



25 November, 1997  
(replaces DELPHI 91-90 PROG 177 and DELPHI 94-161 PROG 210)

---

# **Description of the DELANA Pilot Record and DST Content**

## **Version 3.40**

M. E. Pol<sup>1</sup>

---

<sup>1</sup>LAFEX/CBPF, Rio de Janeiro, Brasil

## Foreword

This description is purely technical, it is not a guide for users wanting to read a DST. Several programs exist in DELPHI for this purpose, with their corresponding descriptions.

Users should nevertheless be aware of some conventions used in this description:

- The bit numbering ranges from 1 to 32. This is the so-called offline convention, used here because it is the one of the CERNLIB routines (JBYT, SBYT, ...). It is not the worldwide standard convention followed by online people (numbering from 0 to 31).
- Some bitted words are stored in real numbers, in particular in the extra modules. The user should always use the function NINT to get the original word: IBITWD = NINT(WORD)
- Following DELPHI convention,  $\varphi$  indicates the azimuthal coordinate of a direction, and  $\phi$  the same for a position. It may happen sometimes that this convention is not followed, due to imprecisions in the original descriptions.

Suggestions or comments to Maria.Elena.Pol@cern.ch

# PILOT RECORD

The ZEBRA structure of the DELPHI event data contains a pilot record designed to have general information concerning the event, allowing a first filter. This pilot record consists of **blocklets** from different origins, containing data related to a given step of the processing. The pilot record only has **integer** data words.

## BLOCKLET STRUCTURE

A blocklet is a sequence of data words, preceded by three words:

- 1 Wordcount = NW
- 2 Blocklet identifier. The last 4 bits contain the identifier, the other bits can have error codes. Usually in the form (hexadecimal)  
0 0 0 0 F F 1 i  
, with i (from 0 to F) being the identifier
- 3 Blocklet sub-identifier

, and terminated by the same wordcount:

NW Wordcount = NW

This structure allows a fast scan of the blocklets, in forward and backward directions. Each blocklet contains NW-4 data words. The pilot record is a succession of blocklets, to which a last word **zero** is added: If we note a blocklet  $\langle BKL1 \rangle$ , the pilot record has the structure (for example with three blocklets):  
PILOT:  $\langle BKL1 \rangle, \langle BKL2 \rangle, \langle BKL3 \rangle, 0$   
The size of this pilot record is

$$NWP = NW1 + NW2 + NW3 + 1$$

where NW<sub>i</sub> is the size of the blocklet i.

## ACCESSING THE PILOT RECORD:

When using UX for reading the data, the pilot record is stored in the array **IUPILT** accessible through the routine **UXEVIN** which makes the input of the event in memory:

```
INTEGER NWPMAX,NWPILT,IUPILT
PARAMETER(NWPMAX=1024)
CALL VZERO(IUPILT,NWPMAX)
CALL UXEVIN(NWPMAX,NWPILT,IUPILT)
```

Thus, to access the word M of the blocklet with identifier ID, the typical code sequence would be:

```
*
      Start at the beginning of the pilot record
      IPP = 0
*
      Decode blocklet's header
10 NWCUR = IUPILT(IPP+1)
      IDCUR = JBYT(IUPILT(IPP+2),1,4)
      IF(IDCUR.EQ.ID) THEN
*
      Blocklet found, access the data
      IWRDM = IUPILT(IPP+M)
```

```

        GO TO 20
ENDIF
IPP = IPP + NWCUR
IF(IPP.GE.NWPILT) THEN
*               End of pilot record found , no such blocklet
GO TO ...
*               Look for next blocklet
IF(IUPILT(IPP+1).NE.0) GO TO 10
*               Blocklet not found
GO TO ...
*               Blocklet found
20 CONTINUE

```

### LIST OF BLOCKLETS

| Type | Name                    | Created by                |
|------|-------------------------|---------------------------|
| 0    | DAS                     | DAS                       |
| 8    | DANA                    | DELANA                    |
| 9    | DPHA                    | PXDST, (PHysics Analysis) |
| 11   | LUMI                    | SAT and VSAT              |
| 12   | TRIG                    | TRIGGER                   |
| 13   | DETECTORS SPECIAL INFO. | DELANA                    |
| 14   | LEP                     | DELANA                    |

*Note: the DJET blocklet (type 10) has been removed from the pilot record since DST version 3.01, and plugged into the DST structure.*

**DAS BLOCKLET**  
**TYPE 0**

|   |                |              |
|---|----------------|--------------|
| 1 | Wordcount      | (12)         |
| 2 | Identifier     | (\$00000000) |
| 3 | Sub-identifier | (0)          |

4 Type of record:

|    |              |
|----|--------------|
| 1  | Raw data     |
| 2  | Simulation   |
| 3  | Tanagra      |
| 4  | Intermediate |
| 5  | DST          |
| 11 | Start-of-Run |
| 21 | Continue_Run |
| 31 | Check_point  |
| 41 | Pause_Run    |
| 51 | End-of-Run   |
| 81 | Abort_Run    |

*This flag is set by the DAS to n\*100+Type in case of DAS transfer error, n being an error index*

|   |                                   |
|---|-----------------------------------|
| 5 | Experiment Number                 |
| 6 | Run number                        |
| 7 | File sequence number              |
| 8 | T2 (Trigger level 2) event number |
| 9 | Event number                      |

*This event number is the sequential number on the stream, and then depends on it.*

*The T2 number is the only absolute number.*

|    |            |                   |
|----|------------|-------------------|
| 10 | Event date | (Format 'yymmdd') |
| 11 | Event time | (Format 'hhmmss') |
| 12 | Wordcount  | (12)              |

## DANA BLOCKLET TYPE 8

|    |                                                                                                 |                    |
|----|-------------------------------------------------------------------------------------------------|--------------------|
| 1  | Wordcount                                                                                       | (57)               |
| 2  | Identifier                                                                                      | (\$0000FF18)       |
| 3  | Sub-identifier                                                                                  | (0)                |
| 4  | DAS status (bits)                                                                               |                    |
|    | Each bit set indicates which detector was in central partition.                                 |                    |
|    | The bit number correspond to software module (as in TANAGRA).                                   |                    |
| 5  | Reconstruction status (bits):                                                                   |                    |
|    | Each bit set indicates which detector/processor has been                                        |                    |
|    | processed in DELANA (i.e. was activated by the data cards).                                     |                    |
|    | The bit number correspond to software module (as in TANAGRA).                                   |                    |
| 6  | bits 0-15: Current number of $Z^0$ had. in the run                                              |                    |
|    | bits 16-31: Current number of bhabhas in the run                                                |                    |
| 7  | Atmospheric pressure in DELPHI ( B4 )                                                           | (mbar)             |
| 8  | X coordinate of primary vertex                                                                  | ( $\mu$ m)         |
| 9  | Y coordinate of primary vertex                                                                  | ( $\mu$ m)         |
| 10 | Z coordinate of primary vertex                                                                  | ( $\mu$ m)         |
| 11 | Event topology at primary vertex (packed bytes):<br>NNEUT//NGAMM//NNEGA//NPOSI                  |                    |
| 12 | Raw data size (number of words)                                                                 |                    |
| 13 | Energy in Centre of Mass from LEP (in MeV)                                                      |                    |
| 14 | Date of processing                                                                              | (Format 'yyymmdd') |
| 15 | Time of processing                                                                              | (Format 'hhmmss')  |
| 16 | Magnetic field measurement:<br>if bit 25 = 0 magnet power supply current<br>if bit 25 = 1 field | (Amps)<br>(Gauss)  |
| 17 | ITIMOD, time flag given by Outer Detector:                                                      |                    |
|    | -1              Unknown                                                                         |                    |
|    | 0              Event in time with BCO                                                           |                    |
|    | 1              Cosmic (not in time with BCO)                                                    |                    |
| 18 | DELANA tagging (bits) .                                                                         |                    |
|    | Starting at first bit =1,                                                                       |                    |
|    | 1      Hadronic $Z^0$                                                                           |                    |
|    | 2      Leptonic $Z^0$                                                                           |                    |
|    | 3      Ambiguous hadronic/leptonic $Z^0$                                                        |                    |
|    | 4      Cosmic or beam gas                                                                       |                    |
|    | 5      SAT/STC Bhabha                                                                           |                    |
|    | 6      Calibration (STP)                                                                        |                    |
|    | 7      Calorimetric energy                                                                      |                    |

*For calibration events (bit 6):*

- 11 Single electron (including low energy)
- 12 Compton tag for HPC
- 13 Track tag in barrel (2 prong event)
- 14 Electromagnetic tag in barrel (2 prong event)

- 15 Track tag forward (2 prong event)
- 16 Electromagnetic tag forward (2 prong event)

*Additional tags:*

- 17 Forward  $e^+/e^-$ , no tracks
- 18 additional tau-tau tag
- 19 'super' hadronic for team 4
- 20 team 3 tag from Delana
- 21 gg- ll with SAT/VSAT tag
- 22 gg- ll no forward tag
- 23 gg- ll MUB/MUS in ge 1 track
- 24 gg- ll HAC in ge 1 track
- 25 bit on if event fails gg filter
- 26 cancel gg tag for lep2 due to noise
- 19 Delana correction cradle date
- 20 ITIMOD, timing data from OD ( $T^0$  offset for cosmics)
- 21 LEP status
- 22 LEP collimators status
- 23 IFLOAD (bits); Indicate status of database and related informations. Bits start at 1:
  - 1 Database available
  - 2 Trigger Partition available
  - 3 Discrepancy in Fill number
  - 4 Discrepancy in LEP status
  - 5 Discrepancy in collimator status
  - 6 Ebeam taken from database
  - 7 Ebeam from first estimate in Trigger Partition
  - 8 Ebeam from final estimate in Trigger Partition
  - 9 Ebeam from data card
  - 10 Magnet current from database
  - 11 Magnet current from Trigger Partition
  - 12 Magnet current from data card
- 24 to 56 XSTAD(IDET) : Detectors Status words
  - Each detector gives a status as a bitted word :
  - bits 0-3 Status flag 1
  - bits 4-7 Status flag 2
  - bits 9-31 detector dependent user bits

The status word for detector IDET is given in the word 23+IDET, IDET being basically the TANAGRA index of the detector. But some unused IDET are filled by detectors needing several words:

|    | IDET | Detector |
|----|------|----------|
| 24 | 1    | MUB      |
| 25 | 2    | MUB      |
| 26 | 3    | VD       |
| 27 | 4    | ID       |
| 28 | 5    | TPC      |
| 29 | 6    | RIB      |
| 30 | 7    | Free     |
| 31 | 8    | OD       |
| 32 | 9    | HPC      |
| 33 | 10   | HPC      |
| 34 | 11   | TOF      |

|    |    |      |
|----|----|------|
| 35 | 12 | HAB  |
| 36 | 13 | HAB  |
| 37 | 14 | MUB  |
| 38 | 15 | MUB  |
| 39 | 16 | MUB  |
| 40 | 17 | MUB  |
| 41 | 18 | VSAT |
| 42 | 19 | HAC  |
| 43 | 20 | FCA  |
| 44 | 21 | RIF  |
| 45 | 22 | HAF  |
| 46 | 23 | SAT  |
| 47 | 24 | VSAT |
| 48 | 25 | FCB  |
| 49 | 26 | EMF  |
| 50 | 27 | FCB  |
| 51 | 28 | SAT  |
| 52 | 29 | HOF  |
| 53 | 30 | MUF  |
| 54 | 31 | VFT  |
| 55 | 32 | VFT  |
| 56 | 33 | MUS  |

57 Wordcount

(57)

**DANA BLOCKLET  
TYPE 8**

|   |                                                      |              |
|---|------------------------------------------------------|--------------|
| 1 | Wordcount                                            | (5)          |
| 2 | Identifier                                           | (\$0000FF18) |
| 3 | Sub-identifier                                       | (1)          |
| 4 | Delana processing identifier (format IFROMC('97D ')) |              |
| 5 | Wordcount                                            | (5)          |

## DPHA BLOCKLET TYPE 9

|     |                                                                                                                                                                                   |                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1   | Wordcount                                                                                                                                                                         | (43)                                                          |
| 2   | Identifier                                                                                                                                                                        | (\$0000FF19)                                                  |
| 3   | Sub-identifier                                                                                                                                                                    | (0)                                                           |
| 4   | Event type (bitted number)                                                                                                                                                        |                                                               |
| bit | 0                                                                                                                                                                                 | =1 if type is defined                                         |
|     | 1                                                                                                                                                                                 | =1 for background event                                       |
|     | 2                                                                                                                                                                                 | =1 for cosmic event                                           |
|     | 3                                                                                                                                                                                 | =1 for beam-gas interaction                                   |
|     | 4                                                                                                                                                                                 | =1 for $\gamma\gamma$ or 3 $\gamma$ candidate                 |
|     | 5                                                                                                                                                                                 | =1 for $\gamma\nu\bar{\nu}$ candidate                         |
|     | 6                                                                                                                                                                                 |                                                               |
|     | 7                                                                                                                                                                                 |                                                               |
|     | 8                                                                                                                                                                                 | =1 for $\mu^+\mu^-$ candidate                                 |
|     | 9                                                                                                                                                                                 | =1 for $e^+e^-$ candidate                                     |
|     | 10                                                                                                                                                                                | =1 for $\tau^+\tau^-$ candidate                               |
|     | 11                                                                                                                                                                                |                                                               |
|     | 12                                                                                                                                                                                |                                                               |
|     | 13                                                                                                                                                                                | =1 for $e^+e^-\gamma\gamma$ (2 photons interaction) candidate |
|     | 14                                                                                                                                                                                |                                                               |
|     | 15                                                                                                                                                                                |                                                               |
|     | 16                                                                                                                                                                                | =1 for $q\bar{q}$ candidate                                   |
|     | 17                                                                                                                                                                                | =1 for uubar or ddbar candidate                               |
|     | 18                                                                                                                                                                                | =1 for ssbar candidate                                        |
|     | 19                                                                                                                                                                                | =1 for ccbar candidate                                        |
|     | 20                                                                                                                                                                                | =1 for bbbar candidate                                        |
|     | 21                                                                                                                                                                                | =1 for ttbar candidate                                        |
|     | 22                                                                                                                                                                                |                                                               |
|     | 23                                                                                                                                                                                |                                                               |
|     | 24                                                                                                                                                                                | =1 for large missing energy event                             |
|     | 25                                                                                                                                                                                | =1 for large sphericity event                                 |
|     | 26                                                                                                                                                                                | =1 for high energy isolated $\gamma$ event                    |
|     | 27                                                                                                                                                                                | =1 for high energy isolated lepton event                      |
| 5   | Total reconstructed energy                                                                                                                                                        | (MeV)                                                         |
| 6   | Total reconstructed Px                                                                                                                                                            | (MeV/c)                                                       |
| 7   | Total reconstructed Py                                                                                                                                                            | (MeV/c)                                                       |
| 8   | Total reconstructed Pz                                                                                                                                                            | (MeV/c)                                                       |
| 9   | Sphericity                                                                                                                                                                        | (multiplied by 1000)                                          |
| 10  | Thrust                                                                                                                                                                            | (multiplied by 1000)                                          |
| 11  | Teams tagging word; The number of each bit set gives the team number of each team tagging the event ( <i>This word was not correct for DST produced from version 250 to 260</i> ) |                                                               |
| 12  | Number of charged tracks from a vertex at $R < 4.$ , $Z < 10.$                                                                                                                    |                                                               |
| 13  | Energy of charged tracks from a vertex at $R < 4.$ , $Z < 10.$                                                                                                                    |                                                               |
| 14  | Number of charged tracks from a vertex at $R > 4.$                                                                                                                                |                                                               |
| 15  | Energy of charged tracks from a vertex at $R > 4.$                                                                                                                                |                                                               |
| 16  | Number of charged tracks from a vertex at $R < 4.$ , $Z > 10.$                                                                                                                    |                                                               |
| 17  | Energy of charged tracks from a vertex at $R < 4.$ , $Z > 10.$                                                                                                                    |                                                               |
| 18  | Number of HPC showers associated with charged tracks                                                                                                                              |                                                               |
| 19  | Energy in HPC showers associated with charged tracks                                                                                                                              |                                                               |
| 20  | Number of neutral HPC showers identified as photon                                                                                                                                |                                                               |

- 21 Energy of neutral HPC showers identified as photon
- 22 Number of neutral HPC showers not identified as photon
- 23 Energy of neutral HPC showers not identified as photon
- 24 Number of HAC showers associated with charged tracks
- 25 Energy in HAC showers associated with charged tracks
- 26 Number of neutral HAC showers with  $E > 1$ . GeV
- 27 Total energy of neutral HAC showers with  $E > 1$ . GeV
- 28 Number of neutral HAC showers with  $E < 1$ . GeV
- 29 Total energy of neutral HAC showers with  $E < 1$ . GeV
- 30 Number of EMF showers associated with charged tracks
- 31 Energy in EMF showers associated with charged tracks
- 32 Number of neutral EMF showers identified as photon
- 33 Energy of neutral EMF showers identified as photon
- 34 Number of neutral EMF showers not identified as photon
- 35 Energy of neutral EMF showers not identified as photon
- 36 Number of CCA showers associated with charged tracks
- 37 Energy in CCA showers associated with charged tracks
- 38 Number of neutral CCA showers
- 39 Energy of neutral CCA showers
- 40 Number of neutral CCA showers identified as charged by HAC
- 41 Energy of neutral CCA showers identified as charged by HAC
- 42 Total energy of the event; it is the result of the sum  
 $13 + 15 + 17 + 21 + 27 + 29 + 33 + 35 + 39$

43 Wordcount (43)

N.B.: *All energies and momenta (words 5, 6, 7, 8, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 42) are limited to 10,000,000 MeV, and set to this value above.*

**LUMI BLOCKLET**  
**TYPE 11**  
**SAT**

**Differential SAT blocklet (in each event's pilot record)**

|    |                                                                                                    |              |
|----|----------------------------------------------------------------------------------------------------|--------------|
| 1  | NW, wordcount                                                                                      | (13)         |
| 2  | Identifier                                                                                         | (\$0000FF1B) |
| 3  | Sub-identifier : 1 for SAT blocklet                                                                |              |
| 4  | Total number of accepted Bhabha events since previous event was written to the output stream.      |              |
| 5  | Number of Bhabha events accepted in BCO number 1 since previous event was written to output stream |              |
| 6  | Same as 5 for BCO number 2                                                                         |              |
| 7  | Same as 5 for BCO number 3                                                                         |              |
| 8  | Same as 5 for BCO number 4                                                                         |              |
| 9  | Same as 5 for BCO number 5                                                                         |              |
| 10 | Same as 5 for BCO number 6                                                                         |              |
| 11 | Same as 5 for BCO number 7                                                                         |              |
| 12 | Same as 5 for BCO number 8                                                                         |              |
| 13 | NW, wordcount                                                                                      | (13)         |

**Accumulated SAT blocklet (in E-O-R pilot record)**

Same size and identifiers as the differential one. Each data word refer now to the sum over the run of the differential one

**Special SAT E-O-R blocklet**

|    |                                                                |                       |
|----|----------------------------------------------------------------|-----------------------|
| 1  | NW, wordcount                                                  | (17)                  |
| 2  | Identifier                                                     | (\$0000FF1B)          |
| 3  | Sub-identifier : 1 for SAT blocklet                            |                       |
| 4  | Integrated luminosity of the run                               | $(nb^{-1} * 1000000)$ |
| 5  | Statistical error on luminosity                                | $(nb^{-1} * 1000000)$ |
| 6  | Luminosity conversion factor used                              | $(nb^{-1} * 1000000)$ |
| 7  | Date of the first event in the run                             |                       |
| 8  | Time of the first event in the run                             |                       |
| 9  | Date of the last event in the run                              |                       |
| 10 | Time of the last event in the run                              |                       |
| 11 | SAT scaler increment of the run                                |                       |
| 12 | SAT scaler increment of the run                                |                       |
| 13 | Number of triggers processed by SATANA with SAT trigger bit on |                       |
| 14 | SAT arms A&C single arm trigger increment (scalers) in the run |                       |
| 15 | SAT scaler increment of the run                                |                       |
| 16 | SAT Bhabha trigger increment (scalers) in the run              |                       |
| 17 | NW, wordcount                                                  | (17)                  |

**LUMI BLOCKLET**  
**TYPE 11**  
**VSAT**

|   |                                              |              |
|---|----------------------------------------------|--------------|
| 1 | NW, wordcount                                | (24)         |
| 2 | Identifier                                   | (\$0000FF1B) |
| 3 | Sub-identifier : 2 for VSAT blocklet         | (2)          |
| 4 | Number of Bhabha triggers in arm 1           |              |
| 5 | Number of Bhabha triggers in arm 2           |              |
| 6 | Total number of Bhabha triggers in both arms |              |

The following words count events above the following threshold:

- Energy deposition in 2 opposite modules  $>0.8*E_{beam}$
- The 2 electrons are in the VSAT fiducial volume.

|   |                                          |
|---|------------------------------------------|
| 7 | Same as 4 for events above the threshold |
| 8 | Same as 5 for events above the threshold |
| 9 | Same as 6 for events above the threshold |

The false Bhabha events refer to background events: 2 electrons (not Bhabha) in coincidence in 2 opposite modules.

|    |                                                                                               |      |
|----|-----------------------------------------------------------------------------------------------|------|
| 10 | Number of <b>false</b> Bhabha triggers in arm 1                                               |      |
| 11 | Number of <b>false</b> Bhabha triggers in arm 2                                               |      |
| 12 | Total number of <b>false</b> Bhabha triggers in both arms                                     |      |
| 13 | Number of <b>false</b> Bhabha triggers in arm 1, above the threshold                          |      |
| 14 | Number of <b>false</b> Bhabha triggers in arm 2, above the threshold                          |      |
| 15 | Total number of <b>false</b> Bhabha triggers in both arms, above the threshold                |      |
| 16 | Corrupted Bhabha events in arm 1 (Hardware problems)                                          |      |
| 17 | Corrupted Bhabha events in arm 2 (Hardware problems)                                          |      |
| 18 | Corrupted <b>false</b> Bhabha events in arm 1                                                 |      |
| 19 | Corrupted <b>false</b> Bhabha events in arm 2                                                 |      |
| 20 | Corrupted <b>DELPHI</b> events : one <b>DELPHI</b> event can contain one or more VSAT events) |      |
| 21 | Not identified <b>false</b> Bhabha event                                                      |      |
| 22 | Total number of corrupted Bhabha events                                                       |      |
| 23 | Not used                                                                                      |      |
| 24 | NW, wordcount                                                                                 | (24) |

## TRIGGER BLOCKLET TYPE 12

|       |                                          |              |
|-------|------------------------------------------|--------------|
| 1     | NW, wordcount                            | (69)         |
| 2     | Identifier                               | (\$0000FF1C) |
| 3     | Sub-identifier                           | (0)          |
| 4     | B1 triggers (from scalers)               |              |
| 5-8   | PYTHIA first level                       |              |
| 9-10  | Output from A module; first level        |              |
| 11-12 | Output from A/B module; first level      |              |
| 13    | Forward majority triggers (from scalers) |              |
| 14-17 | PYTHIA second level                      |              |
| 18-19 | Output from A module; second level       |              |
| 20-21 | Output from A/B module; second level     |              |
| 22    | Input module C ; first level             |              |
| 23    | Result from C ; first level              |              |
| 24    | Result from C post mask; first level     |              |
| 25    | Result from C post scaling; first level  |              |
| 26-29 | Trigger pattern ; first level            |              |
| 30-31 | Majority pattern ; first level           |              |
| 32    | Input module C ; second level            |              |
| 33    | Result from C ; second level             |              |
| 34    | Result from C post mask; second level    |              |
| 35    | Result from C post scaling; second level |              |
| 36-39 | Trigger pattern ; second level           |              |
| 40-41 | Majority pattern ; second level          |              |
| 42    | B1 pattern                               |              |
| 43-46 | Internal T3 trigger pattern              |              |
| 47-48 | Internal T3 majority pattern             |              |
| 49    | Internal T3 DF pattern                   |              |
| 50-53 | Output T3 trigger pattern                |              |
| 54-55 | Output T3 majority pattern               |              |
| 56    | Output T3 DF pattern                     |              |
| 57    | TPC T3 tagging                           |              |
| 58    | Bunch number from VSAT                   |              |
| 59    | Bunch number from UNG_CLK_BCO            |              |
| 60    | Vernier Scan                             |              |
| 61-64 | First level Prescaling factors           |              |
| 65-68 | Second level Prescaling factors          |              |
| 69    | NW, wordcount                            | (69)         |

## T4 BLOCKLET

|   |                                              |              |
|---|----------------------------------------------|--------------|
| 1 | NW, wordcount                                | (7)          |
| 2 | Identifier                                   | (\$0000FF1C) |
| 3 | Sub-identifier                               | (1)          |
| 4 | T4 tagging word:                             |              |
|   | -1 if no T4 info found by DELANA in raw data |              |
|   | 0 if T4 rejected the event                   |              |

bit 1:T4 HPC  
bit 5:T4 EMF  
bit 9:T4 TPC  
bit 13:T4 STC  
bit 17:Team tag  
bit 21:T3 tag  
bit 24:T4 pass  
bit 29:T4 Delana

5 T3 single gamma:  
-1 if no T3 info found by DELANA in raw data  
bit 2:Bhabha  
bits 15-16:single gamma

6 T3 TPC tag:  
-1 if no T3 info found by DELANA in raw data  
bits 1-8 :HAD tag  
bits 9-16:LEP tag  
bits 17-24:LLB tag  
bits 25-32:TPC tag

7 NW, wordcount

(7)

**DETECTORS SPECIAL BLOCKLET  
TYPE 13**

1 NW, wordcount (16)  
2 Identifier (\$0000FF1D)  
3 Sub-identifier: Detector identifier (TANAGRA index) for which the transformation matrix is given.

*Transformation matrix:*

4 to 15 transformation matrix to go from the detector reference frame to the general DELPHI reference frame. The numbers are multiplied by 1000000 before being stored as integers.  
16 NW, wordcount (16)

**DETECTORS SPECIAL BLOCKLET  
TYPE 13**

1 NW, wordcount (NW)  
2 Identifier (\$0000FF1D)  
3 Sub-identifier: 1000\*Detector identifier (TANAGRA index)

NW NW, wordcount (NW)

*Currently used:* ID (NW=70), TPC (NW=7)

**LEP BLOCKLET**  
**TYPE 14**

|          |                                                                                                                                                                                      |                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1        | NW, wordcount                                                                                                                                                                        | (44)              |
| 2        | Identifier                                                                                                                                                                           | (\$0000FF1E)      |
| 3        | Sub-identifier                                                                                                                                                                       | (0)               |
| 4        | Date of last update                                                                                                                                                                  | (Format 'yymmdd') |
| 5        | Time of last update                                                                                                                                                                  | (Format 'hhmmss') |
| 6        | Fill number                                                                                                                                                                          |                   |
| 7        | LEP status as given by the machine (from 1 to 9)                                                                                                                                     |                   |
| 8        | LEP status derived from current, energy and collimator:<br>(DELPHI evaluation)                                                                                                       |                   |
|          | = 1 No beam                                                                                                                                                                          |                   |
|          | = 2 Setup                                                                                                                                                                            |                   |
|          | = 3 Physics                                                                                                                                                                          |                   |
|          | = 4 End of fill                                                                                                                                                                      |                   |
|          | = 5 Unknown                                                                                                                                                                          |                   |
| 9        | Time of last change to LEP status                                                                                                                                                    | (Format 'hhmmss') |
| 10       | Collimators setting:<br>= 0 Unknown<br>= 1 Open<br>= 2 Coarse<br>= 3 Fine                                                                                                            |                   |
| 11       | Number of positron bunches in the machine                                                                                                                                            |                   |
| 12       | Actual ring energy, in MeV.<br>For 1990 this is a rough estimate, given even during ramping<br>For 1991 beam energy, with significance given by next word                            |                   |
| 13       | For 1990: flip coil energy if available (precision 10**-4), -1 if not available<br><br>-1 Energy unreliable or unavailable.<br>1 Rough estimate ( 2% precision)<br>2 Flip coil value |                   |
| 14       | Current in the main coil                                                                                                                                                             | (Amps)            |
| 15       | Field in mids- <b>NMR</b> probe                                                                                                                                                      | (Gauss)           |
| 16       | Horizontal ( X ) beta value                                                                                                                                                          | (mm)              |
| 17       | Vertical ( Y ) beta value                                                                                                                                                            | (mm)              |
| 18 to 23 | Beam spot used by Delana:<br><br>x<br>y<br>z<br>$\sigma_x$<br>$\sigma_y$<br>$\sigma_z$                                                                                               |                   |
| 24 to 27 | Positron stack currents                                                                                                                                                              | ( $\mu$ A)        |

28 to 31 Electron stack currents

( $\mu$ A)

N.B.: For 8-bunches running, each value is the sum of currents in bunches  $n$  and  $n+4$ (i.e. : 1+5, 2+6, 3+7, 4+8)

- 32 Interacting bunch number, used by DELANA
- 33 Bunch number given by ID
- 34 Bunch number given by FCB
- 35 Bunch number given by FCA
- 36 Bunch number given by TOF
- 37 Bunch number given by OD
- 38 Bunch number given by HOF
- 39 Bunch number given by STC
- 40 Bunch number given by STW
- 41 Number of wagons from LEP (not used in Delana)
- 42 Distance in RF buckets from LEP (not used in Delana)
- 43 Number of clock BCOs from Zeus

or:(when running in cosmic mode)

- 33 Time measured by TOF
- 34 Time measured by OD
- 35 Time measured by FCB
- 36 Time measured by HOF
- 37 Time measured by STW
- 38 0
- 39 0
- 40 0
- 41 0
- 42 0
- 43 0

44 NW, wordcount

(44)

**TAGGING BLOCKLET**  
**TYPE 15**

1 NW, wordcount (NW)  
2 Identifier (\$0000FF1F)  
3 Sub-identifier = number of teams (NTEAM)

4 to NTEAM+3 Tagging words for teams 1 to NTEAM  
4+NTEAM Bitted word: each bit set indicates a team tagging effectively run  
5+NTEAM Bitted word: each bit set indicates a team accepted for output even if not confirmed by DELANA or other team

NW NW, wordcount (NW)

# DST CONTENT

## TOP BANK

|         |                  |
|---------|------------------|
| 43      | Structural links |
| 0       | Reference link   |
| 5 or 35 | data (4L1B)      |

### Link LDTOP

#### LINKS

|            |                                                        |                      |
|------------|--------------------------------------------------------|----------------------|
| -1         | PV banks (from reconstruction)                         |                      |
| -2         | PV banks from simulation (if any)                      |                      |
| -3         | SH bank (from simulation)                              |                      |
| -4         | Initial $e^+e^-$ system                                |                      |
| -5         | $e^+e^-$ system after gamma radiation                  |                      |
| -6         | $l\bar{l}$ or $q\bar{q}$ system before gluon radiation |                      |
| -7         | TE information                                         |                      |
| -8         | Trigger information                                    |                      |
| -9         | Vertex Detector TD information                         |                      |
| -10        | Unassociated TE information                            |                      |
| -11        | OD timing information                                  |                      |
| -12        | VSAT result bank                                       | (since version 2.54) |
| -13        | AMBiguous shower(s) information bank(s)                | (since version 2.65) |
| -14        | HPC trigger bank                                       | (since version 2.62) |
| -15        | CCA bank                                               | (since version 2.69) |
| -16        | Unassociated HPC clusters                              | (since version 2.81) |
| -17        | DJET blocklet, swapped from pilot record               | (since version 3.01) |
| -18        | HCAL cathode read-out information bank                 | (since version 3.14) |
| -19        | Straw tubes information bank                           | (since version 3.17) |
| -20        | STIC trigger bank                                      | (since version 3.16) |
| -21 to -40 | Reserved for Long/Short DST extensions                 |                      |
| -41        | Forward RICH photon banks                              | (since version 3.30) |
| -42        | VFT pixel cluster bank                                 | (since version 3.34) |
| -43        | VFT strip cluster bank                                 | (since version 3.34) |

#### DATA CONTENT

|    |                                                                                                                                                                                                                                   |                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| +1 | Date of processing                                                                                                                                                                                                                | (format yymmdd) |
| +2 | Time of processing                                                                                                                                                                                                                | (format hhmm)   |
| +3 | IVERS, version number of PXDST (multiplied by 100: for version 2.51, IVERS = 251)<br>N.B. :In PXDST, the sequence PXCVER contains a parameter IVERS, which is <u>not</u> the currently read DST version, but the program version. |                 |

- +4      Laboratory identifier (See TANAGRA manual)
- +5      List of activated Extra Modules: bitted word, each bit correspond to a module.

Up to 20, the bit number attributed to a module corresponds to the extra-module identifier, if any. This is no more the case after 21, due to the ShortDST developpement.

Maximum number of modules: 23

**List of modules:**

- 1 = CCA      Combined Calorimetry
- 2 = EMF      Forward Electromagnetic calorimeter
- 3 = HCA      Hadronic calorimeter
- 4 = MU      Muons chambers (Barrel and forward)
- 5 = EL      Electron identification
- 6 = MRIC      RICH informations
- 7 = MTPC      TPC informations ( $dE/dx$ )
- 8 = TRAC      Tracking parameters of the track
- 9 = TOF      Time of flight information
- 10 = VD      VD informations
- 11 = TDHA      Points of Hadronic Calorimeter
- 12 = TEID      Tracks from ID
- 13 = TETP      Tracks from TPC
- 14 = TEOD      Tracks from OD
- 15 = TEFA      Tracks from FCA
- 16 = TEFB      Tracks from FCB
- 17 = TDID      Drift times in ID
- 18 = SAT      SAT informations
- 19 = STIC      STIC informations
- 20 = TRAX      Track extrapolation points on defined surfaces
- 21 = TERF      Forward RICH informations
- 22 = VFT      Very Forward Tracker informations
- 23 = TEST      Straw tubes informations

*Since version 3.36, only for Simulation :*

- +6      Incoming electromagnetic energy for HPC
- +7      Outgoing electromagnetic energy for HPC
- +8      Incoming energy of mu+, mu- for HPC
- +9      Outgoing energy of mu+, mu- for HPC
- +10      Incoming hadronic energy for HPC
- +11      Outgoing hadronic energy for HPC
- +12      Incoming electromagnetic energy for EMF
- +13      Outgoing electromagnetic energy for EMF
- +14      Incoming energy of mu+, mu- for EMF
- +15      Outgoing energy of mu+, mu- for EMF
- +16      Incoming hadronic energy for EMF
- +17      Outgoing hadronic energy for EMF
- +18      Incoming electromagnetic energy for COI
- +19      Outgoing electromagnetic energy for COI
- +20      Incoming energy of mu+, mu- for COI
- +21      Outgoing energy of mu+, mu- for COI
- +22      Incoming hadronic energy for COI
- +23      Outgoing hadronic energy for COI
- +24      Incoming electromagnetic energy for HAB
- +25      Outgoing electromagnetic energy for HAB

|     |                                         |
|-----|-----------------------------------------|
| +26 | Incoming energy of mu+, mu- for HAB     |
| +27 | Outgoing energy of mu+, mu- for HAB     |
| +28 | Incoming hadronic energy for HAB        |
| +29 | Outgoing hadronic energy for HAB        |
| +30 | Incoming electromagnetic energy for HAF |
| +31 | Outgoing electromagnetic energy for HAF |
| +32 | Incoming energy of mu+, mu- for HAF     |
| +33 | Outgoing energy of mu+, mu- for HAF     |
| +34 | Incoming hadronic energy for HAF        |
| +35 | Outgoing hadronic energy for HAF        |

STATUS BITS      IQ(LDTOP) : 2 bits

*Those bits are set by PXTAG since version 3.13 :*

- bit 1 = 1 if a  $D^*$  candidate has been tagged in the event, in the channel  $D^* \rightarrow D^0\pi, D^0 \rightarrow K\pi$
- bit 2 = 1 if the event contains a  $(K\pi)\pi$  background combination to  $D^*$
- bit 3 = 1 if a  $D^0$  candidate has been tagged in the event, in the channel  $D^0 \rightarrow K\pi$
- bit 4 = 1 if the event contains a  $K\pi$  background combination to  $D^0$
- bit 5 = 1 if a loose  $D_s$  candidate has been tagged in the event, in the channel  $D_s \rightarrow K^+K^-\pi$
- bit 6 = 1 same as bit 5, but for a tight  $D_s$

# PV BANK

1            Structural link  
 1            Reference link  
 14          data (3B-F)

**Link LQPV = LQ(LDTOP-1)**

## LINKS

0            Next vertex bank  
 -1          PA of outgoing particles  
 -2          PA of incoming particles

## DATA CONTENT

|     |                                      |                              |
|-----|--------------------------------------|------------------------------|
| +1  | TANAGRA identifier of the TV bank    |                              |
| +2  | Number of outgoing particles         |                              |
| +3  | Number of degrees of freedom         |                              |
| +4  | Mass code of the origin particle     |                              |
|     | Special cases: 0. for primary vertex |                              |
|     | 999. for dummy vertex                |                              |
| +5  | X                                    |                              |
| +6  | Y                                    | -> Coordinates of the vertex |
| +7  | Z                                    |                              |
| +8  | $\chi^2$ of the vertex fit           |                              |
| +9  | xx                                   |                              |
| +10 | xy                                   |                              |
| +11 | yy                                   | -> Error matrix              |
| +12 | xz                                   |                              |
| +13 | yz                                   |                              |
| +14 | zz                                   |                              |

*since version 3.13 :*

When tracks attached to this vertex are found by PXTAG to form a  $D^*$  or only a  $D^0$  candidate:

|     |                                                        |  |
|-----|--------------------------------------------------------|--|
| +15 | $(K\pi)$ mass for $D^0$ candidate                      |  |
| +16 | $(K\pi\pi - K\pi)$ mass difference for $D^*$ candidate |  |

When tracks attached to this vertex are found by PXTAG to form a  $D_s$  candidate:

|     |                                        |  |
|-----|----------------------------------------|--|
| +15 | $(K^+K^-)$ mass for $\Phi$ candidate   |  |
| +16 | $(K^+K^-\pi)$ mass for $D_s$ candidate |  |

## STATUS BITS      IQ(LQPV) : 5 bits

- bit 1 = 1 if dummy vertex
- bit 2 = 1 if secondary vertex
- bit 3 = 1 if secondary hadronic vertex
- bit 4 = 1 if vertex with simulation data

*Since version 3.13 :*

if a  $D^0$  or  $D^*$  is flagged:

bit 5 = 1 if a K from a  $D^0$  is linked to this vertex

if a  $D_s$  is flagged:

bit 5 = 1 if a K from a  $\Phi$  is linked to this vertex

# PA BANK

0        Structural link  
 4        Reference links  
 n        data (3B,(n+1)I,-F)

**Link LQPA = LQ(LQPV-1)**

## LINKS

|    |                                                                                                                                                                                                      |                                              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 0  | Next PA bank                                                                                                                                                                                         |                                              |
| -1 | PV bank of end vertex (if any)                                                                                                                                                                       |                                              |
| -2 | Matching simulated PA (if any), or matching reconstructed PA, for PA of the simulation (attached to the PV of LDTOP-2)                                                                               |                                              |
| -3 | PA containing extra-module CCA with ambiguous shower also associated to this track. for simulation PA (hanging to PV from LDTOP-2), this link points to the SH bank (simulation has no ambiguities). |                                              |
| -4 | CCA bank associated to this PA                                                                                                                                                                       | (since version 2.68)<br>(since version 2.69) |

## DATA CONTENT

|            |                                                                                                                               |                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| +1         | TANAGRA identifier of the track PA,<br>or                                                                                     |                                         |
| +2         | Label, for simulated track.                                                                                                   |                                         |
| +3         | Detectors used in the reconstruction. (2nd word of the TK, 1 bit for each detector, as defined in TANAGRA manual, appendix B) |                                         |
| +4         | Mass ambiguity code. (not yet implemented)                                                                                    |                                         |
| +5         | n, number of information modules (standard plus extra)<br>= N+1 , N being the number of extra modules.                        |                                         |
| +6         | Length of standard module                                                                                                     | (N1=27 up to version 3.32, N1=32 after) |
|            | Length of first extra module                                                                                                  | (N2)                                    |
| :          |                                                                                                                               |                                         |
| +n+4       | Length of Nth extra module                                                                                                    |                                         |
| +n+5       | First word of standard module                                                                                                 |                                         |
| +n+5+N1    | First word of first extra module                                                                                              |                                         |
| +n+5+N1+N2 | First word of 2nd extra module                                                                                                |                                         |
| :          | :                                                                                                                             |                                         |

|             |                                                                |
|-------------|----------------------------------------------------------------|
| STATUS BITS | IQ(LQPA) : 17 bits                                             |
| bit 1       | = 1 if the track is discarded                                  |
| bit 2       | = 1 if the correlation matrix is given                         |
| bit 3       | = 1 if the track has an unresolved te                          |
| bit 4       | = 1 if the track is made with overlapping showers              |
| bit 5       | = 1 if the track contains results from cca.                    |
| bit 6       | = 1 if the track is given by the forward combined fit.         |
| bit 7       | = 1 if the energy is obtained from subtraction in calorimeters |

*bits 8 to 12 concern simulated data only*

bit 8 = 1 if good match with simulated track  
bit 9 = 1 if match ok, ambiguity solved  
bit 10 = 1 if match with showers  
bit 11 = 1 if unmatched track  
bit 12 = 1 if remaining TER from calorimeters.  
bit 13 = 1 for remaining TER from OD, not associated to a TKX.  
(This track is attached to a dummy vertex)

*since version 3.04:*

bit 14 = 1 when multiple scattering from first measured point to perigee is included,  
0 if not.  
bit 15 = 1 for a track flagged as  $V^0$  branch candidate by the TPCANA algorithm.

*since version 3.13 :*

if a  $D^0$  or  $D^*$  is flagged:

bits 16-17 = 1 if the track is a  $K$  candidate from a  $D^0 \rightarrow K\pi$   
2 if the track is a  $\pi$  candidate from a  $D^0 \rightarrow K\pi$   
3 if the track is a  $\pi$  candidate from a  $D^* \rightarrow D^0\pi$   
if a  $D_s$  is flagged:  
bits 16-17 = 1 if the track is a  $K^+$  candidate from a  $\Phi \rightarrow K^+K^-$   
2 if the track is a  $K^-$  candidate from a  $\Phi \rightarrow K^+K^-$   
3 if the track is a  $\pi$  candidate from a  $D_s \rightarrow \Phi\pi$

**PA MODULES**  
**STANDARD MODULE (0)**

LENGTH: 27 words. *since 3.32* : 32 words

CONTENT ( at address IPS = 5+IQ(LPA+4) )

|            |                                                                                                                                                                                                                                                           |         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| IPS +0     | Label of the module                                                                                                                                                                                                                                       | (= 0)   |
| +1         | Particle mass                                                                                                                                                                                                                                             |         |
| +2         | Px                                                                                                                                                                                                                                                        |         |
| +3         | Py   > At the closest distance approach to the vertex                                                                                                                                                                                                     | (GeV/c) |
| +4         | Pz                                                                                                                                                                                                                                                        |         |
| +5         | E , energy                                                                                                                                                                                                                                                | (GeV)   |
|            | <i>Since 3.15 : For the neutrals in HPC, this energy is corrected for non-linearities and crack losses.</i>                                                                                                                                               |         |
| +6         | P , momentum                                                                                                                                                                                                                                              | (GeV/c) |
| +7         | Charge : 0=neutral; 1. = positive; 2. = negative; 3. = undefined, + or -                                                                                                                                                                                  |         |
| +8         | Track length (negative for incoming particle)                                                                                                                                                                                                             |         |
| +9         | Mass code                                                                                                                                                                                                                                                 |         |
| +10        | Impact parameter, rp (with sign): If VC is the distance of the vertex to the center of curvature and R the radius of curvature, with the sign opposite to the charge sign, then<br>rp = sign(R) *( R )-VC)                                                |         |
| +11        | Error on impact parameter                                                                                                                                                                                                                                 |         |
| +12 to +17 | Error matrix on Px,Py, Pz, computed at the inner face of the beam pipe                                                                                                                                                                                    |         |
| +18        | Error on E                                                                                                                                                                                                                                                |         |
| +19        | Z impact parameter = ZP - ZV ; ZP is the z coordinate of the extrapolation of the track at the closest distance approach to the vertex in the R-R $\phi$ plane                                                                                            |         |
| +20        | Error on ZP                                                                                                                                                                                                                                               |         |
| +21        | Azimuthal angle of the point of closest distance approach to the vertex, PHIP.<br>The routine <b>PXPOSC</b> (LPA,XP,YP,ZP) calculates the cartesian coordinates of the point of closest distance approach to the vertex, for the track pointed to by LPA. |         |
| +22        | X                                                                                                                                                                                                                                                         |         |
| +23        | Y   > Coordinates of the first measured point on the track                                                                                                                                                                                                | (cm)    |
| +24        | Z                                                                                                                                                                                                                                                         |         |
| +25        | $\chi^2$ of the fit of the TK                                                                                                                                                                                                                             |         |
| +26        | Number of degrees of freedom                                                                                                                                                                                                                              |         |
|            | <i>Since version 3.32 :</i>                                                                                                                                                                                                                               |         |
| +27        | Track origin                                                                                                                                                                                                                                              |         |
| +28        | Track type                                                                                                                                                                                                                                                |         |
| +29        | Reserved for DSTANA extra information                                                                                                                                                                                                                     |         |
| +30        | Reserved for DSTANA extra information                                                                                                                                                                                                                     |         |
| +31        | Reserved for DSTANA extra information                                                                                                                                                                                                                     |         |

## PA MODULES

### LIST OF THE EXTRA MODULES

Each track contains extra information from given detector/processor (called module), in the form of a block of floating point data in defined format.

The creation of the modules is activated by data card; they are identifiable by their DST identifier.

LIST OF MODULES:

| Module                   | data card | subroutine | DST ID |
|--------------------------|-----------|------------|--------|
| Combined calorimetry     | CCAL      | PXCCAL     | 1.     |
| E.M. calorimetry         | EMCA      | PXEMCA     | 2.     |
| Hadron calorimetry       | HCAL      | PXHCAL     | 3.     |
| Muon identification      | MU        | PXMU       | 4.     |
| Electron identification  | EL        | PXEL       | 5.     |
| RICH mass identification | MRIC      | PXMRIC     | 6.     |
| TPC mass identification  | MTPC      | PXMTCP     | 7.     |
| Track information        | TRAC      | PXTRAC     | 8.     |
| Time of flight           | TOF       | PXTOF      | 9.     |
| TD from HAC              | TDHA      | PXTDHA     | 11.    |
| TE from ID               | TEID      | PXTEAM(4)  | 12.    |
| TE from TPC              | TETP      | PXTEAM(5)  | 13.    |
| TE from OD               | TEOD      | PXTEAM(8)  | 14.    |
| TE from FCA              | TEFA      | PXTEAM(20) | 15.    |
| TE from FCB              | TEFB      | PXTEAM(25) | 16.    |
| TD from ID               | TDID      | PXTDID     | 17.    |
| SAT information          | SAT       | PXSAT      | 18.    |
| STIC information         | STIC      | PXSTIC     | 19.    |
| Track extrapolation      | TRAX      | PXTRAX     | 20.    |
| TE from Forward RICH     | TERF      | PXTEAM(21) | 21.    |
| TE from Straw tubes      | TEST      | PXTEAM(41) | 41.    |
| TE from VFT              | VFT       | PXTEAM(42) | 42.    |

The following modules, concerning the full event and not one track only, are put as an extra bank hanging to LDTOP. They are nevertheless activated in the same way as the other extra modules:

|                           |     |        |              |
|---------------------------|-----|--------|--------------|
| Vertex Detector           | VD  | PXTDVD | LDTOP-9      |
| <i>Since version 3.34</i> |     |        |              |
| VFT information           | VFT | PXVFT  | LDTOP-42/-43 |

*(The VFT creates both an extramodule and additionnal banks)*

er

The modules are activated by the data card PXMODU at the creation of the DST.

*NOTE :*

*If the module 'CCAL' is activated, it triggers automatically the activation of 'EMCA' and 'HCAL'.*

*If the module 'MU' is activated, it triggers automatically the activation of 'EMCA', 'HCAL', and 'CCAL'.*

**PA MODULES**  
**CCAL MODULE (1)**

LENGTH : variable, = 2 + 9\*NS words, NS being the number of associated showers.

CONTENT (at address IP)

IP + 0 Label of the module (= 1)  
+ 1 Number of associated showers, NS

Then for each shower,  
at address  $J = IP + 1 + 9*(n-1)$  , n being the shower number (from 1 to NS):  
J + 1 Length of this shower information block (= 9 )  
+ 2 Detector Identifier : 31 = CCA  
+ 3 Energy  
+ 4 X  
+ 5 Y  
+ 6 Z  
+ 7 Mass identifier from DELANA  
+ 8  $\vartheta$   
+ 9  $\varphi$

## PA MODULES

### EMCA MODULE (2)

LENGTH: variable,  $= 2 + \text{NS} * (11 + 2 * \text{NLAY})$  words, NS being the number of associated showers, and NLAY the number of layers.

CONTENT (at address IP)

IP + 0 Label of the module  $(= 2)$   
 + 1 Number of associated showers, NS

Then for each shower, at address J, the first shower being at  $J = \text{IP} + 1$  :  
 J + 1 Length of this shower information block  $(= 11 + 2 * \text{NLAY})$   
*since 2.63 for HPC : ( = 11 + 3 \* NCLU )*  
 + 2 Detector Identifier: 9 = HPC , 26 = EMF  
 + 3 Energy  
*Since 3.15 for HPC : This energy is not corrected for non-linearities in the HPC.*  
 For the neutrals, the energy given in the standard module is corrected for non-linearities and crack losses.  
 + 4 X  
 + 5 Y  
 + 6 Z  
 + 7 Mass identifier from DELANA  
 + 8  $\vartheta$   
 + 9  $\varphi$

#### **Layer information (Up to version 2.62 for HPC)**

+10 NLAY = Number of layer hit in this shower  
 +11 Layer pattern. This is a bitted word: each bit set indicates a layer hit; bit n correspond to layer n.  
 Layers range from 1 to 10

Then for each layer (nl is the layer number):  
 +11+2\*(nl-1)+1 Energy deposited in the layer  
 +11+2\*(nl-1)+2 1000\*nl + number of channels active in the layer

*Since version 2.53, for HPC (ID=9)*  
 +11+2\*(nl-1)+1 Packed Energy (E) and width (DZ):  
 float  $(1024 * \text{int}(10.^*E) + \text{int}(10.^*DZ))$   
 +11+2\*(nl-1)+2 Packed coordinates of the layer hit:  
 float  $(1024 * \text{int}(10.^*Z) + \text{int}(100.^*\phi))$

#### **Layer information (Since version 2.63 for HPC)**

+10 NCLU = Number of clusters recorded for this shower. This may be larger than the number of layers involved in the shower. For version before 2.81, this was always less than or equal to the number of layers in the HPC.  
 +11 NWDCL = Number of words describing each cluster. This is currently 3, but may be extended.

Then for each cluster (nc is the cluster number):  
*Up to version 2.69 :*  
 +11+NWDCL\*(nc-1)+1 Packed Energy (GeV) and layer number. A layer may

appear more than once, if there is more than  
one cluster in this layer:  
 $64*(100*E) + NL$

+11+NWDCL\*(nc-1)+2 Packed X and Y coordinates (cm) of the cluster maximum:

$$1024*(X+260) + (Y+260)$$

+11+NWDCL\*(nc-1)+3 Packed Z (cm) coordinate and width (cm) in Z:

$$1024*(Z+260) + 10*W$$

*Since version 2.70:*

+11+NWDCL\*(nc-1)+1 Packed Energy (GeV) and layer number. A layer may  
appear more than once, if there is more than  
one cluster in this layer:

$$64*NINT(1000*E) + NL \quad (E \text{ limited to } 16.383)$$

+11+NWDCL\*(nc-1)+2 Packed R (cm) and  $\phi$  (rad) coordinates of the cluster maximum:

$$4096*NINT(5*(R-205)) + NINT(512*\phi) \quad (R \text{ limited to } 256.)$$

+11+NWDCL\*(nc-1)+3 Packed Z (cm) coordinate and width (cm) in Z:

$$256*NINT(8*(Z+260)) + NINT(10*W) \quad (Z \text{ limited to } 252.)$$

NB: X, Y (for the first version) and Z are offset by 260 cm, so they are positive.

A routine **PXHGET**(PACK,E,N,X,Y,Z,W) is provided for the unpacking of the 3 packed words stored  
in PACK(1) to PACK(3).

NL is the layer number, set to -1 in case of error; it ranges from 1 to 10, 4 being the trigger gap.

## PA MODULES

### HCAL MODULE (3)

LENGTH: variable,  $= 2 + \text{NS} * (12 + 2 * \text{NLAY} + 2 * \text{NTOW})$  words, NS being the number of associated showers, NLAY the number of layers and NTOW the number of towers hit.

CONTENT (at address IP)

|    |     |                                  |       |
|----|-----|----------------------------------|-------|
| IP | + 0 | Label of the module              | (= 3) |
|    | + 1 | Number of associated showers, NS |       |

Then for each **shower**, at address J, the first shower being at  $J = \text{IP} + 1$ :

|   |                                        |                                                                                                                                    |                                            |
|---|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| J | + 1                                    | Length of this shower information block                                                                                            | $(= 12 + 2 * (\text{NLAY} + \text{NTOW}))$ |
|   | + 2                                    | Detector Identifier: 13 = HAB/HAF                                                                                                  |                                            |
|   | + 3                                    | Energy                                                                                                                             |                                            |
|   | + 4                                    | X                                                                                                                                  |                                            |
|   | + 5                                    | Y                                                                                                                                  |                                            |
|   | + 6                                    | Z                                                                                                                                  |                                            |
|   | + 7                                    | Mass identifier from DELANA                                                                                                        |                                            |
|   | + 8                                    | $\vartheta$                                                                                                                        |                                            |
|   | + 9                                    | $\varphi$                                                                                                                          |                                            |
|   | <b>Layer</b> (i.e. tower) information: |                                                                                                                                    |                                            |
|   | +10                                    | Number of layers hit in this shower, NLAY                                                                                          |                                            |
|   | +11                                    | Layer pattern. This is a bitted word: each bit set indicates a layer hit; bit n correspond to layer n.<br>Layers range from 1 to 4 |                                            |

Then for each layer hit (nh is the hit number, from 1 to NLAY):

|                |                                                                    |
|----------------|--------------------------------------------------------------------|
| +11+2*(nh-1)+1 | Energy deposited in the tower                                      |
| +11+2*(nh-1)+2 | Number of channels active in the tower,<br>+1000*nl (layer number) |

*Since version 2.66*, TD information of the tower:

+11+2\*NLAY+1 Number of towers hit, NTOW

For each tower  $it=1, \text{NTOW}$ :

+11+2\*NLAY+2\*(it-1)+1 Energy in the tower (GeV)

+11+2\*NLAY+2\*(it-1)+2 Tower coordinate (packed):

|                                            |
|--------------------------------------------|
| 10000*Layer number                         |
| + 1000*JU (cell number along $\vartheta$ ) |
| + 10*JV (cell number along $\phi$ )        |

## PA MODULES

### MU MODULE (4)

LENGTH: variable, =  $18 + 10 * \text{NLAY} + 11$  words, NLAY being the number of layers.

$35 + 10 * (\text{NLAY1} + \text{NLAY2}) + 2 * 11$  words in case MUS overlaps with MUB or MUF.

CONTENT (at address IP)

|    |      |                                                                                            |       |
|----|------|--------------------------------------------------------------------------------------------|-------|
| IP | + 0  | Label of the module                                                                        | (= 4) |
|    | + 1  | Detector ID : 14 = MUB , 30 = MUF , 17 = MUS                                               |       |
|    | + 2  | Number of associated layers, NLAY                                                          |       |
|    | + 3  | Number of degrees of freedom                                                               |       |
|    | + 4  | Global $\chi^2$                                                                            |       |
|    | + 5  | X coordinate in the first layer                                                            |       |
|    | + 6  | Y coordinate in the first layer                                                            |       |
|    | + 7  | Expected hit pattern (MUB only)                                                            |       |
|    | + 8  | $\chi^2$ for MU chambers alone                                                             |       |
|    | + 9  | X (extrap-fitted)                                                                          |       |
|    | + 10 | Y (extrap-fitted)                                                                          |       |
|    | + 11 | $\vartheta$ (extrap-fitted)                                                                |       |
|    | + 12 | $\varphi$ (extrap-fitted)                                                                  |       |
|    | + 13 | error on X (extrap-fitted)                                                                 |       |
|    | + 14 | Error on Y (extrap-fitted)                                                                 |       |
|    | + 15 | Error on $\vartheta$ (extrap-fitted)                                                       |       |
|    | + 16 | Error on $\varphi$ (extrap-fitted)                                                         |       |
|    | + 17 | Hit pattern for layers: each bit set indicates a layer hit, starting at bit 1 for layer 1. |       |

**LAYER INFORMATION:** 10 words per layer, at address  $J = IP + 17 + 10 * (nl - 1)$ , nl being the layer number. The format considers the measured values, and is different for MUB and MUF:

Format for **MUB** (and **MUS** *since version 3.13*):

|   |      |                                                                    |
|---|------|--------------------------------------------------------------------|
| J | + 1  | Submodule ID : TER(2)                                              |
|   | + 2  | $\chi^2$ of the layer                                              |
|   | + 3  | R measured                                                         |
|   | + 4  | $R\phi$ (fit)- $R\phi$ (meas)                                      |
|   | + 5  | Z(fit)-Z(meas)                                                     |
|   | + 6  | Error on $R\phi$                                                   |
|   | + 7  | Error on Z                                                         |
|   | + 8  | $R\phi$ measured                                                   |
|   | + 9  | Z measured                                                         |
|   | + 10 | Status of the TER bank after EMMASS:<br>0 = deactive , 1 = active. |

Format for **MUF**:

|   |     |                                                                                    |
|---|-----|------------------------------------------------------------------------------------|
| J | + 1 | <i>Up to version 3.01:</i><br>Submodule ID: $100 * \text{TER}(2) + \text{TER}(36)$ |
|   |     | <i>Since version 3.02:</i><br>(new definition of submodule ID in MUFANA)           |
|   |     | Submodule ID: TER(2)                                                               |
|   | + 2 | $\chi^2$ of the layer                                                              |
|   | + 3 | Xfit-Xmeas.                                                                        |
|   | + 4 | Yfit-Ymeas.                                                                        |

+ 5 **Z** measured  
 + 6 Error on **X**  
 + 7 Error on **Y**  
 + 8 **X** measured  
 + 9 **Y** measured  
 + 10 Status of the TER bank after EMMASS:  
     0 = deactive , 1 = active.

*Since version 2.68:*

**INFORMATIONS FOR REFIT:** 11 words, giving the covariance matrix of the TKX at the reference surface closest to the interaction point.  
 (T1/T2 stands for  $R\phi/Z$  (MUB), or  $X/Y$  (MUF) )  
 At address  $K = IP + 17 + 10^*NLAY:$

|   |      |                         |                                                                                    |
|---|------|-------------------------|------------------------------------------------------------------------------------|
| K | + 1  | T3 fit                  | → Covariance matrix of<br>TKX at closest reference<br>surface to interaction point |
|   | + 2  | $dT1dT1$                |                                                                                    |
|   | + 3  | $dT1dT2$                |                                                                                    |
|   | + 4  | $dT2dT2$                |                                                                                    |
|   | + 5  | $dT1d\vartheta$         |                                                                                    |
|   | + 6  | $dT2d\vartheta$         |                                                                                    |
|   | + 7  | $d\vartheta d\vartheta$ |                                                                                    |
|   | + 8  | $dT1d\varphi$           |                                                                                    |
|   | + 9  | $dT2d\varphi$           |                                                                                    |
|   | + 10 | $d\vartheta d\varphi$   |                                                                                    |
|   | + 11 | $d\varphi d\varphi$     |                                                                                    |

*Since version 3.13:*

**Overlapping MUS** informations

Then, in event of track having MUB and MUS associated hits, or MUF and MUS associated hits (never MUB and MUF), MUS information follows in the above format, starting at address  $IS = K+11$

IS + 1 Detector ID (same at IP+1)  
 :  
 :

## PA MODULES EL MODULE (5)

LENGTH: variable.

This module contains extra informations for EMF and HPC which are not foreseen in the standard calorimetry format. They are intended mainly to help for electron identification.

CONTENT (at address IP)

IP + 0 Label of the module (= 5)  
 + 1 NW1 + 100\*ID  
 NW1 is the number of words following,  
 ID is a detector identifier, 9 = HPC , 26 = EMF

*For EMF (NW1 = 10 , format up to version 2.55):*  
 + 2 Address of the central counter of the shower  
 + 3 Energy deposited in the first block.  
 + 4 to + 11 Energy in the blocks 2 to 9  
 The blocks are arranged in the order (in standard X-Y view):  
 3 2 1  
 6 5 4  
 9 8 7

*For EMF (new format since version 2.56):*  
 This format allows for up to 3 showers be associated to the track.  
 + 2 Shower number + 10.\*NW<sub>i</sub>  
 NW<sub>i</sub> is the length of the information which follows for this shower (10 or 19)  
 + 3 Address of the central counter of the shower  
 + 4 Energy deposited in the first block or ERROR FLAG  
 + 5 to + 12 Energy in the blocks 2 to 9 or ERROR FLAG  
 The blocks are arranged in the order (in standard X-Y view):  
 3 2 1  
 6 5 4  
 9 8 7  
 ERROR FLAG - 9999. Not existing glass  
 - 999. Dead glass  
 - 998. EMFANA killed the glass  
 1000.+E Noisy glass

If NW<sub>i</sub>>10, there is a second external frame of glasses  
 whose deposited energy are given. The energies are  
 packed as follow:

- +13 Unused
- +14 E1\*1000 + E2
- +15 E3\*1000 + E4
- +16 E5\*1000 + E6
- +17 E7\*1000 + E8
- +18 E9\*1000 + E10
- +19 E11\*1000 + E12
- +20 E13\*1000 + E14
- +21 E15\*1000 + E16

This second array of blocks are arranged in the following  
 order (in standard X-Y view):

|    |    |    |    |    |
|----|----|----|----|----|
| 5  | 4  | 3  | 2  | 1  |
| 7  |    |    |    | 6  |
| 9  |    |    |    | 8  |
| 11 |    |    |    | 10 |
| 16 | 15 | 14 | 13 | 12 |

+2+NWi      As from word +2, for the following shower, if any.

*For HPC (NW1 = 5) :*

*Up to version 3.12 (approximatively) :*

+ 2    "Clara word" =  $100*IEL90 + 200*IEL80 + 300*IEL70$

(IELn is set to 1 if the particle pass the cut which keeps n% of electrons.

Only the lowest n is set, the others are 0:

100 = loose electron cut

300 = strict cut)

*Since version 2.51 (but wrong for versions 2.81 to 2.87):*

+ 3    Shower history

+ 4    Mass selection flag

+ 5    Canonical variable for  $\pi/e$  separation

+ 6     $\chi^2$  probability for e identification

*From version 3.13 (approximatively) :*

+ 2     $NINT(\alpha*1000.) + NINT(XMASS)*1000$

Where  $\alpha$  is the rotation angle of the transverse charge distribution tensor,  
XMASS the calculated shower mass

+ 3    Shower history

+ 4    Mass selection flag ( $\gamma$  or  $\pi^0$  for neutrals,  $\pi^+$  for charged)

+ 5     $NINT(EIG1*10.)*1000. + NINT(XMASS)*1000$

Where EIG1 and EIG2 are the eigenvalues of the transverse charge deposition

+ 6     $(ILOMAX+10.*ILOSAV)*1000$

Where ILOSAV and ILOMAX are the total and accepted local maxima

N.B. A routine PXHPIO in the ELEPHANT package can be used to unpack these words.

**PA MODULES**  
**MRIC MODULE (6)**

*FORMAT UP TO VERSION 2.51:*

LENGTH: 23 words

CONTENT (at address IP)

IP + 0 Label of the module (= 6)

*Words 1 to 6 for the first radiator*

- + 1 Bitted word:
  - bit 1: 0 for Barrel RICH, 1 for Forward RICH
  - bit 2: 0 for liquid, 1 for gas radiator
  - bits 3 to 8: sector number (from 1 to 48)
  - bits 9 to 11: first mirror number (from 1 to 6)
  - bits 12 to 22: Qualification number
- + 2 Bitted word:
  - bits 1 to 7: Electron probability
  - bits 8 to 14: Muon probability
  - bits 15 to 21: Pion probability
- + 3 Bitted word:
  - bits 1 to 7: Kaon probability
  - bits 8 to 14: Proton probability
  - bits 15 to 21: Total number of ?
- + 4 Sum of absolute probabilities
- + 5 Bitted word:
  - bits 1 to 5: Expected number of ? for the best hypothesis (from 0 to 31)
  - bits 6 to 10: Observed number of ? for the best hypothesis (in 3 sigmas)
  - bits 11 to 22: Fited background for the best hypothesis (from 0 to 4095)
- + 6 Mean theta (mrad) + 1000\*sigma (1/10 mrad) for the best hypothesis

*Words 7 to 12 for the second radiator*

- + 7 Bitted word:
  - bit 0: 0 for Barrel RICH, 1 for Forward RICH
  - bit 1: 0 for liquid, 1 for gas radiator
  - bits 3 to 8: sector number (from 1 to 48)
  - bits 9 to 11: first mirror number (from 1 to 6)
  - bits 12 to 22: Qualification number
- + 8 Bitted word:
  - bits 1 to 7: Electron probability
  - bits 8 to 14: Muon probability
  - bits 15 to 21: Pion probability
- + 9 Bitted word:
  - bits 1 to 7: Kaon probability
  - bits 8 to 14: Proton probability
  - bits 15 to 21: Total number of ?
- +10 Sum of absolute probabilities
- +11 Bitted word:
  - bits 1 to 5: Expected number of ? for the best

hypothesis (from 0 to 31)  
 bits 6 to 10: Observed number of ? for the best hypothesis (in 3 sigmas)  
 bits 11 to 22: Fitted background for the best hypothesis (from 0 to 4095)

+12 Mean theta (mrad) + 1000\*sigma (1/10 mrad) for the best hypothesis

*Track parameters at the entry of RICH  
(R=123cm for RIB)*

- + 13  $R\phi$
- + 14 Z
- + 15  $\vartheta$
- + 16  $\varphi$
- + 17  $1/P$
- + 18 Error on  $R\phi$
- + 19 Error on Z
- + 20 Error on  $\vartheta$
- + 21 Error on  $\varphi$
- + 22 Error on  $1/P$

### *FORMAT FOR VERSION 2.70 UP TO VERSION 2.85:*

This format is not to be found anymore.

### FORMAT FOR VERSION 2.86 UP to VERSION 3.30:

LENGTH: variable = 1+18 words for gas or/and liquid RICH, +14 words of track information, +1 or 6 words of extension for gas and liquid, +1+3 words per photon in liquid, +1+3 words per photon in gas, +2 words per photon (*since version 3.06*), +2 words (*since version 3.12*)

## CONTENT (at address IP)

IP + 0 Label of the module, = 6

## Liquid radiator info:

- + 1 Bitted word:
  - bit 1: 0 for Barrel RICH, 1 for Forward RICH
  - bit 2: 0 for liquid, 1 for gas radiator
  - bits 3 to 8: sector number (from 1 to 48 for BRICH,  $15^\circ$  sectors)  
(from 1 to 24 for FRICH,  $30^\circ$  sectors)
  - bits 9 to 11: BRICH: 0 , not used  
FRICH: liquid radiator number, from 1 to 3
  - bits 12 to 22: Qualification number
- 17 words for liquid radiator follow. If no liquid (bit1=1), those words are skipped.*
- + 2 Sum of absolute probabilities (before normalization)
- + 3 Bitted word:
  - bits 1 to 11: Total number of photons between e and p rings (in
  - bits 12 to 22: Fitted background for the best hypothesis
- + 4 Bitted word:
  - bits 1 to 10:  $\langle \theta_c \rangle$  (mrad) for **electron** hypothesis
  - bits 11 to 20:  $\sigma_c$  (units 0.1 mrad)
- + 5 Bitted word:
  - bits 1 to 7: Number of photoelectrons within  $\pm 3 \sigma$  ( $\sigma = .015$ )
  - bits 8 to 14: Number of expected photoelectrons

bits 15 to 22: electron probability ( 1.%)  
 + 6 Bitted word:  
 bits 1 to 10: Deri. of average Cerenkov angle in mrad/cm +1000  
 bits 11 to 20: Deri. log prob (.1%) per cm (1000.\*DP/P/cm) + 1000  
 + 7 Bitted word:  
 bits 1 to 10:  $\langle \sigma_c \rangle$  (mrad) for **muon** hypothesis  
 bits 11 to 20:  $\sigma_c$  (units 0.1 mrad)  
 + 8 Bitted word:  
 bits 1 to 7: Number of photoelectrons within  $\pm 3 \sigma$  ( $\sigma = .015$ )  
 bits 8 to 14: Number of expected photoelectrons  
 bits 15 to 22: muon probability ( 1.%)  
 + 9 Bitted word:  
 bits 1 to 10: Deri. of average Cerenkov angle in mrad/cm +1000  
 bits 11 to 20: Deri. log prob (.1%) per mm (10.\*DP/P/cm) + 1000  
 +10 Bitted word:  
 bits 1 to 10:  $\langle \theta_c \rangle$  (mrad) for **pion** hypothesis  
 bits 11 to 20:  $\sigma_c$  (units 0.1 mrad)  
 +11 Bitted word:  
 bits 1 to 7: Number of photoelectrons within  $\pm 3 \sigma$  ( $\sigma = .015$ )  
 bits 8 to 14: Number of expected photoelectrons  
 bits 15 to 22: pion probability ( 1.%)  
 +12 Bitted word:  
 bits 1 to 10: Deri. of average Cerenkov angle in mrad/cm +1000  
 bits 11 to 20: Deri. log prob (.1%) per mm (10.\*DP/P/cm) + 1000  
 +13 Bitted word:  
 bits 1 to 10:  $\langle \theta_c \rangle$  (mrad) for **kaon** hypothesis  
 bits 11 to 20:  $\sigma_c$  (units 0.1 mrad)  
 +14 Bitted word:  
 bits 1 to 7: Number of photoelectrons within  $\pm 3 \sigma$  ( $\sigma = .015$ )  
 bits 8 to 14: Number of expected photoelectrons  
 bits 15 to 22: kaon probability ( 1.%)  
 +15 Bitted word:  
 bits 1 to 10: Deri. of average Cerenkov angle in mrad/cm +1000  
 bits 11 to 20: Deri. log prob (.1%) per mm (10.\*DP/P/cm) + 1000  
 +16 Bitted word:  
 bits 1 to 10:  $\langle \theta_c \rangle$  (mrad) for **proton** hypothesis  
 bits 11 to 20:  $\sigma_c$  (units 0.1 mrad)  
 +17 Bitted word:  
 bits 1 to 7: Number of photoelectrons within  $\pm 3 \sigma$  ( $\sigma = .015$ )  
 bits 8 to 14: Number of expected photoelectrons  
 bits 15 to 22: proton probability ( 1.%)  
 +18 Bitted word:  
 bits 1 to 10: Deri. of average Cerenkov angle in mrad/cm +1000  
 bits 11 to 20: Deri. log prob (.1%) per mm (10.\*DP/P/cm) + 1000

### Gas radiator info:

At address N0 = IP+18 if liquid info is there,  
 N0 = IP+ 1 if no liquid (see IP+1)

N0 + 1 Bitted word:  
 bit 1 : 0 for Barrel RICH, 1 for Forward RICH  
 bit 2 : 0 for liquid, 1 for gas radiator  
 bits 3 to 8 : sector number (from 1 to 48 for BRICH,  $15^\circ$  sectors)  
 (from 1 to 24 for FRICH,  $30^\circ$  sectors)

bits 9 to 11 : first mirror number (from 1 to 6 for BRICH)  
 (from 1 to 5 for FRICH)  
 bits 12 to 22 : Qualification number  
*17 words for gas radiator follow. If no liquid (bit1=1), those words are skipped.*  
 + 2      Sum of absolute probabilities (before normalization)  
 + 3      Bitted word:  
     bits 1 to 11 : Total number of photons between e and p rings (in  $\pm 3\sigma$ )  
     bits 12 to 22 : Fitted background for the best hypothesis  
 + 4      Bitted word:  
     bits 1 to 10 :  $\langle \theta_c \rangle$  (mrad) for **electron** hypothesis  
     bits 11 to 20 :  $\sigma_c$  (units 0.1 mrad)  
 + 5      Bitted word:  
     bits 1 to 7 : Number of photoelectrons within  $\pm 3\sigma$  ( $\sigma = .005$ )  
     bits 8 to 14 : Number of expected photoelectrons  
     bits 15 to 22 : Electron probability ( 1.%)  
 + 6      Bitted word:  
     bits 1 to 10 : Deri. of average Cerenkov angle in mrad/cm+1000  
     bits 11 to 20 : Deri. log prob (.1%) per mm ( $10.*DP/P/cm$ ) + 1000  
 + 7      Bitted word:  
     bits 1 to 10 :  $\langle \theta_c \rangle$  (mrad) for **muon** hypothesis  
     bits 11 to 20 :  $\sigma_c$  (units 0.1 mrad)  
 + 8      Bitted word:  
     bits 1 to 7 : Number of photoelectrons within  $\pm 3\sigma$  ( $\sigma = .005$ )  
     bits 8 to 14 : Number of expected photoelectrons  
     bits 15 to 22 : muon probability ( 1.%)  
 + 9      Bitted word:  
     bits 1 to 10 : Deri. of average Cerenkov angle in mrad/cm+1000  
     bits 11 to 20 : Deri. log prob (.1%) per mm ( $10.*DP/P/cm$ ) + 1000  
 +10     Bitted word:  
     bits 1 to 10 :  $\langle \theta_c \rangle$  (mrad) for **pion** hypothesis  
     bits 11 to 20 :  $\sigma_c$  (units 0.1 mrad)  
 +11     Bitted word:  
     bits 1 to 7 : Number of photoelectrons within  $\pm 3\sigma$  ( $\sigma = .005$ )  
     bits 8 to 14 : Number of expected photoelectrons  
     bits 15 to 22 : pion probability ( 1.%)  
 +12     Bitted word:  
     bits 1 to 10 : Deri. of average Cerenkov angle in mrad/cm+1000  
     bits 11 to 20 : Deri. log prob (.1%) per mm ( $10.*DP/P/cm$ ) + 1000  
 +13     Bitted word:  
     bits 1 to 10 :  $\langle \theta_c \rangle$  (mrad) for **kaon** hypothesis  
     bits 11 to 20 :  $\sigma_c$  (units 0.1 mrad)  
 +14     Bitted word:  
     bits 1 to 7 : Number of photoelectrons within  $\pm 3\sigma$  ( $\sigma = .005$ )  
     bits 8 to 14 : Number of expected photoelectrons  
     bits 15 to 22 : kaon probability ( 1.%)  
 +15     Bitted word:  
     bits 1 to 10 : Deri. of average Cerenkov angle in mrad/cm+1000  
     bits 11 to 20 : Deri. log prob (.1%) per mm ( $10.*DP/P/cm$ ) + 1000  
 +16     Bitted word:  
     bits 1 to 10 :  $\langle \theta_c \rangle$  (mrad) for **proton** hypothesis  
     bits 11 to 20 :  $\sigma_c$  (units 0.1 mrad)  
 +17     Bitted word:  
     bits 1 to 7 : Number of photoelectrons within  $\pm 3\sigma$  ( $\sigma = .005$ )

bits 8 to 14 : Number of expected photoelectrons  
 bits 15 to 20 : proton probability ( 1.%)  
 +18 Bitted word:  
 bits 1 to 10 : Deri. of average Cerenkov angle in mrad/cm+1000  
 bits 11 to 20 : Deri. log prob (.1%) per mm (10.\*DP/P/cm)+ 1000

### Track parameters at the entry of RICH

At address N1 = N0+18 if gas info is there,  
 N1 = N0+ 1 if no gas (see N0+1)

Either Barrel-RICH (R=123.cm):

N1 + 1  $R\phi$   
 + 2 Z  
 + 3  $\vartheta$   
 + 4  $\varphi$   
 + 5 1/P  
 + 6 Squared error on  $R\phi$ ,  $\sigma_{R\phi}^2$   
 + 7 Squared error on Z,  $\sigma_z^2$   
 + 8 Squared error on  $\vartheta$ ,  $\sigma_\vartheta^2$   
 + 9 Squared error on  $\varphi$ ,  $\sigma_\varphi^2$   
 + 10 Squared error on 1/P,  $\sigma_{1/p}^2$   
 + 11 X coordinate (from extrapolation)  
 + 12 Y coordinate (from extrapolation)  
 + 13 Z coordinate (from extrapolation)  
*Up to version 3.02:*  
 + 14 Same Z as in (N1+13), but coming from RICH  $dE/dx$   
*Since version 3.03:*  
 + 14 Same X as in (N1+11), but coming from RICH  $dE/dx$   
 + 15 Same Y as in (N1+12), but coming from RICH  $dE/dx$   
 + 16 Same Z as in (N1+13), but coming from RICH  $dE/dx$

Or forward-RICH ( |Z| = 172.cm):

N1 + 1 X  
 + 2 Y  
 + 3  $\vartheta$   
 + 4  $\varphi$   
 + 5 1/P  
 + 6 Squared error on X,  $\sigma_x^2$   
 + 7 Squared error on Y,  $\sigma_y^2$   
 + 8 Squared error on  $\vartheta$ ,  $\sigma_\vartheta^2$   
 + 9 Squared error on  $\varphi$ ,  $\sigma_\varphi^2$   
 + 10 Squared error on 1/P,  $\sigma_{1/p}^2$   
 + 11 X coordinate when leaving the drift tube (X\_track)  
 + 12 Y coordinate when leaving the drift tube (Y\_track)  
 + 13 Z coordinate when leaving the drift tube (Z\_track)  
 + 14 unused  
*Since version 3.03:*  
 + 15 unused  
 + 16 unused

### DST extension, global part

### Liquid radiator part

At address  $N2 = N1+14$  (or  $N1+16$  since version 3.03 )

- N2 + 1 Refractive index for liquid (0 if no liquid information)
- + 2 Number of expected photons,  $e$  hypothesis
- + 3 Number of expected photons,  $\mu$  hypothesis
- + 4 Number of expected photons,  $\pi$  hypothesis
- + 5 Number of expected photons,  $K$  hypothesis
- + 6 Number of expected photons,  $p$  hypothesis

### Gas radiator part

At address  $N3 = N2+6$  if liquid, else  $N3 = N2+1$

- N3 + 1 Refractive index for gas (0 if no gas information)
- + 2 Number of expected photons,  $e$  hypothesis
- + 3 Number of expected photons,  $\mu$  hypothesis
- + 4 Number of expected photons,  $\pi$  hypothesis
- + 5 Number of expected photons,  $K$  hypothesis
- + 6 Number of expected photons,  $p$  hypothesis

*Up to version 3.05, and since version 3.12:*

- At address  $N4 = N3+7$  if gas, else  $N4 = N3+2$
- N4 + 0 Number of points around the track in a cylinder of 2 cm.  
(only for use of barrel RICH)
- Since version 3.06, and up to 3.11:*
- At address  $N4 = N3+6$  if gas, else  $N4 = N3+1$

### DST extension, photon first part

At address  $N4$

- N4 + 1 NPL, number of photons from the liquid radiator
- Then for each photon IPL (IPL=1,NPL), at address  $NL = N4+IPL+1$
- NL + 0 Bitted word:
  - bits 1 to 10 : Cerenkov angle  $\theta_C$  (mrad)
  - bits 11 to 16 : Error on the Cerenkov angle:  $2 \times \sigma_\theta$  (mrad)
  - bits 17 to 22 : Position of the photon on the Cerenkov ring  $10 \times \phi_C$  (rad)

At address  $N5 = N4+NPL+1$

- N5 + 1 NPG, number of photons from the gas radiator
- Then for each photon IPG (IPG=1,NPG), at address  $NG = N5+IPG+1$
- NG + 0 Bitted word:
  - bits 1 to 10 : Cerenkov angle per photon  $\theta_C$  (mrad)
  - bits 11 to 16 : Error on the Cerenkov angle:  $2 \times \sigma_\theta$  (mrad)
  - bits 17 to 22 : Position of the photon on the Cerenkov ring:  $10 \times \phi_C$  (rad)

*Since version 3.06:*

### DST extension, photon second part

At address  $N6 = N5+NPG+1$

- For each photon from liquid,IPL (IPL=1,NPL), at address  $NL = N6+IPL$
- NL + 0 Bitted word:
  - bits 1 to 10 : Photon identification :  $ID = 5*IDsec + Dsec + 2$   
(IDsec = unique identifier in a  $15^\circ$  sector,  
Dsec = sector number relative to the track entry point)
  - bits 11 to 17 : Conversion probability
  - bit 18 (for BRICH) : Member of a  $R\phi$  cluster
  - bit 19 (for BRICH) : at least 2 other hits are close to this hit

At address  $N7 = N6+NPL+1$   
 For each photon from Gas, IPG (IPG=1,NPG), at address  $NG = N7+IPG$   
 NG + 0 Bitted word:  
 bits 1 to 10 : Photon identification : ID=  $5*IDsec + Dsec + 2$   
 ( $IDsec$  = unique identifier in a  $15^\circ$  sector,  
 $Dsec$  = sector number relative to the track entry point)  
 bits 11 to 17 : Conversion probability (%)/cm)  
 bit 18 (for BRICH) : Member of a  $R\phi$  cluster  
 bit 19 (for BRICH) : at least 2 other hits are close to this hit

*Since version 3.12:*

**DST extension, selected volume in the detector**

At address  $N8 = N7+NPG$   
 N8 + 1 Volume selected for the liquid analysis  
 + 2 Volume selected for the gas analysis

*FORMAT SINCE VERSION 3.30:*

LENGTH: variable = 1 + 4 words for gas or/and 4 words for liquid RICH, +17 words of track information.

CONTENT (at address IP)

IP + 0 Label of the module, = 6

**Liquid radiator info:**

- + 1 Refractive index  
 If no liquid radiator info, this word is =0, and  $N_{liq}=1$ , else  $N_{liq}=4$
- + 2 Sum of absolute probabilities
- + 3 Selected volume in the drift box
- + 4 **BRICH:R** of the emission point; **FRICH:Z** of the emission point

**Gas radiator info:**

At address  $IP2 = IP+N_{liq}$ :  
 IP2 + 1 Refractive index  
 If no gas radiator info, this word is =0, and  $N_{gas}=1$ , else  $N_{gas}=4$   
 + 2 Sum of absolute probabilities  
 + 3 Selected volume in the drift box  
 + 4 **BRICH:R** of the emission point; **FRICH:Z** of the emission point

**Track parameters at RICH entry**

At address  $IP3 = IP2 + N_{gas}$

Either Barrel-RICH (R=123.cm):  
 IP3 + 1  $R\phi$   
 + 2  $Z$   
 + 3  $\vartheta$   
 + 4  $\varphi$   
 + 5  $1/P$   
 + 6 Squared error on  $R\phi$ ,  $\sigma_{R\phi}^2$

- + 7 Squared error on  $Z$ ,  $\sigma_z^2$
- + 8 Squared error on  $\vartheta$ ,  $\sigma_\vartheta^2$
- + 9 Squared error on  $\varphi$ ,  $\sigma_\varphi^2$
- + 10 Squared error on  $1/P$ ,  $\sigma_{1/p}^2$

Or forward-RICH ( $|Z| = 172\text{cm}$ ):

- IP3    + 1 X
- + 2 Y
- + 3  $\vartheta$
- + 4  $\varphi$
- + 5  $1/P$
- + 6 Squared error on X,  $\sigma_x^2$
- + 7 Squared error on Y,  $\sigma_y^2$
- + 8 Squared error on  $\vartheta$ ,  $\sigma_\vartheta^2$
- + 9 Squared error on  $\varphi$ ,  $\sigma_\varphi^2$
- + 10 Squared error on  $1/P$ ,  $\sigma_{1/p}^2$

#### Track coordinates at exit of the sensitive volume

- IP3    + 11 X (from extrapolation)
- + 12 Y (from extrapolation)
- + 13 Z (from extrapolation)
- + 14 X (from ionization)
- + 15 Y (from ionization)
- + 16 Z (from ionization)
- + 17 Number of hits from ionization

## PA MODULES MTPC MODULE (7)

LENGTH: variable

CONTENT (at address IP)

|    |     |                                                                                                                                                              |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP | + 0 | Label of the module , = 7                                                                                                                                    |
|    | + 1 | $dE/dx$ measured in the TPC: Mean value of the 80% lowest amplitudes, normalised to 1. for Minimum Ionizing Particles.<br>(Computed with maximum amplitudes) |
|    | + 2 | Sigma of the Landau distribution                                                                                                                             |

*The following two words are there only for historical reason.*

|     |                                                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + 3 | Flag telling if the track has seen a shower in the OD                                                                                                       |
| + 4 | "HPC flag" (last word of HPC TER)                                                                                                                           |
| + 5 | NEXTTPC, number of words (including this wordcount)<br>in the TER extension of the TPC, dedicated to $dE/dx$ .<br>(14)                                      |
| + 6 | Number of pad points in the track<br>+ 100*TPC sector number of the start of the track<br>+ 10000*TPC sector number of the end of the track                 |
| + 7 | <i>Up to version 304:</i> Number of wires crossed by the track<br><i>Since version 305:</i> 1000*Number of wires crossed by the track + number of hit wires |
| + 8 | Number of wires used in the $dE/dx$                                                                                                                         |
| + 9 | Number of saturated hits inside the truncation                                                                                                              |

*Up to version 304:*

|      |                                                             |
|------|-------------------------------------------------------------|
| + 10 | Mean width of the time clusters                             |
| + 11 | 65% $dE/dx$ (Integrated amplitudes)                         |
| + 12 | 80% $dE/dx$ (Integrated amplitudes)                         |
| + 13 | Average gap                                                 |
| + 14 | R.m.s. of the gaps                                          |
| + 15 | Mean $\sin^2$ of the angle of the track with the wires.     |
| + 16 | Mean distance to sector edge.<br><i>Since version 2.52:</i> |
| + 17 | Mean drift distance of the track                            |
| + 18 | TPC pressure.                                               |

*From version 3.05 up to version 3.31:*

|      |                                                                                                                                                                                                                      |                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| + 10 | Average gap                                                                                                                                                                                                          | (cm)               |
| + 11 | Average distance of the track to the edges of the sector, in $R\phi$ plane.                                                                                                                                          | (cm)               |
| + 12 | TPC pressure                                                                                                                                                                                                         | (mbar)             |
| + 13 | Normalization factor used to convert the integrated amplitude measurement<br>to normalized $dE/dx$                                                                                                                   | (around 200.-250.) |
| + 14 | Ratio between normalization factors used for the integrated amplitude (given in +13)<br>and for the maximum amplitude measurement                                                                                    | (1-15)             |
| + 15 | Number of wires used in the $Z$ fit of the track                                                                                                                                                                     |                    |
| + 16 | $\chi^2$ of the $Z$ fit                                                                                                                                                                                              |                    |
| + 17 | 80% $dE/dx$ (Integrated amplitudes) ( <i>wrong (=0.) up to version 3.15</i> )                                                                                                                                        |                    |
| + 18 | Track bit pattern :<br>Bits 1-16 : pad rows hit by the track (row A =bit 1, . . . , row P = bit 16)<br>Bits 17-20 : For flagged $V^0$ : Number of the first hit pad row<br>0 means no $V^0$ detected with this track |                    |

*Since version 2.60:*

Two user routines are provided in PXDST first, then in HADIDENT, to cope with different versions of  $dE/dx$  analysis on the DST:

**PXDMTP**(IP,DEDX,SIGM,NWIR) returns the DEDX normalised value (Minimum Ionising particles at 1.), the sigma of the distribution and the number of wires (-1 if not available) used in the analysis, for DELANA\_D processing of '91 data (production with version  $< 2.68$  ).

**PXDEDX**(P,M,DEDX,DSURP) returns the expected DEDX normalised value for a given mass M and momentum P, together with the derivative of DEDX with respect to P.

*Since version 2.83:*

**PXEMTP**(IP,DEDX,SIGM,NWIR,ERROR) returns the DEDX normalised normalised value (Minimum Ionising particles at 1.), the sigma of the distribution and the number of wires (-1 if not available) used in the analysis, for DELANA\_E processing of '91 data (production with version  $\geq 2.68$  ). The error flag (0.=OK) is set to -1 if it is called for an older version of DST.

This routine is called by PXDMTP for the DST produced by 91'DELANA\_E.

FORMAT SINCE VERSION 3.32:

|    |      |                                                                                                                                                                                                                            |        |
|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IP | + 0  | Label of the module                                                                                                                                                                                                        | (7)    |
|    | + 1  | $dE/dx$ measured in the TPC: Mean value of the 80% lowest amplitudes, normalised to 1. for Minimum Ionizing Particles.<br>(Computed using maximum amplitudes of the clusters)                                              |        |
|    | + 2  | Sigma of the 80% truncated Landau distribution                                                                                                                                                                             |        |
|    | + 3  | Same as +1, with truncation to 65 %                                                                                                                                                                                        |        |
|    | + 4  | Same as +2, with truncation to 65 %                                                                                                                                                                                        |        |
|    | + 5  | Same as +1, but using integrated amplitudes of the clusters                                                                                                                                                                |        |
|    | + 6  | Number of pad points in the track<br>+ 100*TPC sector number of the start of the track<br>+ 10000*TPC sector number of the end of the track                                                                                |        |
|    | + 7  | Number of wires crossed by the track<br>+ 1000*number of hit wires, with a "close cluster"<br>+ 1000000*method (1=good hit only, 2=include hits from the edge)                                                             |        |
|    | + 8  | Total number of wires used<br>+1000*number of usable hits at the TPC edge                                                                                                                                                  |        |
|    | + 9  | Number of wires with saturated amplitude (before truncation)<br>+1000*number of empty hits kept                                                                                                                            |        |
|    | + 10 | Average gap (after 80 % truncation)                                                                                                                                                                                        |        |
|    | + 11 | Mean distance to the sector edge (after 80 % truncation)                                                                                                                                                                   |        |
|    | + 12 | Number of wire hits used in the Z fit of the track                                                                                                                                                                         |        |
|    | + 13 | $\chi^2$ of the Z fit                                                                                                                                                                                                      |        |
|    | + 14 | Track bit pattern for $V^0$ :<br>Bits 1-16 : pad rows hit by the track (row A =bit 1, ..., row P = bit 16)<br>Bits 17-20 : For flagged $V^0$ : Number of the first hit pad row<br>0 means no $V^0$ detected for this track | (1-15) |
|    | + 15 | Average distance in Z between the wire clusters                                                                                                                                                                            |        |
|    | + 16 | Mean $dE/dx$ associated to the empty hits (maximum amplitudes)                                                                                                                                                             |        |
|    | + 17 | First and last wire seen by the track, with the sector number<br>(non empty wires, selected or not) :<br>bits 1- 8 : first wire                                                                                            |        |

- bits 9-13 : first sector
- bits 14-21 : last wire
- bits 22-26 : last sector
- + 18 Average undershoot correction (for the full Landau distribution)

Then follow informations needed to compute all moments up to the 3rd order of the full Landau distribution, calculated with maximum amplitudes.

- + 19  $\langle dEdx/corgap \rangle$
- + 20  $\langle dEdx/\sqrt{corgap} \rangle$
- + 21  $\langle dEdx^2/corgap \rangle$
- + 22  $\langle dEdx/corgap^{1/3} \rangle$
- + 23  $\langle dEdx^2/corgap^{2/3} \rangle$
- + 24  $\langle dEdx^3/corgap \rangle$

The words 25 to 28 are there only when overlapping between two tracks occur.  
A check on the blocklet size is needed to ensure their presence.

Two possible meanings are possible for words +25 to +27, depending on the sign of the word +28:

If word +28 is positive:

- + 25 Number of hits kept which are common to two tracks  
+1000\*number of saturated hits in the full Landau
- + 26  $dE/dx$  of the full Landau using the hits common to two tracks
- + 27 Sigma of the full Landau using the hits common to two tracks

If word +28 is negative:

- + 25 Average gap of the clusters contributing to the 80% lowest amplitudes
- + 26  $dE/dx$  of the 80% truncated distribution of the hits common to two tracks
- + 27 Sigma of the 80% truncated distribution of the hits common to two tracks
- + 28 (Current track index  
+1000\*index of the track with hits common to the current one)  
\*(+1 or -1), depending on the meaning to attribute to words +25 to +27

**PA MODULES**  
**TRAC MODULE (8)**

LENGTH: 21 words

This module is needed for the use of the routine PXFVRT which compute the intersection point of a given number of tracks.

CONTENT (at address IP)

|           |                                        |
|-----------|----------------------------------------|
| IP + 0    | Label of the module , =8               |
| + 1 to 5  | Parameters of the track at the perigee |
| + 6 to 20 | Weight matrix for those parameters     |

**PA MODULES**  
**TOF MODULE (9)**

LENGTH : 9 words

CONTENT (at address IP)

IP + 0 Label of the module , = 9

+ 1 Detector identifier

+ 2 Counter number

+ 3  $R\phi$  coordinate

+ 4 Z coordinate

+ 5 Time of flight

+ 6 Error on Time of flight

*For data before 1995:*

+ 7 =External TDC + 256\*(external ADC)

+ 8 =Internal TDC + 256\*(internal ADC)

*For data since 1995:*

+ 7 =External TDC + 8192\*(external ADC)

+ 8 =Internal TDC + 8192\*(internal ADC)

*Since version 2.55:*

+ 9 Extrapolated Z coordinate

*Since version 2.67:*

+10 Time of flight measured with TDC multihit

+11 Third level trigger information (T3 level):

1. = Cosmic

2. = Unknown

3. =  $Z^0$

*Since version 2.82:*

+10 TOF quality flag

+11 *For data before 1995:*

= (TOF measurement with MultiHit TDC) + 1024\*(T3 level)

*For data since 1995:*

Codification of the second hit in the TDC-MH channel

= ( TDCext(1st hit) - TDCext(2nd hit) )

+ 8192\*( TDCint(1st hit) - TDCint(2nd hit) )

*(This word is there if a second hit not later than 100 ns after the first one is detected in a given channel.)*

**PA MODULES**  
**TDHA MODULE (11)**

LENGTH: variable

This module contains individual TD info for hadronic calorimeter data associated to an isolated track. It is specially intended for a better identification of muons.

The coordinates given in this module are either at constant R, for Barrel, or at constant Z, for End-caps.

CONTENT (at address IP)

IP + 0 Label of the module, = 11  
+ 1 NLAY , number of layers in HCAL

For each layer, the first at address JL = IP+1:

JL + 1 Length of the data block for this layer = 9+4\*NTD  
+ 2 Layer number  
+ 3 Location: 0. = Barrel , 1. = End-cap  
+ 4 X/R  
+ 5 Y/R $\phi$   
+ 6 Z | -> For the extrapolated track  
+ 7  $\vartheta$   
+ 8  $\varphi$   
+ 9 NTD, number of associated TD's in this layer

For each associated TD: the first at address

JT = JL+9:

JT + 1 X/R  
+ 2 Y/R $\phi$   
+ 3 Z  
+ 4 E

## PA MODULES

**TEID MODULE (12)**  
**TETP MODULE (13)**  
**TEOD MODULE (14)**  
**TEFB MODULE (16)**  
**TERF MODULE (21)**  
**TEST MODULE (41)**  
**TEVF MODULE (42)**

LENGTH : variable.

Those modules contains extra informations from the TER's associated to the TK of the track.

CONTENT (at address IP)

IP + 0 Label of the module, =12 for Inner Detector  
 13 for T.P.C.  
 14 for Outer Detector  
 15 for F.C.A.  
 16 for F.C.B.  
 21 for Forward RICH  
 41 for Straw tubes  
 42 for Very Forward Tracker

*(since version 3.18)*  
*(since version 3.34)*  
*(since version 3.36)*

*Since version 2.87:*

to this label is added the quantity 0.1\*stage, where stage is 1 or 2, defining the stage at which the TE was created.

A particular case is for ID: stage 1 (label 12.1) means jet chamber TE, and stage 2 (label 12.2) means trigger layer TE.

+ 1 Data descriptor of the TE + Measurement code  
 + 2 Coordinate 1  
 + 3 Coordinate 2  
 + 4 Coordinate 3  
 + 5  $\vartheta$   
 + 6  $\varphi$   
 + 71/P or 1/Pt at reference point  
 + 8 to m+7 Error matrix on the measured quantities. The number of elements depends on what is measured, as given by the measurement code

*<TER(10)>*  
*<TER(11)>*  
*<TER(12)>*  
*<TER(13)>*  
*<TER(14)>*  
*<TER(15)>*

*Since version 2.51:*  
 m+ 8 Number of degrees of freedom  
 m+ 9  $\chi^2$   
 m+10 Length of the track

## PA MODULES

### TDID MODULE (17)

LENGTH: 24 words

This module is filled for tracks useful for the Inner Detector calibration: momentum above 2.  $\text{GeV}/c$ , TE in TPC and in ID jet part.

This module is introduced *since version 2.64*

CONTENT (at address IP)

IP + 0 Label of the module , = 17

+ 1 I.D. jet sector number, which contains the track. The sign of this number is related to the drift direction:

+ for clockwise,  
- for anti-clockwise.

Then for each wire iw (1 to 24):

+ 1+iw Raw drift time for the wire. If this time is not available in the TD, a "scaled" drift time is given, with a minus.sign.

**PA MODULES**  
**SAT MODULE (18)**

LENGTH: variable,  $= 2 + NS * (2 + 3 * NDET)$  , where:

NS is the number of associated showers

NDET is the number of SAT detector in each shower.

(This number is shower dependent, then the total length is in fact:  $2 + NS(2 + 3 * NDET(is))$ , is being the shower index)

*This module is introduced since version 2.84*

CONTENT (at address IP)

|                                                   |                                                                    |
|---------------------------------------------------|--------------------------------------------------------------------|
| IP                                                | + 0 Label of the module, = 18                                      |
|                                                   | + 1 NS, number of associated showers                               |
| Then for each shower, the first at address J=IP+1 |                                                                    |
| J                                                 | + 1 Length of this shower information block                        |
|                                                   | + 2 Z coordinate of the shower                                     |
|                                                   | + 3 R coordinate of detector 1 contributing to the shower          |
|                                                   | + 4 R $\phi$ coordinate of detector 1 contributing to the shower   |
|                                                   | + 5 Energy in detector 1 contributing to the shower                |
|                                                   | :                                                                  |
|                                                   | + 3*(IDET-1) + 3 R coordinate of detector IDET contribution        |
|                                                   | + 3*(IDET-1) + 4 R $\phi$ coordinate of detector IDET contribution |
|                                                   | + 3*(IDET-1) + 5 Energy in detector IDET contribution              |

## PA MODULES

### STIC MODULE (19)

LENGTH: variable,  $= 3 + \sum_{i=1}^{NS} (9 + NASS_i + 2 * NH_i)$ ,  $i = 1, NS$  being the shower index.  
*Since version 3.18:* Length  $= 3 + \sum_{i=1}^{NS} (10 + NASS_i + 2 * NH_i + 17)$

Where  $NASS_i$  is the length of associated showers list;

$NH_i$  is the number of hits for  $i$ -th shower;

$NS$  is the total number of showers detected.

*This module is introduced since version 3.07*

CONTENT (at address IP)

IP +0 Label of the module, = 19  
 +1 Number of showers detected, NS  
 +2 STIC trigger bits (packed word):  
     Bhabha + 4\*Single arm forward + 16\*Single arm backward +  
     64\*Multiplicity bits forward + 256\*Multiplicity bits backward

Then for each shower, at address J, the first shower being at  $J = IP + 2$ :

J +1 Length of this shower information block:  $9 + (NA_i - 1)/2 + 1 + 2 * NH_i$   
*Since version 3.18:*  $10 + (NA_i - 1)/2 + 1 + 2 * NH_i + 4$   
 +2 Sub-detector identifier:  
     1 for calorimeter part for positive Z and 2 for negative;  
     3 for first silicon layer for positive Z and 4 for second layer;  
     5 for first silicon layer for negative Z and 6 for second layer;  
     7 for veto detector for positive Z and 8 for negative.

Then shower descriptor (two packed words):

+3  $FLOAT(IS_i + 1000 * NH_i)$   
 $IS_i$  is the shower identifier (it is an integer value from 1 to 999);  
 $NH_i$  is the number of hits for this shower.  
 +4  $FLOAT(IQ_i + 1000 * NA_i)$   
 $IQ_i$  is the quality flag for this shower:  
 0 - for good (separated) shower, 1 - for cluster, 2 - for bad shower.  
 $NA_i$  is number of showers from another sub-detectors associated with the current one.

|    |                             |               |
|----|-----------------------------|---------------|
| +5 | Energy of this shower       | (GeV)         |
| +6 | $R$                         | (cm)          |
| +7 | $R * \phi$                  | (cm * radian) |
| +8 | $Z$                         | (cm)          |
| +9 | Mass identifier from DELANA |               |

*Since version 3.18:*

+10 Charge identifier from the Veto Counter:  
 0=neutral; 3=positive or negative; 4=no Veto identification

Then for this shower: List of showers from another sub-detectors associated with the current one. The size of this list is  $NASS_i = \text{INT}((NA_i - 1)/2 + 1)$  word(s).  $NASS_i$  is zero if no associated shower exists.

Each word is packed in the following way:

At address JS=J+9 (*since version 3.18*, JS=J+10):

JS +1                     $FLOAT(IS_1 + 1000 * IS_2)$  where  $IS_1$  and  $IS_2$  are identifiers of associated showers;  
 +2 (if exists)     $FLOAT(IS_3 + 1000 * IS_4)$  where  $IS_3$  and  $IS_4$  are identifiers of associated showers.  
 and so on for  $IS_i$  going from 1 to  $NA_i$ .

Then for each calorimeter hit for this shower ( $nc = 1, NH_i$  being the hit index):

JS + $NASS_i + 2 * (nc - 1) + 1$  Energy deposited for this hit (GeV);  
 +2  $IPHI + ITHE * 100$  for this hit,  
 where  $IPHI$  is this hit  $\phi$  number and  
 $ITHE$  is this hit  $\theta$  number (tower units).

*SINCE VERSION 3.18:*

The Veto counter and silicon strips data are added:

Then the Veto counter data for this shower, at address  $K = JS + 2 * NH_i$ :  
 $K + 1$  Numbers of three Veto counters(in the 1-st Veto plane) which are associated to the current calorimeter shower. These numbers are packed in the following way:  $N_{left} + 100. * N_{center} + 10000. * N_{right}$ . Here  $N_{center}$  is the number of the central Veto counter which corresponds to the given calorimeter shower.  $N_{left}$  and  $N_{right}$  are the numbers of it's neighbours. This word is zero if no Veto counter information is available.

Then Veto counter signals (after a pedestal subtraction and  $3\sigma$  cut) for six sectors: three sectors from each plane ( $S_{left}^1, S_{center}^1, S_{right}^1$  for the first plane and  $S_{left}^2, S_{center}^2, S_{right}^2$  for the second one); to put two signals into one word all data are limited at the level of 999 ADC counts.

$K + 2$   $1000. * S_{left}^1 + S_{center}^1$   
 3     $1000. * S_{right}^1 + S_{left}^2$   
 4     $1000. * S_{center}^2 + S_{right}^2$

Then 5 data words from additional Veto counter sub-detectors (Small veto counter and the second ADC). This information is absent at the DST for 1994-95 data taking (for runs  $< 64800$ ).

$K + 5$   $1000. * S_{small}^1 + S_{small}^2$  signals from the Small veto counter in the correspondent arm for the 1-st ADC (data are limited at the level of 999 ADC counts)  
 6     $1000. * S_{left}^1 + S_{center}^1$  for the 2-nd Veto ADC  
 7     $1000. * S_{right}^1 + S_{left}^2$  for the 2-nd Veto ADC  
 8     $1000. * S_{center}^2 + S_{right}^2$  for the 2-nd Veto ADC  
 9     $1000. * S_{small}^1 + S_{small}^2$  for the 2-nd Veto ADC

Then the silicon strips data for two clusters associated with this calorimeter shower, at address  $S = K + 4$  or  $K+9$ :

$S + 1$  Silicon reconstruction flag:  $N_1 + 100 \times N_2$ . Here  $N_1$  is the total number of silicon clusters in the 1-st silicon plane associated with the current calorimeter shower and  $N_2$  is the same number for the 2-nd silicon plane.

then (if  $N_1 > 0$  or  $N_2 > 0$ ) for the most energetic silicon cluster associated with the calorimeter shower:

- + 2  $\theta$  angle reconstructed by the 1-st silicon plane
- + 3  $\varphi$  angle reconstructed by the 1-st silicon plane
- + 4 Maximum signal in the 1-st silicon plane cluster
- + 5  $\theta$  angle reconstructed by the 2-nd silicon plane
- + 6  $\varphi$  angle reconstructed by the 2-nd silicon plane
- + 7 Maximum signal in the 2-nd silicon plane cluster

then (if  $N_1 > 1$  or  $N_2 > 1$ ) for the second energetic silicon cluster associated with the calorimeter shower:

- + 8  $\theta$  angle reconstructed by the 1-st silicon plane
- + 9  $\varphi$  angle reconstructed by the 1-st silicon plane
- + 10 Maximum signal in the 1-st silicon plane cluster
- + 11  $\theta$  angle reconstructed by the 2-nd silicon plane
- + 12  $\varphi$  angle reconstructed by the 2-nd silicon plane
- + 13 Maximum signal in the 2-nd silicon plane cluster

## PA MODULES TRAX MODULE (20)

LENGTH: variable

This module contains some informations from track extrapolation:

- at first measured point
- the extrapolation surface directly in front of it
- on the named detectors

Points are arranged in the order of increasing R (barrel) or  $|Z|$  (endcap), with barrel points first

*This module is introduced since version 3.31*

CONTENT (at address IP)

IP +0 Label of the module, = 20

+1 Number of extrapolated surfaces on which a point is given (NSURFX)

Then at address JPNT1 = IP+2:

JPNT1 +0 Number of following words for the first point, NDAT1 (=8 or 23)

+1 ID of the corresponding detector

+2 Coordinate system flag, IBAR: 1 for R-R $\phi$ -Z, 0 for X-Y-Z

+3 R (or X) coordinate

+4 R $\phi$  (or Y) coordinate

+5 Z coordinate

+6  $\theta$  of the track

+7  $\varphi$  of the track

+8 signed 1/P

+9 to +18 : 15 words of covariance matrix for MUB/MUF/MUS, only if there is any associated signal in MU detectors.

Then at address JPNT2 = JPNT1+NDAT1+1:

JPNT2 +0 Number of following words for the second point, NDAT2 (=8 or 23)

+1 ID of the corresponding detector

:

JPNTL +0 Number of following words for the last point, NDATL (=8 or 23)

:

JPNTL+NDATL+1 = 0, end of the point list

# **SH BANK**

0      Structural link  
n      Reference link  
N      data

**Link LQSH = LQ(LDTOP-3)**

## DATA CONTENT

This bank contains the complete SH structure (Simulation History) from the simulation. See the DELSIM manual for a complete description.

The links from SH to PA and reverse have been re-established *since version 2.68*

LQ(LQSH-4) points to the simulated PA bank

LQ(LQPA-3) points to the generated SH bank (LQPA is a simulated PA)

|                                            |
|--------------------------------------------|
| <b>INITIAL <math>e^+e^-</math> BANK</b>    |
| <b>FINAL <math>e^+e^-</math> BANK</b>      |
| <b><math>l\bar{l}/q\bar{q}</math> BANK</b> |

0      Structural link  
 0      Reference link  
 9      data

Link **LQINEE = LQ(LDTOP-4)**  
 Link **LQFIEE = LQ(LDTOP-5)**  
 Link **LQFFB = LQ(LDTOP-6)**

#### DATA CONTENT

Each of those banks contains 9 words directly copied from words 3 to 11 of the SI banks (Simulation Initial state).

|       |     |                       |
|-------|-----|-----------------------|
| LQ... | + 1 | = PX                  |
|       | + 2 | = PY                  |
|       | + 3 | = PZ                  |
|       | + 4 | = E                   |
|       | + 5 | = P                   |
|       | + 6 | = $\cos(\vartheta)$   |
|       | + 7 | = $\varphi$           |
|       | + 8 | = Code for particle 1 |
|       | + 9 | = Code for particle 2 |

# **TE BANK**

0      Structural link  
4      Reference link  
19     data (I)

**Link LQDETE = LQ(LDTOP-7)**

## DATA CONTENT

Each (integer) word contains the number of TE's reconstructed by each detector/ module in the event:

+ 1    VD  
+ 2    ID  
+ 3    TPC  
+ 4    RIB  
+ 5    OD  
+ 6    HPC  
+ 7    TOF  
+ 8    HAC  
+ 9    MUB  
+ 10   FCA  
+ 11   RIF  
+ 12   HAF  
+ 13   SAT  
+ 14   LUM  
+ 15   FCB  
+ 16   EMF  
+ 17   HOF  
+ 18   MUF  
+ 19   CCA

# **TRIGGER BANK**

0      Structural link  
0      Reference link  
N      data

**Link LQTR = LQ(LDTOP-8)**

## **DATA CONTENT**

This bank is a copy of the trigger block pending in the Raw Data structure. The creation of this bank is activated by the data card :  
**TRIGG TRUE**

No description of the block is available yet.

# VD points BANK

0 Structural link  
 4 (*up to version 2.51*), or 1 (*after 2.51*) Reference link  
 or NHIT (*since 2.85*) reference links  
 N data,  
 or (*since 2.85*) 10\*NHIT data (I-9F)  
 or (*since 3.11*) 13\*NHIT data (I-12F)

**Link LQTDVD = LQ(LDTOP-9)**

FORMAT UP TO VERSION 2.51:

LINKS:

0 Next TD point  
 -1 PA bank associated to the TDR (if word 3 is equal to 2)  
 -2 to -4 Other associated TD points (if word 4 is not equal to 0.)

LQTDVD points to a linear chain of banks, each bank containing data from one active TDR

DATA CONTENT

|     |                                                                                                                                                                                                                                                                          |           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| + 1 | Submodule identifier = 4000 + 100*layer + sector                                                                                                                                                                                                                         | <TDR( 2)> |
| + 2 | TANAGRA identifier of the TDR bank                                                                                                                                                                                                                                       |           |
| + 3 | Type of link in which this TDR is involved:<br>0 = The TDR is not connected to any other link<br>1 = The TDR is associated to at least 1 other TDR in a<br>TE not associated to a charged track<br>2 = The TDR is associated to a charged track                          |           |
| + 4 | NTD-1, Number of other TDR associated to this TDR                                                                                                                                                                                                                        |           |
| + 5 | R coordinate                                                                                                                                                                                                                                                             | <TDR(11)> |
| + 6 | R $\phi$ coordinate with the sign of Z                                                                                                                                                                                                                                   | <TDR(12)> |
| + 7 | Error on R                                                                                                                                                                                                                                                               | <TDR(14)> |
| + 8 | Error on R $\phi$                                                                                                                                                                                                                                                        | <TDR(15)> |
| + 9 | Pulse height                                                                                                                                                                                                                                                             | <TDR(17)> |
| +10 | Local coordinate value                                                                                                                                                                                                                                                   | <TDR(18)> |
| +11 | NST, Number of strips in the cluster. (up to 11)                                                                                                                                                                                                                         | <TDR(19)> |
| +12 | First strip number (from 2 to 1152).                                                                                                                                                                                                                                     | <TDR(20)> |
| +13 | to N: One packed word for each strip of the cluster.<br>There is NST such words. If some strips are missing,<br>they are attributed the word -99999.<br>Content: 32*(ADC count) + (Noise)/1000.<br>The value of Noise is limited to 999. and has the sign of (ADC count) |           |

FORMAT SINCE VERSION 2.52 UP TO VERSION 2.84

LINKS:

- 0 Next TD point
- 1 PA bank associated to the TDR (if word 4 is greater or equal to 0)

LQTDVD points to a linear chain of banks, each bank containing data from one active TDR

#### DATA CONTENT

- + 1 Submodule identifier =  $5000 + 100 * \text{layer} + \text{sector}$  <TDR( 2)>
- + 2 TANAGRA identifier of the TDR bank
- + 3 Packed word :  $10000 * \text{NST} + \text{NFST}$ 
  - NST is the number of strips above the threshold in the cluster
  - NFST is the channel number of the first strip in the cluster
<TDR(7)>  
<TDR(9)>
- + 4 Number of other TDR's associated with this one via a TK.
  - Special cases: = 0 if the TDR is associated with a TK as single hit.
  - =-1 if no TK is associated
  - The following coordinates are taken from the TE if there is an associated TK, else it is taken from the TDR (in this case Z is put at the center of the module).
- + 5 R coordinate
- + 6  $R\phi$  coordinate with the sign of Z
- + 7 Z coordinate
- + 8 Error on  $R\phi$
- + 9 Signal/noise ratio for the cluster
- +10 Local X-coordinate value
- +11 NSTRIP Number of strips in the cluster
- +12 Depletion voltage
- +13 Individual strip informations (2 words per strip):
- +13 to 12+NSTRIP:
  - Packed PH (Pulse Height) and Noise:  
=  $\text{SIGN}(\text{PH}) * (\text{ABS}(\text{PH}) + \text{MIN}(\text{Noise}, 999)) / 1000$
- +13 + NSTRIP to 12+2\*NSTRIP :
  - Packed pedestal PE and strip status STA:  
=  $\text{IFIX}(\text{PE}) + \text{MIN}(\text{STA} + 1, 99.) / 100$ .

#### FORMAT SINCE VERSION 2.85:

#### LINKS:

- NH PA bank, if any (else 0) associated to the hit number NH

LQTDVD points to a single bank containing 10 data words for each active TDR. The number of hits is given by NHIT =  $(\text{IQ}(\text{LQTDVD}-1)-1) / \text{NWPH}$

*Informations concerning Z are present since version 3.11*

#### DATA CONTENT

LQTDVD + 1 (VD version number)\*1000 + NWPH (number of words per hit,  
= 10 up to version 3.10, 13 since 3.11)

- LTH Then for hit NH, ( $\text{NH} = 1$  to  $\text{NHIT}$ ), at address  $\text{LTH} = \text{LQTDVD} + 1 + (\text{NH}-1) * \text{NWPH}$ :
- + 1 INTEGER:  $1000 * (\text{DSP channel number of first strip}) + \text{Module number}$  (with sign of Z)
- + 2 R coordinate (from TE if associated);  
the sign indicates  $R\phi$  (+), or RZ (-) hit.
- + 3  $R\phi$  coordinate with sign of Z (from TE if associated, or estimated if not associated)

- + 4 Z coordinate (from extrapolation if associated hit, otherwise from module);  
*since 3.11:* same comment as for  $R\phi$ .
- + 5 Error on  $R\phi$  or Z (from TE if associated)
- + 6 Local X (or Z) coordinate <TDR(18)>

In case of multiplexed area, local Z of the associated hit (if associated),  
 otherwise local Z corresponding to the smallest  $|Z|$  in DELPHI frame.

### Strip information.

*Up to version 3.11:* Up to 4 strips are given: the strip with maximum pulseheight (PH), its highest neighbour and the two adjacent ones.

*Since version 3.11:* Up to 7 strips are given: the strips above threshold plus 1 neighbour on each side. If more than 5 strips are above threshold, the 7 around maximum PH (-3,+3) are given.

The strip pulses are given in the read-out order.

If less than 4/7 strips are given the unused words contain 99999.0 .

- + 7 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>
- + 8 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>
- + 9 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>
- +10 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>

*Since version 3.11:*

- +11 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>
- +12 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>
- +13 Packed PH (Pulse Height) and Noise: <TDR(19+2+3\*N)>

# **Unassociated TE BANK**

15 Structural links  
0 Reference link  
0 data

**Link LQTEAD = LQ(LDTOP-10)**

LINKS:

-1 to -15 Linear chain of banks for each detector.

14 links are presently defined; they point to the following detectors:

|    |        |
|----|--------|
| 1  | ID     |
| 2  | TPC    |
| 3  | TPC    |
| 4  | OD     |
| 5  | TOF    |
| 6  | MUB    |
| 7  | FCA    |
| 8  | RIF    |
| 9  | FCB    |
| 10 | MUF    |
| 11 | HOF    |
| 12 | MUS    |
| 13 | STRAWS |
| 14 | VFT    |

Each bank contains information from active TER not associated to a TK. For MU chambers the deactivated TER are also kept. For ID, only the TER from jet chamber are considered, and only if they are validated by the trigger part. For VFT, only TER containing more than one space point are written here.

**Content of the banks (see note for TOF, HOF and VFT):**

$n + 13$  data (4I-F)

LINKS

0 Next TE

DATA CONTENT

+ 1 Module identifier (as in TANAGRA)  
+ 2 Submodule identifier  
+ 3 0 or, *since version 2.87*:  
Stage at which the TE was created ( 1 or 2)  
+ 4 Data descriptor + measurement code  
+ 5 Coordinate 1  
+ 6 Coordinate 2  
+ 7 Coordinate 3

<TER( 4)>  
<TER(10)>  
<TER(11)>  
<TER(12)>

|       |                                        |           |
|-------|----------------------------------------|-----------|
| + 8   | $\vartheta$                            | <TER(13)> |
| + 9   | $\varphi$                              | <TER(14)> |
| +10   | 1./P or 1./Pt                          | <TER(15)> |
| +11   | to +m+10 Error matrix (TANAGRA format) |           |
|       | <i>Since version 2.51:</i>             |           |
| +m+11 | Number of degrees of freedom           |           |
| +m+12 | $\chi^2$                               |           |
| +m+13 | Length of the Track Element            |           |

**NOTE:**

A special format is used for TOF:

|     |                            |
|-----|----------------------------|
| +10 | Time-of-flight measurement |
|     | <i>up to version 2.81:</i> |
| +11 | Error on $R\phi$           |
| +12 | 0.                         |
| +13 | Error on Z                 |
| +14 | Error on TOF               |

*since version 2.82:*

*For data before 1995:*

|     |                                    |
|-----|------------------------------------|
| +11 | External TDC + 256*(external ADC)  |
| +12 | Internal TDC + 256*(internal ADC)  |
|     | <i>For data since 1995:</i>        |
| +11 | External TDC + 8192*(external ADC) |
| +12 | Internal TDC + 8192*(internal ADC) |

+13 TOF quality flag

+14 Multihit info + 1024\*(T3 level)

*since version 3.35:*

|     |                                 |
|-----|---------------------------------|
| +14 | <i>For data before 1995:</i>    |
|     | Multihit info + 1024*(T3 level) |
|     | <i>For data since 1995:</i>     |

Codification of the second hit in the TDC-MH channel

= ( TDCext(1st hit) - TDCext(2nd hit) )

+ 8192\*( TDCint(1st hit) - TDCint(2nd hit) )

and for HOF:

*since version 2.84:*

|     |                              |
|-----|------------------------------|
| +10 | Time-of-flight measurement   |
| +11 | Error on X ( (SizeX/2)**2/3) |
| +12 | 0.                           |
| +13 | Error on Y ( (SizeY/2)**2/3) |
| +14 | Error on time (1.0)          |

and for VFT:

*since version 3.40:*

|         |                                         |
|---------|-----------------------------------------|
| +m+14   | NTDBK, number of TDR banks for this TER |
| +m+14+i | TANAGRA identifier of TDR i (i=1,NTDBK) |

# OD timing BANK

0      Structural link  
0      Reference link  
N      data (I)

## Link LQTIOD = LQ(LDTOP-11)

This bank contains a special OD block of integer words. Its size is limited to 400 words.  
 $IQ(LTIOD+1) = N$ , total number of words in this block. A special value  $N = 4$  is set when the OD timing information is not there.

# VSAT result BANK

0 Structural link  
0 Reference link  
28 data (F)

**Link LQVSAT = LQ(LDTOP-12)**

*This bank is introduced since version 2.54*

## DATA CONTENT

This bank contains the TE data for the 4 modules of the VSAT:

Module 1:

- + 1 Energy deposited in the fads of the module.
- + 2 X1 coordinate reconstructed from the first strip plane.
- + 3 Y coordinate reconstructed from the second strip plane.
- + 4 Z coordinate distance along the beam from the interaction point.
- + 5 X2 coordinate reconstructed from the second strip plane.
- + 6  $\vartheta$ , polar angle (range 0. - 180.<sup>0</sup>)
- + 7  $\phi$ , azimuthal angle (range 0. - 360.<sup>0</sup>)

Module 2:

- + 8 to +14 Same as 1-7 for module 2

Module 3:

- + 15 to +21 Same as 1-7 for module 3

Module 4:

- + 22 to +28 Same as 1-7 for module 4

# Ambiguous shower BANK

- 0 Structural link
- NL Reference link
- ND data (I)

## Link LQAMB = LQ(LDTOP-13)

*This bank is introduced since version 2.65*

### LINKS

- 0 Next ambiguous shower Bank

There is one link for each PA bank associated to the ambiguous shower. The first link, LQ(LQAMB-1), points to the PA actually containing the shower information

- 1 First PA associated to the shower
- 2 Second PA associated to the shower
- ...
- NL Last PA associated to the shower

### DATA CONTENT

- + 1 Bank type of the ambiguous shower: 1 for CCA, 2 for HCAL
- + 2 NCONN, number of PA's connected to this shower
- + 3 Internal count of PA processed
- + 4 Tanagra identifier of the CCA or HAC TER (according to word 1)
- + 5 Tanagra identifier of the TK of the first PA
- + 6 Pointer to the corresponding extra-module (CCA or HAC) in the first PA; it means this pointer is equal to J+1 in the description of module 3
- + 7 NEM, number of e.m. TE's in the CCA. (=0 for type 2)
- + 8 NHAC, number of HAC TE's in the shower (=1 for type 2)

#### For CCA (type 1) :

- + 9 to 8+NEM Tanagra identifiers of the e.m. TE's
- + 9 +NEM to 8+NEM+NHAC Tanagra identifiers of the HAC TE's
- + 9 +NEM+NHAC to 8+NEM+NHAC+NCONN : Tanagra identifiers of the associated PA's

#### For HAC (type 2):

- + 9 Tanagra identifiers of the HAC TE's
- + 10 to 9+NCONN : Tanagra identifiers of the associated PA's

# HPC trigger BANK

0 Structural link  
0 Reference link  
 $2^*N+2$  data (I)

## Link LQTHPC = LQ(LDTOP-14)

This bank is introduced since version 2.62

The bank is not written on DST if none of the scintillators is above the threshold. The ADC contents given are pedestal-substracted.

**IMPORTANT:** For some 1991 runs, the scintillators were not taking data, resulting in LQTHPC = 0, as in empty event. A list of such runs is available.

Module numbers range from 1 to 144 for HPC scintillators, 145 to 168 for  $90^0$  counters, -11 to 0 for spare channels.

Each  $90^0$  counter module covers  $15^0$  in  $\phi$ . The  $\phi$  coverage of each module is the following:

| Module | Range in $\phi$ (in degrees) |       |         |
|--------|------------------------------|-------|---------|
| 145    | 262.5                        | -     | 277.5   |
| 146    | 277.5                        | -     | 292.5   |
| :      | 151                          | 352.5 | - 7.5   |
|        | 152                          | 7.5   | - 22.5  |
| :      | 168                          | 247.5 | - 262.5 |

## DATA CONTENT

+ 1 Global word count  
+ 2 N, Number of modules with data

Then for each module 2 data words are given.

The Nth module with data is described by :

+  $2^*N+1$  Module number  
+  $2^*N+2$  A.D.C. content of that module

# CCA BANK

0 Structural link  
NL Reference links  
ND data (2\*I-F)

## Link LQNCCA = LQ(LDTOP-15)

This bank is introduced since version 2.69, together with CCA version 4.00

### LINKS

The link area contains references to the tracks contributing to the CCA structure. This bunch of tracks is associated to the bunch of calorimeter showers.

-1 First origin PA associated to the CCA shower  
-2 Second origin PA associated to the CCA shower  
...  
-NL Last origin PA associated to the CCA shower

### DATA CONTENT

The data area is organised in modules, in order to allow reassociation or better energy measurement:

- CCA result module
- Charged tracks extrapolation module  
(at HCAL surface)
- TOF hits module

+ 1 Tanagra ID of the CCA bank  
+ 2 reserved (0)  
+ 3 NC = number of CCA modules (at least 1)  
+ 4 LP1 , pointer to first module  
+ 5 LP2 , pointer to second module  
+ 6 LP3 , pointer to third module  
...  
+ 3+NC LPNC, pointer to NCth module

**Each module is identified through its first word: CCA results module:**

+ LP1 CCA result code =  
1000\*Nemf + 100\*Nhpc + 10\*Nhac + Nchr  
+ LP1+1 E  
+ LP1+2 X  
+ LP1+3 Y  
+ LP1+4 Z  
+ LP1+5  $\vartheta$   
+ LP1+6  $\varphi$   
CCA extrapolation module:  
+ LPi ID = 8  
+ LPi+1 Nex, number of extrapolations given in the module;  
for each extrapolation Iex (from 1 to Nex), 7 words

are given:

+ LPi+7\* (Iex-1)+2 Sequential number of the charged track  
(as given in CCA links)

+ LPi+7\*(Iex-1)+3 X

+ LPi+7\*(Iex-1)+4 Y

+ LPi+7\*(Iex-1)+5 Z

+ LPi+7\*(Iex-1)+6  $\vartheta$

+ LPi+7\*(Iex-1)+7  $\varphi$

+ LPi+7\*(Iex-1)+8 P

TOF hits module:

+ LPi ID = 9

+ LPi+1 Nf, number of TOF hits given in the following  
words; for each hit If (from 1 to Nf), 5 words are  
given:

+ LPi+5\*(If-1)+2 X

+ LPi+5\*(If-1)+3 Y

+ LPi+5\*(If-1)+4 Z

+ LPi+5\*(If-1)+5 External counters : 256.\*ADC + TDC

+ LPi+5\*(If-1)+6 Internal counters : 256.\*ADC + TDC

# Unassociated HPC clusters BANK

0      Structural link  
0      Reference links  
3N+2 data (I)

**Link LQUHPC = LQ(LDTOP-16)**

*This bank is introduced since version 2.81:*

## DATA CONTENT

+ 1      Global word count  
+ 2      N, number of unassociated HPC clusters  
Then for each cluster 3 data words are given.  
The Nth cluster is described by :  
+3\*N + 0 Packed Energy (GeV) and layer number.  
+3\*N + 1 Packed R (cm) and  $\phi$  (rad) of the cluster.  
+3\*N + 2 Packed Z coordinate and  $\sigma_Z$  of the cluster.

As for extra-module 2, those three words can be unpacked with the user routine PXHGET

# Jet informations bank

0 Structural link  
 0 Reference links  
 NWJET data (I)

**Link LQJET = LQ(LDTOP-17)**

*This bank is introduced since version 3.01, its content was before in the Pilot Record.*

## DATA CONTENT

|   |                   |              |
|---|-------------------|--------------|
| 1 | NWJET , wordcount | (variable)   |
| 2 | Identifier        | (\$0000FF1A) |
| 3 | Sub-identifier    | (0)          |

### *FIXED PART*

|    |       |                                                          |
|----|-------|----------------------------------------------------------|
| 4  | NJET  | , number of jets reconstructed                           |
| 5  | NEL   | , number of electrons with energy >2. GeV                |
| 6  | NMU   | , number of muons with energy > 3. GeV                   |
| 7  | NGAM  | , number of gammas with energy > 8. GeV                  |
| 8  | NPI   | , number of charged pions with energy > 8. GeV           |
| 9  | NKCH  | , number of $K^{+}$ with energy > 5. GeV                 |
| 10 | NPAP  | , number of $p/\bar{p}$ with energy >5. GeV              |
| 11 | NKS   | , number of $K_S^0$ with energy > 5. GeV                 |
| 12 | NNAN  | , number of $n/\bar{n}$ or $K_L^0$ with energy > 10. GeV |
| 13 | NVSEC | , number of secondary vertices                           |
| 14 | JPJET | , pointer to the JET area                                |
| 15 | JPTKR | , pointer to the TRACK area                              |
| 16 | JPVTX | , pointer to the VERTEX area                             |

### *JET PART*

(4 words per jet)

|          |                                    |               |
|----------|------------------------------------|---------------|
| JPJET+ 0 | Effective mass of the jet number 1 | (MeV/ $c^2$ ) |
| 1        | $P_x  $                            | (MeV/ $c$ )   |
| 2        | $P_y   \rightarrow$ of jet 1       | (MeV/ $c$ )   |
| 3        | $P_z  $                            | (MeV/ $c$ )   |
| 4        | Effective mass of the jet number 2 |               |
| 5        | etc... for the NJET jets           |               |

### *TRACK PART*

(6 words per track)

|          |                                                        |  |
|----------|--------------------------------------------------------|--|
| JPTRK+ 0 | Mass code of the track                                 |  |
| 1        | $P_x  $                                                |  |
| 2        | $P_y   \rightarrow$ of track 1                         |  |
| 3        | $P_z  $                                                |  |
| 4        | Parent jet number                                      |  |
| 5        | Mass identification code (1 byte per mass assignement) |  |

6 etc... for all tracks; the total number of tracks is  
NTR=NEL+NMU+NGAM+NPI+NKCH+NPAP+NKS+NNAN

*VERTEX PART*  
(6 words per vertex)

JPVTX+ 0 Mass code of the origin track  
1 X  
2 Y → of vertex 1  
3 Z  
4 Distance to the primary vertex  
5 Error on the distance  
6 etc... for the NVSEC vertices

NWJET Wordcount (variable)

# HCAL cathode readout bank

0 Structural link  
0 Reference links  
ND data (I)

**Link LQTUB = LQ(LDTOP-18)**

*This bank is introduced since version 3.14.*

It contains the packed informations of individual HCAL tubes cathode readout. There are 600 tubes, only those which are hit are given.

## DATA CONTENT

+1 Bank identifier (3)  
+2 NTUB  
Then NTUB/2 words follow, with informations packed in 16 bits per tube, two tubes per word :  
+3 bitted word for the first two hit tubes:  
bits 1-4 : Tube number |  
bits 5-9 : Plane number | → first tube  
bits 10-16 : Module number |  
  
bits 17-20 : Tube number |  
bits 21-25 : Plane number | → second tube  
bits 26-32 : Module number |  
  
+4 bitted word for the following two hit tubes:  
⋮

# Straw tube timing bank

0 Structural link  
0 Reference links  
ND data (I)

**Link LQTIST = LQ(LDTOP-19)**

*This bank is introduced since version 3.17.*

It contains the straw tube timing data in a packed format.

## DATA CONTENT

LQTIST +1 Number of words  $N_w$

+2 bits 1-16:  $T_0$  to be used in the straw analysis  
bits 17-32: Nominal time value of BCO signal expected in straws

+3 bits 1-16: Actual time value of BCO signal in straws for this event

+4 Number of hits  $N_h$

Then for each hit  $i$ , ( $i=1, N_h$ ) :

+4+i bits 1-13:  $10^*(\text{Drift time} + 1450)$ , after  $T_0$  and pedestal subtraction  
bits 14-19: Unused  
bit 20: Tag bit  
bits 21-32: Sector number +  $20^*(\text{Cell} + 32^*\text{Layer})$

:

# STIC trigger bank

|    |                 |
|----|-----------------|
| 0  | Structural link |
| 0  | Reference links |
| 15 | data (I)        |

## Link LQSTT1 = LQ(LDTOP-20)

*This bank is introduced since version 3.18. The 14-th word with the STIC "neutral trigger" information can be used for 1995 P3 data and later. The 15-th word with the Small veto trigger data can be used for 1996 data and later.*

This bank contains the STIC calorimeter and the Veto counter trigger information.

### DATA CONTENT

- +1 General trigger description:
  - 0 - no problem detected
  - 1 - no Calorimeter LTS\_DB trigger blocklet
  - 2 - no Veto counter VDB trigger blocklet
  - 3 - both trigger blocklets are absent
- +2 Side C low threshold hitpatterns for the Calorimeter
- +3 Side C high threshold hitpatterns for the Calorimeter
- +4 Side A low threshold hitpatterns for the Calorimeter
- +5 Side A high threshold hitpatterns for the Calorimeter
- +6 Side A 1-st Veto counter plane: 1-16 bits for the 1-st wagon  
17-32 bits for the 2-nd wagon
- +7 Side A 1-st Veto counter plane: 1-16 bits for the 3-rd wagon  
17-32 bits for the 4-th wagon
- +8 Side A 2-nd Veto counter plane: 1-16 bits for the 1-st wagon  
17-32 bits for the 2-nd wagon
- +9 Side A 2-nd Veto counter plane: 1-16 bits for the 3-rd wagon  
17-32 bits for the 4-th wagon
- +10 Side C 1-st Veto counter plane: 1-16 bits for the 1-st wagon  
17-32 bits for the 2-nd wagon
- +11 Side C 1-st Veto counter plane: 1-16 bits for the 3-rd wagon  
17-32 bits for the 4-th wagon
- +12 Side C 2-nd Veto counter plane: 1-16 bits for the 1-st wagon  
17-32 bits for the 2-nd wagon
- +13 Side C 2-nd Veto counter plane: 1-16 bits for the 3-rd wagon  
17-32 bits for the 4-th wagon
- +14 1-16 bits: neutral trigger from the arm A  
17-32 bits: neutral trigger from the arm C
- +15 1-8 bits: Small veto counter trigger bits

# RICH photon banks

|    |                 |
|----|-----------------|
| 0  | Structural link |
| 0  | Reference link  |
| ND | data (I)        |

## Link LQRICH = LQ(LDTOP-41)

*This bank is introduced since version 3.30.*

LQRICH links to RICH individual photon informations stored in up to 4 banks, in a linear structure. Each bank corresponds to one RICH subdetector, the identifiers are ‘RIFA’, ‘RIBA’, ‘RIBC’ and ‘RIFC’. Subdetectors which were not crossed by tracks are skipped.

### DATA CONTENT

|                 |                                                                                  |
|-----------------|----------------------------------------------------------------------------------|
| LQRICH + 1      | Bitted word:                                                                     |
|                 | bits 1-2 Subdetector identifier (0 for RIFA, 1 for RIBA, 2 for RIBC, 3 for RIFC) |
| + 2             | bits 3-12 Number of tracks ( $N_{track}$ )                                       |
|                 | TANAGRA identifier of 1st track                                                  |
| :               |                                                                                  |
| + $i+1$         | TANAGRA identifier of $i$ th track                                               |
| :               |                                                                                  |
| + $N_{track}+1$ | TANAGRA identifier of last track                                                 |

Then for each track / radiator, at address  $LR=LQRICH+N_{track}+1$  for the first track:

#### General Information / Radiator

|        |                                                          |
|--------|----------------------------------------------------------|
| LR + 1 | bit 1 Radiator identifier (liq.rad.=0, gas rad.=1)       |
|        | bits 2-11 Track index in the list of track identifiers   |
|        | bits 12-21 Number of photons following ( $N_{ph}$ )      |
|        | bits 22-32 Number of photons before background rejection |
| + 2    | bits 1-6 Sector number for liquid radiator / mirror      |
|        | bits 7-9 Liquid radiator (BRICH: 0)/ mirror number       |
|        | bits 10-20 Quality word                                  |
|        | bits 21-31 Fitted background for best hypothesis         |

Then for each of the 5 hypothesis ( $i=1,5$ ):

|         |                                                          |
|---------|----------------------------------------------------------|
| + $2+i$ | bits 1-15 Expected number of photons (in units of 0.001) |
|         | bits 16-22 Fitted probability (in units of 0.01)         |

#### Single Photon Information for Photon number $i$

At address  $LR2 = LR+7+3*(i-1)$

|         |                                   |                                                             |
|---------|-----------------------------------|-------------------------------------------------------------|
| LR2 + 1 | bit 1-12 $\theta_C$               | (in units of 0.25mrad for liq.rad., 0.025mrad for gas rad.) |
|         | bits 13-22 $\phi_C$               | (in units of $\pi/512$ )                                    |
|         | bits 23-32 Conversion probability | (in units of 0.00125)                                       |
| + 2     | bits 1-8 $\sigma_C$               | (in units of 0.125mrad)                                     |

|     |            |                                                        |
|-----|------------|--------------------------------------------------------|
|     | bits 9-22  | Photon identifier                                      |
|     | bits 23-27 | Photon quality word                                    |
| + 3 | bits 1-10  | $\log Jacobian$                                        |
|     | bits 11-21 | $d\theta/dx_{loc}$ (derivatives w.r.t. track position) |
|     | bits 22-32 | $dy_{loc}$                                             |
|     |            | (in units of mrad/mm)                                  |

# VFT pixel bank

0 Structural link  
 0 Reference links  
 ND data (I)

## Link LQVFT = LQ(LDTOP-42)

*This bank is introduced since version 3.34.*

It contains the VFT pixel data, cluster by cluster.

### DATA CONTENT

|       |      |                                                        |
|-------|------|--------------------------------------------------------|
| LQVFT | +1   | NPC, number of pixel clusters                          |
|       |      | First cluster, at LC1 = LQVFT+1                        |
| LC1   | +1   | 1000*crown number + raquette number                    |
|       | +2   | 10000*X, in DELPHI frame                               |
|       | +3   | 10000*Y, in DELPHI frame                               |
|       | +4   | 10000*Z, in DELPHI frame                               |
|       | +5   | 10000*X, in local frame                                |
|       | +6   | 10000*Z, in local frame                                |
|       | +7   | TANAGRA IDentifier of the TK or TE                     |
|       | +8   | 100*(Truth label) + m, number of pixels in the cluster |
|       | +8+1 | pixel number of the 1st pixel in the cluster           |
|       | +8+2 | pixel number of the 2nd pixel in the cluster           |
|       | :    |                                                        |
|       | +8+m | pixel number of the last pixel in the cluster          |
|       |      | Second cluster, at LC2 = LC1+8+m                       |
| LC2   | +1   | 1000*crown number + raquette number                    |
|       | :    |                                                        |

*Since version 3.36 :*

|     |       |                                                        |
|-----|-------|--------------------------------------------------------|
|     | +7    | 10000*dX, in local frame                               |
|     | +8    | 10000*dZ, in local frame                               |
|     | +9    | TANAGRA IDentifier of the TK or TE                     |
|     | +10   | 100*(Truth label) + m, number of pixels in the cluster |
|     | +10+1 | pixel number of the 1st pixel in the cluster           |
|     | +10+2 | pixel number of the 2nd pixel in the cluster           |
|     | :     |                                                        |
|     | +10+m | pixel number of the last pixel in the cluster          |
|     |       | Second cluster, at LC2 = LC1+10+m                      |
| LC2 | +1    | 1000*crown number + raquette number                    |
|     | :     |                                                        |

*Since version 3.40 :*

+7 10000\*dX, in local frame  
+8 10000\*dZ, in local frame  
+9 TANAGRA IDentifier of the TK or TE  
+10 100\*(Truth label) +  $m$ , number of pixels in the cluster  
+11 TANAGRA IDentifier of the TDR  
+11+1 pixel number of the 1st pixel in the cluster  
+11+2 pixel number of the 2nd pixel in the cluster  
⋮  
+11+ $m$  pixel number of the last pixel in the cluster  
Second cluster, at  $LC2 = LC1 + 11 + m$   
LC2 +1 1000\*crown number + raquette number  
⋮

# VFT ministrip bank

0        Structural link  
 0        Reference links  
 ND      data (I)

## Link LQVFT = LQ(LDTOP-43)

*This bank is introduced since version 3.34.*

It contains the VFT ministrip data, cluster by cluster.

### DATA CONTENT

LQVFT +1    NSC, number of ministrip clusters  
               First cluster, at LC1 = LQVFT+1  
 LC1    +1    Module number  
       +2    10000\*X, in local frame  
       +3    10000\*dX, in local frame  
       +4    TANAGRA IDentifier of the TK or TE  
       +5    100\*(Truth label) + m, number of strips in the cluster  
       +6    First strip number in the cluster  
       +6+1 1024\*(4\*signal) + (4\*noise) of 1st strip  
       +6+2 1024\*(4\*signal) + (4\*noise) of 2st strip  
       :  
       +6+m 1024\*(4\*signal) + (4\*noise) of last strip

              Second cluster, at LC2 = LC1+6+m  
 LC2    +1    Module number  
       :

*Since version 3.40 :*

      +6    TANAGRA IDentifier of the TDR  
       +7    First strip number in the cluster  
       +7+1 1024\*(4\*signal) + (4\*noise) of 1st strip  
       +7+2 1024\*(4\*signal) + (4\*noise) of 2st strip  
       :  
       +7+m 1024\*(4\*signal) + (4\*noise) of last strip

              Second cluster, at LC2 = LC1+7+m  
 LC2    +1    Module number  
       :