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Nous présentons dans ce mémoire les deux axes de recherche principaux
développés de 2000 à 2010, autour de la physique mathématique et de la
théorie des processus stochastiques.

Le premier a pour objet l’algèbre de Lie de dimension infinie, dite de
Schrödinger-Virasoro, introduite dans les années 1990 dans le cadre de
travaux sur l’invariance géométrique en physique statistique hors-équilibre.
L’étude de sa cohomologie et de ses représentations aboutit à des généralisations
non triviales de résultats obtenus antérieurement pour l’algèbre de Vira-
soro et ses extensions semi-directes par modules de densité. L’algèbre de
Schrödinger-Virasoro se réalise en tant que symétries d’une famille naturelle
d’opérateurs de Schrödinger dépendant du temps; la classification des formes
normales de ces opérateurs sous son action permet de déterminer la mon-
odromie. Elle peut également être vue comme quotient d’une extension de
l’algèbre de Poisson sur le tore. Les deux points de vue font apparâıtre des
structures hamiltoniennes originales.

Le deuxième concerne – dans une optique essentiellement probabiliste
– les propriétés fines des intégrales itérées de chemins multidimensionnels
de faible régularité Hölder, lorsque les intégrales ordinaires (ou celles de
Young) divergent. Dans le cadre de la théorie des chemins rugueux ou rough
paths, introduite par T. Lyons à la fin des années 1990, nous construisons
une régularisation des intégrales itérées à l’aide d’une combinatoire d’algèbre
de Hopf sur les arbres s’inspirant de travaux classiques d’A. Connes et D.
Kreimer. L’analyse multi-échelles utilisée pour démontrer la convergence
provient de l’étude des graphes de Feynman en théorie des champs et de leur
renormalisation. En guise d’application, nous obtenons un calcul stochas-
tique pour un brownien fractionnaire B d’indice de Hurst quelconque. Nous
définissons également une approximation analytique de B permettant de
réduire les problèmes de convergence d’objets limites construits à partir
de B ou encore du brownien fractionnaire analytique (liés à la résolution
d’équations différentielles stochastiques) à l’étude, par déformation de con-
tour complexe, des singularités locales d’opérateurs de convolution à noyau
fractionnaire.

1jeremie.unterberger@iecn.u-nancy.fr
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Chapitre 0

Résumé et liste d’articles

Bien que ma thèse de doctorat ainsi que les travaux des années 2000-2002
aient porté essentiellement sur l’analyse sur les groupes de Lie semi-simples
(en particulier, l’étude des distributions sphériques, avec applications à des
formules de type Plancherel ou Paley-Wiener), mes investigations se sont
tournées à partir de 2000 et plus particulièrement à partir de 2003 vers
d’autres domaines.

Une collaboration avec des physiciens de Nancy (notamment au travers
d’un groupe de travail commun au laboratoire de mathématiques et à l’équipe
de physique théorique du Laboratoire de Physique des Matériaux) m’a con-
duit à m’intéresser jusqu’à maintenant à des problèmes mathématiques mo-
tivés par l’étude de la physique statistique hors-équilibre, qui font l’objet de
la première partie de ce mémoire. C’est un travail autour d’algèbres de Lie
de dimension infinie liées aux symétries des équations de Schrödinger, qui
fait intervenir théorie des représentations, cohomologie des algèbres de Lie,
structures de Poisson, théorie spectrale des opérateurs, géométrie non rela-
tiviste, supersymétrie... ainsi que quelques notions qui sont plus du domaine
de la physique, comme la théorie conforme des champs ou l’invariance de
théories lagrangiennes.

A partir de 2006–2007, en parallèle, je me suis également intéressé aux
singularités locales des champs gaussiens fractionnaires et plus généralement
aux chemins rugueux (“rough paths”), avec des applications au calcul stochas-
tique pour le brownien fractionnaire multidimensionnel. Le lien avec la
première partie du mémoire est (pour l’instant du moins) indirect et se
fait plutôt au travers d’outils empruntés à la physique, notamment à la
théorie quantique des champs, même si (d’un point de vue formel) l’étude
des singularités locales et les méthodes complexes se retrouvent également
en théorie conforme des champs. Une petite partie de ces travaux concerne
plus spécifiquement des matrices de Toeplitz dites de Fisher-Hartwig liées au
principe d’invariance du brownien fractionnaire et apparaissant également
de manière naturelle dans un certain nombre de modèles de physique statis-
tique; ces travaux ne seront pas abordés dans le mémoire.
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0.1 Physique mathématique: algèbre de

Schrödinger-Virasoro et symétries dynamiques

schrödingériennes

Mon travail s’est focalisé sur une algèbre de Lie dite de Schrödinger-Virasoro.
Il s’agit d’une algèbre de Lie de dimension infinie, sv, produit semi-direct de
l’algèbre de Virasoro de charge centrale nulle Vect(S1) (autrement connue
en tant qu’algèbre de champs de vecteurs sur le tore) par une algèbre de Lie
nilpotente de rang 2 de dimension infinie. L’introduction de cette algèbre
par M. Henkel (Laboratoire de Physique des Matériaux de l’université Nancy
I) en 1994 était motivée par la recherche d’une invariance d’échelle locale
en physique statistique hors-équilibre, par analogie avec ce qui existe à
l’équilibre au point critique, en dimension 2. Dans le cas d’un exposant dy-
namique z = 2 qui apparâıt dans un certain nombre de modèles physiques,
explorés notamment par M. Henkel et ses collaborateurs, la géométrie sous-
jacente est la géométrie non relativiste, qui se formalise à l’aide des variétés
de Newton-Cartan (cf. travaux de C. Duval et collaborateurs). L’algèbre sv

peut être introduite comme algèbre de symétries dans ce contexte.

Une analyse assez poussée des propriétés cohomologiques de l’algèbre sv

(déformations, extensions centrales...), de ses extensions supersymétriques
et de ses représentations a été menée en collaboration avec C. Roger, du
département de mathématiques de l’université Lyon I, et M. Henkel [9, 10].
On obtient des généralisations non triviales de résultats obtenus antérieurement
pour l’algèbre de Virasoro et ses extensions semi-directes par modules de
densité. L’algèbre de Virasoro (ainsi que ses supersymétrisations, qui sont
des extensions par produit semi-direct de superalgèbres de contact) appa-
raissent également comme quotients d’algèbres de Poisson sur le tore ou
le supertore. Un article est consacré à l’étude de représentations vertex
[13]; il prolonge des travaux classiques menés à partir des années 80 sur les
représentations de l’algèbre de Lie de Virasoro dans le contexte de la théorie
conforme des champs.

Un des points de vue les plus prometteurs est celui des réalisations de
sv comme algèbre de symétries de familles d’équations physiques, en partic-
ulier d’opérateurs de Schrödinger dépendant périodiquement du temps. Les
orbites de cette action sur le sous-espace des opérateurs de potentiel au plus
quadratique en espace (du type oscillateurs harmoniques généralisés) sont de
codimension finie; nous avons obtenu une classification à la Kirillov de ces or-
bites, ainsi que des formes normales. La résolution explicite de ces opérateurs
à l’aide des invariants d’Ermakov-Lewis introduits en physique quantique
peut se réinterpéter dans ce cadre; la combinaison des outils algébriques,
géométriques et analytiques permet en fin de compte de déterminer la mon-
odromie de ces opérateurs [15]. Dans un travail en collaboration avec C.
Roger [19], nous montrons – en utilisant la réalisation de sv comme quo-
tient d’une algèbre de Poisson comme ci-dessus – que l’action de sv sur
l’espace général des opérateurs de Schrödinger est hamiltonienne pour une
certaine structure de Poisson obtenue comme projection d’une structure à
la Kirillov-Kostant-Souriau.

Une monographie sur l’ensemble de ces résultats est en préparation avec
C. Roger et devrait être soumise très prochainement [29].
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Perspectives.

Les perspectives les plus immédiates concernent les réalisations physiques
de sv évoquées dans le paragraphe précédent. Les structures hamiltoniennes
non triviales exhibées augurent de l’existence de systèmes intégrables sous-
jacents qu’il s’agit de découvrir. Des généralisations à des équations de
Schrödinger en plusieurs dimensions d’espace ou à des systèmes de par-
ticules sont par ailleurs envisageables. L’invariance sous sv de familles
d’équations apparâıt également dans le contexte de la mécanique des fluides
[55] (équation d’Euler) et n’a pas été étudiée à l’heure actuelle de manière
approfondie.

Le point de vue physique statistique, laissé de côté bien qu’à l’origine
du projet, se doit de retrouver sa place. Une possibilité naturelle serait
d’explorer – en lien avec des modèles explicites de physique statistique – des
versions dynamiques des champs libres gaussiens ou de l’équation de Löwner
stochastique (cf. travaux récents de Werner, Lawler, Schramm, Sheffield et
Duplantier [62, 63, 64, 74, 75]).

Mentionnons par ailleurs le développement récent de travaux concernant
la correspondance AdS/CFT (anti-De Sitter/théorie conforme des champs)
dans un cadre non relativiste, dans laquelle l’algèbre de Lie de Schrödinger
(sous-algèbre de Lie de dimension maximale de sv) joue un rôle central
[32, 31]. Ces travaux récents ont conduit des physiciens travaillant en grav-
itation et en théorie des cordes à redécouvrir sv. Il est probable que l’étude
développée ici trouve des prolongements dans ce cadre.

0.2 Probabilités: singularités locales des proces-

sus gaussiens et chemins rugueux

La thématique développée le plus récemment concerne les propriétés fines
des intégrales itérées de chemins multidimensionnels de faible régularité
Hölder, en particulier des trajectoires d’une famille de processus gaussiens
auto-similaires appelés brownien fractionnaire, et dépendant d’un indice de
régularité H ∈]0, 1[ (dit de Hurst). Les résultats classiques (Coutin-Qian
[90], Alos, Cheridito, Mazet, Nualart [76, 77, 86]), basés sur des approxima-
tions de type analyse numérique ou sur le calcul de Malliavin, montrent que
ces intégrales itérées (à partir desquelles la théorie des chemins rugueux ou
rough paths due à Lyons, Victoir, Friz, Gubinelli... [98, 100, 112, 114] per-
met de construire un calcul stochastique) divergent dès que H ≤ 1/4. Nos
résultats font appel à l’analyse complexe, ainsi qu’à des concepts algébriques
(algèbres de Hopf notamment) et physiques (diagrammes de Feynman et
renormalisation en théorie quantique des champs). Dans un premier article
[14], nous introduisons une approximation analytique du brownien fraction-
naire, définie sur le demi-plan supérieur. Cette approximation, qui est une
alternative à la classique approximation linéaire par morceaux, se prête bien
au calcul des singularités, et permet notamment d’obtenir un théorème cen-
tral limite [22] pour l’erreur sur l’aire de Lévy associée au schéma d’Euler
(H > 1/4) ou [18] pour l’aire de Lévy renormalisée (H < 1/4) à l’aide de
déformations de contour analytique. Nous introduisons dans la même op-
tique [16, 25] un nouveau processus autosimilaire, Γ, appelé brownien frac-
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tionnaire analytique, à valeurs complexes, vivant sur le demi-plan supérieur
fermé Π̄+, pour lequel les mêmes outils permettent de définir un calcul
stochastique pour H quelconque et de résoudre des équations différentielles
dirigées par Γ sur un ouvert de Π̄+.

Dans les travaux les plus récents [21, 23, 24], nous introduisons une
méthode générale de régularisation d’intégrales itérées permettant de définir
des chemins rugueux au-dessus d’un chemin H-Hölder quelconque. La con-
struction, explicite (à la différence de celle de Lyons et Victoir [113]), repose
sur un algorithme que nous appelons mise en ordre normal de Fourier et
qui apparâıt tout à fait naturel lorsqu’on fait appel aux structures com-
binatoires d’algèbre de Hopf sous-jacentes, ainsi que sur un choix a priori
largement arbitraire de schéma de régularisation. On montre en partic-
ulier qu’un chemin rugueux est caractérisé algébriquement par des données
d’arbres (“tree data”) arbitraires. Le schéma de régularisation que nous
présentons ici est une régularisation de domaine de Fourier. Il repose sur une
analyse multi-échelles, outil classique en théorie des champs, en particulier
pour la renormalisation des intégrales de Feynman, qui peut être exploité
plus en profondeur (cf. perspectives ci-dessous). Ce schéma, réécrit dans
le cas particulier du brownien fractionnaire, permet d’obtenir un chemin
rugueux régulier, vivant dans les chaos gaussiens d’indice 2, 3, . . .

Deux articles [17, 20] portent par ailleurs sur l’utilisation des matrices de
Toeplitz. Le principe d’invariance donne un résultat à la Donsker sur la con-
vergence vers le brownien fractionnaire de sommes convenablement renor-
malisées des valeurs d’un processus gaussien stationnaire à temps discret,
dont la covariance (à décroissance polynomiale) est une matrice de Toeplitz.
Avec A. Boettcher et d’autres coauteurs, nous étudions la limite asympto-
tique (spectre, vecteurs propres...) de matrices de Toeplitz explicites (dites
de Fisher-Hartwig) pour lesquelles ce principe d’invariance est vérifié.

Perspectives.

1. (régularisation des chemins rugueux)

Les travaux sur la régularisation par ordre normal de Fourier n’en sont
qu’à leur début. Les applications potentielles à l’étude des équations
différentielles ou aux dérivées partielles dirigées par un brownien frac-
tionnaire de faible indice de Hurst sont claires; tous les résultats obtenus
précédemment pour H > 1/4 ou H > 1/2 concernant les solutions des
équations différentielles ou aux dérivées partielles stochastiques (ex-
istence, finitude des moments, densité, théorèmes ergodiques [84, 79,
103]...) sont susceptibles de s’étendre à H quelconque. Un prolonge-
ment naturel de ces travaux consisterait à définir une intégrale de Sko-
rokhod relative au brownien fractionnaire d’indice quelconque, qui de-
vrait permettre d’obtenir une formule d’Itô du type (terme d’espérance
nulle+trace).

Dans des travaux en cours, nous approfondissons la construction elle-
même dans plusieurs directions.

Avec L. Foissy, de l’université de Reims, nous réinterprétons l’algorithme
sous-jacent de mise en ordre normal de Fourier en termes intrinsèquement
algébriques [26]; il découle d’un isomorphisme explicite entre deux
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algèbres de Hopf. Par ailleurs, nous avons soumis un article donnant
un chemin rugueux renormalisé pour le brownien fractionnaire [28],
en utilisant – en guise de schéma de régularisation – l’algorithme de
renormalisation de Bogolioubov-Parasiuk-Hepp-Zimmermann (BPHZ)
bien connu en théorie quantique des champs et en combinatoire. Les
intégrales itérées sont interprétées comme diagramme de Feynman
et renormalisées en conséquence à l’aide d’une analyse multi-échelles
déjà à l’oeuvre dans la régularisation de domaine de Fourier (celle-
ci pouvant être vue comme une ébauche de renormalisation). Ces
travaux ont été présentés lors de colloques internationaux au print-
emps 2010 (workshop du trimestre “Combinatorics and Control” en
avril à Madrid, conférence “Renormalization: algebraic, geometric
and probabilistic aspects” en juin à Lyon). Il est probable que les
travaux des algébristes et combinatoriciens puissent aider à développer
un calcul stochastique pour le brownien fractionnaire de manière plus
systématique.

Dans un autre article soumis, en collaboration avec J. Magnen, du
Laboratoire de Physique Théorique de l’Ecole Polytechnique [27], nous
montrons comment obtenir une aire de Lévy au-dessus du brownien
fractionnaire d’indice de Hurst < 1/4 – ou de champs gaussiens frac-
tionnaires plus généraux que nous appelons champs gaussiens multi-
échelle – comme limite des aires de Lévy naturelles au-dessus de pro-
cessus non gaussiens, obtenus par pénalisation singulière de la mesure
gaussienne. Cette mesure pénalisée s’interprète naturellement, dans le
langage de la théorie quantique des champs, comme une interaction
singulière proportionnelle au carré de l’aire de Lévy divergente näıve.
La démonstration de la convergence repose sur les outils classiques
de la théorie constructive des champs, notamment un développement
en cluster et une renormalisation du propagateur, ainsi que sur la
mise en ordre normal de Fourier, naturelle dans le cadre d’une analyse
multi-échelles. Ce travail doit être étendu au cas des intégrales itérées
d’ordre supérieur, pour lequel les travaux combinatoires précédents
seront de toute évidence utiles. De plus, il est probable que cette
même pénalisation singulière s’obtienne par limite d’échelle à partir
de constructions probabilistes plus standard, comme par exemple des
marches aléatoires avec des contraintes trajectorielles.

Il serait par ailleurs naturel d’essayer d’étendre les constructions ci-
dessus au cas des surfaces rugueuses indexées par RD, D ≥ 2 au lieu
de R, dans le but par exemple de résoudre des équations aux dérivées
partielles stochastiques dirigées par un drap brownien fractionnaire.

2. (outils analytiques pour le brownien fractionnaire)

L’approximation analytique et l’étude des singularités locales (déjà
utilisée dans deux articles) trouveront, nous le pensons, leur place
parmi les principaux outils dans l’étude du brownien fractionnaire.
Quant au brownien fractionnaire analytique, il serait intéressant d’en
trouver des applications dans des domaines comme la physique ou
peut-être la finance mathématique.
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3. (matrices de Toeplitz)

Un travail en préparation porte sur la définition et les premières pro-
priétés d’un brownien fractionnaire aléatoire (processus stochastique
en milieu aléatoire) obtenu par limite d’échelle à partir d’une matrice
de covariance de Toeplitz elle-même issue d’un brownien fractionnaire.

Enfin, une connaissance plus poussée de la résolution spectrale des ma-
trices de Fisher-Hartwig (apparaissant dans nombre de problèmes de
physique statistique) aurait des applications immédiates, par exemple
à l’étude du modèle sphérique avec interaction non locale.
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Chapitre 1

Symétries dynamiques

schrödingériennes

1.1 Présentation générale

Il est connu que l’étude mathématique des symétries et la physique statis-
tique ou quantique font bon ménage; les mathématiques inventent un lan-
gage par et pour la physique, qui devient en mûrissant une théorie mathématique
à part entière; inversement, les intuitions des physiciens, souvent en avance
sur le langage mathématique de leur époque, sont confirmées au bout de
quelques dizaines d’années par le développement d’une théorie mathématique
qui finit par les dépasser. Les travaux pionniers de W. Werner, G. Lawler
et O. Schramm [62, 63, 64, 75] sur l’équation de Löwner stochastique (SLE)
en sont une éclatante illustration: vingt ans après l’invention de la théorie
conforme des champs par les physiciens Belavin, Polyakov et Zamolodchikov
[33], leur théorie, mélangeant probabilités et invariance conforme, permet de
confirmer de manière spectaculaire les prédictions de la physique statistique
au sujet des phénomènes critiques bidimensionnels à l’équilibre (modèle
d’Ising, percolation critique...); mais elle les dépasse largement, forçant les
physiciens à renouveler leur approche conceptuelle [54].

Les travaux développés dans cette partie, beaucoup plus modestes, se
veulent une étude mathématique de symétries qui, nous l’espérons, devraient
jouer un rôle dans l’étude des phénomènes critiques en physique statistique
hors équilibre.

Rappelons brièvement quelques principes de l’invariance conforme. L’algèbre
de Lie du groupe des transformations conformes locales d’une variété rie-
mannienne de dimension d ≥ 2 est définie par des équations algébriques,
dont on montre qu’elles conduisent en dimension d ≥ 3 à une algèbre de di-
mension finie (contenant translations, rotations et transformations spéciales
de type homographique). La dimension deux est tout à fait à part à cet
égard, puisque les transformations conformes locales sont tout simplement
des changements de coordonnées holomorphes ou antiholomorphes. Une
complexification de l’algèbre de Lie correspondante conduit au produit di-
rect Vect(S1) ⊕ Vect(S1), où Vect(S1) (appelée: algèbre de Virasoro sans
charge centrale), resp. Vect(S1) ≃ Vect(S1), agissent sur la coordonnée z,
resp. z̄. Les transformations holomorphes locales sont engendrées par les

15
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champs de vecteurs ℓn := −zn+1∂z (n ∈ Z); leurs crochets de Lie s’écrivent
[ℓn, ℓm] = (n − m)ℓn+m. Alternativement, posant z = eiθ, θ ∈ T := R/2πZ,
on peut voir ℓn comme extension au plan complexe du champ de vecteurs
einθ∂θ sur le cercle unité. On a obtenu de la sorte l’algèbre de Lie des champs
de vecteurs sur le cercle, d’où la notation Vect(S1). C’est l’algèbre de Lie
du groupe des difféomorphismes C∞ du cercle préservant l’orientation, noté
Diff+(§1) ou Diff+(R/2πZ).

Comme en théorie de jauge, l’invariance – dite invariance locale – est
brisée sous l’effet d’anomalies. Celles-ci s’interprètent dans notre contexte en
remarquant que les transformations conformes locales changent la géométrie.
L’hypothèse de Belavin-Polyakov-Zamolodchikov était que ces anomalies
puissent s’obtenir simplement en remplaçant Vect(S1) par son extension
centrale vir ≃ Vect(S1) ⊕ RK, munie du crochet de Lie [ℓn, ℓm] = (n −
m)ℓn+m + 1

12n(n2 − 1)δn+m,0K. Dans une représentation irréductible de
vir, K agit comme une constante c, appelée charge centrale. La théorie
conforme des champs consiste à considérer les champs invariants sous vir

(ou: champs primaires) comme des opérateurs covariants, les corrélateurs
〈φ1(z1) . . . φn(zn)〉 (ou: fonctions à n points) étant donnés par l’évaluation
d’un produit opératoriel 〈0 | Φ1(z1) . . .Φn(zn) | 0〉 pour un certain état quan-
tique |0〉, appelé état vide. Le succès de la théorie conforme des champs
provient de sa capacité prédictive pour les modèles unitaires minimaux
[43, 46]. Ces représentations de vir sont des modules de Verma dégénérés,
obtenus seulement pour certaines valeurs discrètes de c; chaque vecteur nul
(i.e. orthogonal à tout le module) implique des contraintes sur les fonctions
à n points sous la forme d’équations différentielles, permettant en principe
de déterminer celles-ci de manière générale. Certains de ces modèles ont
été identifiés à des modèles de physique statistique connus, notamment le
modèle d’Ising à température critique, correspondant à c = 1

2 .

Si l’on considère maintenant la physique statistique hors équilibre, le
concept d’invariance locale n’y joue pour l’instant aucun rôle. En revanche,
toute une batterie de modèles physiques a été développée [50, 51, 52, 53],
mettant en évidence l’invariance de modèles dynamiques – qu’il s’agisse
d’une évolution à l’équilibre, d’une transition vers l’équilibre ou d’une évolution
irréversible, à la manière des systèmes de particules en interaction à la
Liggett [65] en présence d’états absorbants – sous des sous-groupes du groupe
de Schrödinger Sch(d). Il s’agit du groupe de Lie des symétries conservant
projectivement l’équation de Schrödinger libre (−2iM∂t − ∆r) ψ = 0, où M
est la masse, et ∆r = ∂2

r1
+. . .+∂2

rd
est le laplacien en d dimensions d’espace.

L’hypothèse sous-jacente est l’existence d’un régime d’échelle dans lequel
l’invariance sous les dilatations anisotropes non conformes (t, r) → (λ2t, λr)
se vérifie. Outre les transformations galiléennes (translations, rotations
d’espace, et déplacements à vitesse constante), ainsi que cette dilatation
anisotrope, le groupe de Schrödinger contient des transformations homo-
graphiques en temps couplées à des transformations dépendant du temps,
affines en espace.

Or il se trouve que le groupe de Schrödinger se plonge dans un groupe
de Lie de dimension infinie, dit groupe de Schrödinger-Virasoro, que nous
noterons SV . Dans toute la suite nous nous restreindrons à une seule di-
mension d’espace (d = 1). L’algèbre de Lie sv = Lie(SV ) = 〈Ln〉n∈Z ⋉

〈Ym, Mp〉m∈ 1
2
+Z,p∈Z

du groupe de Schrödinger-Virasoro en dimension (1+1)
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est un produit semi-direct Vect(S1) ⋉ h∞, où h∞ est une algèbre de Lie
nilpotente de rang 2, de dimension infinie. Le crochet de Lie s’écrit sur les
générateurs ci-dessus

[Ln, Lp] = (n − p)Ln+p (1.1)

[Ln, Ym] = (
n

2
− m)Yn+m, [Ln, Mp] = −pMn+p (1.2)

[Ym, Ym′ ] = (m − m′)Mm+m′ , [Ym, Mp] = 0, [Mn, Mp] = 0. (1.3)

Ces relations s’exponentient aisément, permettant de définir SV comme un
produit semi-direct Diff+(R/2πZ)⋉H∞, où H∞ ≃ C∞(R/2πZ)×C∞(R/2πZ)
est une variété linéaire munie de la structure de groupe de type Heisenberg
suivante:

(α2, β2) · (α1, β1) =

(
α1 + α2, β1 + β2 +

1

2
(α′

1α2 − α1α
′
2)

)
. (1.4)

Une famille de réalisations naturelles de sv (dites réalisations schrödingériennes)
comme champs de vecteurs projectifs s’obtient en extrapolant les formules
donnant les générateurs des symétries infinitésimales de l’équation de Schrödinger
libre; on obtient:

dπλ(Ln) = −tn+1∂t −
1

2
(n + 1)tnr∂r −

1

4
Mr2(n + 1)ntn−1 − λ(n + 1)tn,

dπλ(Ym+ 1
2
) = −tm+ 1

2 ∂r −M(m +
1

2
)tm− 1

2 r, dπλ(Mp) = −Mtp. (1.5)

Le paramètre λ (égal à 1/4 pour les solutions de l’équation de Schrödinger)
s’interprète comme dimension d’échelle du champ invariant. On retrouve
l’algèbre de Lie sch(1) = Lie(Sch(1)) en considérant 〈L−1, L0, L1〉⋉〈Y± 1

2
, M0〉 ⊂

sv.

En considérant des séries de Laurent en les générateurs précédents, on
obtient par complétion des champs fonctionnels Lf , Yg, Mh indexés par des
fonctions C∞ périodiques (on utilise dans ce cas des lettres calligraphiques
pour éviter toute confusion), ce qui donne les formules suivantes:

dπλ(Lf ) = −f(t)∂t −
1

2
f ′(t)r∂r −

M
4

f ′′(t)r2 − λf ′(t); (1.6)

dπλ(Yg) = −g(t)∂r −Mg′(t)r, dπλ(Mh) = −Mh(t). (1.7)

La définition géométrique de sv semble moins claire que celle de vir,
même si elle est liée à la géométrie des variétés de Newton-Cartan (cf. [29]
ou articles de C. Duval cités dans la bibliographie pour plus de détails).
Mentionnons simplement qu’une variété de Newton-Cartan est une variété
M munie (i) d’une structure galiléenne (θ, γ) – θ étant une 1-forme fermée, et
γ un 2-tenseur symétrique positif contravariant dont le noyau est engendré
par θ – et (ii) d’une connexion ∇ préservant cette structure. La géométrie
sous-jacente est celle de la mécanique newtonienne; pour la variété plate
M = R1,d−1 ≃ {(t, r) | t ∈ R, r ∈ Rd−1}, on a θ = dt et γ =

∑d−1
i=1 ∂ri ⊗ ∂ri ,

donnant par restriction à une feuille t =Cste une structure riemannienne
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sur l’espace. En élargissant l’hypothèse restrictive (ii), on obtient succes-
sivement le groupe de Schrödinger (en considérant les automorphismes pro-
jectifs de la structure galiléenne), puis le groupe de Schrödinger-Virasoro en
supposant simplement que ∇θ = µθ, ∇γ = −µγ pour une fonction quel-
conque µ. Toutes ces affirmations s’entendent pour une réalisation telle que
M = 0; le cas M 6= 0 s’obtient par extension (centrale pour le groupe de
Schrödinger).

Si le lien avec la physique statistique est encore à construire (peut-être
via une équation de Löwner stochastique dynamique, ou un champ libre
gaussien dépendant du temps dont la construction est suggérée dans [74]
– ou encore l’équation d’Euler [55]) –, en revanche, l’algèbre sv apparâıt
naturellement dans un certain nombre de contextes justifiant son étude, que
nous nous proposons de présenter maintenant:

1. Un théorème difficile de classification dû à O. Mathieu [69] montre
qu’il n’existe que 3 familles d’algèbres de Lie Z-graduées simples à
croissance polynomiale: en dimension finie, on retrouve la classifica-
tion de Dynkin des diagrammes de racines; en dimension infinie, on
a les algèbres de Kac-Moody d’une part, l’algèbre Vect(S1) ou vir de
l’autre. Il est donc naturel de considérer (pour aller plus loin dans la
théorie algébrique) les algèbres de Lie de type Vect(S1)⋉ h. Le cas où
h est un Vect(S1)-module de type module de densités (en particulier,
h commutatif) a été largement étudié par V. Ovsienko et C. Roger
[71]. Le cas sv ≃ Vect(S1) ⋉ h∞ est en quelque sorte l’étape suivante
dans cet ordre d’idées. L’étude des représentations de sv et de ses
généralisations (ainsi que de la cohomologie), menée avec C. Roger
dans [9], s’appuie tout naturellement sur les travaux antérieurs. Les
deux grandes familles de représentations [68] de Vect(S1) (représentations
de plus haut poids – ou modules de Verma – d’un côté, modules de
densités de l’autre) s’étendent à sv; l’extension de la première famille
s’avère décevante, alors que la deuxième (obtenue par coinduction
grâce à la structure de prolongement de Cartan sous-jacente) est plus
riche en structure que dans le cas de Vect(S1), et agit naturellement
comme symétries de familles d’équations physiques telles que, par ex-
emple, les opérateurs de Schrödinger ou de Dirac-Lévy Leblond. On
retrouve en particulier une extension affine de la réalisation schrödingérienne
déjà mentionnée. On peut également construire des représentations
vertex à l’aide d’opérateurs covariants sous ces représentations coin-
duites, en utilisant le formalisme de la théorie conforme des champs
[13]. La construction est encore en partie inachevée, puisque les champs
massifs introduits en §1.2.6 ont une existence conjecturale.

La représentation coadjointe apparâıt curieusement isolée dans le schéma.

2. L’étude de la cohomologie de sv à l’aide des outils développés par Fuks
[44] fait apparâıtre 3 familles de déformations de sv, dont on étudie
également les extensions centrales [9].

3. L’action par reparamétrisations de sv sur le sous-espace affine Saff
≤2 =

{−2iM∂t−∂r2 +V0(t)+V1(t)r+V2(t)r
2} d’opérateurs de Schrödinger

dépendant périodiquement du temps est l’un des points clé du chapitre
[15]. La chose est bien connue dans le cas de l’action du groupe de
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Virasoro sur l’espace des opérateurs de Hill (ou opérateurs de Sturm-
Liouville périodiques sur la droite). L’action (équivalente à l’action
coadjointe) est hamiltonienne pour la structure de Poisson de Kirillov-
Kostant-Souriau, qui est la plus simple d’une hiérarchie de structures
de Poisson compatibles associées à des systèmes intégrables tels que
l’équation de Korteweg-De Vries. La classification des orbites sous
l’action de Vir est reliée directement à la monodromie des opérateurs
de Hill, ainsi qu’au comportement des solutions.

Le même schéma appliqué à l’action de sv sur l’espace Saff
≤2 fait ap-

parâıtre 5 types d’orbites dont on donne des représentants. L’étude
est une sorte de “quantification” de travaux dûs à A. A. Kirillov; la
nouveauté réside dans l’existence de résonances entre la partie quadra-
tique et la partie linéaire du potentiel. Ces formes normales perme-
ttent de déterminer l’opérateur de monodromie (de dimension infinie
dans ce cas) des opérateurs de Schrödinger, grâce à un invariant du
mouvement [60] dû à Ermakov et Lewis, permettant de résoudre ex-
plicitement l’équation. L’idée d’associer étude des orbites et invariant
du mouvement s’avère très fructueuse. On démontre également au
passage que l’action est hamiltonienne pour une certaine structure de
Poisson sur Saff

≤2 .

Il serait a priori intéressant de généraliser cette étude à plusieurs di-
mensions d’espace ou à des systèmes de particules (autrement dit, à
des équations de Schrödinger vectorielles).

4. Le dernier point de vue tourne autour de la géométrie de Poisson. Il
s’avère que l’algèbre sv est un sous-quotient de l’algèbre de Poisson
sur le tore, ou de sa quantification naturelle, l’algèbre des symboles
pseudo-différentiels formels sur la droite. Ce point de vue peut se re-
placer dans un cadre supersymétrique; on obtient de la sorte une large
classe de supersymétrisations de l’algèbre sv du type k⋉h, où k est une
superalgèbre de contact [10]. Il permet également d’obtenir une nou-
velle structure de Poisson sur l’espace affine Saff := {−2iM∂t − ∂2

r +

V (t, r)} ⊃ Saff
≤2 des opérateurs de Schrödinger dépendant périodiquement

du temps [19], sans rapport apparent avec celle obtenue en 3. L’action
de sv sur Saff apparâıt en fait comme une action hamiltonienne, pro-
jection de l’action coadjointe de l’algèbre des courants sur l’algèbre de
Lie des symboles pseudo-différentiels, la structure de Poisson provenant
de la forme de Kirillov-Kostant-Souriau. Ces résultats proviennent de
l’invariance de l’équation de Schrödinger libre sous une algèbre de Lie
de dimension doublement infinie dont sv est une sorte de “trace”, et
suggèrent l’existence de systèmes intégrables sous-jacents, encore à
définir.

1.2 Résultats algébriques

Les résultats présentés dans cette section renvoient essentiellement aux deux
articles [9, 13].
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1.2.1 Graduations, déformations

La structure de graduation est fondamentale dans la classification d’O.
Mathieu dont il a été question plus haut. Elle est également fondamentale
pour l’étude des représentations (remarquons simplement que la graduation
est donnée par les racines dans le cas des algèbres de Lie simples de di-
mension finie). L’algèbre sv est naturellement équipée de deux graduations
linéairement indépendantes, δ1 et δ2, données sur les générateurs par

δ1(Ln) = n, δ1(Ym) = m, δ1(Mp) = p; (1.8)

δ2(Ln) = n, δ2(Ym) = m − 1

2
, δ2(Mp) = p − 1. (1.9)

Alors que δ1 est donnée par l’action adjointe de −L0, δ2 est une dérivation
extérieure. Ces graduations existent également sur sv(0), variante de sv

obtenue en faisant varier l’indice m des générateurs (Ym) dans Z au lieu de
1
2 +Z. Par ailleurs, les deux algèbres, sv et sv(0), appartiennent à la famille
d’algèbres svε, resp. svε(0), ε ∈ R définie par les mêmes crochets que sv, à
l’exception de l’action adjointe de la partie Virasoro sur la partie nilpotente:

[Ln, Lp] = (n−p)Ln+p, [Ym, Ym′ ] = (m−m′)Mm+m′ , [Ym, Mp] = 0, [Mn, Mp] = 0
(1.10)

comme auparavant, mais

[Ln, Ym] =

(
(1 + ε)n

2
− m

)
Yn+m, [Ln, Mp] = (εn − p)Mn+p. (1.11)

1.2.2 Plongement conforme

Comme démontré dans [3], l’algèbre de Schrödinger complexifiée sch(d)C =
Lie(Sch(d))C se plonge dans l’algèbre conforme conf(d + 2)C complexifiée
en (d + 2) dimensions. L’idée est naturelle puisqu’une transformation de
Fourier formelle en le paramètre de masse, f(M) 7→ f̂(ξ) = (Ff)(ξ), envoie
l’équation de Schrödinger (−2iM∂t − ∂2

r )ψ = 0 sur l’équation (−2M∂ζ∂t −
∂2

r )ψ = 0, qui est (à un changement de coordonnées complexe près) l’équation
de Dirichlet en dimension 3, elle-même invariante sous les transformations
conformes. Il suffit en fait pour cela (en dimension d = 1 en tout cas)
de remarquer que sch(1)C

1 est isomorphe à une sous-algèbre parabolique
maximale de conf(3)C, et de trouver un plongement explicite. Celui-ci, as-
sez simple, respecte le degré des champs de vecteurs lorsqu’on considère les
réalisations comme symétries schrödingériennes, resp. conformes de sch(d),
resp. conf(d + 2). Le diagramme de racines de conf(3) est de type B2,
engendré par les deux racines positives e1, e2, et l’on trouve le diagramme
suivant (cf. Fig. 1.1).

Il est naturel d’espérer prolonger ce schéma de manière naturelle en ob-
tenant une algèbre de Lie contenant 5 familles de générateurs (M, Y, L, V, W )
placées sur des diagonales successives, qui serait une extension de sch(1) con-
tenant à la fois conf(3) et sv. Le sens de la question n’est pas très clair a

1ou plus précisément sch(1)C ⊕ 〈N0〉, où N0 = −t∂t − ζ∂ζ est un deuxième générateur
de la sous-algèbre de Cartan (symétrie invisible sur l’équation de Schrödinger de départ
puisque ne préservant pas M).
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Figure 1.1: Diagramme de racines de conf(3) ⊃ sch(1).

priori. On va en fait chercher un plongement dans l’algèbre de Poisson A(S1)
des fonctions sur le tore. Formellement, A(S1) = C[q, q−1] ⊗ C[p, p−1]] (les
variables p et q étant conjuguées), avec le crochet de Lie-Poisson {F, G} =
∂F
∂p

∂G
∂q − ∂G

∂q
∂G
∂p . L’algèbre de Virasoro se plonge de manière naturelle dans

A(S1) par l’application ℓn 7→ qn+1p, vu comme limite semi-classique de
tn+1∂t.

Rappelons ici la définition des modules de densité de Vect(S1): soit
λ ∈ R, alors Fλ ≃ 〈zmdz−λ〉m∈Z est le Vect(S1)-module défini par

ℓn.(zmdz−λ) = (λn − m)zn+mdz−λ (1.12)

et s’identifie donc à l’espace des (−λ)-densités formelles. On remarque aus-
sitôt que, sous l’action adjointe de Vect(S1) ⊂ sv, 〈Ln〉n∈Z, 〈Ym〉m∈ 1

2
+Z

,

〈Mp〉p∈Z sont isomorphes respectivement à F1, F 1
2
, F0. Il est donc naturel

– plus précisément – de chercher à plonger conf(3) et sv dans Ã(S1) :=

C[q, q−1] ⊗ C[p
1
2 , p−

1
2 ]] (dite algèbre de Poisson étendue); mais c’est impos-

sible car [Y, M ] = 0 alors que [f1(q)p
1
2 , f2(q)] est en général non nul, de la

forme f3(q)p
− 1

2 . Néanmoins, notons Ã(S1)(≤− 1
2
) = 〈f(q)pκ, κ ≤ −1

2〉 et de

même Ã(S1)(≤1) = 〈f(q)pκ, κ ≤ 1〉. Alors

sv ≃ Ã(S1)(≤1)/Ã(S1)(≤− 1
2
) (1.13)

apparâıt comme sous-quotient de Ã(S1). Ce genre de construction ne se
généralise malheureusement pas lorsqu’on cherche à plonger simultanément
conf(3).

Le résultat final négatif ne doit pas faire oublier la définition poisson-
nienne (1.13) de sv, qui, elle, s’avérera très fructueuse (d’où l’intérêt du
paragraphe).

1.2.3 Représentation coadjointe

L’étude de la représentation coadjointe d’une algèbre de Lie est naturelle
lorsqu’on cherche à exhiber des structures de Poisson, et, au-delà, des systèmes
intégrables. En ce sens, la représentation coadjointe étendue de vir est à
la source de l’équation intégrable de Korteweg-De Vries, elle-même étage
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inférieur d’une énorme famille de systèmes intégrables [47]; de plus, elle
s’identifie à l’action par reparamétrisation de vir sur les opérateurs de Hill,
qui jouera un grand rôle dans la section 1.3. Malheureusement l’étude des
orbites coadjointes de sv (sans lien apparent avec des systèmes intégrables,
qu’on verrait plutôt apparâıtre en lien avec son action sur les opérateurs de
Schrödinger, cf. section 1.4) s’avère décevante. Voyons les résultats.

On identifie un élément de sv∗c à un triplet




γ0

γ1

γ2


 ∈ (C∞(S1))3 de la

façon suivante:

〈




γ0

γ1

γ2


 ,Lf0 + Yf1 + Mf2〉 =

2∑

i=0

∫

S1

(γifi)(z) dz, (1.14)

et on note

G(γ0,γ1,γ2) := {X ∈ sv | ad∗
cX.




γ0

γ1

γ2


 = 0} (1.15)

la sous-algèbre d’isotropie de (γ0, γ1, γ2) ∈ sv∗c .

La structure de produit semi-direct mélange les composantes suivant
Vect(S1) avec les composantes suivant la partie nilpotente h∞. On montre
par exemple que, si Lf0 + Yf1 + Mf2 ∈ Gγ0,γ1,γ2 , alors

cf ′′′
0 + 2f ′

0γ0 + f0γ
′
0 = −3

2
γ1f

′
1 −

1

2
γ′

1f1 + γ2f
′
2. (1.16)

Le générateur central M0 est toujours dans la sous-algèbre d’isotropie.
Si γ1 = γ2 = 0, on retrouve bien entendu l’équation de degré 3 bien connue
donnant les sous-algèbres d’isotropie dans l’étude des orbites coadjointes de
l’algèbre de Virasoro. Excluant ces cas, ainsi que des cas pathologiques, on
trouve essentiellement les résultats suivants:

1. Si γ2 ne s’annule jamais, alors

G(γ0,γ1,γ2) = {Lf0 + Yf1 + Mf2 , λ, µ, ν ∈ R} (1.17)

où:




f0 = f0(λ) = λγ−1
2

f1 = f1(λ, µ) = −λ
2γ−1

2 γ1 − µγ
− 1

2
2

f2 = f2(λ, µ, ν) = 3
2cλγ−4

2 (γ′
2)

2 − λγ−3
2 (

γ2
1
2 + cγ

′′

2 ) + λγ−2
2 γ0 − µ

2 γ
− 3

2
2 γ1 + ν

(1.18)

2. si γ2 a seulement des zéros isolés, alors Gγ0,γ1,γ2 se réduit à 〈M0〉.
3. si γ2 ≡ 0, et γ1 ne s’annule jamais, alors

Gγ0,γ1,0 = {Lf0+Yf1 , λ, µ ∈ R}⊕〈Mh, h ∈ C∞(S1)〉 ≃ R⋉(R⊕C∞(S1)),
(1.19)

où f0 = λγ
−2/3
1 et f1 = µγ

−1/3
1 + λK(γ1, γ0), K étant une expression

différentielle compliquée en γ1 et γ0.
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4. finalement, si γ2 ≡ 0 et γ1 a seulement des zéros isolés, alors Gγ0,γ1,0 =
〈Mh, h ∈ C∞(S1)〉 ≃ C∞(S1).

1.2.4 Modules de Verma

Les modules de Verma d’une algèbre de Lie graduée g = ⊕n∈Zgn telle que g0

soit commutative sont par définition les induites à g du prolongement trivial
à g+ := g0 ⊕ (⊕n≥1gn) d’un caractère de g0. Considérons sv ou son exten-
sion centrale s̃v obtenue par le prolongement trivial du cocycle de Virasoro
sur la partie Vect(S1) (cf. §1.2.7). Dans notre cas, seule la graduation δ1

donne une sous-algèbre g0 commutative; on obtient svδ1
0 = 〈L0, M0〉 ≃ R2 et

svδ1
+ = 〈Ln, Ym, Mp〉n,p≥0,m≥1/2. Soit Ch,µ = Cψ le caractère de g0 défini par:

L0ψ = hψ, M0ψ = µψ, et Vh,µ
∼= U(s̃v) ⊗U(s̃v

δ1
+ )

Ch,µ le module de Verma

correspondant. La graduation de sv induit naturellement une graduation
du module Vh,µ. Si l’on se restreint à vir, h s’identifie au poids conforme
du module de Verma ainsi construit. Sous certaines conditions algébriques
sur h, les modules de Verma de vir sont dégénérés, et le module irréductible
quotient donne la célèbre série discrète [43, 46], à laquelle il a été fait allusion
dans l’introduction. La dégénérescence de ces modules se voit en calculant
à chaque niveau les déterminants de Kac, donnés par le déterminant de la
forme bilinéaire 〈 . | . 〉 sur le sous-espace de Vh,µ de niveau n (rappelons
que 〈 . | . 〉 est l’unique forme bilinéaire sur Vh,µ telle que 〈ψ | ψ〉 = 1 et
X∗

n = X−n si X = L, Y ou M , et que le module de Verma est dégénéré si
et seulement si l’un de ces déterminants est nul). On a malheureusement le
résultat négatif suivant pour sv:

Théorème 1.1 Pour tout n, le déterminant de Kac de niveau n de Vh,µ est
donné par une puissance de µ.

Par conséquent (sauf cas triviaux, ou modules de Verma de vir complétés
trivialement à s̃v), les modules de Verma de sv sont tous non dégénérés.

1.2.5 Représentations coinduites

Après ces deux résultats négatifs, passons à l’étude beaucoup plus intéressante
de la deuxième grande famille de représentations de sv. On utilise cette fois-
ci la deuxième graduation, δ2.

Définition 1.1 (représentations coinduites) Soit dρ une représentation
de sv0 = 〈L0, Y 1

2
, M1〉 à valeurs dans un module Hρ; elle s’étend à sv+ :=

⊕i≥0svi en posant dρ(
∑

i>0 svi) = 0. Soit fsv = ⊕i≥−1svi ⊂ sv la sous-
algèbre des champs de vecteurs polynomiaux (ou formels). Le fsv-module
formel de ρ-densités est défini comme le module coinduit

H̃ρ = HomU(sv+)(U(fsv),Hρ)

= {φ : U(fsv) → Hρ lineaire |
φ(U0V ) = dρ(U0).φ(V ), U0 ∈ U(sv+), V ∈ U(fsv)}

(1.20)
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avec l’action naturelle à droite de U(fsv),

(dρ̃(U).φ)(V ) = φ(V U), U, V ∈ U(fsv). (1.21)

Cette définition très formelle s’explicite facilement à l’aide de la structure
de prolongement de Cartan de sv [30, 9]. On obtient:

Théorème 1.2 Soit f ∈ R[t], la représentation coinduite dρ̃ de fsv est
donnée par l’action des opérateurs différentiels matriciels suivants sur les
fonctions:

dρ̃(Lf ) =

(
−f(t)∂t −

1

2
f ′(t)r∂r −

1

4
f ′′(t)r2∂ζ

)
⊗ IdHρ

+ f ′(t)dρ(L0) +
1

2
f ′′(t)rdρ(Y 1

2
) +

1

4
f ′′′(t)r2dρ(M1); (1.22)

dρ̃(Yf ) =
(
−f(t)∂r − f ′(t)r∂ζ

)
⊗IdHρ+f ′(t)dρ(Y 1

2
)+f ′′(t)r dρ(M1); (1.23)

dρ̃(Mf ) = −f(t)∂ζ ⊗ IdHρ + f ′(t) dρ(M1). (1.24)

Les formules du théorème ci-dessus s’étendent immédiatement à f ∈
R[t, t−1], et donnent une représentation de sv appelée module de ρ-densités.
En restreignant à Vect(S1), on retrouve bien entendu les modules de (−λ)-
densités.

Cette famille de représentations semble omniprésente dans un contexte
physique. Sans souci d’exhaustivité, on retrouve comme cas particulier: la
réalisation schrödingérienne (pour laquelle Hρ est un caractère, trivial sur
Y 1

2
et M1); la linéarisation de l’action affine par reparamétrisation de sv

sur des espaces d’opérateurs de Schrödinger ou de Dirac-Lévy Leblond avec
potentiel dépendant périodiquement du temps; une large classe d’actions
covariantes sur des opérateurs de vertex définis en §1.2.6. En revanche, il
est facile de voir que la représentation coadjointe n’est pas de type coinduite.
On a donc construit 3 types de représentations naturelles de sv: les modules
de Verma; les représentations coinduites; et la représentation coadjointe,
pour l’instant isolée.

1.2.6 Représentations vertex

On construit en [13] des opérateurs primaires, covariants sous l’action coad-
jointe de sv, ou plus précisément, de s̃v. L’algèbre de Lie s̃v s’obtient à
partir de sv en lui adjoignant une famille de générateurs 〈Nn〉n∈Z qui se
comportent comme des 0-densités sous l’action adjointe de Vect(S1); plus
précisément, s̃v ≃ Vect(S1)⋉ h̃, où h̃ = 〈Nn〉n∈Z ⋉h, avec les crochets de Lie
[Ln, Np] = −pNn+p, [Nn, Np] = 0, [Nn, Yp] = Yn+p, [Nn, Mp] = 2Mn+p. On
généralise facilement la construction coinduite du paragraphe §1.2.5 à s̃v en
étendant une représentation dρ de (〈L0〉 ⊕ 〈N0〉) ⋉ 〈Y 1

2
, M1〉. L’invariance

sous les générateurs N apparâıt de manière naturelle dans les exemples con-
struits, et permet de contraindre plus fortement les fonctions à n points.
Nous négligerons ce point ici pour simplifier.
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Un champ ρ − sv-primaire est un opérateur Φ(t, r, ζ) ∈ C{t, t−1, r, ζ},
série de Laurent en t et série formelle en r, ζ, covariant sous la représentation
coinduite dρ̃. L’action de sv sur le champ Φ peut se réécrire en DPO
(développement en produits opératoriels, traduction de OPE, operator prod-
uct expansion) relativement à la coordonnée t; les opérateurs dρ(Y 1

2
), dρ(M1)

font apparâıtre notamment des termes en O( 1
(t1−t2)3

) et en O( 1
(t1−t2)4

) dans

le DPO de L(t1).Φ(t2, r2, ζ2). De tels champs primaires peuvent être con-
struits à partir d’un boson libre a(t) et d’un superboson libre (b̄+, b̄−). Par

définition, les champs bosoniques a(t) =
∑

n∈N
ant−n−1 et b̄± =

∑
n∈Z

b̄±n t−n− 1
2

vérifient les DPO suivants:

a(t1).a(t2) ∼
1

(t1 − t2)2
; b̄±(t1).b̄

∓(t2) ∼ ± 1

t1 − t2
. (1.25)

De manière équivalente, [an, am] = nδn+m,0 et [b̄+
n , b̄−m] = δn+m,0.

Définition 1.2 Soit

L =
1

2

{
: a2 : +

(
: b̄+∂b̄− : − : b̄−∂b̄+ :

)}
, Y = : ab̄+ :, M =

1

2
: (b̄+)2 :

(1.26)

On vérifie sans peine que les composantes des champs L, Y, M introduits
ci-dessus définissent une représentation de l’algèbre sv.

Soit maintenant

Φ
(0),0
j,k =

n∑

m=0

(
m
j

)
ζm : (b̄−)j−m(b̄+)k+m : (j, k ≥ 0). (1.27)

La forme de ce champ a été choisie en cohérence avec le DPO car-
actéristique d’un opérateur primaire,

M(t1).Φ(t2) =
1

2
: (b̄+)2 : (t1).Φ(t2) ∼

∂ζΦ(t2)

t1 − t2
+ O(

1

(t1 − t2)2
). (1.28)

L’action itérée des champs L, Y, M sur Φ
(0),0
j,k permet (cf. [13], Théorème

3.2.4) de construire un champ vectoriel Φj,k = (Φ
(0)
j,k , . . . ,Φ

⌊j/2⌋
j,k ), dit champ

polynomial, tel que Φ
(0),0
j,k = Φ

(0)
j,k(r = 0). On peut permuter librement les

variables a, b̄±, ∂b̄− dans les expressions polynomiales du type

P := : (b̄−)j(b̄+)k(∂b̄−)lam : , (1.29)

ce qui permet de faire agir sur P des opérateurs de dérivation ∂b̄± , ∂∂b̄− , ∂a.
Alors les formules de récurrence suivantes définissent le champ Φj,k:

• Φ
(µ+1)
j,k = −1

2∂2
b̄−

Φ
(µ)
j,k , µ = 1, . . . , ⌊j/2⌋;

• Φ
(µ)
j,k = exp r(a∂b̄− + ∂b̄+∂a).Φ

(µ)
j,k (r = 0).
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Le champ Φj,k est covariant sous l’action de sv coinduite à partir d’une
représentation dρ : 〈L0〉 ⋉ 〈Y 1

2
, M1〉 → L(R⌊j/2⌋+1, R⌊j/2⌋+1) définie par:

ρ(L0) = −


j + k

2
Id −

[j/2]∑

µ=0

µEµ
µ


 (1.30)

ρ(Y 1
2
) = 0 (1.31)

ρ(M1) =

[j/2]−1∑

µ=0

Eµ
µ+1 (1.32)

où Eµ
ν est la matrice élémentaire dont l’unique coefficient non nul est (Eµ

ν )µ,ν =
1.

Ces formules se généralisent lorsqu’on remplace φj,k :=: (b̄−)j(b̄+)k : par

αφj,k := : (b̄−)j(b̄+)kVα : , où Vα := expα
∫

a est l’opérateur de vertex de
poids conforme α2/2.

Cette construction est peut-être intéressante mathématiquement, mais a
priori décevante d’un point de vue physique, puisque les champs ainsi con-
struits sont polynomiaux en la variable non physique ζ. En d’autres termes,
le champ

∫
Φj,k(t, r, ζ)eiMζdζ, obtenu formellement comme transformée de

Fourier inverse de Φj,k, est une distribution de support 0 en la variable de
masse M. Dans la dernière partie de l’article [13], nous énonçons la conjec-
ture suivante:

Conjecture 1.3 Les séries ψΞ
2d :=

∑∞
j=0 ij Ξ−j−d− 3

2

j! Φ
(0)
2j+2d+1,2d+1 ou ψΞ

2d−1 :=
∑∞

j=0 ij Ξ−j− 2d−1
2 −1

j! Φ
(0)
2j+2d,2d, resp. ψ̃Ξ

2d :=
∑∞

j=0 ij Ξ−j−d− 1
2

j! Φ
(0)
2j+2d,2d+1, définies

et analytiques pour |Ξ| assez grand, s’étendent analytiquement quand Ξ → 0
en un champ scalaire ψ2d, ψ2d−1, resp. ψ̃2d, covariant sous la représentation
schrödingérienne dπd− 1

2
, resp. dπd.

La conjecture s’appuie sur le calcul des fonctions à 2 points 〈ψΞ
2dψ

Ξ
2d〉

ou 〈ψΞ
2d−1ψ

Ξ
2d−1〉, resp. 〈ψ̃Ξ

2dψ̃
Ξ
2d〉, dont on démontre facilement (cf. [13], th.

5.1) qu’elles s’écrivent comme le noyau de la chaleur t1−2de−Mr2/2t, resp.
t−2de−Mr2/2t, multiplié par une fonction qui tend vers 1 quand Ξ → 0, ainsi
que sur le calcul explicite d’une fonction à 3 points dans le cas particulier
de ψΞ

−1 (cf. th. 5.3). Ce dernier calcul est intéressant en soi puisque la
covariance sous le groupe de Schrödinger (contrairement au cas conforme)
ne suffit pas à fixer les fonctions à 3 points, cf. [50] ou [13], Théorème A.3.
La formule obtenue (avant inversion de Fourier),

〈0 |
3∏

j=1

ψΞ
−1(tj , rj , ζj) | 0〉 →Ξ→0

C


 ∏

1≤i<j≤3

(ti − tj)





 ∏

1≤i<j≤3

(2(ζi − ζj)(ti − tj) − (ri − rj)
2)



− 1

2

(1.33)

rappelle curieusement (au préfacteur en t près néanmoins) le résultat qu’on
obtiendrait si le champ ψ−1 était covariant sous le groupe conforme en 3
dimensions sur R2,1 muni de la pseudo-norme ||(t, r, ζ)||2 = 2ζt − r2.
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1.2.7 Etude cohomologique

A toute algèbre de Lie g et tout g-module M , on peut associer un complexe
de cochâınes (Cn(g, M), dn)n≥0, appelé complexe de Chevalley-Eilenberg.
Par définition, Cn(g, M) est l’espace des applications n-linéaires totalement
antisymétriques à valeurs dans M . Rappelons brièvement que: l’espace
H1(g; M) classifie les dérivations de g à valeurs dans M modulo les dérivations
intérieures; H2(g; R) classifie les extensions centrales de g; H2(g; g) classifie
les déformations infinitésimales du crochet de Lie de g. Nous déterminons
certains de ces espaces en utilisant la suite spectrale de Hochschild-Serre
associée à la suite exacte 0 → h∞ → Vect(S1) ⋉ h∞ → Vect(S1) → 0, ainsi
que les résultats de Fuks [44] et Ovsienko-Roger [71] donnant par exemple
H i(Vect(S1), Vect(S1)) ou H i(Vect(S1),Fλ). Les démonstrations sont tech-
niques. Nous ne donnons qu’un aperçu des résultats, sans démonstration.
Dans le théorème suivant, g = sv ou sv(0) indifféremment.

Théorème 1.3 1. (dérivations extérieures) H1(g, g) ≃ R3 est engendré
par 3 cocycles, c1 : Ln → Mn, Ym → 0, Mp → 0; c2 : Ln → nMn, Ym →
0, Mp → 0; et c3 : Ln → 0, Ym → Ym, Mp → 2Mp, qui s’identifie à la
graduation 2(δ1 − δ2).

2. (déformations) H2(g, g) ≃ R3 est engendré par 3 cocycles (les com-
posantes manquantes sont implicitement supposées nulles):

c1 : (Ln, Ym) → −n

2
Yn+m, (Ln, Mm) → −nMn+m;

c2 : (Ln, Ym) → Yn+m, (Ln, Mm) → 2Mn+m;

c3 : (Ln, Lm) → (m − n)Mn+m (1.34)

Ces trois cocycles engendrent trois familles de déformations véritables
de sv. Les cocycles λc1(λ ∈ R) donnent naissance à la famille de
déformations svλ ou svλ(0) décrite en §1.2.1. Les cocycles λc2 (λ ∈
R/Z) permettent d’interpoler entre les algèbres sv et sv(0).

3. (extensions centrales)

Pour λ 6= −3,−1, 1, H2(svλ(0), R) ≃ R est engendré par le cocycle de
Virasoro (de manière explicite, le crochet de Lie des générateurs de
s̃vλ(0) ≃ svλ(0)⊕RK sont égaux à ceux de svλ(0), à l’exception de la
relation [Ln, Lm] = (n − m)Ln+m + δn+m,0n(n2 − 1)K).

Pour λ = −3,−1, H2(svλ(0), R) ≃ R2 est engendré par le cocycle
de Virasoro et par un cocycle indépendant de la forme (en n’écrivant
que les composantes non nulles) c(Ln, Ym) = δ0

n+m pour λ = −3, ou
c(Ln, Ym) = n2δ0

n+m pour λ = −1.

Pour λ = 1, H2(sv1(0), R) ≃ R3 est engendré par le cocycle de Vira-
soro et par deux cocycles indépendants, c1 et c2, définis par (les autres
composantes s’annulant encore une fois)

c1(Ln, Ym) = n3δ0
n+m;

c2(Ln, Mm) = c2(Yn, Ym) = n3δ0
n+m.
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En fait ce résultat découle de la structure très particulière de sv1(0)
qui est isomorphe à une tensorisation de l’algèbre de Virasoro par une
algèbre associative et commutative, sv1(0) ≃ Vect(S1)⊗R[η]/(η3 = 0).

Enfin, le calcul de la cohomologie de svλ fait apparâıtre les résultats
suivants:

Pour λ 6= 1,−3, H2(svλ, R) est engendré par le cocycle de Virasoro.

Pour λ = 1 ou −3, H2(svλ, R) est engendré par le cocycle de Virasoro
et par un cocycle indépendent, c1, de la forme (en n’écrivant que les
composantes non nulles) c1(Yp, Yq) = p3δ0

p+q, c1(Lp, Mq) = p3δ0
p+q

pour λ = 1, et c1(Yp, Yq) =
δ0
p+q

p (cocyle non local) pour λ = −3.

1.3 Formes normales et monodromie des oscilla-

teurs harmoniques périodiques en temps

Présentons maintenant l’application la plus intéressante (à l’heure actuelle)
de sv à l’étude d’un problème physique: en l’occurrence, la classification des
opérateurs de Schrödinger dépendant du temps, obtenue dans notre article
[15].

Soit t 7→ H(t) une famille continue d’opérateurs autoadjoints tels que
λ1(t) ∈ R soit pour tout t une valeur propre isolée. On note φ1(t) un vecteur
propre correspondant de l’hamiltonien instantané H(t). Une généralisation
du théorème de Born-Fock (1928) permet de construire une suite (ψn(t))n≥1

de solutions approchées de l’équation avec condition initiale

2iε∂tψ(t) = H(t)ψ(t), ψ(t0) = φ1(t0) (1.35)

telle que (sans trop préciser pour quelle norme) ψ − ψn = O(εn) quand
ε → 0. On construit pour cela une suite d’opérateurs (H(0) = H, H(1), . . . , H(n), . . .)
telle que ψn(t) soit vecteur propre de H(n)(t). L’opérateur H(n) est appelé
invariant d’ordre n en raison de l’identité [H(n), 2iε∂t − H] = O(εn+1). Si
l’on considère t come un temps macroscopique, proportionnel au temps mi-
croscopique s = t/ε caractéristique des phénomènes physiques sous-jacents,
l’équation (1.35) se réécrit: 2i∂sψ

ε(s) = H(εs)ψε(s). L’hamiltonien s 7→
H(εs) varie très lentement; l’approximation dite adiabatique consiste sim-
plement à voir les fonctions propres de l’hamiltonien instantané comme
solutions approchées de (1.35). L’approche permet par exemple d’étudier
l’évolution d’un système dans un champ magnétique en rotation lente.

Dans certains cas très spéciaux, on sait construire un invariant exact,
i.e. un opérateur I tel que [I, 2i∂t − H] = 0, ce qui rend l’approche adia-
batique inutile (on prendra dans la suite ε = 1). L’existence d’un invariant
exact de spectre discret permet alors (cf. [60]) de résoudre plus ou moins
explicitement l’équation (1.35). En effet (si l’on suppose pour simplifier
que les valeurs propres (λn(t))n≥1 de I sont sans multiplicité) le spectre de
I est alors indépendant du temps, et une base de solutions de l’équation
(1.35) s’obtient en multipliant les fonctions propres de l’invariant (et non
de l’hamiltonien instantané) par une phase dépendant du temps. Nous don-
nons ci-dessous l’exemple des oscillateurs harmoniques dépendant du temps.
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Notons qu’une autre méthode de résolution utilisant une écriture explicite
de ces opérateurs à l’aide d’opérateurs de création et d’annihilation a été
trouvée indépendamment par G. Hagedorn [48].

Proposition 1.4 (invariant d’Ermakov-Lewis) [60]

Soit H(t) = −∂2
x + V2(t)x

2 un hamiltonien quadratique quelconque, et√
ξ une solution positive de l’équation de Pinney-Milne

d2

dt2
(
√

ξ) + V2 .
√

ξ − (
√

ξ)−3 = 0. (1.36)

Alors:

1.

EL(ξ) :=
1

2ξ

[
x2 + (iξ∂x +

1

2
ξ̇x)2

]

est un invariant exact, conjugué pour tout t fixé à l’oscillateur har-
monique.

2. Soient hn(t) les fonctions propres de EL(ξ)(t). Si ψ(t0) =
∑

n≥0 cnhn(t0),
alors

ψ(t) =
∑

n≥0

cn exp

(
−i(n + 1/2)

∫ t

0

du

ξ(u)

)
hn(t) (1.37)

est solution de l’équation de Schrödinger (−2i∂t + H(t))ψ = 0 avec
condition initiale ψ(t0).

La classe d’opérateurs de Schrödinger qui nous intéresse est la suivante.

Définition 1.5 Soit Saff
≤2 := {−2i∂t − ∂2

x + V2(t)x
2 + V1(t)x + V0(t)}, avec

V0, V1, V2 ∈ C∞(R/2πZ), l’espace des opérateurs de Schrödinger avec poten-
tiel 2π-périodique en temps et au plus quadratique en espace.

L’espace affine Saff
≤2 est un sous-espace de l’espace affine

Saff := {−2i∂t − ∂2
x + V (t, x)} (1.38)

des opérateurs de Schrödinger en (1+1) dimensions dépendant périodiquement
du temps auquel nous reviendrons en §1.4.

On notera de manière générale V (t) = V2(t)x
2 + V1(t)x + V0(t), resp.

H(t) = −∂2
x + V (t) le potentiel, resp. l’hamiltonien associé à un opérateur

de Schrödinger dans Saff
≤2 .

La question principale que l’on se pose est la suivante: le potentiel étant
périodique, il existe (par la théorie de Floquet) un opérateur borné M :
L2(R) → L2(R) dit opérateur de monodromie tel que ψ(t + 2π) = Mψ(t)
pour tout t et pour toute solution de l’équation de Schrödinger (−2i∂t +
H(t))ψ = 0. Comment déterminer M en fonction de V ?
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Bien que la proposition ci-dessus permette de résoudre de manière as-
sez explicite l’équation de Schrödinger, la solution (1.37) ne donne la mon-
odromie que si ξ (solution de (1.36)) peut être choisie à la fois périodique
et positive. Or les deux conditions sont incompatibles sauf dans le cas ellip-
tique (cf. infra), ce qui laisse de côté beaucoup de cas intéressants. Si l’on
abandonne la condition de positivité (afin d’avoir la périodicité), alors EL(ξ)
n’est plus conjugué à l’oscillateur harmonique, mais à l’un des 3 opérateurs
modèles autoadjoints suivants (auxquels nous adjoignons l’oscillateur har-
monique pour être complets).

Définition 1.6 (opérateurs modèles) Ils sont de 4 types:

1. Oscillateur harmonique: ∆+ ≡ 1
2(−∂2

x + x2) = a∗a + 1
2 = 1

2(−∂x +
x)(∂x + x) + 1

2 , de spectre discret Spec(∆+) = 1/2, 3/2, 5/2, . . .

2. Répulseur harmonique: ∆− ≡ 1
2(−∂2

x −x2), de spectre Spec(∆−) = R.
Les fonctions propres généralisées sont des fonctions hypergéométriques
confluentes.

3. Laplacien : ∆0 ≡ −1
2∂2

x de spectre Spec(∆0) = R+. Les fonctions

propres généralisées sont les exponentielles e±i
√

kx.

4. Opérateur d’Airy : −1
2(∂2

x − x), de spectre R. Les fonctions pro-
pres généralisées sont les translatées de la fonction d’Airy Ai(x) =
1
π

∫ ∞
0 cos( t3

3 + xt) dt.

Ces résultats d’analyse sur les opérateurs de Schrödinger, très classiques,
sont à replacer dans le cadre général décrit dans [34]; le 2e cas utilise (par
exemple) la représentation métaplectique, qui permet de conjuguer ∆− avec
l’opérateur d’Euler.

Le groupe de Schrödinger-Virasoro agit de manière naturelle sur l’espace
Saff
≤2 (cf. paragraphe suivant), définissant des orbites qu’on sait classifier,

et permettant de définir des formes normales explicites (cf. §1.3.3). En re-
liant les données orbitales obtenues par des outils algébriques à l’opérateur
d’évolution obtenu en adaptant la méthode d’Ermakov-Lewis aux opérateurs
modèles ci-dessus, on détermine la monodromie de manière explicite (cf.
§1.3.5). Notons que G. Hagedorn, M. Loss et J. Slawny [49] ont obtenu
l’opérateur de monodromie à une phase près par des méthodes semi-classiques,
en utilisant l’opérateur d’évolution classique associé. Notre résultat est plus
précis puisqu’il donne la phase, mais il est surtout intéressant, à notre avis,
parce qu’il relie de manière harmonieuse et originale des notions d’algèbre,
de géométrie et d’analyse.

1.3.1 Covariance générale sous le goupe de Schrödinger-Virasoro

La proposition suivante explique pourquoi le groupe de Schrödinger-Virasoro
intervient naturellement dans l’étude des opérateurs de Schrödinger.

Théorème 1.4 (cf. [70])
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Soit D := −2i∂t+H(t) = −2i∂t−∂2
x+V (t, x) un opérateur de Schrödinger.

On suppose qu’un groupe à un paramètre de transformations du type

ψ(t, x) 7→ ψ̃(t, x) = exp
(
ifg(g

−1(t, x))
)
ψ(g−1(t, x))

préserve l’espace des solutions de D.

Alors le générateur infinitésimal appartient à dπ1/4(sv).

Le groupe d’invariance d’un opérateur de Schrödinger quelconque ap-
parâıt ainsi comme une sous-algèbre de l’algèbre de Schrödinger-Virasoro,
dans sa réalisation schrödingérienne.

Lemme 1.7 1. L’espace affine

Saff := {D = −2i∂t − ∂2
x + V (t, x)}

est préservé par σµ(SV ), où (µ étant un paramètre quelconque)

σµ(g).D = πµ+1(g)Dπµ(g)−1.

On obtient l’action

σµ(φ; 0).D = −2i∂t−∂2
x+φ′(t)V (φ(t), x

√
φ′(t))+

1

2
Θ(φ)(θ)x2+2i(µ−1

4
)
φ′′(t)
φ′(t)

,

(1.39)

σµ(1; (α, β)).D = −2i∂t−∂2
x+V (t, x−α(t))−2xα′′(t)−(2β′(t)−α(t)α′′(t))

(1.40)

où Θ(φ) = φ′′′

φ′ − 3
2

(
φ′′

φ′

)2
est la dérivée schwarzienne de φ.

Le sous-espace affine

Saff
≤2 := {D = −2i∂t − ∂2

x + V2(t)x
2 + V1(t)x + V0(t)}

des opérateurs de Schrödinger au plus quadratiques en espace est également
stable sous l’action de SV .

2. Le sous-espace

Saff
=2 := {D = −2i∂t − ∂2

x + V2(t)x
2} ⊂ Saff

≤2

est préservé par σ1/4(Diff+(R/2πZ)). La représentation restreinte est
équivalente à la réalisation usuelle du groupe de Virasoro sur l’espace
des opérateurs de Hill.

La dernière remarque, fondamentale, nécessite une explication assez longue.

1.3.2 Un détour par la dimension finie: les opérateurs de

Hill

Un opérateur de Hill est par définition un opérateur sur la droite de la forme
∂2

t + u(t), où u(t) ∈ C∞(R/2πZ).
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Proposition 1.8 1. Soit πλ(φ) : ψ 7→ (φ′)λψ ◦ φ. Alors σ(φ).(∂2
t +

u) := π3/2(φ) ◦ (∂2
t + u) ◦ π−1/2(φ) s’écrit ∂2

t + (φ′)2u ◦ φ + 1
2 t(φ).

La représentation σ est équivalente à la représentation coadjointe de
vir sur vir∗1

2

, où vir∗1
2

⊂ vir∗ est l’hyperplan affine de coordonnée 1
2 le

long du générateur central.

2. Soit Stabu := {φ ∈ Diff+(R/2πZ) | σ(φ)(∂2
t + u) = ∂2

t + u} le sta-
bilisateur (ou: sous-groupe d’isotropie) de l’opérateur de Hill ∂2

t + u
sous l’action du groupe de Virasoro. Alors son algèbre de Lie, dite
sous-algèbre d’isotropie

Lie(Stabu) = {ξ ∈ Vect(S1) | 1

2
ξ′′′ + 2uξ′ + u′ξ = 0} (1.41)

est de dimension 1 ou 3.

3. Soit Iu(ξ) := ξξ′′ − 1
2ξ′2 + 2uξ2. Alors Iu(ξ) est une constante du

mouvement si ξ ∈ Lie(Stabu).

4. Considérons l’équation de Hill (∂2
t + u)ψ(t) = 0. Si (ψ1, ψ2) est une

base de solutions de cette équation, alors ξ := a11ψ
2
1+2a12ψ1ψ2+a22ψ

2
2

satisfait l’équation
1

2
ξ′′′ + 2uξ′ + u′ξ = 0.

Si ξ est périodique, alors ξ ∈ Lie(Stab(u)).

L’opérateur de monodromie est dans ce cas une matrice M dans SL(2, R)
définie à conjugaison près. On distingue |Tr(M)| < 2 (cas elliptique),
|Tr(M)| > 2 (cas hyperbolique) et |Tr(M)| = 2 (cas unipotent). La ma-
trice M est alors conjuguée respectivement à une rotation, une matrice di-

agonale

(
a 0
0 a−1

)
ou une matrice triangulaire supérieure

(
1 a
0 1

)
. On

peut relever M dans le revêtement universel S̃L(2, R) en suivant l’évolution
d’un couple de solutions indépendantes le long d’une période. Un principe
géométrique général implique que les classes de conjugaison de la mon-
odromie relevée classifient les orbites. Ce principe s’explicite de manière
agréable en utilisant le dernier point de la Proposition 1.8. Dans le cas ellip-
tique par exemple, choisissant une base de solutions (ψ1, ψ2) dans laquelle M

est une rotation, il est naturel d’écrire

(
ψ1(t)
ψ2(t)

)
=

√
ξ(t)

(
cos ω(t)
sinω(t)

)
. La

fonction ξ est alors périodique, et donc ξ ∈ Lie(Stabu); la fonction d’angle
t 7→ ω(t) est monotone (on trouve: ω′(t) = W

ξ(t) , où W est le Wronskien),

et donc M =

(
cos α − sinα
sinα cos α

)
où α =

∫ 2π
0

dt
ξ(t) . Dans le cas elliptique

comme dans le cas hyperbolique, les valeurs propres de la matrice de mon-
odromie s’écrivent exp±i

∫ 2π
0

dt
ξ(t) – où

∫
dt

ξ(t) est une intégrale régularisée
par déformation de contour complexe si ξ s’annule –, pour un stabilisateur
normalisé de sorte que Iu(ξ) = 2 (cf. [15], Lemme 2.3.5). La condition de
normalisation implique que ξ est imaginaire pur dans le cas hyperbolique,
d’où des valeurs propres réelles.

Proposition 1.9 (classification des invariants coadjoints et des orbites)
(cf. A. Kirillov [59])
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Soit ξ ∈ Lie(Stabu) pour un certain opérateur de Hill ∂2
t + u. Alors la

classe de conjugaison de ξ appartient à l’un des trois types suivants:

1. Cas I: ξ est conjugué par un difféomorphisme φ à une constante. Alors
φ′−1.ξ ◦ φ ∈ Lie(Stab∂2

t +α). Le sous-groupe d’isotropie Stab∂2+α est:

(i) ou isomorphe à S̃L
(n)

(2, R), relèvement à n feuillets de SL(2, R)

(si α = n2

4 , n ∈ N∗);

(ii) ou isomorphe au sous-groupe de rotation engendré par ∂t.

2. Cas II: ξ est conjugué au champ de vecteurs a sinnt(1 + α sin nt)∂t,
0 ≤ α < 1. La matrice de monodromie est hyperbolique. L’invariant
Iu(ξ) est < 0.

3. Case III: ξ est conjugué à ±(1 + sinnt)(1 + α sinnt)∂t, 0 ≤ α < 1. La
matrice de monodromie est unipotente. L’invariant Iu(ξ) est nul.

Le lien avec les invariants d’Ermakov-Lewis est donné par le lemme
élémentaire suivant:

Lemme 1.10 1. Soit ξ une solution (périodique ou pas) de l’équation
d’isotropie 1

2ξ′′′ + 2uξ′ + u′ξ = 0. Alors ζ :=
√

ξ est une solution de
l’équation de Pinney-Milne

ζ ′′ + u(t)ζ − Iu(ξ)/2

ζ3
= 0.

En particulier, si ξ = ψ2
1 + ψ2

2, (ψ1, ψ2) étant une base de solutions de
l’équation de Hill (∂2

t + u)ψ(t) = 0 de Wronskien W , cf. Proposition
1.8, et ζ :=

√
ξ, alors

ζ ′′ + u(t)ζ − W 2

ζ3
= 0.

2. Soit ξ ∈ Stabu et φ ∈ Diff+(R/2πZ). Alors ξ̃ := φ′−1ξ ◦ φ stabilise

∂2
t + ũ := φ∗(∂2

t + u) et ζ̃ :=

√
ξ̃ vérifie l’équation de Pinney-Milne

transformée

ζ̃ ′′ + ũζ̃ − W 2

ζ̃3
= 0.

Les invariants d’Ermakov-Lewis des oscillateurs harmoniques dépendant
du temps sont donc en lien étroit avec les données orbitales, et se transfor-
ment de manière covariante sous l’action du groupe de Virasoro.

Cette remarque fondamentale pour la suite se généralise à l’espace Saff
≤2

tout entier. Rappelons que la représentation restreinte de Diff+(R/2πZ) ⊂
SV sur Saff

=2 est équivalente à la représentation usuelle du groupe de Virasoro
sur l’espace des opérateurs de Hill, l’identification se faisant tout simplement
en remplaçant le potentiel u de l’opérateur de Hill par le coefficient V2 de la
partie quadratique de l’opérateur de Schrödinger. On démontre en fait qu’un
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opérateur de Schrödinger D = −2i∂t − ∂2
x + V2(t)x

2 + V1(t)x + V0(t) ∈ Saff
≤2

générique possède une sous-algèbre d’isotropie de dimension 2, engendrée
par M0 et un invariant de la forme Lξ + Yδ1 + Mδ2 qu’on peut fixer –à
l’addition près de λM0, λ ∈ R, puisque M0 agit trivialement – en demandant
que IV2(ξ) = 2. L’opérateur suivant

EL(D) :=
1

2

[
1

ξ
(1 +

1

4
(ξ′)2x2 − ξ∂2

x +
i

2
ξ′(x∂x + ∂xx)

+
(
−2δ1(−i∂x) + (V1ξ + 2δ′1)x

)
+ 2(δ2 +

1

2
V0ξ)

]
(1.42)

est alors un invariant (cf. [15], Théorème 4.4).

On peut définir une application I : D 7→ (ξ, δ1, δ2) qui à D générique
associe un invariant. L’application I est essentiellement injective (plus
précisément, elle est injective sur les opérateurs de type II; en revanche,
si D = −2i∂t − ∂2

x +αx2 + γ, alors I(D) = I(τaD), où τa est une translation

spatiale quelconque). La représentation σ1/4 de SV sur Saff
≤2 , vue au travers

de l’action sur l’invariant associé, devient simplement l’action adjointe, dont
on démontre qu’elle est hamiltonienne pour la structure de Poisson suivante:

Théorème 1.5 (cf. [15], th. 4.7)

Soit Ω ≃ C∞(R/2πZ, R4) la variété linéaire des fonctions C∞ vecto-
rielles 2π-périodiques X(τ) := (p, q, E, t)(τ), τ ∈ R/2πZ, avec structure de
Poisson singulière définie par:

{p(τ), q(τ ′)} = δ(τ − τ ′), {E(τ), t(τ ′)} = δ(τ − τ ′). (1.43)

Si (ξ, δ1, δ2) ∈ sv, on définit Φ := Φ(ξ, δ1, δ2) comme la fonctionnelle suiv-
ante sur Ω,

〈Φ, X〉 =

∮ {
ξ(t(τ))E(τ) +

1

2
ξ′(t(τ))p(τ)q(τ)

+δ1(t(τ))p(τ) − δ′1(t(τ))q(τ) + δ2(t(τ))
}

dτ. (1.44)

Alors l’action sur Φ(ξ, δ1, δ2) du champ de vecteurs hamiltonien associé à la
fonction

H(f, g, h) := −(f(t)E+
1

2
f ′(t)pq+

1

4
f ′′(t)q2)−(g(t)p+g′(t)q)−h(t) (1.45)

cöıncide avec l’action adjointe de Lf + Yg + Mh ∈ sv.

1.3.3 Orbites de Saff
≤2 sous SV

En utilisant la classification de Kirillov (cf. Proposition 1.9) et en con-
sidérant l’action assez simple de la partie nilpotente h∞ ⊂ sv, il vient (cf.
[15], Théorème 2.4.2):

Théorème 1.6 (classification des orbites par le stabilisateur) Si D ∈
Saff
≤2 , on note GD ⊂ SV le stabilisateur de D dans le groupe de Schrödinger-

Virasoro.

Il existe 5 classes différentes d’orbites:
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(i) : Hill type I; forme normale : Dα,γ := −2i∂t − ∂2
x + αx2 + γ (potentiel

constant). Le sous-groupe d’isotropie est un sous-groupe d’un revêtement
du groupe de Schrödinger, génériquement commutatif, de dimension 2. Si

α = n2/4, alors GD ≃ S̃L
(n)

(2, R) ⋉ H1 est isomorphe à un revêtement à n
feuillets du groupe de Schrödinger.

(i)bis : forme normale : −2i∂t − ∂2
x + n2x2 + C cos(nt − σ/2)x + γ (cas

résonant). Le sous-groupe d’isotropie est commutatif, de dimension 3.

(ii) : Hill type II; forme normale :

−2i∂t − ∂2
x +

n2

4

[
1 + 6α sinnt + 4α2 sin2 nt

(1 + α sin nt)2

]
x2 + γ, 0 ≤ α < 1

Le sous-groupe d’isotropie est commutatif, de dimension 2.

(iii) : Hill type III; forme normale :

−2i∂t − ∂2
x + vn,αx2 + γ, 0 ≤ α < 1

vn,α =
n2

4

[
(α − 1)2 + 2α(3 − α) sin nt + 4α2 sin2 nt

(1 + α sin nt)2

]

Le sous-groupe d’isotropie est commutatif, de dimension 3.

(iii)bis :

−2i∂t − ∂2
x + vn,αx2 + C(1 + α sin nt)

1
2 cos(

π

4
− n

t

2
)x + γ

(cas résonant). Le sous-groupe d’isotropie est commutatif, de dimension 2.

Remarque: les cas résonants (i)bis et (iii)bis sont tous les deux ’unipo-
tents’ (l’invariant I est nul).

On a trouvé ainsi essentiellement tous les sous-groupes de Lie du groupe
de Schrödinger, ainsi que ses revêtements à n feuillets.

1.3.4 Solution et problème du problème classique associé

Il n’est pas inutile de regarder le problème classique associé à l’opérateur
de Schrödinger −2i∂t − ∂2

x + V2(t)x
2. L’hamitonien classique H = 1

2(p2 +
V2(t)x

2) sur l’espace des phases correspond à l’équation du mouvement
x′′(t)+V2(t)x(t) = 0: on retrouve l’équation de Hill. L’invariant d’Ermakov-
Lewis a une limite classique,

Ecl(ξ)(x) :=
1

2

[
x2

ξ
+ ξ(x′ − 1

2

ξ′

ξ
x)

]2

, (1.46)

qui est un invariant du mouvement. Cet invariant – de manière très étrange
d’ailleurs – est apparemment inconnu dans ce contexte; il permet de résoudre
facilement l’équation de Hill et de bien comprendre la monodromie.

On normalise le stabilisateur ξ de sorte que IV2(ξ) = 2 (cas I, II); ξ est
réel / purement imaginaire pour une monodromie elliptique (type I,α > 0) /
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hyperbolique (type I, α < 0; type II). Par convention, ξ est choisi purement
imaginaire dans le cas où IV2(ξ) = 0 (unipotent type III).

Soit

(I) T :=

∫ 2π

0

du

ξ(u)
∈ R ou iR

(II, III) T :=

∫

Γ

du

ξ(u)
∈ iR

où Γ est un contour complexe évitant les zéros, soit alternativement par
au-dessus et par en-dessous (II) / soit par au-dessus (III).

Lemme 1.11 (solution et monodromie du problème classique) 1.
(Cas elliptique, type I, α > 0):

x1(t) =
√

ξ(t) cos

∫ t

0

du

ξ(u)
, x2(t) =

√
ξ(t) sin

∫ t

0

du

ξ(u)
.

La monodromie est elliptique, et les valeurs propres exp±iT , T =∫ 2π
0

du
ξ(u)), de module 1.

2. (Cas hyperbolique, type I, α < 0 ou type II): la monodromie est hyper-
bolique, de valeurs propres réelles exp±iT .

3. (Cas unipotent, type I, α = 0 ou type III):

x1(t) =
√

ξ(t), x2(t) =
√

ξ(t)

∫ t

0

du

ξ(u)
.

La monodromie est unipotente.

1.3.5 Solution et monodromie du problème quantique

Nous revenons maintenant au problème quantique initial. Le schéma est
le suivant. On choisit ξ comme dans le paragraphe précédent. On sait
conjuguer explicitement l’opérateur EL(ξ) à l’un des 4 opérateurs modèles,
ce qui permet d’obtenir un système orthonormal complet de fonctions pro-
pres éventuellement généralisées (ψk)k∈Σ, où Σ est le spectre de EL(ξ). En
multipliant les fonctions ψk(t, x) par une phase convenablement choisie, on
démontre qu’on obtient une solution de l’équation de Schrödinger (dans le
cas où le spectre est continu, aucun théorème ne permet a priori de dire
qu’une telle construction aboutit, contrairement au cas évoqué au début
de la section 1.3, cf. aussi Proposition 1.4). Enfin, la phase détermine
la monodromie. Les calculs dans les cas résonants (i)bis, (iii)bis sont ef-
fectués en utilisant directement les formes normales trouvées. On trouve
le résultat suivant pour la monodromie. Les fonctions hn, resp. ψk,±,
resp. (hk

pair, h
k
impair), resp. ψk, sont chaque fois des fonctions propres

(généralisées) de l’invariant d’Ermakov-Lewis. Les notations sont celles du
Théorème 1.6.

Théorème 1.7 (monodromie) 1. (Cas elliptique, type (i) avec α >
0): T est réel et l’opérateur modèle est l’oscillateur harmonique.
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Si ψ(0, x) =
∑

n≥0 cnhn(0, x), alors

ψ(2π, x) =
∑

n≥0

cne−i(n+ 1
2
)T−iπγhn(0, x). (1.47)

L’opérateur de monodromie M est donc conjugué à l’opérateur de mul-
tiplication par (e−i(n+ 1

2
)T−iπγ)n≥0 dans ℓ2(N).

2. (Cas elliptique résonant (i)bis): T est purement imaginaire et l’opérateur
modèle est le laplacien.

Si ψ(0, x) =
∫

R+
c̄+(k)ψk,+(0, x) dk +

∫
R+

c̄−(k)ψk,−(0, x) dk, alors

ψ(2π, x) =

∫

R+

c̄+(k)ek′T−iπγ′
ψk,+(0, x) dk+

∫

R+

c̄−(k)ek′T−iπγ′
ψk,+(0, x) dk

(1.48)

avec k′ = k + 3
(

C
16n

)2
, γ′ = γ+Cste.

3. (Cas hyperbolique, type (i) α < 0 ou type (ii)): T est purement imag-
inaire et l’opérateur modèle est le répulseur harmonique.

Si ψ(0, x) =
∫

R
c̄+(k)hk

pair(0, x) dk +
∫

R
c̄−(k)hk

impair(0, x) dk alors

ψ(2π, x) =

∫

R

c̄+(k)ekT−iπγhk
pair(0, x) dk+

∫

R

c̄−(k)ekT−iπγhk
impair(0, x) dk.

(1.49)

4. (Cas unipotent, type (i) α = 0 ou type (iii)): T est purement imagi-
naire et l’opérateur modèle est le laplacien.

Si ψ(0, x) =
∫

R+
c̄+(k)ψk,+(0, x) dk +

∫
R+

c̄−(k)ψk,−(0, x) dk, alors

ψ(2π, x) =

∫

R+

c̄+(k)ekT−iπγψk,+(0, x) dk+

∫

R+

c̄−(k)ekT−iπγψk,−(0, x) dk.

(1.50)

5. (Cas unipotent résonant (iii)bis): T est purement imaginaire et l’opérateur
modèle est l’opérateur d’Airy.

Si ψ(0, x) =
∫

R
c̄kψk(0, x) dk alors

ψ(2π, x) =

∫

R

c̄ke
kT−iπγ′

ψk(0, x) dk

avec γ′ = γ+Cste.

Les constantes en 2. et 5. sont données par des intégrales explicites.

1.4 Structures poissonniennes et supersymétrisations

Nous présentons dans cette section les résultats contenus dans les articles
[10, 19] et dans le compte-rendu de conférence [11].

Nous revenons désormais à la vision de sv comme sous-quotient de
l’algèbre de Poisson étendue Ã(S1) introduite en §1.2.2. Ce point se vue
se supersymétrise de manière naturelle (cf. [10]). Nous ne présenterons
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que très partiellement et très brièvement les résultats de cet article assez
technique et difficile à résumer. Au lieu de l’algèbre Ã(S1), on considère
la super-algèbre de Poisson étendue P̃(2|N) sur le super-tore définie comme
l’algèbre associative des superfonctions

f(p, q; θ) := f(p, q; θ1, . . . , θN ) =
∑

i∈ 1
2

Z

∑

j∈Z

N∑

k=1

∑

i1<...<ik

ci,j,i1,...,ikpiqjθi1 . . . θik ,

(1.51)
le crochet de Poisson étant défini par

{f, g} :=
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
− (−1)δ(f)

N∑

i=1

∂θif∂θig (1.52)

avec δ(f(p, q)θi1 . . . θik) := k.

On a plusieurs graduations sur cet espace, dont δ et gra : P̃(2|N) → 1
2Z

définie par
gra(qnpmθi1 . . . θik) := m + k/2. (1.53)

On note P̃(2|N)
≤κ , κ ∈ 1

2Z le sous-espace vectoriel de P̃(2|N) engendré par les
éléments homogènes de graduation ≤ κ, relativement à la deuxième grad-
uation gra. On obtient alors l’algèbre de Schrödinger-Neveu-Schwarz de

niveau N , sns(N), comme quotient sns(N) = P̃(2|N)
≤1 /P̃(2|N)

≤−1/2. Pour N = 0,

on retrouve sv ≃ Vect(S1)⋉h∞. De manière générale, sns(N) est un produit
semi-direct g(N)⋉h(N), où g(N) est la superalgèbre des champs de vecteurs de
supercontact sur le supercercle S(1|N), i.e. préservant le noyau de la 1-forme
dq +

∑N
i=1 θidθi. En particulier, g(1) est isomorphe à l’algèbre de Neveu-

Schwarz de la théorie superconforme des champs. Lorsque N = 2, sns(2)

contient osp(2|2) ⋉ sh(2|2) (produit semi-direct de l’algèbre orthosymplec-
tique par une superalgèbre de Heisenberg) dont une certaine réalisation laisse
invariante l’équation de super-Schrödinger obtenue formellement (comme
l’équation de Schrödinger libre à partir de l’équation de Dirichlet en dimen-
sion 3, cf. §1.2.2) par transformation de Fourier à partir d’un modèle su-
persymétrique sur R3|2 [42], appelé: modèle (3|2)-supersymétrique. Comme
dans le cas de sch et sv, la réalisation de osp(2|2)⋉sh(2|2) comme symétries
d’une équation physique s’étend facilement en une réalisation de l’algèbre
de dimension infinie sns(2).

Revenons maintenant à sv. On sait que l’équation de Schrödinger li-
bre n’est invariante que sous la sous-algèbre de dimension finie sch. Il y
a néanmoins un moyen [11] de passer outre, qui permet (de manière très
curieuse) de voir sv dans sa réalisation schrödingérienne comme la partie
différentielle de symboles pseudodifférentiels en r, dépendant du temps, lais-
sant invariant l’équation de Schrödinger [19]. Pour cela il faut d’abord intro-
duire l’algèbre des symboles pseudo-différentiels formels, ΨD := R[r, r−1]][∂r, ∂

−1
r ]],

ainsi que son extension double, DΨD := R[ξ, ξ−1]][∂
1
2
ξ , ∂

− 1
2

ξ ]]. Ces algèbres

associatives sont les quantifications naturelles de A(S1) et Ã(S1) (cf. §1.2.2).
On a alors un isomorphisme d’algèbres Θ : DΨD → ΨD défini par

∂
1
2
ξ 7→ ∂r, ∂

− 1
2

ξ 7→ ∂−1
r

ξ 7→ 1

2
r∂−1

r , ξ−1 7→ 2∂rr
−1, (1.54)
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d’inverse Θ−1 : ∂r 7→ ∂
1
2
ξ , r 7→ 2ξ∂

1
2
ξ . Cet isomorphisme est obtenu

formellement par conjugaison avec la transformation intégrale ψ(r) 7→ ψ̃(ξ) :=
∫ +∞
−∞

e−r2/4ξ√
ξ

ψ(r) dr liée à l’équation de la chaleur. Il est donc naturel de voir

ΨD et DΨD comme agissant sur des espaces de fonctions différents et d’écrire
pour préciser ΨDr au lieu de ΨD, et DΨDξ au lieu de DΨD.

Sous cette transformation non locale, l’opérateur de Schrödinger libre
∆0 := −2iM∂t − ∂2

r devient un opérateur d’ordre 1, −2iM∂t − ∂ξ, in-

variant par conjugaison sous les transformations X (j)
f := −f(t − 2iMξ)∂j

ξ ,

j ∈ 1
2Z. Par conséquent, l’équation de Schrödinger initiale est invari-

ante sous Θ(X (j)
f ). Précisons que Θ((t − 2iMξ)−k), k ≥ 0 doit être com-

pris comme le développement en série en puissances croissantes de ξ/t,
Θ((t − 2iMξ)−k) := t−kΘ(1 + 2ikMξ

t + . . .). Des calculs montrent que

X (1)
f = −f(t)∂2

r + iMf ′(t)r∂r +
1

2
M2f ′′(t)r2 + O(∂−1

r );

(1.55)

X ( 1
2
)

g = −g(t)∂r + iMg′(t)r + O(∂−1
r ); (1.56)

X (0)
h = −h(t) + O(∂−1

r ). (1.57)

Si l’on remplace −2iM∂t par ∂2
r dans la formule (1.6) donnant la réalisation

schrödingérienne de Lf , on retrouve ainsi la réalisation schrödingérienne
de sv modulo un O(∂−1

r ), ce qui n’est pas sans rappeler la définition du
système intégrable associé à l’équation de Korteweg-De Vries à partir de
la partie différentielle des puissances demi-entières de ∂2 + u [47]; le sens
profond de cette remarque (s’il existe) est encore à découvrir. En proje-

tant les X (κ)
f , κ = 1, 1

2 , 0 dans l’algèbre quotient DΨD(≤1)/DΨD(≤− 1
2
), on a

ainsi prouvé en particulier que sv ≃ DΨD(≤1)/DΨD(≤− 1
2
); comme ce dernier

quotient s’identifie canoniquement à Ã(S1)(≤1)/Ã(S1)(≤− 1
2
), on a retrouvé

le plongement de §1.2.2. La substitution −2iM∂t → ∂2
r n’est justifiée que

si l’on fait agir ces opérateurs sur des fonctions qui sont dans le noyau de
l’équation de Schrödinger libre; aussi, les générateurs (Lf ) de la composante
Vect(S1) ⊂ sv jouent-ils un rôle à part dans la construction ci-dessous.

Cette remarque va nous permettre de comprendre une variante de la
linéarisation naturelle S lin (cf. Théorème 1.9 ci-dessous) de l’action de sv

sur Saff := {−2iM∂t−∂2
r +V (t, r), V ∈ C∞(R/2πZ×R)} définie plus haut

(cf. Lemme 1.7) comme une action hamiltonienne. Curieusement, on trouve
ici l’action à gauche et à droite

σ̃µ(g).D := πµ+2(g)Dπµ(g)−1, (1.58)

avec un décalage d’indice de 2 au lieu de 1. Cette action est très similaire à
celle de σµ, mais ne préserve pas l’espace affine Saff . Pour être précis, soit

S lin := {a(t)(−2iM∂t − ∂2
r ) + V−2(t, r)}. (1.59)
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Alors on a les formules suivantes, à comparer avec celles du Lemme 1.7:

σ̃µ(φ; 0).(a(t)(−2iM∂t − ∂2
r ) + V (t, r)) = φ′(t)a(φ(t))(−2iM∂t − ∂2

r )

+(φ′)2(t)V (φ(t), r
√

φ′(t)) + a

(
2i(µ − 1

4
)Mφ′′

φ′ +
1

2
M2r2Θ(φ)(t)

)

σ̃µ(1; (α, β)).(a(t)(−2iM∂t − ∂2
r ) + V (t, r)) = a(t)(−2iM∂t − ∂2

r )

+V (t, r − α(t)) + a
(
−2M2rα′′(t) −M2(2β′(t) − α(t)α′′(t))

)
(1.60)

Les opérateurs Θ(X (j)
f ), j ∈ 1

2Z, appartiennent à l’algèbre des courants

L(ΨDr) ≃ ΨDr[t, t
−1]] au-dessus de ΨD. Encore une fois, on précise la vari-

able pour plus de clarté, et on écrit Lt(ΨDr) au lieu de L(ΨDr). Des systèmes
intégrables associés à des structures de Poisson sur cette algèbre de courant
(étendue par le cocycle central de Kac-Moody, (X, Y ) →

∮
TrẊ(t)Y (t) dt,

où Tr est la trace d’Adler sur ΨD) ont été étudiés par A. G. Reiman et M.
A. Semenov-Tyan-Shanskii [73]; on retrouve notamment la 2e équation de
Kadomtsev-Petviashvili (KP). Dans le même ordre d’idées, on peut signaler
également le papier de V. Ovsienko et C. Roger [72] donnant des systèmes
intégrables similaires à l’équation KP à partir de l’algèbre de lacets au-dessus
de l’algèbre de Virasoro. Dans notre cas, cf. l’article que nous résumons ici
[19], des calculs montrent que l’action de sv sur les opérateurs de Schrödinger

est reliée à l’action coadjointe de Lt( ˜(ΨDr)≤1), où Lt( ˜(ΨDr)≤1) est une ex-
tension centrale de Lt((ΨDr)≤1) sans lien avec le cocycle de Kac-Moody.

Définition 1.12 Soit Ψ̃D≤1 l’extension centrale de ΨD≤1 associée au cocy-
cle cc3 (c ∈ R), où c3 : Λ2ΨD≤1 → C vérifie

c3(f∂r, g∂−1
r ) = c3(f∂−1

r , g∂r) =
1

2iπ

∮
f ′g dr (1.61)

(les autres composantes étant identiquement nulles).

On peut démontrer au passage que l’espace H2(ΨD≤1; R) est de dimen-

sion ≥ 6. On écrit un élément de l’algèbre des courants h := Lt( ˜(ΨDr)≤1)
comme un couple (D(t), h(t)). Alors l’action coadjointe de Θ((DΨDξ)≤ 1

2
) =

Θ(〈X (κ)
f , f ∈ C∞, κ ≤ 1

2〉) sur h∗ préserve la sous-variété {(V (t, r)∂−2
r , 1)} ⊂

h∗; l’action restreinte à cette sous-variété passe au quotient en une action
de h∞ ⊂ sv qui cöıncide avec l’action σ1/4 par reparamétrisation sur les
opérateurs de Schrödinger. Par conséquent, σ1/4

∣∣
h∞

est une action hamil-
tonienne pour la structure de Poisson de Kirillov-Kostant-Souriau sur h∗.

Le résultat ci-dessus ne s’étend pas directement à sv ≃ Vect(S1)⋉h∞, en
raison du rôle particulier joué par les générateurs (Lf ) dans la construction
(cf. remarque ci-dessus). Les dérivations f(t)∂t n’appartenant pas à h, il est
naturel de construire une algèbre produit semi-direct g := g0 ⋉ h telle que
g0 ≃ Vect(S1)t – où l’on précise encore une fois la variable –, qui contient
(DΨDξ)(≤1) ≃ (DΨDξ)1 ⋉ (DΨDξ)(≤ 1

2
) comme sous-algèbre de Lie. On fait

agir g0 sur h par dérivation de la manière suivante:

Théorème 1.8 (cf. [19], Théorème 5.1)
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Soit I : (DΨDξ)≤1 ≃ Vect(S1)ξ ⋉ (DΨDξ)≤ 1
2

→֒ g = Vect(S1)t ⋉

Lt( ˜(ΨDr)≤1) l’application définie comme

I ((0, D)) = (0, Θt(D)) ; (1.62)

I

(
(− i

2Mf(−2iMξ)∂ξ, 0)

)
=

(
−f(t)∂t,

i

2M(X (1)
f )≤1

)
(1.63)

où

(X (1)
f )≤1 = (Θ(−f(t − 2iMξ)∂ξ))≤1

= iMf ′(t)r∂r +
1

2
M2f ′′(t)r2 −

(
1

2
M2f ′′(t)r +

i

6
M3f ′′′(t)r3

)
∂−1

r + . . .

(1.64)

est X (1)
f privé de son terme d’ordre ∂2

r , i.e. la projection de X (1)
f sur

Lt((ΨDr)≤1).

Alors I est un homormorphisme d’algèbres de Lie.

On a donc un plongement non diagonal de g0 dans g, avec

adg(Lf ) = −f(t)∂t + ãd

(
−1

2
f ′(t)r∂r +

iM
4

f ′′(t)r2 + . . .

)
. (1.65)

Si l’on oublie les complications dues aux charges centrales, Lf agit essen-

tiellement come i
2MΘ(X (1)

f ) = −f(t)∂t− 1
2f ′(t)r∂r + iM

4 f ′′(t)r2 + . . ., cf. éq.
(1.55) et les explications qui suivent.

On obtient alors le résultat suivant:

Théorème 1.9 (cf. [19], Théorème 6.1) Soit (Ψ̃Dr)≤1 l’extension centrale

de (ΨDr)≤1 associée au cocycle cc3 avec c = 2; h = Lt( ˜(ΨDr)≤1) l’algèbre de

lacets étendue correspondante, et g = Vect(S1)t ⋉ Lt( ˜(ΨDr)≤1) l’extension
par dérivations extérieures définie ci-dessus. Soit aussi N le sous-espace
affine Vect(S1)∗t ⋉

{([
V−2(t, r)∂

−2
r + V0(t)∂

0
r

]
dt, a(t)dt

)}
⊂ g∗ (dans cette

formule, V0 est supposé ne dépendre que de la variable t). Alors:

(i) l’action coadjointe ad∗
g, restreinte à l’image I((DΨDξ)≤1), préserve N ,

et passe au quotient en une action de sv;

(ii) décomposons dσ̃0(X)(a(t)∆0 + V (t, r)), X ∈ sv en dσ̃op
0 (X)(a)∆0 +

dσ̃pot
0 (X)(a, V ) (opérateur de Schrödinger libre dépendant seulement

de a, plus un potentiel dépendant de (a, V )). Alors

ad∗
g(Lf ).

(
v(t)dt2;

[
V−2(t, r)∂

−2
r + V0(t)∂

0
r

]
dt, a(t)dt

)

=

([
−1

2
f ′′(

∮
rV−2dr) − (fv′ + 2f ′v)

]
dt2;

[
dσ̃pot

0 (Lf )(a, V−2)∂
−2
r + (−fV ′

0 − f ′V0 + af ′)∂0
r

]
dt, dσ̃op

0 (Lf )(a)dt
)

;

(1.66)
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ad∗
g(Yg).

(
v(t)dt2;

[
V−2(t, r)∂

−2
r + V0(t)∂

0
r

]
dt, a(t)dt

)

=

(
−g′(

∮
V−2dr)dt2;

(
dσ̃pot

0 (Yg)(a, V−2)
)

∂−2
r dt, 0

)
; (1.67)

ad∗
g(Mh).

(
v(t)dt2;

[
V−2(t, r)∂

−2
r + V0(t)∂

0
r

]
dt, a(t)dt

)

=
(
0;

(
dσ̃pot

0 (Mh)(a, V−2)
)

∂−2
r dt, 0

)
. (1.68)

En d’autres termes, si l’on oublie la composante suivant ∂0
r dans h∗,

et la composante suivant dt2 dans Vect(S1)∗, la restriction de l’action
coadjointe de ad∗

g

∣∣
sv

à N cöıncide avec l’action infinitésimale dσ̃0 de

sv sur S lin = {a(t)(−2iM∂t − ∂2
r ) + V−2(t, r)}.

Le terme af ′∂0
r dans l’éq. (1.66) montre que le sous-espace de N avec

coordonnée nulle V0 ≡ 0 n’est pas stable par l’action de sv. Des formules
analogues peuvent être trouvées pour les actions dσ̃µ avec µ quelconque en
modifiant légèrement la définition de l’isomorphisme Θ.



Chapitre 2

Singularités locales des

champs gaussiens

fractionnaires

2.1 Présentation générale

La problématique générale dans cette partie est la suivante. On se donne
un processus stochastique (Xt)t∈R irrégulier, c’est-à-dire, à variation non
bornée. Est-il possible de définir une intégrale stochastique contre X, et,
plus généralement, de résoudre des équations différentielles stochastiques
dirigées par X ?

La question est bien connue dans le cas où X est un mouvement brown-
ien, et se résout classiquement grâce à la théorie des martingales (elle-même
liée à la propriété markovienne du brownien) si l’on intègre un proces-
sus adapté par rapport à la filtration brownienne; plus généralement, en
intégrant des processus adaptés contre des semi-martingales, on reste dans
la classe des semi-martingales, ce qui permet de résoudre dans cette même
classe des équations différentielles stochastiques dirigées par le brownien.

A partir du moment où l’on sort du cadre brownien et de ses généralisations
semi-martingales, la classe des processus adaptés ne présente plus d’intérêt
particulier, et l’on dispose à l’heure actuelle de trois types d’outils essentielle-
ment: (1) les intégrales symétriques à la Russo-Vallois [124] (extensions de
l’intégrale de Stratonovich) pour des processus X unidimensionnels; (2) le
calcul de Malliavin et l’intégrale de Skorohod dans le cadre gaussien [117];
(3) la toute récente mais déjà classique théorie des chemins rugueux ou rough
paths, due à Terry Lyons [112, 114].

A part quelques brèves incursions dans le domaine du calcul de Malli-
avin, nous nous intéresserons essentiellement dans cette partie au dernier
outil (3). La présentation ci-dessous s’inspire largement du livre de P. Friz
et N. Victoir [98]. La théorie, d’inspiration géométrique et non probabiliste,
permet de donner un sens à des intégrales généralisées

∫ t
s yudxu pour des

chemins (a priori déterministes) y, x d’exposant de Hölder α ∈]0, 1[, ou plus
généralement à 1

α -variation bornée, c’est-à-dire tels que

supn≥1 sups=t0≤t1≤...≤tn=t

∑n−1
j=0 |xti+1 − xti |1/α < ∞ (on peut reparamétrer

43
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un chemin à 1/α-variation bornée de façon à en faire un chemin α-Hölder,
si bien que l’extension de la théorie du cadre Höldérien au cadre des q-
variations est en général automatique). La définition donnée cöıncide avec
l’intégrale de Young (obtenue simplement comme limite de sommes de Rie-
mann) lorsque 2α > 1; sous cette dernière hypothèse, t 7→

∫ t
s yudxu étant

alors lui-même un chemin à 1/α-variation bornée, on peut itérer les intégrations
et résoudre localement de manière unique une équation différentielle

dyt = f(t, yt)dxt, y0 = z ∈ Rn (2.1)

si x est un chemin d-dimensionnel à 1/α-variation bornée, et f : R × Rn →
L(Rd, Rn) est C1. Désignons par Ωα(Rd) l’espace de Banach des chemins
x = (x(1), . . . , x(d)) : R → Rd à 1/α-variation bornée. Alors, de plus,
l’application x 7→ yf (x) (où yf (x) est l’unique solution de l’équation (2.1)),
dite de Itô-Lyons, est continue de Ωα(Rd) dans Ωα(Rn).

L’extension directe de l’intégrale de Young au cas α < 1
2 s’avère impos-

sible: en effet, d’une part, les sommes de Riemann peuvent diverger; d’autre
part, deux suites (xn

1 )n≥1, (xn
2 )n≥1 convergeant toutes deux vers le chemin x

dans Ωα(Rd), peuvent conduire à la limite à des intégrales différentes. Ad-
mettons provisoirement que α ∈]13 , 1

2 [. Si l’on veut faire converger les sommes

de Riemann associées à
∫ t
s f(xu)dxu, où f est une 1-forme sur Rd, un bref

calcul utilisant la formule de Green-Riemann montre qu’il est nécessaire
de donner un sens non ambigu aux intégrales d’aire

∫ t
s dxu(i1)

∫ u
s dxu(i2)

obtenues en intégrant le chemin x contre lui-même. En remarquant simple-
ment que ∫ t

s
dxu(i)

∫ u

s
dxu(i) =

1

2
(xt(i) − xs(i))

2, (2.2)

on voit qu’il est naturel de demander que ces intégrales d’aire soient au plus
de l’ordre de |t − s|2α. Introduisons la terminologie suivante: si f = fts est
une fonction réelle de deux variables telle que

||f ||Cα
2

:= sup
s,t

|fts|
|t − s|α < ∞ (α ∈]0, +∞[), (2.3)

on dit que f ∈ Cα
2 est un 1-incrément α-Hölder. Les intégrales d’aire doivent

donc être des 1-incréments 2α-Hölder.

Plus généralement, si α ∈] 1
N+1 , 1

N ], il faut donner un sens à la famille

d’intégrales itérées ((x2
ts(i1, i2))1≤i1,i2≤d, . . . , (x

N
ts(i1, . . . , iN ))1≤i1,...,iN≤d). Par

hypothèse xn, n = 2, . . . , N doit être un 1-incrément nα-Hölder. On note
x1

ts(i1) = xt(i1) − xs(i1) l’incrément du chemin x entre s et t. Il est naturel
de demander que la famille (x1, . . . ,xN ), dite rough path ou chemin rugueux
au-dessus de x, ou simplement relèvement de x, vérifie les deux propriétés
de compatibilité suivantes:

(i) (propriété multiplicative ou de Chen)

xk
ts(i1, . . . , ik) − xk

tu(i1, . . . , ik) − xk
us(i1, . . . , ik)

=
∑

k1+k2=k

xk1
tu(i1, . . . , ik1)x

k2
us(ik1+1, . . . , ik). (2.4)
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(ii) (propriété géométrique ou de shuffle)

xn1
ts (i1, . . . , in1)x

n2
ts (j1, . . . , jn2) =

∑

k∈Sh(i,j)

xn1+n2
ts (k1, . . . , kn1+n2)

(2.5)

où Sh(i, j) est l’ensemble des “shuffles” de i et j, i.e. des permutations
de la liste concaténée (i, j) préservant l’ordre des listes i et j.

Si x est régulier, les intégrales itérées de x contre lui-même,

xk
ts(i1, . . . , ik) :=

∫ t

s
dxt1(i1)

∫ t1

s
dxt2(i2) . . .

∫ tk−1

s
dxtk(ik) (2.6)

vérifient (2.4) et (2.5): la famille (x1, . . . ,xN ) – pour N quelconque – est
alors appelée relèvement canonique de x.

Lorsque n = 2, ces deux propriétés s’interprètent simplement en remar-
quant (lorsque x est un chemin régulier bidimensionnel) que

∫ t

s
dxv(1)

∫ v

s
dxv(2) −

∫ u

s
dxv(1)

∫ v

s
dxv(2) −

∫ t

u
dxv(1)

∫ v

s
dxv(2)

=

(∫ t

u
dxv(1)

) (∫ u

s
dxv(2)

)
(2.7)

(cf. Fig. 2.1)

us t

Figure 2.1: Le défaut d’additivité de l’aire correspond au rectangle sur la figure.

et que (par le théorème de Fubini)

∫ t

s
dxv(1)

∫ v

s
dxv(2) +

∫ t

s
dxv(2)

∫ v

s
dxv(1) =

(∫ t

s
dxv(1)

) (∫ t

s
dxv(2)

)
.

(2.8)
Ce défaut d’additivité de l’aire disparâıt si l’on considère x = (x(1), x(2),x2(1, 2))
comme les coordonnées usuelles dans le groupe de Heisenberg G(2) muni du
produit (x1, y1, z1).(x2, y2, z2) = (x1 + y1, x2 + y2, z1 + z2 + 1

2(x1y2 − x2y1)).
On a alors: xts = xus ·xtu et en particulier, xts = x−1

s0 ·xt0, de sorte que xts

apparâıt comme incrément (multiplicatif) du chemin t 7→ xt0. Dans le cas
général, t 7→ xt0 s’interprète de la même manière comme chemin à valeurs
dans un groupe nilpotent G(N)(Rd) de rang N qui est le groupe de Carnot
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de rang N . Si l’on note TRd = ⊕n≥0T
nRd l’algèbre tensorielle sur Rd vue

comme algèbre de Lie, et T (N)(Rd) son quotient par l’idéal ⊕n>NTnRd, alors
l’algèbre de Lie de G(N)(Rd) peut être vue comme la sous-algèbre de Lie de
T (N)(Rd) engendrée par T 1Rd ≃ Rd. Le groupe G(N)(Rd) est naturellement
muni d’une métrique sous-Riemannienne obtenue en considérant la longueur
du chemin x sous-jacent; c’est un espace géodésique. Un chemin x est α-
Hölder pour la distance géodésique associée (dite de Carnot-Carathéodory)
si et seulement si xn est un 1-incrément nα-Hölder pour tout n ≤ N . Des ar-
guments généraux sur les espaces métriques permettent alors de montrer que
tout chemin α-Hölder à valeurs dans G(N)(Rd) peut être approché au sens
de la norme || . ||∞ par des chemins (xj)j∈N à variation bornée (relèvements
canoniques des chemins sous-jacents xj : R → Rd, eux-mêmes à variation
bornée), formant une suite bornée pour la norme α-Hölder. Soit α′ < α.
Le théorème d’Ascoli permet d’en déduire l’existence d’une sous-suite con-
vergeant pour la norme α′-Hölder. Autrement dit, tout chemin rugueux
α-Hölder est limite en norme α′-Hölder de chemins réguliers. Notons que
cet argument d’analyse fonctionnelle, assez abstrait, présente le défaut de ne
pas donner une représentation explicite de la suite d’approximations (xj).
La régularité perdue en passant de α à α′ (aussi proche de α que l’on souhaite
mais différent de α) est inévitable dans le cas général, et conduit à définir
l’espace des chemins rugueux géométriques comme la complétion – pour
la norme α-Hölder associée à la distance de Carnot-Carathéodory – des
chemins réguliers.

Un théorème général due à T. Lyons et N. Victoir [113] montre que tout
chemin α-Hölder x se relève en un chemin rugueux α-Hölder (ou α′-Hölder si
1/α ∈ N), noté x. La démonstration consiste à voir x comme une section du
fibré principal quotient trivial R×

(
exp(⊕n≥1T

n(Rd))/ exp(⊕n≥2T
n(Rd))

)
≃

R × Rd et à trouver un relèvement de x en une section x du fibré principal
trivial R×G(N)(Rd) possédant la bonne régularité Hölder. De telles sections
existent (il en existe une infinité non dénombrable), mais la construction,
loin d’être canonique, utilise l’axiome du choix. Néanmoins, dans un certain
nombre de cas (notamment le brownien fractionnaire d’indice de Hurst >
1/4, cf. infra, ou encore des chemins aléatoires sur des fractals [78, 104]) on
arrive à construire des approximations naturelles de x par une suite (xn)n≥1

de chemins réguliers dont les relèvements canoniques convergent au sens
de la norme α-Hölder vers un objet qui est ipso facto un relèvement de x.
Notons au passage qu’une suite de chemins rugueux xj : R → G(N)(Rd)
converge au sens de la norme α-Hölder si et seulement si les 1-incréments
xn

j : R2 → Rd convergent au sens de la norme || . ||Cnα
2

pour tout n ≤ N , ce
qui fournit un moyen effectif pour démontrer la convergence.

Admettant l’existence d’un tel relèvement x, on dispose de deux théories
voisines pour définir les intégrales: la théorie de T. Lyons, développée également
par Friz, Victoir, Lejay [112, 114, 98, 110, 111], et la théorie, plus récente,
de M. Gubinelli [100, 101], développée aussi par S. Tindel et coauteurs
[102, 93, 122], dite théorie algébrique des chemins rugueux. Dans les deux
cas, il s’agit de “bôıtes noires”, réouvertes pour étendre la théorie à des
cadres plus généraux que les équations différentielles (équations avec retard,
équations de Volterra, équations aux dérivées partielles...) mais que nous
nous contenterons essentiellement d’utiliser. Décrivons succinctement les
arguments de Gubinelli pour α > 1/3.
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Le point de départ [100] est le complexe différentiel exact (dégénérescence
de la cohomologie de Čech)

0 → C1(R, Rd)
δ1→ C2(R, Rd)

δ2→ . . .
δj−1→ Cj(R, Rd)

δj→ . . . (2.9)

où Cj(R, Rd) est l’espace des fonctions continues f : Rj → Rd, et (δnf)t1,...,tn+1 =∑n
j=1(−1)j+1ft1,...,ťj ,...,tn+1

. En particulier, tout cobord h ∈ Z3 := Kerδ3

s’écrit simplement h = δg où gts := −h0ts; si f ∈ C1(R, Rd), alors δf ∈ Z2

et donc (puisque δ ◦ δ = 0) on a aussi h = δ(g + δf). En revanche, il y a
unicité si l’on cherche un 1-incrément g dans Z1+

2 = Z2 ∩ C1+

2 , où C1+

2 est
l’espace des 1-incréments de régularité Hölder > 1; en effet, si δg1 = δg2,
alors g1 − g2 est l’incrément d’une fonction f : R → Rd qui est 1+-Hölder
et donc constante. On peut équiper C3(R, Rd) de normes Hölder || . ||Cγ

3
de

sorte que htus := g1
tug2

us soit α + β-Hölder si g1, resp. g2 est α-, resp. β-
Hölder. Un lemme joliment appelé lemme de la couturière assure l’existence
d’un tel g dès que h ∈ C1+

3 ; on note alors g = Λh et Λ : C1+

3 → C1+

2 est
appelée sewing map (nous suggérons en français: application cicatrisante).

L’intégrale de Young s’explicite facilement à l’aide de l’opérateur Λ.
Soient x ∈ Cα

1 (R, Rd) et y ∈ Cα
1 (R,L(Rd, Rn)) avec α > 1

2 , alors δ(ys.δxts)tus =

δytuδxus ∈ C1+

3 . Posons g := Λ(δytuδxus); on a δg = δ(ys.δxts), mais
g ∈ C1+

2 , contrairement à ys.δxts qui n’est que α-Hölder. L’intégrale de
Young

∫ t
s ysvdxv s’identifie alors à ys.δxts − gts = (Id−Λδ)(ys.δxts), qui est

l’incrément d’une fonction d’une variable: en effet, g étant un 1-incrément
1+-Hölder,

∑n−1
i=0 gs+ i+1

n
(t−s),s+ i

n
(t−s) → 0 lorsque n → ∞, et l’on retrouve

donc bien que∫ t
s yvdxv = limn→∞

∑n−1
i=0 ys+ i

n
(t−s)(xs+ i+1

n
(t−s) − xs+ i

n
(t−s)) est limite de

sommes de Riemann.

L’argument s’étend pour α ∈]13 , 1
2 ] dès qu’on a choisi un chemin rugueux

(δx,x2) au-dessus de x. La propriété multiplicative s’écrit dans ce nouveau
langage : δ(x2)tus = δxtuδxus. La fonction y doit être un chemin contrôlé
par x, i.e. ses incréments doivent s’écrire: δyts = Φsδxts + gts où Φs ∈ Cα

1

et gts ∈ C2α
2 . En effet (supposant provisoirement x régulier), on a alors

Λδ(ys.δxts) = Λ(δxtuδyus) = Λ(Φsδxtuδxus) + Λ(gusδxtu)

= Λ(Φsδ(x
2)tus) + Λ(gusδxtu)

= Λδ(−Φsx
2
ts) + Λ((δΦ)tux

2
us) + Λ(gusδxtu). (2.10)

Abandonnant l’hypothèse de régularité, tous les termes sont bien définis,
sauf le premier – car Φsx

2
ts ∈ C2α

2 seulement –, ce qui conduit à poser

∫ t

s
yvdxv = ysδxts + Φsx

2
ts − Λ((δΦ)tux

2
us + gusδxtu) (2.11)

ou de manière équivalente

∫ t

s
yvdxv =

n−1∑

i=0

ys+ i
n

(t−s)(xs+ i+1
n

(t−s)−xs+ i
n

(t−s))+Φs+ i
n

(t−s)x
2
s+ i+1

n
(t−s),s+ i

n
(t−s)

.

(2.12)

Nous reviendrons sur cette construction lorsque nous définirons la régularisation
par ordre normal de Fourier dans la section 2.4.
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2.2 Description des principaux résultats

Rappelons que le brownien fractionnaire d’indice de Hurst α ∈]0, 1[ est le
processus gaussien centré (Bα

t )t∈R de covariance

EBα
s Bα

t =
1

2
(|s|2α + |t|2α − |t − s|2α). (2.13)

Lorsque α = 1
2 , on retrouve le brownien ordinaire. L’intérêt de cette famille

de processus indexée par α réside dans le fait que ce sont en quelque sorte les
processus auto-similaires les plus simples; en d’autres termes, il y a égalité
en loi entre (Bα

λt, t ∈ R) et (λαBα
t , t ∈ R) si λ > 0. Ces processus sont de

plus à accroissements stationnaires, c’est-à-dire que (Bt − Bs, s, t ∈ R)
loi
=

(Bt+a − Bs+a, s, t ∈ R) pour tout a ∈ R. En fait ces deux propriétés les
caractérisent parmi tous les processus gaussiens centrés. Une application
élémentaire du lemme de Kolmogorov-Centsov permet de montrer que, pour
tout κ < α, il existe une version de Bα dont les trajectoires sont p.s. κ-
Hölder; on dira simplement que Bα est α−-Hölder.

Dans la suite, on fixe α ∈]0, 1[ et on considère un brownien fractionnaire
multidimensionnel B = (B(1), . . . , B(d)) (d ≥ 2) d’indice α, de composantes
indépendantes et identiquement distribuées.

Le programme principal (réalisé en dernier) était de construire un calcul
stochastique pour le brownien fractionnaire à l’aide de la théorie des chemins
rugueux. Sans entrer dans les détails (cf. infra) rappelons que les résultats
classiques dûs à L. Coutin et Z. Qian [90] permettent de définir un calcul
stochastique par la méthode des chemins rugueux pour B lorsque α > 1/4 et
ne se prolongent pas au-delà de la barrière α = 1/4. La même barrière ap-
parâıt lorsqu’on utilise l’intégrale symétrique à la Russo-Vallois ou l’intégrale
de Skorokhod [76, 77, 83, 117]. Dans le cas unidimensionnel uniquement,
cette dernière s’étend à un indice α quelconque [86], tandis que l’intégrale
symétrique, définie seulement pour α > 1/6, admet des généralisations qui
s’étendent à un indice α arbitraire [99].

Le premier travail a consisté à définir des approximations de B plus com-
modes à utiliser lorsque α < 1/2 que l’interpolation linéaire par morceaux, et
permettant dans une certaine mesure des calculs exacts. L’approximation
analytique de B construite en [14] consiste à voir (Bt)t∈R comme limite
quand η → 0+ (au sens des chemins rugueux, au sens L2 ou encore pour
la convergence uniforme sur tout compact en probabilité) de la partie réelle
d’un processus à valeurs complexes (Γz)z=t+iη,η>0, défini et analytique sur
le demi-plan supérieur Π+ = {z ∈ C | Im z > 0}. La covariance in-
finitésimale de Γ s’écrit: E[Γ′

zΓ
′
w] = 0, E[Γ′

zΓ
′
w] = cα(−i(z − w̄))2α−2. Si

z = s + iη
2 , w = t + iη

2 , on obtient cα(−i(t − s) + η)2α−2, dont la partie
réelle est une régularisation du noyau infinitésimal α(2α − 1)|t − s|2α−2 du
brownien fractionnaire, mal défini (car non L1

loc) dès que α ≤ 1/2. En
intégrant le processus Γ′ le long d’un chemin quelconque γ :]0, 1[→ Π+ tel
que γ(0) = 0, γ(1) = z, on obtient un processus analytique Γ. En con-
sidérant le processus conjugué Γ̄ comme vivant sur le demi-plan inférieur
Π− = {z ∈ C |Im z < 0}, on peut également voir B comme valeur au bord
du processus (Γ, Γ̄) défini sur C \R. Dans la suite on considérera un proces-
sus multidimensionnel Γ = (Γ(1), . . . ,Γ(d)), de composantes indépendantes
et identiquement distribuées. La variance de l’aire de Lévy (intégrale itérée
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d’ordre 2) du processus (Bη
t )t∈R = (Re Γt+iη)t∈R se calcule explicitement à

l’aide de fonctions hypergéométriques, et on vérifie la convergence au sens
des chemins rugueux de l’aire lorsque η → 0+ si α > 1/4, ainsi que sa diver-
gence dès que α ≤ 1/4, ce qui permet de retrouver par une nouvelle méthode
des résultats déjà connus.

Ces calculs de moments ont permis de comprendre les raisons des diver-
gences en-dessous de la barrière α = 1/4. Posons

K
′,±
η (t, s) = (±i(t − s) + η)2α−2. (2.14)

En faisant des déformations de contour, on montre que les itérées des noyaux

K
′,±
η produisent des fonctions analytiques, ainsi que des fonctions puissance

singulières et multiformes du même type que K
′,±
η , ce qui donne de manière

tout à fait générale un développement en puissances fractionnaires de η
au voisinage de η = 0+ des moments de toute distribution finie de B ou
de ses intégrales itérées. La variance de l’aire de Lévy contient par exem-
ple un terme en O(η4α−1), qui diverge quand α < 1/4. Une analyse plus
systématique [18] a permis de comprendre comment calculer les plus bas ex-
posants en η, ainsi que de démontrer un théorème central limite pour l’aire
de Lévy renormalisée par l’inverse de son écart-type; on obtient à la limite
un brownien usuel, indépendant du brownien fractionnaire de départ. On a
ainsi identifié de manière précise la divergence de l’aire de Lévy. Les mêmes
outils permettent [22] d’établir un théorème central limite pour l’erreur du
schéma d’Euler associé à l’aire de Lévy lorsque α > 1/4. Il est clair que ces
outils puissants doivent permettre d’obtenir de manière systématique des
résultats asymptotiques précis pour des quantités appartenant, disons, à un
chaos d’ordre fini, apparaissant par exemple dans la résolution d’équations
aux dérivées partielles stochastiques.

A contrario, les intégrales itérées du processus Γ (appelé: brownien frac-
tionnaire analytique) ne font pas intervenir de fonctions multiformes, et des
déformations de contour permettent de montrer facilement leur convergence
lorsque η → 0. En adaptant la théorie algébrique des chemins rugueux à un
cadre analytique, on obtient alors [16] un chemin rugueux au-dessus de Γ,
ainsi qu’une résolution locale dans le demi-plan supérieur fermé Π̄+ = Π+∪R

d’équations différentielles stochastiques à coefficients analytiques dirigées
par Γ. Des bornes faciles à obtenir sur la variance des intégrales itérées de
Γ permettent [25] de contrôler les moments de tous ordres des équations
différentielles stochastiques linéaires dirigées par Γ; ce résultat, obtenu par
un développement en série à la Chen, ne découle pas des estimées générales
obtenues par Friz et Victoir [98], qui divergent dès que α ≤ 1/3.

Les travaux les plus récents se rapportent à la construction d’un chemin
rugueux au-dessus d’un chemin multidimensionnel α-Hölder avec α ∈]0, 1[
quelconque. La méthode proposée, plus constructive que celle de T. Lyons
et N. Victoir [113] qui repose sur des relèvements arbitraires de sections à
valeurs dans des quotients du groupe de Carnot (et utilise notamment pour
cela l’axiome du choix), est tout à fait adaptée par exemple au développement
d’un calcul stochastique dans le cas où le chemin est un processus aléatoire.

La construction repose sur un algorithme combinatoire appelé mise en
ordre normal de Fourier que l’on trouve expliqué en détail dans [23], ainsi que
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dans [26], dans une perspective plus algébrique. Un simplification mineure
de cet algorithme, adaptée au cas spécifique du brownien fractionnaire,
conduit à la construction d’un chemin rugueux au-dessus de B dans [21].
Prśentons-le très brièvement dans ce cas particulier.

L’idée est de décomposer chaque composante B(ij) en intégrales de
Fourier, et de voir Bn

ts(i1, . . . , in) comme
∑

σ∈Σn
PσBn

ts(i1, . . . , in), où Σn

est l’ensemble des permutations de {1, . . . , n}, et Pσ est le multiplicateur de
Fourier

Pσ : f = f(x1, . . . , xn) 7→
F−1

(
(ξ1, . . . , ξn) 7→ 1|ξσ(1)|≤...|ξσ(n)|(Ff)(ξ1, . . . , ξn)

)
(x1, . . . , xn).

(2.15)

Le terme PIdnBn se présente en ordre normal de Fourier (le terme ordre
normal est emprunté à la théorie conforme des champs [37] et se rapporte
d’habitude à des produits de Wick opératoriels). Les autres doivent avant
toute régularisation être replacés en ordre normal de Fourier à l’aide du
théorème de Fubini; le domaine d’intégration se représente alors par des
arbres enracinés. Le codage des intégrales itérées par des arbres est clas-
sique [82, 101]. La combinatoire d’arbres a reçu un intérêt certain depuis
la fin des années 1990 en raison des travaux de A. Connes et D. Kreimer
et d’autres auteurs [87, 88, 89, 80, 81, 97] sur les structures d’algèbres
de Hopf sous-jacentes, en lien avec l’algorithme de Bogolioubov-Parasiuk-
Hepp-Zimmermann (BPHZ) [106] pour la renormalisation des diagrammes
de Feynman en théorie quantique des champs. La même combinatoire est
à l’oeuvre ici, et la terminologie (ainsi qu’une partie des notations) est es-
sentiellement la même: coupures admissibles, opérateur de régularisation
(ou renormalisation) R, contre-termes... On montre en particulier que
les chemins rugueux formels (i.e. satisfaisant les contraintes algébriques
de Chen et shuffle mais pas nécessairement les propriétés de régularité
Hölder) s’obtiennent en toute généralité à partir d’une famille indexée par
des mesures de caractères φt

ν( . ) d’une algèbre de Hopf d’arbres, s’interprétant
comme intégrales itérées (ou plus précisément intégrales squelettes) régularisées,
et appelées données d’arbres (“tree data”). Les contraintes algébriques
sont alors automatiquement vérifiées, et il reste précisément à choisir une
régularisation conduisant aux bonnes propriétés de régularité Hölder.

La régularisation (ou renormalisation) consiste, comme en théorie quan-
tique des champs, à ôter des termes divergents, de manière – dans notre
cas – à préserver les propriétés multiplicative et géométrique. Par exem-
ple, la régularisation RΓ2

ts(1, 2) de l’aire de Lévy d’un chemin Γ s’obtient
en retirant un terme d’incrément, [δ

(
X2(1, 2)

)
]ts = X2(1, 2)t − X2(1, 2)s,

préservant ainsi la propriété de Chen puisque δ ◦ δ = 0.

A défaut d’autres contraintes à définir, le choix d’une régularisation
est toutefois beaucoup plus arbitraire qu’en théorie des champs, et nous
présentons ici une famille assez simple de tels choix, que nous appelons
régularisation de domaine, consistant à couper le domaine d’intégration
de Fourier dans certaines directions. Dans le cas particulier du brownien
fractionnaire, les intégrales itérées régularisées d’ordre n, RBn

ts(i1, . . . , in),
restent dans le chaos gaussien d’ordre n. Notons qu’une construction légèrement
différente, donnant des formules plus simples – qui évitent notamment le re-
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cours aux intégrales arborescentes –, inspirée par nos travaux mais entièrement
redémontrée sans tout l’attirail algébrique, a été donnée récemment par D.
Nualart et S. Tindel [120]; nous verrons plus loin qu’elle correspond – dans
notre schéma général – à choisir des données d’arbres toutes nulles.

Au lieu de ces coupures commodes mais passablement arbitraires, on
peut retirer des contre-termes de manière cohérente en suivant l’algorithme
de renormalisation de BPHZ appliqué aux intégrales squelettes réécrites en
termes de diagrammes de Feynman (cf. preprint [28], présenté brièvement
en §2.4.4). Toutes ces constructions reposent sur une analyse multi-échelles
en Fourier. Si l’on se restreint à la régularisation de domaine étudiée dans
ce mémoire, celle-ci devient particulièrement apparente dans le cas de la
construction pour un chemin quelconque, où la régularité Hölder se montre
en utilisant l’équivalence des normes Hölder avec les normes d’espaces de
Besov Bnα

∞,∞.

Le principal enjeu actuellement consiste à dépasser ce point de vue
algébrique en revenant à la question de départ: comment construire ex-
plicitement une famille d’approximations régulières Γε d’un chemin α-Hölder
Γ donné, dont les intégrales itérées naturelles convergent quand ε → 0 ?
La question revient en quelque sorte à essayer de court-circuiter la théorie
des chemins rugueux. Un projet de longue haleine consiste à redéfinir le
brownien fractionnaire comme un champ gaussien en interaction – au sens
de la théorie des champs –. L’interaction, invisible sur le chaos d’ordre 1,
doit régulariser les intégrales itérées dans les chaos d’ordre supérieur. Nous
présentons brièvement ce projet (cf. preprint [27]) en §2.4.5. L’interaction
quartique introduite dans cet article permet pour l’instant de définir une
aire de Lévy pour 1/8 < α < 1/4, et plus généralement de construire un
chemin rugueux pour 1/6 < α < 1/4.

2.3 Outils analytiques pour le brownien fraction-

naire

Nous présentons dans cette section les travaux contenus dans les articles
[14, 16, 18, 22, 25].

2.3.1 Définition du brownien fractionnaire analytique et ap-

proximation analytique du brownien fractionnaire

Soit B = (B(1), . . . , B(d)) un brownien fractionnaire d’indice de Hurst α ∈
]0, 1[ à d composantes indépendantes et identiquement distribuées.

Supposons provisoirement que α > 1
2 . On peut alors considérer la dérivée

de B comme un processus à valeurs distributions, dont la covariance

E[B′
sB

′
t] = ∂s∂tE[BsBt] =

|t − s|2α−2

α(2α − 1)
(2.16)

est un noyau de convolution L1 correctement défini. Lorsque α < 1
2 – comme

nous allons voir – on peut remplacer ce noyau par la valeur au bord d’un
noyau de type hyperfonction.
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Les noyaux singuliers de type puissance possèdent de bonnes propriétés
de composition qui, à défaut de formules exactes (tous les moments s’expriment
théoriquement à l’aide de fonctions hypergéométriques en plusieurs vari-
ables, mais les expressions deviennent rapidement trop compliquées pour
être utilisables) permettent en fin de compte une compréhension semi-quantitative
satisfaisante des singularités locales des intégrales itérées. On évite de cette
manière le recours à des interpolations linéaires par morceaux qui camouflent
la nature des singularités.

On notera par la suite Π+ = {z ∈ C| Im z > 0} le demi-plan supérieur,
et Π̄+ := {z ∈ C| Im z ≥ 0} son adhérence dans C.

Définition 2.1 Soit K
′,− : Π+ × Π− → C le noyau défini par

K
′,−(z, w̄) :=

α(1 − 2α)

2 cos πα
(−i(z − w̄))2α−2, (2.17)

et K
′,+ : Π− × Π+ → C son conjugué complexe.

Les fonctions puissance sont définies sur C \ R− en faisant appel à la
détermination usuelle du logarithme complexe; on vérifie que l’argument
des fonctions puissance dans les noyaux K

′,± est de partie réelle positive.

Fixons η > 0 et considérons x, y ∈ R et z = x + iη
2 , w = y + iη

2 : alors le
noyau

K
′,−
η (x, y) := K

′,−(z, w̄) =
α(1 − 2α)

2 cos πα
(−i(x − y) + η)2α−2 (2.18)

tend quand η → 0+ (à une constante près) vers la distribution −e−iπα(x −
y)2α−2

+ − eiπα(x − y)2α−2
− [45] où par définition (fixant y)

〈(x−y)2α−2
+ , φ〉 = −〈(x − y)2α−1

2α − 1
1x>y, φ

′〉 =
1

1 − 2α

∫ ∞

y
φ′(x)(x−y)2α−1 dx

(2.19)
si α < 1

2 , et similairement pour (x − y)2α−2
− .

Bien qu’on ne puisse définir en général le produit de deux distributions,
l’existence même d’un calcul stochastique pour B (en tout cas pour 1/4 <
α < 1/2) montre qu’on peut comprendre une integrale

∫
YsdBs comme∫

YsB
′
sds (en un sens limite à définir).

Les noyaux K
′,±
η sur R×R sont de type positif puisque leur transformée

de Fourier est positive: en effet [95],

F(x 7→ (∓i(x − y) + η)2α−2)(ξ) = Cαe−η|ξ|1ξ≷0 . |ξ|1−2α. (2.20)

Une autre façon de démontrer la positivité de K
′,±
η est de remarquer que

∞∑

k=0

fk(z)fk(w) =
α(1 − 2α)

2 cos(πα)
(−i(z − w̄))2α−2 (2.21)

où (fk)k≥0 sont les fonctions analytiques définies sur Π+ par

fk(z) = ak

[
z + i

2i

]2α−2 [
z − i

z + i

]k

, (2.22)
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avec

ak = 2α−1

[
α(1 − 2α)

2 cos(πα)

]1/2

.

[
(2 − 2α)(2 − 2α + 1) . . . (2 − 2α + (k − 1))

k!

] 1
2

.

(2.23)

Cette décomposition en série du noyau K
′,− suggère de considérer pour

lui-même le processus Γ′
z :=

∑
k≥0 fk(z)ξk – où les (ξk)k≥0 sont des gaussi-

ennes complexes centrées réduites indépendantes –, de covariance K
′,−. La

transformation de Cayley Φ : Π+ ∼→ D = {z ∈ C | |z| < 1}, définie par
z 7→ ζ := z−i

z+i (qui est un biholomorphisme) envoie essentiellement Γ′
z sur

une série entière aléatoire, dont il est facile de voir (grâce au lemme de Borel-
Cantelli) qu’elle est de rayon de convergence égal à 1 p.s. Le processus Γ′

est donc défini et analytique sur Π+, d’où son nom: brownien fractionnaire
analytique [16]. On a la proposition suivante:

Proposition 2.2 1. Si z ∈ Π+ et γ :]0, 1[→ Π+ est un chemin continu
quelconque tel que γ(0) = 0 and γ(1) = z, on pose Γz :=

∫
γ Γ′

u du.

Alors Γ est un processus analytique sur Π+. De plus, si z tend vers
t ∈ R en restant dans Π+, la variable aléatoire Γz converge presque
sûrement vers une variable aléatoire notée Γt.

2. La famille {Γt; t ∈ R} définit un processus gaussien centré à valeurs
complexes, dont la fonction de covariance est donnée par: E[ΓsΓt] = 0
et

E[ΓsΓ̄t] =
e−iπα sgn(s)|s|2α + eiπα sgn(t)|t|2α − eiπα sgn(t−s)|s − t|2α

4 cos(πα)
.

(2.24)
Les chemins de ce processus sont p.s. κ-Hölder pour tout κ < α.

3. La partie réelle de {Γt; t ∈ R} est un brownien fractionnaire indexé
par R.

Si l’on voit le processus complexe conjugué Γ̄ comme vivant sur Π− =
{z ∈ C | Im z < 0} au lieu de Π+, autrement dit, si l’on pose Γt−iη := Γ̄t+iη,
alors B apparâıt comme valeur au bord de l’hyperfonction (Γ,−Γ̄) ∈ Hol(C\
R), autrement dit, Bt := limη→0+ Γ(t + iη) + limη→0+ Γ(t − iη) au sens des
distributions.

Intéressons-nous un instant à la convergence de (Γt+iη)t∈R vers (Γt)t∈R:

Lemme 2.3 Il existe C > 0 tel que, pour tous z, z′ ∈ Π̄+ = Π+ ∪ R,

E|Γ(z) − Γ(z′)|2 ≤ C|z − z′|2α. (2.25)

Cette majoration implique – grâce au lemme de Kolmogorov-Centsov
et à l’hypercontractivité du processus d’Ornstein-Uhlenbeck – qu’il existe
pour tout κ < α une version de Γ qui est uniformément κ-Hölder sur tout
voisinage de l’origine dans Π̄+ (on dira pour simplifier que Γ est α−-Hölder).
Cette idée que des estimées de variance impliquent l’höldérianité de proces-
sus dans un chaos gaussien fini reservira souvent par la suite.
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Comme Γ est analytique sur Π+, cette assertion n’a d’intérêt qu’au voisi-
nage de l’axe réel. Inversement, notons qu’une fonction continue f : Π̄+ → C

telle que f
∣∣
Π+ est analytique et f

∣∣
R

est κ-Hölder n’est pas nécessairement
uniformément κ-Hölder au voisinage de l’axe réel (nous reviendrons là-dessus
en §2.3.3).

Considérons maintenant le processus analytique réel (Bη
t ; t ∈ R) =

(Γt+i η
2
, t ∈ R), appelé approximation analytique du brownien fractionnaire.

Le lemme précédent implique pour tout T > 0 et κ < α la convergence
de (Bη

t )t∈[0,T ] vers (Bt)t∈[0,T ] dans L2(Ω; Cκ
1 ([0, T ])), où Cκ

1 est l’espace de
Banach des fonctions κ-Hölder f : [0, T ] → R muni de la norme

||f ||Cκ
1 ([0,T ]) = sup

[0,T ]
|f | + sup

s,t∈[0,T ]

|f(t) − f(s)|
|t − s|κ . (2.26)

Remarquons par ailleurs qu’on a convergence optimale (au sens de Kühn
et Linde [109]) de la série 2Re

∑
k≥0 fk(z)ξk définissant le brownien frac-

tionnaire Bt = 2Re Γt, en ce sens que

N−ε+αE


sup

t∈K
|Bt − 2Re

∑

k≤N

fk(t)ξk|


 →N→∞ 0 (2.27)

pour tout compact K ∈ R et tout ε > 0.

Voyons maintenant les propriétés limite des noyaux régularisés K
′,±
η et

de leurs compositions quand η → 0+.

2.3.2 Etude des noyaux de convolution

Considérons l’opérateur de convolution

K
′,±
[a,b](η) : f 7→ (K

′,±
[a,b](η)f)(x) =

∫ b

a
K

′,±
η (x − u)f(u) du, x ∈ R. (2.28)

Le noyau K
′,±
η est régulier mais des singularités apparaissent quand η → 0+.

On s’intéressera aussi à l’opérateur de convolution K∗,±
[a,b](η) défini de la même

manière à partir du noyau intégré

K∗,±
η (x, y) = − 1

4 cos πα
(±i(x − y) + η)2α. (2.29)

On a le lemme suivant:

Lemme 2.4 Soit f : [0, t] → C une fonction telle que t 7→ tβf(t) (β > −1)
soit L1

loc, et φ la fonction

φ : z 7→
∫ t

0
(−i(z − u))2α−2uβf(u) du, (2.30)

définie a priori sur Π+.

1. Si f est analytique sur un voisinage complexe U de s ∈]0, t[, alors φ
s’étend analytiquement à un voisinage complexe U ′ ⊂ U de s; de plus,
supU ′ |φ| ≤ C supU∪[0,t] |f |.
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2. Si f est analytique dans un voisinage complexe V de 0, alors φ s’écrit
dans un voisinage V ′ ⊂ V de 0

φ(z) = zβ+2α−1F (z) + G(z), (2.31)

où F et G sont analytiques; de plus,

max(sup
V ′

|F |, sup
V ′

|G|) ≤ C sup
V ∪[0,t]

|f |. (2.32)

Les itérées de ces opérateurs de convolution apparaissent naturellement
lorsqu’on considère des intégrales itérées du brownien fractionnaire. Par
exemple, on s’attend a priori (par un argument d’homogénéité näıf) à ce

que la fonction hε1,ε2 : (y, u) 7→ K
′,ε1

[0,t](η)
(
x 7→ K∗,ε2

η (x, y)
)
(u), ε1, ε2 = ±1

ait un comportement singulier sur la diagonale y = u similaire au noyau
puissance (±i(y−u))4α−1, mais en fait tout dépend du signe relatif de ε1 et
ε2:

Lemme 2.5 (cf. [18], Lemme 1.10)

1. Soit, pour β1, β2 ∈ R avec β2 > −1,

I−(β1, β2; 0, t)(a, b) :=

∫ t

0
(−i(u − a))β1(−i(u − b))β2 du, (2.33)

définie a priori, pour tout nombre complexe fixé b avec Im b ≤ 0,
comme une fonction analytique de a sur Π−. Nous nous restreignons
à 0 < Re a < t et 0 < Re b < t, Im b ≤ 0. Soit Ω−

t := {a ∈ C | 0 <
Re a < t, Im a < Im b}. Sur ce domaine, on a

I−(β1, β2; 0, t)(a, b) =
i

β1 + β2 + 1
[Φ(β1, β2; t)(a, b) − Φ(β1, β2; 0)(a, b)]

(2.34)
avec, pour s ∈ [0, t],

Φ(β1, β2; s)(a, b) = (−i(s−b))β1+β2+1
2F1(−β1,−β1−β2−1;−β1−β2;

a − b

s − b
).

(2.35)

La fonction a 7→ Φ(β1, β2; 0)(a, b), resp. a 7→ Φ(β1, β2; t)(a, b) donnée
par l’expression ci-dessus se prolonge analytiquement au domaine {0 <
c < |a/b| < C} ∩ {0 < Re a < t}, resp. {0 < c < | t−b

t−a | < C} ∩ {0 <
Re a < t}, où c < 1, C > 1 sont des constantes arbitraires. Les deux
fonctions s’étendent analytiquement à tout le domaine {0 < Re a < t}.

2. Soit, sous les mêmes hypothèses,

I+(β1, β2; 0, t)(a, b) :=

∫ t

0
(+i(u − a))β1(−i(u − b))β2 du, (2.36)

avec initialement Im b ≤ 0, a ∈ Π+. Alors:

I+(β1, β2; 0, t)(a, b) =

i

β1 + β2 + 1

[
eiπβ1Φ(β1, β2; t)(a, b) − e−iπβ1Φ(β1, β2; 0)(a, b)

]

−Γ(β2 + 1)Γ(−β1 − β2 − 1)

Γ(−β1)
. 2 sin πβ2 . (i(b − a))β1+β2+1.

(2.37)
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Les expressions de Φ(β1, β2; 0), resp. Φ(β1, β2; t) en-dehors des domaine
précisés ci-dessus font intervenir les exposants singuliers (ou, en d’autres
termes, la monodromie) de la fonction hypergéométrique de Gauss 2F1 en
1 et ∞. Les formules du lemme s’étendent elles-mêmes analytiquement au
domaine coupé (C \ (R− ∪ (t + R+)))2. Finalement, on a démontré que
la fonction I−(β1, β2; 0, t), initialement définie sur Π− × Π−, s’étend sur le
plan entier moins deux demi-droites partant des extrémités 0 et t du domaine
d’intégration; de plus, on a son comportement près des deux points singuliers
(cf. [18], formule (1.36))

Φ(β1, β2; 0)(a, b) ∼ C1(max(a, b))β1+β2+1+C2a
β1+1bβ21a<b+C3b

β2+1aβ11a>b

(2.38)
si a ou b est proche de 0, et une formule similaire pour Φ(β1, β2; t)(a, b)
lorsque a ou b est proche de t. Les mêmes résultats sont valables pour
I+ lorsqu’on ôte le terme supplémentaire en (i(b − a))β1+β2+1, qui, lui, est
multiforme et potentiellement singulier lorsque a → b; on trouve notamment
O(η4α−1) lorsque a − b = iη, β1 = 2α − 2, β2 = 2α (cf. calculs ci-dessous
relatifs à la variance de l’aire de Lévy).

Une conséquence immédiate de ce lemme est que la fonction hε,−ε(y, z)
est (contre toute attente) un noyau régulier, alors que hε,ε comporte un
terme avec une singularité locale d’exposant 4α−1 mais (observation essen-
tielle) qui reste dans la même famille de noyaux puissance. On voit là en
germe la possibilité d’étudier de manière générale les exposants singuliers
d’intégrales itérées de Bη; autrement dit – on suppose α 6= 1

2 , 1
4 , 1

6 , . . . pour
éviter des singularités logarithmiques éventuelles – , si P (η) est une expres-
sion polynomiale quelconque en les intégrales itérées de Bη, EP (η) s’écrit∑J

j=1 Cjη
αj (1+O(η)) pour des exposants α1, . . . , αJ non congrus modulo Z,

qu’on sait déterminer. La régularité de hε,−ε peut se démontrer simplement
par déformation de contour, ainsi que le lemme plus général suivant:

Définition 2.6 (intégrales itérées analytiques) Soient s, t > 0 et f1, . . . , fn

(n ≥ 1) n fonctions analytiques définies sur un voisinage de la bande U =
{z = x + iy | 0 ≤ x ≤ t, 0 ≤ y ≤ s}. Une intégrale itérée analytique est une
intégrale de la forme

∫ t

0
dx1 f1(x1+iη1)Γ

′
x1+iη1

(i1)

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn fn(xn+iηn)Γ′

xn+iηn
(in),

(2.39)
où η1, . . . , ηn > 0 et 1 ≤ i1, . . . , in ≤ d.

Lemme 2.7 Soit s, t > 0 et f1, . . . , fn (resp. g1, . . . , gn) n fonctions ana-
lytiques (resp. anti-analytiques) définies sur un voisinage de U (resp. Ū).
Alors

V(ε, η) := E

[(∫ t

0
dx1 f1(x1 + iε1)Γ

′
x1+iε1

(i1)

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn fn(xn + iεn)Γ′

xn+iεn
(in)

) (∫ t

0
dy1 g1(y1 − iη1)Γ′

y1+iη1(j1)

∫ y1

0
dy2 · · ·

∫ yn−1

0
dyn gn(yn − iηn)Γ′

yn+iηn(jn)

)]

(2.40)
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admet une limite finie quand ε = (ε1, . . . , εn), η = (η1, . . . , ηn) tendent vers
0.

Voyons tout de suite une application élémentaire de ces résultats à l’étude
des singularités de l’aire de Lévy de Γ ou de B. On notera
Aη

ts =
∫ t
s dBη

x1(1)
∫ x1

s dBη
x2(2) l’aire de Lévy du processus (Bη(1), Bη(2))

(stricto sensu l’aire de Lévy est l’antisymmétrisation de cette quantité).

Par définition

E[(Aη
ts)

2] =

2E

(∫ t

s
dΓx1+i η

2
(1)

∫ x1

s
dΓx2+i η

2
(2)

) (∫ t

s
dΓ̄y1+i η

2
(1)

∫ y1

s
dΓ̄y2+i η

2
(2)

)

+2Re E

(∫ t

s
dΓx1+i η

2
(1)

∫ x1

s
dΓ̄x2+i η

2
(2)

) (∫ t

s
dΓ̄y1+i η

2
(1)

∫ y1

s
dΓy2+i η

2
(2)

)

=: V1(η) + V2(η). (2.41)

Le premier terme dans le membre de droite s’écrit (en utilisant la sta-
tionnarité des accroissements)

V1(η) = C

∫ t−s

0
dx1

∫ x1

0
dx2

∫ t−s

0
dy1

∫ y1

0
dy2

(−i(x1 − y1) + η)2α−2(−i(x2 − y2) + η)2α−2

= C ′
∫ t−s

0
dx1

∫ t−s

0
dy1(−i(x1 − y1) + η)2α−2

[
(−i(x1 − y1) + η)2α − (−ix1 + η)2α − (iy1 + η)2α

]

(2.42)

et le second

V2(η) = C ′
∫ t−s

0
dx1

∫ t−s

0
dy1(−i(x1 − y1) + η)2α−2

[
(i(x1 − y1) + η)2α − (ix1 + η)2α − (−iy1 + η)2α

]

(2.43)

Le terme V1 ne fait intervenir que −ix1 et +iy1; en faisant une déformation
de contour envoyant x1, resp. y1 loin de l’axe réel dans le demi-plan supérieur,
resp. inférieur, on transforme la singularité sur la diagonale x1 = y1 en une
singularité ponctuelle en x1 = y1 = 0 qui est intégrable. De manière ex-
plicite, si x1 se déplace le long du contour [0, i(t − s)] ∪ [i(t − s), (t − s) +
i(t− s)]+ [(t− s)+ i(t− s), t− s] et y1 sur le contour conjugué, les intégrales
sur les parties horizontales sont régulières, alors que les intégrales les plus
singulières (sur les parties verticales) sont de la forme

∫ t−s

0
dx′

1

∫ t−s

0
dy′1(x

′
1 + y′1 + η)2α−2(f(x′

1, y
′
1) + η)2α (2.44)

où f(x′
1, y

′
1) = x′

1, y′1 ou x′
1 + y′1. Cette déformation de contour est en re-

vanche impossible pour le terme V2 en raison de la multiformité des fonctions
puissance, et le lemme 2.5 montre en fait qu’il diverge en O(η4α−1) dans la
limite η → 0 si α < 1/4.
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2.3.3 Chemin rugueux associé au brownien fractionnaire an-

alytique

La convergence des intégrales itérées analytiques (qui sont en fait des intégrales
itérées du brownien fractionnaire analytique) permet de construire un chemin
rugueux au-dessus de Γ. L’article [16] montre en fait que l’on peut tout
définir sur le demi-plan supérieur fermé Π̄+. Le travail essentiel a été
de reformuler la théorie algébrique des chemins rugueux de M. Gubinelli,
ainsi qu’un certain nombre de lemmes techniques (dont le lemme de Garsia-
Rodemich-Rumsey) dans le demi-plan. Les lignes suivantes se réfèrent à la
version sur arXiv de l’article [16], la version publiée évitant le recours aux
chemins rugueux.

En essayant de construire une application cicatrisante Λ : Z1+

3 (Π̄+) →
Z1+

2 (Π̄+), où Z1+

3 (Π̄+) est un espace de 2-incréments 1+-Hölder définis sur
(Π̄+)3, dont la restriction à (Π+)3 doit être analytique, on se heurte à un
obstacle, à moins de rajouter une condition de continuité sous les translations
par des vecteurs purement imaginaires près du bord du demi-plan supérieur,
reliant de manière plus précise le comportement de ces fonctions sur Π+ à
celui sur R. On a choisi dans [16] de considérer le sous-espace Z1+

3 (Π̄+) des 2-
incréments dont la norme β-multiparamétrique sur tout ouvert relativement
compact U ⊂ Π̄+

||h||
Cm,β

j
:= sup

ε>0
sup

s1,s2,...,sj∈U

|hs1+iε,...,sj+iε − hs1,...,sj |
εβ

(2.45)

(ici j = 3) est finie pour un certain β > 0. Le lien entre ce type de conditions
et l’höldérianité de la valeur au bord est connu dans le cadre classique des
espaces de Hardy; par exemple, il est facile de voir (en utilisant la transfor-
mation de Fourier) que l’inégalité

∫
R
|h(t + iε) − h(t)|2 dt = O(ε2β), pour h

dans l’espace de Hardy du demi-plan supérieur, implique l’inégalité de type
Hölder

∫
R
|h(t+ε)−h(t)|2 dt = O(ε2β), ce qui motive la définition ci-dessus.

Afin de ne pas mélanger Γ et le processus conjugué Γ̄, il est nécessaire de
définir Cα

j comme un espace de fonctions α-Hölder sur Π̄+ et analytiques sur

Π+. Soit, de manière plus générale, X : Π̄+ → Cd un chemin analytique sur
Π+, α-Hölder sur Π̄+, possédant un relèvement Xn, n = 1, . . . , N = ⌊1/α⌋,
tel que Xn soit à la fois nα-Hölder et de norme || . ||Cm,α

2
finie. On peut

alors intégrer un chemin contrôlé par X au sens analytique, les hypothèses du
lemme de la couturière complexe multi-paramétrique défini ci-dessus étant
alors vérifiées.

Le brownien fractionnaire analytique entre dans ce cadre, ce qui implique
la possibilité d’intégrer des processus contrôlés analytiques contre Γ et de
résoudre localement les équations différentielles stochastiques du type

{
dzt = b(zt)dt + σ(zt)dΓt,

z0 = a ∈ Cn , t ∈ Π̄+, (2.46)

où b et σ sont des fonctions analytiques sur un voisinage de 0 dans C.

Mais de telles équations différentielles peuvent également être résolues
de manière trajectorielle sans utiliser la théorie des chemins rugueux, en se
servant simplement de déformations de contour analytiques. Un des intérêts
des calculs précédents consiste en la détermination de bornes explicites pour
les moments (cf. également fin du paragraphe §2.3.5 ci-dessus).
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2.3.4 Aire et volume de Lévy du brownien fractionnaire d’indice

> 1/4

Comme nous venons de le voir, la variance de l’aire de Lévy

Aη
ts :=

∫ t

s
dBη

x1
(1)

∫ x1

s
dBη

x2
(2) (2.47)

converge quand η → 0 si et seulement si α > 1/4. On a en fait la formule
exacte suivante:

Lemme 2.8 Soit

V(η1, η2)t = E

[(∫ t

0
dBη1

x1
(1)

∫ x1

0
dBη2

x2
(2)

)]2

. (2.48)

Alors:

1.

V(η1, η2)t =
1

4α(1 − 2α) cos2 πα
. Re (V+(η1, η2)t + V−(η1, η2)t),

(2.49)
où

V±(η1, η2)t =

∫ t

0
dx1

∫ t

0
dy1(−i(x1 − y1) + 2η1)

2α−2(±ix1 + 2η2)
2α

−
∫ t

0
dx1

∫ t

0
dy1(−i(x1 − y1) + 2η1)

2α−2(±i(x1 − y1) + 2η2)
2α

+O(η2α
2 ). (2.50)

2. V(η1, η2)t → Cαt4α avec

Cα =
α(2α − 1)

2

[
2Γ(2α − 1)Γ(2α + 1)

Γ(4α + 1)
+

1

(2α − 1)(4α − 1)

]
(2.51)

si η1, η2 → 0 tendent conjointement vers 0, i.e. si η1, η2 → 0 et de
plus η1/η2 → 1.

3.

∫ t

0
dx1

∫ t

0
dy1(−i(x1 − y1) + 2η1)

2α−2(−i(x1 − y1) + 2η2)
2α

= 2Re tI−(2α − 2, 2α; 0, t)(−iη1,−iη2) −
2

1 − 2α

Im
{
(−it + 2η1)

2α−1t(−it + 2η2)
2α − I−(2α − 1, 2α; 0, t)(−iη1,−iη2)

− i

2
(−it + 2η1)

2α(−it + 2η2)
2α + O(η1η2)

2α + O(η1 + η2)

}
. (2.52)

On obtient en fait des formules tout à fait explicites pour V(η1, η2)t dont
nous donnons ici les termes les plus représentatifs. L’intérêt des formules ci-
dessus va apparâıtre maintenant. Tout d’abord on a le critère de convergence
suivant:
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Lemme 2.9 Supposons qu’il existe des constantes C, C1, . . . , CI > 0 et des

couples d’exposants strictement positifs (α
(1)
i , α

(2)
i ) avec α

(1)
i + α

(2)
i = 2α,

tels que, pour tous s, t ∈ R, η1 > η2 > 0 avec |s − t| ≥ Cη1,

E
[
||Aη

t,s −Aη2
ts ||2

]
≤

I∑

i=1

Ciη
2α

(1)
i

1 |t − s|2α
(2)
i (2.53)

Alors la série
∑

j≥1

(
Aj−β

t,s −A(j+1)−β

t,s

)
converge p.s. au sens de la

norme des q/2-variations si 2β(α − 1/q) > 1 et βα
(1)
i > 1, i = 1, . . . , I.

Par conséquent, l’aire de Lévy régularisée Aη
ts converge au sens de la norme

des q/2-variations lorsque η → 0.

Sous ces conditions, on obtient donc par passage à la limite un chemin
rugueux au-dessus de B lorsque α > 1/3. Maintenant, un calcul élémentaire
donne la variance de Aη1

t,0 − Aη2
t,0 comme une somme de termes qui sont

de toute évidence de la forme (2.53) ci-dessus, plus des termes de seconde
variation,

W±(η1, η2)t = V±(η1, η1)t − 2V±(η1,
η1 + η2

2
)t + V±(η1, η2)t (2.54)

qu’on peut estimer facilement à partir de l’expression ci-dessus de V± à l’aide
de fonctions puissances et de fonctions hypergéométriques. On démontre

alors l’existence d’exposants (α
(1)
i , α

(2)
i ) comme ci-dessus, d’où le résultat.

Les calculs ci-dessus s’étendent sans difficultés majeures au cas des vol-
umes (intégrales itérées d’ordre 3), et un mélange de calculs explicites et
d’estimations donnent la convergence de ces volumes au sens de la norme
des q/3-variations lorsque α > 1/4 et qα > 1. On a ainsi construit un
chemin rugueux au-dessus de B pour tout α > 1/4.

2.3.5 Résolution approchée d’équations différentielles stochas-

tiques

Bien que l’approximation analytique de B ait été conçue comme substitut
aux interpolations linéaires par morceaux, elle peut également s’avérer utile
lorsqu’on s’intéresse à la convergence de schémas numériques. La question
générale est la suivante. On considère une équation différentielle stochas-
tique dirigée par un brownien fractionnaire d-dimensionnel,

dYt =

d∑

j=1

Vj(Yt)dBt(j), Y0 = y0 ∈ Rn (2.55)

où les champs de vecteurs Vj : Rn → Rn sont suffisamment réguliers. Pour
simuler cette équation, on utilise un schéma numérique d’Euler d’ordre
N = ⌊1/α⌋ comme défini par exemple dans [98], chapitre X. Rappelons
la définition. Soit B un chemin rugueux au-dessus de B (dans la suite, on
supposera que α > 1/4 et que B est le chemin rugueux obtenu – comme
dans le paragraphe précédent – comme limite du chemin rugueux canonique
au-dessus de l’approximation analytique de B), et D := {0 = t0 < . . . <
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tn = T} une partition de [0, T ] en n sous-intervalles. Alors la solution ap-
prochée de (2.55) par le schéma d’Euler de rang N sur la partition D se
définit récursivement comme

yEuler;D
tk

:= E
Btk,tk−1
σ ◦ . . . ◦ E

Bt1,t0
σ (y0) (2.56)

où

E
Bt,s
σ (y) := y +

N∑

j=1

∑

1≤i1,...,ij≤d

[
Vi1 . . . Vij .Id

]
(y) . Bj

ts(i1, . . . , ij), (2.57)

Vi1 . . . Vij étant vu comme produit de champs de vecteurs agissant en fin
de compte sur la fonction identité Id : y 7→ y. Si α > 1/2 (de sorte que
N = 1) il s’agit tout simplement du schéma d’Euler usuel; si α ∈ [1/3, 1/2],
on l’appelle aussi schéma de Milstein. On peut montrer qu’il converge vers
l’unique solution au sens des chemins rugueux définie par T. Lyons. Les
critères généraux permettent d’obtenir l’existence et l’unicité globale de la
solution dans le cas où σ est bornée, ainsi que toutes ses dérivées partielles
d’ordre ≤ N (une condition de type Lipschitz sur les dérivées d’ordre N − 1
suffit). Supposons α > 1/3 et utilisons le schéma de Milstein. On sait alors

montrer que l’erreur sup0≤k≤n |ytk −yEuler;D
tk

| est en O
((

1
n

)3α−1
)

si tk = kT
n ,

0 ≤ k ≤ n est la subdivision régulière de [0, T ]. Seulement, pour des raisons
pratiques (la loi de l’aire de Lévy étant inconnue), il est plus judicieux de
remplacer l’aire de Lévy

Ats =

∫ t

s
(Bu(j) − Bs(j))dBu(i), i 6= j (2.58)

par son approximation par le schéma d’intégration d’Euler,

An
t,s :=

n−1∑

k=0

(
Bs+ k

n
(t−s)(j) − Bs(j)

) (
Bs+ k+1

n
(t−s)(i) − Bs+ k

n
(t−s)(i)

)
,

(2.59)
qui est, elle, facilement simulable. On obtient alors le résultat suivant pour
l’erreur Errn

t,s := At,s −An
t,s:

Lemme 2.10 Il existe des constantes c1(α), c2(α), c3(α) (connues explicite-
ment) telles que

E|Errn
t,s|2 =





c1 · (t − s)4α · n−4α+1 + o(n−4α+1) si α ∈]1/4, 1/2[,
c2 · (t − s)4α · n−4α+1 + o(n−4α+1) si α ∈]1/2, 3/4[,

9
128 · (t − s)4α · log(n)n−2 + o(log(n)n−2) si α = 3/4,

c3 · (t − s)4α · n−2 + o(n−2) si α ∈]3/4, 1[.
(2.60)

Théorème 2.1 (théorèmes limite pour l’erreur du schéma d’Euler)
Soit Z une variable aléatoire de loi normale centrée réduite. Alors:

1. Cas 1/4 < α ≤ 3/4: on a les théorèmes centraux limite suivants:

lim
n→∞

n2α−1/2 Errn
t,s

(d)
=

{ √
c1(t − s)2α · Z si α ∈]1/4, 1/2[,√
c2(t − s)2α · Z si α ∈]1/2, 3/4[

(2.61)
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et

lim
n→∞

n(log(n))−1/2 Errn
t,s

(d)
=

3

4
√

8
(t − s)2α · Z

si α = 3/4.

2. Cas α > 3/4: soient R1 et R2 deux processus de Rosenblatt indépendants.
Alors il existe une constante c4(α) telle que

lim
n→∞

n Errn
t,s

(d)
=

√
2c4(t − s)2α · (R1 − R2).

Les prcessus de Rosenblatt sont des processus dans le chaos d’ordre 2
du mouvement brownien que nous ne définirons pas ici. Le changement de
comportement autour de la valeur α = 3/4 est classique et a également été
observé pour des variations quadratiques à poids du brownien fractionnaire
unidimensionnel par exemple [116]. Esquissons la preuve du théorème dans
le cas α < 3/4, où l’on obtient un théorème central limite. Elle repose sur
la proposition suivante:

Proposition 2.11 [119]

Soit p ≥ 1, et (Zn; n ≥ 1) une suite de variables aléatoires centrées
appartenant au p-ème chaos d’un processus gaussien donné. Supposons que
EZ2

n →n→∞ 1. Alors Zn converge en loi vers une variable gaussienne centrée
si et seulement si

EZ4
n →n→∞ 3. (2.62)

Remarquons que EZ4 = 3 si Z est une variable gaussienne centrée
réduite. Ce théorème est l’un des nombreux critères donnés dans une série
d’articles [118, 119, 121] dûs à D. Nualart, G. Peccati et coauteurs, montrant
la convergence d’une suite de variables aléatoires dans un chaos gaussien fixé
vers une gaussienne (ou, sous certains critères de tension, d’une suite de pro-
cessus vers le brownien) sous des conditions portant sur le 4e moment, ou sur
la dérivée de Malliavin des (Zn) par exemple. Ces critères sont à peu près
équivalents à l’usage, en tout cas pour l’application que nous en faisons. Il
est pratique d’interpréter la condition (2.62) en termes de diagrammes con-
nexes (le mot provient de l’analyse des graphes de Feynman). Considérons
pour fixer les idées E (Aη

ts)
4
. On a

E (At,s(η))4 =
4∏

j=1

(∫ t

s
dxj

∫ xj

s
dyj

)
F η(x1, . . . , x4; 1)F η(y1, . . . , y4; 2),

(2.63)

où par définition F η(z1, . . . , z4; i) = E
[∏4

j=1(B
η
zj (i))

′
]
. La formule de Wick

pour F η(x1, . . . , x4; 1)F η(y1, . . . , y4; 2) donne 9 termes différents correspon-
dant aux 3 × 3 appariements (“pairings”) possibles des (xj) d’un côté, et
des (yj) de l’autre. A chacun de ces termes correspond un diagramme à
4 sommets, (1, . . . , 4), comme suit: on convient de relier i à j par une
ligne continue, resp. en pointillés si xi et xj , resp. yi et yj , sont appariés.
On trouve 6 diagrammes connexes, donnant une contribution à EAire4

t,s(η)

notée E
[
(At,s(η))4

]
(c)

, (c) pour “connexe” (en d’autres termes, il s’agit en

fait du cumulant d’ordre 4). La condition (2.62) est alors équivalente à la
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condition: E[(At,s(η))4](c) →η→0 0. Cette dernière condition se démontre
en partie par des arguments élémentaires, et en partie en utilisant le lemme
2.4.

Dans un autre ordre d’idées, on considère dans [25] les équations différentielles
linéaires dirigées par le brownien fractionnaire analytique Γ. La solution (Yt)
est obtenue comme limite de la somme (2.57) quand N → ∞ (appelée: série
de Chen). On démontre la convergence de la série grâce aux estimées suiv-
antes sur les intégrales itérées de Γ:

Lemme 2.12 Il existe C > 0 tel que, pour tout n ≥ 1 et s, t ∈ Π̄+,

VarΓn
ts(i1, . . . , in) ≤ C (C|t−s|)2nα

n! .

Corollaire 2.13 Les moments de tous ordres de la solution (Yt) de l’équation
dYt =

∑d
j=1 Vj(Yt)dΓt(j), où les champs de vecteurs V1, . . . , Vd sont linéaires,

sont finis; plus précisément, pour tout p ∈ N∗, il existe Cp tel que E|Yt −
Ys|2p ≤ (Cp|t − s|)2pα.

Ce résultat étend des résultats analogues obtenus pour le brownien frac-
tionnaire usuel B d’indice α > 1

2 [115]. Nous conjecturons (sur la base de

calculs préliminaires) que VarBn
ts(i1, . . . , in) ≤ (C|t−s|)2nα

Γ(2nα) si α ∈]1/4, 1/2[
pour le chemin rugueux au-dessus de B obtenu par l’approximation analy-
tique, ce qui permettrait d’étendre le corollaire ci-dessus à ce cadre.

2.3.6 Théorème central limite pour l’aire de Lévy renor-

malisée

On suppose dans ce paragraphe α < 1/4. On définit Ãη
ts = η

1
2
(1−4α)Aη

ts; à
peu de choses près (cf. §2.3.2) il s’agit de la réduite de l’aire de Lévy. On a
alors:

Théorème 2.2 (Théorème central limite) Le processus (Bη(1), Bη(2), Ãη)
converge en loi vers (B(1), B(2),

√
Cirr,1δW ), où δWts := Wt −Ws sont les

incréments d’un brownien standard unidimensionnel indépendant de B(1)
et B(2).

Esquissons la démonstration. Elle comporte plusieurs étapes:

1. Soit φ
(c)
t,0(η; λ) := log E[eiλAt,0(η)] le log-cumulant de Aη

t,0. Comme

dans le paragraphe précédent, on peut représenter φ
(c)
t,0 à l’aide de

diagrammes connexes, qui sont ici des lignes polygonales fermées à 2n
arêtes alternativement continues et en pointillés; le calcul donne

φ
(c)
t,0(η; λ) =

∑

N≥1

(−1)N φ
(c)
2N (η; 0, t)

2N
λ2N ,

où

φ
(c)
2N (η; 0, t) =

∫ t

0
dx1 . . .

∫ t

0
dx2N [Kη(x1, x2)K

′
η(x2, x3) . . . Kη(x2N−1, x2N )]K ′

η(x2N , x1)
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et Kη(x1, x2) = EBη
x1B

η
x2 ,

K ′
η(x1, x2) := 2Re K

′,±
η (x1, x2) = 2Re cα(±i(x1 − x2) + η)2α−2.

2. En itérant le Lemme 2.5, il sort des fonctions analytiques (avec des
singularités de type puissance aux extrémités des intervalles seule-
ment), plus un seul terme multiforme non analytique, qui s’écrit (après
intégration) Cirr,N tη4Nα−1 (la constante Cirr,N peut se calculer ex-
plicitement).

3. Comme nous venons de le dire, les autres termes dans φ
(c)
2N sont analy-

tiques, mais avec des singularités de type puissance en certains points,
dont il faut calculer les exposants. En principe, ils s’obtiennent grâce
au Lemme 2.4. En fait (convenant d’intégrer successivement par rap-
port aux variables x2N−1, x2N−2, . . . , x1 et finalement x2N ) la vari-
able b := x2N ainsi que η restent comme paramètres dans les calculs,
et le comportement des intégrales itérées s’obtient sur des domaines
dépendant de la position de ces deux paramètres, ce qui complique
sérieusement les calculs.

Pour faire court (et en simplifiant un peu), disons que les opérateurs

de convolution K
′,±
[0,t](η) préservent un espace de fonctions

f(η, b, t; u) := fb(η, b, t; u) + fη(η, b, t; u) (2.64)

dites analytiques admissibles. La fonction fb s’écrit comme une somme
(finie) de termes du type bBuUF (u

b , η
b ) sur chacun des trois domaines

(0 < |u| < 2|b|/3), (|b|/3 < |u| < 3|b|), (2|b| < |u|) séparément, les fonc-
tions F étant holomorphes et bornées. De manière similaire, la fonc-
tion fη s’écrit comme une somme de termes du type ηHbBuUF (u

η , η
b , b

t )

ou ηHbBuUF (u
t ,

η
b , b

t ) sur chacun des quatre domaines (0 < |u| <
3η), (2η < |u| < 2t/3), (2η < |t − u| < 2t/3), (0 < |t − u| < 3η)
séparément.

Le plus compliqué est de définir précisément ces domaines. Une
généralisation du lemme 2.4 permet d’obtenir les exposants singuliers

de type H, B, U de K
′,±
[0,t](η)f ou K∗,±

[0,t](η)f en fonction de ceux de f , et
de vérifier que tous ces termes analytiques donnent en fin de compte
des termes réguliers en O(1) + O(η2α).

On trouve donc finalement: φ
(c)
2N (η; t) = Cirr,N tη4Nα−1 +Creg,N t4Nα +

O(η2α).

4. Des arguments de type combinatoire (inverses de ceux du point 1.)
donnent facilement:

E[(Aη
t0)

2N
] = (2N − 1)!!CN

irr,1t
Nη(4α−1)N (1 + O(η1−4α)).

5. On montre que les moments de tous ordres des distributions finies
de Ãη et Bη convergent vers ceux de δW et B. L’idée ici, notam-
ment, est que les diagrammes connexes provenant de l’évaluation de
E[Aη

t1,s1
. . .Aη

t2N ,s2N
] sont réguliers lorsque [s1, t1]∩ . . .∩ [s2N , t2N ] = ∅.

(Plus précisément, leur partie singulière est proportionnelle dans le cas
général à tη4Nα−1 multiplié par la mesure de Lebesgue de l’intersection
[s1, t1] ∩ . . . ∩ [s2N , t2N ]).
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6. Des arguments de nature probabiliste (tension) impliquent la conver-
gence en loi des processus.

Il est à remarquer que nous n’avons pas fait appel ici aux critères gaussiens
de convergence de type théorème central limite mentionnés plus haut (cf.
Proposition 2.11). Si l’on s’était restreint à l’étude du 4e moment, l’étape 3
(la plus pénible en pratique) aurait été plus courte, mais le schéma général
moins clair. Mentionnons d’ailleurs ici qu’une démonstration beaucoup plus
courte du Théorème 2.2 a été trouvée ultérieurement [91] en utilisant les
critères de Nualart, Peccati et al. L’objectif dans l’article [18] (au-delà
du théorème central limite) était aussi et peut-être surtout de montrer la
puissance de l’outil analytique et de le développer suffisamment pour des
applications ultérieures. De fait, il a été utilisé dans l’article ci-dessus [22],
mais aussi d’ores et déjà dans [93].

2.4 Construction de chemins rugueux par ordre

normal de Fourier

L’article [23] – reformulé de manière plus algébrique dans [26] – donne
une approche générale pour construire des chemins rugueux au-dessus d’un
chemin α-Hölder Γt = (Γt(1), . . . ,Γt(d)), avec α ∈]0, 1[ quelconque; l’article
[21] – présenté sommairement dans [24] – montre comment cette approche
permet de construire un chemin rugueux au-dessus du brownien fraction-
naire d’indice de Hurst quelconque. La construction repose sur un algo-
rithme combinatoire appelé mise en ordre normal de Fourier. A l’origine,
elle partait du constat que des estimées Hölder s’obtiennent de manière na-
turelle en Fourier, à condition de décomposer le domaine d’intégration en
secteurs coniques sur lesquels les coordonnées de Fourier sont ordonnées.
Au moins pour les intégrales itérées d’ordre le plus bas, il est apparu claire-
ment qu’en recombinant des intégrales itérées régularisées définies sur chaque
secteur, on obtenait une quantité finie satisfaisant les propriétés algébriques
(Chen et shuffle) demandées. En fait, la mise en ordre normal de Fourier
permet en toute généralité de séparer le problème de construction de chemins
rugueux en deux problèmes de nature totalement différente:

– le premier consiste à régulariser les intégrales itérées arborescentes
ou plus précisément les intégrales squelettes arborescentes – restreintes aux
secteurs de Fourier mentionnés ci-dessus –, qui sont des extensions combi-
natoires naturelles des intégrales itérées ordinaires, indexées par des arbres;

– le second consiste à montrer qu’on peut reconstruire de manière canon-
ique un chemin rugueux à partir de ces intégrales régularisées sur chaque
secteur, également appelées données d’arbres (“tree data”).

L’algorithme de mise en ordre normal de Fourier, explicité plus loin
(cf. Théorème 2.28) permet en fait de construire tous les chemins rugueux
formels au-dessus de Γ, i.e. toutes les fonctionnelles Γ vérifiant les pro-
priétés de Chen et de shuffle, mais pas nécessairement les conditions de
régularité Hölder. En ce sens il apparâıt clairement que le problème ini-
tial est extrêmement sous-déterminé, et la question se pose de savoir quels
sont les relèvements les plus ”naturels” ou avec les “meilleures” propriétés.
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Nous espérons être en mesure de répondre à cette question très bientôt
dans le cas des champs gaussiens fractionnaires à l’aide de la construction
physique évoquée dans l’Introduction générale. La prépublication [28] donne
également une construction naturelle par renormalisation des intégrales squelettes
du mouvement brownien fractionnaire; les résultats sont évoqués à la fin de
cette section. Néanmoins, nous nous concentrons dans ce mémoire sur les
résultats déjà acceptés, à savoir l’algorithme combinatoire de mise en ordre
normal de Fourier, et la régularisation dite régularisation de domaine. Bien
qu’un peu arbitraire, celle-ci a l’avantage d’être élémentaire et de ne pas
faire appel aux outils de la théorie des champs ou de la renormalisation.

Nous commencerons par un exemple assez élémentaire mais permettant
déjà d’entrevoir la combinatoire à l’oeuvre, ainsi que de comprendre com-
ment fonctionne la régularisation de domaine: l’aire de Lévy du brownien
fractionnaire (§2.4.1). La sous-section 2.4.2 est consacrée à l’algorithme
de mise en ordre normal de Fourier dans le cas général. La régularisation
de domaine est introduite en §2.4.3. Finalement, la renormalisation des
intégrales squelettes et l’approche du calcul stochastique pour le brownien
fractionnaire à l’aide de la théorie constructive des champs, renvoyant resp.
aux preprints [28] et [27], sont évoquées brièvement en §2.4.4 et §2.4.5.

2.4.1 Aire de Lévy régularisée du brownien fractionnaire

Rappelons que les chemins rugueux obtenus par relèvement canonique des
approximations (linéaire par morceaux ou analytique) du brownien frac-
tionnaire ne permettent d’obtenir à la limite une aire de Lévy pour B que
lorsque α > 1/4. Le but dans cette section est d’expliciter – dans le cas
du brownien fractionnaire – une méthode générale de régularisation, dite
régularisation par ordre normal de Fourier, introduite en [21] et [23]. Nous
utiliserons pour l’exposition l’approximation analytique de B. L’équation
(2.20) implique l’écriture suivante:

Γ′
t+i η

2
=

√
cα

∫ +∞

0
e−ηξ/2eitξ|ξ| 12−αW (dξ), (2.65)

et donc

(Bη
t )′ =

√
cα

∫ +∞

−∞
e−η|ξ|/2eitξ|ξ| 12−αW (dξ), (2.66)

où W (dξ) est un bruit blanc complexe, obtenu en considérant un brownien
complexe (W (ξ), ξ ≥ 0) indexé par R+, et son conjugué W (−ξ) = W (ξ).

On trouve en intégrant

Bη
t =

√
cα

∫ +∞

−∞
e−η|ξ|/2 eitξ − 1

iξ
|ξ| 12−αW (dξ), (2.67)

ce qui redonne la représentation harmonisable bien connue du mouvement
brownien fractionnaire lorsque η → 0.

Rappelons maintenant une remarque essentielle, à laquelle il a été fait
allusion lors de la présentation générale du chapitre 1: soit x = (δx,x2)

1On notera de manière générale δyts := yt − ys les incréments d’une fonction d’une
variable y : R → Rd (cf. présentation générale du chapitre).
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un chemin rugueux au-dessus d’un chemin x d-dimensionnel de régularité
Hölder α ∈]13 , 1

2 ], et h(i, j) = −h(j, i), 1 ≤ i, j ≤ d des fonctions 2α-Hölder.
Alors (δx,x2(i, j) − δh(i, j)) est également un chemin rugueux. Autrement
dit, on préserve la propriété de Chen en retirant un incrément. La portée de
cette remarque s’étend en fait de manière considérable, comme nous allons
le voir peu à peu. L’idée dans ce paragraphe est de définir des fonctions
h(i, j)η = −h(j, i)η, régulières pour tout η > 0, telles que l’aire de Lévy
régularisée RB2,η(i, j) := B2,η(i, j)−δhη(i, j) converge en norme 2α-Hölder
lorsque η → 0+. Ces fonctions peuvent s’interpréter comme des contre-
termes par analogie avec la renormalisation des graphes de Feynman.

Nous allons pour cela décomposer

Aη
ts := B2,η

ts (1, 2) =

∫ t

s
(Bη)′u1

(1)du1

∫ u1

s
(Bη)′u2

(2)du2 (2.68)

en somme de deux termes: un terme de bord, noté Aη
ts(∂), et un incrément

δGη
ts. L’idée näıve consiste à décomposer Aη

ts en

Aη
ts = −(Bη

t (1) − Bη
s (1)).Bη

s (2) +

∫ t

s
(Bη)′u1

(1) . Bη
u1

(2) du1. (2.69)

Le deuxième terme est un incrément qui diverge quand η → 0 si α ≤ 1/4;
mais comme nous venons de le voir, nous pouvons le retirer. Néanmoins
cette idée ne marche pas car le premier terme n’est que α-Hölder. Nous
allons modifier cette décomposition à l’aide des deux outils suivants.

Définition 2.14 (Intégration formelle) On note:
∫ t

eiξxdx := eiξt

iξ .

L’intérêt de cette définition est que chaque intégration formelle produit
un facteur de convergence en 1/|ξ|, contrairement au cas de l’intégrale définie∫ t
s0

où s0 ∈ R est fixé. D’une certaine manière, la primitive formelle
∫ t

eiξxdx

peut se comprendre comme l’intégrale définie
∫ t
±i∞ eiξxdx, ou encore comme

lims0→±∞
∫ t
s0

eiξxdx au sens des distributions.

Définition 2.15 (Projecteurs de Fourier) Si f1, f2 ∈ S (l’espace de Schwartz
des fonctions f : R → R à décroissance rapide), on pose

P+
1,2(f1 ⊗ f2)(x1, x2) =

∫ ∫

|ξ1|≤|ξ2|
dξ1 dξ2f̂1(ξ1)f̂2(ξ2)e

i(x1ξ1+x2ξ2) (2.70)

et

P−
1,2(f1 ⊗ f2)(x1, x2) =

∫ ∫

|ξ1|≥|ξ2|
dξ1 dξ2f̂1(ξ1)f̂2(ξ2)e

i(x1ξ1+x2ξ2). (2.71)

La définition ci-dessus s’étend facilement au produit tensoriel complété,
et on peut donc définir P+

1,2Aη
ts.

L’idée clé de la régularisation par ordre normal de Fourier est de définir
de deux manières différentes la décomposition en termes de bord/incrément
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de P+
1,2Aη

ts, resp. P−
1,2Aη

ts en utilisant le théorème de Fubini: on part des
formules

P+
1,2Aη

ts = P+
1,2

∫ t

s
(Bη)′u1

(1)du1

∫ u1

s
(Bη)′u2

(2)du2,

P−
1,2Aη

ts = P−
1,2

∫ t

s
(Bη)′u2

(2)du2

∫ t

u2

(Bη)′u1
(1)du1. (2.72)

Définition 2.16 (décomposition) Soient

Aη,+
ts (∂) = −P+

1,2

∫ t

s
(Bη)′u1

(1)du1

∫ s

(Bη)′u2
(2)du2,

Gη,+
t = P+

1,2

∫ t

(Bη)′u1
(1)du1

∫ u1

(Bη)′u2
(2)du2 (2.73)

et

Aη,−
ts (∂) = P−

1,2

∫ t

s
(Bη)′u2

(2)du2

∫ t

(Bη)′u1
(1)du1,

Gη,−
t = −P−

1,2

∫ t

(Bη)′u2
(2)du2

∫ u2

(Bη)′u1
(1)du1. (2.74)

On a bien: P+
1,2Aη = Aη,+(∂) + δGη,+, P−

1,2Aη = Aη,−(∂) + δGη,− et

Aη = P+
1,2Aη +P−

1,2Aη. Les termes Gη,± sont des cas particuliers d’intégrales
squelettes, comme nous le verrons dans les paragraphes suivants.

Etudions séparément les deux termes Aη,+(∂) et Gη,+ (les deux autres
termes se traitent de manière identique par symétrie).

1. Terme de bord

On calcule:

Aη,+
ts (∂) = −cαδ

[
u 7→

∫
dWξ1(1)|ξ1|−

1
2
−αeiuξ1−η|ξ1|/2

∫

|ξ2|≥|ξ1|
dWξ2(2)|ξ2|−

1
2
−αeisξ2−η|ξ2|/2

]

ts

(2.75)

On notera de manière générale f . g s’il existe une constante C telle
que f ≤ Cg, f et g étant des fonctions d’un nombre arbitraire de variables.

Lemme 2.17 Soit F (u) =
∫

dWξe
iuξa(ξ) avec |a(ξ)|2 . |ξ|−1−2β, 0 < β <

1
2 : alors

E|F (u1) − F (u2)|2 . |u1 − u2|2β . (2.76)

Démonstration: On coupe l’intégrale
∫

R
en

∫

[− 1
|u1−u2|

, 1
|u1−u2|

]
+

∫

R\[− 1
|u1−u2|

, 1
|u1−u2|

]
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et on majore |eiu1ξ − eiu2ξ| par |u1 − u2||ξ| sur le premier intervalle et par 2
sur le second. 2

Les arguments standard déjà évoqués permettent d’en déduire que F est
β−-Hölder.

En prenant une variance partielle par rapport à ξ2 de Aη,+
ts (∂), on se

ramène au lemme ci-dessus avec |a(ξ1)|2 . |ξ1|−1−4α. Par conséquent, uni-
formément en s et en η,

E|Aη,+
ts (∂)|2 . |t − s|4α (2.77)

Le terme de bord ne nécessite donc pas de régularisation et nous poserons
simplement: RAη,±(∂) = Aη,±(∂).

2. Terme d’incrément G

On trouve par calcul direct

Gη,+
t = cα

∫
dWξ1(1)

|ξ1|
1
2
−α

ξ1 + ξ2
eitξ1−η|ξ1|/2 .

∫

|ξ2|≥|ξ1|
dWξ2(2)|ξ2|−

1
2
−αeitξ2−η|ξ2|/2.

On effectue le changement de variables: (ξ1, ξ2) 7→ (ξ1, ξ = ξ1 + ξ2). En
prenant une variance partielle par rapport à ξ1, on se ramène encore une fois
au lemme 2.17 avec |a(ξ)|2 . 1

ξ2

∫
|ξ−ξ1|>|ξ|/2 |ξ1|1−2α|ξ − ξ1|−1−2αdξ1 (faire

un dessin), avec une divergence possible quand |ξ1| → ∞.

Si α > 1/4, alors |a(ξ)|2 . |ξ|−1−4α, et donc δGη,+ vérifie lui aussi
l’estimée (2.77). En revanche, |a(ξ)|2 diverge quand η → 0 si α ≤ 1/4
(on retrouve bien entendu la barrière habituelle en α = 1/4). Seulement,
comme δG est un incrément, on peut le retirer à la manière d’un contre-
terme (cf. remarque initiale de ce paragraphe); on obtient de la sorte un
chemin rugueux tronqué à l’ordre 2 pour α quelconque. Néanmoins, nous
allons utiliser une régularisation moins brutale.

Définition 2.18 (Régularisation de domaine) Soit

RGη,+
t = cα

∫

R
2,+
reg

dWξ1(1)dWξ2(2)
|ξ1|

1
2
−α

ξ1 + ξ2
eitξ1−η|ξ1|/2 . |ξ2|−

1
2
−αeitξ2−η|ξ2|/2

où

R2,+
reg := {(ξ1, ξ2) ∈ R2 | |ξ1| ≤ |ξ2|, |ξ1 + ξ2| > Creg|ξ2|}, Creg ∈]0, 1[.

(2.78)

Autrement dit, seules les composantes de Fourier “proches” de l’antidiagonale
ξ1 = −ξ2 jouent dans cette approche le rôle de contre-terme.

Théorème 2.3 Pour tout α ∈]0, 1[, l’aire régularisée

RAη
ts =

(
RAη,+

ts (∂) + [δRGη,+]ts

)
+

(
RAη,−

ts (∂) + [δRGη,−]ts

)
(2.79)

vérifie les deux estimées suivantes:
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1. VarRAη
ts . |t − s|4α;

2. Var (RAη1
ts −RAη2

ts ) . |η1 − η2|2α.

Corollaire 2.19 Pour tout κ < α, le chemin rugueux (δBη
ts(1), δBη

ts(2),RAη
ts)

converge dans L2(Ω; Cκ
2 ([0, T ]) × Cκ

2 ([0, T ]) × C2κ
2 ([0, T ])) vers un chemin

rugueux (δB,B2) tronqué à l’ordre 2.

Remarquons que l’aire de Lévy du brownien fractionnaire analytique
Γt (cf. eq. (2.65)) ne nécessite pas de régularisation puisque la condition
(2.78) |ξ1 + ξ2| > Creg|ξ2| définissant R2,+ est toujours vérifiée si ξ1 et ξ2

sont de même signe. Les contre-termes à tous ordres de la procédure de
régularisation de domaine sont alors tous nuls, ce qui est cohérent avec le
fait que le relèvement canonique de Γη

t := Γt+iη/2 converge au sens des
chemins rugueux quand η → 0 (cf. §2.3.3).

2.4.2 L’algorithme de mise en ordre normal de Fourier

A. Structures combinatoires

Nous commençons par montrer comment coder les intégrales itérées par
des arbres. L’algèbre de la définition ci-dessous est aussi connue sous le nom
d’algèbre de Connes et Kreimer [87, 88, 89].

Définition 2.20 (algèbre de Hopf des arbres décorés enracinés) 1.
Un arbre décoré enraciné T est un arbre avec un sommet distingué
appelé racine (dessiné en montant de la racine aux feuilles), muni
d’une décoration ℓ = (ℓ(v))v∈V (T) pour chaque sommet, V (T) étant
l’ensemble de ses sommets. Les décorations sont supposées à valeurs
dans {1, . . . , d}. L’ensemble des arbres est noté T . Le produit com-
mutatif T1.T2 de deux arbres donne la forêt avec deux composantes
connexes, T1 et T2. L’algèbre sur R engendrée par les arbres est notée
H, le sous-espace vectoriel engendré par les forêts avec n sommets,
H(n). L’arbre vide, élément unité de H, est noté 1.

2. Si w est un descendant de v (i.e. w est au-dessus de v) on écrit
w ։ v. On dit que v et w sont connectés si w = v, w ։ v ou
v ։ w. Un ensemble de sommets v ⊂ V (T) est dit coupure admissible
si deux éléments v 6= w de v ne sont jamais connectés; on écrit alors
v |= V (T), et on définit Roov(T) comme la sous-forêt de sommets
{w ∈ V (T); ∃v ∈ v, v ։ w}, alors que Leav(T) est la sous-forêt
d’ensemble de sommets complémentaire V (T) \ V (Roov(T)). Si T est
un arbre alors Roov(T) également.

3. Posons
∆(T) =

∑

v|=V (T)

RoovT ⊗ LeavT. (2.80)

Par exemple,

∆( q∨qq

a

cb

) = 1⊗ q∨qq

a

cb

+ q∨qq

a

cb ⊗ 1+ q

q

a
b ⊗ q c + q

q

a
c ⊗ q b + qa ⊗ q b · q c . (2.81)

Alors H munie du coproduit ∆ est une bigèbre.
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4. H a une unique antipode S̄, définie par récurrence par

S̄(1) = 1, S̄(T) = −T −
∑

v|=V (T),v6=∅
RoovT · S̄(LeavT). (2.82)

Rappelons que l’antipode joue le rôle d’inverse pour la convolution: si
f, g sont deux formes linéaires sur H, on définit

f ∗ g(T) =
∑

v|=V (T)

f(RoovT)g(LeavT). (2.83)

Alors f ∗ (f ◦ S̄) est l’identité pour la convolution, i.e. f ∗ (f ◦ S̄)(1) = 1,
f ∗ (f ◦ S̄)(T) = 0 pour toute forêt T.

Définition 2.21 (algèbre de shuffle) 1. Soit Sh l’algèbre de shuffle
avec décorations dans {1, . . . , d}, i.e. l’ensemble des mots (i1 . . . in),
i1, . . . , in ∈ {1, . . . , d}, muni du produit de shuffle, cf. éq. (2.5),

(i1 . . . in1) ⋔ (j1 . . . jn2) =
∑

k∈Sh(i,j)

(k1 . . . kn1+n2). (2.84)

Un élément de Sh se représente naturellement comme un arbre tronc
décoré par ℓ = (ℓ(1), . . . , ℓ(n)) de la racine jusqu’en haut. Par exem-

ple, (i1i2i3) = q

q

q

i1
i2
i3

a pour décorations ℓ(j) = ij, j = 1, 2, 3.

2. Sh munie de la restriction du coproduit ∆ de H aux arbres troncs et
de l’antipode S((i1 . . . in)) = −(in . . . i1) est une algèbre de Hopf. On
a la formule suivante: ∆((i1 . . . in)) =

∑n
k=0(i1 . . . ik) ⊗ (ik+1 . . . in).

On peut voir Sh comme une sous-cogèbre de H puisque les arbres troncs
sont des arbres, et que la restriction de ∆H à Sh cöıncide avec ∆Sh; en
revanche Sh n’est pas une sous-algèbre de H. En fait, l’algèbre des arbres
décorés enracinés se projette de manière canonique sur l’algèbre de shuffle
comme suit.

Définition 2.22 (morphisme de projection θ) Soit θ : H → Sh le mor-
phisme de Hopf obtenu en associant à un arbre T la somme des arbres troncs
t avec les mêmes décorations tels que

(v ։ w dans T) ⇒ (v ։ w dans t). (2.85)

Par exemple, θ( q∨qq

a
cb
) = q

q

q

a
b
c

+ q

q

q

a
c
b

.

Soit Γ un chemin rugueux au-dessus d’un chemin Γ = (Γ(1), . . . ,Γ(d)).
On écrira pour plus de commodité Γts(i1, . . . , in) au lieu de Γn

ts(i1, . . . , in)
dans les pages qui suivent. En particulier, on notera

Its
Γ (i1, . . . , in) =

∫ t

s
dΓx1(i1)

∫ x1

s
dΓx2(i2) . . .

∫ xn−1

s
dΓxn(in) (2.86)

les intégrales itérées de Γ lorsque Γ est régulier.

Indexons Γts(i1, . . . , in) par des arbres troncs T ∈ Sh avec décoration
ℓ(j) = ij , j = 1, . . . , n. Alors les propriétés de (i) Chen et (ii) shuffle, cf. éq.
(2.4) et (2.5), sont équivalentes à
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(i)bis si T ∈ Sh est un arbre tronc,

Γts(T) =
∑

v|=V (T)

Γtu(Roov(T))Γus(Leav(T)); (2.87)

en d’autres termes, Γts = Γtu ∗Γus pour la convolution de l’algèbre de
shuffle, définie comme celle de H (cf. supra);

(ii)bis si T, T′ ∈ Sh sont des arbres troncs,

Γts(T)Γts(T′) = Γts(T ⋔ T′). (2.88)

En d’autres termes, Γts est un caractère de Sh.

Une telle fonctionnelle indexée par des arbres troncs s’étend facilement
en une fonctionnelle arborescente, i.e. indexée par des arbres T quelconques,
en posant Γ̄(T) := Γ ◦ θ(T). Comme θ est un morphisme d’algèbre de Hopf,
on obtient immédiatement les propriétés

(i)ter si T ∈ H est un arbre,

Γ̄ts(T) =
∑

v|=V (T)

Γ̄tu(Roov(T))Γ̄us(Leav(T)); (2.89)

en d’autres termes, Γ̄ts = Γ̄tu ∗ Γ̄us pour la convolution de l’algèbre
des arbres décorés;

(ii)ter si T, T′ ∈ H sont des arbres,

Γ̄ts(T)Γ̄ts(T′) = Γ̄ts(T.T′). (2.90)

En d’autres termes, Γ̄ts est un caractère de H.

Les propriétés algébriques (i), (ii) ou (i)bis, (ii)bis ou encore (i)ter, (ii)ter
sont satisfaites par les intégrales itérées usuelles Its

Γ ou leurs extensions ar-
borescentes Īts

Γ à condition que Γ soit un chemin régulier.

On peut donner une formule explicite pour les intégrales itérées arbores-
centes. Soit T un arbre (l’extension aux forêts est immédiate), indexons ses
sommets par les entiers 1, . . . , n de sorte que (i ։ j) ⇒ (i > j). Alors, si
l’on note i− l’ancêtre du sommet i dans T, on a

Īts
Γ (T) =

∫ t

s
dΓx1(ℓ(1))

∫ x2−

s
dΓx2(ℓ(2)) . . .

∫ xn−

s
dΓxn(ℓ(n)). (2.91)

Remarque. La formule (2.91) ne dépend pas du choix d’indexation des
sommets, tant que l’arbre est ordonné en tas, i.e. tant que (i ։ j) ⇒ (i > j).
Nous appelons cette invariance par réindexation la propriété d’invariance par
réindexation des intégrales itérées. Elle peut s’énoncer en disant que Īts

Γ (T)
dépend seulement de la topologie de T. Cette même propriété réapparâıt
plus loin.

Contentons-nous pour l’instant de la remarque suivante, montrant la
concision de la formulation algébrique. Supposons qu’on ait défini des
quantités Γts0(i1, . . . , in), n ≤ ⌊1/α⌋, avec s0 fixé, vérifiant la propriété
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de shuffle. Posons J ts0
Γ ((i1 . . . in)) = Γts0(i1, . . . , in) et plus généralement

J ts
Γ := J ts0

Γ ∗ (Jss0
Γ ◦ S). On a obtenu ainsi une famille de caractères de Sh,

et on vérifie très facilement la propriété (i)bis. En d’autres termes, on a
construit ainsi un chemin rugueux formel au-dessus de Γ.

B. Transformation de Fourier et intégrales squelettes

Au lieu de régulariser les intégrales itérées, Its0
Γ Ã J ts0

Γ avec s0 fixé, nous
choisissons de régulariser les intégrales squelettes SkItΓ, qui sont des ana-
logues des intégrales itérées usuelles dépendant d’un seul argument, obtenues
par transformation de Fourier.

Définition 2.23 (intégrales squelettes) Soit, pour Γ régulier à support
compact,

SkItΓ(i1 . . . in) :=

(2π)−n/2

∫

Rn

n∏

j=1

FΓ′
ξj

(ij)dξj ·
∫ t

dx1

∫ x1

dx2 . . .

∫ xn−1

dxnei(x1ξ1+...+xnξn),

(2.92)

où, par définition,
∫ x

eiyξdy = eixξ

iξ . On peut vérifier que SkItΓ est un caractère
de Sh – ou, en d’autres termes, qu’elle satisfait la propriété de shuffle–,
comme pour les intégrales itérées ordinaires.

La projection θ permet de généraliser immédiatement la définition précédente
aux intégrales squelettes arborescentes, cf. éq. (2.91),

SkI
t
Γ(T) = SkItΓ ◦ θ(T) =

∫ t

dΓx1(ℓ(1))

∫ x2−

dΓx2(ℓ(2)) . . .

∫ xn−

dΓxn(ℓ(n)).

(2.93)

Un calcul explicite donne (cf. [23], Lemme 4.5):

SkI
t
Γ(T) = (2π)−n/2

∫

Rn

n∏

j=1

FΓ′
ξj

(ℓ(j))dξj · eit(ξ1+...+ξn)

∏n
i=1[ξi +

∑
j։i ξj ]

. (2.94)

C. Mise en ordre normal de Fourier pour des chemins réguliers

Définition 2.24 (projections de Fourier et décomposition des mesures)

(i) Soit µ une mesure signée à support compact, par exemple,
µ = µ(Γ,ℓ)(dx1, . . . , dxn) := ⊗n

i=1dΓxi(ℓ(i)). Alors

µ =
∑

σ∈Σn

Pσµ =
∑

σ∈Σn

µσ ◦ σ−1, (2.95)

où
Pσ : µ 7→ F−1

(
1|ξσ(1)|≤...≤|ξσ(n)|Fµ(ξ1, . . . , ξn)

)
(2.96)

est un projecteur de Fourier, et µσ est défini par

µσ := PId(µ ◦ σ) = (Pσµ) ◦ σ. (2.97)
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L’ensemble des mesures signées dont le support de la transformée
de Fourier est inclus dans {(ξ1, . . . , ξn); |ξ1| ≤ . . . ≤ |ξn|} sera noté
PIdMes(Rn), ou, de manière plus parlante, P+Mes(Rn). Ainsi, µσ ∈
P+Mes(Rn).

(ii) Si T est un arbre à n sommets, on note

PTMes(Rn) = {µ ∈ Mes(Rn); ξ ∈ supp(Fµ) ⇒ ((v ։ w) ⇒ (|ξv| > |ξw|))} .
(2.98)

En particulier, PTMes(Rn) = P+Mes(Rn) si T est un arbre tronc.

Cette définition s’applique en particulier au cas des mesures produit
µ = µ(Γ,ℓ) = ⊗i=1,...,ndΓxi(ℓ(i)) si ℓ = (ℓ(1), . . . , ℓ(n)) est la décoration d’un
arbre tronc. Néanmoins, même si µ est une mesure produit dans ce cas,
les projections de Fourier µσ n’en sont pas. Ceci nous contraint à étendre

les définitions précédentes de Its
Γ , J ts

Γ , Īts
Γ , J̄ ts

Γ , SkItΓ, SkI
t
Γ en des caractères

indexés par des mesures, Its
µ , J ts

µ , Īts
µ , J̄ ts

µ , SkItµ, SkI
t
µ. C’est élémentaire

d’un point de vue analytique. Cependant, d’un point de vue formel, on doit
remplacer les arbres (ou forêts) décorés par des arbres (ou forêts) ordonnés
en tas 2, c’est-à-dire, des arbres non décorés mais dont les sommets sont
indexés par les entiers 1, . . . , n de sorte que

(i ։ j) ⇒ (i > j). (2.99)

D’une certaine manière, la décoration est passée de l’arbre à la mesure
puisqu’on remplace Γ par µ(Γ,ℓ); ainsi, Īts

Γ ((T, ℓ)) = Īts
µ(Γ,ℓ)

(T) si T est un
arbre ordonné en tas et ℓ une décoration de cet arbre. Par exemple,

Īts
µ (T) =

∫ t

s

∫ x2−

s
. . .

∫ xn−

s
dµ(x1, . . . , xn). (2.100)

La décomposition µ =
∑

σ∈Σn
Pσµ, µ = ⊗i=1,...,ndΓxi(ℓ(i)) est adaptée

au cas du brownien fractionnaire, mais trop brutale pour un chemin α-Hölder
quelconque. Dans ce cas-là, on tronque Γ en un chemin à support compact
inclus dans [0, T ], avec T aussi grand qu’on veut, et on utilise l’équivalence
de la norme Hölder

||Γ||Cα = sup
t∈R

||Γ(t)|| + sup
s,t∈R

||Γ(t) − Γ(s)||
|t − s|α (2.101)

avec la norme Besov [125],[23]

||Γ||Bα
∞,∞

:= sup
k∈Z

2α|k|||D(χk)Γ||∞, (2.102)

où (χk)k∈Z est une partition C∞ dyadique de l’unité, avec suppχ0 ⊂ [−2, 2],
suppχk ⊂ [2k, 5 ·2k−1], suppχ−k ⊂ [−5 ·2k−1,−2k−1] (k ≥ 1) et D(χk) : f 7→
F−1(χk · Ff) est le multiplicateur de Fourier correspondant.

On pose alors pour un arbre T à n sommets

ZT
+ := {(kv)v∈V (T) ∈ Z | (v ։ w) ⇒ (|kv| ≥ |kw|)} (2.103)

2L’algèbre formelle engendrée par les arbres ordonnés en tas est équipée naturellement
d’une structure de coproduit analogue à celle de H, qui en fait une algèbre de Hopf (non
commutative) [26].
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et

PTµ :=
∑

k∈ZT
+

1

|Σk|
[
⊗v∈V (T)D(χkv)

]
µ, (2.104)

où |Σk| = |{σ ∈ Σn; ∀j, |kσ(j)| = |kj |}| est un facteur de symétrie choisi de
sorte que la décomposition (2.95) reste vraie. Les résultats des pages suiv-
antes s’adaptent facilement dans ce cadre, modulo quelques modifications
techniques mineures dues au fait que PT n’est plus tout à fait un projecteur,
i.e. (PT)2 6= PT. 3

Nous avons vu plus haut (cf. §2.4.1) l’utilité des intégrales squelette
et de la mise en ordre normal de Fourier sur l’exemple de l’aire de Lévy du
brownien fractionnaire. Comme dans cet exemple, nous allons nous arranger
pour permuter l’ordre d’intégration à l’aide du théorème de Fubini de sorte
que les intégrales les plus intérieures (les plus à droite) portent les fréquences
de Fourier les plus élevées. C’est ce que nous appelons mettre en ordre
normal de Fourier.

Remarque. Nous avons déjà insisté (cf. remarque précédente) sur le
fait que les intégrales itérées dépendaient uniquement de la topologie de
l’arbre, ce qui signifie, lorsqu’on remplace les chemins par des mesures et les
arbres décorés par des arbres ordonnés en tas, que

Īts
µ (T) = Īts

µ◦σ(σ−1.T) (2.105)

si σ ∈ Σn est une réindexation des sommets préservant la topologie de T,
i.e. telle que

(i ։ j dans T) ⇒ (i ։ j dans σ−1(T)). (2.106)

Nous avons introduit les arbres décorés et les arbres ordonnés en tas.
Il est également possible de décorer des arbres ordonnés en tas, on obtient
encore une nouvelle algèbre de Hopf en combinant ces deux super-structures.
Cela facilite l’énoncé de la proposition suivante:

Proposition 2.25 (graphes de permutation) Soit Tn ∈ Sh un arbre
tronc avec n sommets décoré par ℓ, et σ ∈ Σn une permutation de {1, . . . , n}.
Alors il existe un unique élément Tσ de l’algèbre des arbres décorés et or-
donnés en tas, appelé graphe de permutation, se présentant comme une
somme de forêts décorées par ℓ ◦ σ, et tel que

Its
Γ (Tn) = Its

Γ (Tσ). (2.107)

Donnons un exemple. Soit Tn = q

q

q

a1

a2

a3

and σ : (1, 2, 3) → (2, 3, 1). Alors

3Pour simplifier, on peut remplacer les φk par des fonctions caractéristiques
d’intervalles; PT est alors un projecteur, mais on obtient des régularités Hölder nα−

au lieu de nα.
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Its
Γ (Tn) =

∫ t

s
dΓa1(x3)

∫ x3

s
dΓa2(x1)

∫ x1

s
dΓa3(x2)

=

∫ t

s
dΓa2(x1)

∫ x1

s
dΓa3(x2)

∫ t

x1

dΓa1(x3)

=

∫ t

s
dΓa2(x1)

∫ x1

s
dΓa3(x2)

∫ t

s
dΓa1(x3)

−
∫ t

s
dΓa2(x1)

∫ x1

s
dΓa3(x2)

∫ x1

s
dΓa1(x3)

= Its
Γ ( q

q

a2

a3
qa1

) − Its
Γ ( q∨qq

a2

a1a3 ),

donc (oubliant la structure d’ordre en tas pour ne retenir que les décorations)

Tσ = q

q

a2

a3
qa1

− q∨qq

a2

a1a3 . Remarquons que tous les graphes de permutation Tσ

avec σ fixé s’obtiennent à partir de la même somme de forêts ordonnées en tas
(également notée Tσ, par abus de notation) en superposant les décorations
de Tn permutées par σ.

Comme corollaire élémentaire de la Définition 2.24 et de la Proposition
2.25, on obtient:

Corollaire 2.26 (mise en ordre normal de Fourier pour des chemins
réguliers)

Soit Γ un chemin régulier, et Tn ∈ Sh un arbre tronc avec n sommets
décoré par ℓ, alors

Its
Γ (Tn) =

∑

σ∈Σn

Its
µσ

(Γ,ℓ)
(Tσ), (2.108)

où l’on a posé comme d’habitude µ(Γ,ℓ) = ⊗n
i=1dΓxi(ℓ(i)).

D. Ordre normal de Fourier: théorèmes algébriques

Nous en venons finalement au principal résultat algébrique de ce para-
graphe, annoncé dans l’introduction de la section 2.4.

Définition 2.27 (données d’arbres φt
T
) (i) Pour tout arbre ordonné

en tas T avec n sommets, et t ∈ R, soit φt
T

: PTMes(Rn) → R, µ 7→
φt

T
(µ) ou encore φt

µ(T), une famille de formes linéaires telle que:

(a) φt
dΓ(i)(T1) − φs

dΓ(i)(T1) = Its
Γ ( q i ) = Γt(i) − Γs(i) si T1 est l’arbre

ordonné en tas avec un seul sommet;

(b) si Ti, i = 1, 2 sont des arbres ordonnés en tas avec ni sommets,
et µi ∈ PTiMes(Rni), i = 1, 2, alors la propriété multiplicative
suivante est vérifiée,

φt
µ1

(T1)φ
t
µ2

(T2) = φt
µ1⊗µ2

(T1 ∧ T2), (2.109)

où T1∧T2 est le produit non décoré T1.T2, les indices des sommets
de T2 ayant été augmentés de n1

4;

4Le produit T1 ∧ T2 est en fait le produit (non commutatif) de l’algèbre de Hopf des
arbres ordonnés en tas [26]
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(c) (propriété d’invariance par réindexation) la condition d’invariance
suivante sous les réindexations des sommets est vérifiée, cf. (2.105),

φt
µ(T) = φt

µ◦σ(σ−1.T) (2.110)

si σ – qui agit en permutant les sommets de T – est telle que

(i ։ j dans T) ⇒ (i ։ j dans σ−1(T)). (2.111)

(ii) Soit, pour Γ = (Γ(1), . . . ,Γ(d)), χt
Γ : Sh → R la forme linéaire sur Sh

définie par

χt
Γ(Tn) :=

∑

σ∈Σn

φt
µσ

(Γ,ℓ)
(Tσ), Tn = (ℓ(1), . . . , ℓ(n)) (2.112)

où Tσ est comme dans la Proposition 2.25.

Le résultat principal est le suivant.

Proposition 2.28 (construction de chemin rugueux par ordre nor-
mal de Fourier) Soit Γ un chemin tel que χt

Γ soit bien défini. Alors χt
Γ

est un caractère de Sh.

Par conséquent, la formule suivante pour Tn ∈ Sh, n ≥ 1, avec n som-
mets et décoration ℓ,

J ts
Γ (ℓ(1), . . . , ℓ(n)) := χt

Γ ∗ (χs
Γ ◦ S̄)(Tn) (2.113)

définit un chemin rugueux formel au-dessus de Γ.

A cette définition de J utilisant la convolution de l’algèbre de shuffle
s’ajoute une autre définition équivalente utilisant la convolution de l’algèbre
des arbres,

J ts
Γ (Tn) :=

∑

σ∈Σn

(
φt ∗ (φs ◦ S̄)

)
µσ

(Γ,ℓ)

(Tσ), (2.114)

où la convolution est définie par référence au coproduit d’arbres (ordonnés
en tas), i.e.

(φt ∗ (φs ◦ S̄))ν(T) =
∑

v|=V (T)

φt
⊗v∈V (Roov T)νv

(RoovT)φs
⊗v∈V (Leav T)νv

(S̄(LeavT))

(2.115)
pour un arbre T ordonné en tas à n sommets et une mesure produit ν =
ν1 ⊗ . . . ⊗ νn, et, par extension multilinéaire,

(
φt ∗ (φs ◦ S̄)

)
ν
(T) = (2π)−n/2

∫
Fν(ξ1, . . . , ξn)dξ1 . . . dξn ·

·
∑

v|=V (T)

φt
⊗v∈V (Roov (T))e

ixvξv dxv
(RoovT)φs

⊗v∈V (Leav (T))e
ixvξv dxv

(S̄(LeavT))

(2.116)

pour une mesure quelconque ν ∈ Mes(Rn).
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Supposons provisoirement que Γ est un chemin régulier. Si l’on définit
φt comme l’intégrale squelette SkIt, on obtient de manière élémentaire en
resommant sur toutes les permutations χt

Γ = SkItΓ, et par conséquent J ts
Γ =

Its
Γ . La Proposition 2.28 montre que le même algorithme de resommation

sur les permutations produit un chemin rugueux formel au-dessus de tout
chemin α-Hölder Γ pourvu que φt satisfasse les conditions (a), (b) and (c)
de la Définition 2.27. Mieux, il s’ensuit facilement de la Définition 2.27 que
tout chemin rugueux au-dessus de Γ s’obtient de cette manière.

La démonstration originelle de la proposition ci-dessus consistait précisément
à utiliser le fait que SkItΓ est un caractère de l’algèbre de shuffle pour tout
chemin Γ régulier; on en déduit une certaine égalité entre deux éléments de
H, qui, à son tour, implique que (2.113) définit un caractère de l’algèbre
de shuffle. Dans [26], on montre en fait que Tσ est défini comme image
réciproque par un isomorphisme de Hopf noté Θ de la permutation σ−1,
vue comme élément d’une algèbre de Hopf de permutations appelée algèbre
des fonctions quasi-symétriques libres. De manière très élégante, le fait que
(2.113) soit un caractère découle alors directement du fait que Θ préserve
la structure de produit, et l’égalité entre (2.113) et (2.114) du fait que Θ
préserve la structure de coproduit.

L’énorme avantage par rapport au problème d’origine est qu’on peut
construire autant de formes linéaires φt qu’on souhaite en donnant une valeur
arbitraire à φt

µ(T), T parcourant l’ensemble des arbres (ordonnés en tas), et
en les étendant aux forêts en suivant la propriété multiplicative (b). Le
problème algébrique a ainsi été complètement résolu: les chemins rugueux
formels sont exactement caractérisés par un choix arbitraire des données
d’arbres φt

µ(T).

Il reste à choisir une définition convenable de φt conduisant à un chemin
rugueux avec les bonnes propriétés de régularité Hölder. Par comparaison
avec le cas des chemins réguliers, il est naturel de définir φt comme une
régularisation (dans un sens à définir) des intégrales squelettes. Quel que
soit le choix de φt, la démonstration de la régularité Hölder se fait en partant
de la définition de J par convolution de l’algèbre des arbres, cf éq. (2.114),
qu’on explicite de la manière suivante. Soit ν = µσ

(Γ,ℓ); supposons que T =

T1 ∧ . . . ∧ Tp soit le produit (ordonné en tas) de p arbres. Posons ν̂T′(ξ) =
⊗v∈V (T′)F(Γ′(ℓ ◦ σ(v)))(ξv)e

ixvξvdxv si T′ est un sous-arbre de T et ξ =
(ξv)v∈V (T′). Alors, la propriété multiplicative (b) pour φt donne

(φt ∗ (φs ◦ S̄))ν(T) =

(2π)−n/2

∫
dξ1 . . . dξn1|ξ1|≤...≤|ξn|

p∏

q=1

(φt ∗ (φs ◦ S̄))ν̂Tq ((ξv)v∈V (Tq))(Tq).

(2.117)
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Maintenant,

(φt ∗ (φs ◦ S̄))ν̂Tq ((ξv)v∈V (Tq))(Tq)

= φt
ν̂Tq ((ξv)v∈V (Tq))

(Tq) + φs
ν̂Tq ((ξv)v∈V (Tq))

(S̄(Tq))

+
∑

v|=V (Tq),v6=∅
φt

ν̂Roov Tq ((ξv)v∈V (Roov Tq))
(RoovTq) ·

φs
ν̂Leav Tq ((ξv)v∈V (Leav Tq))

(S̄(LeavTq))

= (φt − φs)ν̂Tq ((ξv)v∈V (Tq))(Tq)

+
∑

v|=V (Tq),v6=∅
(φt − φs)ν̂Roov Tq ((ξv)v∈V (Roov Tq))(RoovTq) ·

φs
ν̂Leav Tq ((ξv)v∈V (Leav Tq))

(S̄(LeavTq))

(2.118)

d’après (2.82).

Finalement, si l’on applique de façon répétée la définition récursive de
l’antipode, on obtient une expression de S̄(LeavTq) en termes d’une somme
de forêts obtenues par coupures multiples [88, 23]. La propriété multiplica-
tive (b) appliquée à φs permet d’exprimer (φt ∗ (φs ◦ S̄))ν̂Tq ((ξv)v∈V (Tq))(Tq)

comme une somme de termes de la forme

(φt − φs)ν̂Roov Tq ((ξv)v∈V (Roov Tq))(RoovTq)
J∏

j=1

φs
ν̂

T′
j
((ξv)v∈V (T′

j
))
(T′

j), (2.119)

avec V (Tq) = V (RoovTq) ∪ ⊎J
j=1V (T′

j).

La mesure ν étant dans P+Mes(Rn), |ξv| augmente en montant le long
des branches des arbres; en particulier, si w ։ v, w ∈ V (T′

j), v ∈ V (RoovTq),
alors |ξw| > |ξv|, ce qui permet a priori de répéter l’argument montrant la
régularité du terme de bord Aη,+

ts (∂) en §2.4.1.

2.4.3 Régularisation de domaine

Nous avons vu en §2.4.1 comment régulariser le terme d’incrément Gη,+
t en

restreignant l’intégrale en Fourier au domaine conique R
2,+
reg , cf. Définition

2.18. Dans le language que nous venons de développer, cf. alinéa B en §2.4.2,
Gη,+

t s’interprète simplement (aux exponentielles régularisantes en e−η|ξ|/2

près) comme l’intégrale squelette SkItP+µ( q

q

1
2 ) avec µ = dBη

x1(1) ⊗ dBη
x2(2).

Formellement,

SkItP+µ( q

q

1
2 ) = (2π)−1

∫
dξF(P+µ)(ξ) SkIt

eix1ξ1dx1⊗eix2ξ2dx2
( q

q

1
2 )

= (2π)−1

∫
dξF(P+µ)(ξ)

eit(ξ1+ξ2)

[iξ2][i(ξ1 + ξ2)]
. (2.120)

L’intégrale squelette régularisée, RGη,+
t , s’interprète, elle, comme φt

P+µ( q

q

1
2 )

et s’écrit comme l’équation ci-dessus en insérant la fonction caractéristique
du domaine R

2,+
reg dans l’intégrale en ξ.

Tout ceci s’étend de manière naturelle comme suit (où l’on retrouve en
particulier R

2,+
reg écrit sous la forme RT

reg, avec T = q

q

1
2 ).
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Définition 2.29 (régularisation de domaine) Soit T un arbre ordonné
en tas avec n sommets, et ν ∈ P+Mes(Rn).

1. (pour le brownien fractionnaire) On définit

RT
reg := {(ξ1, . . . , ξn) ∈ Rn | |ξ1| < . . . < |ξn| et ∀i, |ξi+

∑

j։i

ξj | > Creg sup
j։i

|ξj |}

(2.121)
et

φt
ν(T) = (2π)−n/2

∫
dξ(Fν)(ξ)1RT

reg
(ξ) · SkI

t
⊗n

i=1eixjξj dxj
(T)

= (2π)−n/2

∫
dξ(Fν)(ξ)1RT

reg
(ξ) · eit(ξ1+...+ξj)

∏n
i=1[

√
−1(ξi +

∑
j։i ξj)]

.

(2.122)

2. (pour un chemin Γ α-Hölder quelconque) On définit ZT
reg ⊂ ZT

+, cf.
(2.103), comme l’ensemble des n-uplets (kv)v∈V (T) tels que (notant
wmax(v) := max{w ∈ V (T) | w ։ v}, ou wmax(v) = v si v est une
feuille)

(i) si v < w, alors |kv| ≤ |kw|;
(ii) si v ∈ V (T) et w est une feuille au-dessus de v, et que kw.kv < 0,

alors |kv| ≤ |kw| − log2 10 − log2 |V (T)|;
(iii) si n ∈ V (T) est un noeud, alors tout sommet w ∈ {wmax(v) | v →

n} tel que kw.kwmax(n) < 0 vérifie: |kw| ≤ |kwmax(n)| − log2 10 −
log2 |V (T)|;

et l’on pose

φt
ν(T) =

∑

k∈ZT
reg

SkI
t
P{k}ν(T), (2.123)

où P{k}ν = 1
|Σk |

[
⊗v∈V (T)D(φkv)

]
(ν), cf. après (2.103) pour la définition

du facteur de symétrie |Σk|.

Remarque. L’intuition provenant du cas du brownien fractionnaire,
étudié avant le cas général, les conditions assez ad hoc du 2. assurent que
|ξv +

∑
w։v ξw| > 1

2 supw։v |ξw| si ξv ∈ suppφkv , v ∈ V (T) pour k =
(kv)v∈V (T) ∈ ZT

reg. On retrouve les conditions du 1. avec Creg = 1
2 .

Le théorème principal des articles [21] et [23] s’énonce alors ainsi.

Théorème 2.4 Soit J ts la fonctionnelle construite (cf. Proposition 2.28)
à partir des données d’arbres φt définies dans la Définition 2.29 ci-dessus.
Alors:

1. (pour le brownien fractionnaire) RBn,η
ts (i1, . . . , in) := J ts

Bη((i1 . . . in)),
n = 1, . . . , N := ⌊1/α⌋ est un chemin rugueux vivant dans le chaos
d’ordre n de B, et tel que:
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(i) (estimées Hölder uniformes) Il existe une constante C > 0 telle
que, pour tous s, t ∈ R et η > 0,

E|RBn,η
ts (i1, . . . , in)|2 ≤ C|t − s|2nα;

(ii) (vitesse de convergence) il existe une constante C > 0 telle que,
pour tous s, t ∈ R et η1, η2 > 0,

E|RBn,η1
ts (i1, . . . , in) −RBn,η2

ts (i1, . . . , in)|2 ≤ C|η1 − η2|2α.

Par des arguments standard, on en déduit la convergence dans
L2(Ω; Cκ

2 ([0, T ], Rd) × C2κ
2 ([0, T ], Rd2

) × . . . × CNκ
2 ([0, T ], RdN

)) pour
tout κ < α vers un chemin rugueux RB au-dessus de B.

2. (pour un chemin Γ α-Hölder quelconque) Supposons 1/α 6∈ N. Alors
RΓn

ts(i1, . . . , in) := J ts
Γ ((i1 . . . in)) définit un chemin rugueux α-Hölder

au-dessus de Γ.

Ce théorème est valide dans le cas simple où l’on pose arbitrairement
φt

ν(T) = 0 dès que l’arbre T possède ≥ 2 sommets. On voit facilement que
c’est un cas particulier de la construction précédente en choisissant Creg

assez grand, les conditions de la Définition 2.29 n’étant non vides (pour un
arbre ayant ≥ 2 sommets) que pour Creg petit. Considérons la Définition
(2.113) de J ts

Γ . En écrivant de manière explicite la convolution et l’antipode
de l’algèbre de shuffle et la définition (2.112), on trouve (avec des notations
évidentes)

J ts
Γ (Tn) =

n∑

k=0

(−1)n−k
∑

σ1,σ2

φt
µ

σ1
1

(Tσ1
k )φs

µ
σ2
2

(Tσ2
n−k), (2.124)

où µ1 := ⊗k
i=1dΓxi(ℓ(i)), µ2 := ⊗n−k

i=1 dΓxi(ℓ(n − i + 1)), et σ1 : {1, . . . , k} →
{1, . . . , k}, σ2 : {k + 1, . . . , n} → {k + 1, . . . , n} sont des permutations. Or
l’unique graphe de permutation Tσ faisant intervenir un produit d’arbres

à un seul sommet est Tσ0

m , σ0 =

(
1 . . . m
m . . . 1

)
, qui contient le produit

q1 . . . qm. On obtient ainsi des formules tout à fait explicites dans lesquelles
les intégrales arborescentes ont disparu. Par exemple, dans le cas du brown-
ien fractionnaire, on trouve

J ts
B (Tn) = cn/2

α

n∑

k=0

(−1)n−k

∫
. . .

∫

|ξk|<...<|ξ1|

k∏

j=1

eitξj
|ξj |

1
2
−α

iξj
dWξj (ℓ(j))

∫
. . .

∫

|ξk+1|<...<|ξn|

n∏

j=k+1

eisξj
|ξj |

1
2
−α

iξj
dWξj (ℓ(j)).

(2.125)

Si l’on décompose à nouveau le domaine d’intégration en {|ξ1| > . . . >
|ξk|, |ξk| < . . . < |ξn|} ∐ {|ξ1| > . . . > |ξk+1|, |ξk+1| < . . . < |ξn|}, on trouve
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finalement

J ts
B (Tn) = cn/2

α

n∑

k=0

(−1)n−k

∫
. . .

∫

|ξ1|>...>|ξk|,|ξk|<...<|ξn|


k−1∏

j=1

eitξj
|ξj |

1
2
−α

iξj
dWξj (ℓ(j))




(eitξk − eisξk)
|ξk|

1
2
−α

iξk
dWξk

(ℓ(k))




n∏

j=k+1

eisξj
|ξj |

1
2
−α

iξj
dWξj (ℓ(j))


 .

(2.126)

Cette dernière formule est formellement identique au chemin rugueux
défini postérieurement par D. Nualart et S. Tindel [120], qui fait appel à la
représentation par noyau de Volterra du brownien fractionnaire au lieu de
la représentation harmonisable.

2.4.4 Renormalisation à la BPHZ: une esquisse

Le découpage du domaine d’intégration en Fourier est présent dans les
premières démonstrations de la convergence des intégrales de Feynman renor-
malisées (cf. par exemple le livre de C. Itzykson et B. Zuber [107]). Les outils
multi-échelles (cf. par ex. [126]) ont permis de simplifier ces démonstrations
en dégageant la notion adaptée aux échelles de renormalisation utile ou de di-
agrammes multi-échelles dangereux, fondamentaux en théorie constructive
(cf. sous-section suivante). Sans entrer dans les détails, la régularisation
de domaine introduite dans le paragraphe précédent évite artificiellement
l’apparition de diagrammes multi-échelles dangereux nécessitant une renor-
malisation. Il est naturel d’aller plus loin et de chercher à renormaliser les
intégrales squelettes. C’est ce que nous faisons dans le preprint [28], dont
nous proposons de donner brièvement un simple aperçu.

L’exemple le plus simple d’intégrale squelette est celui associé à l’aire de
Lévy, G+

t = SkIt
P+(dB)(1, 2) (cf. éq. (2.120)), qui sécrit

G+
t = cα

∫ ∫

|ξ2|>|ξ1|
dWξ1(1)dWξ2(2)

|ξ1ξ2|
1
2
−α

(ξ1 + ξ2)ξ2
eit(ξ1+ξ2). (2.127)

Posons ζ1 := ξ1 +ξ2, ζ2 := ξ2. Un bref calcul montre que si l’on remplace

l’intégrande |ξ1ξ2|
1
2−α

(ξ1+ξ2)ξ2
= |ζ1−ζ2|

1
2−α|ζ2|

1
2−α

ζ1ζ2
par

“

|ζ1−ζ2|
1
2−α−|ζ2|

1
2−α

”

|ζ2|
1
2−α

ζ1ζ2
–

autrement dit, si l’on soustrait l’intégrande évaluée à un moment externe
ζ1 nul – , alors l’intégrale résultante est convergente ultra-violette. La rai-
son pour cela tient au fait que dans le domaine divergent |ζ2| ≫ |ζ1|, la

différence |ζ1 − ζ2|
1
2
−α − |ζ2|

1
2
−α se comporte comme O(|ζ2|−

1
2
−α) au lieu de

O(|ζ2|
1
2
−α).

De manière générale, la renormalisation consiste à soustraire de l’intégrande,
de manière cohérente, un certain nombre de contretermes, de manière à
obtenir une intégrale finie.
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Figure 2.2: ”Demi-diagramme” de Feynman associé à T. La somme des mo-
ments en chaque sommet est nulle. Chaque ligne simple, resp. double contribue à
l’intégrande un facteur multiplicatif 1

ζ
, resp. |ξ| 12−α.
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0 0

0 0

ζ ζ
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ξ
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ζ ζ
3 3
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1

2
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3

Figure 2.3: Diagramme de Feynman associé à T. Chaque ligne double contractée
contribue maintenant |ξ|1−2α au lieu de |ξ| 12−α.

L’intégrande se représente comme un ”demi-diagramme” de Feynman,

cf. ci-dessous l’exemple de l’intégrale squelette associée à T = q∨qq

q

0
31

2

(figure
2.2). Les moments ζi := ξi +

∑
j։i ξj apparaissent dans le dénominateur

de l’éq. (2.94). Chaque ligne double ξj porte de plus une ”décoration”
dWξj (ℓ(j)). La variance de l’intégrale squelette se calcule, elle, à l’aide
d’un diagramme de Feynman classique (figure 2.3) obtenu en collant le long
d’un miroir (matérialisé par une ligne en pointillés sur la figure) un double
symétrique du demi-diagramme. On retrouve G+

t , cf. éq. (2.127) et sa
variance en se restreignant aux lignes d’indices 1 et 2.

Les règles de soustraction de contre-termes à l’intégrande définies en
[28] suivent de près l’algorithme de BPHZ, ce qui permet d’estimer par
les méthodes multi-échelles usuelles la variance renormalisée. Notons qu’en
travaillant sur les demi-diagrammes et non sur les diagrammes eux-mêmes,
on redéfinit directement la variable aléatoire SkItB(T).

La fin du travail consiste à vérifier en utilisant les formules (2.117),
(2.118), (2.119) que le chemin rugueux renormalisé associé par l’algorithme
de mise en ordre normal de Fourier est régulier.
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2.4.5 De la théorie constructive des champs au calcul stochas-

tique fractionnaire

Ce paragraphe se veut une introduction rapide aux idées développées dans le
preprint [27], en collaboration avec J. Magnen (du Laboratoire de Physique
Théorique de l’Ecole Polytechnique), permettant de construire une aire
de Lévy au-dessus du brownien fractionnaire à deux composantes B =
(B(1), B(2)) d’indice de Hurst α ∈ (1/8, 1/4).

Le brownien fractionnaire peut s’obtenir comme limite de marches aléatoires;
on pourra se référer notamment à la construction récente de A. Hammond
et S. Sheffield [105]. On passe facilement de là à la construction de B en
considérant deux marches aléatoires indépendantes. Cependant, on peut
imaginer que B représente le mouvement idéalisé dans R2 d’une particule,
invariant par rotation, mais soumis à des contraintes de rotation (dues à
une rigidité mécanique ou électromagnétique liée aux dimensions macro-
scopiques de la particule, ou à un phénomène similaire encore à élucider),
introduisant une corrélation à l’échelle microscopique entre les deux com-
posantes. Une description naturelle de ce phénomène dans le langage de la
théorie quantique des champs consiste à ajouter un lagrangien d’interaction
Lint = (∂A±)2, où A± sont les limites (divergentes ultra-violettes) quand
η → 0 des quantités mises en ordre normal de Fourier introduites dans la
Définition 2.16. L’intuition fondamentale est que le champ B est dans un
certain sens un champ mésoscopique, alors que A± dépend des détails mi-
croscopiques de la théorie. Cette idée est déjà présente en germe dans les
travaux de Lejay [111]. A. Lejay explique comment les trajectoires de B
peuvent être modifiées en insérant des bulles microscopiques tout du long,
ce qui donne à la limite des trajectoires indistinguables de celles de B –
autrement dit, mathématiquement parlant, il y a convergence en loi vers
B pour la norme β-Hölder pour tout β < α –, alors que l’aire de Lévy
a été corrigée d’une quantité arbitraire. On doit donc chercher une inter-
action qui guérisse les divergences ultra-violettes à l’échelle microscopique,
sans modifier la théorie à l’échelle mésoscopique. Si l’on comprend l’échelle
mésoscopique comme une échelle basse-fréquence (ce qui n’est pas forcément
approprié, puisqu’il y a deux échelles de référence ici, au lieu d’une seule), un
candidat naturel serait une théorie en interaction asymptotiquement libre
à grande distance (à l’échelle mésoscopique, pour être précis). L’exemple
le plus connu d’un tel comportement est probablement celui de la théorie
φ4 infra-rouge en 4 dimensions [96]; mais dans ce cas, la constante de cou-
plage augmente indéfiniment à petite distance, ce qui impose un cut-off
ultra-violet. Dans notre cas, la constante de couplage λ a un flot triv-
ial, si bien que la théorie sera bien définie à toutes les échelles, suggérant
une théorie juste renormalisable (ou, en d’autre termes, une interaction
intégrée homogène de degré 0). Comme (∂A±)2 est homogène de degré
(4α − 2) en temps, on utilisera en fait un lagrangien d’interaction non lo-
cal, 1

2c′α
∫ ∫

|t1 − t2|−4αLint(φ1, φ2)(t1, t2)dt1dt2, où φ1, φ2 sont les champs
stationnaires divergents infra-rouges associés à B (en d’autres termes, les
intégrales squelettes d’ordre 1 de B) et

Lint(φ1, φ2)(t1, t2) = λ2
{
(∂A+)(t1)(∂A+)(t2) + (∂A−)(t1)(∂A−)(t2)

}

(2.128)
– une interaction positive pour α < 1/4 puisque le noyau |t1 − t2|−4α est
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localement intégrable et défini positif. La mesure gaussienne dµ(φ) est ainsi

pénalisée par le poids exponentiel singulier e−
c′α
2

R R

Lint(φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2 .
De manière équivalente, en utilisant la transformation de Hubbard-Stratonovich
5, on introduit deux particules gaussiennes d’échange σ±(t) de covariance
Eσ±(s)σ±(t) = c′α|s− t|−4α, de transformée de Fourier |ξ|4α−1, et on réécrit
la fonction de partition Z = Z(λ), poids total de la mesure pénalisée, sous
la forme

Z :=

∫
e−

R

R
Lint(φ1,φ2,σ)(t)dtdµ(φ)dµ(σ), (2.129)

où

Lint(φ1, φ2, σ)(t) = iλ
(
∂A+(t)σ+(t) − ∂A−(t)σ−(t)

)
. (2.130)

Tout ceci est mal défini mathématiquement puisque (1) σ est un proces-
sus à valeurs distributions et ∂A± n’est pas du tout défini quand α ≤ 1/4; (2)
on intègre sur R une quantité invariante par translation puisque construite
à partir de champs stationnaires.

Supposons le paramètre de couplage λ assez petit. La théorie perturba-
tive des champs suggère alors de développer formellement l’exponentielle du
lagrangien et de calculer les moments polynomiaux de φ ou σ, par exem-

ple, 1
Z E

[
σ(x1) . . . σ(xn)e−

R

Lint(φ1,φ2,σ)(t)dt
]
, également appelée fonction à n

points de σ et notée 〈σ(x1) . . . σ(xn)〉λ . En utilisant la formule de Wick, on
peut représenter cette quantité comme une somme sur des diagrammes de
Feynman,

∑
Γ A(Γ), où Γ parcourt l’ensemble des diagrammes à n pattes σ

externes, et A(Γ) est l’évaluation correspondante. Par intégration par par-
ties fonctionnelle (suivant la formule dite de Schwinger-Dyson 6), on obtient

〈|F(∂A±)(ξ)|2〉λ =
1

λ2
|ξ|1−4α

[
1 − |ξ|1−4α〈|(Fσ+)(ξ)|2〉λ

]
. (2.131)

ξ ξ

ξ1

ξ− ξ
1

Figure 2.4: Diagramme bulle. La somme des moments en chaque sommet est nulle.
Les lignes en gras sont des champs φ, les lignes simples des champs σ. Chaque ligne
contribue à l’intégrande un facteur multiplicatif égal à la covariance en Fourier,
|ξ|1−2α ou |ξ|4α−1 suivant le cas.

ξ ξ

ξ1

ξ− ξ
1

ξ
1

ξ−

ξ

ξ
1

ξ
1

ξ−

ξ

ξ
1

+
ξ

+   . . .

Figure 2.5: Deux premiers termes de la série de bulles.

5une extension en dimension infinie de l’identité EeiλX = e−σ2λ2/2 pour X ∼ N (0, σ2).
6une extension en dimension infinie de la formule bien connue pour les vecteurs

gaussiens, E [∂Xi
F (X1, . . . , Xn)] =

P

j C−1(i, j)E [XjF (X1, . . . , Xn)] si C est la matrice
de covariance de (X1, . . . , Xn).
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Considérons (en utilisant un cut-off ultraviolet brutal à |ξ| = Λ) le terme
de plus bas degré en λ dans le terme entre crochets: il est essentiellement
égal (au signe près) à l’évaluation du diagramme bulle à demi amputé, cf.
Fig. 2.4,

−|ξ|1−4α · (−iλ)2
∫ Λ

|ξ1|<|ξ−ξ1|
dξ1

{(
E[|Fσ+(ξ)|2]

)2
E[|F(∂φ1)(ξ1)|2] E[|Fφ2(ξ − ξ1)|2]

}

= λ2|ξ|4α−1

∫ Λ

|ξ1|<|ξ−ξ1|
dξ1|ξ1|1−2α|ξ − ξ1|−1−2α ∼Λ→∞ Kλ2(Λ/|ξ|)1−4α,

(2.132)

une quantité divergente mais positive. Si l’on resomme formellement la
série de bulles comme dans la Fig. 2.5 – la justification mathématique de
cette procédure nécessite de dépasser la théorie perturbative –, on obtient

1

λ2
|ξ|1−4α

[
1 − 1

1 + Kλ2(Λ/|ξ|)1−4α

]
=

1

λ2
|ξ|1−4α · Kλ2(Λ/|ξ|)1−4α

1 + Kλ2(Λ/|ξ|)1−4α

→Λ→∞
1

λ2
|ξ|1−4α. (2.133)

Ainsi, le propagateur ”nu” 1
|ξ|1−4α a été remplacé par le propagateur

renormalisé 1
|ξ|1−4α+Kλ2Λ1−4α , qui s’annule dans la limite Λ → ∞. Dans

des termes plus physiques, l’interaction en 1
|ξ|1−4α a été totalement écrantée

(”screened”) par un contre-terme de masse infini Kλ2Λ1−4α. Les diagrammes
plus compliqués – d’ordre plus élevé en λ – apparaissant dans l’éq. (2.131)
s’annulent également quand Λ → ∞. Il reste simplement:

〈|FA±(ξ)|2|〉λ =
1

λ2
|ξ|−1−4α. (2.134)

Des arguments de comptage de puissance standards montrent en re-
vanche que les diagrammes connexes avec 4, 6, . . . pattes externes σ sont
convergents. La fonction génératrice des moments connexes de l’aire de
Lévy (le logarithme de la fonction génératrice usuelle) n’est donc pas mod-
ifiée par l’interaction, sauf le terme de degré 2 (la variance), qui a été rendu
fini. Quant à la loi du champ φ ou de B, elle est inchangée à la limite
Λ → ∞, toujours pour les mêmes raisons.

La théorie constructive des champs permet de rendre ces arguments
rigoureux. Elle est fondée sur un développement multi-échelle des champs
dans l’espace de Fourier, φj := D(χj)φ (dit: vertical), cf. éq. (2.102),
complété par un développement dit horizontal dans l’espace direct, dans
des intervalles dyadiques ∆j de taille 2−j – une sorte de développement en
ondelettes simplifié –, permettant lui-même un développement en cluster.
Le principe est le suivant. Le champ ψ = φ ou σ se décompose comme
une somme

∑
j

∑
∆j ψj

∣∣
∆j . L’interaction diverge parce que cette somme
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est doublement infinie. Le développement en cluster permet de réécrire la
fonction de partition Z→ρ

V (avec un cut-off ultraviolet d’échelle j = ρ et un
cut-off de volume V dans l’espace direct) comme une somme,

Z→ρ
V =

∑

n

1

n!

∑

P1,...,Pn non−overlapping

FHV (P1) . . . FHV (Pn), (2.135)

où P1, . . . , Pn sont des polymères disjoints, i.e. des ensembles d’intervalles
dyadiques ∆ connectés par des liens horizontaux et verticaux; au cours du
développement, la mesure gaussienne a été modifiée de sorte que les com-
posantes des champs appartenant à des polymères différents sont devenues
indépendantes.

L’idée maintenant est que (i) la fonction FHV (P) est d’autant plus petite
que le polymère est étendu, tant horizontalement (en raison de la décroissance
polynomiale des corrélations à grande distance) que verticalement, ce qui
conduit à l’image d’̂ıles horizontales maintenues ensemble par des ressorts
verticaux; (ii) les liens horizontaux et verticaux dans P (une fois qu’un seul
intervalle de P a été fixé) suppriment l’invariance par translation responsable
des divergences. Une astuce combinatoire classique, appelée développement
de Mayer, permet de réécrire l’éq. (2.135) comme une somme similaire sans
les conditions de non-overlap. La procédure permet de resommer en une
exponentielle les parties locales des graphes divergents, conduisant à des ana-
logues multi-échelles du contre-terme de masse évoqué ci-dessus dans le cas
particulier du modèle (φ, ∂φ, σ); c’est l’essence même de la renormalisation
dans sa version constructive. Finalement, on trouve, dans la limite |V |, ρ →
∞, que l’énergie libre lnZ→ρ

V est une somme sur chaque échelle de quantités

extensives dépendant de l’échelle considérée, i.e. lnZ→ρ
V = |V |∑ρ

j=0 2jf j→ρ
V ,

où f j→ρ
V converge quand |V | → ∞ vers une quantité finie de l’ordre de O(λ).

On retrouve l’idée que chaque intervalle dyadique ∆j d’échelle j contient un
degré de liberté.

La sommation formelle de la châıne de bulles ci-dessus prend alors tout
son sens si λ a été choisi assez petit pour que la série converge à l’échelle
maximale ρ.
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[27] en collaboration avec J. Magnen. From constructive field theory to
fractional stochastic calculus. (I) The Lévy area of fractional Brownian
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