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We present a full ab-initio calculation of the masses of the nucleon and other light hadrons, 
using lattice calculations. In our 2+1 flavor analysis, pion masses down to 190 MeV are used 
to extrapolate to the physical point with lattice sizes of approximately four times the inverse 
pion mass. Three lattice spacings are used for a continuum extrapolation. All systematics are 
controlled. Our results completely agree with experimental observations. 

QCD is asymptotically free, at high energies the interaction gets weaker and weaker1' 
enabling perturbative calculations based on a small coupling parameter (e.g. for at least ten · 

a hundred times higher energies than the mass of the proton) . Much less is known about ti 
other side: when the coupling gets large, and the physics becomes non-perturbative. The ma 
generation of hadrons belongs to these non-perturbative phenomena. This presentation is bas1 
on the detailed hadron spectrum study of the Budapest-Marseille-Wuppertal Collaboratioril . 

Before we study the question in more detail it is illustrative to summarize the most impo 
tant qualitative features of the hadron mass generation. In the early universe the temperatu 
(T) was very high. There was a smooth transition4 between a high T phase dominated 1 
quarks and gluons and a low T phase dominated by hadrons .. In the high T phase the hi! 
temperature was manifested by motion. The motion was diluted by the expansion of the ear 
universe. Nevertheless a small fraction of this motion remained with us confined in protons. 1 
a consequence the kinetic energy inside the proton is observed as the mass of the particle. 

After this illustration let us discuss the systematic field theoretical approach. 
To explore QCD in the non-perturbative regime, the most systematic technique is to discret. 

the QCD Lagrangian on a hypercubic space-time lattice with spacing a, to evaluate its Greer 
functions numerically and to extrapolate the resulting observables to the continuum (a ---> 0) .  
convenient way to carry out this discretization is to place the fermionic variables on the sites 
the lattice, whereas the gauge fields are treated as 3 x 3 matrices connecting these sites. In tl  
sense, lattice QCD is a classical four-dimensional statistical physics system. 

In order to be able to resolve the structure of the proton the lattice has to be fine enoug 
Typically 0 . 1  fm is used for that purpose. The lattices have about 50 points in each directim 
Since at each lattice points we have dozens of variables the numerical treatment of such a systE 
is quite difficult, mathematically it corresponds to a one billion dimensional integral . 

The first step is to generate vacuum configurations. For the classical theory the vacut 
i;; just a trivial configuration with vanishing field strengths. In the quantum theory, howev1 
the vacuum is fluctuating around this clas;;ical configuration. Typically a few hundred of the 
configurations are enough to calculate various observables with a few percent accuracy. 



ror many years calculations were performed using the quenched approximation, which as­
;umes that the fermion determinant (obtained after integrating over the quark fields) is inde­
}endent of the gauge field. Although this approach omits the most CPU-demanding part of 
t full QCD calculation , a thorough determination of the quenched spectrum took almost 20 
rears. It was shown6 that the quenched theory agreed with the experimental spectrum to ap­
)roximately 10 percent for typical hadron masses and demonstrated that systematic differences 
verc observed between quenched and two flavor QCD beyond that level of precision6•7 . 

Including the effects of the light sea-quarks has dramatically improved the agreement between 
�xperiment and QCD results. Several works appeared in the literature, which included these 
ca-quark effects also in the light hadron spectrum. Efforts are being made to calculate (part of) 
he QCD spectrum with 2+ 1 flavor staggered quarkS' , with non-perturbatively O (a)-improved 
i\Tilson quark,,9•10 with almost physically light quark masses (albeit in small volumes at one 
ingle lattice spacing 11 ) ,  with domain wall fermiomP or domain wall fermions on staggered 
onfiguratiomi13 . There are also two flavor calculations using unimproved, O (a)-improved14 and 
wisted-mass Wilson fermions1-5 and overlap quarks1-6 . 
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igure 1 :  Effective masses aM=log[C(t/a) /C(t/a + l)],  where C(t/a) is the correlator at time t, for 7r, K, N, 3 
1d !1 at our lightest simulation point with Mn ""l90 MeV (a "" 0.085 fm with physical strage quark mass) . The 
xizontal lines indicate the masses extracted form the correlators by using single mass correlated cosh/sinh fits. 

However, all of these studies have neglected one or more of the ingredients required for a 
ill and controlled calculation. The five most important of those are: 

a. The inclusion of the u, d and s quarks to the fermion determinant with an exact algorithm 
1d with an action, whose universality class is QCD. For the light-hadron spectrum, the effects 
· the heavier c, b and t quarks are inGlUded in the coupling constant and light quark masses. 

b. A complete determination of the masses of the light ground state mesons, octet and 
�cuplet baryons. Three of these are used to fix the masses of the isospin averaged light (mud) 
id strange (ms ) quark masses and the overall scale in physical units. 

c. Large volumes to guarantee small finite-size effects and at least one simulation at a 
gnificantly larger volume to c�nfirm the smallness of these effects. In large volumes, finite­
�e corrections to the spectrum are exponentially smal117• 18 . As a conservative rule of thumb 
rrrL�4, with Mrr the pion mass and L the lattice size, guarantees that finite-volume errors in 
.e spectrum are around or below the percent level. Resonances require special care. Their 
iite volume behavior is more involved 19•20 . 

d. Controlled interpolations and extrapolations of the results to physical mud and ms (or 
entually simulating directly at these masses) .  While interpolatio�s in m8, corresponding to 
·K�495 MeV, are straightforward, the extrapolations for mud, corresponding to Mrr�135 MeV, 



are difficult. They need CPU-intensive calculations with Mrr reaching down to 200 MeV or les� 
e. Controlled extrapolations to the continuum limit, requiring that the calculations b 

performed at no less than three values of the lattice spacing, in order to guarantie that th 
scaling region is reached. 

The analysis presented in this paper includes all five ingredients listed above, thus providin 
a calculation of the light hadron spectrum with fully controlled systematics. 
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Figure 2: Pion mass dependence of the N and n for all three values of the lattice spacing. The scale in th 
case is set by Ms at the physical point. Triangles/dotted lines correspond to a�0. 125 fm, squares/dashed Jin• 
to a�0.085 fm and circles/solid lines to a�0.065 fm. The curves are the corresponding fits. The crosses are't] 
continuum extrapolated values in the physical pion mass limit. The lattice-spacing dependence of the results 
barely significant statistically despite the factor of 3 .7 separating the squares of the largest (a�0.125 fm) ar 

smallest (a�0.065 fm) lattice spacings. 

We choose a tree-level, O (a2 )-improved Symanzik gauge action21 and work with tree-levE 
clover-improved Wilson fermions, coupled to links which have undergone six levels of stout lin 
averaging22 .  (The precise form of the action is presented in ref.23. ) We perform a series of 2+ 
flavor simulations, that is we include degenerate u and d sea quarks and an additional s SE 
quark. We fix m8 to its approximate physical value. We vary mud in a range which extern 
down to 1'drr �190 MeV. 

To set the overall physical scale, any dimensionful observable can be used. Since both tl 
n and 3 are reasonable choices, we carry out two analyses, one with Mn (n set) and one wi1 
M=. (3 set) . We find that for all three lattice spacings both quantities give consistent results. 
determine the masses of the baryon octet (N, E, A, 3) and decuplet (�, E* ,  3* , n) and tho: 
members of the light pseudoscalar (7r ,  K) and vector meson (p, K*) octets which do not requi 
the calculation of disconnected propagators. Typical effective masses are shown in Figure 1 .  

Shifts in hadron masses due to  the finite size of the lattice are systematic effects. There a 
two different effects. The first type of volume dependence is related to virtual pion exchang 
The second type of volume dependence exists only for resonances. The coupling between ti 
resonance state and its decay products leads to a non-trivial level structure in finite volum 
The literature provides a conceptually satisfactory framework for these effects 19,20 . We toe 
both effects into account. 

Our three flavor scaling study3 showed that hadron masses deviate from their continuu 
values by less than approximately 1 percent for a lattice spacing upto a�0 . 125  fm. Since tl 
statistical errors of the hadron masses calculated in this paper are similar in size, we do n 
expect significant scaling violations here. This is confirmed by Figure 2. 

As indicated, we performed two separate analyses, setting the scale with M=. and Mn. Tl 
3 set is shown on Figure 3.  With both scale setting procedures we find that t he masses agr 



with the hadron spectrum observed in nature24 . 
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'igurc 3: The light hadron spectrum of QCD. Horizontal lines and bands are the experimental values with their 
ecay widths. Our results are shown by filled circles. Vertical error bars represent our combined statistical and 
vstematic error estimates. The n, K and 3 have no error bars, since they are used to set the light quark mass, 

the strange quark mass and the overall scale, respectively. 

Thus, our study strongly suggests that QCD is the theory of the strong interaction, also at 
)W energies, and furthermore that lattice studies have reached the stage where all systematic 
rrors can be fully controlled . 
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