= 5
2rc (a4 Bre)

(7.57)

For parameter choices such that r. = 5/a in the solution of (7.56), r is
constant at all times. From (7.52) it then follows that the two metrics are
conformally related, f,, = rgg,w. Unlike the case in the singly coupled
setup where conformally related metrics implied de Sitter, this does not
need to hold when using the effective coupling.
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Partially massless gravity The parameter choice 51 = 3 = 0, By =
389 = B4 is special, since a new gauge symmetry arises at the linear level,
which is believed to also exist at all orders (as described in section 6.2).
In the case of singly coupling, it is not possible to impose the partially
massless parameter condition in the presence of matter sources. This no
longer holds true when using the effective coupling. For this parameter
choice, we have that

a? + 2 m? B
7 P+ 2 2’
3Meﬂ 3(a? + ?)

H? = (7.58)
and 7 = B/a. The expansion rate is thus identical to that of ACDM,
but with a renormalized matter coupling. It was also shown in [50] that
structure formation will look identical to general relativity when r is a
constant. This theory therefore stands out as an intriguing extension of
general relativity, with deviation possibly only appearing at the non-linear
level.

Vacuum energy As mentioned in section 6.2, the vacuum energy will
renormalize all 3; parameters when using the effective coupling. This
comes from the fact that matter loops will give rise to a term /— det geg Ay
in the Lagrangian. Since

4

V= det geg = /—det gdet (a+ BX) = /—detg ¥ _a* """, (X)),
" (7.59)

the ; parameters will get contributions
m?B, = Aya* <§>n (7.60)

from matter loops. If all 8; parameters are generated from these matter
loops, the Friedmann equation becomes
o+ %) p N (a?+ %) A,

M2 3 )

(7.61)

This is equivalent to a ACDM universe.
A disadvantage with the effective coupling as compared to singly cou-
pling is that the values of all §; parameters have to be fine-tuned, due
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Figure 7.3. Left panel: Effective equation of state of the wes, defined
in eq. (7.62), for the ACDM model (solid line) and By minimal model
(dotted line), for different values of 8/a. As B/a — 0, the 8o minimal
model approaches the ACDM model. In all cases, Q,,, = 0.3. Right panel:
Confidence contours for Q,, and 8/« for the Sy model. Shaded regions
correspond to individual constraints by SNe Ia and CMB/BAO (95%
confidence level), solid lines are combined constraints (95% and 99.9%
confidence level). The plots are taken from Paper IV.

to the renormalization from matter loops. Also, since one can not un-
ambiguously isolate the so-called self-acceleration of the model, i.e. an
acceleration of the expansion that is not due to a vacuum energy com-
ponent, it makes it hard to motivate the introduction of the effective
coupling from the perspective of the cosmological constant problem.

Observational constraints In Paper IV observational constraints on the
minimal 8;-models were studied. Minimal here means that only one of the
B; parameters is non-zero. The duality property of the solutions, described
in section 6.1, implies that only By, 81 and (B2 have to be studied. Since
a constant r yields expansion histories identical to ACDM, for 3/a =
{0, 1/4/3, 1} the By, f1 and B cases, respectively, will give excellent fits
to data.

A combined, effective equation of state can be defined as
1 dlog H?

wer = —1— 3

. 7.62
3 dloga ( )

In the left panel of Fig. 7.3 we show how weg differs, as a function of 3/a,
from that of a ACDM universe for the Sy minimal model. We see that
the minimal Sy-model approaches the ACDM model both in the past and
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Figure 7.4. Confidence contours for ,, and S/« for the 81 and S
minimal models. Shaded regions correspond to SNe Ia and CMB/BAO
constraints (95% confidence level). Solid lines are combined constraints
(95% and 99.9% confidence level). The plots are taken from Paper IV.

the future, as expected from the asymptotic behavior of (7.54). In the
right panel of Fig. 7.3, we show the allowed parameter space when using
SNe Ia and CMB/BAO constraints (shaded regions, with 95% confidence
level). The combined constraints are shown as solid lines, with 95% and
99.9% confidence levels. We see that for 5/a = 0, the 8y model predicts
Q. ~ 0.3, which is expected since this value of 3/« corresponds to the
ACDM model. €2, is here defined as

2
a~po

0 B
T 3MZHE

(7.63)

In Fig. 7.4 constraints for the 1 and 2 models are given. An interesting
feature of these models is that a higher value of 5/« allows for a lower
value of €,,. The reason is that 5/« will introduce prefactors in front
of the matter contribution. Increasing 3/« increases this prefactor, and
thus allows for a decreased matter content.

The effective coupling allows for viable cosmologies in the minimal 5;
models. In the case of singly coupling, this was only possible for the Sy
and ;1 case. This is clearly an advantage with the effective coupling.



Chapter 8

Structure formation

In the previous chapter we studied how massive gravity modified the re-
lationship between the energy content of the universe and the expansion
history. The expansion of the universe is, of course, not the end of the
story in cosmology. Gravitational attraction will produce bound struc-
tures, such as galaxies, that are not affected by the expansion internally.
How such bound structures are formed depends on the strength of grav-
ity at different length scales. In order to study this effect, one assumes a
background FLRW metric, and perturbations on top of that background.
Perturbations exist both in the metric and in the matter content. By
Fourier transforming the perturbation fields, one can study the growth of
each perturbation wavelength separately. This allows for an comparison
between the perturbation wavelength and the Hubble scale, mass length
scale and length of the sound horizon.

In section 8.1-8.3 we give a background to structure formation in gen-
eral relativity. In section 8.4-8.6 we discuss how perturbations evolve in
massive gravity.

8.1 Probing the universe to first order
In order to study perturbations on a homogenous and isotropic back-

ground, the metric can be decomposed into a part that is of a FLRW
form, denoted by g,,, and a perturbation A, in the following way:

Juv = gw/ + h,uzw (81)

65
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The components of i, can in turn be decomposed into scalar, vector and
tensor parts (defined by their transformation properties under a coordi-
nate change) as

hoo = —N?E, (8.2)
hio = aN (81F + Gl) , (8.3)
hij = a? (Adl] + 818]3 + 8](]2 + 810] + Dij) ,

where
Dij = Dji, 0;Ci = 0;Gi = 9;Dij = Dy = 0. (8.5)

E, F, A and B are scalars, G; and C; vectors and Dj; is a tensor. At linear
level, the scalar, vector and tensor parts do not mix with each other, and
one can study them separately. In the rest of this thesis, we will focus
on the scalar sector, since this is related to the growth of matter in the
universe.

The scalar part of the stress-energy tensor is:

TOO = 7p(1 + 5)’
TP = (p+p)(vi + 0 Fy),
T} = (p+ dp)s; + L.

Here § = 6p/p, v* = da'/dt and X} = 0. We also define 6§ = 9;v%,
which will be used in the equations of motion for the perturbations. For
pressureless matter, we have p = dp = E% = 0.

The equations of motion for the perturbations, in the case of general
relativity, are given schematically by

1 6T}
§ <R,w - 2gWR> = MI;Q . (8.10)

The perturbations in the metric and stress-energy tensor can be written
in terms of their Fourier components as (¢ symbolizes the different fields)

d)(f,t):/ @k & (k,t) eiF e, (8.11)
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Because of the isotropy of the background, we can decompose the Fourier
components as

Sk t) =D (k)b (1) (8.12)

Here an(E) is a time-independent amplitude that depends on the direc-
tion, while ¢ (t), which gives the time evolution of the perturbations,
only depends on the magnitude |k|. n labels the different solutions (e.g.
growing and decaying modes), and since we are looking at linear pertur-
bations ¢ will be a superposition of the solutions. In the following we
will use ¢ to signify both ¢(Z,¢) and ¢(k, t); it should be clear from the
context if we are discussing the fields in position space or Fourier space.

But before we discuss the perturbations, we have to briefly mention
the coordinate freedom available in their description.

8.2 To gauge or not to gauge

General relativity is a covariant theory, which means that the equations
of motion look the same in all coordinate systems. Under an infinitesimal
coordinate transformation z# — x# 4 &, hy,, will transform as

hyw = hyw + 0,80 + 0,&,. (8.13)

Looking at the scalar components of h,,,, we can decompose £* as O =¢

and & = 0;e. The scalar perturbations will then transform as
AA=—-2—¢", AB = —2¢, (8.14)
AE =-2N"19, (N¢), AF =—¢" — —é (8.15)

This means that the scalar perturbations by themselves can not carry all
physical information, since one can in principle choose a coordinate sys-
tem where some of them vanish. In order to isolate the actual physics, one
therefore has two options: Either fix a coordinate system completely and
do all computations in that system (where care has to be taken so that
there is no residual coordinate freedom left), or form coordinate invari-
ant combinations of the scalar perturbations, and work only with those.
Choosing a coordinate system is usually referred to as fixing a gauge, and
coordinate invariant variables are usually called gauge invariant variables.
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A popular gauge choice is the Newtonian gauge, in which F = B = 0.
Equivalently, one can define the gauge invariant combination

\y:—%A+% (%B—F), (8.16)
o= %E— %at [a (%B—F)]. (8.17)

U and ® coincide with —A/2 and F/2 in the Newtonian gauge. One can
therefore consistently work in the Newtonian gauge, and then promote
the final results into gauge invariant quantities. Besides the computa-
tional advantage, the fields ¥ and ® will also coincide with the ordinary
Newtonian potential in the limit of weak fields and low velocities.

8.3 Growth of structure in general relativity

In this section we review the main features of the growth of structure
as described by general relativity.! The evolution of perturbations in
the universe is primarily governed by two things: the dominant energy
component of the background (i.e. radiation, matter or dark energy),
and the couplings between the different constituents of the perturbations.
Dark matter, for example, does not couple electromagnetically whereas
neutrinos only couple weakly. Baryons and photons will couple to each
other when the universe had a temperature above roughly 3000 K, since
photons then had enough energy to ionize the hydrogen atoms. As the
universe cooled down, the photons eventually stopped interacting at a
high enough rate with baryons to form a plasma. Instead, the photons
started to propagate freely in the universe. The interaction rate between
baryons and photons depend on the temperature of the photons, and the
transition from a regime of high interaction to basically no interactions,
the so called time of recombination?, is of great importance in cosmology.

Let us first look at the case of the perturbation of a single fluid®, and
then discuss the rather involved case of perturbations of many fluids. The

!There exists many textbooks dealing with this topic. In this section we follow [81].

2The term recombination is truly a misnomer: it refers to the fact that protons and
electrons could combine to form neutral hydrogen without being dissociated through
high-energetic photons. But this was the first time of combination in the cosmic history,
and this era should properly be called combination. At a later stage the first stars once
again ionized the hydrogen; this era is properly called reionization.

3The term fluid here refers to any of the physical components available for an ide-
alized fluid description, i.e. photons, baryons, dark matter, neutrinos, scalar fields
etc. The fluid will be decomposed into a homogeneous and isotropic background, and
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equations of motion for the perturbations of a single fluid in momentum
space (a’ signifies a time derivative with respect to conformal time) are

! 12
K +3%9' + 350 = —4rGa’sp, (8.18)
a a
,,a 2 v
o+ E(I) = —4nGa® |(p+ p) =ik (8.19)
/ " 12
o +3% 9 4 (2“ - a2> = 47Ga’5p. (8.20)
a a a

For the background we could define an equation of state w through p =
wp. For the perturbations we can similarly define an equation of state as

2_517

us—a.

(8.21)

This is called the sound speed of the perturbation. u? does not have to
be the same as w, as happens e.g. in the case of matter perturbations
in a dark energy dominated background. Assuming for the moment that
u? = w and combining egs. (8.18) and (8.19), we get

/
O +3% (14 u2) & + Kuld = 0. (8.22)
a

This equation determine the evolution of ®, and once the potential has
been determined the energy density and velocity of the perturbation can
be read off from (8.18) and (8.19). The last term in (8.22) depends on
the wavenumber k of the perturbation. Comparing this with the second
term, we see that when

A> uH™ L (8.23)

where A = a/(27k) is the physical wavelength of the perturbation, we
can neglect the last term in (8.22). wusH is the sound horizon of the
mode, which gives the characteristic length for causal interactions of the
perturbations. For matter, which has u; = 0, it is always zero, whereas
for light, which has us = 1/4/3, it is of the order of the cosmological
horizon.

perturbations on top of that. The idealized fluid approximation, which uses energy
densities, pressures, velocities and anisotropic stresses to describe the properties of a
physical system, breaks down for the photon-baryonic plasma, and one has to resort to
a more detailed description using Boltzmann’s equations in this case.
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Solving (8.22) for perturbations with wavelengths larger than the
sound horizon we find one constant solution for ® and one solution that
is decaying. The decaying solutions are usually neglected: it is assumed
that the universe was initially very homogenous, and since the decaying
solutions were growing in the past, including them would lead to strong
initial inhomogeneities.

From eq. (8.18) the density contrast, defined by

0 = —, (8.24)

will also be a constant for modes for which A > H~'* These modes
do not produce any structure, since, colloquially speaking, there have
not been enough time for any significant gravitational self-interactions to
occur.

The superhorizon modes will eventually become smaller than the hori-
zon since H is an decreasing function of time. The behaviour of the
subhorizon modes, for which

A>usH (8.25)
will behave very differently for relativistic and non-relativistic compo-

nents. For a relativistic component (in a relativistic background), one
can show, using once again egs. (8.18) and (8.20), that

& = 3, S k) (8.26)
(kusmn)
§ = —30;) cos (kusn) . (8.27)

®(;) and d(;) are the value of the potential and density contrast when
the perturbation wavelength was larger then the horizon. We see that the
potential will undergo damped oscillations and the density contrast will
oscillate. This means that there is no growth of structure for a relativistic
component.

4These modes are usually called superhorizon modes. Modes for which A <« H ™! are
called subhorizon modes. For §, it is the cosmological horizon H ! which is important.
For the potential ®, it is the sound horizon usH~!. We will also refer to potential
modes as super- or subhorizon, depending on if they are larger or smaller than the
sound horizon.
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The non-relativistic component (in a non-relativistic background) still
has a constant ® as solution, but the density of the subhorizon mode
evolves as

27.2
5= T La (8.28)
6
The density contrast is thus growing linearly with the scale factor, and
structure is forming. Also note that § depends linearly on k, so that modes
with shorter wavelength have a larger density contrast, or, equivalently,
modes that enter the horizon earlier have had more time to grow.

Perturbations in a relativistic component in a radiation dominated
background correspond to the early universe, and perturbations in a mat-
ter components in a matter dominated background correspond to the
universe from the time of recombination up to a redshift of about two.
At later times, the dark energy component will start to dominate the
background. The potential, in such a background, will be inversely pro-
portional to the scale factor and thus decay, whereas both the sub- and
superhorizon matter perturbation will have a constant energy density con-
trast. This means that there is no growth of structure in such a universe.
We thus see that there only exists a limited timespan in the history of
the universe when structures could form.

It is also important to note that a matter component in a relativis-
tic background, such as cold dark matter, will grow slowly (unlike the
baryonic component which is coupled to radiation and therefore does not
grow). When the matter component dominates the background, but be-
fore recombination, the dark matter component will grow linearly with
the scale factor. This allows for large gravitational potentials to be set
up by the dark matter component, which the baryonic component can
fall into after recombination. Without this enhancement of the baryonic
growth, it would not be possible to form non-linear structures such as
galaxies.

When dealing with multiple components, the right hand sides of egs. (8.18-
8.20) have to be replaced with the total energy density, velocity and pres-
sure. The individual components will also satisfy the following conserva-
tion equations:

/

a
0ph 43— (3px +0pa) = (P +p2) (62 +32') =0, (8.29)

v)\]’ a
A 4=
2| T4 (ot

UX

3 TP+ (o +p\)®=0. (8.30)

[(P)\ +pA)
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Initial data for these perturbations can be divided in two main sets, which
are adiabatic and isocurvature initial conditions. They correspond to two
different creation mechanisms for the perturbations. For adiabatic initial
conditions, there is one function e that describe all the perturbations:

opr = pre,  Opx = Pe. (8.31)

This means that all perturbations fluctuate in the same manner, and there
is thus no change in the relative number density of the perturbations.
These perturbation arise when there is a single, global mechanism that is
the source of the initial conditions, for example a single inflaton field.

For isocurvature initial conditions, only one component has a non-
vanishing density contrast initially, whereas the other components are
homogenous. These initial conditions requires that the universe was in a
state of thermal non-equilibrium (otherwise only adiabatic modes, related
to the overall temperature fluctuations, would be created). CMB data can
discriminate between these two initial conditions, and strongly favours
adiabatic modes.

Let us now briefly describe the main features of the evolution of cou-
pled perturbations. The main components in our universe are cold dark
matter (CDM), neutrinos, photons and baryons. Of these, photons and
baryons will couple before recombination and has to be treated as a sin-
gle fluid. After recombination, photons will freely stream in the universe
which we today observe as the CMB.

The baryon-photon plasma will undergo acoustic oscillations before
recombination, and there is thus no growth of structure. The CDM com-
ponent, on the other hand, will grow logarithmically during the radia-
tion dominated regime, and linearly during the matter dominated regime.
When the photons decouple from the baryons at recombination, the os-
cillations in the plasma are imprinted in the both the photon and baryon
distribution. These oscillations are seen in the CMB and as baryonic
acoustic oscillations. Since the density contrast of the photons is related
to the relative temperature fluctuations at the time of decoupling, ob-
servations of the CMB will directly probe the structure of the density
contrast at the time of decoupling.

After decoupling, the baryonic density contrast started to grow: If
there had not been a CDM component that could have grown unimpeded
prior to decoupling, and thus increase the rate of baryonic growth, the
baryonic density contrast today would only have been on the order of 10~2
(since the baryonic density contrast is proportional to the scale factor)
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and no galaxies or other structure could have been formed. This is one of
the main reasons why a CDM component has to be postulated.

8.4 Perturbations in massive bigravity

We now turn to the investigation of the growth of structure in the Hassan-
Rosen theory. We will use the setup where only g couples to matter.
Both g and f are perturbed, and we will use the following form for the
perturbations (mimicking the approach used in general relativity):

ds; = —N7 (1 + Eg) dt* + 2Ngay0; Fyda'dt + a [(1 + Ag) 6;j + 0,0, By da'da?

g
(8.32)
ds} = —N7 (1+ Ey) dt* + 2Nyay0; Fpdz'dt + a} [(1 + Ay) 055 + 0;0; By] da*da’ .
(8.33)

In order to compute the first order perturbation of the field equations,
i.e.

3 R 0) = 0B @) + 0 3 (<17 300 [9,0300, (VITF)] = 320

n=0 g

(8.34)

5 | B (F) — LB () }+m22 )" Biend [ £in Y, (VITg)| =0,
' (8.35)

the square root matrices have to be evaluated. For perturbations around
a diagonal background, one can use the following formula:

( D+€> . \/75,]—1-

F+ + O (). (8.36)

Here D is a diagonal matrix and ¢ a small perturbation (no summation
over repeated indices). Defining

Ai + E; 4F; 3B; 9F, 1 (. NiB;
Di= Hi | — - — 5 | Bi- 8.37
' + ‘ < a; Nz + aiNi Nf v NZ ) ( )
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the equations of motion in the g-sector become (here we specialize to
pressureless dust as matter source)

A A, 2H,F, H,B
3H9<H9Eg—9>—k2<§+ T — 99)

Ny ag ag Ny

m?2rP po
[8(Af = Ag) = k* (Bf = By)] = =175, (8.38)

2 M;

Ay HyE, mzPa,f
NZ Ny (x+7) Ny

p 0
(ﬂfFf—'I"Fg) = _W (]{2 —Fg> 5
g

(8.39)

1 > N ) A 27 2 : 2 i
= (=8HyNZ + N, ) Ay + HyNZE, + (3HZN, + 2H, ) N2E, — NyA,|

g

5 | Px

+m? | S5 (B — By) +Qr(4; — 4,)| =0, (8.40)

D m2rQ
—79 - (Bf — By) = 0. (8.41)

In the f-sector, they become

A Ay  2H;F; H;B
3H; | HyEy — L) — w2 (5 ¢ 2200 2T

m2P
2r3

[3(A; — Ag) — K (By — B,)] =0, (8.42)

ﬁ _ HfEf mQPag
NJ% Ny 2Ny (z +7)

(rFy —xFy) = 0. (8.43)

1 ) . ) ) ..
N7 [(—3HfN,% + Nf) A+ HyNjE; + (3H§Nf + 2Hf) N}E; — NjA;
m? [P
) {2 (Ef — Eg) +Q Ay - Ag)] =0, (8.44)
D m2Q
—7f 52 (Bf = Bg) =0. (8.45)

Here
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P = By + 2B9r + B3r2, (8.46)

Q=01+ (z+r)P2+ xrfs, (8.47)

o=t (8.48)
=N, )

Due to the complexity of the equations it is not possible to solve them
analytically. There exists certain approximations, however, that can be
employed in their study. In Paper II, the equations were studied in the
vicinity of a de Sitter background, since the equations can be solved ex-
actly in such a background. This is described in section 8.5. The perturba-
tions can also be studied in the early, radiation dominated, regime [82, 83].
Another possibility is to use the quasi-static approximation, in which the
fields are assumed to vary at the same rate as the background. This ap-
proach was employed in [84, 85, 86]. Superhorizon modes were studied in
[87]. A stability analysis was performed in [88]. Finally, one can solve the
equations numerically, which was done in [84, 89]. This is used in Paper
VI to study the integrated Sachs-Wolfe effect, and is described in chapter
9.

When working with the perturbations we have been using two differ-
ent time coordinates. In the next section, we will study the behaviour of
perturbations close to the de Sitter regime in cosmic time, i.e. Ny = 1
is employed. In chapter 9, where we study the ISW effect, we will be
using conformal time, i.e N, = a,. In both cases we will be using gauge
invariant variables, and their definition differs only in the choice of time
coordinate.

Under a coordinate transformation the fields in the g and f sector will
transform as:

Al = 280 AB; = —2, (8.49)
a;
_ —1 0 _Nig ai.
AE; = —=2N; 19, (Nie") AF; = —e — ¢, (8.50)
a; Ni

where ¢ = {g, f}. In Paper II, the following gauge invariant variables were
used:

U, = —dAgtig[SaB - R, vy = —Lar+ B -y,
1 1 > 1 1 a} -
g = 3B, -0 (5‘152;39 - %Fg) » ®p = 2Br w0 <21\J;fo —ayly

)
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Nyag 7 af 7
ar Bg — w;Br|

1
af g+§

F = F-%NF
B (Bf — By).

1
2
(8.51)

These variables have the advantage of being close to the commonly used
gauge invariant variables ¥ and ®, defined in egs. (8.29) and (8.30), so
that ¥, and ®, can be directly compared to the prediction of general
relativity.

8.5 Leaving de Sitter

The goal of Paper II was to study how much the growth of structure
changed in massive bigravity compared to general relativity, and to iso-
late the effects of the new scalar degree of freedom. We saw in section 4.1
that general relativity, as a theory of a massless spin-2 field, has two prop-
agating degrees of freedom, which correspond to the helicity 2 modes.
A massive spin-2 field has 5 degrees of freedom, which correspond to the
helicity +2, +1 and 0 modes. From a particle point of view, helicities
are related to the representations of the Poincaré group. In the geomet-
rical framework of general relativity, helicity is defined in two steps: first
one decomposes the metric into scalar, vector and tensor components,
described in section 8.1. Then one identifies the components of the scalar
perturbation that gives a canonical normalized kinetic term or, equiva-
lently, a Klein-Gordon equation of motion. This will correspond to the
helicity-0 mode, and a similar procedure identifies the +1 and £2 modes.
A helicity analysis for de Sitter in dRGT, with a fixed reference metric,
was performed in [90, 91].

The main framework in employed Paper II for doing the analysis of
the growth of structure and helicity-0 is to start in a de Sitter regime,
where the theory can be solved analytically, and then introduce a small
deviation at the background level from de Sitter.

Massive and massless modes in de Sitter By defining the following
combinations of the perturbations

D, =P, + Dy, d_ =, — Py, (8.52)
Uy =T, + AUy, U_ =T, — Uy, (8.53)
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where c is the proportionality factor between the two metrics, it is possible
to decouple the massive and massless sector from each other (as first
shown in [43]). The massless fields are then solved by

U, =0, = Cio1y Qa*”, (8.54)

€2 C2

just as in general relativity. The constant cy gives the overall normaliza-
tion of the scale factor, as a function of cosmic time:

a(t) = czexp (Hgst), cg = <14_Q§AZA> " ' (8.55)
The energy density and velocity are given by

]@’é = — (12CoHjg + 2k*Ch) “C_; — 202/-62“0_;, (8.56)

ffg _ 402Hdscg’. (5.57)

Here du is defined directly from the gauge-invariant stress-energy as (STi0 =
0;6u. In the singly coupling setup that we are working with, matter will be
a source to both the massive and massless sector. The peculiar situation
is, however, that the evolution of the matter sources is governed by the
massless sector, and the massive sector thus has a fixed source term. The
helicity-0 mode is given by the following combination:

e+ U
II= — (8.58)
It satisfies a massive Klein-Gordon equation
(O-M*)11=—J, (8.59)

with source (a dot here signifies a derivative with respect to cosmic time)

1

J=—
Mg

1
(—5p —6p + 2H 50u — 200 + §V2X — Hyga’y — a%'g) . (8.60)

Here x is the anisotropic stress defined through

8T} = 9;0;x, (8.61)
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the O operator is given by

0 g V?
and M is the mass of the helicity-0 mode, given by
M? =m? (c+c) (B1 + 2Bac + B3c?) . (8.63)

The fields F and B can be solved in terms of the other fields.

Solutions to eq. (8.59) are well-known in terms of Bessel and Lommel
functions. II will stay finite at all times, but the perturbations fields ®_
and W_, which are proportional to a?II, will diverge in the future, unless

M? < 2H3. (8.64)

The parameter choice M? = 2H (%S is known as the Higuchi bound. This
is a stability bound which relates the mass of the graviton to the cos-
mological constant in de Sitter. The bound is satisfied if M? > 2H d28'
It was first discussed [92, 93, 94] and later investigated in more detail by
Higuchi in [95, 96, 97] and Deser and Waldron in [98, 99, 100]. The bound
gives unitarity conditions on the massive graviton upon quantization; if
the bound is violated, which means that M? < 2H§S7 the kinetic energy
of the graviton becomes negative, which upon quantization leads to neg-
ative probabilities. Furthermore, at the bound, when M? = 2H§S, the
helicity-0 mode vanishes due to a new gauge symmetry.

The parameter M is formed out of the (§; parameters, and the 5;
parameters also govern the background expansion. The Higuchi bound
can therefore be related to consistency conditions for the background. The
model under consideration in Paper II has 81 = 3 = 0. The background
expansion can be written as

p

H=——
3M3

+ His. (8.65)

The effective Planck mass Mp, which does not have to be the same as
that measured by local experiments, can be expressed in terms of Hgg
and M, defined in (8.63), as

M? — 2H3,
M? —2(1+?)Hig

Mp = M7 (14 c*) (8.66)
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Figure 8.1. Effective Planck mass, ay (denoted by Y in Paper II) and the
helicity-0 mode as functions of the mass of the helicity-0 mode in units of
HZg (also shown is v, defined in (8.68). Below the Higuchi bound, one of
the solutions to the helicity-0 mode gives divergences in the metric. Above
the Higuchi bound, both solutions do, and the Planck mass becomes
imaginary. For M?/H3g > 2(1+c?), also the scale factor in the f-metric
becomes imaginary.

It can be shown that ay becomes imaginary in the early universe if 2(1 +
A)H gs < M?. To avoid this, and also to avoid having a negative MI%,
one must thus impose

M? < 2H3. (8.67)

We thus have a rather peculiar situation, where the Higuchi bound has
to violated in order for ®_ and ¥_ to remain finite. Furthermore, it has
to be violated in order to avoid imaginary quantities in the background.
The relationship between the Higuchi bound and massive bigravity was
also studied in [72, 101, 102, 89]. In Fig. 8.1 we show schematically
the relationship between the background effective Planck mass, Higuchi
bound and behaviour of the background solution as a function of M?/H3.
The parameter v, defined as

9 M2

2

V= - — (8.68)
4 Hi

appears in the solution to the massive Klein Gordon equation (8.59).

Growth index Calculating the evolution of the perturbative fields in the
vicinity of a de Sitter regime shows that even though the background is
identical to a ACDM scenario, the behaviour of the perturbations differ
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from that predicted by general relativity. The approach employed in
Paper II was to do an expansion in the parameter
H

e (8.69)
In de Sitter, € = 0, and as one moves away from de Sitter into the matter
dominated regime € is growing. The perturbation equations can, for small
€, be solved iteratively by using the analytic de Sitter solution. Writing
the perturbation equations schematically as D,,,,¢"™ = Jin, we can expand
the differential operators D, fields ¢ and sources 7, as

Dy = D% +eDE P = P+ e, TIm = JO+€eJ<,. (8.70)

€

Here € = 6exp(—3Hgst), which turns out to be the relevant expansion pa-
rameter. Unfortunately, the quasi-de Sitter approach can not be extended
to the current time, since € ~ 0.5 today. The perturbative expansion
would thus break down at this point. Before that point, it was, how-
ever, shown in Paper II that even though solutions of the perturbations
are the same as those in general relativity in de Sitter, there is indeed a
difference as one moves into the quasi-de Sitter regime. This shows that
even if the background expansion is identitical to general relativity, the
perturbations does not have to be the same.

The evolution of the perturbations in the sub-horizon limit and with
comparison with data were performed in [84, 86, 85], using the quasi-
static approximation for subhorizon modes. This means that the fields
are assumed to vary at the same rate as the background, so that & ~
H® ~ H2®. In order to compare the predictions of the theory with
general relativity, one often uses the following parameters:

hd (8.71)

B 2k2a%P
3H2Q,,0m,

For general relativity, we have n =Y = 1. In Fig. 8.2, we show n and Y
in for the model where only 81 and (4 non-zero. This model is used in
Paper IV, and is described in more detail in section 9.2. The deviations
of n and Y from the predictions of general relativity can clearly be seen.
Current bounds on 1 and Y from observations are not stringent enough,
however, to favor one model over another [85, 86].

Y = (8.72)
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By =0.48, B, = 0.94, k = 0.1 h/Mpc
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Figure 8.2. Evolution of n and Y, defined in (8.71) and (8.72), in the IBB
model. The black horizontal line corresponds to the ACDM prediction,
and the black vertical line gives the time today. Plot taken from [86].

8.6 On instabilities and oscillations

Paper II dealt with the properties of perturbations in massive bigravity
in the late universe. The behaviour of the perturbations in the early
universe turns out to be dramatic. In [83, 82] it was shown that there
exists exponential instabilities in the radiation dominated regime, which
very rapidly makes the fields become non-linear. The non-linear behaviour
could be cured by a cosmological Vainshtein mechanism, or it could signal
that the theory simply predicts too much structure in the early universe.
The instabilities also depend on the type of matter coupling employed
[103].

The nature of the instabilities were further studied in [84, 86, 89, 103,
104], and [86] showed that the parameter choice where only 1 and 4 are
non-vanishing can lead to viable cosmologies at both the background and
perturbative level (but it is claimed in [89] that higher order perturbations
could be unstable for this model). This model was dubbed Infinite Branch
Bigravity (IBB), since r goes to infinity in the early universe. The best-fit
parameters for IBB derived in [86] using expansion histories and structure
formation are ; = 0'48418:(1)2 and B4 = 0.941'8:%&. The full numerical
solution to the system also showed that the fields are characterized by
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oscillatory behaviour around a mean value that is close to that of general
relativity.

The overall conclusion concerning the perturbations in massive bigrav-
ity can be summarized as follows:

e The behaviour of the scalar perturbations differ from the case of
general relativity, even if the background expansion is identical.

e There is a strong link between the Higuchi bound and the back-
ground expansion, which could invalidate certain parameter ranges.

e There exists early time instabilities for a large range of the param-
eter space. These instabilities could be cured by non-linear terms,
or they could signal that too much structure is predicted.

e Certain parameter ranges give a viable alternative to general rela-
tivity, such as the case when only 87 and (4 is non-vanishing. It
still has to be studied, however, whether the oscillations present
in the solution for the perturbations fields leads to observational
signatures.



Chapter 9

Integrated Sachs-Wolfe effect

In the two previous chapters we described how massive bigravity affects
cosmic expansion histories and growth of structure in the universe. The
key issue there is the relationship between the matter content and space-
time curvature. In this and the following chapter we will study how light
propagates in a curved spacetime, and how this can be used to put con-
straints on massive bigravity.

As described in section 7.1 and 8.3, the cosmic microwave background
(CMB) is one of the primary objects for observational cosmology. The
improved sensitivity in measuring the CMB is shown in Fig. 9.1. In this
chapter we will see how one can use observations of the CMB, together
with observations of galaxies and Active Galactic Nuclei (AGN), to obser-
vationally distinguish different theories of gravity. The main aspect of this
approach is the time evolution of the gravitational potentials, since they
affect both the form of the CMB and the galaxy and AGN distribution.
The alteration of the CMB due to the time evolution of the gravitational
potentials is called the Integrated Sachs-Wolfe (ISW) effect.

9.1 Cosmic light, now and then

The primordial photons that we today observe as the CMB are primarily
affected by four things: 1) the photon distribution at the time of decou-
pling, 2) the relative motion between us and the last scattering surface, 3)
the gravitational potentials at the time of decoupling and 4) the change
in the gravitational potential between decoupling and today. In terms of
the temperature distribution of the photons, these four effects are given
by

83
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. " ‘ .'. <
- . | ’.’ &‘ : . . !
S . L
Fa ) 7a
F | ) L S R
o~
ey . g v .}
COBE WMAP Planck

Figure 9.1. The three images show temperature fluctuations of the cos-
mic microwave background in a 10 square degree patch of the sky for three
different satellite experiments. The COBE satellite was launched in 1989,
and was the first instrument to give a full-sky map of the temperature
anisotropies. The WMAP satellite was launched in 2001 and provided
data until 2012. It was instrumental in the establishment of the standard
model of cosmology. The Planck satellite was launched in 2009 and re-
leased its first data set in 2013, which confirmed and sharpened the results
of the earlier experiments. Image courtesy: NASA/JPL-Caltech/ESA.

70
oT 1
T (n,mg) = 157 (r) +1-v (ne) + ¥y () + / (\If’g + @;) dn. (9.1)
Nr

Here n is a unit vector pointing in the direction of observation and v is the
relative motion between us and the last scattering surface. The third and
fourth terms are responsible for the Sachs-Wolfe and Integrated Sachs-
Wolfe effects [105]. The temperature fluctuation is usually represented by
doing an expansion in spherical harmonics:

oo m=l

T S in(a)

=1 m=-1

(9.2)

This formula can be inverted so that the coefficient a;,, are determined
from 67T'/Ty. From these coefficients one can define the angular power
spectrum C as

<alma;‘,m/> = Cyour Sy (9.3)
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Here the star signifies a complex conjugate. The average is supposed to
be taken over an ensemble of universes; since this is impossible in prac-
tice, one usually replaces the ensemble average by a volume average. This
means that one assumes that different regions of the universe are uncor-
related, and looking at the properties of the universe in two different
directions is equivalent to looking at two different realisations in an en-
semble of universes. Furthermore, if the temperature fluctuations satisfy
the properties of a Gaussian random field (which means that its Fourier
coeflicients have a Gaussian distribution and are uncorrelated with one
another), Cy characterize the temperature fluctuations completely.

Cy has today been measured up to £ ~ 2500. It is customary to define

I(1+1)
De = 02 o

D, gives the squared amplitude of the temperature fluctuations in a
decimal interval of multipoles. Furthermore, for a nearly flat initial
power spectrum of the potential fluctuations—which is predicted by e.g.
inflation—Dy is constant at low [ in the absence of the ISW effect. In
Fig. 9.2 we show D, as measured by the Planck satellite [62]. The main
feature in the spectrum is the series of oscillations, with the largest peak
at £ ~ 200, which are caused by the oscillations in the baryon-photon
plasma prior to decoupling.

Fig. 9.2 also shows the best-fit ACDM model as a solid line. To
compute this one needs to rely on numerical routines, since the physics of
the baryon-photon plasma is rather complex. The contribution of the ISW
effect to the CMB is more straightforward, however, since it only involves
the time evolution of the gravitational potentials [106]. By defining the
weight functions

; d [®(2)] .
KP (k)= [ dz— k 9.5
B = [ e |56 i, (9.5
where j, are the spherical Bessel functions and x(z) = 19 — n(2), the
power spectrum of the ISW effect can be derived as

dk ; ;
CPSW = 4z ?A?p (k) K2 (k) K (k). (9.6)

C. (9.4)

The power spectrum Aé(k) of the gravitational potential is given by

A2 (k) = 902,62, <§0>n_1 T2 (k). 9.7)
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Figure 9.2. Angular power spectrum of the cosmic microwave back-
ground, as measured by the Planck satellite. Dy is defined in eq. (9.4).
The late time integrated Sachs-Wolfe effect concerns the lowest multi-
pole, | ~ 2 — 10, where cosmic variance and measurement uncertainties
are largest. Plot taken from [62].

Here 0y is the amplitude of the matter density contrast at horizon scales
today, n is the spectral tilt which depends on the primordial conditions
(e.g. inflation) and T'(k) is the transfer function which takes the dynamics
from the primordial initial conditions up to the time of decoupling into
account. In Paper VI the so-called BBKS approximation for the transfer
function was used [107]. A% (k) is related to the power spectrum of mat-
ter, which will be used in the analysis in the next section, through the
cosmological Poisson equation:

4
230 = o (7) 23 99

The ISW effect itself is subdominant as compared to the other terms
in eq. (9.1). The ordinary Sachs-Wolfe effect has an amplitude on the
order of ~ 1000 K2, whereas the ISW effect only has an amplitude of
~ 100 uK2. One therefore needs to cross-correlate measurements of the
CMB with other probes of the gravitational potentials.
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9.2 Cross-correlating the ISW effect

Galaxies trace the underlying dark matter distribution, which in turn is
related to the gravitational potential. An overdensity of galaxies in a
certain direction thus corresponds to a stronger gravitational potential,
and hence a larger time evolution of the potential. This also affects the
photons propagating from that direction, and one can thus cross-correlate
the galaxy distribution with the CMB, a method first developed in [108].
The angular power spectrum of this cross-correlation between galaxies
and the ISW is given by (we are here extending the framework presented
n [109])

dk

¢l =l =an | 2

AL, (k) K (k) K (k). (9.9)

The weight functions Kf’ and K7 are given by

/d () 20 ’]z g;] e (2)], (9.10)
K} () = [asg | 5o el e, (0.11)

Here b(z) is the bias function relating the galaxy or AGN tracers to the
underlying matter distribution and dN/dz is the distribution function of
galaxies, normalized so that [ dz'dN/dz’ = 1. The weight functions are
thus normalized against the matter distribution today, and we thus use
A2 (k), given in eq. (9.8), in the angular power spectrum. An alternative
approach would be to normalize against the gravitational potentials at
decoupling. In this case, one would replace §(k,0) with the gravitational
potentials at decoupling, and use A3 (k) together with a correction factor
which takes the change of the potential between decoupling and today
into account.

The predictions of general relativity for CETQ can be computed given a
power spectrum of the density contrast or potential, defined either today
or at the time of decoupling. In massive bigravity, three main aspects
differ from general relativity: ® is not equal to ¥, § does not have the
same relationship to the gravitational potentials, and the time evolution
of both § and the potentials depend on k.

In Paper VI the IBB model, which has only ; and 84 non vanishing,
was tested using the cross-correlation of the ISW effect with galaxies and
AGN. The best-fit parameters $; = 0.48 and 84 = 0.94 was used, and it
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Figure 9.3. Angular power spectrum of the cross-correlation between
the ISW effect and galaxies (left panel) and AGN (right panel) computed
for both general relativity (ACDM) and massive bigravity (IBB). Data
points taken from [109] and are based on the WISE survey [110] and
WMAP temperature map [112]. The predictions of massive bigravity for
the IBB model are larger than ACDM by roughly a factor of 1.5, but still
consistent with data.

was assumed that ® = U at the time of decoupling (which mimics the
initial conditions of general relativity).! The analysis was a continuation
of the test of general relativity against this specific cross-correlation, which
was performed in [109]. This analysis used galaxies and quasars provided
by the Wide-field Infrared Survey Explorer (WISE), presented in [110] and
further analysed in [111]. This catalogue contains more than 500 million
sources distributed over the entire sky, which makes it an ideal candidate
catalogue when performing a cross-correlation analysis of the CMB, using
the WMAP temperature map [112]. [109] claimed a 30 detection of the
ISW effect through the cross-correlation analysis. The amplitude A of
the detection is normalized against the expected ACDM correlation, and
was measured to be A = 1.24 4+ 0.47 for the galaxies and 4 = 0.88 +0.74
for the AGN.

A crucial step in the cross-correlation is the estimate of the bias factor,
relating the galaxies and quasars to the underlying dark matter distribu-
tion and thus the gravitational potential. In [109] the bias factor was esti-
mated using the lensing that the tracers induced on the CMB. This is pos-
sible since lensing directly probes the gravitational potentials. For galax-
ies they derived two possible bias factors: a constant bias b = 1.4140.15
and a redshift dependent bias b%(z) = b (1 + 2), with b5 = 0.98 & 0.10.

The numerics was solved by first forming two coupled, second order differential
equations for ® and ¥, which could then be used to solve for the gauge invariant
density contrast. This approach was first employed in [84].
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Figure 9.4. The ISW auto-correlation, defined in (9.6), as predicted by
ACDM and IBB. Just as with the case of the cross-correlation of the ISW
effect with galaxies or AGN, IBB predicts a larger amplitude as compared
to ACDM.

For the AGN the bias was estimated as b4(z) = b4'[0.53 + 0.289(1 + 2)?],
with bj' = 1.26 & 0.23.

In principle, the bias factor should be independently analysed in the
IBB model, using the lensing of the CMB. Such an analysis would involve
a complete determination of the full CMB spectrum in massive bigravity,
which is a rather daunting task. Paper VI therefore used the inferred
bias of [109], assuming that lensing properties around massive objects
are similar to those of general relativity for the parameter choices under
consideration (this assumption is further discussed in the section 10.1).

CZTg for galaxies and AGN is shown in Fig. 9.3. The data points are
imported from [109], and the predictions for both general relativity and
IBB are shown as red and blue lines. The prediction of general relativ-
ity is calculated using €2, = 0.3. The same power spectrum is used for
ACDM and IBB, with the density contrast today at horizon scales put to
dg = 7.5 x 107°, and using a flat initial spectrum, i.e. n = 1. IBB pre-
dicts a higher amplitude as compared to ACDM by roughly a factor of 1.5,
but this is still consistent with data. Using the gravitational potential at
decoupling as normalization instead of the density contrast today slightly
varies the prediction of IBB. For the galaxies, there is also a slight varia-
tion in CT9 when using the linear, rather than the constant, bias factor.
These variations are, however, well within the data uncertainties. The
auto-correlation function for the ISW effect itself is shown in Fig. 9.4.
Just as for the cross-correlation, the IBB model predicts a higher ampli-
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tude as compared to ACDM. As stated in the introduction to this chapter,
it is, however, not possible to directly measure the auto-correlation, since
it is subdominant as compared to the ordinary Sachs-Wolfe effect.

The framework laid down in Paper VI for analysing the cross-correlation
of the ISW with galaxies and AGN can be extended in several ways:

e Using the lensing-ISW cross-correlation allows for a direct correla-
tion of the potentials without including the bias factor. This re-
quires, however, a better understanding of the relationship between
lensing of the CMB by intermediate sources.

e The results of Paper VI shows that the normalization scheme used
matters, although it only gives rise to slight variations. It is only by
analyzing multi-component perturbations prior to decoupling that
the correct normalization scheme can be employed.

e Having solved that system, one can also predict the form of the
CMB and the matter spectrum. This is of course the ultimate test
of massive bigravity and the IBB model.



Chapter 10

Lensing

Given a modified theory of gravity there are two immediate tasks to per-
form: First, assume homogenous and isotropic spatial slices and then
investigate the time evolution of the theory. This corresponds to looking
at cosmic expansion histories, described in chapter 7. Secondly, one can
assume static (i.e. time-independent) manifolds and study the spheri-
cally symmetric solutions. This corresponds to looking at black hole and
star solutions, which is the subject of this chapter. Roughly speaking,
then, the first approach correspond to isolating the time behaviour of the
theory, and the second approach corresponds to isolating the spatial, or
radial, behaviour of the theory.

Spherically symmetric solutions can be observationally probed in two
ways. First of all, they will affect planetary orbits and thus modify the
Keplerian dynamics that hold in the solar system. Secondly, light bending
gets modified. Already in Newton’s theory of gravity light bending is
possible, due to the fact that the mass of a test-particle is irrelevant
for its motion. This holds, in particular, for a massless particle. In
Einstein’s theory, light bending is due to the geodesic motion of light
in a gravitational field, and its value is famously a factor of two larger
than that predicted in Newton’s theory. For a modified theory of gravity
the amount of light bending could be lower or higher than that predicted
by general relativity, and can thus be used as a observational tool to
distinguish different theories of gravity.

In order to observationally test the amount of light bending a given
massive object produces, one needs to know the mass of the object through
an independent measurement. This can be achieved through Keplerian
dynamics, i.e. observing the motion of planets around a star in the case
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of the bending of light that passes close to the surface of the star, or ob-
serving the motion of stars and gas in a galaxy in the case of the bending
of light by galaxies.

The first study of spherically symmetric vacuum solutions in mas-
sive bigravity appeared in [113], which presented linearized solutions, and
[114], which did a numerical study of the complete system. Further stud-
ies investigated the Vainshtein mechanism [115, 116], rotating black holes
[117], charged black holes [118], stability issues [119, 120, 121] and unique-
ness properties [122, 123].

10.1 Gravity of a spherical lump of mass

To derive vacuum solutions, we use the following spherically symmetric
ansatz:

ds2 = —V (r)2di® + W(r)? (dr? + r2d0?) , (10.1)
ds} = —A(r)%dt* + B(r)*dr® + C(r)*r?dQ?. (10.2)

The form of dsg has been chosen to facilitate the lensing analysis. The
equations of motion derived using this ansatz are too complicated to be
solved analytically. For weak gravitational fields, we can, however, lin-
earize the metric components in the following way:

Veel46V, W~1450W, (10.3)
A~c(14+6A), B~c(l+6B), Cx~c(1+400). (10.4)

Here c is the proportionality constant for the background solution of the

two metrics. In order to have asymptotic flatness, we must impose the
following conditions on the (3; parameters and c:

Bo + 3B1c+ 3Pac” + Bac® =0, (10.5)
Bac® + 3B3¢® + 3Bac+ f1 =0, (10.6)

Defining the effective mass

mg m? (c+ ¢ 1) (B1 + 2B2c + B5c?) (10.7)
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the linearized solutions to the equations of motion become

GM1 C2GM2 —mar
(& 9,

SV — — _ (10.8)
r T
My  *GM
SW = G 1 i G 26—mgr7 (109)
r 2r
SA = _Giwl + %e—mgﬂ (10.10)
5 G QLB ],
r 2m2r3
(10.11)
2 2.2
5O — GM; GM; [(1+ ¢2) (1 +mgr) +mgr ]e—mgr’ (10.12)

2.3
T 2mg7"

M and M> are integration constants. We see that the solution contain
two components: the massless components which go as 1/r, and the mas-
sive, Yukawa components which go as exp(—mgr)/r. Defining Ay = 1/my,
we see that the massive component vanishes when r > A,.

In general relativity, the linearized solutions start to become invalid as
r approaches the Schwarzschild radius. In massive gravity the Vainshtein
radius makes the linearized solutions invalid already for a radius which
is very large compared to the Schwarzschild radius. This radius can be
identified by computing the second order solutions and investigate when
they become comparable to the linearized solutions. In the limit r» < Ay,

and imposing By = —c¢f3 the Vainshtein radius becomes
1/3
GMe (14 ¢2)°
ry = ( 5 ) (10.13)
My

Here we have used a point mass object as source, so that M; ~ My ~ M.
Putting ¢ = 1 and rg = 1/Hy, we have

v (30 (2]

When deriving the cross-over radius between the linear and non-linear
regime in [30], Vainshtein also conjectured that higher order terms could
make the solutions within the Vainshtein radius close to that of general

1/3 1/3

MY\ ()2
~34.10-8 | [ 22 [ 2¢
kpc ~ 3.4-10 [( @) <7“H> ] rH,

(10.14)
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Figure 10.1. Arthur Eddington, who first measured the bending of
light around the sun in 1919, made this handdrawing depicting the phe-
nomenon. The value 0.84 arcseconds is the prediction of Newtonian grav-
ity. Image credit: University of Louisville, Astronomy Education Wiki.

relativity. This could then produce a smooth limit to general relativity
in the limit of a vanishing graviton mass, and thus remove the vDVZ
discontinuity (described in section 4.2).

The existence of a Vainshtein mechanism in massive bigravity was first
shown in [114, 116]. Although this was only presented in passing, and the
details were not studied extensively, it means that one can assume with
some confidence in this analysis that within the Vainshtein radius the
prediction of the theory will be very close to that of general relativity.

10.2 Gravitational lensing
The bending of light as it passes a massive object follows from the geodesic
motion in the gravitational field that the massive object sets up [124].
This is depicted in Fig. 10.1. If we write the metric as

ds; = — (14 2®) dt* + (1 — 20) (dr® + r*dQ?) , (10.15)
the velocity for massless particles (for which dsf7 =0) is

s 1+20
1 -20°

(10.16)

The index of refraction, which describes the variation of the velocity of
light in a medium as compared to the vacuum, is then, under the assump-
tion that &, ¥ <« 1

n=1/v=1-0— @, (10.17)
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By solving the geodesic equation, one can show that the deflection angle,
i.e. the amount that the trajectory is shifted relative to the unperturbed
trajectory, is

d—/ﬁL (® + W) dA. (10.18)

Here A is the parameter which describes the trajectory, and V. is the
derivative perpendicular to the trajectory. Effectively, one can integrate
over the unperturbed light path, since the deflection is small. For a point

mass, we have, in general relativity, ® = ¥ = —GM/r, and
4GM
lacrl = ——, (10.19)

where b is the impact parameter (i.e. the minimal distance to the lens for
the unperturbed trajectory).
Point-particle solutions in massive bigravity are given by

M 4c?

o= —Gr (1+ ge*mﬂ), (10.20)
M 2c?

g My %e—mﬂ), (10.21)

Defining the lensing potential ¢ = (® + V) /2, the ratio between ¢ and
&, which is the field relevant for trajectories of massive particles, is

@ _ 1+ (4c%)/3

10.22
© 1+¢2 7 ( )

as 7 < Ag. In general relativity, this ratio is equal to unity. The factor
of 4/3 is the famous vDVZ-discontinuity, which is present in the case of
massive gravity with a fixed reference metric. We see that for ¢ = 1, the
ratio is equal to 7/6, and when ¢ — oo it becomes equal to the vDVZ value
of 4/3. When ¢ — 0, we get back the predictions of general relativity,
since ® — .

10.3 Bending light in the right way

By using objects for which the gravitational field can be probed both by
massive objects and light, we can put constraints on the parameters of
massive bigravity. In Paper III, elliptical galaxies, for which both the
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Figure 10.2. Allowed range for Ay/rm, where rg is the Hubble scale
today. The thick line is the Compton wavelength of the graviton, and
the dashed line the Vainshtein radius for a galaxy. The dotted line corre-
sponds to the galaxy scale, ~ 5 kpc. Values of Ay where the galactic scale
is larger than the Vainshtein radius and smaller than A\, are excluded.
Also, precis measurements in the solar system exclude values of Ay less
than roughly 10™'*rg ~ 0.05 pc. The other ranges for A\, are allowed.
In particular, the case favored by the cosmic expansion history, where
Ag ~ rH is viable.

velocity dispersion and deflection angle is known, were used. From the
observed deflection angle the gravitational lensing potential was recon-
structed for each galaxy in the dataset. This could then be used to predict
the velocity dispersion for given parameter choices ¢ and my, (or, equiv-
alently, A\y), which in turn could be compared to data. The calculation
of the velocity dispersion relies on the assumed matter distribution; this
assumption, however, is not crucial for the parameter constraints, since
both the lensed photons and velocity dispersion tracers are at a similar
galactic radii.

Due to the Vainshtein mechanism one has to divide the constraints
into three sets. At distances within the Vainshtein radius, the Vainshtein
mechanism should ensure that the reconstruction of the potential from the
deflection angles should follow along the lines of general relativity. In the
region that is outside the Vainshtein radius, but within A4, the Yukawa
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terms produce deviations from general relativity. At distances outside
both the Vainshtein radius and A4, the Yukawa terms are negligible and
general relativity is once again restored. It is exactly in the parameter
range where the Yukawa terms are relevant on galactic scales that we find
that the theory is excluded.

In Fig. 10.2 we show the range of values that are allowed for A\,. If one
assumes that the Vainshtein mechanism does work, the lensing analysis
excludes values of Ay in the range 5 kpc S Ay S 5 Mpc. Constraints on
Yukawa terms in the solar system [125], together with deflection and time
delay of light in the vicinity of the sun [126], also constraints A, to be
larger than 0.05 pc.
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Summary and outlook

This thesis has explored the phenomenological consequences of a natural
extension of general relativity, in which a graviton is endowed with a non-
vanishing mass. Such an extension incorporates a second rank-2 tensor
field, which could either be fixed or dynamical. The latter case, usually
called the Hassan-Rosen theory, is the focus of all of the papers included
in this thesis, with the exception of Paper V. Several possible couplings
between matter and the two rank-2 tensor fields are possible, and two
have been used in this work: one where matter only couples to one of the
fields, and one where it couples to both in a symmetrical way. Let us now
summarize our main results.

Expansion histories The cosmological expansion histories were studied
in three of the papers included in this thesis. In Paper I matter coupled to
one of the metrics, and the equations of motion for the background was de-
rived and analysed. It was shown that there exists ACDM-like expansion
histories. A similar analysis was performed in Paper IV, where matter
coupled to an effective metric which was formed out of a combination of
the two metrics. It was shown that this type of coupling gives expansion
histories that are generically “closer” to ACDM than those of the singly
coupling case. Paper V analysed the cosmology of the same type of ef-
fective matter coupling, but with one of the metrics non-dynamical. It
was shown that only when including an additional matter field, e.g. a
scalar field, with highly contrived behaviour, was it possible to get viable
cosmologies.

Structure formation Paper II analysed the equations of motion for cos-
mological perturbations in and near a de Sitter background. In particular,
it investigated the relationship between the Higuchi bound, the behaviour
of the massive perturbations and the parameters of the background. It

101



102

was shown that the Higuchi bound has to be violated for consistency rea-
sons on the level of the background. Perturbations which were identical in
behaviour to that of general relativity in de Sitter, were shown to behave
differently as compared to general relativity when entering the quasi-de
Sitter regime.

Integrated Sachs-Wolfe effect The integrated Sachs-Wolfe effect is the
modification of the cosmic microwave background (CMB) due to the time
evolution of the gravitational potentials from the time of decoupling until
today. This effect can be measured by cross-correlating the CMB with
other tracers of the gravitational potentials, such as galaxies or quasars.
Paper VI analysed the cross-correlation predicted by the so-called Infinite
Branch Bigravity model of the Hassan-Rosen theory, which is given by a
certain parameter choice. It was shown that the cross-correlation is larger
than that predicted by general relativity, but still consistent with data.

Lensing Paper III investigated the lensing predicted by the Hassan-
Rosen theory in the vicinity of galaxies, and used the observed lensing
to put constraints on the parameter range of the theory. Lensing occurs
when light travels in the gravitational potentials created by massive ob-
jects. By combining independent measurements of the galaxy masses,
together with the observed lensing, it is possible to constrain different
theories of gravity. Paper III showed that the effective parameter com-
bination that sets the Compton wavelength of the graviton can not be
in the range 5kpc < Ay < 5 Mpc, where 5 kpc is roughly the scale of
galaxies. A length scale above that is allowed for due to the Vainshtein
mechanism, and a length scale below that, but above the scale of the solar
system, is also viable.

In the introductory part of this thesis we described two of the outstanding
problems in cosmology: dark matter and dark energy. These two phenom-
ena have so far only been observed gravitationally, and it is possible that
their inferred existence is due to our lack of understanding of gravita-
tional interactions on length scales of galaxies and beyond. The natural
question, then, is whether the Hassan-Rosen theory can shed some light
on dark matter and dark energy.

The problem of dark energy is in reality a host of different problems.
One is to understand the cause of the observed acceleration of the expan-
sion of the universe. If this is caused by a cosmological constant, then
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the problem is to explain its observed value, and reconcile it with the
value suggested by quantum field theory. If dark energy is not due to
a cosmological constant, then one has to explain why the cosmological
constant does not contribute to the dark energy component. A new, clas-
sical theory of gravity can in principle address the following questions: 1)
How does gravity couple to the vacuum? 2) Are there self-accelerating
solutions that do not rely on a cosmological constant? 3) Is there any
natural parameter range for these solutions? The Hassan-Rosen theory
answers these questions in the following way:

1. Since several possible matter couplings are allowed for in the Hassan-
Rosen theory, the relationship between gravity and the vacuum en-
ergy density is not uniquely predicted. When coupling matter to
only one of the metrics, the situation is similar to general relativity
in that both matter loops and a bare cosmological constant term
will contribute to the effective cosmological constant. When cou-
pling matter to an effective metric built out of the two constituent
metrics, the vacuum energy density will renormalize all the param-
eters of the theory.

2. Once again, the answer to this question depends on the type of cou-
pling. If coupling only one of the metrics to matter, there does exist
self-accelerating solutions. If coupling both metrics, then there are
accelerating solutions, but since all the parameter terms are related
to the vacuum energy density, it is not possible to unambiguously
refer to these solutions as self-accelerating solutions.

3. There is no natural parameter range for the solutions that give rise
to an accelerated expansion; instead, one has to fix the parameters
to be of the order of the Hubble scale today in order to match the
predicted acceleration with the observed value.

Concerning dark matter, it is possible that the Hassan-Rosen theory
could be important. We have seen that the effective Planck mass, which
sets the strength of the coupling between matter and gravity, is modified
for cosmological solutions. This opens up for the possibility that the
local Planck mass, as inferred through e.g. Cavendish experiments, is
different from the global, or cosmological Planck mass. This means that
the inferred dark matter content could be smaller or larger depending
on the scale that it is probed at. To answer this question, one has to
study spherically symmetric solutions, important for planetary orbits, and
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galactic solutions, important for rotation curves, to see how the Planck
mass gets normalized at each level.

The Hassan-Rosen theory suffers from exponential instabilities when
it comes to growth of structure in the universe. While not necessarily
ruling the theory out, this could invalidate the perturbative framework
commonly used for calculating the growth rate of structure. There are
also problems with the instabilities related to the Higuchi bound. The ex-
ponential instabilities depend on the type of matter coupling employed,
and it might be possible to cure them completely by some proper ex-
tension of the theory. At the moment, these instabilities pose the most
serious threat to the validity of the theory.

The Hassan-Rosen theory is somewhat perplexing. It is constructed as a
response to the physically well-motivated question “what does the theory
of a massive graviton look like?” This simple question immediately leads
into a rather complex theoretical realm with two rank-2 tensor fields, in-
stead of just one. One gets five interaction terms, and several possible
matter couplings. The cosmological community quickly showed that this
gives rise to a rich phenomenology, as well as possible drawbacks in terms
of instabilities. There exists a parameter range for which the exponen-
tial instabilities are avoided, and which gives a phenomenology consistent
with observations. On the other hand, the existence of the instabilities
might be a sign that the theory is by no means the final word on gravity.
The resolution to this problem through further extensions or an improved
understanding of the theory will be very interesting, and most likely carry
a lot of surprises.
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