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Abstract
A significant part of global quantum computing research has been conducted based on quantum mechanics, which can now 
be used with quantum computers. However, designing a quantum algorithm requires a deep understanding of quantum 
mechanics and physics procedures. This work presents a generic quantum “black box” for entropy calculation. It does not 
depend on the data type and can be applied to building and maintaining machine learning models. The method has two main 
advantages. First, it is accessible to those without preliminary knowledge of quantum computing. Second, it is based on the 
quantum circuit with a constant depth of three, which is equivalent to three operations the circuit would perform to achieve 
the same result. We implemented our method using the IBM simulator and tested it over different types of input. The results 
showed a high correspondence between the classical and quantum computations that raised an error of up to 8.8e−16 for 
different lengths and types of information.

Keywords  Entropy · Quantum computing · Information retrieval

1 � Introduction and related work

Quantum computing (QC) is one of the most promising 
fields in computation and has taken an important place 
in international research (Ying 2010). QC is based on the 
physics theorem, which assumes that an electron can behave 
simultaneously as a wave and a particle (Robertson 1943). 
However, there are some difficulties in building and main-
taining the superposition of quantum computers due to the 
sensitivity of the computers to noise and decoherence (Ben-
nett et al. 1997; De Wolf 2019). Some technology companies 
have quantum computers and have invested in developing 
this field (Zeng et al. 2017). Throughout the years, argu-
ments on the advantages and disadvantages of QC have been 
raised and are still discussed today (Boyer et al. 1998; De 
Wolf 2019).

A few QC algorithms have been developed throughout 
the years to answer different problems. Grover’s algorithm 
is one example, which was developed to solve the problem 
of finding a value in an unsorted array (Lavor et al. 2003; 
Leuenberger and Loss 2003). An additional significant algo-
rithm is Shor’s algorithm. Shor’s algorithm was discovered 
in 1994 and proposes a solution for integer factorization. 
Shor used the advantages of QC to solve a problem in pol-
ynomial time, rather than exponential time in a classical 
computer (Hayward 2008). Theoretically, Shor’s algorithm 
breaks public-key cryptography schemes like the widely 
used Rivest–Shamir–Adleman (RSA) scheme. The RSA is 
a public-key cryptosystem used for secure data transmission 
and is based on the assumption that factoring large integers 
is computationally intractable (Milanov 2009). Therefore, it 
may be feasible to defeat RSA by constructing and maintain-
ing a large quantum computer (Thombre and Jajodia 2021).

As mentioned above, quantum computers significantly 
decrease computing complexity. Therefore, they can perform 
wider operations than classical computers in parallel processes 
(Biamonte et al. 2017; Wiebe 2020). However, algorithms 
can use a combination of classical computers and quantum 
computers and are not exclusive to one type of computer or 
the other (Buffoni and Caruso 2021). Thus, the combination 
of QC and classical computing yields a young but rapidly 
growing field, quantum machine learning (QML). Generally, 
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transforming a classical machine learning algorithm into QC 
requires implementing the logic of the classical machine 
learning algorithm with circuits composed of quantum gates 
(Benedetti et al. 2019; Alchieri et al. 2021). Recently, studies 
have presented quantum algorithms for learning random vari-
ables (González et al. 2022; Pirhooshyaran and Terlaky 2021), 
building a quantum convolutional network to learn images 
(Hur et al. 2022; Tüysüz et al. 2021), developing generative 
adversarial networks (GANs) and transfer learning (Assouel 
et al. 2022; Azevedo et al. 2022; Zoufal et al. 2021), and rein-
forcement learning implementation (Dalla et al. 2022).

In physics, entropy is essential for describing uncer-
tainty in the state of matter (Bein 2006). In recent years, 
the concept of entropy has become increasingly important 
in the theory of information with the development of infor-
mation technology. Thus, information can be quantified 
by measuring the amount of data in events, random vari-
ables, and distributions (Wehrl 1978). At the same time, 
probabilities are used to quantify information, which is 
why information theory is related to probability theory. 
Furthermore, information measurements are widely used 
in artificial intelligence and machine learning, such as in 
constructing decision trees and optimizing classifier mod-
els (Kapur and Kesavan 1992). As such, there is a signifi-
cant relationship between information theory and machine 
learning, and a practitioner must be familiar with some of 
the basic concepts from the field (Huang et al. 2022; Liu 
et al. 2022). Relatedly, in data mining and machine learn-
ing, entropy represents a model’s degree of unpredictabil-
ity or impurity. Therefore, if it is easier to draw a valuable 
conclusion from a piece of information, then the entropy 
will be lower. On the other hand, if the entropy is higher, 
it will be more challenging to make conclusions based on 
that information (Kaufmann et al. 2020; Kaufmann and 
Vecchio et al. 2020).

This work presents a quantum “black box” for entropy 
calculation. It is a generic procedure, regardless of data 
type, and can be applied for information analysis, ML 
algorithms, and more. Section 2 describes the procedure’s 
correctness and general implementation using quantum 
logic circuits. The central innovative aspect of this method 
is to allow users without any background in QC to utilize 
the capabilities of a quantum computer for their specific 
needs without the need to build the quantum circuits and 
transform the problem from classical to quantum compu-
tation. Therefore, this “black box” is accessible to those 
without preliminary knowledge of QC. Moreover, our 
quantum “black box” has a fixed depth of three, equiva-
lent to the number of steps done by the quantum computer 
that runs the circuit. Comparing it to classical computer 
computation, it does not depend on the input size as it is 
based on amplitude encoding, which encodes the input as 
a single state of the quantum circuit. Section 3 presents a 

case study that compares our method to classical computer 
results. Section 4 describes the main conclusions and sug-
gestions for future research.

2 � Quantum entropy “black box”

This section presents and describes a new method for quan-
tum entropy calculation. It is aimed at making QC accessible 
and enables entropy calculation using quantum computers. 
The method assumes that the state vector (in a single time 
phase) includes the probability that the circuit will end in 
a specific state. First, we will describe the method and its 
procedure. Then, we will present the implementation and 
correctness of the method.

2.1 � Quantum logic and gates

Let v = (v1, v2, …, vn) be the input vector that represents the 
occurrences of each item (i.e., each vi ∈ ℕ ∪ {0} represents 
the number of occurrences of the ith item). To begin, the 
algorithm transforms v to an amplitude encoding by concat-
enating all n items into a single amplitude vector. Let 

∼
v be 

the amplitude vector, such that |||
∼
v
|||
2

= 1 . The normalization 
constant, denoted as Ã , satisfies

The input vector can be represented in the computational 
basis as 

∼
v =

∑n

i=1

√
vi ∣ i > . Since a quantum system of n 

qubits provides 2n amplitudes, encoding 
∼
v requires the use 

of ⌊log2n⌋ + 1 qubits. It is important to note that in cases 
where the length of 

∼
v is not to the power of two, zeros were 

added as their values do not change the entropy calculation.
Next, the algorithm creates a quantum circuit using 

⌊log2n⌋ + 1 qubits, initializes the states by 
∼
v elements, and 

applies the unitary gate U
(

�

2
, 0,�

)
 on each qubit (equivalent 

to the Hadamard gate) to transform it into superposition. The 
vector is presented as an amplitude encoding; thus, each 
state holds the probability of the input item. Let ∣ψ> be the 
state vector achieved in this time phase. Thus, ∣ψ> is a vector 
of size n and represents the complex form probabilities of 
the original vector items. Next, the algorithm creates PE, a 
parameterized vector of size n (i.e., a vector that defines 
parameters according to the values assigned while running 
the quantum circuit), such that the items of PE are the coef-
ficients of H ∣ ψ> multiplied by log2(e) ≈ 1.4427. As PE is a 
parameterized vector, we applied a logarithm rotation and 
achieved the following:

Ã =
1�∑n

i=1
v
i
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Note that PE cannot be performed as stand-alone opera-
tion since it does not represent a state vector. For that, let 
W be a square and invertible diagonal matrix of size n, 
where Wii holds ∣ψ> coefficients, and Wij = 0 for each i ≠ j. 
The method applies W on PE to calculate the multiplica-
tion of the state probabilities in their logarithm rotation 
vector. At the end of the quantum circuit, the method 
applies the unitary gate U

(
�

2
, 0,�

)
 on each qubit and 

returns the output vector. Last, the method uses classical 
computer computation to calculate the vector sum (i.e., the 
total entropy of 

∼
v).

PE = log2(e)

⎡
⎢⎢⎢⎢⎣

∣

loge

� √
vi√∑n

i=1
vi

�

∣

⎤
⎥⎥⎥⎥⎦

Notes

1.	 The PE and W gates are described earlier in this section. 
The proof of its correctness is detailed in Section 2.2. 
Note that PE and W are circled (in Fig. 1) and defined 
as an operation to satisfy the invertibility conditions.

2.	 The dashed lines describe the entry and exit of the qubits 
from the superposition.

3.	 We used the IBM simulators (with the Qiskit Library 
for Python; Cross 2018) to avoid noise and to be able to 
sample the state vector in each time phase in the circuit. 
This differs from quantum computers as each observa-
tion/measure causes collapse of the quantum circuit.

4.	 Fig. 1 describes the quantum circuit over three qubits, 
although generalization to a higher dimension can be 
done with tensor products.

Fig. 1   The quantum circuit of entropy calculation
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2.2 � Correctness
Let v = (v1, v2, …, vn) be the input vector that represents the 
occurrences of each item (i.e., each vi ∈ ℕ ∪ {0} represents the 
number of occurrences of the ith item). Let Ã be the normaliza-
tion constant. Applying the square root of each item in v, we get

The method transforms v to an amplitude vector, denoted 
as 

∼
v , such that each vi ∈ v is converted to 

√
vi√∑n

i=1
vi

 . Therefore, it 

satisfies the following:

Let ∣ψ> be the initialized state vector. The method set 
∼
v to 

the initial states and applies the U gate with the parameters 
� =

�

2
,� = 0, � = � , which is equivalent to applying the 

Hadamard gate to move the states into superposition. Thus, 
the current quantum circuit is H ∣ ψ>. Since the normaliza-
tion constant sums up to one, the coefficients of H ∣ ψ> can 
describe the probability of each state and have the form √
pi ∣ i > , where pi is the probability of the ith item in the 

computational basis.
Let PE be a parametric vector of size n (i.e., a vector that 

defines parameters according to their values assigned while 
running the quantum circuit), such that each PEi item is the 
item of H ∣ ψ> multiplied by log2(e) ≈ 1.4427. Thus,

�
n�
i=1

�√
v
i

�2
�
Ã
2 = 1

Ã
2 =

1∑n

i=1
v
i

Ã =
1�∑n

i=1
v
i

ṽ = Ã ⋅

n�
i=1

√
v
i

���
∼
v
���
2

=

n�
i=1

⎛⎜⎜⎜⎝

√
vi�∑n

i=1
vi

⎞⎟⎟⎟⎠

2

=

n�
i=1

vi∑n

i=1
vi

=

∑n

i=1
vi∑n

i=1
vi

= 1

In quantum computing, the logarithms are in a natural 
base (i.e., e) since all basic computations can be described 
by polar coordinates. To multiply PE in log2(e), we con-
verted the calculations to base two (i.e., the binary base):

Therefore, PE is a vector that represents the logarithm of 
the state coefficients (i.e., the probabilities):

Let W be a diagonal gate of size n, including all pi ele-
ments (i.e., the square coefficients of ψ>):

Applying W · (PE) returns a vector of size n, in which 
each element represents the multiplication of the W diagonal 
in the logarithm parametric vector. Last, applying H again 
yields

Given that HH = I, we get an output of

where W ·  ∣ ψ> is the multiplication of the state probabilities 
in the current state (i.e., the logarithm rotation) and log2(e) 
normalized the result into base two.

3 � Case study

This section presents the case study and experiments of the 
entropy calculation using our method compared to classi-
cal computer computation. Each experiment was simulated 
using an IBM simulator with 1024 shots. In cases based on 
the state vector of the quantum circuit, we used the state 

PE = log2(e) ⋅ H ∣ 𝜓 >

loge(a) =
log2(a)

log2(e)
⟺ log2(a) = log2(e) ⋅ loge(a)

PE = log2(e)

⎡
⎢⎢⎢⎢⎣

∣

loge

� √
vi√∑n

i=1
vi

�

∣

⎤
⎥⎥⎥⎥⎦

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

v1∑n

i=1
vi

0 ⋯ 0

⋮

v2∑n

i=1
vi

⋱ ⋮

0 0 ⋯ 0

0 0 0
vn∑n

i=1
vi

⎞⎟⎟⎟⎟⎟⎟⎟⎠

W ⋅ (PE) ⋅ H = W ⋅ log2(e) ⋅ H ∣ 𝜓 > H

W ⋅ log2(e) ⋅ H ∣ 𝜓 > H =

= W ⋅ log2(e)⋅ ∣ 𝜓 >=

= log2(e) ⋅W⋅ ∣ 𝜓 >
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achieved by most of the shots. For the demonstration’s sim-
plification, we first describe a simple use case of entropy 
calculation of a numerical vector and detail each state 
and operation in the quantum circuit. Then, we present an 
entropy calculation of a given text.

3.1 � Simple occurrences vector

Let v = [4, 3, 1, 6] be the vector of occurrences of size four, 
such that the first item appeared four times, the second item 
appeared three times, and so on. The classical computer 
computation for entropy yielded

The quantum circuit converted v into an amplitude vector 
∼
v , such that each vi ∈ v was assigned to √

vi√∑n

i=1
vi

 . Applying the 

Hadamard gate and pushing 
∼
v into the superposition yielded 

a state vector ∣ψ> of

Next, the method created PE, the parameterize vector 
equal to the logarithm rotation of ∣ψ> multiplied in log2(e):

Since PE(| ψ>) is a parameterized vector, we multiplied 
it by the diagonal matrix W to ensure an invertible state 
operation:

−
2

7
log2

(
2

7

)
−

3

14
log2

(
3

14

)
−

1

14
log2

(
1

14

)
−

3

7
log2

(
3

7

)
= 1.788

∣ 𝜓 > =

√
14

7
∣ 00 > +

√
42

14
∣ 01 > +

√
14

14
∣ 10 > +

√
21

7
∣ 11 >

PE(�𝜓 >) =

⎛⎜⎜⎜⎝

−1.807i

− 2.222i

− 3.807i

− 1.222i

⎞⎟⎟⎟⎠

W =

⎛⎜⎜⎜⎝

0.285 0 0 0

0 0.215 0 0

0 0 0.072 0

0 0 0 0.428

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

0.285 0 0 0

0 0.215 0 0

0 0 0.072 0

0 0 0 0.428

⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝

−1.807

− 2.222

− 3.807

− 1.222

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

−0.285 ⋅ 1.807i

− 0.215 ⋅ 2.222i

− 0.072 ⋅ 3.807i

− 0.428 ⋅ 1.222i

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

−0.515i

− 0.477i

− 0.275i

− 0.523i

⎞⎟⎟⎟⎠

Last, the classical computer computed the absolute sum 
value of the matrix, which represented the total entropy 
observed:

The error (i.e., difference) between both outputs is 
3.2e−21, indicating a high level of agreement between the 
classic and quantum computations.

3.2 � Entropy of text

For the demonstration of our method on text, we used the infor-
mation presented in Section 1 of this work (i.e., “Introduction 
and related work”). We preprocessed the text and converted it 
into an array of occurrences, where the first item was the num-
ber of “a” occurrences, the second item was “b”, and so on. As 
an input vector, we received a vector of size 24 with an entropy 
of 4.155, calculated by classical computer computation.

First, for the quantum circuit, we added eight zero val-
ues to ensure the input had a size that was to the power 
of two (i.e., 32) and then applied the Hadamard gate and 
pushed it into superposition. It yielded a state vector ∣ψ> 
of size 32; hence, ∣ψ> coefficients represented the prob-
abilities of each input element. Next, the quantum circuit 
used the parametric vector and the diagonal gate to per-
form a logarithm rotation of the input vector. In this case, 
the output of the quantum circuit was a vector of size 32, 
representing all sub-multiplications of probability in its 
logarithm. The quantum calculation output was similar 
to the classical computer computation and presented an 
entropy of 4.155 after 1024 shots.

To understand the level of agreement between the 
two methods, we examined the differences between the 
computed values. The error (i.e., the difference) was 
8.8e−16, which is relatively low for the input of such a 
long text. The significant difference was that the quan-
tum circuit performed three operations to achieve the 
desired entropy, which was faster than the classical com-
puter computation.

0.515 + 0.477 + 0.275 + 0.523 = 1.788

4 � Analysis

This section provides a comparison and analysis between 
the proposed method and other existing methods for 

calculating entropy. First, we describe the methods we 
used for the comparison. Then, we present the results of 
our method over four types of input.
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4.1 � Entropy calculation methods

We examined the following methods to demonstrate the 
results:

1.	 Shannon entropy (Shannon 1948)—given a random vari-
able X, which takes values of {x1, x2, …, xm} under sample 
space Ω, the Shannon entropy, denoted as HS(X), is defined 
by

2.	 von Neumann entropy (Von Neumann 1955; Nielsen and 
Chuang 2010)—let ρ be the density matrix of a quantum 
state. The following are two equivalent approaches to 
calculating the von Neumann entropy, denoted as S(ρ):

a.	 Assuming that ‖ρ − I‖ < 1, where I is the identity 
matrix, then the following power series is conver-
gent and defines the logarithm of ρ:

b.	 Let {λ1, …, λk} be the set of eigenvalues of the matrix ρ. 
Then, the von Neumann entropy can also be defined as

To demonstrate the equivalence of both approaches, let ρ 
be the density matrix of the quantum state, such as

On the one hand, the eigenvalues of ρ are λ1 = 0.872, 
λ2 = 0.127. By applying the second approach to calculate 
the von Neumann entropy, the following is obtained:

On the other hand, a logarithm base conversion must be 
used to acquire the appropriate base:

HS(X) = −
∑
xi∈X

p
(
xi
)
⋅ log2

(
p
(
xi
))

log (�) =

∞∑
k=1

(−1)k+1
(� − I)k

k
S(�) = −Tr

(
� ⋅ log2 (�)

)

S(�) = −

k∑
i=1

�i ⋅ log2
(
�i
)

� =

1

3
�1⟩⟨1� + 2

3
�0⟩⟨0� =

�
5

6

1

6
1

6

1

6

�

S(�) = −

k∑
i=1

�i ⋅ log2
(
�i
)
= 0.55

log2(�) =
log

e
(�)

log
e
(2)

=

(
−0.237 0.430

0.430 −1.959

)

log
e
(2)

=

(
−0.343 0.620

0.620 −2.826

)

Thus, the von Neumann entropy is

4.2 � Results

For the analysis of our method, Table 1 presents the com-
parison to other existing methods over the following inputs:

1.	 Input A—a simple occurrence vector, as described in 
Section 3.1

2.	 Input B—a text, as described in Section 3.2
3.	 Input C—a randomized text of size 5000 consisting of 

uppercase and lowercase letters
4.	 Input D—a randomized text of size 1000 consisting of 

digits only

As demonstrated in Table 1, all the entropy calcula-
tion methods obtained results in an (almost) identical 
range without extreme anomalies or noises. The dif-
ferences between our method and the Shannon entropy 
were minor. Therefore, it can be concluded that there 
is an agreement between them. When comparing these 
results to the von Neumann entropy, slightly more sig-
nificant deviations are obtained (e.g., a difference of 
0.268 on input B). This difference might be due to 
the different calculation methods or the noises cre-
ated throughout the 1024 simulations in the quantum 
algorithm.

S(�) = −Tr
(
� ⋅ log2(�)

)
= −Tr

(
−0.182 0.046

0.046 −0.367

)
= 0.55

Table 1   Comparison of the proposed method to the Shannon entropy 
and von Neumann Entropy

Quantum entropy Shannon entropy von 
Neumann 
entropy

Input A 1.788 1.788 1.779
Input B 4.155 4.156 4.423
Input C 4.680 4.679 4.669
Input D 3.313 3.318 3.331
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5 � Conclusions and discussion

This study proposes a novel quantum “black box” for 
entropy calculation. The presented procedure is generic 
and can be applied to information analyses, machine learn-
ing algorithms, and more. The method involves amplitude 
encoding, a key component of quantum computing, repre-
senting a vector’s probability. Its main innovation is the use 
of quantum computers to calculate entropy as a “black box” 
without having to build quantum circuits or transform the 
problem from classical to quantum computation. As a result, 
this “black box” is accessible to those without a previous 
understanding of quantum computing. The following are the 
main conclusions:

1.	 Our method calculated the entropy of different data 
types with the same precision as a classic computer. 
The significant difference was the amplitude encoding, 
which represents the dataset as a complete vector that 
yields the probabilities of the input. Our method used 
amplitude encoding for entropy estimation, although this 
can be generalized to any measure based on stochastic 
elements.

2.	 Our quantum “black box” has a fixed depth of three, 
equivalent to the number of steps performed by the quan-
tum computer that runs the circuit. Circuit depth matters 
because qubits have finite coherence time. Depth com-
plexity is not independent of gate complexity because a 
circuit with many gates is also likely to have considerable 
depth. Thus, circuit depth can increase due to both the 
algorithm’s structure and the physical limitations of the 
hardware. When comparing it to classical computer com-
putation, our method does not depend on the input size 
since it is based on amplitude encoding, which encodes 
the input as a single state of the quantum circuit.

This study presented two main issues that must be 
addressed in future studies. First, we tested our method using 
the IBM simulator to avoid noise and to be able to sam-
ple a state vector without collapsing the circuit. Since this 
study was designed to find a method for entropy calculation 
in quantum computing, future studies should examine the 
implementation and evaluation of our method using a quan-
tum computer. Second, besides entropy, many “black boxes” 
can help build and maintain learning algorithms, such as 
information gain, weighted and conditional entropy, and 
distance metrics. Future studies should focus on developing 
those “boxes” to make quantum computing more accessible.
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