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Abstract

A significant part of global quantum computing research has been conducted based on quantum mechanics, which can now
be used with quantum computers. However, designing a quantum algorithm requires a deep understanding of quantum
mechanics and physics procedures. This work presents a generic quantum “black box” for entropy calculation. It does not
depend on the data type and can be applied to building and maintaining machine learning models. The method has two main
advantages. First, it is accessible to those without preliminary knowledge of quantum computing. Second, it is based on the
quantum circuit with a constant depth of three, which is equivalent to three operations the circuit would perform to achieve
the same result. We implemented our method using the IBM simulator and tested it over different types of input. The results
showed a high correspondence between the classical and quantum computations that raised an error of up to 8.8e—16 for

different lengths and types of information.
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1 Introduction and related work

Quantum computing (QC) is one of the most promising
fields in computation and has taken an important place
in international research (Ying 2010). QC is based on the
physics theorem, which assumes that an electron can behave
simultaneously as a wave and a particle (Robertson 1943).
However, there are some difficulties in building and main-
taining the superposition of quantum computers due to the
sensitivity of the computers to noise and decoherence (Ben-
nett et al. 1997; De Wolf 2019). Some technology companies
have quantum computers and have invested in developing
this field (Zeng et al. 2017). Throughout the years, argu-
ments on the advantages and disadvantages of QC have been
raised and are still discussed today (Boyer et al. 1998; De
Wolf 2019).
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A few QC algorithms have been developed throughout
the years to answer different problems. Grover’s algorithm
is one example, which was developed to solve the problem
of finding a value in an unsorted array (Lavor et al. 2003;
Leuenberger and Loss 2003). An additional significant algo-
rithm is Shor’s algorithm. Shor’s algorithm was discovered
in 1994 and proposes a solution for integer factorization.
Shor used the advantages of QC to solve a problem in pol-
ynomial time, rather than exponential time in a classical
computer (Hayward 2008). Theoretically, Shor’s algorithm
breaks public-key cryptography schemes like the widely
used Rivest—-Shamir—Adleman (RSA) scheme. The RSA is
a public-key cryptosystem used for secure data transmission
and is based on the assumption that factoring large integers
is computationally intractable (Milanov 2009). Therefore, it
may be feasible to defeat RSA by constructing and maintain-
ing a large quantum computer (Thombre and Jajodia 2021).

As mentioned above, quantum computers significantly
decrease computing complexity. Therefore, they can perform
wider operations than classical computers in parallel processes
(Biamonte et al. 2017; Wiebe 2020). However, algorithms
can use a combination of classical computers and quantum
computers and are not exclusive to one type of computer or
the other (Buffoni and Caruso 2021). Thus, the combination
of QC and classical computing yields a young but rapidly
growing field, quantum machine learning (QML). Generally,
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transforming a classical machine learning algorithm into QC
requires implementing the logic of the classical machine
learning algorithm with circuits composed of quantum gates
(Benedetti et al. 2019; Alchieri et al. 2021). Recently, studies
have presented quantum algorithms for learning random vari-
ables (Gonzalez et al. 2022; Pirhooshyaran and Terlaky 2021),
building a quantum convolutional network to learn images
(Hur et al. 2022; Tiiysiiz et al. 2021), developing generative
adversarial networks (GANs) and transfer learning (Assouel
et al. 2022; Azevedo et al. 2022; Zoufal et al. 2021), and rein-
forcement learning implementation (Dalla et al. 2022).

In physics, entropy is essential for describing uncer-
tainty in the state of matter (Bein 2006). In recent years,
the concept of entropy has become increasingly important
in the theory of information with the development of infor-
mation technology. Thus, information can be quantified
by measuring the amount of data in events, random vari-
ables, and distributions (Wehrl 1978). At the same time,
probabilities are used to quantify information, which is
why information theory is related to probability theory.
Furthermore, information measurements are widely used
in artificial intelligence and machine learning, such as in
constructing decision trees and optimizing classifier mod-
els (Kapur and Kesavan 1992). As such, there is a signifi-
cant relationship between information theory and machine
learning, and a practitioner must be familiar with some of
the basic concepts from the field (Huang et al. 2022; Liu
et al. 2022). Relatedly, in data mining and machine learn-
ing, entropy represents a model’s degree of unpredictabil-
ity or impurity. Therefore, if it is easier to draw a valuable
conclusion from a piece of information, then the entropy
will be lower. On the other hand, if the entropy is higher,
it will be more challenging to make conclusions based on
that information (Kaufmann et al. 2020; Kaufmann and
Vecchio et al. 2020).

This work presents a quantum “black box” for entropy
calculation. It is a generic procedure, regardless of data
type, and can be applied for information analysis, ML
algorithms, and more. Section 2 describes the procedure’s
correctness and general implementation using quantum
logic circuits. The central innovative aspect of this method
is to allow users without any background in QC to utilize
the capabilities of a quantum computer for their specific
needs without the need to build the quantum circuits and
transform the problem from classical to quantum compu-
tation. Therefore, this “black box” is accessible to those
without preliminary knowledge of QC. Moreover, our
quantum “black box” has a fixed depth of three, equiva-
lent to the number of steps done by the quantum computer
that runs the circuit. Comparing it to classical computer
computation, it does not depend on the input size as it is
based on amplitude encoding, which encodes the input as
a single state of the quantum circuit. Section 3 presents a
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case study that compares our method to classical computer
results. Section 4 describes the main conclusions and sug-
gestions for future research.

2 Quantum entropy “black box”

This section presents and describes a new method for quan-
tum entropy calculation. It is aimed at making QC accessible
and enables entropy calculation using quantum computers.
The method assumes that the state vector (in a single time
phase) includes the probability that the circuit will end in
a specific state. First, we will describe the method and its
procedure. Then, we will present the implementation and
correctness of the method.

2.1 Quantum logic and gates

Let v=(v,v,,...,v,) be the input vector that represents the
occurrences of each item (i.e., each v;€ VU {0} represents
the number of occurrences of the ith item). To begin, the
algorithm transforms v to an amplitude encoding by concat-
enating all »n items into a single amplitude vector. Let v be

~2
the amplitude vector, such that |v| = 1. The normalization

constant, denoted as A , satisfies

1

Vv Z,L Vi

The input vector can be represented in the computational
basis as v = Y, \/vi | i >. Since a quantum system of n
qubits provides 2" amplitudes, encoding v requires the use
of |log,n| + 1 qubits. It is important to note that in cases
where the length of v is not to the power of two, zeros were
added as their values do not change the entropy calculation.

Next, the algorithm creates a quantum circuit using
[log,n] + 1 qubits, initializes the states by v elements, and

A=

applies the unitary gate U ( g, 0, n) on each qubit (equivalent

to the Hadamard gate) to transform it into superposition. The
vector is presented as an amplitude encoding; thus, each
state holds the probability of the input item. Let [y> be the
state vector achieved in this time phase. Thus, |y> is a vector
of size n and represents the complex form probabilities of
the original vector items. Next, the algorithm creates PE, a
parameterized vector of size n (i.e., a vector that defines
parameters according to the values assigned while running
the quantum circuit), such that the items of PE are the coef-
ficients of H |y> multiplied by log,(e)~ 1.4427. As PE is a
parameterized vector, we applied a logarithm rotation and
achieved the following:
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The PE and W gates are described earlier in this section.
The proof of its correctness is detailed in Section 2.2.
Note that PE and W are circled (in Fig. 1) and defined
as an operation to satisfy the invertibility conditions.
The dashed lines describe the entry and exit of the qubits
from the superposition.
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| Notes
PE = log,(e)| log, VY 1.

Z?:[ Vi

I

Note that PE cannot be performed as stand-alone opera- )

tion since it does not represent a state vector. For that, let ’
W be a square and invertible diagonal matrix of size n, 3

where W;; holds |y> coefficients, and W; =0 for each i #;.
The method applies W on PE to calculate the multiplica-
tion of the state probabilities in their logarithm rotation
vector. At the end of the quantum circuit, the method

applies the unitary gate U(%,O,n’) on each qubit and 4
returns the output vector. Last, the method uses classical

computer computation to calculate the vector sum (i.e., the
total entropy of v).

We used the IBM simulators (with the Qiskit Library
for Python; Cross 2018) to avoid noise and to be able to
sample the state vector in each time phase in the circuit.
This differs from quantum computers as each observa-
tion/measure causes collapse of the quantum circuit.
Fig. 1 describes the quantum circuit over three qubits,
although generalization to a higher dimension can be
done with tensor products.

QunatumEntropyCircuit(?)
e Allocate |log, n| + 1 qubits
e [P > <« set¥ as initial state
e |[Y> <Hlp>

e Apply W gate on the current state
e Return the current state

e Apply PE(H|Y >) the parametric gate
e Apply logarithm rotation on PE (H |y >) and multiply in log,(e)

do

q1

qz

Fig. 1 The quantum circuit of entropy calculation
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Entropy(v)
o T«
e Forv,€Ev

Ji

’Z?:l vy

¢ R < QunatumEntropyCircuit (¥)
e Return ), cz|7]

o Ve7DU

2.2 Correctness

Let v=(v,v,,...,v,) be the input vector that represents the
occurrences of each item (i.e., each v,;€/NU {0} represents the
number of occurrences of the ith item). Let A be the normaliza-
tion constant. Applying the square root of each item in v, we get

(B -

i=1

Z?:] Vi Z” v

i=1"Vi

The method transforms v to an amplitude vector, denoted
Vi

\/ Z;'l:] Vi

as v, such that each v;€v is converted to . Therefore, it

satisfies the following:
V=AY
i=1

2

=3 2| St - g
i=1 v SZov Zov

Let |y> be the initialized state vector. The method set vto
the initial states and applies the U gate with the parameters
0= %, ¢ =0, A =z, which is equivalent to applying the
Hadamard gate to move the states into superposition. Thus,
the current quantum circuit is H|y>. Since the normaliza-
tion constant sums up to one, the coefficients of H|y> can
describe the probability of each state and have the form
\/E | i >, where p, is the probability of the ith item in the
computational basis.

Let PE be a parametric vector of size n (i.e., a vector that
defines parameters according to their values assigned while
running the quantum circuit), such that each PE; item is the
item of H|y> multiplied by log,(e)~ 1.4427. Thus,
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PE =log,(e) - H | v >

In quantum computing, the logarithms are in a natural
base (i.e., e) since all basic computations can be described
by polar coordinates. To multiply PE in log,(e), we con-
verted the calculations to base two (i.e., the binary base):

log,(a)
log,(e)

log.(a) = < log,(a) = log,(e) - log.(a)

Therefore, PE is a vector that represents the logarithm of
the state coefficients (i.e., the probabilities):

I
PE = log,(e) loge< VY >

m
i=1"

i

Let W be a diagonal gate of size n, including all p; ele-
ments (i.e., the square coefficients of y>):

Vi
I vi 0 0
v
W= Xy i
0 0 0
0 0 0 =
i

Applying W (PE) returns a vector of size n, in which
each element represents the multiplication of the W diagonal
in the logarithm parametric vector. Last, applying H again
yields

W.-(PE)-H=W-log,(e)-H|w>H
Given that HH =1, we get an output of
W .log,(e) - H |y >H=

= W -logy(e) | y >=

= logy(e) - W- |y >

where W- |y> is the multiplication of the state probabilities
in the current state (i.e., the logarithm rotation) and log,(e)
normalized the result into base two.

3 Case study

This section presents the case study and experiments of the
entropy calculation using our method compared to classi-
cal computer computation. Each experiment was simulated
using an IBM simulator with 1024 shots. In cases based on
the state vector of the quantum circuit, we used the state
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achieved by most of the shots. For the demonstration’s sim-
plification, we first describe a simple use case of entropy
calculation of a numerical vector and detail each state
and operation in the quantum circuit. Then, we present an
entropy calculation of a given text.

3.1 Simple occurrences vector

Let v=[4,3, 1, 6] be the vector of occurrences of size four,
such that the first item appeared four times, the second item
appeared three times, and so on. The classical computer
computation for entropy yielded

2 2 3 3 1 1 3 3
o) - 3 o 3) - o) 1.
7oel7) ~gloelg) ~ el ) —Flel7) = 1788
The quantum circuit converted v into an amplitude vector
v, such that each v;Ev was assigned to _v* . Applying the
X
Hadamard gate and pushing v into the superposition yielded
a state vector |y> of
V14 V42 Vi V21
7

4
= 2T 01> +~—— | 1 X1

| w > |00>+14|0 >+14|0>+7 [ 11 >

Next, the method created PE, the parameterize vector

equal to the logarithm rotation of [y> multiplied in log,(e):

—1.807i

—2.222i
—3.807i
—1.222i

PE(ly >) =

Since PE(ly>) is a parameterized vector, we multiplied
it by the diagonal matrix W to ensure an invertible state
operation:

0285 0 0 0
0 0215 O 0
0 0 0072 0
0 0 0 0428

W =

0285 O 0 0 —1.807
0 0215 O 0 —2.222
0 0 0072 O —3.807
0 0 0 0428 —1.222

Last, the classical computer computed the absolute sum
value of the matrix, which represented the total entropy
observed:

0.515+4+0.477+40.275 4+ 0.523 = 1.788

The error (i.e., difference) between both outputs is
3.2e—21, indicating a high level of agreement between the
classic and quantum computations.

3.2 Entropy of text

For the demonstration of our method on text, we used the infor-
mation presented in Section 1 of this work (i.e., “Introduction
and related work’). We preprocessed the text and converted it
into an array of occurrences, where the first item was the num-
ber of “a” occurrences, the second item was “b”, and so on. As
an input vector, we received a vector of size 24 with an entropy
of 4.155, calculated by classical computer computation.

First, for the quantum circuit, we added eight zero val-
ues to ensure the input had a size that was to the power
of two (i.e., 32) and then applied the Hadamard gate and
pushed it into superposition. It yielded a state vector |y>
of size 32; hence, |y> coefficients represented the prob-
abilities of each input element. Next, the quantum circuit
used the parametric vector and the diagonal gate to per-
form a logarithm rotation of the input vector. In this case,
the output of the quantum circuit was a vector of size 32,
representing all sub-multiplications of probability in its
logarithm. The quantum calculation output was similar
to the classical computer computation and presented an
entropy of 4.155 after 1024 shots.

To understand the level of agreement between the
two methods, we examined the differences between the
computed values. The error (i.e., the difference) was
8.8e—16, which is relatively low for the input of such a
long text. The significant difference was that the quan-
tum circuit performed three operations to achieve the
desired entropy, which was faster than the classical com-
puter computation.

~0.285 - 1.807i ~0.515i
| —0215-2222i | | —0477i
—0.072 - 3.807i —0.275i
—0.428 - 1.222i ~0.523i

4 Analysis

This section provides a comparison and analysis between
the proposed method and other existing methods for

calculating entropy. First, we describe the methods we
used for the comparison. Then, we present the results of
our method over four types of input.
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4.1 Entropy calculation methods

We examined the following methods to demonstrate the
results:

1. Shannon entropy (Shannon 1948)—given a random vari-

able X, which takes values of {x,x,,...,x,,} under sample
space €2, the Shannon entropy, denoted as H (X), is defined
by

Hy(X) ==Y p(x;) -log, (p(x;))

x;€X

2. von Neumann entropy (Von Neumann 1955; Nielsen and
Chuang 2010)—Tlet p be the density matrix of a quantum
state. The following are two equivalent approaches to
calculating the von Neumann entropy, denoted as S(p):

a. Assuming that ||p—I|| < 1, where [ is the identity
matrix, then the following power series is conver-
gent and defines the logarithm of p:

log (p) = Z( 0 =) = 1v(p- o, )

b. Let {4,,...,4;} be the set of eigenvalues of the matrix p.
Then, the von Neumann entropy can also be defined as

k
= 4 log, (4
i=1

S(p) =

To demonstrate the equivalence of both approaches, let p
be the density matrix of the quantum state, such as

)
6

On the one hand, the eigenvalues of p are 1,=0.872,
4,=0.127. By applying the second approach to calculate
the von Neumann entropy, the following is obtained:

k
Z s logz(ﬂ
i=1

On the other hand, a logarithm base conversion must be
used to acquire the appropriate base:

I1><1I+ 2 j0)(0l = (

AN =N 0

S(p) = — ) =0.55

(—0.237 0.430
log, (p)

log,(p) =

log,(2) B log,(2)

0.430 —1.959> <

Table 1 Comparison of the proposed method to the Shannon entropy
and von Neumann Entropy

Quantum entropy Shannon entropy von
Neumann
entropy
Input A 1.788 1.788 1.779
Input B 4.155 4.156 4.423
Input C 4.680 4.679 4.669
Input D 3.313 3.318 3.331

Thus, the von Neumann entropy is

—0.182 0.046
S(p) = <

~Tr(p - loga(p)) = 0.046 —0.367 > =055

4.2 Results

For the analysis of our method, Table 1 presents the com-
parison to other existing methods over the following inputs:

1. Input A—a simple occurrence vector, as described in
Section 3.1

2. Input B—a text, as described in Section 3.2

3. Input C—a randomized text of size 5000 consisting of
uppercase and lowercase letters

4. Input D—a randomized text of size 1000 consisting of
digits only

As demonstrated in Table 1, all the entropy calcula-
tion methods obtained results in an (almost) identical
range without extreme anomalies or noises. The dif-
ferences between our method and the Shannon entropy
were minor. Therefore, it can be concluded that there
is an agreement between them. When comparing these
results to the von Neumann entropy, slightly more sig-
nificant deviations are obtained (e.g., a difference of
0.268 on input B). This difference might be due to
the different calculation methods or the noises cre-
ated throughout the 1024 simulations in the quantum
algorithm.

—0.343 0.620
0.620 —2.826
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5 Conclusions and discussion

This study proposes a novel quantum “black box” for
entropy calculation. The presented procedure is generic
and can be applied to information analyses, machine learn-
ing algorithms, and more. The method involves amplitude
encoding, a key component of quantum computing, repre-
senting a vector’s probability. Its main innovation is the use
of quantum computers to calculate entropy as a “black box”
without having to build quantum circuits or transform the
problem from classical to quantum computation. As a result,
this “black box” is accessible to those without a previous
understanding of quantum computing. The following are the
main conclusions:

1. Our method calculated the entropy of different data
types with the same precision as a classic computer.
The significant difference was the amplitude encoding,
which represents the dataset as a complete vector that
yields the probabilities of the input. Our method used
amplitude encoding for entropy estimation, although this
can be generalized to any measure based on stochastic
elements.

2. Our quantum “black box” has a fixed depth of three,
equivalent to the number of steps performed by the quan-
tum computer that runs the circuit. Circuit depth matters
because qubits have finite coherence time. Depth com-
plexity is not independent of gate complexity because a
circuit with many gates is also likely to have considerable
depth. Thus, circuit depth can increase due to both the
algorithm’s structure and the physical limitations of the
hardware. When comparing it to classical computer com-
putation, our method does not depend on the input size
since it is based on amplitude encoding, which encodes
the input as a single state of the quantum circuit.

This study presented two main issues that must be
addressed in future studies. First, we tested our method using
the IBM simulator to avoid noise and to be able to sam-
ple a state vector without collapsing the circuit. Since this
study was designed to find a method for entropy calculation
in quantum computing, future studies should examine the
implementation and evaluation of our method using a quan-
tum computer. Second, besides entropy, many “black boxes”
can help build and maintain learning algorithms, such as
information gain, weighted and conditional entropy, and
distance metrics. Future studies should focus on developing
those “boxes” to make quantum computing more accessible.
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