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Nous présentons dans ce mémoire les deux axes de recherche principaux
développés de 2000 a 2010, autour de la physique mathématique et de la
théorie des processus stochastiques.

Le premier a pour objet l'algébre de Lie de dimension infinie, dite de
Schrodinger-Virasoro, introduite dans les années 1990 dans le cadre de
travaux sur 'invariance géométrique en physique statistique hors-équilibre.
L’étude de sa cohomologie et de ses représentations aboutit a des généralisations
non triviales de résultats obtenus antérieurement pour 'algebre de Vira-
soro et ses extensions semi-directes par modules de densité. L’algebre de
Schrodinger-Virasoro se réalise en tant que symétries d’une famille naturelle
d’opérateurs de Schrodinger dépendant du temps; la classification des formes
normales de ces opérateurs sous son action permet de déterminer la mon-
odromie. Elle peut également étre vue comme quotient d’une extension de
I’algebre de Poisson sur le tore. Les deux points de vue font apparaitre des
structures hamiltoniennes originales.

Le deuxieme concerne — dans une optique essentiellement probabiliste
— les propriétés fines des intégrales itérées de chemins multidimensionnels
de faible régularité Holder, lorsque les intégrales ordinaires (ou celles de
Young) divergent. Dans le cadre de la théorie des chemins rugueux ou rough
paths, introduite par T. Lyons a la fin des années 1990, nous construisons
une régularisation des intégrales itérées a I’aide d’une combinatoire d’algebre
de Hopf sur les arbres s’inspirant de travaux classiques d’A. Connes et D.
Kreimer. L’analyse multi-échelles utilisée pour démontrer la convergence
provient de I’étude des graphes de Feynman en théorie des champs et de leur
renormalisation. En guise d’application, nous obtenons un calcul stochas-
tique pour un brownien fractionnaire B d’indice de Hurst quelconque. Nous
définissons également une approximation analytique de B permettant de
réduire les problemes de convergence d’objets limites construits a partir
de B ou encore du brownien fractionnaire analytique (liés a la résolution
d’équations différentielles stochastiques) a ’étude, par déformation de con-
tour complexe, des singularités locales d’opérateurs de convolution a noyau
fractionnaire.

jeremie.unterberger@iecn.u-nancy.fr
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Chapitre 0

Résumé et liste d’articles

Bien que ma these de doctorat ainsi que les travaux des années 2000-2002
aient porté essentiellement sur I’analyse sur les groupes de Lie semi-simples
(en particulier, ’étude des distributions sphériques, avec applications a des
formules de type Plancherel ou Paley-Wiener), mes investigations se sont
tournées a partir de 2000 et plus particulierement a partir de 2003 vers
d’autres domaines.

Une collaboration avec des physiciens de Nancy (notamment au travers
d’un groupe de travail commun au laboratoire de mathématiques et a I’équipe
de physique théorique du Laboratoire de Physique des Matériaux) m’a con-
duit a m’intéresser jusqu’a maintenant a des problemes mathématiques mo-
tivés par I’étude de la physique statistique hors-équilibre, qui font 'objet de
la premiere partie de ce mémoire. C’est un travail autour d’algebres de Lie
de dimension infinie liées aux symétries des équations de Schrodinger, qui
fait intervenir théorie des représentations, cohomologie des algebres de Lie,
structures de Poisson, théorie spectrale des opérateurs, géométrie non rela-
tiviste, supersymétrie... ainsi que quelques notions qui sont plus du domaine
de la physique, comme la théorie conforme des champs ou l'invariance de
théories lagrangiennes.

A partir de 2006-2007, en parallele, je me suis également intéressé aux
singularités locales des champs gaussiens fractionnaires et plus généralement
aux chemins rugueux (“rough paths”), avec des applications au calcul stochas-
tique pour le brownien fractionnaire multidimensionnel. Le lien avec la
premiere partie du mémoire est (pour l'instant du moins) indirect et se
fait plutot au travers d’outils empruntés a la physique, notamment a la
théorie quantique des champs, méme si (d’'un point de vue formel) I’étude
des singularités locales et les méthodes complexes se retrouvent également
en théorie conforme des champs. Une petite partie de ces travaux concerne
plus spécifiquement des matrices de Toeplitz dites de Fisher-Hartwig liées au
principe d’invariance du brownien fractionnaire et apparaissant également
de maniere naturelle dans un certain nombre de modeles de physique statis-
tique; ces travaux ne seront pas abordés dans le mémoire.
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0.1 Physique mathématique: algebre de
Schrodinger-Virasoro et symétries dynamiques
schrodingériennes

Mon travail s’est focalisé sur une algebre de Lie dite de Schréodinger- Virasoro.
Il s’agit d’une algebre de Lie de dimension infinie, sv, produit semi-direct de
I’algebre de Virasoro de charge centrale nulle Vect(S!) (autrement connue
en tant qu’algebre de champs de vecteurs sur le tore) par une algebre de Lie
nilpotente de rang 2 de dimension infinie. L’introduction de cette algebre
par M. Henkel (Laboratoire de Physique des Matériaux de I'université Nancy
I) en 1994 était motivée par la recherche d’une invariance d’échelle locale
en physique statistique hors-équilibre, par analogie avec ce qui existe a
I’équilibre au point critique, en dimension 2. Dans le cas d’'un exposant dy-
namique z = 2 qui apparait dans un certain nombre de modeles physiques,
explorés notamment par M. Henkel et ses collaborateurs, la géométrie sous-
jacente est la géométrie non relativiste, qui se formalise a ’aide des variétés
de Newton-Cartan (cf. travaux de C. Duval et collaborateurs). L’algebre sv
peut étre introduite comme algebre de symétries dans ce contexte.

Une analyse assez poussée des propriétés cohomologiques de ’algebre sv
(déformations, extensions centrales...), de ses extensions supersymétriques
et de ses représentations a été menée en collaboration avec C. Roger, du
département de mathématiques de 1'université Lyon I, et M. Henkel [9, 10].
On obtient des généralisations non triviales de résultats obtenus antérieurement
pour l’algebre de Virasoro et ses extensions semi-directes par modules de
densité. L’algebre de Virasoro (ainsi que ses supersymétrisations, qui sont
des extensions par produit semi-direct de superalgebres de contact) appa-
raissent également comme quotients d’algebres de Poisson sur le tore ou
le supertore. Un article est consacré a I’étude de représentations vertex
[13]; il prolonge des travaux classiques menés a partir des années 80 sur les
représentations de ’algebre de Lie de Virasoro dans le contexte de la théorie
conforme des champs.

Un des points de vue les plus prometteurs est celui des réalisations de
sb comme algebre de symétries de familles d’équations physiques, en partic-
ulier d’opérateurs de Schrodinger dépendant périodiquement du temps. Les
orbites de cette action sur le sous-espace des opérateurs de potentiel au plus
quadratique en espace (du type oscillateurs harmoniques généralisés) sont de
codimension finie; nous avons obtenu une classification & la Kirillov de ces or-
bites, ainsi que des formes normales. La résolution explicite de ces opérateurs
a l'aide des invariants d’Ermakov-Lewis introduits en physique quantique
peut se réinterpéter dans ce cadre; la combinaison des outils algébriques,
géométriques et analytiques permet en fin de compte de déterminer la mon-
odromie de ces opérateurs [15]. Dans un travail en collaboration avec C.
Roger [19], nous montrons — en utilisant la réalisation de sv comme quo-
tient d’une algebre de Poisson comme ci-dessus — que l'action de sv sur
Iespace général des opérateurs de Schrodinger est hamiltonienne pour une
certaine structure de Poisson obtenue comme projection d’une structure a
la Kirillov-Kostant-Souriau.

Une monographie sur I’ensemble de ces résultats est en préparation avec
C. Roger et devrait étre soumise tres prochainement [29].
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Perspectives.

Les perspectives les plus immédiates concernent les réalisations physiques
de sv évoquées dans le paragraphe précédent. Les structures hamiltoniennes
non triviales exhibées augurent de ’existence de systéemes intégrables sous-
jacents qu’il s’agit de découvrir. Des généralisations a des équations de
Schrodinger en plusieurs dimensions d’espace ou a des systemes de par-
ticules sont par ailleurs envisageables. L’invariance sous sv de familles
d’équations apparait également dans le contexte de la mécanique des fluides
[55] (équation d’Euler) et n’a pas été étudiée a 'heure actuelle de maniere
approfondie.

Le point de vue physique statistique, laissé de coté bien qu’a 'origine
du projet, se doit de retrouver sa place. Une possibilité naturelle serait
d’explorer — en lien avec des modeles explicites de physique statistique — des
versions dynamiques des champs libres gaussiens ou de I’équation de Lowner
stochastique (cf. travaux récents de Werner, Lawler, Schramm, Sheffield et
Duplantier [62, 63, 64, 74, 75]).

Mentionnons par ailleurs le développement récent de travaux concernant
la correspondance AdS/CFT (anti-De Sitter/théorie conforme des champs)
dans un cadre non relativiste, dans laquelle I’algeébre de Lie de Schrodinger
(sous-algebre de Lie de dimension maximale de sv) joue un role central
[32, 31]. Ces travaux récents ont conduit des physiciens travaillant en grav-
itation et en théorie des cordes a redécouvrir sv. Il est probable que I’étude
développée ici trouve des prolongements dans ce cadre.

0.2 Probabilités: singularités locales des proces-
sus gaussiens et chemins rugueux

La thématique développée le plus récemment concerne les propriétés fines
des intégrales itérées de chemins multidimensionnels de faible régularité
Holder, en particulier des trajectoires d’une famille de processus gaussiens
auto-similaires appelés brownien fractionnaire, et dépendant d’un indice de
régularité H €]0,1[ (dit de Hurst). Les résultats classiques (Coutin-Qian
[90], Alos, Cheridito, Mazet, Nualart [76, 77, 86]), basés sur des approxima-
tions de type analyse numérique ou sur le calcul de Malliavin, montrent que
ces intégrales itérées (a partir desquelles la théorie des chemins rugueuz ou
rough paths due & Lyons, Victoir, Friz, Gubinelli... [98, 100, 112, 114] per-
met de construire un calcul stochastique) divergent dés que H < 1/4. Nos
résultats font appel a 'analyse complexe, ainsi qu’a des concepts algébriques
(algebres de Hopf notamment) et physiques (diagrammes de Feynman et
renormalisation en théorie quantique des champs). Dans un premier article
[14], nous introduisons une approximation analytique du brownien fraction-
naire, définie sur le demi-plan supérieur. Cette approximation, qui est une
alternative a la classique approximation linéaire par morceaux, se préte bien
au calcul des singularités, et permet notamment d’obtenir un théoréme cen-
tral limite [22] pour 'erreur sur l'aire de Lévy associée au schéma d’Euler
(H > 1/4) ou [18] pour laire de Lévy renormalisée (H < 1/4) a l'aide de
déformations de contour analytique. Nous introduisons dans la méme op-
tique [16, 25] un nouveau processus autosimilaire, I', appelé brownien frac-



10 CHAPITRE 0. RESUME ET LISTE D’ARTICLES

tionnaire analytique, a valeurs complexes, vivant sur le demi-plan supérieur
fermé IIT, pour lequel les mémes outils permettent de définir un calcul
stochastique pour H quelconque et de résoudre des équations différentielles
dirigées par I' sur un ouvert de II*.

Dans les travaux les plus récents [21, 23, 24], nous introduisons une
méthode générale de régularisation d’intégrales itérées permettant de définir
des chemins rugueux au-dessus d’un chemin H-Ho6lder quelconque. La con-
struction, explicite (a la différence de celle de Lyons et Victoir [113]), repose
sur un algorithme que nous appelons mise en ordre normal de Fourier et
qui apparalt tout & fait naturel lorsqu’on fait appel aux structures com-
binatoires d’algebre de Hopf sous-jacentes, ainsi que sur un choix a priori
largement arbitraire de schéma de régularisation. On montre en partic-
ulier qu'un chemin rugueux est caractérisé algébriquement par des données
d’arbres (“tree data”) arbitraires. Le schéma de régularisation que nous
présentons ici est une régularisation de domaine de Fourier. Il repose sur une
analyse multi-échelles, outil classique en théorie des champs, en particulier
pour la renormalisation des intégrales de Feynman, qui peut étre exploité
plus en profondeur (cf. perspectives ci-dessous). Ce schéma, réécrit dans
le cas particulier du brownien fractionnaire, permet d’obtenir un chemin
rugueux régulier, vivant dans les chaos gaussiens d’indice 2, 3, ...

Deux articles [17, 20] portent par ailleurs sur I'utilisation des matrices de
Toeplitz. Le principe d’invariance donne un résultat & la Donsker sur la con-
vergence vers le brownien fractionnaire de sommes convenablement renor-
malisées des valeurs d’un processus gaussien stationnaire a temps discret,
dont la covariance (& décroissance polynomiale) est une matrice de Toeplitz.
Avec A. Boettcher et d’autres coauteurs, nous étudions la limite asympto-
tique (spectre, vecteurs propres...) de matrices de Toeplitz explicites (dites
de Fisher-Hartwig) pour lesquelles ce principe d’invariance est vérifié.

Perspectives.

1. (régularisation des chemins rugueux)

Les travaux sur la régularisation par ordre normal de Fourier n’en sont
qu’a leur début. Les applications potentielles a ’étude des équations
différentielles ou aux dérivées partielles dirigées par un brownien frac-
tionnaire de faible indice de Hurst sont claires; tous les résultats obtenus
précédemment pour H > 1/4 ou H > 1/2 concernant les solutions des
équations différentielles ou aux dérivées partielles stochastiques (ex-
istence, finitude des moments, densité, théorémes ergodiques [84, 79,
103]...) sont susceptibles de s’étendre & H quelconque. Un prolonge-
ment naturel de ces travaux consisterait a définir une intégrale de Sko-
rokhod relative au brownien fractionnaire d’indice quelconque, qui de-
vrait permettre d’obtenir une formule d’It6 du type (terme d’espérance
nulle+trace).

Dans des travaux en cours, nous approfondissons la construction elle-
meéme dans plusieurs directions.

Avec L. Foissy, de 'université de Reims, nous réinterprétons I’algorithme
sous-jacent de mise en ordre normal de Fourier en termes intrinsequement
algébriques [26]; il découle d’un isomorphisme explicite entre deux
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algebres de Hopf. Par ailleurs, nous avons soumis un article donnant
un chemin rugueux renormalisé pour le brownien fractionnaire [28],
en utilisant — en guise de schéma de régularisation — ’algorithme de
renormalisation de Bogolioubov-Parasiuk-Hepp-Zimmermann (BPHZ)
bien connu en théorie quantique des champs et en combinatoire. Les
intégrales itérées sont interprétées comme diagramme de Feynman
et renormalisées en conséquence a ’aide d’une analyse multi-échelles
déja a l'oeuvre dans la régularisation de domaine de Fourier (celle-
ci pouvant étre vue comme une ébauche de renormalisation). Ces
travaux ont été présentés lors de colloques internationaux au print-
emps 2010 (workshop du trimestre “Combinatorics and Control” en
avril a Madrid, conférence “Renormalization: algebraic, geometric
and probabilistic aspects” en juin a Lyon). Il est probable que les
travaux des algébristes et combinatoriciens puissent aider a développer
un calcul stochastique pour le brownien fractionnaire de maniere plus
systématique.

Dans un autre article soumis, en collaboration avec J. Magnen, du
Laboratoire de Physique Théorique de I’Ecole Polytechnique [27], nous
montrons comment obtenir une aire de Lévy au-dessus du brownien
fractionnaire d’indice de Hurst < 1/4 — ou de champs gaussiens frac-
tionnaires plus généraux que nous appelons champs gaussiens multi-
échelle — comme limite des aires de Lévy naturelles au-dessus de pro-
cessus non gaussiens, obtenus par pénalisation singuliere de la mesure
gaussienne. Cette mesure pénalisée s’interprete naturellement, dans le
langage de la théorie quantique des champs, comme une interaction
singuliere proportionnelle au carré de 'aire de Lévy divergente naive.
La démonstration de la convergence repose sur les outils classiques
de la théorie constructive des champs, notamment un développement
en cluster et une renormalisation du propagateur, ainsi que sur la
mise en ordre normal de Fourier, naturelle dans le cadre d’une analyse
multi-échelles. Ce travail doit étre étendu au cas des intégrales itérées
d’ordre supérieur, pour lequel les travaux combinatoires précédents
seront de toute évidence utiles. De plus, il est probable que cette
méme pénalisation singuliere s’obtienne par limite d’échelle a partir
de constructions probabilistes plus standard, comme par exemple des
marches aléatoires avec des contraintes trajectorielles.

Il serait par ailleurs naturel d’essayer d’étendre les constructions ci-
dessus au cas des surfaces rugueuses indexées par R”, D > 2 au lieu
de R, dans le but par exemple de résoudre des équations aux dérivées
partielles stochastiques dirigées par un drap brownien fractionnaire.

2. (outils analytiques pour le brownien fractionnaire)

L’approximation analytique et I’étude des singularités locales (déja
utilisée dans deux articles) trouveront, nous le pensons, leur place
parmi les principaux outils dans 1’étude du brownien fractionnaire.
Quant au brownien fractionnaire analytique, il serait intéressant d’en
trouver des applications dans des domaines comme la physique ou
peut-étre la finance mathématique.
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3. (matrices de Toeplitz)

Un travail en préparation porte sur la définition et les premieres pro-
priétés d'un brownien fractionnaire aléatoire (processus stochastique
en milieu aléatoire) obtenu par limite d’échelle & partir d’une matrice
de covariance de Toeplitz elle-méme issue d’un brownien fractionnaire.

Enfin, une connaissance plus poussée de la résolution spectrale des ma-
trices de Fisher-Hartwig (apparaissant dans nombre de problemes de
physique statistique) aurait des applications immédiates, par exemple
a I’étude du modele sphérique avec interaction non locale.
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Chapitre 1

Symétries dynamiques
schrodingériennes

1.1 Présentation générale

Il est connu que I'étude mathématique des symétries et la physique statis-
tique ou quantique font bon ménage; les mathématiques inventent un lan-
gage par et pour la physique, qui devient en murissant une théorie mathématique
a part entiere; inversement, les intuitions des physiciens, souvent en avance
sur le langage mathématique de leur époque, sont confirmées au bout de
quelques dizaines d’années par le développement d’une théorie mathématique
qui finit par les dépasser. Les travaux pionniers de W. Werner, G. Lawler
et O. Schramm [62, 63, 64, 75] sur I’équation de Lowner stochastique (SLE)
en sont une éclatante illustration: vingt ans apres 'invention de la théorie
conforme des champs par les physiciens Belavin, Polyakov et Zamolodchikov
[33], leur théorie, mélangeant probabilités et invariance conforme, permet de
confirmer de maniere spectaculaire les prédictions de la physique statistique
au sujet des phénomenes critiques bidimensionnels & ’équilibre (modele
d’Ising, percolation critique...); mais elle les dépasse largement, forcant les
physiciens a renouveler leur approche conceptuelle [54].

Les travaux développés dans cette partie, beaucoup plus modestes, se
veulent une étude mathématique de symétries qui, nous ’espérons, devraient
jouer un role dans I’étude des phénomenes critiques en physique statistique
hors équilibre.

Rappelons brievement quelques principes de 'invariance conforme. L’algebre
de Lie du groupe des transformations conformes locales d’une variété rie-
mannienne de dimension d > 2 est définie par des équations algébriques,
dont on montre qu’elles conduisent en dimension d > 3 & une algebre de di-
mension finie (contenant translations, rotations et transformations spéciales
de type homographique). La dimension deux est tout a fait a part a cet
égard, puisque les transformations conformes locales sont tout simplement
des changements de coordonnées holomorphes ou antiholomorphes. Une
complexification de l'algebre de Lie correspondante conduit au produit di-
rect Vect(S') @ Vect(S1), ou Vect(S!) (appelée: algébre de Virasoro sans
charge centrale), resp. Vect(S!) ~ Vect(S!), agissent sur la coordonnée z,
resp. Zz. Les transformations holomorphes locales sont engendrées par les

15
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champs de vecteurs ¢, ;= —z"*19, (n € Z); leurs crochets de Lie s’écrivent
[lnylm] = (n —m)lyyp,. Alternativement, posant z = e? 6 cT:=R/2nZ,
on peut voir £, comme extension au plan complexe du champ de vecteurs
€09, sur le cercle unité. On a obtenu de la sorte 'algebre de Lie des champs
de vecteurs sur le cercle, d’ot1 la notation Vect(S!). C’est I'algebre de Lie
du groupe des difféomorphismes C'* du cercle préservant ’orientation, noté
Diff  (§') ou Diff { (R/27Z).

Comme en théorie de jauge, I'invariance — dite invariance locale — est
brisée sous l’effet d’anomalies. Celles-ci s’interpretent dans notre contexte en
remarquant que les transformations conformes locales changent la géométrie.
L’hypothese de Belavin-Polyakov-Zamolodchikov était que ces anomalies
puissent s’obtenir simplement en remplacant Vect(S!) par son extension
centrale vit ~ Vect(S!) @ RK, munie du crochet de Lie [(,, %] = (n —
M) lntm + %n(n2 — 1)0p+moK. Dans une représentation irréductible de
viv, K agit comme une constante c¢, appelée charge centrale. La théorie
conforme des champs consiste a considérer les champs invariants sous vit
(ou: champs primaires) comme des opérateurs covariants, les corrélateurs
(p1(21) - .- dn(2zn)) (ou: fonctions a n points) étant donnés par ’évaluation
d’un produit opératoriel (0 | ®1(21) ... Pn(z,) | 0) pour un certain état quan-
tique |0), appelé état vide. Le succes de la théorie conforme des champs
provient de sa capacité prédictive pour les modeles unitaires minimaux
[43, 46]. Ces représentations de vir sont des modules de Verma dégénérés,
obtenus seulement pour certaines valeurs discretes de c; chaque vecteur nul
(i.e. orthogonal & tout le module) implique des contraintes sur les fonctions
a n points sous la forme d’équations différentielles, permettant en principe
de déterminer celles-ci de maniere générale. Certains de ces modeles ont
été identifiés a des modeles de physique statistique connus, notamment le
1

modele d’Ising a température critique, correspondant a ¢ = 3.

Si l'on considéere maintenant la physique statistique hors équilibre, le
concept d’invariance locale n’y joue pour l'instant aucun roéle. En revanche,
toute une batterie de modeles physiques a été développée [50, 51, 52, 53],
mettant en évidence l'invariance de modeles dynamiques — qu’il s’agisse
d’une évolution a 1’équilibre, d’une transition vers I’équilibre ou d’une évolution
irréversible, a la maniere des systemes de particules en interaction a la
Liggett [65] en présence d’états absorbants — sous des sous-groupes du groupe
de Schrédinger Sch(d). 11 s’agit du groupe de Lie des symétries conservant
projectivement I’équation de Schrédinger libre (—2iMd; — A,) ¢ = 0, ot M
est la masse, et A, = 87?1 +...+82 , est le laplacien en d dimensions d’espace.
L’hypothese sous-jacente est l'existence d’un régime d’échelle dans lequel
I'invariance sous les dilatations anisotropes non conformes (t,r) — (A%¢, Ar)
se vérifie. Outre les transformations galiléennes (translations, rotations
d’espace, et déplacements & vitesse constante), ainsi que cette dilatation
anisotrope, le groupe de Schrodinger contient des transformations homo-
graphiques en temps couplées a des transformations dépendant du temps,
affines en espace.

Or il se trouve que le groupe de Schrédinger se plonge dans un groupe
de Lie de dimension infinie, dit groupe de Schridinger-Virasoro, que nous
noterons SV. Dans toute la suite nous nous restreindrons a une seule di-
mension d’espace (d = 1). L’algebre de Lie so = Lie(SV) = (Lp)nez X

(Yo, Mp),nc1 17 pez du groupe de Schrodinger-Virasoro en dimension (14-1)
2 ’.
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est un produit semi-direct Vect(S') x hoo, oll hoo est une algebre de Lie
nilpotente de rang 2, de dimension infinie. Le crochet de Lie s’écrit sur les
générateurs ci-dessus

[LnaLp] =(n _p)Ln+p (1.1)

n
[Ln, Y] = (5 —m)Ynim, [LnaMp] = —pMpyp (1.2)

Yo, Yir]l = (m — m )My, [Yon, Mp] =0,  [My,, My] = 0. (1.3)

Ces relations s’exponentient aisément, permettant de définir SV comme un
produit semi-direct Diff | (R/27Z) X Hy, ot Hy, ~ C°(R/27Z)xC*(R/277Z)
est une variété linéaire munie de la structure de groupe de type Heisenberg
suivante:

(a2, B2) - (a1, B1) = <Oé1 +ag, B+ P2 + %(0/1042 - alo/Q)) . (1.4)

Une famille de réalisations naturelles de sv (dites réalisations schrédingériennes)
comme champs de vecteurs projectifs s’obtient en extrapolant les formules
donnant les générateurs des symétries infinitésimales de I’équation de Schrédinger
libre; on obtient:

1 1
dry(Ly) = —t"19, — i(n + Dt"ro, — ZM’I"2(’I”L + Dnt" "t — A(n + 1)t",

1
dmy(Y,y 1) = "2, — M(m + i)tm_%r, dma(M,) = =M. (1.5)

Le parametre A (égal & 1/4 pour les solutions de I’équation de Schrodinger)
s'interpréte comme dimension d’échelle du champ invariant. On retrouve
'algebre de Lie sch(1) = Lie(Sch(1)) en considérant (L_1, Lo, L1)x (Y1, Mo) C

2
50.

En considérant des séries de Laurent en les générateurs précédents, on
obtient par complétion des champs fonctionnels L¢, Vg, M), indexés par des
fonctions C'*° périodiques (on utilise dans ce cas des lettres calligraphiques
pour éviter toute confusion), ce qui donne les formules suivantes:

dmalLy) = ~ [0 — (D, — 210 AP0 (1)
A (Yp) = ~9(00, — Mg (r, dm(My) = —MA(r).  (17)

La définition géométrique de sv semble moins claire que celle de vir,
méme si elle est liée a la géométrie des variétés de Newton-Cartan (cf. [29]
ou articles de C. Duval cités dans la bibliographie pour plus de détails).
Mentionnons simplement qu'une variété de Newton-Cartan est une variété
M munie (i) d’une structure galiléenne (6, ) — 6 étant une 1-forme fermée, et
v un 2-tenseur symétrique positif contravariant dont le noyau est engendré
par 6 — et (ii) d’une connexion V préservant cette structure. La géométrie
sous-jacente est celle de la mécanique newtonienne; pour la variété plate
M=RMM=I~{(tr)|[tcRreR™} onal=dtety= Z?:_ll O, ® Or,,
donnant par restriction a une feuille ¢ =Cste une structure riemannienne
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sur lespace. En élargissant I'hypothese restrictive (ii), on obtient succes-
sivement le groupe de Schrodinger (en considérant les automorphismes pro-
jectifs de la structure galiléenne), puis le groupe de Schrédinger-Virasoro en
supposant simplement que VO = uf, Vy = —pvy pour une fonction quel-
conque u. Toutes ces affirmations s’entendent pour une réalisation telle que
M = 0; le cas M # 0 s’obtient par extension (centrale pour le groupe de
Schrodinger).

Si le lien avec la physique statistique est encore & construire (peut-étre
via une équation de Lowner stochastique dynamique, ou un champ libre
gaussien dépendant du temps dont la construction est suggérée dans [74]
— ou encore l'équation d’Euler [55]) —, en revanche, l'algebre sv apparait
naturellement dans un certain nombre de contextes justifiant son étude, que
nous nous proposons de présenter maintenant:

1. Un théoreme difficile de classification du a O. Mathieu [69] montre
qu’il n’existe que 3 familles d’algébres de Lie Z-graduées simples a
croissance polynomiale: en dimension finie, on retrouve la classifica-
tion de Dynkin des diagrammes de racines; en dimension infinie, on
a les algebres de Kac-Moody d’une part, I'algeébre Vect(S!) ou vit de
Pautre. Il est donc naturel de considérer (pour aller plus loin dans la
théorie algébrique) les algebres de Lie de type Vect(S!) x h. Le cas ou
b est un Vect(S!)-module de type module de densités (en particulier,
h commutatif) a été largement étudié par V. Ovsienko et C. Roger
[71]. Le cas sb ~ Vect(S1) x b est en quelque sorte I’étape suivante
dans cet ordre d’idées. L’étude des représentations de sv et de ses
généralisations (ainsi que de la cohomologie), menée avec C. Roger
dans [9], s’appuie tout naturellement sur les travaux antérieurs. Les
deux grandes familles de représentations [68] de Vect(S!) (représentations
de plus haut poids — ou modules de Verma — d’un c6té, modules de
densités de 'autre) s’étendent a sv; 'extension de la premiere famille
s’avere décevante, alors que la deuxiéme (obtenue par coinduction
grace a la structure de prolongement de Cartan sous-jacente) est plus
riche en structure que dans le cas de Vect(S!), et agit naturellement
comme symétries de familles d’équations physiques telles que, par ex-
emple, les opérateurs de Schrodinger ou de Dirac-Lévy Leblond. On
retrouve en particulier une extension affine de la réalisation schrédingérienne
déja mentionnée. On peut également construire des représentations
vertex a l’aide d’opérateurs covariants sous ces représentations coin-
duites, en utilisant le formalisme de la théorie conforme des champs
[13]. La construction est encore en partie inachevée, puisque les champs
massifs introduits en §1.2.6 ont une existence conjecturale.

La représentation coadjointe apparait curieusement isolée dans le schéma.

2. L’étude de la cohomologie de sv a ’aide des outils développés par Fuks
[44] fait apparaitre 3 familles de déformations de sv, dont on étudie
également les extensions centrales [9].

3. L’action par reparamétrisations de sv sur le sous-espace affine S?;f =

{=2iM8; — 8,2 + Vo (t) + Vi (t)r + Va(t)r?} d’opérateurs de Schrodinger

dépendant périodiquement du temps est I'un des points clé du chapitre

[15]. La chose est bien connue dans le cas de I’action du groupe de
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Virasoro sur 'espace des opérateurs de Hill (ou opérateurs de Sturm-
Liouville périodiques sur la droite). L’action (équivalente a l’action
coadjointe) est hamiltonienne pour la structure de Poisson de Kirillov-
Kostant-Souriau, qui est la plus simple d’une hiérarchie de structures
de Poisson compatibles associées a des systemes intégrables tels que
I’équation de Korteweg-De Vries. La classification des orbites sous
I’action de Vir est reliée directement a la monodromie des opérateurs
de Hill, ainsi qu’au comportement des solutions.

Le méme schéma appliqué a l'action de sv sur ’espace Sij;f fait ap-
paraitre 5 types d’orbites dont on donne des représentants. L’étude
est une sorte de “quantification” de travaux dis a A. A. Kirillov; la
nouveauté réside dans ’existence de résonances entre la partie quadra-
tique et la partie linéaire du potentiel. Ces formes normales perme-
ttent de déterminer l'opérateur de monodromie (de dimension infinie
dans ce cas) des opérateurs de Schrodinger, grace a un invariant du
mouvement [60] di & Ermakov et Lewis, permettant de résoudre ex-
plicitement ’équation. L’idée d’associer étude des orbites et invariant
du mouvement s’avere tres fructueuse. On démontre également au
passage que 'action est hamiltonienne pour une certaine structure de
Poisson sur Si];f .

Il serait a priori intéressant de généraliser cette étude a plusieurs di-
mensions d’espace ou a des systémes de particules (autrement dit, a
des équations de Schrodinger vectorielles).

4. Le dernier point de vue tourne autour de la géométrie de Poisson. Il
s’avere que l'algebre sv est un sous-quotient de I’algebre de Poisson
sur le tore, ou de sa quantification naturelle, ’algebre des symboles
pseudo-différentiels formels sur la droite. Ce point de vue peut se re-
placer dans un cadre supersymétrique; on obtient de la sorte une large
classe de supersymétrisations de ’algebre sv du type €x b, ot € est une
superalgebre de contact [10]. Il permet également d’obtenir une nou-
velle structure de Poisson sur I'espace affine S/ := {—2iMd; — 92 +
V(t,r)} D SZJ;f des opérateurs de Schrodinger dépendant périodiquement
du temps [19], sans rapport apparent avec celle obtenue en 3. L’action
de sv sur S/ apparait en fait comme une action hamiltonienne, pro-
jection de I'action coadjointe de I’algebre des courants sur ’algebre de
Lie des symboles pseudo-différentiels, la structure de Poisson provenant
de la forme de Kirillov-Kostant-Souriau. Ces résultats proviennent de
Iinvariance de I’équation de Schrodinger libre sous une algebre de Lie
de dimension doublement infinie dont sv est une sorte de “trace”, et
suggerent l'existence de systemes intégrables sous-jacents, encore a
définir.

1.2 Résultats algébriques

Les résultats présentés dans cette section renvoient essentiellement aux deux
articles [9, 13].
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1.2.1 Graduations, déformations

La structure de graduation est fondamentale dans la classification d’O.
Mathieu dont il a été question plus haut. Elle est également fondamentale
pour I'étude des représentations (remarquons simplement que la graduation
est donnée par les racines dans le cas des algebres de Lie simples de di-
mension finie). L’algebre sv est naturellement équipée de deux graduations
linéairement indépendantes, d; et do, données sur les générateurs par

5I(Ln) =n, 51(Ym) =m, 51(Mp) =Dp; (1'8)
6o(Ln) =1, 62(Yi) =m — =, (M) =p— 1. (1.9)

Alors que 071 est donnée par ’action adjointe de — L, &5 est une dérivation
extérieure. Ces graduations existent également sur sv(0), variante de sb
obtenue en faisant varier l'indice m des générateurs (Y;,,) dans Z au lieu de
% +Z. Par ailleurs, les deux algebres, sv et sv(0), appartiennent a la famille
d’algebres sv., resp. sv.(0), € € R définie par les mémes crochets que sv, a
I’exception de ’action adjointe de la partie Virasoro sur la partie nilpotente:

[LnaLp] = (n_p)Ln+p7 [YrmYm’] = (m—m’)Mm+m/, [Yvap] =0, [MmMp] =0

(1.10)
comme auparavant, mais
1+e)n

(L, Y] = <(2) - m> Yoim, [Ln, M) = (en —p)Myyp,.  (1.11)

1.2.2 Plongement conforme

Comme démontré dans [3], Ialgebre de Schrodinger complexifiée sch(d)c =
Lie(Sch(d))c se plonge dans lalgébre conforme conf(d 4+ 2)¢ complexifiée
en (d + 2) dimensions. L’idée est naturelle puisqu'une transformation de
Fourier formelle en le paramétre de masse, f(M) — f(&) = (Ff)(€), envoie
équation de Schrédinger (—2iM0, — 82)y = 0 sur équation (—2M9:0; —
02)1 = 0, qui est (2 un changement de coordonnées complexe pres) 1’équation
de Dirichlet en dimension 3, elle-méme invariante sous les transformations
conformes. Il suffit en fait pour cela (en dimension d = 1 en tout cas)
de remarquer que sch(1)c ! est isomorphe & une sous-algébre parabolique
maximale de conf(3)c, et de trouver un plongement explicite. Celui-ci, as-
sez simple, respecte le degré des champs de vecteurs lorsqu’on considere les
réalisations comme symétries schrodingériennes, resp. conformes de sch(d),
resp. conf(d + 2). Le diagramme de racines de conf(3) est de type B,
engendré par les deux racines positives ej, e, et 'on trouve le diagramme
suivant (cf. Fig. 1.1).

Il est naturel d’espérer prolonger ce schéma de maniére naturelle en ob-
tenant une algebre de Lie contenant 5 familles de générateurs (M, Y, L, V, W)
placées sur des diagonales successives, qui serait une extension de sch(1) con-
tenant a la fois conf(3) et sv. Le sens de la question n’est pas tres clair a

ou plus précisément sch(1)c @ (No), oit Ng = —td; — CO¢ est un deuxieme générateur

de la sous-algebre de Cartan (symétrie invisible sur I’équation de Schrédinger de départ
puisque ne préservant pas M).
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Figure 1.1: Diagramme de racines de conf(3) D sch(1).

priori. On va en fait chercher un plongement dans I’algébre de Poisson A(S?!)
des fonctions sur le tore. Formellement, A(S!) = Clq,¢ ] @ C[p,p~1]] (les
variables p et ¢ étant conjuguées), avec le crochet de Lie-Poisson {F,G} =
%—i% — %%. L’algebre de Virasoro se plonge de maniere naturelle dans

A(S') par Tapplication £, — ¢"*"!p, vu comme limite semi-classique de
t"t1o,.

Rappelons ici la définition des modules de densité de Vect(S'): soit
A € R, alors Fy ~ (2™dz"*)mez est le Vect(S1)-module défini par

ln-(2™dz™) = (An —m)2"Tdz (1.12)

et s’'identifie donc a 'espace des (—\)-densités formelles. On remarque aus-
sitot que, sous I'action adjointe de Vect(S') C sv, (Lp)nez, <Ym>m6%+Z’
(Mp)pez, sont isomorphes respectivement a Fi, F 1 Fo. 11 est donc naturel
— plus précisément — de chercher a plonger conf(3) et sv dans A(Sl) =
Clg,q7 'l ® (C[p%,p_%]] (dite algebre de Poisson étendue); mais c’est impos-
sible car [Y, M] = 0 alors que [f1 (q)p%, f2(q)] est en général non nul, de la
forme fg(q)pfé. Néanmoins, notons A(Sl)(g_l) = (f(q)p", k < —3) et de

méme A(Sl)(g) = (f(q)p",xk <1). Alors
S0 = A(Sl)(ﬁl)/jl(sl)(g_%) (1.13)

apparalt comme sous-quotient de fl(Sl). Ce genre de construction ne se
généralise malheureusement pas lorsqu’on cherche a plonger simultanément

conf(3).
Le résultat final négatif ne doit pas faire oublier la définition poisson-

nienne (1.13) de sv, qui, elle, s’avérera tres fructueuse (d’ou 'intérét du
paragraphe).

1.2.3 Représentation coadjointe

L’étude de la représentation coadjointe d’une algebre de Lie est naturelle
lorsqu’on cherche a exhiber des structures de Poisson, et, au-dela, des systemes
intégrables. En ce sens, la représentation coadjointe étendue de vitr est a
la source de 1’équation intégrable de Korteweg-De Vries, elle-méme étage
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inférieur d’une énorme famille de systémes intégrables [47]; de plus, elle
s’identifie a I’action par reparamétrisation de vit sur les opérateurs de Hill,
qui jouera un grand role dans la section 1.3. Malheureusement ’étude des
orbites coadjointes de sv (sans lien apparent avec des systémes intégrables,
qu’on verrait plutot apparaitre en lien avec son action sur les opérateurs de
Schrodinger, cf. section 1.4) s’avere décevante. Voyons les résultats.

0
On identifie un élément de sv* & un triplet [ v | € (C°°(S'))? de la
72
fagon suivante:
Y0 2
(o ) et + M) =3 [ usder s
7 i=0 75"
et on note
70
Gromm) ={X €svfadX. | n | =0} (1.15)
72

la sous-algébre d’isotropie de (yo,71,72) € 0.

La structure de produit semi-direct mélange les composantes suivant
Vect(S!) avec les composantes suivant la partie nilpotente ho. On montre
par exemple que, si Lz, + YV, + My, € Gy 41 0, alors

3 1
ofg + 26500 + forg = —gmfl = 5 A+ 1 fa (1.16)

Le générateur central My est toujours dans la sous-algebre d’isotropie.
Si 1 = 72 = 0, on retrouve bien entendu I’équation de degré 3 bien connue
donnant les sous-algebres d’isotropie dans 1’étude des orbites coadjointes de
I’algebre de Virasoro. Excluant ces cas, ainsi que des cas pathologiques, on
trouve essentiellement les résultats suivants:

1. Si 9 ne s’annule jamais, alors

g('Yo,’Ylﬁz) = {‘Cfo + Vi + Mp, A p,v € R} (1.17)

ou:

fo=foN) = y" 1
fi=HA00m ==3%"n — w2

2 " _ —
fo= fah i v) = 3eda (1) = X P (B + e72) + Mz 270 — b1

[SI[3Y

2. si 2 a seulement des zéros isolés, alors G, ~, 4, se réduit a (Mp).

3. si y2 =0, et 71 ne s’annule jamais, alors
Grom,0 = {‘Cf0+yf17 A€ R}Y®(My, h € COO(Sl)> = RK(R@COO(SJ))?
(1.19)

ou fo = )\%—2/3 et f1 = /ryl_l/s + AK(v1,7%), K étant une expression
différentielle compliquée en 1 et ~g.

(1.18)

Y+ v
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4. finalement, si 72 = 0 et 1 a seulement des zéros isolés, alors G »,.0 =
(My, h € C(Sh)) ~ C>(SHh).

1.2.4 Modules de Verma

Les modules de Verma d’une algebre de Lie graduée g = ®,,czg, telle que go
soit commutative sont par définition les induites a g du prolongement trivial
a g+ = go ® (Bn>108,) d'un caractere de go. Considérons sv ou son exten-
sion centrale sb obtenue par le prolongement trivial du cocycle de Virasoro
sur la partie Vect(S!) (cf. §1.2.7). Dans notre cas, seule la graduation &;
donne une sous-algebre gy commutative; on obtient 5031 = (Lo, My) ~ R2 et
5t16+1 = (Ln, Ym, Mp)y, p>0,m>1/2- Soit Cy, ,, = Ci) le caractere de go défini par:
Loy = hp, Moy = pap, et Vi, = U(sv) ®u(5~°i1) Ch,u le module de Verma
correspondant. La graduation de sv induit naturellement une graduation
du module V}, ,. Sil'on se restreint a vir, h s’identifie au poids conforme
du module de Verma ainsi construit. Sous certaines conditions algébriques
sur h, les modules de Verma de vit sont dégénérés, et le module irréductible
quotient donne la célébre série discrete [43, 46], a laquelle il a été fait allusion
dans l'introduction. La dégénérescence de ces modules se voit en calculant
a chaque niveau les déterminants de Kac, donnés par le déterminant de la
forme bilinéaire ( . | . ) sur le sous-espace de V},,, de niveau n (rappelons
que ( . | . ) est 'unique forme bilinéaire sur V, , telle que (¢ | ¥) =1 et
Xy=X_,s1 X =LY ou M, et que le module de Verma est dégénéré si
et seulement si 'un de ces déterminants est nul). On a malheureusement le
résultat négatif suivant pour sv:

Théoreme 1.1 Pour tout n, le déterminant de Kac de niveau n de Vy ;, est
donné par une puissance de [i.

Par conséquent (sauf cas triviaux, ou modules de Verma de vit complétés
trivialement & sv), les modules de Verma de sv sont tous non dégénérés.

1.2.5 Représentations coinduites

Apres ces deux résultats négatifs, passons a 1’étude beaucoup plus intéressante
de la deuxieme grande famille de représentations de sv. On utilise cette fois-
ci la deuxieme graduation, ds.

Définition 1.1 (représentations coinduites) Soit dp une représentation
de svg = <L0,Y%,M1> a valeurs dans un module H,; elle s’étend a svy =
©i>08v; en posant dp(d ;. 59;) = 0. Soit fso = @;>_150; C sv la sous-
algébre des champs de vecteurs polynomiaux (ou formels). Le fsv-module
formel de p-densités est défini comme le module coinduit

Hp = Homu(5n+)(2/f(f50), Hp)
={¢: U(fsv) — H, lineaire |
B(UoV) = dp(Uo).6(V), Up € U(svy), V. € Ulfso)}
(1.20)
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avec l'action naturelle a droite de U(fsv),

(dp(U).0)(V) = ¢(VU), U,V € U(jsv). (1.21)

Cette définition tres formelle s’explicite facilement a ’aide de la structure
de prolongement de Cartan de sv [30, 9]. On obtient:

Théoréme 1.2 Soit f € R[t], la représentation coinduite dp de fsv est
donnée par l'action des opérateurs différentiels matriciels suivants sur les
fonctions:

aey) = (=0 30, - 1 wre) o,

£ F(Odp(Lo) + 3 ' (Ordp(Yy) + LT (O dp(My); (1.22)

Ap(YVp) = (—F ()0, — f(0)rd) D1, +1 (O)dp(¥:)+ /(1) dp(My): (1.23)
dp(M ) = —F(D) © Idyg, + f'(2) dp(My). (1.24)

Les formules du théoréeme ci-dessus s’étendent immédiatement a f €
R[t,71], et donnent une représentation de sv appelée module de p-densités.
En restreignant & Vect(S'), on retrouve bien entendu les modules de (—\)-
densités.

Cette famille de représentations semble omniprésente dans un contexte
physique. Sans souci d’exhaustivité, on retrouve comme cas particulier: la
réalisation schrodingérienne (pour laquelle H, est un caractere, trivial sur
Y1 et Mj); la linéarisation de l'action affine par reparamétrisation de sv
5112r des espaces d’opérateurs de Schrodinger ou de Dirac-Lévy Leblond avec
potentiel dépendant périodiquement du temps; une large classe d’actions
covariantes sur des opérateurs de vertex définis en §1.2.6. En revanche, il
est facile de voir que la représentation coadjointe n’est pas de type coinduite.
On a donc construit 3 types de représentations naturelles de sv: les modules
de Verma,; les représentations coinduites; et la représentation coadjointe,
pour 'instant isolée.

1.2.6 Représentations vertex

On construit en [13] des opérateurs primaires, covariants sous l’action coad-
jointe de sv, ou plus précisément, de sv. L’algebre de Lie sv s’obtient a
partir de sv en lui adjoignant une famille de générateurs (IN,)ncz qui se
comportent comme des 0-densités sous I'action adjointe de Vect(S!); plus
précisément, 50 ~ Vect(S1) x b, ot h = (N,,)nez X b, avec les crochets de Lie
[LmNP] = —PNnip, [NmNP] =0, [NmY;,] =Yoip [NmMP] = 2Mn+P'~ On
généralise facilement la construction coinduite du paragraphe §1.2.5 a sv en
étendant une représentation dp de ((Lo) ® (No)) X (Y1, M;). L’invariance
sous les générateurs N apparait de maniere naturelle d:’:fns les exemples con-
struits, et permet de contraindre plus fortement les fonctions & n points.
Nous négligerons ce point ici pour simplifier.



1.2. RESULTATS ALGEBRIQUES 25

Un champ p — sv-primaire est un opérateur ®(t,r,¢) € C{t,t=1,r,(},
série de Laurent en t et série formelle en r, {, covariant sous la représentation
coinduite dp. L’action de sv sur le champ ® peut se réécrire en DPO
(développement en produits opératoriels, traduction de OPE, operator prod-
uct expansion) relativement a la coordonnée t; les opérateurs dp(Y% ), dp(M7)

font apparaitre notamment des termes en O(ﬁ) et en O(m) dans

le DPO de L(t1).®(t2,72,(2). De tels champs primaires peuvent étre con-
struits & partir d'un boson libre a(t) et d’un superboson libre (b™,b™). Par

définition, les champs bosoniques a(t) = ) -y ant " et bt = Y onez l_)ft_”_%
vérifient les DPO suivants:
- - 1
t1).a(te) ~ ———; bF(t1).bF(ta) ~ £ . 1.25
a(t1).a(tz) CETSE (t1)-b™(t2) — (1.25)
De maniére équivalente, [an, am] = n6ntmo et [bF,b] = Sntm.o-
Définition 1.2 Soit
L=lla e (Foh : — 50"}, Y=:abts, M=_:(F":
sua it : : Ot : ., 5 :
(1.26)

On vérifie sans peine que les composantes des champs L, Y, M introduits
ci-dessus définissent une représentation de ’algebre sv.

Soit maintenant
- m m —\j—m (7}, m :
B0 =30 (" )em sy Gz,

m=0

La forme de ce champ a été choisie en cohérence avec le DPO car-
actéristique d’un opérateur primaire,

O(ts) | 1

M(t1).®(ta) = P (t1 — t2)2

(012 (1).B(t) ~ ). (1.28)

DN |

L’action itérée des champs L, Y, M sur q)§0]2,0 permet (cf. [13], Théoreme

@5?,2, cel <I>]L7jk/2J ), dit champ
5.0,2’0 = @5-0,2 (r = 0). On peut permuter librement les
variables a, b, b~ dans les expressions polynomiales du type

3.2.4) de construire un champ vectoriel ®; 5 = (

polynomial, tel que @

P:=: 0 )Yk ) a™ -, (1.29)

ce qui permet de faire agir sur P des opérateurs de dérivation Op, Og5-, O,-
Alors les formules de récurrence suivantes définissent le champ ®; x:

, .
o W = 192 0 =1, |j/2);

. @(‘2 = expr(ad;- + BEJ“(‘)Q).(I)% (r=0).

j7
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Le champ ®;, est covariant sous l'action de sv coinduite a partir d’une
représentation dp : (Lg) X (Y%, M) — L(RU/2I+1 RL/2I+1) définie par:

+ i [5/2]
p(Lo) = — | =——1d — Z pE! (1.30)

p(y%) =0 (1.31)

l/21-1

Z i’ (1.32)

ol EY est la matrice élémentaire dont 1 unique coefficient non nul est (E’,f ) oy =
1.

Ces formules se généralisent lorsqu’on remplace ¢;j :=: (b7)7(b™)* : par
atjr =1 (b7)(H)*V, :, ou V, :=expa [a est I'opérateur de vertex de
poids conforme a?/2.

Cette construction est peut-étre intéressante mathématiquement, mais a
priori décevante d’un point de vue physique, puisque les champs ainsi con-
struits sont polynomiauz en la variable non physique (. En d’autres termes,
le champ [ ®; (¢, ¢)eMCd¢, obtenu formellement comme transformée de
Fourier inverse de ®;, est une distribution de support 0 en la variable de
masse M. Dans la derniere partie de article [13], nous énongons la conjec-
ture suivante:

Con'ecture 1 3 Les séries S, =S 2 =2 o 7<I>( ) ou 3 =
J 2d =01 "7 2j+2d+1,2+1 2d—1

oo jETIT (0) TE GETImd=5 £ (0)
> j=0 1 ], <I>2j+2d ogs TESD. Y5y =D 22 j—o 1 i <I>2j+2d72d+1, définies

et analytiques pour |Z| assez grand, s’étendent analytiquement quand = — 0
en un champ scalaire 1og, Yoq_1, T€SP. Woq, covariant sous la représentation
schrodingérienne dm;_1, resp. dmg.

2

La conjecture s’appuie sur le calcul des fonctions a 2 points <1/’2Ed¢25d>
ou (Y5, W5, ), resp. (Y5 b3,), dont on démontre facilement (cf. [13], th.
5.1) qu’elles s’écrivent comme le noyau de la chaleur $l=2do—Mr?/ 2t resp.
=2de—Mr?/ 2t multiplié par une fonction qui tend vers 1 quand Z — 0, ainsi
que sur le calcul explicite d’une fonction & 3 points dans le cas particulier
de ¥=, (cf. th. 5.3). Ce dernier calcul est intéressant en soi puisque la
covariance sous le groupe de Schrodinger (contrairement au cas conforme)
ne suffit pas a fixer les fonctions & 3 points, cf. [50] ou [13], Théoreme A.3.
La formule obtenue (avant inversion de Fourier),

3
(0| Hwi@j,m,@-) | 0) —=—0

cl JI -t I @G -¢)t—t) —(ri—r)?)

1<i<j<3 1<i<j<3
(1.33)

rappelle curieusement (au préfacteur en ¢ prés néanmoins) le résultat qu’on
obtiendrait si le champ _; était covariant sous le groupe conforme en 3
dimensions sur R?! muni de la pseudo-norme ||(¢,7,¢)||> = 2¢t — r2.
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1.2.7 Etude cohomologique

A toute algebre de Lie g et tout g-module M, on peut associer un complexe
de cochaines (C"(g,M),d")n>0, appelé complexe de Chevalley-Eilenberg.
Par définition, C™(g, M) est 1'espace des applications n-linéaires totalement
antisymétriques a valeurs dans M. Rappelons brievement que: l'espace
H'(g; M) classifie les dérivations de g & valeurs dans M modulo les dérivations
intérieures; H?(g; R) classifie les extensions centrales de g; H?(g; g) classifie
les déformations infinitésimales du crochet de Lie de g. Nous déterminons
certains de ces espaces en utilisant la suite spectrale de Hochschild-Serre
associée a la suite exacte 0 — hoo — Vect(S!) x hoo — Vect(S!) — 0, ainsi
que les résultats de Fuks [44] et Ovsienko-Roger [71] donnant par exemple
H?(Vect(S'), Vect(S1)) ou H(Vect(S'), Fy). Les démonstrations sont tech-
niques. Nous ne donnons qu’un apercu des résultats, sans démonstration.
Dans le théoreme suivant, g = sv ou sv(0) indifféremment.

Théoréme 1.3 1. (dérivations extérieures) H'(g,g) ~ R3 est engendré
par 3 cocycles, c¢1 : Ly, — My, Yy, — 0, M, — 0; c2 : L, — nMy,, Y, —
0,M, — 0; etcz: L, —0,Y, = Y,, M, — 2M,, qui s’identifie a la
graduation 2(01 — d2).

2. (déformations) H?(g,g) ~ R3 est engendré par 3 cocycles (les com-
posantes manquantes sont implicitement supposées nulles):

n

C1: (Lnaym) - _5 n+m; (LnaMm) - _nMn—i-m;

Cc2 ! (Lnaym) — Ynim, (LTme) - 2Mn+m§
¢3: (Ly, L) — (m —n)Mpim (1.34)

Ces trois cocycles engendrent trois familles de déformations véritables
de sv. Les cocycles Aei(A € R) donnent naissance a la famille de
déformations svy ou s05(0) décrite en §1.2.1. Les cocycles Aca (A €
R/Z) permettent d’interpoler entre les algébres sv et s0(0).

3. (extensions centrales)

Pour A # —3,—1,1, H?(sv,(0),R) ~ R est engendré par le cocycle de
Virasoro (de maniére explicite, le crochet de Lie des générateurs de
50, (0) ~ 50)(0) ®RK sont égaux a ceur de sv)(0), a l’exception de la
relation [Lp, Ly) = (n —m) Lptm + Snemon(n? — 1)K ).

Pour A = —3,—1, H%(sv,(0),R) ~ R? est engendré par le cocycle
de Virasoro et par un cocycle indépendant de la forme (en n’écrivant

que les composantes non nulles) ¢(Ly,Yy) = 62, pour A\ = =3, ou
(L, Yp) =028, pour A = —1.

Pour A = 1, H?(s01(0),R) ~ R? est engendré par le cocycle de Vira-
soro et par deux cocycles indépendants, ¢ et ca, définis par (les autres
composantes s’annulant encore une fois)

c1(Ln,Ym) = n369

n+m»

C2(Ln7 Mm) = CZ(YnaYm) = n?8)

n+m:
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En fait ce résultat découle de la structure trés particuliére de sv1(0)
qut est 1.somorphe a une tensorisation de l’algebre de Virasoro par une
algebre associative et commutative, sv1(0) =~ Vect(S)@R[n]/(n® = 0).

Enfin, le calcul de la cohomologie de svy fait apparaitre les résultats
sutvants:

Pour A # 1,-3, H%(svy,R) est engendré par le cocycle de Virasoro.

Pour A =1 ou —3, H%(svy,R) est engendré par le cocycle de Virasoro
et par un cocycle indépendent, c1, de la forme (en n’écrivant que les

composantes non nulles) c1(Yy,Yy) = p362+q, ci(Lyp, My) = p352+q

50
pour A =1, et c1(Y,,Yy) = p;q (cocyle non local) pour A = —3.

1.3 Formes normales et monodromie des oscilla-
teurs harmoniques périodiques en temps

Présentons maintenant ’application la plus intéressante (a I’heure actuelle)
de sv a I’étude d’un probleme physique: en 'occurrence, la classification des
opérateurs de Schrodinger dépendant du temps, obtenue dans notre article
[15].

Soit ¢ — H(t) une famille continue d’opérateurs autoadjoints tels que
A1(t) € R soit pour tout ¢ une valeur propre isolée. On note ¢1(t) un vecteur
propre correspondant de I’hamiltonien instantané H (¢). Une généralisation
du théoreme de Born-Fock (1928) permet de construire une suite (¢, (t))n>1
de solutions approchées de I’équation avec condition initiale

2iedp(t) = H(t)y(t), ¢(to) = d1(to) (1.35)

telle que (sans trop préciser pour quelle norme) ¥ — v, = O(¢") quand
¢ — 0. On construit pour cela une suite d’opérateurs (H(O) =H HWY ... H
telle que v, (t) soit vecteur propre de H(™(t). L'opérateur H™ est appelé
invariant d’ordre n en raison de lidentité [H™, 2ied; — H] = O(¢"*1). Si
I’on considére ¢ come un temps macroscopique, proportionnel au temps mi-
croscopique s = t/e caractéristique des phénomenes physiques sous-jacents,
I'équation (1.35) se réécrit: 2i059°(s) = H(es)y*(s). L’hamiltonien s —
H (es) varie trés lentement; 'approximation dite adiabatique consiste sim-
plement a voir les fonctions propres de I’hamiltonien instantané comme
solutions approchées de (1.35). L’approche permet par exemple d’étudier
I’évolution d’un systeme dans un champ magnétique en rotation lente.

Dans certains cas tres spéciaux, on sait construire un invariant exact,
i.e. un opérateur I tel que [I,2i0; — H] = 0, ce qui rend l'approche adia-
batique inutile (on prendra dans la suite € = 1). L’existence d’un invariant
exact de spectre discret permet alors (cf. [60]) de résoudre plus ou moins
explicitement ’équation (1.35). En effet (si I'on suppose pour simplifier
que les valeurs propres (A,(t))n>1 de I sont sans multiplicité) le spectre de
I est alors indépendant du temps, et une base de solutions de I’équation
(1.35) s’obtient en multipliant les fonctions propres de l'invariant (et non
de I'hamiltonien instantané) par une phase dépendant du temps. Nous don-
nons ci-dessous ’exemple des oscillateurs harmoniques dépendant du temps.

)
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Notons qu’une autre méthode de résolution utilisant une écriture explicite
de ces opérateurs a l'aide d’opérateurs de création et d’annihilation a été
trouvée indépendamment par G. Hagedorn [48].

Proposition 1.4 (invariant d’Ermakov-Lewis) [60]

Soit H(t) = —02 + Va(t)z? un hamiltonien quadratique quelconque, et
V€ une solution positive de ’équation de Pinney-Milne

2
%(\/E)H/g VE— (WO =o. (1.36)

Alors:
1.
EL(E) 1= 5 |a® + (€0, + éx)?
=— |z i =&z
26 )
est un invariant exact, conjugué pour tout t fixé a l'oscillateur har-
monique.

2. Soient hy(t) les fonctions propres de EL(E)(t). Sith(to) = 32,50 cnhn(to),
alors

. tdu
w(t) = T;)cn exp <—1(n +1/2) /0 §(u)> o (1) (1.37)

est solution de l’équation de Schridinger (—2i0; + H(t))y = 0 avec
condition initiale ¥ (tp).

La classe d’opérateurs de Schrodinger qui nous intéresse est la suivante.

Définition 1.5 Soit S&/ = {~2i0; — 92 + Va(t)a® + Vi(t)z + Vo(t)}, avec

Vo, Vi, Vo € C°(R/2nZ), lespace des opérateurs de Schridinger avec poten-
tiel 2w-périodique en temps et au plus quadratique en espace.

L’espace affine S%];f est un sous-espace de l'espace affine
ST = {210, — ? + V(t,x)} (1.38)

des opérateurs de Schrodinger en (1+1) dimensions dépendant périodiquement
du temps auquel nous reviendrons en §1.4.

On notera de manitre générale V() = Va(t)x? + Vi (t)x + Vo(t), resp.
H(t) = =82 + V(t) le potentiel, resp. I'hamiltonien associé¢ & un opérateur
de Schrédinger dans S?;f .

La question principale que I'on se pose est la suivante: le potentiel étant
périodique, il existe (par la théorie de Floquet) un opérateur borné M :
L?(R) — L%(R) dit opérateur de monodromie tel que (t + 27) = Mu(t)
pour tout ¢ et pour toute solution de I’équation de Schrodinger (—2id; +
H(t))y = 0. Comment déterminer M en fonction de V' 7
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Bien que la proposition ci-dessus permette de résoudre de maniere as-
sez explicite ’équation de Schrodinger, la solution (1.37) ne donne la mon-
odromie que si £ (solution de (1.36)) peut étre choisie a la fois périodique
et positive. Or les deux conditions sont incompatibles sauf dans le cas ellip-
tique (cf. infra), ce qui laisse de c6té beaucoup de cas intéressants. Si l'on
abandonne la condition de positivité (afin d’avoir la périodicité), alors £L£(&)
n’est plus conjugué a l'oscillateur harmonique, mais a I'un des 3 opérateurs
modeles autoadjoints suivants (auxquels nous adjoignons l'oscillateur har-
monique pour étre complets).

Définition 1.6 (opérateurs modeles) Iis sont de 4 types:

1. Oscillateur harmonique: AT = 1(=92 +2°) = a*a+ 1 = (-0, +
2)(0; + ) + 3, de spectre discret Spec(At) =1/2,3/2,5/2,...

2. Répulseur harmonique: A~ = %(—83 —2), de spectre Spec(A™) = R.
Les fonctions propres généralisées sont des fonctions hypergéométriques
confluentes.

3. Laplacien : A = —%85 de spectre Spec(A®) = Ry. Les fonctions
propres généralisées sont les exponentielles etivhe,

4. Opérateur d’Airy : —%(({)g — x), de spectre R. Les fonctions pro-
pres généralisées sont les translatées de la fonction d’Airy Ai(z) =
L[ cos( + at) dt
T JO 3 :

Ces résultats d’analyse sur les opérateurs de Schrodinger, tres classiques,
sont & replacer dans le cadre général décrit dans [34]; le 2e cas utilise (par
exemple) la représentation métaplectique, qui permet de conjuguer A~ avec
I'opérateur d’Euler.

Le groupe de Schrodinger-Virasoro agit de maniere naturelle sur I’espace
SZ’;f (cf. paragraphe suivant), définissant des orbites qu’on sait classifier,
et permettant de définir des formes normales explicites (cf. §1.3.3). En re-
liant les données orbitales obtenues par des outils algébriques a 'opérateur
d’évolution obtenu en adaptant la méthode d’Ermakov-Lewis aux opérateurs
modeles ci-dessus, on détermine la monodromie de maniére explicite (cf.
§1.3.5). Notons que G. Hagedorn, M. Loss et J. Slawny [49] ont obtenu
I’opérateur de monodromie a une phase pres par des méthodes semi-classiques,
en utilisant I'opérateur d’évolution classique associé. Notre résultat est plus
précis puisqu’il donne la phase, mais il est surtout intéressant, a notre avis,
parce qu’il relie de maniere harmonieuse et originale des notions d’algebre,
de géométrie et d’analyse.

1.3.1 Covariance générale sous le goupe de Schrodinger-Virasoro

La proposition suivante explique pourquoi le groupe de Schrédinger-Virasoro
intervient naturellement dans I’étude des opérateurs de Schrodinger.

Théoréme 1.4 (c¢f. [70])
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Soit D := —2i0,+H (t) = —2i0,—02+V (t,x) un opérateur de Schridinger.
On suppose qu’un groupe a un parameétre de transformations du type

b(t,x) = Dt x) = exp (ify(g7" (t,2))) D9~ (t,7))
préserve ’espace des solutions de D.

Alors le générateur infinitésimal appartient a dmy4(sv).

Le groupe d’invariance d’un opérateur de Schrodinger quelconque ap-
parait ainsi comme une sous-algebre de 'algebre de Schrodinger-Virasoro,
dans sa réalisation schrodingérienne.

Lemme 1.7 1. L’espace affine
S .= {D = —2i0; — 9> + V (t,z)}
est préservé par 0,(SV'), ot (u étant un paramétre quelconque)

0.(9).D = mu41(9)Dryu(g) "

On obtient action

0,(6;0).D = =20, -2+ (1)V ((t), xm>+§@<¢><9>x2+2i<u—i>(Z/ffffv
(1.39)

ou(1; (o, 8)).D = =20~ 24V (t, 2—a(t)) — 220" (t)— (28'(t)—a(t)a” (1)
(1.40)

1 11 2
ot O(¢) = % —3 (%) est la dérivée schwarzienne de ¢.

Le sous-espace affine

SUS = {D = —2i, — 02 + Va(t)a® + Vi(t)x + Vo(t)}

des opérateurs de Schrodinger au plus quadratiques en espace est également
stable sous l’action de SV.

2. Le sous-espace
SH = {D = —2i8, — 02 + Va(t)2?} c S/

est préservé par oy ,4(Diff 4 (R/27Z)). La représentation restreinte est
équivalente a la réalisation usuelle du groupe de Virasoro sur l’espace
des opérateurs de Hill.

La derniere remarque, fondamentale, nécessite une explication assez longue.

1.3.2 Un détour par la dimension finie: les opérateurs de
Hill

Un opérateur de Hill est par définition un opérateur sur la droite de la forme
02 + u(t), ot u(t) € C*(R/21Z).
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Proposition 1.8 1. Soit mx\(¢) : ¥ — (¢)*p o ¢. Alors o(¢).(07 +
u) = m35(9) 0 (97 + u) o w_1/5(9) séerit B + (¢')’u o ¢ + 3t(9).
La représentation o est équivalente a la représentation coadjointe de
viv sur vith, ou vitl C vit® est Uhyperplan affine de coordonnée % le

2 2
long du générateur central.

2. Soit Stab,, := {¢ € Diff { (R/27Z) | 0(¢)(9? + u) = 0? + u} le sta-
bilisateur (ou: sous-groupe d’isotropie) de l'opérateur de Hill 8 + u
sous l'action du groupe de Virasoro. Alors son algebre de Lie, dite
sous-algebre d’isotropie

Lie(Stab,) = {€ € Vect(S") | %5”/ +2ug’ +u'E = 0} (1.41)

est de dimension 1 ou 3.

3. Soit I,(&) = &€& — L¢? + 2ug?. Alors I,(€) est une constante du
mouvement si & € Lie(Stab,).

4. Considérons l'équation de Hill (0} + u)y(t) = 0. Si (1,v2) est une
base de solutions de cette équation, alors & := a11¢%+2a121/)111}2+a221/)%
satisfait ’équation

1
55”’ + 2u§’ + u’§ =0.

Si € est périodique, alors £ € Lie(Stab(u)).

L’opérateur de monodromie est dans ce cas une matrice M dans SL(2,R)
définie a conjugaison pres. On distingue |Tr(M)| < 2 (cas elliptique),
|Tr(M)| > 2 (cas hyperbolique) et |Tr(M)| = 2 (cas unipotent). La ma-
trice M est alors conjuguée respectivement a une rotation, une matrice di-

0 1

peut relever M dans le revétement universel 37)(2, R) en suivant I’évolution
d’un couple de solutions indépendantes le long d’une période. Un principe
géométrique général implique que les classes de conjugaison de la mon-
odromie relevée classifient les orbites. Ce principe s’explicite de maniére
agréable en utilisant le dernier point de la Proposition 1.8. Dans le cas ellip-
tique par exemple, choisissant une base de solutions (1)1, ¥2) dans laquelle M
est une rotation, il est naturel d’écrire < ¥a(t) > = /&(t) < c9sw(t) ) . La
a(t) sinw(t)
fonction £ est alors périodique, et donc £ € Lie(Stab,); la fonction d’angle
t — w(t) est monotone (on trouve: W'(t) = %, ou W est le Wronskien),

a 0 . . . - 1 a
agonale 0 o1 )ouune matrice triangulaire supérieure . On

et donc M = (:f)sa —sina ot v = [*T i

sina  cosa 0 &)
comme dans le cas hyperbolique, les valeurs propres de la matrice de mon-

. v, . s (2T dt N dt oz ’ s

odromie s’écrivent exp +i g go ~ Ou J 0 est une intégrale régularisée
par déformation de contour complexe si £ s’annule —, pour un stabilisateur
normalisé de sorte que I,,(§) = 2 (cf. [15], Lemme 2.3.5). La condition de
normalisation implique que £ est imaginaire pur dans le cas hyperbolique,

d’ou des valeurs propres réelles.

Dans le cas elliptique

Proposition 1.9 (classification des invariants coadjoints et des orbites)
(cf. A. Kirillov [59])
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Soit ¢ € Lie(Stab,) pour un certain opérateur de Hill 0 + u. Alors la
classe de conjugaison de & appartient a l'un des trois types suivants:

1. Cas I: € est conjugué par un difféomorphisme ¢ a une constante. Alors
Y léogpe Lie(Stab6t2+a). Le sous-groupe d’isotropie Stabyz ., est:

(i) ou isomorphe a 57;(")
(si = %z,n e N*);

(ii) ou isomorphe au sous-groupe de rotation engendré par Oy.

(2,R), reléevement a n feuillets de SL(2,R)

2. Cas II: & est conjugué au champ de vecteurs asinnt(1 + asinnt)dy,
0 < a < 1. La matrice de monodromie est hyperbolique. L’ invariant
I,(§) est < 0.

3. Case II: £ est conjugué a (1 +sinnt)(1+asinnt)d;, 0 < a < 1. La
matrice de monodromie est unipotente. L’invariant I,,(§) est nul.

Le lien avec les invariants d’Ermakov-Lewis est donné par le lemme
élémentaire suivant:

Lemme 1.10 1. Soit & une solution (périodique ou pas) de l’équation
d’isotropie 3&" + 2ug’ + W& = 0. Alors ¢ == /€ est une solution de
l’équation de Pinney-Milne

1.(§)/2

e =0.

¢" +u(t)¢ -

En particulier, si & = 12 +3, (11,12) étant une base de solutions de
Uéquation de Hill (0? + u)(t) = 0 de Wronskien W, cf. Proposition
1.8, et ¢ :==+/€, alors

W2

¢" + u(t)

2. Soit & € Stab, et ¢ € Diff , (R/27Z). Alors € :== ¢/~'€ o ¢ stabilise

07 41 = (0} +u) et ¢ := \/;: vérifie I’équation de Pinney-Milne
transformée
WZ

"+ al — 2 =0.

Les invariants d’Ermakov-Lewis des oscillateurs harmoniques dépendant
du temps sont donc en lien étroit avec les données orbitales, et se transfor-
ment de maniere covariante sous ’action du groupe de Virasoro.

Cette remarque fondamentale pour la suite se généralise a I'espace ng
tout entier. Rappelons que la représentation restreinte de Diff , (R/277Z) C
SV sur Si];f est équivalente a la représentation usuelle du groupe de Virasoro
sur ’espace des opérateurs de Hill, I'identification se faisant tout simplement
en remplagant le potentiel u de 'opérateur de Hill par le coefficient V5 de la

partie quadratique de 'opérateur de Schrédinger. On démontre en fait qu'un
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opérateur de Schrodinger D = —2i0; — 92 + Va(t)z? + Vi(t)z + Vo (t) € S?;f
générique possede une sous-algebre d’isotropie de dimension 2, engendrée
par My et un invariant de la forme L¢ + Vs, + M, qu’on peut fixer —a
I’addition pres de AMp, A € R, puisque M agit trivialement — en demandant
que Iy, (§) = 2. L'opérateur suivant

EL(D) = % i(l + i(g’)%ﬂ —£02 + %5’(1@3 + Op)
+ (2201(=i02) + (Vi€ +200)) + 202 + Vo) (1.42)

est alors un invariant (cf. [15], Théoreme 4.4).

On peut définir une application I : D — (&, d1,02) qui & D générique
associe un invariant. L’application [ est essentiellement injective (plus
précisément, elle est injective sur les opérateurs de type II; en revanche,
si D = —2i0; — 92+ ax? +, alors I(D) = I(7,D), ot 7, est une translation
spatiale quelconque). La représentation oy /4 de SV sur S?;f , vue au travers
de 'action sur I'invariant associé, devient simplement 1’action adjointe, dont
on démontre qu’elle est hamiltonienne pour la structure de Poisson suivante:

Théoréme 1.5 (cf. [15], th. 4.7)

Soit Q ~ C®(R/277Z,R*) la variété linéaire des fonctions C> vecto-
rielles 2m-périodiques X (1) := (p,q, E,t)(1), T € R/2nZ, avec structure de
Poisson singuliére définie par:

{p(1),a(r)} = o(r —7'), {E(r),t(r")} =do(r - 7). (1.43)
Si (€,01,02) € sv, on définit ® := ®(,d1,02) comme la fonctionnelle suiv-
ante sur €,
(®.X) = § {SCIEE) + 5 Gpna)
+01(t(7))p(1) — 81 (t(7))a(T) + d2(t(7)) } dr.  (1.44)

Alors laction sur ®(€,01,92) du champ de vecteurs hamiltonien associé a la
fonction

H(f,0.1) == ~(FOE+ L (Dpa+ 3 (000~ (o(0)p+ 9/ (D) ~ (1) (1.45)

coincide avec l'action adjointe de Ly + Vg + M, € sv.

1.3.3 Orbites de S%’;f sous SV

En utilisant la classification de Kirillov (cf. Proposition 1.9) et en con-
sidérant 1’action assez simple de la partie nilpotente hoo C sv, il vient (cf.
[15], Théoreme 2.4.2):

Théoréme 1.6 (classification des orbites par le stabilisateur) SiD €
S%];f, on note Gp C SV le stabilisateur de D dans le groupe de Schridinger-

Virasoro.

1l existe 5 classes différentes d’orbites:
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(i) : Hill type I; forme normale : D, = —2i0; — 2 + ax® + v (potentiel

constant). Le sous-groupe d’isotropie est un sous-groupe d’un revétement
du groupe de Schréodinger, génériqguement commutatif, de dimension 2. Si
a =n?/4, alors Gp ~ ﬁ(n)(Z,R) X Hy est isomorphe & un revétement a n
feuillets du groupe de Schrodinger.

(i)bis : forme normale : —2i0; — 92 + n?z% + Ccos(nt — 0/2)x + v (cas
résonant ). Le sous-groupe d’isotropie est commutatif, de dimension 3.

(i) : Hill type II; forme normale :

2 . 2.2
n* | 1+ 6asinnt + 4a” sin” nt
—2i9, — 92 + — 4+, 0<a<1
GGty (1 + asinnt)? Ay =

Le sous-groupe d’isotropie est commutatif, de dimension 2.
(iii) : Hill type III; forme normale :
—2i0; — 82 + vn,a:v2 +v, 0<a<l1

n? [(a— 1) + 2a(3 — a)sinnt + 4a? sin® nt
Una = —
Ty (1 + asinnt)?

Le sous-groupe d’isotropie est commutatif, de dimension 3.
(113 )bis :

T t
COS(Z - n§)a: +7

N

—2i0; — 02 + v ox? + O(1 + asinnt)

(cas résonant). Le sous-groupe d’isotropie est commutatif, de dimension 2.

Remarque: les cas résonants (i)bis et (iii)bis sont tous les deux 'unipo-
tents’ (U'invariant I est nul).

On a trouvé ainsi essentiellement tous les sous-groupes de Lie du groupe
de Schrodinger, ainsi que ses revétements a n feuillets.

1.3.4 Solution et probléeme du probleme classique associé

Il n’est pas inutile de regarder le probleme classique associé a l'opérateur
de Schrodinger —2i0; — 92 + Va(t)2?. L’hamitonien classique H = %(p2 +
Va(t)x?) sur I'espace des phases correspond & 1’équation du mouvement
2 (t)+Va(t)x(t) = 0: on retrouve I’équation de Hill. L’invariant d’Ermakov-
Lewis a une limite classique,

1 [22 IYANE
& x)i=—|— - =2z 1.46
2O =5 | T +el - 350 (1.46)
qui est un invariant du mouvement. Cet invariant — de maniére tres étrange
d’ailleurs — est apparemment inconnu dans ce contexte; il permet de résoudre
facilement I’équation de Hill et de bien comprendre la monodromie.

On normalise le stabilisateur & de sorte que Iy, (§) = 2 (cas I, IT); € est
réel / purement imaginaire pour une monodromie elliptique (type L > 0) /
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hyperbolique (type I, o < 0; type II). Par convention, £ est choisi purement
imaginaire dans le cas ou Iy, () = 0 (unipotent type III).

Soit

27 du )
(I) T::/O mGRouﬂR

d
(II,111) T::/” c iR
r §(u)
ou I' est un contour complexe évitant les zéros, soit alternativement par
au-dessus et par en-dessous (IT) / soit par au-dessus (III).

Lemme 1.11 (solution et monodromie du probléme classique) 1.
(Cas elliptique, type I, o > 0):

b du " du
z1(t) = \/S(T)COS/O )’ xo(t) = \/@sm/o 2Ok

La monodromie est elliptique, et les valeurs propres exp i1, T =

f027r %), de module 1.

2. (Cas hyperbolique, type I, « < 0 ou type II): la monodromie est hyper-
bolique, de valeurs propres réelles exp £iT'.

3. (Cas unipotent, type I, « = 0 ou type III):

n1(t) = VED), m(t) = VED) / ;(ljj)

La monodromie est unipotente.

1.3.5 Solution et monodromie du probléme quantique

Nous revenons maintenant au probléme quantique initial. Le schéma est
le suivant. On choisit £ comme dans le paragraphe précédent. On sait
conjuguer explicitement 'opérateur £L£(&) a I'un des 4 opérateurs modeles,
ce qui permet d’obtenir un systéeme orthonormal complet de fonctions pro-
pres éventuellement généralisées (¢*)ex;, oit ¥ est le spectre de ££(€). En
multipliant les fonctions 1*(, ) par une phase convenablement choisie, on
démontre qu’on obtient une solution de I’équation de Schrodinger (dans le
cas ou le spectre est continu, aucun théoreme ne permet a priori de dire
qu’une telle construction aboutit, contrairement au cas évoqué au début
de la section 1.3, cf. aussi Proposition 1.4). Enfin, la phase détermine
la monodromie. Les calculs dans les cas résonants (i)bis, (iii)bis sont ef-
fectués en utilisant directement les formes normales trouvées. On trouve
le résultat suivant pour la monodromie. Les fonctions h,, resp. ¥y +,
resp. (h’;air,hfmpa”), resp. ), sont chaque fois des fonctions propres
(généralisées) de l'invariant d’Ermakov-Lewis. Les notations sont celles du
Théoreme 1.6.

Théoréme 1.7 (monodromie) 1. (Cas elliptique, type (i) avec a >
0): T est réel et l'opérateur modéle est ’oscillateur harmonique.
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Sip(0,2) =350 cnhn(0,2), alors
V(2 x) = che_i("J“%)T_imhn(O,x). (1.47)
n>0

L’opérateur de monodmmze M est donc conjugué a l'opérateur de mul-
tiplication par (e —i(n+3)7- ™) >0 dans £2(N).

2. (Cas elliptique résonant (i)bis): T est purement imaginaire et ['opérateur
modeéle est le laplacien.

Si(0,x) = fR+ C+(k)Yr,+(0,2) dk + fR k)r.—(0,2) dk, alors

vima) = [ e T g 0,0) diks / e (R)FT= (0, 2) d
R Ry
(1.48)
avec k' =k + 3 (16n) , v = y+Cste.

3. (Cas hyperbolique, type (i) o < 0 ou type (ii)): T est purement imag-
inaire et l'opérateur modéle est le répulseur harmonique.

Sip(0,x) = [ ey (k)hE, (0,2) dk+ [pe_(k)hE, .0 (0,2) dk alors

v ) = [ T (0,3) dit [ 6 ()T (0,2) d.
R R
(1.49)

4. (Cas unipotent, type (i) o = 0 ou type (iii)): T est purement imagi-
naire et l'opérateur modéle est le laplacien.

Si(0,2) = fR+ et (k)i +(0,2) dk + fR k). —(0,z) dk, alors
vema) = [ el T 0,0) dit / e (K)eFT=m (0, 2) ds
Ry R,
(1.50)

5. (Cas unipotent résonant (iii)bis): T est purement imaginaire et l’opérateur
modele est l'opérateur d’Airy.

Si(0,x) = [g xor(0,2) dk alors

V(2 x) = / ere ™ (0, ) dk
R

avec ' = ~+Cste.

Les constantes en 2. et 5. sont données par des intégrales explicites.

1.4 Structures poissonniennes et supersymétrisations

Nous présentons dans cette section les résultats contenus dans les articles
[10, 19] et dans le compte-rendu de conférence [11].

Nous revenons désormais a la vision de sv comme sous-quotient de
I'algebre de Poisson étendue A(S') introduite en §1.2.2. Ce point se vue
se supersymétrise de maniere naturelle (cf. [10]). Nous ne présenterons
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que tres partiellement et tres brievement les résultats de cet article assez
technique et difficile & résumer. Au lieu de l'algébre A(S'), on considere
la super-algebre de Poisson étendue P2NV) sur le super-tore définie comme
lalgebre associative des superfonctions

N
Fp.qi0) == f(p,q:0",....0M) =D Y>> cijirap 0" 0%,

iG%Z JEZ k=111<...<ip

(1.51)
le crochet de Poisson étant défini par
N
9fdg  9f dg 507
)= —————=— (-1 Opi fOyi 1.52
{f.9} dq0p 0pdq (1) Z;Qfeg ( )

avec 6(f(p,q)0" ...0%) .= k.

On a plusieurs graduations sur cet espace, dont § et gra : PEN) %Z
définie par ‘ ‘
gra(q"p™e" ... 0%) ;= m+ k/2. (1.53)

On note 77(2|N), K € %Z le sous-espace vectoriel de PCIN) engendré par les

éléments homogenes de graduation < k, relativement & la deuziéme grad-
uation gra. On obtient alors [’algebre de Schriodinger-Neveu-Schwarz de
niveau N, sns®V), comme quotient sns®V) = P(Q‘N)/P(ZW) Pour N =0,

<-1/2°

on retrouve 5U ~ Vect(S b l>< Boo. De maniére générale, sns™™) est un produit

semi-direct g™ xh(V), ot gV) est la superalgebre des champs de vecteurs de
(1IN)

supercontact sur le supercercle S , 1.e. préservant le noyau de la 1-forme
dqg + Zfil 0'df*. En particulier, g(!) est isomorphe & l’algébre de Neveu-
Schwarz de la théorie superconforme des champs. Lorsque N = 2, sns(®
contient 0sp(2]2) x sh(2|2) (produit semi-direct de 'algebre orthosymplec-
tique par une superalgebre de Heisenberg) dont une certaine réalisation laisse
invariante ’équation de super-Schrodinger obtenue formellement (comme
I’équation de Schrédinger libre a partir de ’équation de Dirichlet en dimen-
sion 3, cf. §1.2.2) par transformation de Fourier & partir d’'un modele su-
persymétrique sur R31? [42], appelé: modéle (3|2)-supersymétrique. Comme
dans le cas de sch et sv, la réalisation de osp(2|2) x sh(2|2) comme symétries
d’une équation physique s’étend facilement en une réalisation de ’algebre
de dimension infinie sns(®).

Revenons maintenant & sv. On sait que 1’équation de Schrodinger li-
bre n’est invariante que sous la sous-algebre de dimension finie sch. Il y
a néanmoins un moyen [11] de passer outre, qui permet (de maniére tres
curieuse) de voir sb dans sa réalisation schrodingérienne comme la partie
différentielle de symboles pseudodifférentiels en r, dépendant du temps, lais-
sant invariant 1’équation de Schrédinger [19]. Pour cela il faut d’abord intro-
duire I’algebre des symboles pseudo-différentiels formells, \IID1 = R[r, 7~ Y][0r, 0, 1]],

ainsi que son extension double, DUD := R[{ ,5_1]][85 , 65_ 2]]. Ces algebres

associatives sont les quantifications naturelles de A(S") et A(S') (cf. §1.2.2).
On a alors un isomorphisme d’algebres © : DUD — WD défini par

-

7 1> Oy, 072 O

= %r@;l, ¢l 207 Y (1.54)
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1 1
d’inverse ©71 : 9, — (952, r o= 25852. Cet isomorphisme est obtenu

formellement par conjugaison avec la transformation intégrale ¢ (r) — (&) :=
f+oo e—r2/4€

oo VE ) e -
WD et DWD comme agissant sur des espaces de fonctions différents et d’écrire

pour préciser WD, au lieu de VD, et DD, au lieu de DUD.

Y (r) dr liée a I’équation de la chaleur. Il est donc naturel de voir

Sous cette transformation non locale, 'opérateur de Schrédinger libre
Ag = —2iM0; — 9? devient un opérateur d’ordre 1, —2iM; — O¢, in-
variant par conjugaison sous les transformations XJSJ S ft— 21./\/15)5‘2,

j € %Z. Par conséquent, ’équation de Schrodinger initiale est invari-

ante sous @(X;j)). Précisons que O((t — 2iME&)~%), k > 0 doit étre com-
pris comme le développement en série en puissances croissantes de £/t,

O((t — 2iME)~F) ==t7FO (1 + % + ...). Des calculs montrent que

A = —F(1)0R + IMF (o, + S M (D)% + 007 )

(1.55)
X% — g0, +iMg () + 0@); (1.56)
X9 = —h@t)+ 0. (1.57)

Si 'on remplace —2iMd; par 92 dans la formule (1.6) donnant la réalisation
schrodingérienne de L, on retrouve ainsi la réalisation schrodingérienne
de sv modulo un O(9;!), ce qui n'est pas sans rappeler la définition du
systeme intégrable associé a ’équation de Korteweg-De Vries a partir de
la partie différentielle des puissances demi-entieres de 9% + u [47]; le sens
profond de cette remarque (s’il existe) est encore a découvrir. En proje-
tant les X}”), k=1, %, 0 dans l'algebre quotient D\IID(Q)/D\I/D(S_%), on a
ainsi prouvé en particulier que sb >~ DWD <y / D\IJD( <_1); comme ce dernier

— - =2
quotient s’identifie canoniquement & A(Sl)(<1)/A(Sl)(<_;), on a retrouvé
= =772
le plongement de §1.2.2. La substitution —2iMd; — 02 n’est justifiée que
si 'on fait agir ces opérateurs sur des fonctions qui sont dans le noyau de
I'"équation de Schrodinger libre; aussi, les générateurs (L) de la composante
Vect(S!) C so jouent-ils un role a part dans la construction ci-dessous.

Cette remarque va nous permettre de comprendre une variante de la
linéarisation naturelle S (cf. Théoréme 1.9 ci-dessous) de l'action de sv
sur S/ = {—2iM9, — 2+ V (t,r),V € C®(R/2rZ x R)} définie plus haut
(cf. Lemme 1.7) comme une action hamiltonienne. Curieusement, on trouve
ici I'action a gauche et a droite

Gu(9)-D = mui2(9) Dmu(9) ™, (1.58)

avec un décalage d’indice de 2 au lieu de 1. Cette action est tres similaire a
celle de o, mais ne préserve pas I'espace affine Seff . Pour étre précis, soit

St = {a(t)(—2iM; — 92) + V_o(t,7)}. (1.59)
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Alors on a les formules suivantes, a comparer avec celles du Lemme 1.7:
G,.(¢;0)-(a(t)(—=2iM3; — 87) + V(t,7)) = ¢/ (t)a(H(t)) (—21M8; — 57)
HEPOVO0. VT + o (20— PME + patre )

1M8t 83)

Gu(1; (a, B))-(a(t) (—2iMd, — 02) + V (£, 7)) = a(t)
LV (7 — alt)) + a (~2MPra(t) = M2(28(1) — a(t)a” (1)) (1.60)

(¢
1
2
(=

Les opérateurs @( XY )) Jj € IZ appartiennent a l’algebre des courants
L(YD,) ~ WD, [t, t71]] au—dessus de UD. Encore une fois, on précise la vari-
able pour plus de clarté, et on écrit £,(VD, ) au lieu de L(¥D,). Des systemes
intégrables associés a des structures de Poisson sur cette algebre de courant
(étendue par le cocycle central de Kac-Moody, (X,Y) — § TrX (£)Y (¢) dt,
ou Tr est la trace d’Adler sur WD) ont été étudiés par A. G. Reiman et M.
A. Semenov-Tyan-Shanskii [73]; on retrouve notamment la 2e équation de
Kadomtsev-Petviashvili (KP). Dans le méme ordre d’idées, on peut signaler
également le papier de V. Ovsienko et C. Roger [72] donnant des systémes
intégrables similaires a I’équation KP a partir de I’algebre de lacets au-dessus
de l'algebre de Virasoro. Dans notre cas, cf. I'article que nous résumons ici
[19], des calculs montrent que l’action de sv sur les opérateurs de Schrodinger

est reliée a l'action coadjointe de L:((¥D,)<1), ot L4((¥D,)<1) est une ex-
tension centrale de £:((VD,)<1) sans lien avec le cocycle de Kac-Moody.

Définition 1.12 Soit /\I—/\D/Sl lextension centrale de YD<1 associée au cocy-
cle ce3 (c € R), ot cg : A2°UD<y — C vérifie

es(fOr, g0 ) = es(f0:1, g0) 75 f'g dr (1.61)

(les autres composantes étant identiquement nulles).

On peut démontrer au passage que 'espace H2(¥D<1;R) est de dimen-

sion > 6. On écrit un élément de l'algebre des courants h := L,((YD,)<1)
comme un couple (D(t), h(t)). Alors I'action coadjointe de ©((DWD¢) 1) =
>3

@((X}H), f€C™®, k< 1)) sur h* préserve la sous-variété {(V (¢t,r)0,2,1)} C
h*; Paction restreinte a cette sous-variété passe au quotient en une action
de hoo C sb qui coincide avec l'action oy, par reparamétrisation sur les
opérateurs de Schrodinger. Par conséquent, oy /4‘hoo est une action hamil-
tonienne pour la structure de Poisson de Kirillov-Kostant-Souriau sur h*.

Le résultat ci-dessus ne s’étend pas directement & 50 ~ Vect(S') x h, en
raison du role particulier joué par les générateurs (Ls) dans la construction
(cf. remarque ci-dessus). Les dérivations f(t)0; n’appartenant pas a b, il est
naturel de construire une algebre produit semi-direct g := go X b telle que
go =~ Vect(S1); — ou 'on précise encore une fois la variable —, qui contient
(DWDg¢) (<1) = (DWD¢)1 x (DWDg) < <1y comme sous-algebre de Lie. On fait

agir go sur h par dérivation de la maniere suivante:

Théoréme 1.8 (c¢f. [19], Théoréme 5.1)



1.4. STRUCTURES POISSONNIENNES 41

Soit I : (DWD¢)<y =~ Vect(S')e x (DWDg).

1
=2

— g = Vect(S!); x
Et((ml) Uapplication définie comme
1((0,D)) = (0,6:(D));; (1.62)

i

1 (o f(-2MED0) ) = £ (10— (X)) (1.63)
< 2M ) < 2M )

(X ) = (O(=f(t - 2ME)) .,

_ i./\/lf’(t)r&n + %M2f//(t)r2 . (;MZf//(t)T‘ + éM?;f///(t)TS) ar—

est X(l) privé de son terme d’ordre 83, i.e. la projection de X;l) sur

Li((¥Dy)<1)-

Alors I est un homormorphisme d’algébres de Lie.

On a donc un plongement non diagonal de gy dans g, avec

adg(Ly) = —f(£)0; + ad <;f’(t)r8r + %f”(t)r2 - ) : (1.65)

Si 'on oublie les complications dues aux charges centrales, Ly agit essen-
tiellement come ﬁ@(ﬁ,’}l)) = —f(O)0 — 2/ ()0, + LA F" ()2 + ..., cf. éq.
(1.55) et les explications qui suivent.

On obtient alors le résultat suivant:

Théoréme 1.9 (c¢f. [19], Théoréme 6.1) Soit (/\I—l\]jr)gl Dextension centrale
de (YD, )<y associée au cocycle ccs avec ¢ = 2; h = L4((YD,)<1) lalgébre de
lacets étendue correspondante, et g = Vect(S'); x L,((¥D,)<1) Uestension
par dérivations extérieures définie ci-dessus. Soit aussi N le sous-espace
affine Vect(S1); x {([V_a(t,7)0; 2 4+ Vo(t)OP] dt,a(t)dt) } C g* (dans cette
formule, Vi est supposé ne dépendre que de la variable t). Alors:

(i) action coadjointe ady, restreinte a l'image I((DWD¢)<1), préserve N,
et passe au quotient en une action de sv;

(ii) décomposons doo(X)(a(t)Ao + V(t, 1)), X € so en dog’(X)(a)Ao +
d&gOt(X)(a, V) (opérateur de Schrédinger libre dépendant seulement
de a, plus un potentiel dépendant de (a,V)). Alors

ad}(Ly). (v(t)dt*; [Voo(t, )07 % + Vo(t)0)] dt, a(t)dt)

_ ({_; ( ]{ PVoodr) — (fo +2 f’v)] d*;

Ty ..

(1.64)

(4657 (£1)(a, Ve2)Or 2 4 (VG = Vo + af )oP | dt, o3P (L) (@)t )

(1.66)
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ad}(Vy). (v(t)dt?; [Voo(t,r)0 > + Vo(t)0)] dt, a(t)dt)
= <g’( }'{ Veodr)dt?; (dag"t(yg)(a, V,Q)) 8;2dt,0) : (1.67)

ad}(My). (v(t)dt*; [Voo(t, r)0; % + Vo(t)0)] dt, a(t)dt)
- (o; (dagot(Mh)(a, v,z)) a2t o) . (1.68)

En d’autres termes, si l'on oublie la composante suivant 0° dans b*,
et la composante suivant dt* dans Vect(S')*, la restriction de l’action
coadjointe de ad;‘su a N coincide avec l'action infinitésimale doo de

sv sur S = {a(t)(—2iM0; — 0?) + V_o(t,r)}.

Le terme af’d° dans 1'éq. (1.66) montre que le sous-espace de N avec
coordonnée nulle Vj = 0 n’est pas stable par I'action de sv. Des formules
analogues peuvent étre trouvées pour les actions do, avec u quelconque en
modifiant légérement la définition de I'isomorphisme ©.



Chapitre 2

Singularités locales des
champs gaussiens
fractionnaires

2.1 Présentation générale

La problématique générale dans cette partie est la suivante. On se donne
un processus stochastique (X;)icr irrégulier, c’est-a-dire, a variation non
bornée. Est-il possible de définir une intégrale stochastique contre X, et,
plus généralement, de résoudre des équations différentielles stochastiques
dirigées par X ?

La question est bien connue dans le cas ou X est un mouvement brown-
ien, et se résout classiquement grace a la théorie des martingales (elle-méme
liée a la propriété markovienne du brownien) si 'on intégre un proces-
sus adapté par rapport a la filtration brownienne; plus généralement, en
intégrant des processus adaptés contre des semi-martingales, on reste dans
la classe des semi-martingales, ce qui permet de résoudre dans cette méme
classe des équations différentielles stochastiques dirigées par le brownien.

A partir du moment ot ’on sort du cadre brownien et de ses généralisations
semi-martingales, la classe des processus adaptés ne présente plus d’intérét
particulier, et I’on dispose a ’heure actuelle de trois types d’outils essentielle-
ment: (1) les intégrales symétriques a la Russo-Vallois [124] (extensions de
I'intégrale de Stratonovich) pour des processus X unidimensionnels; (2) le
calcul de Malliavin et l'intégrale de Skorohod dans le cadre gaussien [117];
(3) la toute récente mais déja classique théorie des chemins rugueuz ou rough
paths, due & Terry Lyons [112, 114].

A part quelques breves incursions dans le domaine du calcul de Malli-
avin, nous nous intéresserons essentiellement dans cette partie au dernier
outil (3). La présentation ci-dessous s’inspire largement du livre de P. Friz
et N. Victoir [98]. La théorie, d’inspiration géométrique et non probabiliste,
permet de donner un sens a des intégrales généralisées fst Yudx, pour des
chemins (a priori déterministes) y, z d’exposant de Hélder a €]0, 1], ou plus
généralement a é—variation bornée, c’est-a-dire tels que

-1 1/

. n ,
SUD;,>1 SUDPg— <ty <. <tn—t ijo |xti+1 — x| < oo (on peut reparamétrer

43
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un chemin & 1/a-variation bornée de fagon a en faire un chemin a-Hdélder,

si bien que l'extension de la théorie du cadre Holdérien au cadre des g-
variations est en général automatique). La définition donnée coincide avec
I'intégrale de Young (obtenue simplement comme limite de sommes de Rie-
mann) lorsque 2a > 1; sous cette derniere hypothese, ¢ — fst Yudx, étant
alors lui-méme un chemin & 1/a-variation bornée, on peut itérer les intégrations
et résoudre localement de maniere unique une équation différentielle

dy; = f(t,y)dxy, yo=z€R" (2.1)

si & est un chemin d-dimensionnel & 1/a-variation bornée, et f : R x R” —
LR, R™) est C'. Désignons par Q,(R?) I'espace de Banach des chemins
r = (z(1),...,2(d)) : R — R? & 1/a-variation bornée. Alors, de plus,
I'application = — y¢(x) (ou ys(x) est 'unique solution de I’équation (2.1)),
dite de It6-Lyons, est continue de Q,(R?) dans Q4 (R").

L’extension directe de 'intégrale de Young au cas a < % s’avere impos-
sible: en effet, d’une part, les sommes de Riemann peuvent diverger; d’autre
part, deux suites (z}')n>1, (25)n>1 convergeant toutes deux vers le chemin x
dans Q,(R?), peuvent conduire & la limite & des intégrales différentes. Ad-
mettons provisoirement que « €] %, %
de Riemann associées a f; f(zy)dz,, ot f est une 1-forme sur R, un bref
calcul utilisant la formule de Green-Riemann montre qu’il est nécessaire
de donner un sens non ambigu aux intégrales d’aire [* da, (i) [\ diy (i)
obtenues en intégrant le chemin x contre lui-méme. En remarquant simple-
ment que

[. Sil’on veut faire converger les sommes

/ daa (i) / " dwu(i) = é(xt(z‘) (), (2.2)

on voit qu’il est naturel de demander que ces intégrales d’aire soient au plus
de I'ordre de |t — s|>*. Introduisons la terminologie suivante: si f = f; est
une fonction réelle de deux variables telle que

o ‘fts‘
I flleg = SUp e

< oo (v €]0, +00]), (2.3)

ondit que f € CF est un 1-incrément o-Holder. Les intégrales d’aire doivent
donc étre des 1-incréments 2a-Holder.

NN
d’intégrales itérées ((X%S(’L'l, i2))1§i1,i2§d7 ceey (Xg(il, . 7iN))1§i1,...,iN§d)~ Par
hypothese x™, n = 2,..., N doit étre un 1l-incrément na-Hoélder. On note
x},(i1) = x4(i1) — 24(i1) incrément du chemin x entre s et ¢. Il est naturel
de demander que la famille (x!, ..., x" ), dite rough path ou chemin rugueux
au-dessus de x, ou simplement relévement de x, vérifie les deux propriétés

de compatibilité suivantes:

Plus généralement, si o €] |, il faut donner un sens a la famille

(i) (propriété multiplicative ou de Chen)

X{;(’L’l,. . ,Zk) - Xfu(il, ce ,Zk) - Xﬁs(il, ce ,Zk)

= Z Xzﬁi (ila s ai]ﬁ)qufs (Z.k:l-i-l? s 7Zk) (24)
k1+ko=k
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(ii) (propriété géométrique ou de shuffle)

Xpg (i1, oy iny )X (10 s ng) = Z X2 2 (k1 kg ng)
keSh(4,5)
(2.5)

ot Sh(%, 7) est 'ensemble des “shuffles” de 7 et 7, i.e. des permutations
de la liste concaténée (¢, j) préservant l'ordre des listes ¢ et j.

Si x est régulier, les intégrales itérées de = contre lui-méme,

t t1 te—1
s (i1, i) ;:/ da:tl(il)/ dxt2<¢2>.../ do (s)  (2.6)

vérifient (2.4) et (2.5): la famille (x!,...,x") — pour N quelconque — est
alors appelée relévement canonique de x.

Lorsque n = 2, ces deux propriétés s’interpretent simplement en remar-
quant (lorsque x est un chemin régulier bidimensionnel) que

/:dxv(l) [ dn@ = [Can [ dne) —[d%(l)/:dxv(z)
_ (/ut d%u)) (/u da:v(2)) (2.7)

(cf. Fig. 2.1)

Figure 2.1: Le défaut d’additivité de laire correspond au rectangle sur la figure.

et que (par le théoréme de Fubini)

/std:rv(l) /Svdxv(2)+/Stdxv(2)/:d:rv(1) _ </stdxv(1)> </Std%(2)).
(2.8)

Ce défaut d’additivité de I’aire disparait si ’on considere x = (z(1), z(2),x2(1, 2))

comme les coordonnées usuelles dans le groupe de Heisenberg G2) muni du
produit (z1,y1,21)-(%2, Y2, 22) = (@1 + Y1, T2 + Y2, 21 + 22 + 3 (T1Y2 — T291)).
On a alors: x5 = Xy - X4y, €t en particulier, x4 = x;)l - X310, de sorte que Xis
apparait comme incrément (multiplicatif) du chemin ¢ — x;9. Dans le cas
général, t — x;9 s’interpréte de la méme manieére comme chemin a valeurs
dans un groupe nilpotent GN)(R%) de rang N qui est le groupe de Carnot
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de rang N. Si I'on note TR? = @non”Rd ’algebre tensorielle sur R? vue
comme algebre de Lie, et T (RY) son quotient par I'idéal @,,~ yT"RY, alors
P’algebre de Lie de GOV)(R?) peut étre vue comme la sous-algébre de Lie de
TW)(R?) engendrée par T'RY ~ R?. Le groupe G(™) (R9) est naturellement
muni d’une métrique sous-Riemannienne obtenue en considérant la longueur
du chemin z sous-jacent; c’est un espace géodésique. Un chemin x est a-
Hoélder pour la distance géodésique associée (dite de Carnot-Carathéodory)
si et seulement si x” est un 1-incrément na-Holder pour tout n < N. Des ar-
guments généraux sur les espaces métriques permettent alors de montrer que
tout chemin a-Hoélder & valeurs dans G(N) (RY) peut étre approché au sens
de la norme || . ||« par des chemins (x;);en & variation bornée (relevements
canoniques des chemins sous-jacents xz; : R — R?, eux-mémes & variation
bornée), formant une suite bornée pour la norme a-Holder. Soit o < a.
Le théoreme d’Ascoli permet d’en déduire 'existence d’une sous-suite con-
vergeant pour la norme o’-Holder. Autrement dit, tout chemin rugueux
a-Holder est limite en norme o'-Holder de chemins réguliers. Notons que
cet argument d’analyse fonctionnelle, assez abstrait, présente le défaut de ne
pas donner une représentation explicite de la suite d’approximations (x;).
La régularité perdue en passant de o & o/ (aussi proche de a que 1’on souhaite
mais différent de «) est inévitable dans le cas général, et conduit & définir
I’espace des chemins rugueur géométriques comme la complétion — pour
la norme «-Holder associée a la distance de Carnot-Carathéodory — des
chemins réguliers.

Un théoréeme général due a T. Lyons et N. Victoir [113] montre que tout
chemin a-Holder x se releéve en un chemin rugueux a-Holder (ou o’-Holder si
1/a € N), noté x. La démonstration consiste a voir  comme une section du
fibré principal quotient trivial R x (exp(@©p>1T"(R?))/ exp(®n>2T"(R?))) ~
R x R? et & trouver un relévement de z en une section x du fibré principal
trivial R x GV)(R?) possédant la bonne régularité Holder. De telles sections
existent (il en existe une infinité non dénombrable), mais la construction,
loin d’étre canonique, utilise I'axiome du choix. Néanmoins, dans un certain
nombre de cas (notamment le brownien fractionnaire d’indice de Hurst >
1/4, cf. infra, ou encore des chemins aléatoires sur des fractals [78, 104]) on
arrive a construire des approximations naturelles de  par une suite (z"),>1
de chemins réguliers dont les relevements canoniques convergent au sens
de la norme a-Holder vers un objet qui est ipso facto un relevement de z.
Notons au passage qu’une suite de chemins rugueux x; : R — GIMV)(RY)
converge au sens de la norme a-Holder si et seulement si les 1-incréments
X7 R? — R? convergent au sens de la norme || . ||cpe pour tout n < N, ce
qui fournit un moyen effectif pour démontrer la convergence.

Admettant I'existence d’un tel relevement x, on dispose de deux théories
voisines pour définir les intégrales: la théorie de T. Lyons, développée également
par Friz, Victoir, Lejay [112, 114, 98, 110, 111], et la théorie, plus récente,
de M. Gubinelli [100, 101], développée aussi par S. Tindel et coauteurs
[102, 93, 122], dite théorie algébrique des chemins rugueuz. Dans les deux
cas, il s’agit de “boites noires”, réouvertes pour étendre la théorie a des
cadres plus généraux que les équations différentielles (équations avec retard,
équations de Volterra, équations aux dérivées partielles...) mais que nous
nous contenterons essentiellement d’utiliser. Décrivons succinctement les
arguments de Gubinelli pour o > 1/3.



2.1. PRESENTATION GENERALE 47

Le point de départ [100] est le complexe différentiel exact (dégénérescence

de la cohomologie de Cech)
0—C dy 01 dy 02 61 ~ dy 9
1(R,R?) = Co(R,R*) = ... = Cj(R,R%) = ... (2.9)

olt Cj(R,R?) est I'espace des fonctions continues f : RY — R, et (6,f)1y,.tnsy =
2?21(_1)j+1ft1,...,£j,...,tn+1- En particulier, tout cobord h € Z3 := Kerds
s’écrit simplement h = dg ol grs := —hoes; i f € Cl(]R,Rd), alors 0f € Zo
et donc (puisque d o4 = 0) on a aussi h = d(¢g + 6f). En revanche, il y a
unicité si 'on cherche un 1-incrément g dans Z21+ =ZN C’?, ol 021+ est
I’espace des 1-incréments de régularité Holder > 1; en effet, si dg1 = dg2,
alors g; — gs est I'incrément d’une fonction f : R — R? qui est 1T-Holder
et donc constante. On peut équiper C3(R, R%) de normes Holder || . ey de
sorte que hys = gj,92, soit o + B-Holder si g', resp. g% est a-, resp. -
Holder. Un lemme joliment appelé lemme de la couturiére assure 1 existence
d'un tel g dés que h € C1'; on note alors g = Ah et A : C§+ — CI7 est
appelée sewing map (nous suggérons en frangais: application cicatrisante).

L’intégrale de Young s’explicite facilement & l’aide de l'opérateur A.
Soient x € Cf(R,R%) et y € OF(R, L(R?, R™)) avec a > %, alors 0(ys.0%¢s ) tus =
Oyt 0ys € C’§+. Posons g := A(dywdzyus); on a dg = §(ys.0xs), mais
g € C’21+, contrairement & y,.0r;s qui n’est que a-Holder. L’intégrale de
Young fst Ysudx, s'identifie alors & ys.0zs — grs = (Id — Ad) (ys-024s), qui est
I'incrément d’une fonction d’une variable: en effet, g étant un 1-incrément
17T-Holder, E?:_Ol G i1 — 0 lorsque n — o0, et I'on retrouve
donc bien que
fst Yodx, = lim, s 2?2_01 Yo i (1—s) (:cs+¢+1(t_s) — l‘s+i‘(t_s)) est limite de
sommes de Riemann. ! ! !

t—s),s—&—%(t—s)

L’argument s’étend pour « E]%, %] des qu’on a choisi un chemin rugueux

(6z,%2%) au-dessus de x. La propriété multiplicative s’écrit dans ce nouveau
langage : §(x%)us = 024,07y La fonction y doit étre un chemin contrélé
par x, i.e. ses incréments doivent s’écrire: dyps = Psdxes + grs o Py € CF
et gis € C3%. En effet (supposant provisoirement x régulier), on a alors

Ao(ys.0xis) = A(0xp0yys) = AN Ps0x4,0x4ys) + A gusOTiy)
A((I)S(S(X2)tus) + A(guséxtu)
AS(—®x2) + A((6®)x2,) + AGusOzr).  (2.10)

Abandonnant I’hypothese de régularité, tous les termes sont bien définis,
sauf le premier — car ®,x7, € C57* seulement —, ce qui conduit & poser

t
/ YodZy = YsOps + CDSX?S — A((é@)tuxis + GusOTiy) (2.11)

ou de maniere équivalente

t n—1
2
/ Yoo =D Yy gog(Tapitt =Ty ) ¥R i )Xo i,y i)
s i=0 " "

(2.12)

Nous reviendrons sur cette construction lorsque nous définirons la régularisation
par ordre normal de Fourier dans la section 2.4.
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2.2 Description des principaux résultats

Rappelons que le brownien fractionnaire d’indice de Hurst a €]0, 1] est le
processus gaussien centré (Bf');cr de covariance

1
EB®BY = §(|s|2a + [t2 — |t — s]?). (2.13)
Lorsque a = %, on retrouve le brownien ordinaire. L’intérét de cette famille
de processus indexée par « réside dans le fait que ce sont en quelque sorte les

processus auto-similaires les plus simples; en d’autres termes, il y a égalité
en loi entre (BS;,t € R) et (A*Bg*,t € R) si A > 0. Ces processus sont de

N . . . T loi
plus & accroissements stationnaires, c’est-a-dire que (B; — Bg,s,t € R) =

(Bt+a — Bsta,s,t € R) pour tout a € R. En fait ces deux propriétés les
caractérisent parmi tous les processus gaussiens centrés. Une application
élémentaire du lemme de Kolmogorov-Centsov permet de montrer que, pour
tout £ < «, il existe une version de B® dont les trajectoires sont p.s. k-
Holder; on dira simplement que B% est aa~-Holder.

Dans la suite, on fixe a €]0, 1] et on considére un brownien fractionnaire
multidimensionnel B = (B(1), ..., B(d)) (d > 2) d’indice «, de composantes
indépendantes et identiquement distribuées.

Le programme principal (réalisé en dernier) était de construire un calcul
stochastique pour le brownien fractionnaire a 1’aide de la théorie des chemins
rugueux. Sans entrer dans les détails (cf. infra) rappelons que les résultats
classiques dis a L. Coutin et Z. Qian [90] permettent de définir un calcul
stochastique par la méthode des chemins rugueux pour B lorsque o > 1/4 et
ne se prolongent pas au-dela de la barriere o = 1/4. La méme barriére ap-
parait lorsqu’on utilise I'intégrale symétrique a la Russo-Vallois ou I'intégrale
de Skorokhod [76, 77, 83, 117]. Dans le cas unidimensionnel uniquement,
cette derniere s’étend a un indice a quelconque [86], tandis que l'intégrale
symétrique, définie seulement pour o > 1/6, admet des généralisations qui
s’étendent a un indice « arbitraire [99].

Le premier travail a consisté a définir des approximations de B plus com-
modes a utiliser lorsque o < 1/2 que l'interpolation linéaire par morceaux, et
permettant dans une certaine mesure des calculs exacts. L’approximation
analytique de B construite en [14] consiste a voir (Bi)icg comme limite
quand 7 — 0% (au sens des chemins rugueux, au sens L? ou encore pour
la convergence uniforme sur tout compact en probabilité) de la partie réelle
d’un processus & valeurs complexes (I';).—¢tinn>0, défini et analytique sur
le demi-plan supérieur II* = {z € C | Im 2 > 0}. La covariance in-
finitésimale de T' s’écrit: E[[.T%,] = 0, E[[.T7,] = ca(—i(z — w))?**72. Si
z = s+i},w = t+if, on obtient co(—i(t — s) + 1)>*~2, dont la partie
réelle est une régularisation du noyau infinitésimal o(2cc — 1)[t — s[?*~2 du
brownien fractionnaire, mal défini (car non L}, ) dés que o < 1/2. En
intégrant le processus I le long d’un chemin quelconque v :]0, 1[— IIT tel
que v(0) = 0, y(1) = 2, on obtient un processus analytique I'. En con-
sidérant le processus conjugué I' comme vivant sur le demi-plan inférieur

II- = {z € C |Im z < 0}, on peut également voir B comme valeur au bord
du processus (I',T") défini sur C\ R. Dans la suite on considérera un proces-
sus multidimensionnel I' = (I'(1),...,T'(d)), de composantes indépendantes

et identiquement distribuées. La variance de I'aire de Lévy (intégrale itérée
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d’ordre 2) du processus (B})ier = (Re T"1),cp se calcule explicitement &
I’aide de fonctions hypergéométriques, et on vérifie la convergence au sens
des chemins rugueux de aire lorsque 7 — 0% si o > 1/4, ainsi que sa diver-
gence deés que a < 1/4, ce qui permet de retrouver par une nouvelle méthode
des résultats déja connus.

Ces calculs de moments ont permis de comprendre les raisons des diver-
gences en-dessous de la barriere o = 1/4. Posons

KpE(t,s) = (i(t — s) + )22 (2.14)

En faisant des déformations de contour, on montre que les itérées des noyaux
/
K~ produisent des fonctions analytiques, ainsi que des fonctions puissance

singuliéres et multiformes du méme type que K;ji, ce qui donne de maniere
tout a fait générale un développement en puissances fractionnaires de 7
au voisinage de n = 07 des moments de toute distribution finie de B ou
de ses intégrales itérées. La variance de l'aire de Lévy contient par exem-
ple un terme en O(n**~1), qui diverge quand a < 1 /4. Une analyse plus
systématique [18] a permis de comprendre comment calculer les plus bas ex-
posants en 7, ainsi que de démontrer un théoréme central limite pour ’aire
de Lévy renormalisée par l'inverse de son écart-type; on obtient a la limite
un brownien usuel, indépendant du brownien fractionnaire de départ. On a
ainsi identifié de maniere précise la divergence de I’aire de Lévy. Les mémes
outils permettent [22] d’établir un théoreme central limite pour l'erreur du
schéma d’Euler associé a I'aire de Lévy lorsque o > 1/4. 1l est clair que ces
outils puissants doivent permettre d’obtenir de maniere systématique des
résultats asymptotiques précis pour des quantités appartenant, disons, a un
chaos d’ordre fini, apparaissant par exemple dans la résolution d’équations
aux dérivées partielles stochastiques.

A contrario, les intégrales itérées du processus I' (appelé: brownien frac-
tionnaire analytique) ne font pas intervenir de fonctions multiformes, et des
déformations de contour permettent de montrer facilement leur convergence
lorsque n — 0. En adaptant la théorie algébrique des chemins rugueux a un
cadre analytique, on obtient alors [16] un chemin rugueux au-dessus de T,
ainsi qu'une résolution locale dans le demi-plan supérieur fermé IIT = IITUR
d’équations différentielles stochastiques a coefficients analytiques dirigées
par I'. Des bornes faciles a obtenir sur la variance des intégrales itérées de
I’ permettent [25] de controler les moments de tous ordres des équations
différentielles stochastiques linéaires dirigées par I'; ce résultat, obtenu par
un développement en série a la Chen, ne découle pas des estimées générales
obtenues par Friz et Victoir [98], qui divergent des que o < 1/3.

Les travaux les plus récents se rapportent a la construction d’un chemin
rugueux au-dessus d’un chemin multidimensionnel a-Hélder avec o €]0,1]
quelconque. La méthode proposée, plus constructive que celle de T. Lyons
et N. Victoir [113] qui repose sur des relevements arbitraires de sections a
valeurs dans des quotients du groupe de Carnot (et utilise notamment pour
cela I’axiome du choix), est tout a fait adaptée par exemple au développement
d’un calcul stochastique dans le cas ol le chemin est un processus aléatoire.

La construction repose sur un algorithme combinatoire appelé mise en
ordre normal de Fourier que I'on trouve expliqué en détail dans [23], ainsi que
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dans [26], dans une perspective plus algébrique. Un simplification mineure
de cet algorithme, adaptée au cas spécifique du brownien fractionnaire,
conduit & la construction d’un chemin rugueux au-dessus de B dans [21].
Prsentons-le treés brievement dans ce cas particulier.

L’idée est de décomposer chaque composante B(i;) en intégrales de

Fourier, et de voir B, (i1,...,in) comme Y v PIB(i1,...,in), ot Xy
est 'ensemble des permutations de {1,...,n}, et P? est le multiplicateur de
Fourier

P f:f(xla"'vxn)’_)
Fl ((gl,...,gn) > 1|§0<1)‘§m|50<n)|(ff)(gl,...,gn)) (€1, ..., Tn).
(2.15)

Le terme P'4B" se présente en ordre normal de Fourier (le terme ordre
normal est emprunté & la théorie conforme des champs [37] et se rapporte
d’habitude & des produits de Wick opératoriels). Les autres doivent avant
toute régularisation étre replacés en ordre normal de Fourier a l’aide du
théoreme de Fubini; le domaine d’intégration se représente alors par des
arbres enracinés. Le codage des intégrales itérées par des arbres est clas-
sique [82, 101]. La combinatoire d’arbres a re¢u un intérét certain depuis
la fin des années 1990 en raison des travaux de A. Connes et D. Kreimer
et d’autres auteurs [87, 88, 89, 80, 81, 97] sur les structures d’algebres
de Hopf sous-jacentes, en lien avec ’algorithme de Bogolioubov-Parasiuk-
Hepp-Zimmermann (BPHZ) [106] pour la renormalisation des diagrammes
de Feynman en théorie quantique des champs. La méme combinatoire est
a loeuvre ici, et la terminologie (ainsi qu’une partie des notations) est es-
sentiellement la méme: coupures admissibles, opérateur de régularisation
(ou renormalisation) R, contre-termes... On montre en particulier que
les chemins rugueux formels (i.e. satisfaisant les contraintes algébriques
de Chen et shuffle mais pas nécessairement les propriétés de régularité
Holder) s’obtiennent en toute généralité a partir d’une famille indexée par
des mesures de caracteres ¢%( . ) d’'une algébre de Hopf d’arbres, s’interprétant
comme intégrales itérées (ou plus précisément intégrales squelettes) régularisées,
et appelées données d’arbres (“tree data”). Les contraintes algébriques
sont alors automatiquement vérifiées, et il reste précisément a choisir une
régularisation conduisant aux bonnes propriétés de régularité Holder.

La régularisation (ou renormalisation) consiste, comme en théorie quan-
tique des champs, a oter des termes divergents, de maniere — dans notre
cas — a préserver les propriétés multiplicative et géométrique. Par exem-
ple, la régularisation RT'%(1,2) de I'aire de Lévy d’un chemin I' s’obtient
en retirant un terme d’incrément, [6 (X?(1,2))},s = X2(1,2); — X?(1,2)s,
préservant ainsi la propriété de Chen puisque 6 o § = 0.

A défaut d’autres contraintes a définir, le choix d’une régularisation
est toutefois beaucoup plus arbitraire qu’en théorie des champs, et nous
présentons ici une famille assez simple de tels choix, que nous appelons
régularisation de domaine, consistant a couper le domaine d’intégration
de Fourier dans certaines directions. Dans le cas particulier du brownien
fractionnaire, les intégrales itérées régularisées d’ordre n, RBL (i1, ..., in),
restent dans le chaos gaussien d’ordre n. Notons qu’une construction légerement
différente, donnant des formules plus simples — qui évitent notamment le re-
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cours aux intégrales arborescentes —, inspirée par nos travaux mais entierement
redémontrée sans tout l'attirail algébrique, a été donnée récemment par D.
Nualart et S. Tindel [120]; nous verrons plus loin qu’elle correspond — dans
notre schéma général — a choisir des données d’arbres toutes nulles.

Au lieu de ces coupures commodes mais passablement arbitraires, on
peut retirer des contre-termes de maniere cohérente en suivant ’algorithme
de renormalisation de BPHZ appliqué aux intégrales squelettes réécrites en
termes de diagrammes de Feynman (cf. preprint [28], présenté brieévement
en §2.4.4). Toutes ces constructions reposent sur une analyse multi-échelles
en Fourier. Sil'on se restreint a la régularisation de domaine étudiée dans
ce mémoire, celle-ci devient particulierement apparente dans le cas de la
construction pour un chemin quelconque, ou la régularité Holder se montre
en utilisant 1’équivalence des normes Hoélder avec les normes d’espaces de
Besov B .

Le principal enjeu actuellement consiste a dépasser ce point de vue
algébrique en revenant a la question de départ: comment construire ez-
plicitement une famille d’approximations régulieres I'. d’un chemin a-Holder
I' donné, dont les intégrales itérées naturelles convergent quand ¢ — 0 7
La question revient en quelque sorte a essayer de court-circuiter la théorie
des chemins rugueux. Un projet de longue haleine consiste a redéfinir le
brownien fractionnaire comme un champ gaussien en interaction — au sens
de la théorie des champs — L’interaction, invisible sur le chaos d’ordre 1,
doit régulariser les intégrales itérées dans les chaos d’ordre supérieur. Nous
présentons brievement ce projet (cf. preprint [27]) en §2.4.5. L’interaction
quartique introduite dans cet article permet pour l'instant de définir une
aire de Lévy pour 1/8 < o < 1/4, et plus généralement de construire un
chemin rugueux pour 1/6 < a < 1/4.

2.3 Outils analytiques pour le brownien fraction-
naire

Nous présentons dans cette section les travaux contenus dans les articles
[14, 16, 18, 22, 25].

2.3.1 Définition du brownien fractionnaire analytique et ap-
proximation analytique du brownien fractionnaire

Soit B = (B(1),...,B(d)) un brownien fractionnaire d’indice de Hurst a €
10, 1] & d composantes indépendantes et identiquement distribuées.

Supposons provisoirement que o > % On peut alors considérer la dérivée
de B comme un processus & valeurs distributions, dont la covariance

t— S|20¢—2

E[B.Bj] = 0,0:E[BsBy] = |a(2a—1)

(2.16)
est un noyau de convolution L' correctement défini. Lorsque o < % — comme
nous allons voir — on peut remplacer ce noyau par la valeur au bord d’un
noyau de type hyperfonction.
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Les noyaux singuliers de type puissance possedent de bonnes propriétés
de composition qui, a défaut de formules exactes (tous les moments s’expriment
théoriquement a l'aide de fonctions hypergéométriques en plusieurs vari-
ables, mais les expressions deviennent rapidement trop compliquées pour
étre utilisables) permettent en fin de compte une compréhension semi-quantitative
satisfaisante des singularités locales des intégrales itérées. On évite de cette
maniere le recours a des interpolations linéaires par morceaux qui camouflent
la nature des singularités.

‘On notera par la suite I = {z € C| Im z > 0} le demi-plan supérieur,
et [T := {z € C| Im 2z > 0} son adhérence dans C.

Définition 2.1 Soit K= : IIT x II™ — C le noyau défini par

/ a(l —2a)

K (z,w) := (—i(z — w))?*2, (2.17)

2cos o

et KT 117 x ITT — C son conjugué compleze.

Les fonctions puissance sont définies sur C \ R_ en faisant appel a la
détermination usuelle du logarithme complexe; on vérifie que l'argument
des fonctions puissance dans les noyaux K& est de partie réelle positive.

Fixons 7 > 0 et considérons z,y € Ret z = x +1d,w = y +ig: alors le
noyau

’_ r_ _ a(l — 20[) . 200—2
K, =K = ———(—i(z - “ 2.18
) = K0 = S (i —y) + ) (218)
tend quand n — 0T (& une constante pres) vers la distribution —e™ "% (x —

)2a72__ iﬁa(

2c0—2
+ € -

r—y) [45] ou par définition (fixant y)

2a—1 1

() = (T ) =

oo
| d@a—yt i
y
(2.19)
si @ < 1, et similairement pour (z — y)?* 2.

Bien qu’on ne puisse définir en général le produit de deux distributions,
I'existence méme d’un calcul stochastique pour B (en tout cas pour 1/4 <
a < 1/2) montre qu’on peut comprendre une integrale f Y.dBs; comme
[ YsBlds (en un sens limite & définir).

Les noyaux K,;’i sur R x R sont de type positif puisque leur transformée
de Fourier est positive: en effet [95],

F(z e (Fi(z —y) +1)**72)(€) = Cae M1z . )2 (2.20)

Une autre fagon de démontrer la positivité de K,;’i est de remarquer que

S fele)filw) = 22200 (i, 22 (2.21)
k=0

~ 2cos(ma)

olt (fx)k>0 sont les fonctions analytiques définies sur IIT par

fulz) = ay [2;12&2 [z;jk (2.22)
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avec

04(1—204)]1/2. [(2—2a)(2—2a+1)...(2_2a+(k—1)) %'

ap = ga—1 [ ol

2 cos(ma
{me) (2.23)

Cette décomposition en série du noyau K - suggere de considérer pour
lui-méme le processus I", := 3, fr(2)§x — olt les (§k)r>0 sont des gaussi-
ennes complexes centrées réduites indépendantes —, de covariance K "~. La
transformation de Cayley ® : It = D = {z € C | |2| < 1}, définie par

z— (= ;—J: (qui est un biholomorphisme) envoie essentiellement I, sur
une série entiere aléatoire, dont il est facile de voir (grace au lemme de Borel-
Cantelli) qu’elle est de rayon de convergence égal a4 1 p.s. Le processus I
est donc défini et analytique sur I, d’ott son nom: brownien fractionnaire

analytique [16]. On a la proposition suivante:

Proposition 2.2 1. Si z € I et vy :]0,1[— IIT est un chemin continu
quelconque tel que v(0) = 0 and v(1) = z, on pose T, := f7 I, du.
Alors T' est un processus analytique sur IIT. De plus, si z tend vers
t € R en restant dans 11, la variable aléatoire T', converge presque
sturement vers une variable aléatoire notée I';.

2. La famille {T'y; t € R} définit un processus gaussien centré a valeurs
complexes, dont la fonction de covariance est donnée par: E[L'sTy] =0
et

3 efiﬂasgn(s) g2 + elma sgn(t) 2 _ pire sgn(t—s) s — t2a
E[lsI] = u d | | '

4 cos(ma
() (2.24)

Les chemins de ce processus sont p.s. k-Holder pour tout K < «.

3. La partie réelle de {T'y; t € R} est un brownien fractionnaire indexé
par R.

Si I'on voit le processus complexe conjugué I' comme vivant sur I~ =
{z € C|Im z < 0} au lieu de IT*, autrement dit, si 'on pose I';_j; := ft+iﬁa
alors B apparait comme valeur au bord de I'hyperfonction (I', —T') € Hol(C\
R), autrement dit, By := lim, o+ ['(t +in) + lim, o+ I'(t — in) au sens des
distributions.

Intéressons-nous un instant a la convergence de (I't1ip)ier vers (I't)ier:

Lemme 2.3 I existe C > 0 tel que, pour tous z,7' € IIT =TT UR,

E|T(z) — T()]* < Clz — 2'|**. (2.25)

Cette majoration implique — griace au lemme de Kolmogorov-Centsov
et a 'hypercontractivité du processus d’Ornstein-Uhlenbeck — qu’il existe
pour tout x < « une version de I' qui est uniformément x-Holder sur tout
voisinage de I'origine dans II* (on dira pour simplifier que I est o~ -Hdélder).
Cette idée que des estimées de variance impliquent 1’holdérianité de proces-
sus dans un chaos gaussien fini reservira souvent par la suite.
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Comme T est analytique sur IIT, cette assertion n’a d’intérét qu’au voisi-
nage de I’axe réel. Inversement, notons qu’une fonction continue f : II* — C
telle que f |H . est analytique et f ‘R est k-Holder n’est pas nécessairement
uniformément k-Holder au voisinage de ’axe réel (nous reviendrons la-dessus

en §2.3.3).

Considérons maintenant le processus analytique réel (B/;t € R) =
(FHig,t € R), appelé approzimation analytique du brownien fractionnaire.
Le lemme précédent implique pour tout 7' > 0 et £ < « la convergence
de (B{)sco,r) vers (Bt)iejo,r) dans L2(9;CE([0,T))), ot OF est I'espace de
Banach des fonctions k-Hélder f:[0,7] — R muni de la norme

t _
Illesqomy = sup sl + sup £6) = Fls)| (2.26)
0,7 stefor] [t =8|

Remarquons par ailleurs qu’on a convergence optimale (au sens de Kiihn
et Linde [109]) de la série 2Re )< fr(2)&; définissant le brownien frac-
tionnaire B; = 2Re I't, en ce sens que

N~¢T°E |sup |B; — 2Re Z Tl = N0 0 (2.27)
teK k<N

pour tout compact K € R et tout € > 0.

Voyons maintenant les propriétés limite des noyaux régularisés K;]’i et
de leurs compositions quand n — 0.

2.3.2 Etude des noyaux de convolution

Considérons 'opérateur de convolution
Koy fe (K /Ki:c—u f(u) du, z€R. (2.28)

Le noyau K} o st régulier mais des singularités apparaissent quand n — 0.
On s’intéressera aussi a 'opérateur de convolution K o f]( ) défini de la méme
maniere & partir du noyau intégré

Ky*(z,y) = - (Fi(z —y) +n)*. (2.29)

4 cos o

On a le lemme suivant:

Lemme 2.4 Soit f : [0,t] — C une fonction telle que t — t°f(t) (8 > —1)

soit Llloc, et ¢ la fonction

o zH/ iz — )22 f () d (2.30)
définie a priori sur IIT.

1. Si f est analytique sur un voisinage compleze U de s €]0,t[, alors ¢
s’étend analytiquement a un voisinage compleze U' C U de s; de plus,

supyr [¢] < C'supyypo g | -
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2. Si f est analytique dans un voisinage complexe V de 0, alors ¢ s’écrit
dans un voisinage V' C'V de 0

P(2) = PP R (2) + G(2), (2.31)
ou F et G sont analytiques; de plus,
max(sup |F|,sup |G|) < C sup |f]|. (2.32)
\"d % VU[0,¢]

Les itérées de ces opérateurs de convolution apparaissent naturellement
lorsqu’on considere des intégrales itérées du brownien fractionnaire. Par
exemple, on s’attend a priori (par un argument d’homogénéité naif) a ce
que la fonction h12 : (y,u) — KEO‘Etl} () (z — Ky (z,y)) (v), 1,62 = %1
ait un comportement singulier sur la diagonale y = w similaire au noyau
puissance (Fi(y —u))4*~1, mais en fait tout dépend du signe relatif de &1 et

£9:
Lemme 2.5 (¢f. [18], Lemme 1.10)
1. Soit, pour B1, 02 € R avec By > —1,

I (B1, B2; 0, )(a, b) := /0 (—i(u —a)? (~i(u — )" du,  (2.33)

définie a priori, pour tout nombre complexe fixé b avec Im b < 0,
comme une fonction analytique de a sur II7. Nous nous restreignons
i0<Rea<tetO<Reb<t,Imb<0. Soit  :={acC|0<
Re a < t,Im a < Im b}. Sur ce domaine, on a

i

a —
S

I_($1,52;0,t)(a,b) = Tl [®(B1, B2; t)(a, b) — @(B1, B2; 0)(a, b)]
(2.34)

avec, pour s € [0,t],

(61, B2; 5)(a,b) = (=i(s=b)) " F2H o Py (= B1, —Bri—Pa—15 —B1—Fo; —
(2.35)

La fonction a — ®(51, 52;0)(a,b), resp. a — ®(B1, P2;t)(a,b) donnée
par lexpression ci-dessus se prolonge analytiquement au domaine {0 <
c<la/bl <CIN{0<Rea<t} resp. {0<c<|[E|<CIn{0<
Re a < t}, ot c <1, C > 1 sont des constantes arbitraires. Les deux
fonctions s’étendent analytiquement a tout le domaine {0 < Re a < t}.

2. Soit, sous les mémes hypotheses,

t
I (81, 52;0,t)(a,b) := /0 (+i(u — a))* (=i(u — b))* du,  (2.36)
avec initialement Im b < 0, a € IIT. Alors:
I“!‘(/Bl) 52; 97 t)(a’a b) =
G T L R0 ) 0 b) — RS, 52:0)(a,)
DB+ DI(=p1 — B2 —1)
L'(—=p1)

. 2sinmfy . (i(b — a))Pr P2t

(2.37)

b
b

).
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Les expressions de ®(31, 52;0), resp. ®(51, F2;t) en-dehors des domaine
précisés ci-dessus font intervenir les exposants singuliers (ou, en d’autres
termes, la monodromie) de la fonction hypergéométrique de Gauss 2F; en
1 et co. Les formules du lemme s’étendent elles-mémes analytiquement au
domaine coupé (C\ (R_ U (t + Ry)))?. Finalement, on a démontré que
la fonction I_ (31, 82;0,t), initialement définie sur II- x I, s’étend sur le
plan entier moins deux demi-droites partant des extrémités 0 et ¢ du domaine
d’intégration; de plus, on a son comportement pres des deux points singuliers
(cf. [18], formule (1.36))

®(B1, B2; 0)(a, b) ~ Cy (max(a, b)) 2T 4+ Coa® 1071, + Csb™ 110 1,45,

(2.38)
si @ ou b est proche de 0, et une formule similaire pour ®(3, (2;t)(a,b)
lorsque a ou b est proche de t. Les mémes résultats sont valables pour
I, lorsqu’on 6te le terme supplémentaire en (i(b — a))?+72+1 qui, lui, est
multiforme et potentiellement singulier lorsque a — b; on trouve notamment
O(n**=1) lorsque a — b = in, B = 2a — 2, B2 = 2a (cf. calculs ci-dessous
relatifs a la variance de laire de Lévy).

Une conséquence immédiate de ce lemme est que la fonction h>~¢(y, z)
est (contre toute attente) un noyau régulier, alors que h®° comporte un
terme avec une singularité locale d’exposant 4o — 1 mais (observation essen-
tielle) qui reste dans la méme famille de noyaux puissance. On voit la en
germe la possibilité d’étudier de maniere générale les exposants singuliers
d’intégrales itérées de B"; autrement dit — on suppose « # %, %, %, ... pour
éviter des singularités logarithmiques éventuelles — , si P(n) est une expres-
sion polynomiale quelconque en les intégrales itérées de B", EP(n) s’écrit
Z}]:1 Cjn® (1+0(n)) pour des exposants a1, . ..,y non congrus modulo Z,
qu’on sait déterminer. La régularité de h®~¢ peut se démontrer simplement
par déformation de contour, ainsi que le lemme plus général suivant:

Définition 2.6 (intégrales itérées analytiques) Soients,t >0 et f1,..., fn
(n > 1) n fonctions analytiques définies sur un voisinage de la bande U =
{z=2+1iy | 0<z<t,0<y<s}. Uneintégrale itérée analytique est une
intégrale de la forme

1

Tn—1
diy - / 02y, fu(n+imn)T,, 4 (in),
0
(2.39)

t
/o dwy fi(ar+m)Ts, iy, (1) /
UL, ..oy >0 et 1 <iy, ... 0, <d.

Lemme 2.7 Soit s,t > 0 et fi,...,fn (resp. g1,...,9n) n fonctions ana-
lytiques (resp. anti-analytiques) définies sur un voisinage de U (resp. U ).
Alors

xr1

t
V(e,n) :=E K/o dry fi(x +i€1)récl+i£1(i1)/0 dry---

Tn—1 t _
/0 Qi ful@n +icn) ;ﬁign(z‘n)) ( /0 dys 91(y1 — in0) s ()

Y1 Yn—1 . - )
/0 dys - -- /0 dyn gn (yn - 17]n)rlyn+i17n (]n)>:|
(2.40)
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admet une limite finie quand € = (eq, ..

0.

En), N = (m,...,nn) tendent vers

Voyons tout de suite une application élémentaire de ces résultats a I’étude
des singularités de I'aire de Lévy de I' ou de B. On notera
Al = fst dBi, (1) [F" dBI,(2) Taire de Lévy du processus (B"(1), B"(2))
(stricto sensu laire de Lévy est I'antisymmétrisation de cette quantité).

Par définition

E[(A%)?] =

t T t Y1 _
2E </ drz1+ig(1)/ drm2+ig(2)> </ dryl—s—i;’(l)/ dFyz—i—ig(Q))
t 1 t B Y1
+2Re E </ drml_;’_l;?(l)/ deZ_Hg (2)) (/ dryl_,_ig(l)/ dFyTHg (2))

=:Vi(n) + V2 (n). (2.41)

Le premier terme dans le membre de droite s’écrit (en utilisant la sta-
tionnarité des accroissements)

t—s t—s Y1
C/ dl‘l/ dCCQ/ dyl/ dyZ

(—i(xy —y1) +m) 2a 2( i(xe —y2) + 77)2a_2
t—s t—s
- C’/ dml/ dyr (—i(z1 —y1) +n)** 2
0 0

[(=i(z1 = y1) + )" = (—iz1 +7)** = (iy1 +n)*]
(2.42)

et le second

t—s t—s
/ dfﬂl/ dyr (—i(z1 — y1) +n)** 2

[( (z1 —y1) +n0)** = (iw1 +0)>* — (—iy1 +n)**]
(2.43)

Le terme V; ne fait intervenir que —ix; et +iy;; en faisant une déformation
de contour envoyant 1, resp. y; loin de ’axe réel dans le demi-plan supérieur,
resp. inférieur, on transforme la singularité sur la diagonale x1 = y; en une
singularité ponctuelle en 1 = y; = 0 qui est intégrable. De maniere ex-
plicite, si z1 se déplace le long du contour [0,i(t — s)] U [i(t — s),(t — s) +
i(t—s)]+[(t—s)+i(t —s),t —s] et y1 sur le contour conjugué, les intégrales
sur les parties horizontales sont régulieres, alors que les intégrales les plus
singulieres (sur les parties verticales) sont de la forme

t—s t—s
/0 i /0 Ayl (@ + s + )2 (f () + ) (2.44)

ol f(x},y}) = =, yj ou 2} + yj. Cette déformation de contour est en re-
vanche impossible pour le terme Vs en raison de la multiformité des fonctions
puissance, et le lemme 2.5 montre en fait qu'il diverge en O(n?*~!) dans la
limite n — 0 si < 1/4.
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2.3.3 Chemin rugueux associé au brownien fractionnaire an-
alytique

La convergence des intégrales itérées analytiques (qui sont en fait des intégrales
itérées du brownien fractionnaire analytique) permet de construire un chemin
rugueux au-dessus de I'. L’article [16] montre en fait que l'on peut tout
définir sur le demi-plan supérieur fermé IIT. Le travail essentiel a été
de reformuler la théorie algébrique des chemins rugueux de M. Gubinelli,
ainsi qu'un certain nombre de lemmes techniques (dont le lemme de Garsia-
Rodemich-Rumsey) dans le demi-plan. Les lignes suivantes se réferent a la
version sur arXiv de l'article [16], la version publiée évitant le recours aux
chemins rugueux.

En essayant de construire une application cicatrisante A : Z§+(f[+) —
ZY(II), ot Z1"(IT*) est un espace de 2-incréments 17-Holder définis sur
(IT*)3, dont la restriction & (II7)3 doit étre analytique, on se heurte & un
obstacle, a moins de rajouter une condition de continuité sous les translations
par des vecteurs purement imaginaires pres du bord du demi-plan supérieur,
reliant de maniére plus précise le comportement de ces fonctions sur IIT &
celui sur R. On a choisi dans [16] de considérer le sous-espace Z§+ (ITF) des 2-
incréments dont la norme (-multiparamétrique sur tout ouvert relativement
compact U C It

|hs1+ia,...,5j+ia - hsl,...,5j|

[|h]] omp :=sup  sup (2.45)
Cj €>0 s1,82,...,5;€U 66

(ici j = 3) est finie pour un certain 5 > 0. Le lien entre ce type de conditions
et ’holdérianité de la valeur au bord est connu dans le cadre classique des
espaces de Hardy; par exemple, il est facile de voir (en utilisant la transfor-
mation de Fourier) que I'inégalité [, |h(t +ie) — h(t)|? dt = O(*?), pour h
dans 'espace de Hardy du demi-plan supérieur, implique I'inégalité de type
Holder [; |h(t+¢)—h(t)|? dt = O(e?7), ce qui motive la définition ci-dessus.

Afin de ne pas mélanger I et le processus conjugué I, il est nécessaire de
définir C;“ comme un espace de fonctions a-Holder sur IIT et analytiques sur
IIT. Soit, de maniere plus générale, X : IIT — C? un chemin analytique sur
I+, a-Hélder sur II1, possédant un relevement X", n=1,...,N = |1/a],
tel que X" soit & la fois na-Holder et de norme || . [[gmo finie. On peut
alors intégrer un chemin controlé par X au sens analytique, les hypotheses du
lemme de la couturiere complexe multi-paramétrique défini ci-dessus étant
alors vérifiées.

Le brownien fractionnaire analytique entre dans ce cadre, ce qui implique
la possibilité d’intégrer des processus controlés analytiques contre I' et de
résoudre localement les équations différentielles stochastiques du type

{ dZt = b(Zt)dt + a(zt)dl“t,

I , tellf, (2.46)

ou b et o sont des fonctions analytiques sur un voisinage de 0 dans C.

Mais de telles équations différentielles peuvent également étre résolues
de maniere trajectorielle sans utiliser la théorie des chemins rugueux, en se
servant simplement de déformations de contour analytiques. Un des intéréts
des calculs précédents consiste en la détermination de bornes explicites pour
les moments (cf. également fin du paragraphe §2.3.5 ci-dessus).
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2.3.4 Aire et volume de Lévy du brownien fractionnaire d’indice
> 1/4

Comme nous venons de le voir, la variance de 'aire de Lévy
t x1
Al = / dB; (1) / dB], (2) (2.47)
S S

converge quand 1 — 0 si et seulement si & > 1/4. On a en fait la formule
exacte suivante:

Lemme 2.8 Soit

2

t 1
v<m,n2>t=1a[( /0 dB™ (1) /0 d323<2>)] . (2.48)
Alors:
1.

V(12 = ! Re (Vi (1,m2)e + Vo (1, 712)1)

nn2)t = 1a(l - 2a)costa SENENIRRIPI -\, M2)¢)s
(2.49)

ol

t t
Vi, m)e = / dx; / dy1(—i(z1 — y1) + 2m)?* 2 (Fiwg + 2m9)*
0 0

t t
—/ dxl/ dyr(—i(z1 — y1) + 2m)?* 2 (Fi(z1 — y1) + 2m2)**
0 0

+0(n3%). (2.50)

2. V(n1,m2)s — Cat*® avec

(2.51)

_a2a—1) [2I'(2a — 1)I'(2a + 1) 1
Ca="75 [ Tdat+1) | @a=D(a—1)

st m1,Mm2 — 0 tendent conjointement vers 0, i.e. si my,m2 — 0 et de
plus n1/ma — 1.

t t
/ dﬂ?l/ dyr (—i(z1 — y1) + 2m)** 2 (=i(z1 — y1) + 2m2)*
0 0
2
1 -2«
Im {(—it 4 2m1)?* (=it + 2m2)** — I_ (22 — 1,205 0, ) (—in1, —ine)

i

5 (=it 4 2m1)2* (=it + 2n2)** + O(mn2)** + O(m + 772)} . (2:52)

= 2Re tI_(2a — 2,205 0,t)(—iny, —in2) —

On obtient en fait des formules tout a fait explicites pour V(n1,n2): dont
nous donnons ici les termes les plus représentatifs. L’intérét des formules ci-
dessus va apparaitre maintenant. Tout d’abord on a le critere de convergence
suivant:
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Lemme 2.9 Supposons qu’il existe des constantes C,C1,...,Cr > 0 et des
couples d’exposants strictement positifs (agl),az@)) avec ozgl) + ai2) = 2aq,

tels que, pour tous s,t € R, n1 > ny > 0 avec |s — t| > Cnpy,

1
20V @)
E (|47, — AZ|P] <> Cim ™ [t — s (2.53)
i=1

—8 i+1)-0
Alors la série Y~y <A§7S fAEJH) ) converge p.s. au sens de la

)8
norme des q/2-variations si 2B(a —1/q) > 1 et 5a§1) >1,i=1,...,1I
Par conséquent, laire de Lévy régularisée A}, converge au sens de la norme
des q/2-variations lorsque n — 0.

Sous ces conditions, on obtient donc par passage a la limite un chemin
rugueux au-dessus de B lorsque a > 1/3. Maintenant, un calcul élémentaire
donne la variance de AZIO — .AZQO comme une somme de termes qui sont
de toute évidence de la forme (2.53) ci-dessus, plus des termes de seconde
variation,

m +n2
2

Wi (n1,m2)e = Ve(m,m)e — 2V (m, )t + Ve (m,m2): (2.54)
qu’on peut estimer facilement a partir de 'expression ci-dessus de V4 a ’aide

de fonctions puissances et de fonctions hypergéométriques. On démontre
1 (2
9 a;

alors l'existence d’exposants (o, 7, ;") comme ci-dessus, d’ou le résultat.

Les calculs ci-dessus s’étendent sans difficultés majeures au cas des vol-
umes (intégrales itérées d’ordre 3), et un mélange de calculs explicites et
d’estimations donnent la convergence de ces volumes au sens de la norme
des ¢/3-variations lorsque o > 1/4 et g > 1. On a ainsi construit un
chemin rugueux au-dessus de B pour tout a > 1/4.

2.3.5 Résolution approchée d’équations différentielles stochas-
tiques

Bien que 'approximation analytique de B ait été congue comme substitut
aux interpolations linéaires par morceaux, elle peut également s’avérer utile
lorsqu’on s’intéresse a la convergence de schémas numériques. La question
générale est la suivante. On considere une équation différentielle stochas-
tique dirigée par un brownien fractionnaire d-dimensionnel,

d
Y, = > Vi(Yo)dB(j), Yo =y €R" (2.55)
j=1

ol les champs de vecteurs V; : R" — R" sont suffisamment réguliers. Pour
simuler cette équation, on utilise un schéma numérique d’Euler d’ordre
N = |1/a| comme défini par exemple dans [98], chapitre X. Rappelons
la définition. Soit B un chemin rugueux au-dessus de B (dans la suite, on
supposera que « > 1/4 et que B est le chemin rugueux obtenu — comme
dans le paragraphe précédent — comme limite du chemin rugueux canonique
au-dessus de lapproximation analytique de B), et D := {0 = t; < ... <
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tn, = T'} une partition de [0, 7] en n sous-intervalles. Alors la solution ap-
prochée de (2.55) par le schéma d’Euler de rang N sur la partition D se
définit récursivement comme

B
yenD B o o B (yg) (2.56)

173

ou

E2 (y —y—l—z S Vi Vi dd] (y) Bl d), (2.57)

j=11i1,....i;<d

Viy ... Vi, étant vu comme produit de champs de vecteurs agissant en fin
de compte sur la fonction identité Id : y — y. Si a > 1/2 (de sorte que
N =1) il s’agit tout simplement du schéma d’Euler usuel; si a € [1/3,1/2],
on 'appelle aussi schéma de Milstein. On peut montrer qu’il converge vers
I'unique solution au sens des chemins rugueux définie par T. Lyons. Les
criteres généraux permettent d’obtenir I'existence et 1'unicité globale de la
solution dans le cas ol o est bornée, ainsi que toutes ses dérivées partielles
d’ordre < N (une condition de type Lipschitz sur les dérivées d’ordre N — 1
suffit). Supposons a > 1/3 et utilisons le schéma de Milstein. On sait alors

Euler;D 3a—1
montrer que l'erreur supg<y<,, [Yt, — ytk" | est en O (( ) ) si ty, kT,

0 < k < n est la subdivision réguliere de [0,7]. Seulement, pour des raisons
pratiques (la loi de l'aire de Lévy étant inconnue), il est plus judicieux de
remplacer laire de Lévy

t
Aes = [(Buld) = BLIBGD), i (259)
par son approximation par le schéma d’intégration d’Euler,
n—1
‘AZS = Z (Bs-‘r%(t—s) (]) - Bs(])) (Bs+%(tfs) (Z) - Bs-l—%(t—s) (Z)) ’
k=0

(2.59)
qui est, elle, facilement simulable. On obtient alors le résultat suivant pour
Verreur Erryy = Ap s — Aflg:

Lemme 2.10 I/ existe des constantes c1(a), ca(a), cs(a) (connues explicite-
ment) telles que

e (t _ S)4a . n74a+1
(t o S) —4a+1

128 (t - 5)4a log( yn=?
3 (t—s)t@.n=2

(=4t 5 a €]1/4,1/2],

(n—datl) si « €]1/2,3/4],
o(log(n)n™2) si  a=3/4,

(n=2) si «a€]3/4,1].
(2.60)

E|E7‘r£s|2 =

+ 4+

Théoréme 2.1 (théorémes limite pour ’erreur du schéma d’Euler)
Soit Z une variable aléatoire de loi normale centrée réduite. Alors:

1. Cas 1/4 < o < 3/4: on a les théorémes centraux limite suivants:

2a-1/2 @ [ Jalt—s)?*-Z si a€]l/4,1/2],
i, Erris = { Jat— 927 si aell/2,3/4]
(2.61)

n—oo
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et

nlggo n(log(n))~/? Erry @ 4\3/§(t —s)¥.z

si o= 3/4.

2. Cas a > 3/4: soient Ry et Ry deux processus de Rosenblatt indépendants.
Alors il existe une constante c4(«) telle que

lim n Erry, @ V2e4(t — 5)?* - (Ry — Ry).

Les prcessus de Rosenblatt sont des processus dans le chaos d’ordre 2
du mouvement brownien que nous ne définirons pas ici. Le changement de
comportement autour de la valeur o = 3/4 est classique et a également été
observé pour des variations quadratiques & poids du brownien fractionnaire
unidimensionnel par exemple [116]. Esquissons la preuve du théoréme dans
le cas a < 3/4, ou l'on obtient un théoréme central limite. Elle repose sur
la proposition suivante:

Proposition 2.11 [119]

Soit p > 1, et (Zp;n > 1) une suite de variables aléatoires centrées
appartenant au p-eme chaos d’un processus gaussien donné. Supposons que
IEZ,QL —nooo 1. Alors Z,, converge en loi vers une variable gaussienne centrée
st et seulement st

EZY —, . 3. (2.62)

Remarquons que EZ* = 3 si Z est une variable gaussienne centrée
réduite. Ce théoréme est 'un des nombreux criteres donnés dans une série
d’articles [118, 119, 121] dis & D. Nualart, G. Peccati et coauteurs, montrant
la convergence d’une suite de variables aléatoires dans un chaos gaussien fixé
vers une gaussienne (ou, sous certains critéres de tension, d’une suite de pro-
cessus vers le brownien) sous des conditions portant sur le 4¢ moment, ou sur
la dérivée de Malliavin des (Z,,) par exemple. Ces criteres sont a peu pres
équivalents a I'usage, en tout cas pour ’application que nous en faisons. Il
est pratique d’interpréter la condition (2.62) en termes de diagrammes con-
nexes (le mot provient de I’analyse des graphes de Feynman). Considérons
pour fixer les idées E (A7,)*. On a

4 t Tj
E (./41575(7]))4 = H </ dxj/ dyj) F'(z1,...,20 D)F M (y1, ..., y4;2),
J=1 \s s

(2.63)
ou par définition F"(zy,...,24;1) =E [H?ZI(BQJ. (z))’} . La formule de Wick
pour F"(z1,...,24; 1) F"(y1,...,y4;2) donne 9 termes différents correspon-

dant aux 3 x 3 appariements (“pairings”) possibles des (z;) d'un coté, et
des (y;) de l'autre. A chacun de ces termes correspond un diagramme &
4 sommets, (1,...,4), comme suit: on convient de relier ¢ & j par une
ligne continue, resp. en pointillés si x; et x;, resp. y; et y;, sont appariés.
On trouve 6 diagrammes connexes, donnant une contribution a EAire;iS (n)

notée E [(At,s(n))ﬂ( X (c) pour “connexe” (en d’autres termes, il s’agit en
C

fait du cumulant d’ordre 4). La condition (2.62) est alors équivalente a la
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condition: E[(.Am(n))zl](c) —p—o 0. Cette derniere condition se démontre

en partie par des arguments élémentaires, et en partie en utilisant le lemme
2.4.

Dans un autre ordre d’idées, on considere dans [25] les équations différentielles
linéaires dirigées par le brownien fractionnaire analytique I'. La solution (Y7)
est obtenue comme limite de la somme (2.57) quand N — oo (appelée: série
de Chen). On démontre la convergence de la série grace aux estimées suiv-
antes sur les intégrales itérées de I':

Lemme 2.12 Il existe C > 0 tel que, pour tout n > 1 et s,t € IIT,
_ 2na
VarlTy, iy, . ..y in) < OS2

Corollaire 2.13 Les moments de tous ordres de la solution (Y;) de I’équation
dYy = Z;-l:l V;i(Y3)dL'¢(j), ot les champs de vecteurs Vi, ..., Vg sont linéaires,

sont finis; plus précisément, pour tout p € N*, il existe C)p tel que E|Y; —

Yo < (Gt — s]) .

Ce résultat étend des résultats analogues obtenus pour le brownien frac-
tionnaire usuel B d’indice o > % [115]. Nous conjecturons (sur la base de
_ 2na
calculs préliminaires) que VarBy, (i1, ...,i,) < % si v €]1/4,1/2]
pour le chemin rugueux au-dessus de B obtenu par 'approximation analy-
tique, ce qui permettrait d’étendre le corollaire ci-dessus a ce cadre.

2.3.6 Théoréme central limite pour D’aire de Lévy renor-
malisée

On suppose dans ce paragraphe a < 1/4. On définit A}, = 77%(1_46“).,4?8; a

peu de choses pres (cf. §2.3.2) il s’agit de la réduite de I'aire de Lévy. On a

alors:

Théoréme 2.2 (Théoréme central limite) Le processus (B"(1), B"(2), A")
converge en loi vers (B(1), B(2),\/Cirr10W), ot Wy := Wy — Wy sont les
incréments d’un brownien standard unidimensionnel indépendant de B(1)

et B(2).

Esquissons la démonstration. Elle comporte plusieurs étapes:

1. Soit gb;cg (m:A) := log E[e™M40()] le log-cumulant de Aly. Comme

dans le paragraphe précédent, on peut représenter qbifg a l'aide de
diagrammes connexes, qui sont ici des lignes polygonales fermées a 2n
arétes alternativement continues et en pointillés; le calcul donne

(e)
© .\ — N PN (150,8) oy
o) = N RO

) (0:0,4) =

t t
/ d.’L‘l / dng[Kn(x1,$2)K;7(x2,x3> .. .Kn(ng_l,ng)]K;(ng,xl)
0 0
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et Kn(ClTl,l'Q) = ]EBnggzv

K (21, 22) := 2Re Ky (x1,22) = 2Re ca(i(zy — x2) + )2,

2. En itérant le Lemme 2.5, il sort des fonctions analytiques (avec des
singularités de type puissance aux extrémités des intervalles seule-
ment), plus un seul terme multiforme non analytique, qui s’écrit (apres
intégration) CZ-M,Ntn‘lN a=1 (la constante Cirr.n peut se calculer ex-
plicitement).

3. Comme nous venons de le dire, les autres termes dans qbg?, sont analy-
tiques, mais avec des singularités de type puissance en certains points,
dont il faut calculer les exposants. En principe, ils s’obtiennent grace
au Lemme 2.4. En fait (convenant d’intégrer successivement par rap-
port aux variables zon_1, Tan_2,...,21 et finalement zopn) la vari-
able b := xon ainsi que 7 restent comme parametres dans les calculs,
et le comportement des intégrales itérées s’obtient sur des domaines
dépendant de la position de ces deux parametres, ce qui complique
sérieusement les calculs.

Pour faire court (et en simplifiant un peu), disons que les opérateurs
de convolution K [(’)3:} (n) préservent un espace de fonctions

f(n,0,t;u) == fiy(n,b,t;u) + fr(n, b, t;u) (2.64)

dites analytiques admissibles. La fonction f s’écrit comme une somme

(finie) de termes du type bPuV F(¥, ) sur chacun des trois domaines

(0 < |ul < 2[b]/3),(|b]/3 < |u| < 3]b]), (2]b] < |u|) séparément, les fonc-

tions F' étant holomorphes et bornées. De maniere similaire, la fonc-
u n b

)

tion f;, s’écrit comme une somme de termes du type ngBuUF(E, 1
ou nbBuYF(%, 1, %) sur chacun des quatre domaines (0 < |u| <
30,20 < Jul < 20/3), (2 < |t —ul < 2/3),(0 < |t — ] < 3n)

séparément.

Le plus compliqué est de définir précisément ces domaines. Une

généralisation du lemme 2.4 permet d’obtenir les exposants singuliers
de type H, B,U de K[(’)i] (n)f ou K[*O’f] (n)f en fonction de ceux de f, et
de vérifier que tous ces termes analytiques donnent en fin de compte

des termes réguliers en O(1) + O(n??).

On trouve donc finalement: qSéC]z,(n, t) = C’imNtn‘lNo‘_l + C’Teg7Nt4N°‘ +
O(1*?).

4. Des arguments de type combinatoire (inverses de ceux du point 1.)
donnent facilement:

E[(A})*"] = 2N — )G,

zrr,lth(élail)N(l + 0(771740{))'

5. On montre que les moments de tous ordres des distributions finies
de A" et B" convergent vers ceux de W et B. L’idée ici, notam-
ment, est que les diagrammes connexes provenant de I’évaluation de
E[A] 4, - Al s,] sont réguliers lorsque [s1,t1]N...N[san, tan] = 0.
(Plus précisément, leur partie singuliere est proportionnelle dans le cas
général & tn*Ne~1 multiplié par la mesure de Lebesgue de I'intersection

[Sl,tl] Nn...N [SQN,tQN]).
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6. Des arguments de nature probabiliste (tension) impliquent la conver-
gence en loi des processus.

Il est & remarquer que nous n’avons pas fait appel ici aux critéres gaussiens
de convergence de type théoréme central limite mentionnés plus haut (cf.
Proposition 2.11). Sil’on s’était restreint a 1’étude du 4e moment, I’étape 3
(la plus pénible en pratique) aurait été plus courte, mais le schéma général
moins clair. Mentionnons d’ailleurs ici qu’une démonstration beaucoup plus
courte du Théoreme 2.2 a été trouvée ultérieurement [91] en utilisant les
criteres de Nualart, Peccati et al. L’objectif dans larticle [18] (au-dela
du théoréme central limite) était aussi et peut-étre surtout de montrer la
puissance de l'outil analytique et de le développer suffisamment pour des
applications ultérieures. De fait, il a été utilisé dans 'article ci-dessus [22],
mais aussi d’ores et déja dans [93].

2.4 Construction de chemins rugueux par ordre
normal de Fourier

L’article [23] — reformulé de maniére plus algébrique dans [26] — donne
une approche générale pour construire des chemins rugueux au-dessus d’un
chemin a-Holder T'y = (T'y(1),...,T(d)), avec « €]0, 1[ quelconque; article
[21] — présenté sommairement dans [24] — montre comment cette approche
permet de construire un chemin rugueux au-dessus du brownien fraction-
naire d’indice de Hurst quelconque. La construction repose sur un algo-
rithme combinatoire appelé mise en ordre normal de Fourier. A 1origine,
elle partait du constat que des estimées Holder s’obtiennent de maniere na-
turelle en Fourier, & condition de décomposer le domaine d’intégration en
secteurs coniques sur lesquels les coordonnées de Fourier sont ordonnées.
Au moins pour les intégrales itérées d’ordre le plus bas, il est apparu claire-
ment qu’en recombinant des intégrales itérées régularisées définies sur chaque
secteur, on obtenait une quantité finie satisfaisant les propriétés algébriques
(Chen et shuffle) demandées. En fait, la mise en ordre normal de Fourier
permet en toute généralité de séparer le probleme de construction de chemins
rugueux en deux probléemes de nature totalement différente:

— le premier consiste a régulariser les intégrales itérées arborescentes
ou plus précisément les intégrales squelettes arborescentes — restreintes aux
secteurs de Fourier mentionnés ci-dessus —, qui sont des extensions combi-
natoires naturelles des intégrales itérées ordinaires, indexées par des arbres;

— le second consiste & montrer qu’on peut reconstruire de maniére canon-
ique un chemin rugueux a partir de ces intégrales régularisées sur chaque
secteur, également appelées données d’arbres ( “tree data”).

L’algorithme de mise en ordre normal de Fourier, explicité plus loin
(cf. Théoreme 2.28) permet en fait de construire tous les chemins rugueux
formels au-dessus de I', i.e. toutes les fonctionnelles I' vérifiant les pro-
priétés de Chen et de shuffle, mais pas nécessairement les conditions de
régularité Holder. En ce sens il apparait clairement que le probleme ini-
tial est extrémement sous-déterminé, et la question se pose de savoir quels
sont les relevements les plus "naturels” ou avec les “meilleures” propriétés.
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Nous espérons étre en mesure de répondre a cette question tres bientot
dans le cas des champs gaussiens fractionnaires a 'aide de la construction
physique évoquée dans I'Introduction générale. La prépublication [28] donne
également une construction naturelle par renormalisation des intégrales squelettes
du mouvement brownien fractionnaire; les résultats sont évoqués a la fin de
cette section. Néanmoins, nous nous concentrons dans ce mémoire sur les
résultats déja acceptés, a savoir l'algorithme combinatoire de mise en ordre
normal de Fourier, et la régularisation dite régularisation de domaine. Bien
qu’'un peu arbitraire, celle-ci a 'avantage d’étre élémentaire et de ne pas
faire appel aux outils de la théorie des champs ou de la renormalisation.

Nous commencerons par un exemple assez élémentaire mais permettant
déja d’entrevoir la combinatoire a 1’oeuvre, ainsi que de comprendre com-
ment fonctionne la régularisation de domaine: 1’aire de Lévy du brownien
fractionnaire (§2.4.1). La sous-section 2.4.2 est consacrée a l’algorithme
de mise en ordre normal de Fourier dans le cas général. La régularisation
de domaine est introduite en §2.4.3. Finalement, la renormalisation des
intégrales squelettes et ’approche du calcul stochastique pour le brownien
fractionnaire a 'aide de la théorie constructive des champs, renvoyant resp.
aux preprints [28] et [27], sont évoquées brievement en §2.4.4 et §2.4.5.

2.4.1 Aire de Lévy régularisée du brownien fractionnaire

Rappelons que les chemins rugueux obtenus par relevement canonique des
approximations (linéaire par morceaux ou analytique) du brownien frac-
tionnaire ne permettent d’obtenir & la limite une aire de Lévy pour B que
lorsque o > 1/4. Le but dans cette section est d’expliciter — dans le cas
du brownien fractionnaire — une méthode générale de régularisation, dite
régularisation par ordre normal de Fourier, introduite en [21] et [23]. Nous
utiliserons pour l’exposition I’approximation analytique de B. L’équation
(2.20) implique 1’écriture suivante:

Mg = Vea / ¢ T2 | o (), (2.65)

et donc
+oo . 1
(BYY = Vea / ¢ MIEV2E e 3 -aTy (), (2.66)

ou W (d§) est un bruit blanc complexe, obtenu en considérant un brownien
complexe (W (&),£ > 0) indexé par Ry, et son conjugué W(—¢§) = W(¢).

On trouve en intégrant

B! = ea / ‘"'5‘/26 Leromwag), (2.67)

ce qui redonne la représentation harmonisable bien connue du mouvement
brownien fractionnaire lorsque 1 — 0.

Rappelons maintenant une remarque essentielle, a laquelle il a été fait
allusion lors de la présentation générale du chapitre ': soit x = (6x,x?)

1On notera de maniere générale dy.s := y; — ys les incréments d’une fonction d’une
variable y : R — R? (cf. présentation générale du chapitre).
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un chemin rugueux au-dessus d’'un chemin z d-dimensionnel de régularité
Holder o €)%, 1], et h(i,j) = —h(j,i), 1 <i,j < d des fonctions 2a-Holder.
Alors (6x,%x2(i,j) — 0h(i,j)) est également un chemin rugueux. Autrement
dit, on préserve la propriété de Chen en retirant un incrément. La portée de
cette remarque s’étend en fait de maniere considérable, comme nous allons
le voir peu a peu. L’idée dans ce paragraphe est de définir des fonctions
h(i,j)" = —h(j,1)", régulieres pour tout n > 0, telles que 'aire de Lévy
régularisée RB?>"(i,5) := B>"(4, ) — 8h"(i, j) converge en norme 2a-Hélder
lorsque n — 0F. Ces fonctions peuvent s’interpréter comme des contre-
termes par analogie avec la renormalisation des graphes de Feynman.

Nous allons pour cela décomposer

Al = stm(l,z) = /t(B’?);l(l)dul /UI(B");Q(Q)dug (2.68)

en somme de deux termes: un terme de bord, noté A/ (9), et un incrément
dG].. L’idée naive consiste & décomposer A en

AL = (B - BB + [ (BYL0) . BL@ du. (269

Le deuxiéme terme est un incrément qui diverge quand n — 0 si a < 1/4;
mais comme nous venons de le voir, nous pouvons le retirer. Néanmoins
cette idée ne marche pas car le premier terme n’est que a-Holder. Nous
allons modifier cette décomposition a ’aide des deux outils suivants.

oiEt

Définition 2.14 (Intégration formelle) On note: ft e€rdy = -

L’intérét de cette définition est que chaque intégration formelle produit
un facteur de convergence en 1/||, contrairement au cas de I'intégrale définie
i) Sto ol 5o € R est fixé. D’une certaine maniére, la primitive formelle [ b iz g

. co ot ;
eut se comprendre comme Uintégrale définie (. e'$¥dx, ou encore comme
+ioco )

. t .
limgy—ioo [, s e¥%dz au sens des distributions.

Définition 2.15 (Projecteurs de Fourier) Si fi, fo € S (I’espace de Schwartz
des fonctions f : R — R a décroissance rapide), on pose

Pio(fi @ fo) (w1, 29) = / /K ‘<I€‘d§1 déof1(&1) fa(&2)@re1t2282) (2 70)
et

Ptie W = [ [ do dafieohedne ). @

La définition ci-dessus s’étend facilement au produit tensoriel complété,
et on peut donc définir P;,. Al

L’idée clé de la régularisation par ordre normal de Fourier est de définir
de deux manieres différentes la décomposition en termes de bord/incrément
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de P, AJL, resp. Py,Al en utilisant le théoréme de Fubini: on part des
formules

t ul
PlaAL =Py [ (B, (dun [ (B, (2)dus
t

t
PLAL = Pr, / (B, (2)dus / B, Vdur.  (2.72)

2

Définition 2.16 (décomposition) Soient
t s
AL (0) = =Py [ (B, Wdun [ (B, (s,

QG :Pfo /t(Bn);lu)dul /U1(B77);2(2)du2 (2.73)

et
A 0) = Pr [ (B [ (B,

61~ =Py [ B, [ B, Mau. 2.1

On a bien: P, A" = AMH(d) + G, P, AT = AP () + 6G™ et
Al = Pff 9 AT +Pp 5 A Les termes G sont des cas particuliers d’intégrales
squelettes, comme nous le verrons dans les paragraphes suivants.

Etudions séparément les deux termes A7t (9) et G™1 (les deux autres
termes se traitent de maniere identique par symétrie).

1. Terme de bord

On calcule:

AT (9) = —cad [u — / AW, (1)[&1| "2~ e —nl6il/2

/ AW, (2)|&o| 2 eislE1/2
|€2]>]&1

ts

(2.75)

On notera de maniere générale f < g s’il existe une constante C' telle
que f < Cyg, f et g étant des fonctions d’'un nombre arbitraire de variables.

Lemme 2.17 Soit F(u) = [ dW¢e$a() avec |a(&)> S €171, 0< B <

1,
5 alors

E|F(u1) — F(u2)|* < |ur — ua|?. (2.76)
Démonstration: On coupe l'intégrale [, en

+

1 1 1 1
[_ |up—ugl’ |u,1—u2\] R\[_ Jup—ugl’ \11.1—71.2\]
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et on majore |e“1€ — 2| par |uy — us||€| sur le premier intervalle et par 2
sur le second. a

Les arguments standard déja évoqués permettent d’en déduire que F' est
[~ -Holder.

En prenant une variance partielle par rapport a & de AT (9), on se
rameéne au lemme ci-dessus avec |a(£1)[? < |€1|7174¢. Par conséquent, uni-
formément en s et en 7,

EALT ()P < It - s (2.77)

~

Le terme de bord ne nécessite donc pas de régularisation et nous poserons
simplement: RA"E(9) = A"%(0).

2. Terme d’incrément G

On trouve par calcul direct

P—
G?7+ _ ca/dW§1(1) S1E eité1—mléil/2 / dWe, (2)’&r%*aeitﬁz*?ﬂﬁz\/?'
&1+ & &21]¢1]

On effectue le changement de variables: (£1,&2) — (&1, =& +&2). En
prenant une variance partielle par rapport a £, on se ramene encore une fois
au lemme 2.17 avec |a(€)]? < £i2f|£—51|>\§|/2 |€1|172|€ — &|7122dg (faire

un dessin), avec une divergence possible quand |&;| — oo.

Si a > 1/4, alors |a(&)]? < €717, et donc dG™T vérifie lui aussi
I'estimée (2.77). En revanche, |a(¢)|? diverge quand  — 0 si o < 1/4
(on retrouve bien entendu la barriere habituelle en ov = 1/4). Seulement,
comme G est un incrément, on peut le retirer & la maniére d’un contre-
terme (cf. remarque initiale de ce paragraphe); on obtient de la sorte un
chemin rugueux tronqué a l'ordre 2 pour a quelconque. Néanmoins, nous
allons utiliser une régularisation moins brutale.

Définition 2.18 (Régularisation de domaine) Soit

RGIMT = ca/

1_
del(l)dW£2(2)|§l‘2 aeit§1*77|§l‘/2 ) ‘52‘7%7aeit£2*77‘52|/2
R7Z

&1+ &

ol

RZE = {(&,&) € R? | [&1] < |&l, 16 + &f > Cregléal},  Creg €]0,1].
(2.78)

Autrement dit, seules les composantes de Fourier “proches” de I’antidiagonale
& = —&; jouent dans cette approche le role de contre-terme.

Théoréme 2.3 Pour tout « €]0, 1], l’aire régularisée
RAJ, = (RALT(9) + BRG]y, ) + (RALT(9) + PRG™ i) (2.79)

vérifie les deux estimées suivantes:
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1. VarRA}, < |t — s|*e;

2. Var (RAJ} — RAZ) < Im — na|*™.

Corollaire 2.19 Pour tout k < «, le chemin rugueuz (6B/L(1),0B..(2), RAJL)
converge dans L?(2; C5([0,T]) x C5([0,T]) x C35([0,T])) vers un chemin
rugueur (6B, B?) tronqué a lordre 2.

Remarquons que l'aire de Lévy du brownien fractionnaire analytique
Iy (cf. eq. (2.65)) ne nécessite pas de régularisation puisque la condition
(2.78) |&1 + &f > Chreglé2| définissant R?>7 est toujours vérifiée si & et &
sont de méme signe. Les contre-termes a tous ordres de la procédure de
régularisation de domaine sont alors tous nuls, ce qui est cohérent avec le
fait que le relevement canonique de I'] := I'i4ip/2 converge au sens des
chemins rugueux quand n — 0 (cf. §2.3.3).

2.4.2 L’algorithme de mise en ordre normal de Fourier

A. Structures combinatoires

Nous commengons par montrer comment coder les intégrales itérées par
des arbres. L’algebre de la définition ci-dessous est aussi connue sous le nom
d’algebre de Connes et Kreimer [87, 88, 89].

Définition 2.20 (algébre de Hopf des arbres décorés enracinés) 1.
Un arbre décoré enraciné T est un arbre avec un sommet distingué
appelé racine (dessiné en montant de la racine aux feuilles), muni
d’une décoration £ = (L(v))yey () pour chaque sommet, V(T) étant
l’ensemble de ses sommets. Les décorations sont supposées a valeurs
dans {1,...,d}. L’ensemble des arbres est noté T. Le produit com-
mutatif T1.To de deux arbres donne la forét avec deuxr composantes
connezes, T1 et To. L’algébre sur R engendrée par les arbres est notée
H, le sous-espace vectoriel engendré par les foréts avec n sommets,
H(n). L’arbre vide, élément unité de H, est noté 1.

2. Si w est un descendant de v (i.e. w est au-dessus de v) on écrit
w — v. On dit que v et w sont connectés st w = v, w —» V ou
v — w. Un ensemble de sommets v C V(T) est dit coupure admissible
st deux éléments v # w de v ne sont jamais connectés; on écrit alors
v = V(T), et on définit Rooy(T) comme la sous-forét de sommets
{w € V(T); v € v,v - w}, alors que Leay(T) est la sous-forét
d’ensemble de sommets complémentaire V (T) \ V(Rooy(T)). Si T est
un arbre alors Rooy(T) également.

3. Posons
A(T)= Y Roo,T @ Lea,T. (2.80)
vE=V(T)
Par exemple,

APV ) =10V +"'V @141 @0 +1 @0 +0a ® .y uc. (2.81)

Alors H munie du coproduit A est une bigébre.
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4. H a une unique antipode S, définie par récurrence par
S =1, S(T)=-T- > RooyT-S(Lea,T). (2.82)
vV (T), 00

Rappelons que I'antipode joue le role d’inverse pour la convolution: si
f, g sont deux formes linéaires sur H, on définit

f*g(T Z f(Ro0,T)g(Lea,T). (2.83)
vE=V(T)

Alors f * (f 0 S) est I'identité pour la convolution, i.e. f * (f o S)(1) = 1,
f*(foS)(T) =0 pour toute forét T.

Définition 2.21 (algebre de shuffle) 1. Soit Sh ['algébre de shuffle

avec décorations dans {1,...,d}, i.e. l'ensemble des mots (i1 ...1iy),
i1y .yin €4{1,...,d}, muni du produit de shuffle, cf. éq. (2.5),
(i1 ing) D Gredng) = > (k1w knymy)- (2.84)
keSh(i,f)

Un élément de Sh se représente naturellement comme un arbre tronc
décoré par ¢ = (£(1),...,€(n)) de la racine jusqu’en haut. Par exem-
13

ple, (iyigiz) = }if a pour décorations ¢(j) =1, j = 1,2,3.

2. Sh munie de la restriction du coproduit A de H auz arbres troncs et
de Uantipode S((i1...4pn)) = —(in...11) est une algébre de Hopf. On
a la formule suiwante: A((i1...9)) = Y p_o(i1 .- 1k) @ (igg1 - 0n).

On peut voir Sh comme une sous-cogebre de H puisque les arbres troncs
sont des arbres, et que la restriction de Ag & Sh coincide avec Agp; en
revanche Sh n’est pas une sous-algebre de H. En fait, I’algebre des arbres
décorés enracinés se projette de maniere canonique sur ’algebre de shuffle
comme suit.

Définition 2.22 (morphisme de projection 0) Soit : H — Sh le mor-
phisme de Hopf obtenu en associant a un arbre T la somme des arbres troncs
t avec les mémes décorations tels que

(v— w dans T) = (v - w dans t). (2.85)

Par exemple, (", ) = }é +le.

Soit I'" un chemin rugueux au-dessus d’un chemin I' = (I'(1), ..., I'(d)).
On écrira pour plus de commodité T (i1, ..., i,) au lieu de TR (iy,. .., i)
dans les pages qui suivent. En particulier, on notera

t Tl Tn—1
(i, ... i) = / dFIl(il)/ dly, (i2) . . / dly, (in)  (2.86)
S S S
les intégrales itérées de I' lorsque I' est régulier.

Indexons I'* (il, ...,iy) par des arbres troncs T € Sh avec décoration
0y) = z], j=1,...,n. Alors les propriétés de (i) Chen et (ii) shuffle, cf. éq.
(2.4) et (2.5), sont equlvalentes a
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(i)bis si T € Sh est un arbre tronc,

T'(T) = Z T (Ro0,(T))T (Leay (T)); (2.87)
vEV(T)

en d’autres termes, I''* = I'* « I'%s pour la convolution de 1’algébre de
shuffle, définie comme celle de H (cf. supra);

(ii)bis si T,T" € Sh sont des arbres troncs,
(T (T') = T%(T h T). (2.88)

En d’autres termes, I'*® est un caractere de Sh.

Une telle fonctionnelle indexée par des arbres troncs s’étend facilement
en une fonctionnelle arborescente, i.e. indexée par des arbres T quelconques,
en posant T'(T) := T' 0 §(T). Comme @ est un morphisme d’algebre de Hopf,
on obtient immédiatement les propriétés

(i)ter si T € H est un arbre,

T*(T) = > T™(Rooy(T))T" (Leay(T)); (2.89)
vV (T)

en d’autres termes, I'** = T'* x I'*S pour la convolution de 1’algebre
des arbres décorés;

(i1)ter si T,T" € H sont des arbres,
r'(T)T(T') = T (T.T"). (2.90)

En d’autres termes, I'** est un caractere de H.

Les propriétés algébriques (i), (ii) ou (i)bis, (ii)bis ou encore (i)ter, (ii)ter
sont satisfaites par les intégrales itérées usuelles I}¥ ou leurs extensions ar-
borescentes I} & condition que I' soit un chemin régulier.

On peut donner une formule explicite pour les intégrales itérées arbores-
centes. Soit T un arbre (I'extension aux foréts est immédiate), indexons ses
sommets par les entiers 1,...,n de sorte que (i — j) = (i > j). Alors, si
I’'on note i~ "ancétre du sommet ¢ dans T, on a

(T = / Ty, (£(1)) / " T, (0(2)). .. / " AT, (£(n)).  (2.91)

Remarque. La formule (2.91) ne dépend pas du choix d’indexation des
sommets, tant que l'arbre est ordonné en tas, i.e. tant que (i - j) = (i > j).
Nous appelons cette invariance par réindexation la propriété d’invariance par
réindezation des intégrales itérées. Elle peut s’énoncer en disant que If(T)
dépend seulement de la topologie de T. Cette méme propriété réapparait
plus loin.

Contentons-nous pour linstant de la remarque suivante, montrant la
concision de la formulation algébrique. Supposons qu’on ait défini des
quantités T (iy,...,i,), n < |1/af, avec sg fizé, vérifiant la propriété
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de shuffle. Posons JE°((i1...i,)) = T*0(iy,...,i,) et plus généralement
JE = JE0 % (JE 0 S). On a obtenu ainsi une famille de caractéres de Sh,
et on vérifie tres facilement la propriété (i)bis. En d’autres termes, on a
construit ainsi un chemin rugueux formel au-dessus de I'.

B. Transformation de Fourier et intégrales squelettes

Au lieu de régulariser les intégrales itérées, Iffo ~ Jffo avec s fixé, nous
choisissons de régulariser les intégrales squelettes SkIk, qui sont des ana-
logues des intégrales itérées usuelles dépendant d’un seul argument, obtenues
par transformation de Fourier.

Définition 2.23 (intégrales squelettes) Soit, pour I' régulier a support
compact,

SkIb(iy .. . i) :=

n/2/ H .7:F’ (¢j)d&; - / dxy / dxs . . / - dmnei(xlél+’~~+xnfn)7
(2.92)
ot, par définition, [ etdy = % On peut vérifier que Skl est un caractére

de Sh — ou, en d’autres termes, qu’elle satisfait la propriété de shuffle—,
comme pour les intégrales itérées ordinaires.

La projection 6 permet de généraliser immédiatement la définition précédente
aux intégrales squelettes arborescentes, cf. éq. (2.91),

SKI(T) = SKI%. 0 §(T) = / dTy, (£(1)) / P Ar,, (02) / A, (Un)).
(2.93)

Un calcul explicite donne (cf. [23], Lemme 4.5):

SKIL(T) = (2m) /2 / H]—T’ 4))de; -

eit(§1+...+£n)

[T 6+ 32,561

(2.94)

C. Mise en ordre normal de Fourier pour des chemins réguliers

Définition 2.24 (projections de Fourier et décomposition des mesures)

(i) Soit p une mesure signée a support compact, par exemple,
p= e (dae, ... dey) = @f_dly, (£(7)). Alors

p=>Y Pu=>» poo (2.95)
ocEYX, oEX,

ou
P pu— F1 (1\55(1)|S---S|€a(n)|}—/’b(£17 R ,fn)) (2.96)

est un projecteur de Fourier, et u° est défini par

= Pld(u o o') = (PUIU,) o 0. (2.97)
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L’ensemble des mesures signées dont le support de la transformée
de Fourier est inclus dans {(&1,...,&); &1 < ... < |&u]} sera noté
PldMes(R™), ou, de maniére plus parlante, Pt Mes(R™). Ainsi, u® €
Pt Mes(R").

(ii) Si T est un arbre a n sommets, on note

PTMes(R™) = {p € Mes(R™); &€ € supp(Fpu) = ((v - w) = (|&] > [€u])} -
(2.98)
En particulier, P* Mes(R™) = P+ Mes(R") si T est un arbre tronc.

Cette définition s’applique en particulier au cas des mesures produit
p=pre = Qi=1,..ndl e, (£(i)) si £ = (£(1),...,£(n)) est la décoration d'un
arbre tronc. Néanmoins, méme si p est une mesure produit dans ce cas,
les projections de Fourier p? n’en sont pas. Ceci nous contraint & étendre
les définitions précédentes de II’ZS, JI'?‘S, 1:155, jfs , SkItF, @? en des caracteres
indexés par des mesures, I/°, J/°, ff;g? J_/’is, SkIZ, ﬁi C’est élémentaire
d’un point de vue analytique. Cependant, d’un point de vue formel, on doit
remplacer les arbres (ou foréts) décorés par des arbres (ou foréts) ordonnés
en tas 2, c’est-a-dire, des arbres non décorés mais dont les sommets sont
indexés par les entiers 1,...,n de sorte que

(i = §) = (i > 7). (2.99)

D’une certaine maniere, la décoration est passée de ’arbre a la mesure
puisqu’on remplace T' par pr g); ainsi, I{*((T,£)) = Ifjr Y (T) si T est un
arbre ordonné en tas et £ une décoration de cet arbre. Par exemple,

ij(qr):/:/f /x dp(zr, ... ). (2.100)

La décomposition p = Zaezn Pou, pp = ®i=1,..ndl'y, (€(i)) est adaptée
au cas du brownien fractionnaire, mais trop brutale pour un chemin a-Hélder
quelconque. Dans ce cas-1a, on tronque I' en un chemin a support compact
inclus dans [0, 7], avec T aussi grand qu’on veut, et on utilise I’équivalence
de la norme Hélder

I'(t) —I'(s
ITf|ce = sup [[T'(#)]| + sup M (2.101)
teR steR |t — 5]
avec la norme Besov [125],[23]
1T . == sup 2*¥||D ()T oo, (2.102)
keZ

ou (xk)kez est une partition C* dyadique de 'unité, avec suppxo C [—2, 2],
suppxx C [2F,5-2F71], suppy_p C [=5-28"1, =21 (k> 1) et D(xp) : f
F Y xr - Ff) est le multiplicateur de Fourier correspondant.

On pose alors pour un arbre T a n sommets

Z8 = {(ko)vevin € Z | (v w) = (ko] 2 [kul)} (2.103)

2L’algebre formelle engendrée par les arbres ordonnés en tas est équipée naturellement
d’une structure de coproduit analogue a celle de H, qui en fait une algébre de Hopf (non
commutative) [26].
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et

1
Plu= " = [®uevimD(xr,)] 1 (2.104)
T | Xk
Jr

ou [Xg| = [{o € Xn; V], |ks(j)l = |kj]}| est un facteur de symétrie choisi de
sorte que la décomposition (2.95) reste vraie. Les résultats des pages suiv-
antes s’adaptent facilement dans ce cadre, modulo quelques modifications
techniques mineures dues au fait que PT n’est plus tout & fait un projecteur,

e. (P12 4£PT. 3

Nous avons vu plus haut (cf. §2.4.1) l'utilité des intégrales squelette
et de la mise en ordre normal de Fourier sur ’exemple de l'aire de Lévy du
brownien fractionnaire. Comme dans cet exemple, nous allons nous arranger
pour permuter 'ordre d’intégration a 1’aide du théoréeme de Fubini de sorte
que les intégrales les plus intérieures (les plus a droite) portent les fréquences
de Fourier les plus élevées. C’est ce que nous appelons mettre en ordre
normal de Fourier.

Remarque. Nous avons déja insisté (cf. remarque précédente) sur le
fait que les intégrales itérées dépendaient uniquement de la topologie de
I’arbre, ce qui signifie, lorsqu’on remplace les chemins par des mesures et les
arbres décorés par des arbres ordonnés en tas, que

7 7 -1
I(T) =15, (o~ 1.T) (2.105)
si o € %, est une réindexation des sommets préservant la topologie de T,
i.e. telle que

(i — j dans T) = (i — j dans o~ }(T)). (2.106)

Nous avons introduit les arbres décorés et les arbres ordonnés en tas.
Il est également possible de décorer des arbres ordonnés en tas, on obtient
encore une nouvelle algebre de Hopf en combinant ces deux super-structures.
Cela facilite I’énoncé de la proposition suivante:

Proposition 2.25 (graphes de permutation) Soit ¥, € Sh un arbre
tronc avec n sommets décoré par l, et o € ¥, une permutation de {1,...,n}.
Alors il existe un unique élément T de ['algébre des arbres décorés et or-
donnés en tas, appelé graphe de permutation, se présentant comme une
somme de foréts décorées par £ o o, et tel que

I (%,) = I (T9). (2.107)

Donnons un exemple. Soit %, = Ig% and o :(1,2,3) — (2,3,1). Alors

3Pour simplifier, on peut remplacer les ¢ par des fonctions caractéristiques
d’intervalles; PT est alors un projecteur, mais on obtient des régularités Holder na~
au lieu de na.
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t 3
I%S(Kn) - /dfal 333

- [t [
[ o [

1
| e
St
/dFal(xg)
Tl

t
s (22 / 0T, (3)
S

/ as (T1 / dl g, (22) /:1 dlq, (x3)

= IF(18e) — I (V).

dlq, (1)
1

dl“ag (332)

dTqy (2)

ar,

donc (oubliant la structure d’ordre en tas pour ne retenir que les décorations)
T° = 1%.., — V., Remarquons que tous les graphes de permutation T
avec o fixé s’obtiennent a partir de la méme somme de foréts ordonnées en tas
(également notée T, par abus de notation) en superposant les décorations
de %,, permutées par o.

Comme corollaire élémentaire de la Définition 2.24 et de la Proposition
2.25, on obtient:

Corollaire 2.26 (mise en ordre normal de Fourier pour des chemins
réguliers)

Soit I' un chemin régulier, et T,, € Sh un arbre tronc avec n sommets
décoré par £, alors

IF(T) = ) Its  (T9), (2.108)

Ko
Uezn

ot l'on a posé comme d’habitude jip gy = Q1 dly, (£(7)).
D. Ordre normal de Fourier: théorémes algébriques

Nous en venons finalement au principal résultat algébrique de ce para-
graphe, annoncé dans l'introduction de la section 2.4.

Définition 2.27 (données d’arbres ¢%) (i) Pour tout arbre ordonné
en tas T avec n sommets, et t € R, soit ¢ : PTMes(R") — R, p v
¢4(p) ou encore gi)ft('l['), une famille de formes linéaires telle que:

(a) ¢ZP(¢)<T1) - ¢fir(i)(T1) = II5(.;) =Ty(i) — Ts(i) si Ty est Larbre
ordonné en tas avec un seul sommet;

(b) si Ty, i = 1,2 sont des arbres ordonnés en tas avec n; sommets,
et p; € PTiMes(R™), i = 1,2, alors la propriété multiplicative
suivante est vérifiée,

L (T1) @, (T2) = ¢l gy, (T1 A Ta), (2.109)

ot Ty ATy est le produit non décoré T1.T2, les indices des sommets

de Ty ayant été augmentés de ny 4;

4Le produit T; A Ts est en fait le produit (non commutatif) de ’algébre de Hopf des
arbres ordonnés en tas [26]
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(¢) (propriété d’invariance par réindexation) la condition d’invariance
suivante sous les réindexations des sommets est vérifiée, cf. (2.105),

¢1(T) = @iop (0~ 1.T) (2.110)
st o — qui agit en permutant les sommets de T — est telle que
(i — j dans T) = (i — j dans o~ *(T)). (2.111)

(ii) Soit, pour T' = (I'(1),...,I'(d)), xt : Sh — R la forme linéaire sur Sh
définie par

)= D G (T0), Tu=(0(1),... . L(n)) (2.112)

oEY,

ot T? est comme dans la Proposition 2.25.

Le résultat principal est le suivant.

Proposition 2.28 (construction de chemin rugueux par ordre nor-
mal de Fourier) Soit I' un chemin tel que x} soit bien défini. Alors xk
est un caractére de Sh.

Par conséquent, la formule suivante pour ¥, € Sh, n > 1, avec n som-
mets et décoration ¢,

JE(QL), .. 6n)) = X * (3 © §) () (2.113)
définit un chemin rugueux formel au-dessus de T'.

A cette définition de J wutilisant la convolution de l'algebre de shuffle
s’ajoute une autre définition équivalente utilisant la convolution de ’algebre
des arbres,

JE(Tn) = > (¢ (¢°089)) . (T, (2.114)

KT,
oEX,

ot la convolution est définie par référence au coproduit d’arbres (ordonnés
en tas), i.e.

(¢t * (¢S Z ¢®v€V(RoovT)Vv(ROOUT)(bf@UEV(LcavT)Vv(S(Leav ))
vE=V(T
(2.115)
pour un arbre T ordonné en tas a n sommets et une mesure produit v =
V1 ®... Ry, et, par extension multilinéaire,

(6" % (¢° 0 9)), (T) = (2m) "/ /fy(§1, &)y L dEy
Z ¢®'D€V(ROOU (T))elﬁfv‘fv dxz, (ROO'UT)st@va(LEGU (T»eixv&v dzy (S(LeavT))
vE=V(T)
(2.116)

pour une mesure quelconque v € Mes(R™).



78CHAPITRE 2. SINGULARITES LOCALES DES CHAMPS GAUSSIENS

Supposons provisoirement que I' est un chemin régulier. Si 'on définit
' comme 'intégrale squelette SkI!, on obtient de maniere élémentaire en
resommant sur toutes les permutations y& = SkI}, et par conséquent JE =
I¥. La Proposition 2.28 montre que le méme algorithme de resommation
sur les permutations produit un chemin rugueux formel au-dessus de tout
chemin a-Hélder T' pourvu que ¢! satisfasse les conditions (a), (b) and (c)
de la Définition 2.27. Mieux, il s’ensuit facilement de la Définition 2.27 que
tout chemin rugueux au-dessus de I' s’obtient de cette maniere.

La démonstration originelle de la proposition ci-dessus consistait précisément
a utiliser le fait que Skl est un caractere de I’algebre de shuffle pour tout
chemin I" régulier; on en déduit une certaine égalité entre deux éléments de
H, qui, a son tour, implique que (2.113) définit un caractere de l'algebre
de shuffle. Dans [26], on montre en fait que T? est défini comme image
réciproque par un isomorphisme de Hopf noté © de la permutation o',
vue comme élément d’une algebre de Hopf de permutations appelée algébre
des fonctions quasi-symétriques libres. De maniére tres élégante, le fait que
(2.113) soit un caractere découle alors directement du fait que © préserve
la structure de produit, et 1'égalité entre (2.113) et (2.114) du fait que ©
préserve la structure de coproduit.

L’énorme avantage par rapport au probleme d’origine est qu’on peut
construire autant de formes linéaires ¢’ qu’on souhaite en donnant une valeur
arbitraire a ¢/,(T), T parcourant 'ensemble des arbres (ordonnés en tas), et
en les étendant aux foréts en suivant la propriété multiplicative (b). Le
probleme algébrique a ainsi été completement résolu: les chemins rugueux
formels sont exactement caractérisés par un choix arbitraire des données
d’arbres ¢!, (T).

Il reste & choisir une définition convenable de ¢’ conduisant & un chemin
rugueux avec les bonnes propriétés de régularité Holder. Par comparaison
avec le cas des chemins réguliers, il est naturel de définir ¢! comme une
régularisation (dans un sens a définir) des intégrales squelettes. Quel que
soit le choix de ¢!, la démonstration de la régularité Holder se fait en partant
de la définition de J par convolution de l’algébre des arbres, cf éq. (2.114),
qu’on explicite de la maniére suivante. Soit v = /‘((71‘, ¢); Supposons que T =
Ty A ... AT soit le produit (ordonné en tas) de p arbres. Posons i (§) =
Ruevr) FI' (0o a(v)))(&)e™ v da, si T' est un sous-arbre de T et & =
(§v)vev (). Alors, la propriété multiplicative (b) pour ¢! donne

(¢" * (¢° 0 9)),(T) =
p
(27T)_"/2/d€1 o den gy < <ien [T(0" % (07 0 8))on, (60 uev nyy) (Ta)-
q=1

(2.117)
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Maintenant,

(6" (¢° 0 S))ﬁnrq((f )vevmrq))(T )
= <75,t>Tq((gv)va<T ) (Tq) + ¢ (Ev)vev(rg ))<S(T‘1))

g t
+ (bDRooqu ((&v)vEV(RO% Tq)) (ROOqu) .
'U':V(TLI)r'U#@

) (S(Lea,Ty))

o3
VLeayTq ((£U)UGV(LeanTq)

= (' = )i, (E)oevin,) (Ta)

+ Z ((Zst - (bs)f’Rooqu((gv)vGV(Rooqu))(ROOUTQ) :
oV (T,) 070
¢5

VLeav'ITq fv)vGV(Lcaqu)

) (S(LeayTy))
(2.118)

d’apres (2.82).

Finalement, si I'on applique de facon répétée la définition récursive de
'antipode, on obtient une expression de S(Lea,T,) en termes d’une somme
de foréts obtenues par coupures multiples [88, 23]. La propriété multiplica-
tive (b) appliquée a ¢* permet d’exprimer (¢! * (¢° o S))mrq((éu)vev Tq))( )
comme une somme de termes de la forme

(ét - qﬁS)IjROOqu((gv)vEV(Rooqu)) ROOU H (ZSVT/( 51) GV(T/ )(T;)7 (2119)

avec V(T,) = V(Roo,T,) U W UJ 1 V(T)).

La mesure v étant dans Pt Mes(R"™), |¢,| augmente en montant le long
des branches des arbres; en particulier, siw — v, w € V(T;), v € V(RooyTy),
alors |£,| > |&y], ce qui permet a priori de répéter 'argument montrant la
régularité du terme de bord A7, (9) en §2.4.1.

2.4.3 Régularisation de domaine

Nous avons vu en §2.4.1 comment régulariser le terme d’1ncrement G?’Jr en
restreignant l'intégrale en Fourier au domaine conique Rreg, cf. Définition
2.18. Dans le language que nous venons de développer, cf. alinéa B en §2.4.2,
G?’+ s’interprete simplement (aux exponentielles régularisantes en e~ Mlél/2
prés) comme l'intégrale squelette Sklgﬁu(l%) avec u = dBj, (1) ® dBi,(2).
Formellement,

SkI, ,(12) = (2m)7! / EF(PH1)(€) SKLL vy o woieatan, (11)
— 2m)! [P T )
[i&][i(&1 + &2)]

L’intégrale squelette régularisée, RG}'", s’interprete, elle, comme ¢§,+u( 17)
et s’écrit comme 1’équation ci-dessus en insérant la fonction caractéristique
du domaine R%’e’; dans l'intégrale en &.

Tout ceci s'étend de maniere naturelle comme suit (ot I'on retrouve en

particulier ]Rreg écrit sous la forme ng, avec T = 17).
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Définition 2.29 (régularisation de domaine) Soit T un arbre ordonné
en tas avec n sommets, et v € Pt Mes(R").

1. (pour le brownien fractionnaire) On définit

RY, ={(&1,. &) ER™||&a] < ... < |l et Vi, |§+> & > Cregsup &}
j—»i J—=

(2.121)
et

YD) = n) " [ AL, () - SHuy s, (T)

eit(€1+...+&5)
= 0" [#ENO,© - e e e

(2.122)

2. (pour un chemin I' a-Hélder quelconque) On définit ereg czZt, of.
(2.108), comme l'ensemble des n-uplets (ky)yev () tels que (notant
Wmnaz(v) == max{w € V(T) | w — v}, 0u Wpme(v) = v si v est une

feuille)

(1) siv <w, alors |ky| < |kyl|;

(ii) siv € V(T) et w est une feuille au-dessus de v, et que ky.k, <0,
alors |ky| < |ky| — logy 10 — logy [V(T)|;

(iii) sin € V(T) est un noeud, alors tout sommet w € {Wpaz(v) | v —
n} tel que ky.k

Wimaz (n) <0 Ué?"iﬁe.' ‘kw| < |kwmaz(n)| — log2 10 —
log, [V/(T)|;
et l’on pose
St
¢L(T) = > Sklpw, (T), (2.123)
keZl

reg

o Pkl = ﬁ [®v€V(T)D(¢kv)] (v), cf. aprés (2.103) pour la définition
du facteur de symétrie | L.

Remarque. L’intuition provenant du cas du brownien fractionnaire,
étudié avant le cas général, les conditions assez ad hoc du 2. assurent que

‘é.”U + ng»vf?‘l)‘ > %Supwﬁ-}’[) ’fu}‘ Si é.’U € Supp¢kv7 (S V(T) pour k =
(kv)vev(T) € Z};g. On retrouve les conditions du 1. avec Creg = 3.

Le théoreme principal des articles [21] et [23] s’énonce alors ainsi.

Théoréme 2.4 Soit J* la fonctionnelle construite (cf. Proposition 2.28)
a partir des données d’arbres ¢! définies dans la Définition 2.29 ci-dessus.
Alors:

1. (pour le brownien fractionnaire) RBL (i1, ... in) := J&,((i1 ... in)),
n=1,...,N := |1/a] est un chemin rugueux vivant dans le chaos

d’ordre n de B, et tel que:
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(i) (estimées Hélder uniformes) Il existe une constante C > 0 telle
que, pour tous s,t € R et n > 0,

E|RB} (i1, ... ,in)|* < Clt — s|*";

(i1) (vitesse de convergence) il existe une constante C' > 0 telle que,
pour tous s,t € R et n1,m2 > 0,
E[RBEL™ (i1, ..., in) — RBE™ (i1, ... ,in)|* < Clm — n2|**.

S

Par des arguments standard, on en déduit la convergence dans
L2(Q; C5(10,T),RY) x C3%([0, T],RY) x ... x CY*((0,T),R™")) pour

tout Kk < a vers un chemin rugueur RB au-dessus de B.

2. (pour un chemin T' a-Holder quelconque) Supposons 1/a ¢ N. Alors
RL (i1, ... yin) = JE((i1 .. .iy)) définit un chemin rugueuz a-Holder
au-dessus de T'.

Ce théoreme est valide dans le cas simple ou 'on pose arbitrairement
@ (T) = 0 deés que I'arbre T possede > 2 sommets. On voit facilement que
c’est un cas particulier de la construction précédente en choisissant Ci.q
assez grand, les conditions de la Définition 2.29 n’étant non vides (pour un
arbre ayant > 2 sommets) que pour Cheq petit. Considérons la Définition
(2.113) de J{. En écrivant de maniere explicite la convolution et I’antipode
de I'algebre de shuffle et la définition (2.112), on trouve (avec des notations
évidentes)

n

HE(T) = 31" 37 6 (T8 (T2 ), (2.124)

k=0 01,02

olt pu1 := ®F_dTy, (£(7)), po i= @ dly,(L(n —i+1)), et o1 : {1,... .k} —
{1,...,k},oo : {k+1,...,n} = {k+1,...,n} sont des permutations. Or
I'unique graphe de permutation T? faisant intervenir un produit d’arbres

a un seul sommet est T;’: , 00 = . 1 >, qui contient le produit
«1....m On obtient ainsi des formules tout a fait explicites dans lesquelles

les intégrales arborescentes ont disparu. Par exemple, dans le cas du brown-
ien fractionnaire, on trouve

n k 1,
JtBS(Tn) = 02/22(—1)"’“/.../ Heitéj%dﬂ/%j(ﬁ(j))
k=0 €kl<.<lér] jo1 1§

is; |§j|%_adW (i
/m/lfk+1|<---<|£n H ‘ i§; ()

j=k+1
(2.125)

Si 'on décompose a nouveau le domaine d’intégration en {|&;| > ... >
&kl 1€k| < oo < [&nlF T {]&L] > oo > &gty [Ert1] < - .. < [&nl}, on trouve
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finalement
Jy —c"/2 ) k//
Z €1]> >kl k<< [€n]
k-1 1_
e, 165127 .
I 51" v e
=1 i

€ _ isék ‘§k| n is@@ .
(et ) i€ dW&c(g(k)) jzlgﬂe Jiéj dej(£<j>)

(2.126)

Cette derniere formule est formellement identique au chemin rugueux
défini postérieurement par D. Nualart et S. Tindel [120], qui fait appel a la
représentation par noyau de Volterra du brownien fractionnaire au lieu de
la représentation harmonisable.

2.4.4 Renormalisation a la BPHZ: une esquisse

Le découpage du domaine d’intégration en Fourier est présent dans les
premieres démonstrations de la convergence des intégrales de Feynman renor-
malisées (cf. par exemple le livre de C. Itzykson et B. Zuber [107]). Les outils
multi-échelles (cf. par ex. [126]) ont permis de simplifier ces démonstrations
en dégageant la notion adaptée auz échelles de renormalisation utile ou de di-
agrammes multi-échelles dangereuz, fondamentaux en théorie constructive
(cf. sous-section suivante). Sans entrer dans les détails, la régularisation
de domaine introduite dans le paragraphe précédent évite artificiellement
I’apparition de diagrammes multi-échelles dangereux nécessitant une renor-
malisation. Il est naturel d’aller plus loin et de chercher a renormaliser les
intégrales squelettes. C’est ce que nous faisons dans le preprint [28], dont
nous proposons de donner brievement un simple apergu.

L’exemple le plus simple d’intégrale squelette est celui associé a 'aire de
Lévy, G = Sklpi () (1,2) (cf. éq. (2.120)), qui séerit

\5152\2 +62).
(1)dWe, (2) 2t elt(Eté2 (2.127)
//52>|51 (G + 52)5
Posons (1 := &1 +&3, (2 := &. Un bref calcul montre que si I’on remplace
1 1 1 1l _o 1_o 1 _o
ot 616227 _ [G1—Col2 G2 (I6=Gal == lcal2 ") lcal 2
Vintégrande (23e e = oG par oG -

autrement dit, si 'on soustrait 'intégrande évaluée a un moment externe
(1 nul — , alors I'intégrale résultante est convergente ultra-violette. La rai-
son pour cela tient au fait que dans le domaine divergent |(a| > |(1], la
diﬁérence |C1— C2|%70‘ - |C2|%70‘ se comporte comme O(|(2|727) au lieu de

O(|Go| 7).

De maniere générale, la renormalisation consiste a soustraire de I'intégrande,
de maniere cohérente, un certain nombre de contretermes, de maniere a
obtenir une intégrale finie.
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Figure 2.2: ”Demi-diagramme” de Feynman associé & T. La somme des mo-

ments en chaque sommet est nulle. Chaque ligne simple, resp. double contribue a
L e 1

lintégrande un facteur multiplicatif %7 resp. |£]27%.

Figure 2.3: Diagramme de Feynman associé & T. Chaque ligne double contractée
. . . 1
contribue maintenant |£|12% au lieu de |¢|2 <.

L’intégrande se représente comme un ”demi-diagramme” de Feynman,
2

cf. ci-dessous I'exemple de 'intégrale squelette associée a T = 1{/03 (figure
2.2). Les moments (; := & + Zj_»i ¢; apparaissent dans le dénominateur
de I’éq. (2.94). Chaque ligne double &; porte de plus une ”décoration”
dWe, (€(5)). La wariance de I'intégrale squelette se calcule, elle, a 'aide
d’un diagramme de Feynman classique (figure 2.3) obtenu en collant le long
d’un miroir (matérialisé par une ligne en pointillés sur la figure) un double
symétrique du demi-diagramme. On retrouve G, cf. éq. (2.127) et sa
variance en se restreignant aux lignes d’indices 1 et 2.

Les régles de soustraction de contre-termes a 1’intégrande définies en
[28] suivent de pres l'algorithme de BPHZ, ce qui permet d’estimer par
les méthodes multi-échelles usuelles la variance renormalisée. Notons qu’en
travaillant sur les demi-diagrammes et non sur les diagrammes eux-mémes,
on redéfinit directement la variable aléatoire Skl (T).

La fin du travail consiste a vérifier en utilisant les formules (2.117),
(2.118), (2.119) que le chemin rugueuz renormalisé associé par I’algorithme
de mise en ordre normal de Fourier est régulier.
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2.4.5 Delathéorie constructive des champs au calcul stochas-
tique fractionnaire

Ce paragraphe se veut une introduction rapide aux idées développées dans le
preprint [27], en collaboration avec J. Magnen (du Laboratoire de Physique
Théorique de 1'Ecole Polytechnique), permettant de construire une aire
de Lévy au-dessus du brownien fractionnaire a deux composantes B =
(B(1),B(2)) d'indice de Hurst a € (1/8,1/4).

Le brownien fractionnaire peut s’obtenir comme limite de marches aléatoires;
on pourra se référer notamment a la construction récente de A. Hammond
et S. Sheffield [105]. On passe facilement de la a la construction de B en
considérant deux marches aléatoires indépendantes. Cependant, on peut
imaginer que B représente le mouvement idéalisé dans R? d’une particule,
invariant par rotation, mais soumis & des contraintes de rotation (dues &
une rigidité mécanique ou électromagnétique liée aux dimensions macro-
scopiques de la particule, ou & un phénomene similaire encore a élucider),
introduisant une corrélation a 1’échelle microscopique entre les deux com-
posantes. Une description naturelle de ce phénomene dans le langage de la
théorie quantique des champs consiste a ajouter un lagrangien d’interaction
Lint = (0AT)2, ot AT sont les limites (divergentes ultra-violettes) quand
n — 0 des quantités mises en ordre normal de Fourier introduites dans la
Définition 2.16. L’intuition fondamentale est que le champ B est dans un
certain sens un champ mésoscopique, alors que A* dépend des détails mi-
croscopiques de la théorie. Cette idée est déja présente en germe dans les
travaux de Lejay [111]. A. Lejay explique comment les trajectoires de B
peuvent étre modifiées en insérant des bulles microscopiques tout du long,
ce qui donne a la limite des trajectoires indistinguables de celles de B —
autrement dit, mathématiquement parlant, il y a convergence en loi vers
B pour la norme S-Holder pour tout § < « —, alors que l'aire de Lévy
a été corrigée d’'une quantité arbitraire. On doit donc chercher une inter-
action qui guérisse les divergences ultra-violettes a 1’échelle microscopique,
sans modifier la théorie a I’échelle mésoscopique. Sil’on comprend 1’échelle
mésoscopique comme une échelle basse-fréquence (ce qui n’est pas forcément
approprié, puisqu’il y a deux échelles de référence ici, au lieu d’une seule), un
candidat naturel serait une théorie en interaction asymptotiquement libre
a grande distance (a 1’échelle mésoscopique, pour étre précis). L’exemple
le plus connu d’un tel comportement est probablement celui de la théorie
#* infra-rouge en 4 dimensions [96]; mais dans ce cas, la constante de cou-
plage augmente indéfiniment & petite distance, ce qui impose un cut-off
ultra-violet. Dans notre cas, la constante de couplage A a un flot triv-
ial, si bien que la théorie sera bien définie a toutes les échelles, suggérant
une théorie juste renormalisable (ou, en d’autre termes, une interaction
intégrée homogene de degré 0). Comme (O.AF)? est homogene de degré
(4 — 2) en temps, on utilisera en fait un lagrangien d’interaction non lo-
cal, %c’aff [t1 — ta| 2 Lint (o1, d2)(t1, t2)dt1dla, ol ¢y, o sont les champs
stationnaires divergents infra-rouges associés a B (en d’autres termes, les
intégrales squelettes d’ordre 1 de B) et

Ling(d1, 62) (b1, t2) = N { (DAY (t1) (DAT)(t2) + (A7) (t1) (DA ) (t2) }
(2.128)
— une interaction positive pour o < 1/4 puisque le noyau [t; — to| 74 est
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localement intégrable et défini positif. La mesure gaussienne du(¢) est ainsi

pénalisée par le poids exponentiel singulier e~ 5 S [ Lint($1,62)(t1,t2) [t —to| ~*dtrdt
De maniere équivalente, en utilisant la transformation de Hubbard-Stratonovich
° on introduit deux particules gaussiennes d’échange o+ (t) de covariance
Eoy(s)ox(t) = c,|s —t|**, de transformée de Fourier |£|**~!, et on rééerit

la fonction de partition Z = Z(\), poids total de la mesure pénalisée, sous

la forme

7. / o e Lint(01.62:) Dt g (4 4o, (2.129)

ou

Lint(¢1,2,0)(t) =iX (AT (t)o1(t) — DA™ (t)o(t)). (2.130)

Tout ceci est mal défini mathématiquement puisque (1) o est un proces-
sus & valeurs distributions et A% n’est pas du tout défini quand a < 1/4; (2)
on integre sur R une quantité invariante par translation puisque construite
a partir de champs stationnaires.

Supposons le parametre de couplage A\ assez petit. La théorie perturba-
tive des champs suggere alors de développer formellement I’exponentielle du
lagrangien et de calculer les moments polynomiaux de ¢ ou o, par exem-
ple, %IE [0(1’1) co.o(zp)e” fﬁi"f(‘m’@’“)(t)dt} , également appelée fonction an
points de o et notée (o(x1)...0(xy))x - En utilisant la formule de Wick, on
peut représenter cette quantité comme une somme sur des diagrammes de
Feynman, ) A(T"), ou I' parcourt I’ensemble des diagrammes a n pattes o
externes, et A(T") est ’évaluation correspondante. Par intégration par par-
ties fonctionnelle (suivant la formule dite de Schwinger-Dyson %), on obtient

(|FOAF) O = %!5\1_40‘ (L= [l ((Fo) @] . (2.131)

&

ey

&g,

Figure 2.4: Diagramme bulle. La somme des moments en chaque sommet est nulle.
Les lignes en gras sont des champs ¢, les lignes simples des champs . Chaque ligne
contribue a l'intégrande un facteur multiplicatif égal a la covariance en Fourier,
|€]1 722 ou |¢]2*~L suivant le cas.

E1 E1 E1
£ £ £ ¢ ¢
+ + oL
&% £y e

Figure 2.5: Deux premiers termes de la série de bulles.

5une extension en dimension infinie de identité Ee™X = ¢ A*/2 pour X ~ N(0,0%).

Sune extension en dimension infinie de la formule bien connue pour les vecteurs
gaussiens, E [0x, F(X1,...,Xa)] = 32, C™ i, )E[X,;F(X1,...,Xy,)] si C est la matrice
de covariance de (X1,...,Xn).
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Considérons (en utilisant un cut-off ultraviolet brutal a |{| = A) le terme
de plus bas degré en A dans le terme entre crochets: il est essentiellement
égal (au signe pres) a I’évaluation du diagramme bulle & demi amputé, cf.
Fig. 2.4,

A
—lgt A (=iN)? dé;
|€1]<|€—€1]

{(E1Fo©F)® BIF@s1)(&)] ElFoa(e - €)1}

A
= AQIEI“"“I/K e ‘d&IElll‘?“Ié — &l ~ase KNP(A/[E),
11<[§—¢&1

(2.132)

une quantité divergente mais positive. Si I’on resomme formellement la
série de bulles comme dans la Fig. 2.5 — la justification mathématique de
cette procédure nécessite de dépasser la théorie perturbative —, on obtient

1

L i—da l ji—ta
— 1— = — .
22 ’f‘ 1+K)\2<A/‘€|)1_40‘ A2 ’5‘

KN*(A/]g) e
L+ KX (A/[g)I 4

1 _
— Ao §|g|1 dor (2.133)

Ainsi, le propagateur ”"nu” IE\%““ a été remplacé par le propagateur

renormalisé |§|1,4Q+I1Q2A1,4a, qui s’annule dans la limite A — oo. Dans
des termes plus physiques, 'interaction en I‘éll%‘*“ a été totalement écrantée

("screened”) par un contre-terme de masse infini KA2A!'~4®. Les diagrammes
plus compliqués — d’ordre plus élevé en A — apparaissant dans 1'éq. (2.131)
s’annulent également quand A — oo. Il reste simplement:

(FASQP s = gl (2134)

Des arguments de comptage de puissance standards montrent en re-
vanche que les diagrammes connexes avec 4,6, ... pattes externes o sont
convergents. La fonction génératrice des moments connexes de l'aire de
Lévy (le logarithme de la fonction génératrice usuelle) n’est donc pas mod-
ifiée par l'interaction, saufle terme de degré 2 (la variance), qui a été rendu
fini. Quant a la loi du champ ¢ ou de B, elle est inchangée a la limite
A — o0, toujours pour les mémes raisons.

La théorie constructive des champs permet de rendre ces arguments
rigoureux. Elle est fondée sur un développement multi-échelle des champs
dans lespace de Fourier, ¢/ := D(x;)¢ (dit: wvertical), cf. éq. (2.102),
complété par un développement dit horizontal dans ’espace direct, dans
des intervalles dyadiques A/ de taille 277 — une sorte de développement en
ondelettes simplifié —, permettant lui-méme un développement en cluster.
Le principe est le suivant. Le champ ¢ = ¢ ou ¢ se décompose comme
une somme Zj DOINE ’ Aj- Llinteraction diverge parce que cette somme
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est doublement infinie. Le développement en cluster permet de réécrire la
fonction de partition Z,, P (avec un cut-off ultraviolet d’échelle j = p et un
cut-off de volume V' dans 'espace direct) comme une somme,

— 1
DY ~ > Frv(Py) ... Fuv(P), (2.135)
n " P1,...,P,, non—overlapping
ouPy,..., P, sont des polymeres disjoints, i.e. des ensembles d’intervalles

dyadiques A connectés par des liens horizontaux et verticaux; au cours du
développement, la mesure gaussienne a été modifiée de sorte que les com-
posantes des champs appartenant a des polymeres différents sont devenues
indépendantes.

L’idée maintenant est que (i) la fonction Fpy (IP) est d’autant plus petite
que le polymere est étendu, tant horizontalement (en raison de la décroissance
polynomiale des corrélations & grande distance) que verticalement, ce qui
conduit a 'image d’iles horizontales maintenues ensemble par des ressorts
verticaux; (ii) les liens horizontaux et verticaux dans P (une fois qu’un seul
intervalle de P a été fixé) suppriment 'invariance par translation responsable
des divergences. Une astuce combinatoire classique, appelée développement
de Mayer, permet de réécrire 1'éq. (2.135) comme une somme similaire sans
les conditions de non-overlap. La procédure permet de resommer en une
exponentielle les parties locales des graphes divergents, conduisant a des ana-
logues multi-échelles du contre-terme de masse évoqué ci-dessus dans le cas
particulier du modele (¢, 0, 0); c’est 'essence méme de la renormalisation
dans sa version constructive. Finalement, on trouve, dans la limite |V, p —
00, que ’énergie libre In Z;, P est une somme sur chaque échelle de quantités
extensives dépendant de 'échelle considérée, i.e. In Zy,” = [V|377_ 27 777
ou {}Hp converge quand |V| — oo vers une quantité finie de 'ordre de O(\).
On retrouve Iidée que chaque intervalle dyadique A7 d’échelle j contient un
degré de liberté.

La sommation formelle de la chaine de bulles ci-dessus prend alors tout
son sens si A a été choisi assez petit pour que la série converge a 1’échelle
maximale p.
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