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ABSTRACT: The initial conditions on the anisotropies of the stochastic gravitational-wave
background of cosmological origin (CGWB) largely depend on the mechanism that generates
the gravitational waves. Since the CGWB is expected to be non-thermal, the computation of
the initial conditions could be more challenging w.r.t. the Cosmic Microwave Background
(CMB), whose interactions with other particles in the early Universe lead to a blackbody
spectrum. In this paper, we show that the initial conditions for the cosmological background
generated by quantum fluctuations of the metric during inflation deviate from adiabaticity.
These primordial gravitational waves are indeed generated by quantum fluctuations of two
independent degrees of freedom (the two polarization states of the gravitons). Furthermore,
the CGWB plays a negligible role in the Einstein’s equations, because its energy density
is subdominant w.r.t. ordinary matter. Therefore, the only possible way to compute the
initial conditions for inflationary gravitons is to perturb the energy-momentum tensor of
the gravitational field defined in term of the small-scale tensor perturbation of the metric.
This new and self-consistent approach shows that a large, non-adiabatic initial condition is
present even during the single-field inflation. Such a contribution enhances the total angular
power spectrum of the CGWB compared to the standard adiabatic case, increasing also the
sensitivity of the anisotropies to the presence of relativistic and decoupled particles in the
early Universe. In this work we have also proved that our findings are quite general and
apply to both single-field inflation and other scenarios in which the CGWB is generated by
the quantum fluctuations of the metric, like the curvaton.
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1 Introduction

The detection of a stochastic gravitational wave background (SGWB) by the PTA collaboration
(i.e., NANOGrav, EPTA/InPTA, PPTA, and CPTA) opens a new window for the study of
early Universe cosmology [1-4]. The analysis of the possible inflationary and astrophysical
interpretations of the detected signal has been done in [5-13]. The current ground-based
interferometers, such as LIGO, Virgo and KAGRA, are close to reaching the sensitivity to
detect the astrophysical gravitational wave background (AGWB) from unresolved sources,
while future space-based, such as LISA [14], Taiji [15], BBO [16] and DECIGO [17], and ground-
based interferometers, such as Einstein Telescope [18-20] and Cosmic Explorer [21, 22], might
be able to detect also the cosmological gravitational wave background (CGWB) produced
by various mechanisms in the early Universe, such as inflation, phase transitions, cosmic
strings [23-25]. Therefore, it is necessary to find a method to differentiate the cosmological



GW signal from the astrophysical one. The frequency dependence is one of the possible
ways to distinguish among the various GW backgrounds [26, 27], since the vast majority of
the proposed cosmological sources produce spectra which peak at some characteristic scales
or deviate from the f2/3 power-law scaling [28] predicted for the astrophysical background
generated by binary systems during the inspiral stage. However, because of the better angular
resolution of future interferometers, anisotropies in GW energy density could provide a
new tool to distinguish among various sources of GWs in the early Universe [29, 30], see
e.g. [31, 32] for recent applications.

To characterize the anisotropies of the CGWB, similarly to CMB [33], we can use the
Boltzmann equation for the graviton distribution function [29, 30, 34]. The CMB anisotropies
are generated only at the last scattering surface, since any prior information is erased by
the collisions photons suffer before recombination. This is in contrast with the CGWB
anisotropies, which propagate freely at all energies below the Planck scale providing unique
information about the primordial Universe. Anisotropies in GW energy density are induced
by the GW production mechanism (initial conditions) and by the GW propagation through
the large scale metric perturbations of the Universe (Sachs-Wolfe and Integrated Sachs-Wolfe
effects). The initial anisotropies are greatly dependent on the properties of the GW source.

In the case of adiabatic initial conditions, the GW energy density perturbations at
early times are equal to those of the CMB photons. When more than one scalar field is
present during inflation, non-adiabatic modes could be generated [35]. If the CGWB is the
product of the inflaton decay during reheating along with photons and baryons, the initial
conditions are adiabatic if no other fields contribute to the curvature perturbation, since
the inhomogeneities of the source are inherited by the decay products. This is compatible
with the “Separate Universe” approach [36], which argues that each Hubble patch evolves
like a separate Robertson-Walker Universe. Different regions experience indeed the same
evolution along a single phase-space trajectory, separated only by a shift in the expansion.
When a single-clock mechanism sets the initial curvature perturbations of the Universe,
the perturbations must be adiabatic. Conversely, if the GW production involves a local
time-shifting function, different regions are not simply time translations of each other and
thus non-adiabatic modes could appear.

In this paper, we focus our analysis on the CGWB produced by the intrinsic quantum
fluctuations of the metric during inflation. In this scenario, the initial overdensity of the
CGWRB is not related to the perturbation of the inflaton, since it arises from two additional
independent degrees of freedom — the two polarizations of the tensor perturbations. The
quantum fluctuations of the metric would be present indeed also if there is no clock (pure de
Sitter). Therefore, the standard adiabatic initial condition is no longer valid. Furthermore,
the Einstein equations are blind to the presence of the CGWB, because its energy density
is subdominant w.r.t. the standard radiation. This implies that, in order to obtain the
CGWB energy density perturbation at early times one has to compute explicitly the energy-
momentum tensor of GWs. The energy-momentum tensor of GWs can be computed in terms
of covariant derivatives of the radiative degrees of freedom of the metric [37] or by perturbing
the Einstein tensor [38]. In both cases, one should take into account terms quadratic in the
GWs of high-frequency, according to the shortwave approximation, and for terms of order zero



and linear in the large-scale perturbations of the Universe. This method is analogous to the
computation of isocurvature fluctuations during inflation [39]. Note also that this approach,
which allows to use a microscopic quantity (i.e., hj;) to have a macroscopic description (i.e.,
p) of the system, is quite general and could also be applied to the perturbations induced by
spectator (scalar) fields that fluctuate during inflation independently on the inflaton.

The non-adiabatic initial condition computed in this work is approximately equal to
two times the adiabatic initial condition, with opposite sign. This difference enhances the
total angular power spectrum of the CGWB background by an order of magnitude, having
important implications for the detectability of the anisotropies. In particular, a large initial
condition from inflation could be used to overcome the sample variance limit in the anisotropies
due to fluctuations of the monopole at interferometers discussed in [40, 41]. In addition,
the non-adiabatic initial condition enhances the sensitivity of the angular power-spectrum
of the CGWB to the abundance of extra relativistic degrees of freedom at early times [42].
Moreover, the cross-correlation between the CGWB and the Cosmic Microwave Background
(CMB) anisotropies [43, 44] could decrease in presence of non-adiabatic initial conditions.

The paper is organized as follows. In section 2 we outline the formalism for describing
the CGWB anisotropies. In section 3 we consider an example of adiabatic initial conditions
for the CGWB to understand the similarities and differences w.r.t. the CMB. In section 4
we show that the GW induced by the quantum fluctuations of the metric are non-adiabatic.
In section 5 we introduce the new approach for the computation of the initial graviton
overdensity from inflation. In section 6 we compute the scalar contribution to the angular
power spectrum of the CGWB and we study its dependence for non-adiabatic initial conditions
on decoupled and relativistic species. In section 7 we discuss how the non-adiabatic initial
conditions change the tensor contribution to the angular power spectrum of the CGWB.
In section 8 we analyze the correlation between the CGWB and the CMB anisotropies. In
section 9 we show that the initial conditions derived in this work are valid also for primordial
GWs in the curvaton scenario.

In the present work we provide a full derivation and an extension of the results an-
ticipated in [45].

2 Boltzmann equation for GWs

We consider a perturbed Friedmann-Lemaitre-Robertson-Walker (FLRW) metric in the
Poisson gauge

ds? = a® |—eVdn? 4+ 722 (€7);; dazid:pj} , (2.1)

where ® and V¥ represent the large-scale scalar perturbations and -;; is the transverse-traceless
tensor perturbation. We identify GWs as small-scale tensor modes with comoving momentum
q much smaller than the typical scales k& over which the background varies. Since we consider
perturbations of scales separated by several orders of magnitude, it is possible to split the
tensor perturbations 7;; into the small-scale ripples h;; and the large-scale tensor modes H;j,
vij = hij + H;j . In this case, we can use the shortwave approximation [37] to describe the
propagation of GWs on a curved background. We introduce then a graviton distribution



function fow = fow(x*, p*), which is function of position z# and momentum p* = dz# /d\,
where A is an affine parameter along the GW trajectory. The evolution of the CGWB in the
phase space is therefore described by the Boltzmann equation [29, 30, 34]. The Boltzmann
equation for the graviton distribution function fqw is

L[faw] =Clfaw] + I [faw] , (2.2)

where L [f] = df /d) is the Liouville operator, C [f] accounts for the collision of GWs and Z [ f]
for their emissivity from cosmological and astrophysical sources. The collision of GWs has
an impact on the graviton distribution only at higher order and therefore at the first order
in perturbations it can be disregarded [46, 47]. For the cosmological sources, the emissivity
term can be regarded as an initial condition on the GW distribution. Solving the Boltzmann
equation at first order around a FLRW metric leads to

dfaw | ;0faw n (3@ _ov 13ijnjnk> qafGW _

on n oxt an "or 2 on dq

0, (2.3)

where n' is the direction along the GW trajectory. The first two terms represent a free
streaming term, namely the propagation of GWs at all scales. The third term encodes the
redshifting of gravitons, including the Sachs-Wolfe (SW) and the Integrated Sachs-Wolfe
(ISW) effects. The graviton distribution function fgw can be expanded as the isotropic
component faw that solves the Boltzmann equation at zero order and is sensitive only to
the expansion of the Universe and an anisotropic contribution that solves the Boltzmann
equation at first order and can be parameterized in terms of the dimensionless function I' as
. _ Ofaw

Sfaw(n, Z,n,q) = —q 24 (@) T(n, % n,q). (2.4)

The energy density of the CGWB can be written in terms of the graviton distribution
function at a given time and location as

1 d3q
_’:7 — . N = c dl dAQ 7_’,A, . 25
paw (1, ) = — o) / 2n)? q faw(n,@,7,q) = p / n q/ nQaw(n, Z,7,q).  (2.5)

We can introduce the energy density contrast of the CGWB defined as

Qaw (1o, 59, f,q) — Qaw (10, q)
Qaw (10, q)

daw (10, Zo, 71, q) = , (2.6)

where x¢ denotes the location of the observer, which could be taken as the origin, 7g is the
present time and the quantity Qqw (70, ¢) is defined as the spatial average. The energy
density contrast is related to the function I' and the spectral energy density of GWs through

5GW(770’ an ﬁv Q) = [4 - ngwb(Q)] F(noa fUa ﬁ, q) ) (27)

where ngyt, is the Gravitational Wave Background (GWB) spectral index
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The solution of the Boltzmann equation in Fourier space is
T(no, ¥, 7t,q) = T (1in, &, o, @) ™10 =) 10 (g, Je) 4 =10 — (g, )

1o N -
[ an [@’(ﬁ,mw(ﬁ,k)—
Min

1 . . IR
e (7, )| e

(2.9)
where p = k- f. The first term is due to the initial conditions, while the other ones are
related to the propagation of the GWs through the large-scale scalar and tensor perturbations
of the Universe. Assuming statistical isotropy, the angular power-spectrum of the CGWB
is defined as

<5GW,€m5aw,e'm'> = 00Oy Cop - (2.10)

In this work, we focus on the initial condition contribution to the angular power spectrum,
computing explicitly the perturbation of the distribution function of the CGWB at the
production, I'(nin, k, 7, q).

3 Adiabatic initial conditions for the CGWB

We start by illustrating the example in which the perturbations of the CGWB are adiabatic,
in order to understand the analogies and the differences w.r.t. the CMB. Apart from the
quantum fluctuations of the metric, a CGWB could be produced by the decay of the inflaton
during reheating, along with other particle species that fill the universe. In this case, the initial
conditions for the energy density of the CGWB are adiabatic, because they are connected to
the perturbations of the inflaton, since the inhomogeneities in the inflaton field propagate
to its decay products. When the inflaton begins to oscillate around the minimum of its
potential and decay into the standard radiation and gravitons, the energy conservation
equation perturbed at first order for each fluid in the large scale limit reads [48-50]

80, + 3H(1 + w;)dp; — 3% (1 + w;)p; = a (Q;¥ +6Q;) , (3.1)

where H is the conformal Hubble parameter, Q); is the local energy-momentum transfer of
each component (i = rad, GW, ¢), which is constrained by Y, @Q; = 0, while the equation of
state parameters are w, = 0 and wgw rad = 1/3. The curvature perturbation on uniform
total density hypersurfaces is defined as

0
=—ao-n", (3.2)
P
and it is a weighted sum of the individual perturbations
o
(=> jci : (3.3)
i
The curvature perturbation on uniform i-component density hypersurfaces is
Sp:
Gi=-0—HEE (3.4)

(2



We can rewrite eq. (3.1) in terms of the curvature perturbation as

3 2(SPn i o nad,i
= ot W (3.5)

where the first term 0P,aq, is the intrinsic non-adiabatic pressure perturbation of each
component and it is equal to zero assuming that all fluids have a definite equation of state
P; = P;(p;). The second term denotes the non-adiabatic energy transfer for each component.
In the case of single inflaton, non-adiabatic energy transfer is absent and the perturbations are
adiabatic. Non-adiabatic perturbation cannot arise on large scales if the initial perturbations
were purely adiabatic [36]. However, if inflation ends with a period of preheating, the
adiabatic condition can be violated due to the strong parametric resonance. It has been
shown in [51] that in this scenario the dominant effect is a second-order term in perturbations
of the preheating field and is negligible on large scales. Therefore, the individual curvature
perturbations are equal to the total one and remain constant on large scales. Consequently,
the perturbations of the components with the same equation of state are equal,

<rad = CGW — 5rad = 5GW . (36)

In this case, it is possible to use the (0,0) Einstein equation to determine the initial energy
density perturbation. The (0,0) Einstein equation is

2 > Pidi
(P H+HY) = - 3.7
(@ ) = 37
which gives, when §; = ¢; for each ¢, 7,
(I'/
0; = =20 — 2—. 3.8
N 39

The initial perturbation of the distribution function for adiabatic initial conditions of the
CGWB has been computed in [43, 52] and it is given by

2 -

r in7l¥7 =V in7k ) .
(Mhins k, q) pR—— (1hn, ) (3.9)

where we have neglected the time derivative of ®, which is subdominant for super-horizon
scales. This result is equivalent to the initial condition on the CMB temperature fluctuation
0T /T when ngywp, = 0. This difference comes from the fact that the spectrum of gravitons
is non-thermal, therefore the initial conditions on perturbation of the distribution function
keeps track of the scaling in frequency of the monopole signal [52]. In the following section
we will show that when the CGWB is not a decay product of the inflaton, there is no a priori
reason to set the adiabatic initial conditions, (;aq = (gw, a different strategy has to be used
to compute the initial perturbation of the distribution function.

4 Non-adiabaticity of gravitons during inflation

We want to compute the initial overdensity of the CGWB in the case of a CGWB produced
by quantum fluctuations of the metric during inflation. The initial condition for the CGWB



is computed at the time when we start solving the Boltzmann equation, which corresponds
to the time 7, evaluated long after the GWs of frequency ¢ re-enter the causal horizon.
According to Big-Bang Nucleosynthesis (BBN) and Planck constraints [25] on the amount of
extra relativistic species in the early Universe, the amount of energy produced as gravitational
waves has the upper bound

PGW (7in) < 9x(To) ( 9x5(Tin)
Prad(Min) ™ 9x(Tin) \ gxs(TBBN

which implies that the contribution to the energy budget given by primordial GWs is always

4f3 o
)) CANgr <1, (4.1)

subdominant. Under the assumption that only standard radiation and the CGWB are present
at Min, the (0,0) Einstein’s equation, which determines a condition for the energy density
of particle species in the Universe, and the scalar traceless part of Einstein’s equations,
which gives the relation between the scalar perturbations of the metric in terms of the
anisotropic stress, are given by

2 OradOr OGWO
7((I)I+H\I,):_padiad+pi(}w GW’
H Prad + PGW (42)
K20 — @) = —12H> PradTrad + PGWTGW
Prad + PGW

with m..q and wgw the scalar part of the anisotropic stress of radiation and CGWB respectively.
Since the energy density of gravitational waves is subdominant w.r.t. standard radiation the
Einstein’s equations are not sensitive to the presence of the CGWB, therefore no information
about dgw can be extracted by using the Einstein equations. Additionally, the perturbation
of gravitons cannot be directly related to those of photons, because the latter is produced by
the decay of the inflaton, while the former by the small-scale perturbations of the metric.
Therefore, the only way to get access to the perturbation of gravitons at early times is by
directly computing the energy-momentum tensor of GWs in a perturbed FLRW metric [45],
exploiting the microscopic description of the field to reconstruct its macroscopic properties.

5 Inflationary initial conditions for the CGWB

5.1 The energy-momentum tensor of the gravitational field

When the wavelength of GWs is comparable to the scales over which the background varies,
the energy-momentum tensor of GWs is ambiguously defined [53]. In this case, one could
start from the Einstein-Hilbert action [54, 55] or by considering terms quadratic in the tensor
amplitude in the Einstein tensor [38]. In [56] the GWs are considered as a tensor field on a
curved manifold. In this work, we consider only sub-horizon GWs and thus all the definitions
of the energy-momentum tensor converge [37, 38, 46, 53]. For simplicity, we use the definition
of the energy-momentum tensor of the CGWB given in [37], which consists of a simple
expression in terms of covariant derivatives (w.r.t. the slowly-varying metric) of the GWs,

1
T8 = o= (DS DAY ) (5.1)

The radiative degrees of freedom of the metric in this prescription are identified by the
rapidly-oscillating perturbations of the metric, therefore all the terms proportional to h;;.



In the Poisson gauge we simply have!

%’?‘W = a’hij,
GWij — ik jlaw _ 1 ij k(ip,9) (5.2)
v =99 T :g[(l‘ﬂ@)h — H™'ly/] .

The average, which appears in eq. (5.1), corresponds to the Brill-Hartle average and it
smooths the perturbations on scales much larger than the wavelengths of the GWs and much
smaller w.r.t. the scales over which ®, ¥ and H;; vary [37, 46]. Additional details on this
averaging scheme are given in appendix A. As a consistency check, we also compute the
energy-momentum tensor by using the approach of [38], by perturbing the Einstein tensor
up to “hybrid third order” in the perturbations,
1
CGW [ = 3 -

Tw/ (77,.%') = _%wa) (7],3?) ) (5'3>
where GE[DL) is quadratic in h;; and up to linear in the large-scale scalar ®, ¥ and tensor
H;; perturbations.

5.2 Energy density

The (0,0) component of the energy-momentum tensor is related to the average GW energy
density and its perturbation by

The covariant derivatives of the gravitational field have been computed in appendix B and
the energy-momentum tensor computed by using eq. (5.1) is

0GW _ !B L nl H*

The average GW energy density and its perturbation are therefore [45]

- _ 1 I opigt

PGW = 327TGCL2 <h13h > )
5 — iy (Cow 40 RLh2TN 2 >0
pGW_327TGa2{< ij >(— + >_<ij k> }»

where we have used the fact that the Brill-Hartle average does not modify the large-scale
perturbations of the metric.

In egs. (5.6) we have computed the energy density of the GWs in terms of the correlation
function of h;jhij ’. However, since h;; is a Gaussian random variable, an object quadratic in
the tensor perturbations of the metric is x? distributed. Therefore, pgw contains corrections
proportional to the four-point function of h;;. Nevertheless, these contributions consist in
small-scale corrections (they vary just on scales ¢) to the monopole and they do not affect
the initial conditions on the anisotropies and can therefore be disregarded.

As a consistency check, we derive the energy-momentum tensor of the gravitational field
starting from the Einstein tensor at third order, eq. (5.3). To do this we use xPand [57] to

'"Here round parentheses denote symmetrization over indices.



compute the Einstein tensor up to “hybrid third order” in perturbations, keeping the terms
quadratic in h;; and of order zero and linear in large-scale scalar perturbations ®, ¥ and H;;.
The complete expression for the Einstein tensor at third order is rather cumbersome, but
the shortwave approximation allows to simplify a large number of terms in the expression.
We neglect indeed the friction terms proportional to H because they are subdominant w.r.t.
terms proportional to the derivatives of h;;, since gn > 1,

{/Hh” ~ %h”

1
Hhi; =~ —0,hi; K Ouhi;. (5.7
Dby ~ ahyy 3 O wlij )

Spatial and temporal derivatives of the large-scale scalar and tensor perturbations are also
negligible at the time at which we fix the initial conditions. After these simplifications, the
Einstein tensor at third order is equal to

1 g y g y y
a®GY® = 4< — WA B 4 2Bh Rl — 12001V hyj + 6BO* R O; ki, — 9DOT R Oyhy;

oy, y 3 .. y
— H9BE By, — AHTRM 00, Ry, + inaihklﬁjhkl + 219 H* 9Oy hy (5.8)
+ 4h] H* 2 hjy — 2HY 9;hyyd'hE — HY Ophji0'hF + 3Hijakhﬂakh§) :

As discussed in appendix A, the energy-momentum tensor is defined up to total covariant
derivatives quadratic in the radiative degrees of freedom of the metric, see eq. (A.3). The
Einstein tensor can therefore be written as

1 . y o 1
a?Gh®) = i < — 2K b + 4BhY B — 2HIRE B, — 1205© + 60 MO + 59(”
(5.9)
—4HIAY + 40P + vonYC) — 2HYD) — Hij}'»(-o))
i i i ij ij )

where the total covariant derivatives have been computed in egs. (B.2), (B.3) (B.4). After
neglecting the total covariant derivatives, whose Brill-Hartle average is subdominant, we get
an expression consistent with (5.5). In appendix C we have also shown that from eq. (5.3)
it is possible to obtain the background energy density pgw-

Analogously, we compute the (i, j) component of the energy-momentum tensor,

iGW _ 7 kl l i k 7 kl
BV = [(1 +60) <a hi;h > — e <a hklajh,g> —gm <8mhklajh >} .
(5.10)
To extract the pressure from the energy-momentum tensor we use just
Paw = 28 TV = 2 (0,hy;0h¥ [(1 + 60)5] — Hf] — 'O WD 0,y ), (5.11)
37 32rGa?3 \ Y bk o Sstm o A%

where we have exploited the fact that at first order in the large-scale perturbations 7Tij5ij =0.
Up to the four-divergence, eq. (B.3), which is negligible by taking the average, the pressure is

1

PGW = gp(;w, (512)



which confirms that the CGWB behaves as a radiation fluid also at first order in the
perturbations. The (0,7) component of the energy-momentum tensor is just

TOGW — _Wlaa? (1= 20 + 40) (9l b ") — HTE (D:hiahl)")] (5.13)

The average velocity of the CGWB is given by

1 3

iow=———=T2W = T [(1—20+4®) ( hI™ Oy, ) — H™ (B}, 007 )|

faw paw+Paw AR By, ) {( i )< l > <lm ' >(>} )
5.14

Under the assumption that the quantum fluctuations of the tensor perturbations of the metric
during inflation preserve statistical isotropy, the average velocity of the CGWB vanishes,
since it is proportional to vectors like (h%’ Oihij). This expectation value is equal to zero
because there is no preferred direction for the average of the single patch of GWs. The
anisotropic stress of the CGWB is defined as

W;;Gw _ TJ@GW — PSWs,; | (5.15)

and thus we find

. , 1.
71-; oW :W<(1 + 6(1)) <61hlm6jhlm - Bééakhlmakhlm>

) 1 .

- (szakhlmajhlm — 35;HrkakhlmaThlm> (5.16)
rlaizm 1 1 rrrlQsim

— <H YO ROy, — g@H L9 hr ashlm) > .

In the next section, we will compute the two-point correlation function of h;; in order to
check that it does not contain perturbations of scales k£ and that all the contributions to the
initial conditions on the anisotropies of the CGWB come from ®, ¥ and h;; in eq. (5.6).

5.3 Perturbed equation of motion for GWs

In the previous section we have shown that the energy-momentum tensor of the CGWB
contains, according to the definition given by eq. (5.1), inhomogeneities due to the large-
scale perturbations of the metric. These terms come from the definition of covariant and
contravariant derivatives and by the fact that the contravariant GWs are defined from the
covariant GWs w.r.t. the slowly-varying metric. However, the gravitational radiation h;; could
be intrinsically inhomogeneous because of the propagation of the tensor perturbations through
the large-scale perturbations of the metric. More explicitly, the equation of motion of GWs is
computed by requiring that the transverse-traceless part of the Einstein tensor vanishes,

G =0, (5.17)

where we have neglected any source of anisotropic stress. At zero order in the large-scale
perturbations the equation of motion is

hi; + 2Hhj; — V?hi; = 0. (5.18)

,10,



On the other hand, when the presence of ®, ¥ and H;; is taken into account, the full
expression of the equation of motion is

(1= 20 +20) [, + hij (2H — U + &) + hyj (AHD' +20") — V2hy (1 + 20 + 20)
(5.19)
+ 2Hk18k61hij} =0.

To compute it, we have to evaluate the transverse-traceless part of the Einstein tensor at
second order, neglecting terms quadratic in the perturbations, because they would act as
a source of scalar-induced GWs [58-61] not considered in this work. If we neglecr H;; and
assume that ® and ¥ are constant in time and uniform in space, it is possible to treat them
as constants and simplify the equation of motion,

B4 2HK, . — VPhi; (1 + 20 + 28) = 0. 5.20
J J J

It is possible to decompose the GWs as

hiy(n, &) = / Y @@ Tn.a). (5.21)

A==£2

where T} (7, q) is the transfer function of the tensor perturbations of momentum ¢ at the time
7, ha(q) is the primordial tensor perturbation and A\ = £2 accounts for the two polarisation
degrees of freedom. During radiation-dominated epoch, H = 1/7, and the equation of motion
of the transfer function reads

(0,7, 9) + nThm,x )+ ¢ (1428 + 29) T3, (5, 7,4) = 0. (5.22)
The general solution of the equation is given by

Th(nviga Q) :jO (Q(nvfa Q) 77) ) (523)

where jp is the spherical Bessel function of zeroth order and

Qn.T,q) =1+ ¥(n,2) + @(n,7)]q. (5.24)

The energy density of GWs is proportional to the temporal derivative of the small-scale
mode, then

Tilz(n?:a Q) = _Q(naf7 Q)jl (Q(f7 Q)77) . (525)

If we set the initial condition when the modes are inside the horizon, gn ~ 150, we can write
explicitly the spherical Bessel function of order one as

T, (n, Z,q) = —717 cos (Q(n, Z,q)n) = —71] cos(qn) + sin(qn) (¥(n, Z) + ®(n, 7)) . (5.26)

The second term represent a large-scale perturbation of the GWs due to the propagation
across underdense and overdense regions. Since we are interested in computing the initial
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condition of the CGWB, the quantity which enters in eq. (5.6) is the average of the square
of the transfer function,

7112<COS2(Q77)> +2.(T (5, 7) + B(n, 7)) (sin(2gn)) = — (5.27)

(0,7, 9)]%) ~ -,

([Th(n, 7, 9)]") o2
where the average has been taken w.r.t. ¢q. Since the average of the sine is zero, the
perturbations in h;; due to the equation of motion are negligible and for the purposes of
this paper, we can consider h;; as a tensor linear in the small-scale perturbations and of

order zero in the large-scale perturbations.

5.4 Initial condition term for the CGWB

The energy density, pressure, velocity and anisotropic stress of the CGWB are evaluated
by integrating over all the frequency spectrum of the CGWB because the GWs considered

hij(n, k) are the superposition of many small-scale tensor perturbations of frequencies q. The
2-point function for tensor perturbations at a given time 7 is

870

(an, Db (1, 7)) = 55 Pr(@) S 67 = §) [Th(n. @) - (5.28)
The energy density of the CGWB then is
1 d3q 272 2
in, &) = —F T3, (in
pCGWB(n l’) 3271Ga2 (,’7) / (27_‘_)3 q3 T(Q)<[ h(n Q)} >
(5.29)
X |1 =20 (i, B) + 40 (nin, F) — 2H (110, &) D ei(@)ef Q)
A=+2
It is possible to show that
Zei\k(@)ef/\(@) = 0ij — GiGy (5.30)
A
then
1 d3q 2n? 2
iny_‘ = — P T; in,
peonsn D) = ozt | amp s 7@ ([T 0 (5.31)

x [1 = 2W(ipn, 7) + 4@ (in, ) + 2H (1, )i ] -

It is immediate to connect the isotropic component of the graviton distribution function
to the primordial tensor power spectrum

— T 2
=——— P Ty (n; 5.32
f(q) 6G2(m)d r(a) ([T (nn: 0)]° ) (5.32)
and the anisotropic contribution to the energy density of GWs is
Sew (Min, k&, 1, q) = =2 (i, &) + 4@ (150, k) + 2 > Hx(nin, k)e' (k)a:q; (5.33)
A==%2

Assuming that the primordial tensor modes are unpolarized we can use eq. (5.30), then the
perturbation of the energy density is

5GW(771H7 ];7 ﬁv q) = _Q\Il(nilu I;‘:) + 4¢’(771n7 ];;) + 2H(nin7 E) (1 - /J'Q) ) (534)
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which is equivalent to

- 1 - - -
F(nim k7 n, Q) = 4—n b(q) [_2\11(771117 k) + 4‘13(771117 k) + 2H(771n7 k) (1 - MQ)} . (535)
gw

We can decompose the initial anisotropy of the CGWB into multipoles

dcw (in; k7, @) = D (=) (20 + Ddaw. (i, k. ) Pe (1) (5.36)

¢
where Py (u) are the Legendre polynomials. The dipole will be zero due to the fact that
the average velocity of the CGWB is zero. The quadrupole is sourced by large scale tensor
perturbations and therefore it is non-zero but remains comparatively small w.r.t. the monopole.
We find that the initial anisotropy of the CGWB is the sum of a monopole and a quadrupole,

- - - 2 -
5GW,0(ninv k? n, Q) = —2‘1’(%17 k) + 4@(77111’ k) + gH(T/in’ k) s
w1 (Thin, k71, ) = 0, (5.37)

-,

- 2
5GW,2("7ina ]{3,7'1,, Q) = —gH(Uin, k) .

6 The angular power spectrum of the CGWB

For simplicity, we consider a CGWB produced by quantum fluctuations of the metric in
the case of single-field inflation or any inflationary mechanism that gives rise to adiabatic
initial conditions for radiation and matter perturbations. The angular power-spectrum of the
CGWRB defined in eq. (2.10) includes the initial condition term and the propagation effects
evaluated in (2.9). The redshift at the start of the free-streaming of gravitons gives rise to
the Sachs-Wolfe (SW) effect, while the propagation through the large-scale scalar and tensor
perturbations to the Integrated Sachs-Wolfe (ISW) [29, 30, 34]. Following [52] we write the
angular power spectrum in terms of the source functions

GW 2 2
47r(4c;£ Ngwh)? /(Z{ [PR(k) <Aéis + A7 + AiSW) + Pr(k) (AéiT + AiSW?T) } ’
(6.1)
where Pr and Pr are the power spectra of scalar and tensor perturbations.
Neglecting the tensor perturbations, we can see that the contribution to the CGWB
anisotropy from these inflationary initial conditions (IIC) enhances the angular power-
spectrum compared to the adiabatic case,

CHOTsW (AT + [2 — ngwn ()] Ty ?
CpPTSW 2 — ngwn ()| Tw .

When ngyt, = 0, the angular power spectrum is enhanced by a factor of 10, therefore the

(6.2)

IIC could enhance the detectability of the anisotropies by at least one order of magnitude.
These large initial conditions would allow to overcome the intrinsic variance limit in the
detection of the CGWB computed in [40, 41].

Since the total angular power-spectrum is the sum of the initial condition term, the
SW, the ISW effect and the cross-correlation between these terms, differences in the initial
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conditions could change the way in which these three effects combine together, modifying
also the scaling of the angular power spectrum. For instance, the adiabatic initial conditions
have the same sign of the early ISW and thus it sums coherently at large ¢, generating
a bump in the spectrum, while the IIC have the opposite sign and the spectrum remains
almost constant when /¢ increases. In the left panel of figure 1 we plot the angular power-
spectrum of the CGWB for IIC and for adiabatic initial conditions with ngywy, = 0.35. The
spectrum has been computed with a modified version of the GW_CLASS code which includes
the non-adiabatic initial conditions computed in eq. (5.35). The flattening of the angular
power spectrum in the case of large initial conditions due to scalar isocurvature perturbations
has also been discussed in [62].

It is known that the angular power-spectrum of the CGWB is sensitive to the relativistic
and decoupled degrees of freedom [42, 52]. The impact of these parameters depends on the
choice of the initial conditions. The transfer functions of the scalar metric fluctuations depend
on the fractional energy density of relativistic and decoupled particles species through

4 -1
T\D(nim k) = —g (1 + 15fdec("7in)) y (6 3)

2
T (1K) = [L+ 2 foce s )| T o, ).

The dependence on the number of relativistic and decoupled particles species enters in the
source function for the initial condition, for the SW and for the primordial ISW, integrated
between ni, and Mmin

A?W<n07 k7 q, 77111) = T‘I/ (ninv k)]@[k(no - nin)] 5
Aisw_prlm(noa k7 q, nin) = ]Z(k(no - nin)) [T‘I/ (nminv k) + T<I> (nmirn k) - T\I/ (nin7 k) - T<I> (nin; k)}

~ —jz(k?(ﬁo - nin)) 2+ ?fdec(nin))] T\I’(nin) . (6'4)

For adiabatic initial conditions, it is possible to show that, at large angular scales, the angular
power spectrum of the CGWB depends on fgec(7in) through the combination

6—ngwhb 2 . 2
AD+SW+ISW—prim __ (4—n§wb +5/ dec(nm)> (6.5)

C
¢ 1+ %fdec(ﬁin)

When ngyt, = 0, the angular power spectrum is independent of fyec(nin). Anyway, in most
cases for the CGWB potentially detectable by future interferometers ngy, will be different
from zero. For a spectrum with ngyy, = 0.35, a higher number of relativistic species suppresses
the sensitivity of the anisotropies to the relativistic degrees of freedom due to the compensation
of the SW effect and early ISW effect with the adiabatic initial conditions. On the other
hand, for the IIC we find

2_ngwb _ zf ( ) ) Ngwb 2
IC+SWHISW—prim _ [ T—ngw, _ 5Jdec\lin) 1=n &
~ )

C
¢ 1 + %fdec(nin)
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Figure 1. Left: plot of the angular power spectrum of the CGWB for adiabatic initial conditions (AD)
and for inflationary initial conditions (IIC) with ngy1, = 0.35. Right: plot of the tensor contributions
to the angular power spectrum for AD and IIC.

which means that when ngw, = 0, the spectrum still depends on fqec(nmin). Note also
that in the adiabatic case an increase of fqec(7in) determines a suppression of the angular
power spectrum, while in the case of IIC the presence of the relativistic particles enhances
the anisotropies. Moreover, in the neighbourhood of ngw, = 0, the enhancement of the
angular power spectrum of the CGWB for change in fqec(nin) is much more visible than
the suppression in the adiabatic case. This occurs because in eq. (6.5) there is a partial
cancellation between the dependence on fgec(7in) between the numerator and the denominator,
while in eq. (6.6) this does not occur. In the left panel of figure 1 we have computed the
angular power spectrum for fgec(in) = 0 and fgec(nin) = 1, showing that in the case of IIC
the spectrum is more sensitive to relativistic species.

7 Tensor contribution to the angular power spectrum of the CGWB

In the standard case [52], the tensor perturbations contribute to the angular power spectrum
of the CGWB through the ISW effect, due to the variations of H;; in time,

1 (M0 4 o
ISW-T ku(n— JUP
r (no,k,q) = —% : dne’ =m0 [ G0 (7.1)
In the case of IIC, this contribution has to be summed with the tensor term related to
the initial conditions,

2

D (0, iy q) = FE—
gw

eiku(mn*no)HZ.jqiqj ) (7.2)
The two terms considered have the same sign, since the time derivative of H;; is negative,
which means that the two contributions add coherently, giving rise to a larger anisotropy.
The net effect is to increase by an order of magnitude the tensor contribution as for the
scalar part. We note however that the primordial tensor power spectrum is suppressed w.r.t.
the scalar one by the small value of the tensor-to-scalar ratio constrained by Planck and
BICEP, r < 0.03 [63-65], therefore we expect that the tensor contribution to the angular
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power specturm of the CGWB will be subdominant. In the right panel of figure 1, we plot
the total tensor contribution (the superposition of the initial conditions and the ISW) for
adiabatic and inflationary initial conditions.

8 Cross-correlation between the CGWB and the CMB

At low multipoles, the angular power-spectrum of the CGWB and of the CMB are dominated
by the combination of the initial condition and the SW, which is the same for both photons
and gravitons, since at large angular scales the two signals experience the redshift from
highly-correlated metric perturbations [43]. The constraints on the angular power-spectrum
of CMB anisotropies show that the initial conditions for photons are adiabatic [63]. Therefore,
when we consider adiabatic initial conditions of the CGWB, the correlation is very large.
On the other hand, inflationary initial conditions are still correlated with large scale CMB
anisotropies at last scattering, because the scalar perturbations that generate them arise
from the same seeds, but since the initial conditions combine differently with the other
contributions to the angular power spectrum, the correlation decreases by a small fraction.
The adiabatic initial term plus the SW effect for the CMB is

Ty (1, ) + Oo(ie, ) = 5T K) = 510 Tulns K) = 26T b) . (8
For the CGWB the adiabatic initial term plus the SW effect is proportional to Ty (nin, k)/2,
which is close to the analogue term for the CMB, while in the case of IIC we have an additional
term, which gives a substantial deviation between the adiabatic case because of the way how
the adiabatic initial condition term and the SW effect combines with the late ISW effect.

This results in a decrease of the correlation of the CMB and of the CGWB defined by
CCMBXCGWB
CMBxCGWB _ ¢

= . 2
"t \/CCMBXCMB (CGWBXCGWB (8.2)
¢ ¢

For the adiabatic initial conditions we get r =~ 0.98, while in the case of IIC we have
r =~ 0.8 —0.9. Thus, the correlation between the CMB and the CGWB would be a way
to test the nature of the initial conditions, as soon as a CGWB is detected. We plot this
result in figure 2.

9 An example: the curvaton mechanism

The initial conditions of the CGWB computed in this work apply to any CGWB generated
by the quantum fluctuations of the metric independent of the fluctuations of the fields that
generate the scalar perturbations of the Universe. An alternative way to say this is that
eq. (5.35) holds even if more than one scalar field is present during inflation. The initial
overdensity of gravitons depends indeed just on the large-scale perturbations of the metric at
the initial time. Neglecting the large-scale tensor modes and assuming that fgec(nim) = 0, the
energy density perturbation of the CGWB can be written in terms of the total curvature
perturbation as

5 1
POW _ 9@ 4 40 ~ 20 ~ ——(, (9.1)
PGW 3
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Figure 2. Plot of the correlation between the CMB and the CGWB at different multipoles for
adiabatic initial conditions (AD) and for inflationary initial conditions (IIC) with ngw, = 0.35.

where the connection between the curvature perturbation and the large-scale perturbations
during the radiation dominated epoch is given by ¥ = & = —2/3(.

In this section we show how the IIC apply also in the case of the curvaton mechanism.
In the curvaton scenario, the curvature perturbations are not generated by the inflaton,
but by the fluctuations of another light scalar field, the curvaton. During inflation, the
curvaton plays a negligible role, while in the radiation dominated Universe, before its decay,
it gives the dominant contribution to the curvature and to the energy density. We consider
the case in which the inflaton and the curvaton (during the radiation-dominated epoch)
decay into standard radiation, while the CGWB is generated by the quantum fluctuations
of the metric [62]. Immediately before the decay of the curvaton we assume that the total
curvature perturbations is

Cin = fx,inCX,in + fGW,inCGW,in + (1 - fx,in - fGW,in)Cr,in 5 (92)

where we have defined

(1 + wi) Pi
fi= =———, (9.3)
’ Zj(l + wj)p;
with w; the equation of state of the species j. Right after the decay of the curvaton into
radiation, the curvature perturbation is

¢ = fawCow + (1 = faw) G- (9.4)

In the limit of instantaneous decay, the curvaton completely dominates the energy density
before it decays. In this case, the total curvature perturbation is approximately constant at
the decay epoch and therefore the total curvature perturbation after the decay is proportional
to the total curvature perturbation immediately before the decay, ¢ = (j.2 We can also use
Cew = Caw,in and faw = fqw,in, because the energy density of the CGWB is conserved.

2Before the decay of the curvaton, the curvature perturbation grows in time because fy in increases. This
leads to the non-zero non-adiabatic pressure, but this is not important for our purposes.
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In most of the cases, we expect that the contribution to the energy budget of the Universe
in form of GWs is subdominant, thence fgw < 1. Moreover, we assume that the curvaton
dominates the curvature perturbation before the decay, (;in < (y,in- By neglecting the
contributions proportional to faw and fow,in in egs. (9.2), (9.4) it is possible to relate the
initial conditions on the curvature perturbation of standard radiation and the curvaton,

Cin = fx,ian,in — Cr = C = Cin = fx,in(x,in . (9'5)

The quantity f, inCy,in is related to the scalar power spectrum and it is constrained by
Planck [63]. The perturbation of the temperature of radiation is then

0T,  16p,

2 1
Tr Z ,57' = + Cr =~ _gfx,iHCX,in + fx,inCX,in = gfx,in(x,in- (96)

As we have shown in this work, the adiabatic assumption is not valid when the gravitons
and radiation are originated by different fields, therefore (gw in # Grin. A self-consistent
computation, which follows from eq. (9.1), gives, for ngw, = 0,

dpaw 4 1
7p ~ _7fX71nCX=in — I ~ _*f)@ingx,in . (97)
PGW 3 3

In this way it possible to extract from the energy density of the CGWB also the relative
curvature perturbation of gravitons,
1 0paw

Cow = ~——
4 paw

1
— P ~ nguiHCX,in . (98)

10 Conclusions

The decoupling of gravitational waves at the Planck epoch makes any stochastic background
of gravitational waves sensitive to the physics operating at the energy scales of its production.
Since future detectors will have a much better angular resolution, anisotropies of the CGWB
could be detected and provide an important tool to disentangle different astrophysical and
cosmological contributions to the SGWB. The anisotropies are imprinted at the production
of the CGWB and during the propagation of gravitons through the perturbed Universe. The
initial anisotropies could be extremely important, because they retain crucial information
about the primordial mechanisms that generates the gravitational waves. However, the
definition of the initial overdensity of the CGWB can be challenging, because the distribution
of gravitons is not thermal. In particular, the adiabatic initial condition, that holds for CMB
photons, is not guaranteed a priori for the primordial GWs. In this paper, we have shown
that any CGWB generated by the quantum fluctuations of the metric during inflation has an
intrinsic non-adiabatic perturbation, even in single-field models of inflation. The violation of
adiabaticity is due to the presence of independent tensor perturbations of the metric during
inflation, which fluctuate independently of the dominant source of scalar perturbations of
the Universe, such as the inflaton.

In the case of cosmological background generated by the quantum fluctuations of the
metric, the initial conditions are different w.r.t. the CMB ones, because the latter is a ther-
malized species and a decay product of the fields responsible for the curvature of the Universe.
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Therefore, no information on the initial conditions on the anisotropies of the CGWB can be
extracted from the analogy with the CMB. Furthermore, we have shown that the Einstein
equations are insensitive to the presence of the CGWB, because the energy density of primor-
dial gravitons is subdominant w.r.t. standard radiation. Thus, we concluded that the only
way possible to evaluate the initial energy density perturbation of the CGWB is by computing
the energy-momentum tensor of GWs directly in terms of the gravitational field. To do this,
we perturb the energy-momentum tensor of the GWs given in terms of covariant derivatives
of the radiative degrees of freedom of the metric w.r.t. the large-scale scalar and tensor
perturbations of the Universe. As a consistency check, we perturb also the Einstein tensor
up to second order in small-scale tensor modes and linear in large-scale metric perturbations.
We find that the initial conditions computed with the two approaches are equivalent and that
the non-adiabatic contribution to the energy density of a CGWB consists in a monopole term,
proportional to the scalar and tensor perturbations, and in a quadrupole term, proportional
just to the tensor perturbations. The scalar part of the initial conditions is very large and
its combination with the other contributions to the anisotropies lead to an enhancement of
the CGWB angular spectrum by about one order of magnitude w.r.t. the adiabatic case. In
addition, the non-adiabatic initial condition increases the sensitivity of the anisotropies to
the presence of extra relativistic degrees of freedom in the early Universe. On the other hand,
the correlation between the CGWB and the CMB decreases due to the fact that these initial
conditions combine differently with the other contributions to the angular power spectrum.

The computation of the initial conditions for the CGWB done in this work represents a
turning point for the study of the anisotropies of cosmological relics produced by non-thermal
and non-adiabatic mechanisms. The arguments we gave to justify the non-adiabaticity
of primordial gravitons could indeed be applied to other cosmological relics generated by
the quantum fluctuations of scalar fields independent of the inflaton or other fields that
dominate the curvature perturbation of the Universe at early times. This has been shown,
for instance, in the example of a CGWB generated by the quantum fluctuations of the
metric in the curvaton scenario.

Our findings could have then important implications for the detectability of the
anisotropies by future interferometers, since the non-adiabatic initial conditions computed
in this work augment the amplitude of the angular power spectrum and the sensitivity to
some cosmological parameters by at least one order of magnitude. In addition, differences
in the initial conditions of different cosmological (or astrophysical) backgrounds could be
an important tool to distinguish among different sources of GWs in the future, once these
anisotropies will be detected.
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A Brill-Hartle average

In analogy with the EM case, to compute the average we will use a tool introduced by
Brill and Hartle [66], to compute averages. Considering a tensor T),,(z), we defined the
Brill-Hartle average by using

(Ty (2 /d4yf (2,9) 95 (2. y) 95 (2,9) Ty5(y) (A1)

where f(z,y) is a smooth weighting function which falls to zero when A\ < |7 — 7] < R,
where R is the typical scale over which the background varies and gg‘ is the bi-vector of
geodesic parallel displacement. It transforms as covariant vector w.r.t. x for the index pu
and as contravariant vector w.r.t. y for the index &. By using the Gauss theorem on curved
manifolds, it is possible to show that the total covariant derivatives of an object quadratic
in the GWs is negligible. More specifically, if we defined S/, as an object quadratic in the
GWs, the Brill-Hartle average of its four-divergence can be written as

(DSt ) /d“yf:vy)g“(fv y) 9. (2,y) DpS?5(y) =
/de gp(@,y) 90 (2,y) DpS? o / d'y Dy | f(x,9) g (x,9) 9. (z.9)] S25(0).
(A.2)

The boundary term is zero, because the smoothing function f goes to zero at infinity, while
other terms are negligible, since they vary on scales L. Therefore, the Brill-Hartle average
of a four-divergence is suppressed by a factor

A
(DoS) ~ DoSfi T < DSt (A.3)

In appendix B, we compute the four-divergences like eq. (A.3) that can be neglected in the
computation of the energy-momentum tensor of the CGWB.
B Covariant derivatives of GWs
The covariant derivatives of the radiative degrees of freedom of the metric are
Dy (’YSW> = a2h;] )
Dy (’YSW) = a*Ohij ,

ijr _ grk(ipd)! B.1)
awipy _ (1+4®)h’ — H iy (B.
DO (7 J) - a2 ’
ij ig, pi)
awi\ (1 +42)9xh — H'Coh]
Dk (7 J) = a2 )

where the round parentheses denote symmetrized indices. In these expressions we have
neglected spatial derivatives of ®, W, H;;, which are subdominant on superhorizon scales. In
addition, we neglect any friction term #Hh;; or terms of the form W'h;;, which are supposed
to be suppressed w.r.t. terms containing the derivatives of h;;, which depend on q.
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In the shortwave approximation, the tensors of the form D,Sf, , where S/, is quadratic
in ’ygfw, can be dropped under averages [37]. We compute the covariant derivatives of the
following combination at third order in perturbations

T =Dy (WGW ijDo%?W)
= BBl (1 4 4®) + hIRY (1 + 40) — HCR) nl — HROR)
Skt = Dk (’YGWij DZ’YSW)
8 = 0" Sy = (14 40) ("W Ohyj + hTV2hyy) — H'G (90 0phsy + ) V2hi;) |
M =Dr (,YGijDijC;‘.)W)
(14 60)0 hikdyhi; — H*FIRD) Ohy; — H™ (8, % Oyhij + h1%0,,0,hi;)

a2

(B.2)

Then the four-divergence can be written as
— GW ij GW
g=D" (’Y "Dy ) =
= —hY'h;(1 — 20 4 4®) + (1 + 6®)9 h Iy hy; (B.3)
+ & [0 4 2H'B] | + H'OR) 'y — H'COph) 0% hiy — HMOphoyh;

with &; the perturbed equation of motion of the GWs introduced in eq. (5.19). We also
exploit the following total derivatives at second order in perturbations

AZ(-?) =D, ('yGkaD-'y-GW) = hlkalahik,

Y = (5” CWHD 4 GY) = 0:hM 03 ki + WM 0,0,
D(O) — DP( GW GWk) — 3jhsz)lh¢ ’ (B4)
7y =7, (% GWDl WWP) = Okhad'hk

Py =D (EVIPARY) = OOk + BT

C The Einstein tensor at second order

In order to be sure that the computation of the Einstein tensor at first order in the large-scale
perturbations is correct, we check the consistency of our results with the computation of the
Einstein tensor at zero order in the large-scale perturbations and quadratic in h;; associated
to the average energy density of GWs given in eq. (5.6) that can be found in the literature.
To perform the computation of the Einstein tensor we use xPand [57]. The output of the
code for the Einstein tensor at second-order is

0 (2 1, i 1, 1, 3 i
a?Gy ¥ = gl hiy + HR iy = Sh INV?h; + 0 h*0hj; — gﬁkh T O)hij . (C.1)

The shortwave approximation allows to simplify the expression we get for the Einstein
tensor. We can rewrite the Einstein tensor at second order in h;; and zero order in the
large-scale perturbations as

1
a2Gh? = fh”’h’ + h”S )+ T 4M(0)+28(0), (C.2)
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where we neglected the friction term proportional to H and the perturbed equation of motion
defined in eq. (5.18). Moreover, we can exploit the fact that the averaged total covariant
derivatives defined in appendix A are equal to zero. This leads to

2(Gh D) = {(hI'H), ©3)

and we get the standard expression for the average energy density of GWs

1

= 3270Ga2 (1) (high™') (e

paw = =T
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