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Abstract

Optimising lattice designs for circular colliders, such as the CERN Large Hadron
Collider (LHC), is critical to maximising performance and luminosity. Given the
limited computational resources for tracking particle orbits in accelerators, it is
essential to extract maximum information from short-term data. Fast identification
of chaotic behaviour in particle orbits is a novel approach that could lead to better
investigation of diffusive behaviour, leading to better understanding of long-term
beam losses. Various chaos indicators have been proposed for this purpose. This
thesis explores the potential of extrapolation techniques to enhance the classification
performance of chaos indicators in single-particle tracking simulations of circular
accelerators.

The time evolution of the Fast Lyapunov Indicator (FLI) and the Reversibil-
ity Error Method (REM) are simulated using a modulated Hénon map over 10°
turns. The values of these two chaos indicators at 10® provide a ground truth clas-
sification of regular or chaotic behaviour. Classifications based on shorter tracking
times are compared to the ground truth to assess accuracy, which provides an objec-
tive benchmark assessment of the predictive power of the indicator. Extrapolation
techniques using Auto-Regressive Integrated Moving Average (ARIMA) models are
implemented to predict the time evolution of these indicators up to 10® turns.

This study provides a first approach to the use of extrapolation techniques and
explores the efficacy of ARIMA models. The results show that ARIMA models,
while achieving a slight improvement in accuracy, ultimately did not improve the
classification accuracy for either FLI or REM. The considerations and characterisa-
tion of the data provided in this work can be transferred to the use of alternative
extrapolation techniques.



Résumé

L’optimisation des conceptions de réseaux pour les collisionneurs circulaires, tels que
le LHC (Large Hadron Collider) du CERN, est essentielle pour maximiser les per-
formances et la luminosité. Etant donné les ressources informatiques limitées pour
le suivi des orbites particulaires dans les accélérateurs, il est essentiel d’extraire un
maximum d’informations a partir des données a court terme. L’identification rapide
du comportement chaotique des orbites particulaires est une approche novatrice qui
pourrait faciliter une meilleure investigation du comportement diffusif, permettant
une meilleure compréhension des pertes de faisceau a long terme. Divers indicateurs
de chaos ont été proposés a cet effet. Cette these explore le potentiel des techniques
d’extrapolation pour améliorer les performances de classification des indicateurs de
chaos dans les simulations de suivi des particules uniques des accélérateurs circu-
laires.

L’évolution temporelle de I'indicateur de Liapounov rapide (FLI) et de la méth-
ode d’erreur de réversibilité (REM) est simulée en utilisant un attracteur de Hénon
modulé sur 10® tours. Les valeurs de ces deux indicateurs de chaos & 10® tours
fournissent une classification de référence du comportement régulier ou chaotique.
Les classifications basées sur des temps de suivi plus courts sont comparées a cette
référence pour évaluer la précision, ce qui fournit une évaluation objective de la
puissance prédictive de l'indicateur. Des techniques d’extrapolation utilisant des
modéles de moyenne mobile autorégressive intégrée (ARIMA) sont mises en ceuvre
pour prédire I’évolution temporelle de ces indicateurs jusqu’a 108 tours.

Cette étude propose une premiére approche pour l'utilisation des techniques
d’extrapolation et explore l'efficacité des modéles ARIMA. Les résultats montrent
que les modéles ARIMA, bien qu’ils aient légérement amélioré la précision, n’ont
finalement pas dépassé la précision de classification de référence pour le FLI ou le
REM. Les considérations et la caractérisation des données ici présentées peuvent
étre transférées a l'utilisation de techniques d’extrapolation alternatives.
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Chapter 1

Introduction

Optimising lattice designs for circular colliders is essential for enhancing their per-
formance, particularly in maximising luminosity. This is particularly relevant for
large superconducting colliders such as the CERN Large Hadron Collider (LHC) [1]
and its high-luminosity upgrade, the HL-LHC [2], which operate high-energy beams
using superconducting magnets. For example, HL-LHC beams are designed to reach
a stored beam energy of 700 MJ [3]. Even a small fraction of this energy deposited on
superconducting magnets can cause quenches or equipment damage, thus motivating
a deep understanding of the dynamics of beam losses.

The orbit of a particle through the magnetic lattice of a circular accelerator
can be modelled with a one-turn map, which represents the Poincaré section of the
machine, with the various magnetic elements described with the thin-lens approxi-
mation [4]. The standard method for evaluating the quality of an accelerator lattice
is through single-particle tracking: the particles’ orbits are individually tracked,
neglecting any interaction between the charged particles, and the volume in phase
space in which particles are observed to have bounded orbits, the so-called dynamic
aperture, is evaluated [5]. With unlimited computational power, the long-term per-
formance of a realistic LHC lattice would be assessed by tracking the particle orbits
for more than 108 turns, corresponding to the typical LHC fill time of approximately
10 hours, and the combination of initial conditions maximising the dynamic aperture
would be determined. However, current computational limitations make such tasks
impossible to tackle directly. Standard LHC tracking simulations consider up to 10°
turns, which corresponds to approximately 90 seconds of LHC runtime [6]. This
leads to the challenge of extrapolating the long-term performance of the accelerator
lattice up to 10® turns with the information available at lower tracking times.

Rather than only inspecting the dynamic aperture, one could inspect the regions
in phase space where particles exhibit chaotic behaviour. The presence of chaos can
then be linked to possible diffusive behaviour in the beam dynamics, which can then
be used to try to predict beam losses. For the fast detection of chaotic behaviour,
various chaos indicators have been developed (see, e.g. [7] and references therein).
Chaos indicators are functions computed over a relatively small number of turns
that aim to quantify the chaotic behaviour of an orbit, i.e. its Lyapunov exponent.
They have recently been applied to accelerator physics as tools to improve lattice
inspection and optimisation. In this domain, finding a faster method to identify
chaos in accelerator lattices can improve the investigation of the relationship between
chaotic phase-space regions and beam-loss dynamics in circular accelerators. To



achieve this, we aim to use extrapolation techniques to extract as much information
as possible from chaos indicators.

The first aim of this project is to simulate the time evolution of various chaos
indicators over 10® turns, using a modulated Hénon map, which is a simplified
but meaningful one-turn map that preserves most of the features of a non-linear
accelerator lattice [4], [5]. Although it is not computationally feasible to perform
single-particle tracking on a realistic one-turn map for up to 10® turns, it is possible
to reach this number of turns on a modulated Hénon map. The values of a given
chaos indicator at 10® turns, comparable to typical LHC runtime [6], provide a
ground truth binary classification of regular or chaotic behaviour. The accuracy
over time of the binary classification after tracking up to a smaller number of turns,
compared to the ground truth classification, will serve as an objective assessment to
improve upon.

The second aim is to implement Auto-Regressive Integrated Moving Average
(ARIMA) [8] models to extrapolate the time evolution of various chaos indicators,
tracked up to smaller numbers of turns, up to 10® turns. The accuracy of the
classification after tracking and extrapolation will be compared with the benchmark
accuracy, in the hope that the tracking with extrapolation will be accurate and more
computationally efficient than single-particle tracking up to 10% turns.



Chapter 2

Theoretical Background

2.1 Modelling Accelerator Lattices

This section covers the fundamental elements of accelerator physics for the thesis.
It explains how Hamiltonian mechanics describes an accelerator lattice, where the
linear part of the system consists of dipole and quadrupole magnets, and higher-
order elements introduce non-linear beam dynamics.

2.1.1 Particle Accelerators

A particle accelerator accelerates beams of charged particles in a vacuum pipe to a
specific energy. Beams may collide with a fixed target or a counter-rotating beam.
Particles gain momentum via an oscillating electric field (RF pulses) and travel in
either a linear or circular path. In circular accelerators, dipole magnets create a
circular path, while quadrupole magnets focus the beam and adjust its size. Higher-
order magnets correct focusing imperfections and manage energy deviations.

2.1.2 Frenet-Serret Coordinate System

The standard coordinate system used to model circular accelerators is the Frenet-
Serret coordinate system (z,y,s) [4]. An illustration of this coordinate system is
shown in Fig. 2.1. The coordinate s points along the path of the ideal circular orbit
of the particle with radius p, defined as the reference orbit. The coordinates x, which
point outward in the radial direction, and ¥y, which point vertically upward, are used
to define the directions of the particle displacements around the design orbit.

This can be better understood by considering the transformation from Cartesian
coordinates (X,Y, Z) to Frenet-Serret coordinates (x,y,s), with the origin in the
centre of the accelerator. The angle along the ideal orbit is given by s/p, which can
be used to define the transformation in a similar way to cylindrical polar coordinates.
The transformation is given by

X:(x—i-p)cos(%), Y =y, Zz(x—i—p)sin(%). (2.1)

A particle in a circular accelerator is kept in an orbit of constant radius p with
the magnetic field of the dipoles. Equating the centripetal force m~yv?/p to the field



Reference Orbit

Figure 2.1: Schematic of the Frenet-Serret coordinate system, taken from [9].

provided by the modulus of the Lorentz force quB, where v is the particle’s velocity,
leads to
Bp=~-, (2.2)

where p is the particle’s (relativistic) momentum, ¢ is the particle’s charge, and Bp
is referred to as the magnetic rigidity. It is important to note that as the particles
are accelerated, their momentum increases, and therefore it is essential to increase
the magnetic field along with the particle’s momentum to keep p constant.

2.1.3 Hamiltonian Mechanics

This subsection introduces the fundamental elements of the Hamiltonian treatment
of an accelerator system, and how its magnetic field can be treated by means of a
power series. For a complete derivation of the Hamiltonian and the equations of
motion, please refer to [4], [9].

Starting from the Hamiltonian expression of a relativistic charged particle, that
is

H =ed +\/m2c* + (cp — eA)2, (2.3)

one can perform a change of variables into the Frenet-Serret coordinate system, and
treat the coordinate s as the time variable of the Hamiltonian. When considering
high-energy particle beams, it is valid to assume that the overall momentum is
mostly along the direction of the orbit. Even if the particle is oscillating around the
design orbit, its momentum from the oscillations is much less than the momentum of
the orbit, such that p > p, and p > p,. It is also assumed that there is no magnetic
field in the s direction, so that B = (B,, B,,0). Consequently, when expressing the
magnetic field in terms of a magnetic vector potential using B = V x A, the only
non-zero component of A is that in the s direction [9]. Applying these assumptions,
allows the Hamiltonian to be approximated as

_ TN, L2 ey
H = (1 + p) { P+ 2% (P2 +12)| — €A, (2.4)



where e is the charge of the particle, A, is the component of the magnetic vector
potential in the s direction, and p is the radius of the design orbit.

The first step to finding the contribution of the magnetic field eA to the Hamil-
tonian is to use Maxwell’s conditions of zero divergence and zero curl in the case
of our accelerator model to derive Laplace’s equation V2A = 0. The solution to
this equation can be expressed as a power series, which gives A,. This leads to the
multipolar expansion of the magnetic field given by

M :
. .. x4 y)"
B,(e.y:5) + iBu(.y:5) = By <po S lka(s) + ()] EE n<s>) (25)
n=1 ’
where By is the magnetic field at the reference radius pg, x(s) is a function equal
to 1 in dipoles and 0 elsewhere, and k,, and j,, are defined as the normal and skew
polar coefficients of the magnetic field. They are defined in terms of the derivatives

of the magnetic field and are given by

1 0"B,
Bopo O™

1 "B
kn(s) = 0" By

= 2.6

(0,055)

Jn(8) =

(0,055)

where B, and B, are the components of the magnetic field in the  and y directions
respectively. The normal and skew coefficients can be considered as equivalent to
the strength of the magnets, where ky corresponds to dipoles, k; to quadrupoles, ks
to sextupoles, and k3 to octupoles, and so on. For a simple accelerator model, skew
magnets are not considered, so j, = 0, and it is conventional to assume that each
magnet generates a field corresponding to only one multipolar order. In real life,
and when modelling non-linear elements, the field generated by one magnet may be
expressed by several multipolar coefficients [9].

From the Hamiltonian, the equation of motion for a particle’s motion in the z
and y directions in an accelerator can be derived using Hamilton’s equations. The
equations of motion are given by

(2.7)

where the prime denotes differentiation with respect to the coordinate s, and B is
the magnetic field at the reference radius pg. Considering only the linear terms in
B, and B, and discarding the higher-order terms implies that the magnetic field
is considered to be purely dipolar and quadrupolar. This is convenient because it
allows the equations of motion to be expressed in the following form

2+ K, (s)2=0, (2.8)

where z represents either x or y, and K(s) is a function of the normal polar co-
efficients. Depending on the value of K(s), the motion changes according to the
effects of different magnetic elements. For a circular accelerator, the condition
K(s) = K(s+ L) is imposed, where L is the accelerator length. The resulting
equations then follow the Hill equation format.



The equations of motion are now decoupled, and a particle’s motion can be
described with the following solution to Hill’s equation:

2(s) = Av/B.(s) cos (w.(s)) . (2.9)

These harmonic oscillations are referred to in accelerator physics as betatron
oscillations, with s-dependent amplitude $3,(s) and angular phase w,(s), known as
phase advance.

2.1.4 One-Turn Maps

A circular accelerator is modelled as a continuous Hamiltonian system, treating s as
the time-like coordinate. The phase-space coordinates may be sampled at discrete
values of s with the use of a Poincaré section. This is the plane in phase space
in which s = 0, a choice made to represent the starting point of the accelerator.
Particles leave the Poincaré section when travelling through the accelerator and
return after one full turn with new phase-space coordinates. A one-turn map is
the Poincaré map of a circular accelerator at this section [10]. It is a function that
maps the phase space coordinates to the Poincaré section after one complete turn.
Figure 2.2 visually illustrates the discrete sampling of the phase-space coordinates
at s = 0 after each turn.

-
\ X.—__

Figure 2.2: Schematic of a Poincaré section, taken from [9], adapted from [4]. A
particle x is mapped after one full turn to new coordinates x’.

A one-turn map is computed by multiplying the matrices that represent the
different elements in the accelerator. For example, in an accelerator with L elements,
the one-turn map is given by

M = M® o MED 6. o M® o MO (2.10)

where M@ is the matrix representing the ith element in the accelerator. Each
matrix may represent a drift space without a magnetic field or a magnet of some
order [9]. Element matrices may be derived in the thin lens approximation following
the principles of ray optics, treating a particle’s trajectory as a ray and characterising
the magnets as thin lenses [4].
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When considering an accelerator lattice made of only dipoles and quadrupoles,
the one-turn map corresponds to an uncoupled rotation in phase space given by

Tptl CoSw, sinw, 0 0 T
Dan+1 _ —sinw, cosw, 0 0 y Dan (2.11)
— . 9 .
Yn+1 0 0 COSwy SN wy Yn
Dyn+1 0 0 —sinw, Coswy Dy

where the angles w,, and w,, are the phase advances in the betatron oscillations
in the = and y directions, respectively. Note that in accelerator physics, it is cus-
tomary to build an accelerator lattice starting from the repetition of a periodic
structure called a FODO cell, which consists of a focusing quadrupole, a drift space,
a defocusing quadrupole, and another drift space.

In an accelerator, non-linear effects come from either magnet imperfections or
from the deliberate addition of higher-order magnets such as sextupoles, for chro-
maticity control, or octupoles, for compensation of field errors and stabilisation of
collective beam instabilities. In the case of magnetic imperfections, the magnetic
field is not purely dipolar and quadrupolar, and the non-linear elements of the
magnetic field, wanted and unwanted, are responsible for the non-linear motion of
particles in an accelerator.

The standard approach in computer simulations to approximate one-turn maps
that include non-linear elements is to use the one-kick approximation. This means
considering a non-linear magnet at a set position s’ in the accelerator, with all
effects applied following a Dirac d(s — s’) function [4]. The one-kick approximation
is applied in this study by considering a non-linear magnet at the very beginning of
the accelerator, providing a kick A such that the phase-space coordinates after the
kick are given by X, +A. After the kick is applied, the particles undergo a rotation
in phase space, such that the new phase space coordinates X,, 1 are given by

Xn+1 =R (Wm,na wy,n) (Xn + A) ’ (212>

where R (wy,wy ) is the same rotation matrix defined in Eq. (2.11).

A generic one-turn map can then be summarised as the product of matrices,
representing the FODO cell, and matrices representing the approximated thin-lens
higher-order magnets.

A simple, yet effective, accelerator-like one-turn map, containing a FODO cell
and a non-linear kick, reads:

Tn+1 T,
2 _ 2 3 3
Pz n+1 — R (w%m wy,n) % Pzn + Ty Yn + % (l‘n 3xnyn)
Yn+1 Yn
Pyt Py — 2TnYn + 1 (Y5 — ynt;)

(2.13)

where p is a variable parameter equivalent to ks, or the octupolar strength. If 4 = 0,
the kick is represented by the fixed quadratic part of the polynomial, corresponding
to a sextupolar kick [5].

This map follows the same format as a Hénon map [11], which is generally

expressed as
Tn+1 o Tn
( Posi ) = Rlw)x ( Pt T (@) ) (214)
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A modulation in the angles of the rotation matrix can be incorporated into the
Hénon map as a refinement that further enhances the model’s realism. Frequency
perturbations known as “ripples” occur in the power supply transmitted to the mag-
nets in an accelerator, thereby influencing the magnetic field and subsequently im-
pacting particle focusing. In the context of the Hénon map, this modulation is
accounted for by varying w, and w, with the number of turns n, as follows:

Wyn = Wi0 (1 +e Z £ COS (Q;m))

k=1

Wyn = Wy 0 (1 +e Z £, COS (an)>

(2.15)

k=1

where ¢ is the modulation amplitude [12], and &, and Qj are hard-coded parameters
based on data taken from observations of tune modulation due to the observed
frequency ripple in the CERN Super Proton Synchrotron [5].

The Hénon map represents only one FODO cell with one non-linear magnet.
For comparison, the one-turn map for a realistic LHC lattice contains over 10,000
elements. Despite its simplicity, the Hénon map exhibits many characteristics that
are expected to be similar in a realistic accelerator model. This makes it an ideal
tool for testing and benchmarking scale laws and extrapolation methods to study
long-term dynamics [4], [5]. It is preferable to use the modulated Hénon map to
probe as much information as possible about particle behaviour in this simplified
lattice before moving on to more computationally expensive simulations.

2.2 Detecting Chaos

This section introduces the concept of chaos, and how chaotic behaviour can be
quantified in single-particle tracking simulations with chaos indicators.

2.2.1 Lyapunov Exponent

For two initial conditions x, and xo + €£, the magnitude of their initial separation
€ varies over time at a rate that can be expressed in the following form

[1(x0 + €€)n — Xnl| = e, (2.16)

where x,, represents the condition at time n, and A is defined as the Lyapunov
exponent, which is given by

A= lim limlln Il(x0 + €£)n — Xy ||

n—oo e—>0 N €

(2.17)

where the expression inside the logarithm is the linear response of the system to
the perturbation €£. In other words, it is the the rate of growth in magnitude
of the initial displacement vector €. In the case of Hamiltonian systems, such
as accelerator lattice models, the Lyapunov exponent is always non-negative [13].
Each particle in an accelerator has its own orbit with a corresponding Lyapunov
exponent. If A = 0, the separation between the particles maintains the same order

12



of magnitude, and the particle’s orbit is defined as regular. Conversely, A > 0 implies
an exponential growth, and the particle’s orbit is defined as chaotic.

The Lyapunov exponent has dimensions of inverse time, although in this frame-
work it is represented in units of the number of turns, which makes it a dimensionless
quantity. Its reciprocal gives the Lyapunov time, which represents the timescale over
which particles exhibit chaotic behaviour.

The separation between particles in phase space may evolve at different rates de-
pending on the direction of the initial separation vector and the nature of the orbit.
This behaviour can be described by means of a spectrum of Lyapunov exponents,
which has the same dimension as the phase space under consideration. The gen-
eral separation rate described in Eq. (2.16) is then related to the largest Lyapunov
exponent in the spectrum, also referred to as the Maximal Lyapunov Exponent.

Since it is mathematically defined in the limit of infinite time, classifying particle
orbits as regular or chaotic after a finite number of turns means that the value of
the Lyapunov exponent must be estimated by means of chaos indicators.

2.2.2 Fast Lyapunov Indicator (FLI)

The Fast Lyapunov Indicator (FLI) [14] is a chaos indicator that provides a compu-
tation of the Maximal Lyapunov Exponent defined for finite time. It is given by the
logarithm of the linear response, as shown in Eq. (2.17), evaluated at a finite time
n. For an initial condition xq, and a displaced initial condition yy = x( + €&, tracked
using a one-turn map M, the map of the displaced initial condition y; = M(xg+ €£)
can be written as a first-order Taylor expansion of the map M, given by

M(x0 + €§) = M(xq) + DM (x0)€§ (2.18)

where DM is the Jacobian matrix, also known as a tangent map. The initial dis-
placement vector €£ evolves in magnitude and direction after every turn according to
the tangent map, evaluated at each value of n. Therefore, the map of the displaced
condition after n turns y,, is given by:

Vo =M, (X0) + DM (x5,-1) X DM (X;,—2) X ... x DM (x1) x DM (x0) €§ (2.19)

where M,,(xg) represents the one-turn map applied n times to the initial condi-
tion xg. The linear response, which is equal to the first-order derivative of M,,, is
therefore given by

— T yn — Xp
En(x) = =

= DM (Xp_1) X DM (X,_3) X ... x DM (x1) x DM (x¢) £ (2.20)
= L,(x0)¢.

where the concatenations of DM are represented in a more compact way by L, (xg).
Taking the logarithm of the linear response then gives the FLI as follows:

FLI, (x,&) = In ||Ly, (xo) ] (2.21)

The logarithm of the linear response is proportional to the Maximal Lyapunov Ex-
ponent multiplied by the number of turns n. Since the Lyapunov exponent is math-
ematically defined as the time average of the logarithm of the linear response, it can

13



be estimated by dividing the FLI by the number of turns n. For large numbers of
turns, the value of FLI,/n tends to the Maximal Lyapunov exponent [12]. Conse-
quently, for a regular orbit, the value of FLI,, /n tends to zero, and for chaotic orbits
the value of FLI, /n tends to a positive value.

2.2.3 Reversibility Error Method (REM)

Due to numerical rounding and truncation errors, a particle, after tracking and back-
tracking, will land some distance away from its exact initial condition. Reversibility
Error Method (REM) [15] measures this distance and uses this inevitable feature of
numerical simulation as a tool to evaluate the chaotic behaviour of a particle.

In REM, a particle is first tracked with the one-turn map from 0 to n turns, and
then backtracked from n turns back to 0 turns by means of the inverse one-turn
map. The Euclidean distance is then evaluated between the initial condition and
the condition after tracking and backtracking. This gives the value of REM at n
turns for a single particle, given by

REM = \/(5?0 —20)% + (Pr.0 = Pz0)? + (Jo — Y0)* + (Py0 — Pyo)? (2.22)

where Zo, Dy 0, Yo, and p, o are the phase space coordinates after tracking the particle
for a given number of turns and backtracking to 0 turns.

A regular particle will manifest a growth in REM following a power law, while
instead a chaotic particle will show a faster exponential growth. The time scale
for this exponential growth is determined by the Maximal Lyapunov Exponent [15].
These two trends are visible on a logarithmic scale.

2.3 ARIMA
2.3.1 General form of an ARIMA Model

An ARIMA model is an established extrapolation tool capable of capturing multiple
characteristics of a time series using a minimal number of free parameters. In the
context of this thesis, it will be used to extrapolate the time evolution of various
chaos indicators. It is made up of any linear combination of an autoregressive
(AR) model and a moving average (MA) model, with the possible inclusion of an
integrated (I) part.

It is important to note that the autoregressive and moving average components
of an ARIMA model assume that the time-series data is stationary. This means
that the mean and variance of the data do not change with time. The integrated (I)
component of an ARIMA model ensures that the data is stationary before fitting the
autoregressive and moving average components. A time series is made stationary by
differencing the data, which means taking each data point z at time ¢ and subtracting
the previous data point, creating a new array of data 2z’ where

2= 2 — 21 (2.23)

until the data is sufficiently stationary. When considering discrete data points and
time intervals, differencing is equivalent to differentiation. Differencing the data
two times is the analogue equivalent of taking the second derivative. The data used

14



for an ARIMA model may be differenced zero, one, or two times [8]. Differencing
the data more than twice may amplify the noise present in the time series, which
increases the variance of the data, and usually leads to overly sensitive ARIMA
models, which result in over-fitting.

Once the time series is stationary, a linear combination of an autoregressive
(AR) and a moving average (MA) model can be fitted to the data. This model
may include only an AR component, only an MA component, both components,
or neither (the latter corresponds to a random-walk model, where each data point
equals the previous one plus some noise). In a stationary time series with mean p, a
data point z; at time ¢ depends on white noise terms a and, if an AR component is
included, on past values of z, known as lags. White noise a is sampled independently
at different times ¢ from a normal distribution with a mean of zero and a variance
of o2 [8].

An autoregressive (AR) model of order p assumes that a data point z at time
t is a finite linear combination of p previous z values, plus some white noise. The
data point z; is given by

2=+ a+ Pr12e-1 + Pazt_0 + oo + Dp2i_p, (2.24)

where ¢ are independent coefficients known as weight parameters.

A moving average (MA) model of order ¢ assumes that a data point z at time
t is a finite linear combination of the previous ¢ white noise terms. This implies
that z; is a regression in error terms and can be interpreted as the sum of ¢ lagged
forecast errors. The data point z; is given by

2= p+ar — O1ai-1 — bhap_o — ... — Gya,_, (2.25)

where the convention is that the independent # parameters are defined such that
the sign in front of them is negative, but the sign of # itself can be either.

If the ARIMA model includes both an autoregressive and a moving average
component, then the data point z; at time t is given by the combination of both
models, plus the mean and the white noise. The data point z; is given by

2=+ ap+ G121+ Qoo+ ¢p2’t—p — tha—1 — Ohay_g — ... — 9qat—q ) (2-26)

where the data point z; depends on the past p values of z and the past ¢ values of a.
An ARIMA model of order (p, d, q) contains p+ ¢+ 2 parameters that are optimised
to fit the model to the observed data: ¢, 6, u, and o2.

2.3.2 Fitting an ARIMA Model

To select an optimal ARIMA order (p, d, ¢), the conventional method involves differ-
encing the time series until stationary, then plotting the partial autocorrelation func-
tion (PACF) and autocorrelation function (ACF) for the stationary series. These
plots are examined to determine the values of p and ¢ based on the last significant
lags showing high partial autocorrelation and high autocorrelation, respectively. The
ACF and PACF plots are checked for each d to confirm the optimal differencing and
avoid overfitting [8].

Once the optimal order is determined for each time series, an ARIMA model is
fitted to the provided data by optimising the values of the parameters 6, ¢, u, and
02 with maximum likelihood estimation.
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ARIMA extrapolation operates on a one-step-ahead basis, predicting the next
data point based on the last p or ¢ data points, whichever is greater. However,
as the extrapolation progresses further into the future, at some point, the model
input will consist purely of previously extrapolated points rather than actual data.
Consequently, if there was an existing trend before the extrapolation began, ARIMA
will perpetuate this trend indefinitely, without the ability to introduce a turning
point.
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Chapter 3

Reproduction of the State-of-the-Art
Performance Analysis of Chaos
Indicators

In the paper by Bazzani et al. [12], a performance comparison of chaos indicators
computed for a modulated Hénon map is presented. In their analysis, a modulated
Hénon map is used to track particles up to 10% turns, comparable to the typical
LHC fill time [6].

Particles were initialised across a broad range of conditions to capture regular,
chaotic, and lost cases. A binary ground truth classification of regular or chaotic
behaviour is established by placing a threshold in the histogram distribution of the
chaos indicator values at 10® turns. The position of the threshold is determined by
a KDE-based algorithm which assumes that the chaos indicator values will form a
clear bimodal distribution, populated by the two types of orbit. When a classifica-
tion is performed after tracking up to a smaller number of turns, the ratio between
the correctly classified particles and the total number of particles gives the accuracy
for that number of turns [12]. In the context of this thesis, it provides a benchmark
classification accuracy that can be improved with extrapolation techniques. It is im-
portant to note that only particles that have survived up to 10® turns are considered
in any classification used in the performance analysis.

The state-of-the-art analysis considers a dynamic indicator to have a high perfor-
mance if its classification accuracy is high after a relatively low number of turns [12].
The chaos indicators chosen for this study were selected as a combination of being
the best performing (REM) and being suitable for extrapolation (FLI).

In this chapter, the main results for FLI and REM are reproduced, and ad-
ditional considerations on methods for producing and classifying histogram chaos
indicator distributions are discussed. The analysis uses 10,000 particles initialised
in a Cartesian grid from 0 to 0.4, capturing a broad range of stability conditions.
About half survive up to 10® turns and are used for binary classifications.
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3.1 Kernel Density Estimation (KDE) Classification
Algorithm

Kernel Density Estimation (KDE) [16] is a statistical technique used to estimate
the probability density function (PDF) of an unknown distribution. It is used in
the context of this thesis to estimate the PDF of the histogram distributions of the
chaos indicator value at a given number of turns. The KDE is used to determine
the position of a threshold in the histogram distribution, categorising each initial
condition as either regular or chaotic.

The KDE relies on an assumed kernel function, typically Gaussian, and a man-
ually selected parameter called the bandwidth. The bandwidth determines the
smoothness of the estimated density function, balancing the trade-off between bias
and variance in the estimation [16]. The estimated density function is given by

fh<x>:%=%i§:ff(ﬁx")7 (3.1)

where h is the bandwidth, n is the number of data points, and K is the Kernel, a
function chosen based on the observed shape of the distribution.

An example of the KDE algorithm used in state-of-the-art analysis is shown in
Fig. 3.1. The algorithm tests bandwidths, starting wide and decreasing iteratively,
to count peaks in the KDE. It finds the first bandwidth with three peaks and selects
the previous one with two peaks. The minimum amplitude between the two peaks
is then set as the threshold. For the accelerator systems considered in this study,
there are more regular than chaotic initial conditions, so the initial conditions with
chaos indicator values on the side of the larger peak are classified as regular, and
those on the side of the smaller peak are classified as chaotic.

The state-of-the-art classification algorithm is designed to evaluate how quickly
a chaos indicator produces a bimodal histogram distribution. For probing the chaos
indicator’s mathematical information, Silverman’s rule of thumb may offer a more
suitable approach.

Silverman’s rule of thumb allows the approximation of the bandwidth h, a
method used as a compromise between accurate PDF estimation and overfitting.
The approximation for A is given by

_ . IQR ~1/5
h = 0.9 X min(o, 1.34) X n (3.2)
where ¢ is the standard deviation of the data and the IQR is the interquartile range.
Since the standard deviation and the IQR of all the data points are calculated,
Silverman’s rule of thumb is especially suitable for single Gaussian distributions.
An alternative to the standard KDE algorithm was created for this study, in
which only one bandwidth is computed using Silverman’s rule of thumb, as outlined
in Eq. (3.2). For the non-linear beam dynamics simulated in this study, the peak
corresponding to the regular orbits in the distribution of a chaos indicator has a much
greater amplitude than any other peak. This led to the hypothesis that Silverman’s
rule of thumb would be suitable for these chaos indicator histogram distributions.
Since the KDE may not necessarily highlight a bimodal distribution, the threshold
is placed at the minimum of the KDE between the peak with the highest amplitude
and the peak after that.
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Figure 3.1: Schematic of the KDE-based algorithm used in the state-of-the-art anal-
ysis to determine the threshold for log,,(REM), taken from [12]. The algorithm finds
the smallest bandwidth yielding two peaks in the histogram distribution and sets the
threshold at the minimum of the KDE between these peaks. Note that log;,(REM)
values are positive here due to a multiplication factor of 10'6 used in the paper.

This adaptation resulted from the problems posed by the standard algorithm for
chaos indicators such as the FLI, which has a multi-modal distribution. Keeping
the bimodal assumption causes the algorithm to choose a very wide bandwidth. An
example of this is shown in Fig. 3.2 for the histogram distribution of log;,(FLI/n)
at 10® turns. The placement of the threshold according to the KDE found with the
standard algorithm produces less chaotic classifications, as shown in Fig. 3.3.

Classifying particles with a small positive Lyapunov exponent is difficult because
their chaotic behaviour emerges slowly. For a long time, log,,(FLI/n) values appear
to converge to zero, but eventually they shift to a small positive value. The slow
exponential growth of e*” makes it hard to differentiate between zero and small
positive Lyapunov exponents. After 10® turns, particles with a Lyapunov time
shorter than 10® turns are easily identified with the FLI, but those with a longer
Lyapunov time fall into a noisy region in the histogram.

3.2 Comparison of Linear Response Calculations in
Single-Particle Tracking

There are two methods used to calculate the linear response: the tangent map
method and the ghost particle method [9].

The linear response in Eq. (2.20) for computing the FLI requires evaluating the
tangent map after each turn. For the modulated Hénon map, the tangent map can
be derived analytically and used in the tangent map method, which was employed
in state-of-the-art FLI analyses [12].

However, for realistic accelerator lattices with complex one-turn maps comprising
thousands of element matrices, an analytical tangent map is not feasible. Therefore,
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Binary Classifications of log,o(FLI/n) at 10® turns
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Figure 3.2: Comparison of KDE algorithms for classifying the histogram distribution
of log;o(FLI/n) values at 10® turns. The left column shows the binary classification,
where yellow indicates a regular classification and purple chaotic, obtained using the
standard algorithm, which fails to represent the features of the distribution. The
right column presents the classification obtained using Silverman’s Rule of Thumb
to determine the bandwidth parameter, which produces a KDE that better captures
the distribution features.

an approximate method, the ghost particle method [9], is necessary. Although this
method is not needed for the modulated Hénon map, it is utilised in this study to
evaluate noise and interference from numerical approximations, to prepare for noise
in realistic accelerator lattice computations.

For each initial condition X, the ghost particle method considers a displaced
initial condition y, = x¢ + €£, with € fixed at a small value. For the simulations
in this study, € is set to 1078 based on the default settings offered by the code
used in this study, chosen by the code author C. E. Montanari. This displaced
initial condition serves as the “ghost particle”. Both conditions are tracked using
the one-turn map, and then the linear response from Eq. (2.20) is estimated by
approximating the limit ¢ — 0 with the small value of € as follows:

B (x) = 21— (3.3)

This estimate of the linear response can then be used to compute chaos indicators
such as the FLI. When computing the FLI in single-particle tracking simulations,
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Binary Classification Difference According to KDE-based Algorithms
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Figure 3.3: Confusion matrix of the difference in binary classifications obtained
according to the KDE algorithms used to classify the histogram distribution of
log,o(FLI/n) values at 10% turns. In general, the standard algorithm results in less
chaotic classifications than the algorithm using Silverman’s rule of thumb.

for every initial condition, there is a ghost particle, so it is required to track twice
the number of initial conditions compared to the tangent map method.

When approximating linear responses with numerical simulations, numerical er-
rors due to rounding and truncation accumulate, especially when the distance be-
tween particles grows exponentially. This causes FLI values to represent the loss of
memory due to numerical error pileup more than the value of the Maximal Lyapunov
Exponent. To keep this as an accurate representation of the Lyapunov exponent,
the distance ||y, —x,|| is renormalised to € every 7 turns [9]. In this study, the value
of 7 was set at 100 as a compromise between accurate FLI values and computational
cost.

The FLI was selected for this study because it provides a direct estimate of the
Lyapunov exponent, effectively indicating particle chaoticity at 10® turns. Figure 3.4
displays the ground truth FLI data at 10® turns for parameters e = 32.0 and p = 0.5.
The comparison of FLI distributions is based on particles that survived up to 108
turns using both data generation methods. The top middle histogram shows that
the ghost particle method results in a noisier FLI distribution. Despite this, both
methods clearly distinguish between regular and chaotic conditions, with the largest
peak indicating regular particles and higher FLI values representing particles with
greater Lyapunov exponents.

The noise produced by the ghost particle method is illustrated in Fig. 3.5a,
where the densities of each histogram are overlaid for comparison. The KDE in each
distribution in the figure was found using Silverman’s rule of thumb. The broader
peak associated with regular particles results in an increased threshold position
and a higher classification of particles as regular, although the broad regular peak
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Ground Truth log,o(FLI/n) at 10° turns, € = 32.0, u = 0.5
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Figure 3.4: Comparison of histogram distributions and binary classifications for
log;o(FLI/n) at 10® turns, using the ghost particle method (top row) and the tan-
gent map method (bottom row). The ghost particle method introduces noise in
the log,,(FLI/n) distribution, resulting in additional peaks and widening of the
peak corresponding to regular orbits. Despite this, peaks distinguishing regular and
chaotic initial conditions remain discernible.

may include some particles with small Lyapunov exponents. In contrast, the FLI
values generated with the tangent map method produce a narrow peak for regular
particles, allowing the threshold to be placed closer to the peak. Consequently, these
FLI values corresponding to small Lyapunov exponents deviate more from the peak,
making it easier to identify these particles as chaotic.

Figure 3.5b shows the confusion matrix of the difference between the two ground
truth FLI classifications. It confirms that the broader peak corresponding to regular
particles in the ghost particle method does, in fact, lead to some particles being
classified as regular in the ghost particle method but chaotic in the tangent map
method.

However, the percentage of particles that were classified differently according to
the two methods is very small. Figure 3.5c shows the exact initial conditions that
were classified differently. They are all located in the less stable region, so it makes
sense that they may have a positive Lyapunov exponent.

Figure 3.5d shows a strong correlation between the two sets of FLI values af-
ter excluding outliers. Although noise is present, the minimal number of different
classifications shown in Figs. 3.5b and 3.5¢ indicate that the ghost particle method
remains viable for use in this study.

Figure 3.6 shows that the benchmark classification accuracy for FLI is similar
between the two methods. Both methods exhibit the same trend, with accuracy sig-
nificantly improving after 10° turns, when FLI values are sufficiently separated into
two groups for clear classification of regular versus chaotic particles. With the stan-
dard algorithm used in state-of-the-art analysis, this improvement occurs only after
10°® turns, which is relatively late compared to other chaos indicators [12], suggesting
that FLI is not the best-performing chaos indicator. However, applying Silverman’s
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Figure 3.5: Comparison of the log;,(FLI/n) histogram distributions and binary
classifications obtained at 10® turns for the ghost particle and tangent map methods.
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Figure 3.6: Benchmark classification accuracy established for the FLI indicator,
generated with the ghost particle and tangent map methods. The two benchmark
classification accuracies are comparable. Note that the classifications were performed
using Silverman’s rule of thumb.

rule of thumb enhances the FLI's performance. After 10° turns, the separation of
FLI values is very clear, which supports the hypothesis that extrapolating its time
evolution based on initial conditions would be effective.

3.3 REM Ground Truth and Time Evolution

Neither the tangent map nor the ghost particle method is required to compute REM,
as the linear response is not required. The trend of exponential growth is captured
by the numerical error pileup from tracking and backtracking the particles. REM
values in this study were generated using Xsuite [17], following the method described
in Section 2.2.3.

Figure 3.7 shows the time evolution of log,,(REM). The trends of exponential
and power-law increase separate after a relatively low number of turns, making
REM one of the highest-performing chaos indicators. It was hypothesised that this
property could lead to high-accuracy extrapolations of its time evolution based on
data from a relatively low number of turns.

However, all REM values are capped at a small positive value corresponding to
the diameter of the phase-space volume in which particles can exhibit stable motion.
When evaluating chaos indicators, particles are considered lost if they exceed an
arbitrarily set radius [12], therefore, a backtracked chaotic orbit with no memory
of the initial condition can exhibit a distance at most equal to the diameter of the
available area of the phase space.

As the number of turns increases, the power-law increase of regular particles
eventually catches up with the capped exponential increase of chaotic particles,
making it harder to distinguish between regularity and chaoticity at 10® turns and
decreasing REM’s classification reliability. Consequently, tracking beyond 10® turns
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is not useful, as it fails to clearly distinguish between regular and chaotic particles.
To address this, the ground truth binary classification for FLI is used to classify
REM values in this study, following the state-of-the-art performance analysis ap-
proach [12].

Time evolution of log,((REM), e = 32.0, p = 0.5
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Figure 3.7: Time evolution of log,,(REM) for a sample of chaotic and regular initial
conditions, displaying the respective trends of exponential and power-law increase.
The particles are coloured here according to the ground truth binary classification
of the FLI (generated with the ghost particle method) at 10® turns.

Figure 3.8 shows a comparison of the FLI ground truth when considering the
ghost particle method and the REM values at 108 turns. It should be noted that only
particles that survived up to 10® turns in both FLI and REM tracking simulations
were considered in this analysis.

log,o(FLI/n) at 10® turns log,o(FLI/n) at 10® turns  Ground Truth Binary Classification
0.4 T 0.4
—4 2 1 i
d 0.3 - ke
]
0.2 —6 : 0.2
: 0.1 1
]
. e -8 . 0.0 -
0.0 0.2 0.4 7.5 =50 0.0 0.2 0.4
zo log,o(FLI/n) Zo
log,o(REM) at 10® turns log,o(REM) at 10® turns Binary Classification
0.4 0.4
4 _
03 0.3
0.2 —6 0.2
0.1 0.1+
0.0 — ¥ -8 0.0
0.0 0.2 0.4 0.0
zo log,o(REM) Zo

Figure 3.8: Comparison of the FLI ground truth obtained with the ghost particle
method and REM values at 10% turns.

The histogram for REM values at 108 turns clearly illustrates the issue of the
power-law increase of regular particles that catches up with saturated values of the
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REM indicator for chaotic particles, since the two peaks are very close to each other.
At higher numbers of turns, these peaks would merge, thereby reducing a reliable
binary classification. The abrupt division of peaks in the histogram distribution at
0 is the result of fluctuations around the saturation point. The two secondary peaks
correspond to the saturated particles. However, because the regular and chaotic
peaks are so close, the large peak includes some of the fluctuations of saturated
particles. If this histogram were used for ground truth classification, a considerable
number of saturated particles would be misclassified as regular.

This is confirmed in Fig. 3.9, in which the exact initial conditions that are clas-
sified differently for the two indicators are shown. Figure 3.9a shows that all these
initial conditions lie in the chaotic region in phase space, so it makes sense that there
may be a region of uncertainty in the probing of the value of the Lyapunov expo-
nent. Figure 3.9b shows the log,((REM) time evolution of these initial conditions
classified differently, coloured according to the log,,(FLI/n) ground truth classifica-
tion. The log,,(REM) time evolution oscillates after saturation, leading to different
classifications according to their final position relative to the threshold. The chaotic
initial conditions shown in Fig. 3.9b happen to oscillate just below the log;,(REM)
threshold at 10® turns, which would have led to a regular classification. Using the
FLI ground truth classification and only considering the particles that survive up
to 108 turns in both the FLI and the REM tracking simulations therefore decreases
the number of instances in which this occurs. The regular initial conditions shown
saturate very late, implying that the orbits of these particles have small Lyapunov
exponents, so it makes sense that they have been classified as regular. This could
possibly have been circumvented by using the FLI generated with the tangent map
method instead of the ghost particle method as ground truth, since there are more
chaotic classifications when using the FLI generated with the tangent map method.

Figure 3.10 shows the reference classification accuracy established for REM. The
classification accuracy for log;o(REM) at 10® turns does not reach unity because
the binary classifications of log;,(FLI/n) and log;,(REM) at 10® turns are slightly
different. Although the histograms for FLI and REM differ significantly at 108
turns, the FLI ground truth binary classification remains a viable target for REM
classifications, because the difference in binary classifications is small.

These results indicate that the accuracy of the analysis carried out with the
REM indicator could be greatly improved by performing a numerical check of the
presence of saturation effects. In this way, one could verify whether the REM scales

exponentially or as a power law vs the number of turns over the non-saturated part
of the REM evolution.
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Figure 3.9: Overview of the initial conditions that were classified differently accord-
ing to the histogram distributions of log,,(REM) and log,,(FLI/n) (generated with
the ghost particle method) at 10® turns.
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Chapter 4

Implementation of ARIMA models

In this chapter we investigate whether ARIMA models can improve the classifi-
cation performance of chaos indicators from the state-of-the-art analysis [12]. We
explore the process for FLI and REM, including data selection for ARIMA fitting,
determining the optimal ARIMA order (p,d, q), extrapolating up to 10% turns, and
comparing classification accuracy against the benchmark.

4.1 General Method of Fitting and Extrapolation

In this study, the time evolution of log;,(FLI/n) and log,,(REM) is extrapolated for
thousands of initial conditions. Manually inspecting each condition and determining
the optimal ARIMA order is impractical, so a parameter scan was developed to find
the best ARIMA order for a random sample of conditions classified as regular or
chaotic. An equal number of both types was included to ensure the effectiveness of
ARIMA models for different types of orbits.

The parameter scan loops over possible combinations of orders (p, d, ¢). The val-
ues of p and ¢ were chosen to be in the range of 0 to 5 and for d the chosen range was
from 0 to 2. The parameter scan purposefully excludes the orders (0,d,0) because
these are equivalent to a random walk model, in which the next data point equals
the previous data point plus some white noise. This is not useful for extrapolating
clear trends in various chaos indicators.

Logarithmic sampling up to 10° turns was selected for ARIMA model fitting to
capture the general trend of the time evolution of chaos indicators, avoiding the
emphasis on minor fluctuations. This choice of sampling up to 10° turns reflects
the current number of turns reached in realistic LHC lattice simulations. As shown
in Fig. 4.1, this approach clarifies the trend and reduces memory requirements by
minimising data points while improving extrapolation accuracy.

For each potential ARIMA order (p, d, ¢) and each initial condition in the sample,
an ARIMA model is fitted to the provided time evolution data. This model is then
used to extrapolate the time series up to 10® turns. Given logarithmic sampling,
the extrapolation from 10 to 10® turns yields a number of extrapolated samples
comparable to the ones provided for the model fitting. The absolute error between
the final extrapolated value and the actual final value of the time series is calculated
for each initial condition. The total absolute error for all initial conditions in the
sample is then summed, and the ARIMA order with the lowest total error is selected
as optimal. Absolute error was chosen to ensure that the model is not penalised for
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Figure 4.1: Example illustrating the impact of scales on trends when sampling
log,o(FLI/n) and log;,(REM) data. Logarithmic scaling clarifies trends for ARIMA
modeling and reduces data points needed for fitting.

fluctuations, focusing instead on producing a final value close to the ground truth,
which is essential for accurate classification of initial conditions as regular or chaotic.

Figure 4.2 shows an example of the absolute error calculated after a parameter
scan, performed for the FLI (generated with the tangent map method). It shows
that the order of the ARIMA model that produces the least absolute error after
extrapolations to 10® turns is (3,1,0), leading to its selection to extrapolate all
initial conditions.

After the optimal ARIMA order (p,d, q) is selected, an ARIMA model with that
selected order is fit to a given initial condition. The time series corresponding to
each initial condition will have its own set of optimised parameters according to the
ARIMA model. The time evolution of the chaos indicator for the initial condition
is extrapolated from the fitting point, i.e. the number of turns up to which data is
provided, up to 10® turns. The time evolution of the extrapolation is then saved for
every initial condition that survived up to 10% turns according to the ground truth
classification we have defined.

This process is repeated for varying numbers of turns, up to which data are
provided to fit ARIMA models with the optimal order. This was done to compare
whether providing more or less data would yield similar extrapolation results.

Note that some initial conditions may encounter convergence errors when fitting
an ARIMA model of a given order. These errors, resulting from an inability to
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Figure 4.2: Example of log,,(FLI/n) result (tangent map method) from parameter
scan algorithm in this study. ARIMA models were fit to the time evolution of 100
initial conditions (50 regular, 50 chaotic) up to 10° turns. Models extrapolate to
10® turns; the absolute error at 10% turns is evaluated. The logarithm of the sum
of errors for all initial conditions determines colour in heatmap squares. Optimal
ARIMA order (3,1,0) was chosen based on least absolute error. White squares
denote excluded (0, d,0) random walk models and models resulting in fitting errors.

determine suitable parameters, make it impossible to fit the model for these initial
conditions. In the case of REM, where this occurred for one initial condition, the
condition was excluded from the binary classification comparison with the ground
truth.

4.2 ARIMA Extrapolation of the FLI

4.2.1 FLI Generated with the Tangent Map Method

Figure 4.3 shows the sample FLI data provided for the parameter scan to determine
the optimal ARIMA order for the extrapolations. For FLI, it was decided to start
fitting ARIMA models at 5 x 10? turns to exclude initial high-amplitude fluctuations,
which are not indicative of the power-law decrease trend. At low numbers of turns,
the values of the FLI lack an informative value and do not differentiate between
regular and chaotic particles. Including these fluctuating data would cause the
ARIMA model to focus excessively on the initial fluctuations, rather than the more
important power law decrease trend that follows.

The ARIMA order (3,1,0), deduced from the data presented in Fig. 4.2, was
used to extrapolate the log,,(FLI/n) generated with the tangent map method. In
the parameter scan, data up to 10° turns were used for fitting, providing a good basis
for evaluating extrapolation performance. Figure 4.4a shows the extrapolation of
log,o(FLI/n) from 10° to 10® turns for a small sample of (10 particles each) regular
and chaotic initial conditions. For regular conditions, the ARIMA model identi-
fies and extrapolates the power-law decrease trend effectively, as seen in Fig. 4.4a.
Overfitting is evident for chaotic particles that had saturated before 10° turns, with
the model predicting horizontal lines, which is favourable as it reflects the Maximal
Lyapunov Exponent at saturation.

Although the performance of the extrapolation appears promising in Fig. 4.4a,
there are also some misclassified orbits, some extrapolations for which are shown
in Fig. 4.4b. Some levelling off is visible for the ultrastable cases due to the initial
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Figure 4.3: Time evolution of log,,(FLI/n) for the sample of 100 initial conditions
(50 regular and 50 chaotic) used in the ARIMA model fitting parameter scan. Data
before 5 x 10? turns were intentionally omitted from ARIMA model fitting to prevent
initial high-amplitude fluctuations from being misinterpreted as part of the trend.

increase of the time evolution before the decrease, which is incorporated into the
ARIMA model and leads to a prediction resembling a sine curve. This likely occurred
because the initial downward curves of the FLI values that appear before 10* turns
were still incorporated into the ARIMA models. This could perhaps have been
prevented by starting to fit the model at a later point in the time series than 5 x 103
turns to ensure that only the trend of power-law decrease is captured.

Overfitting occurs for the highly fluctuating cases shown in Fig. 4.4b. The ul-
trastable cases do not manifest any recognisable trend until after the fitting point,
leading to the model including fluctuations and overfitting. For initial conditions
that include high-amplitude fluctuations, even if the general trend still follows a
power-law decrease, the prediction is a horizontal straight-line prediction with no
trend at all. This shows that the fluctuations are at a sufficiently high amplitude to
cause the ARIMA model to focus exclusively on the fluctuations and not the trend.

For the case of chaotic initial conditions, misclassifications stem from the inability
of the ARIMA model to predict the sudden turning point that leads to saturation of
log,o(FLI/n) values, which is expected, given the suitability of ARIMA models for
continuing identified trends. If the time evolution did not reach saturation during
model fitting, it is expected that the ARIMA model would continue to predict a
power-law decrease. This shows that the saturation for chaotic particles occurs
unpredictably, since there was no feature in the trend gathered by the ARIMA
model that suggested future saturation.

Figure 4.5 shows a comparison of the single-particle tracking data at 10° turns,
the extrapolation to 10% turns, and the ground truth single-particle tracking data at
108 turns. The histogram distribution is similar to the ground truth distribution, but
noisier. Despite the noise, the threshold is quite close to the narrow regular peak,
which should lead to a high classification accuracy. However, the binary classification
shows that there are many initial conditions in the stable region that are classified
as chaotic after the extrapolation. This leads to the binary classification accuracy
after extrapolation to 10% turns being less than the binary classification accuracy
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Figure 4.4: Extrapolation of log,,(FLI/n) (tangent map method) from 10° to 10®
turns using ARIMA (3,1,0) models, fit from 5 x 10% to 1 x 10° turns. The plots
show a sample of regular and chaotic initial conditions (mostly) correctly classified
(a) and incorrectly classified (b) at 10% turns.
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obtained after single-particle tracking up to 10° turns.

However, it is possible that extrapolating over a smaller number of turns may
lead to higher classification accuracy, since the features emphasised by the ARIMA
extrapolations have less time to develop. Fig. 4.6 shows the classification accuracy
after extrapolating from each fitting point to various numbers of turns up to and
including 10%. The accuracy curves are coloured according to the maximum im-
provement observed after extrapolating from each fitting point up to 10® turns. For
the case of fitting up to 10° turns, the classification accuracy remains approximately
the same before decreasing, and it does not have a high relative improvement.

The case of providing data up to 10° turns is interesting because the extrapo-
lation from 10° turns produces the maximum improvement of all the fitting points
considered in this study. The maximum improvement is observed after extrapolat-
ing to 10%%* turns, for which the histogram distribution and binary classification
achieved are shown in Fig. 4.7.

Despite the similarity in the log,,(FLI/n) histogram distributions before and
after extrapolation, the improvement in classification accuracy is evident from the
increased number of chaotic classifications. The various features of regular and
chaotic time evolution were just enough emphasised to produce a histogram dis-
tribution that resulted in a binary classification with a higher accuracy. For some
chaotic initial conditions, the ARIMA model extrapolated the time evolution as a
power-law decrease or a slowly saturating exponential decrease. At 10°%* turns, the
power-law decrease has not advanced sufficiently to result in a regular classification
of these initial conditions, while at 10® turns, this would certainly have resulted in
a misclassification.

Figure 4.8 shows the resulting binary classification after extrapolating from 10°
to 10® turns, which confirms that there are many misclassifications. Figure 4.9
presents a sample of misclassified extrapolations, showing that the same early expo-
nential decrease of the time evolution occurs for the regular initial conditions. For
chaotic initial conditions, it is visible that the ARIMA models are capable of grasp-
ing the trend after a small number of turns for log,,(FLI/n) values that do not show
much fluctuation. However, since most time series corresponding to chaotic initial
conditions saturate after 10° turns, many chaotic initial conditions are misclassified
as regular.

The classification accuracy obtained from single-particle tracking up to each
fitting point and extrapolating up to 10% turns never exceeds the benchmark clas-
sification accuracy. Given that providing data up to 10° turns is insufficient for
accurate extrapolation, providing less data would further degrade extrapolation per-
formance. However, when more data are provided, the extrapolation accuracy does
not increase, due to the various misclassifications shown. Figure 4.10 shows that
even if data is provided up to a very high number of turns, overfitting still occurs for
the regular particles, and the chaotic particles whose log,,(FLI/n) time evolution
saturate very late may still be misclassified as regular.

4.2.2 FLI Generated with the Ghost Particle Method

The extrapolation results for the ghost particle method closely mirror those for the
tangent map method. Figure 4.11 displays the outcome of the parameter scan, where
the optimal order chosen was (3,1, 0), consistent with the FLI generated using the
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Figure 4.5: Progress of ARIMA extrapolation of log;,(FLI/n) from 10° to 10® turns.
Left column displays log,,(FLI/n) value distribution and binary classification based
on single-particle tracking up to 10° turns, used for ARIMA model fitting. Middle
column shows extrapolated distribution and binary classification at 10® turns. Right
column presents ground truth classification at 10® turns. Extrapolated binary clas-
sification at 10® reveals numerous misclassifications of regular particles as chaotic,
particularly in stable regions.
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Figure 4.6: Overview of the accuracy of log,o(FLI/n) (tangent map method) time
evolution extrapolation using ARIMA order (3,1,0) models from various fitting
points (crosses) to up to 10® turns. Lines are coloured according to the maximum
improvement observed, highlighted with a dot. Dotted lines show that all classifica-
tions after extrapolation to 108 turns are less accurate than single-particle tracking
up to the fitting point.
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Figure 4.7: ARIMA extrapolation progress of log,,(FLI/n) (tangent map method)
from 10° to 10%%* turns, which produces the maximum improvement in accuracy.
Left column displays log,,(FLI/n) value distribution and binary classification from
single-particle tracking up to 10° turns. Middle column shows distribution and bi-
nary classification after extrapolation to 10%%* turns. Right column presents ground
truth distribution and classification at 10® turns. Extrapolated binary classifica-
tion, over approximately 3 x 10° turns, improves accuracy notably due to increased
chaotic classifications.

tangent map method. This similarity was anticipated due to the comparable time
evolution of log,,(FLI/n) between the two methods.

Figure 4.12 shows the accuracy obtained when extrapolating from the various
fitting points up to 10® turns. As expected, the decrease in accuracy after extrapolat-
ing to 10® turns is comparable to the decrease seen in Fig. 4.6 for the FLI generated
with the tangent map method. Figure 4.13 demonstrates that misclassifications
occur for the ghost particle method for the same reasons as for the tangent map
method: early saturation of regular particles and the inability of the ARIMA model
to predict chaotic saturation.

Figure 4.14 compares the tangent map and ghost particle methods based on
misclassification fractions of chaotic and regular initial conditions after ARIMA
extrapolation to 10® turns. Extrapolating from 10° turns shows a slightly higher
fraction of misclassified chaotic initial conditions and a lower fraction of misclassi-
fied regular initial conditions for the tangent map method compared to the ghost
particle method. This suggests that the ghost particle method’s FLI exhibits earlier
saturation, leading to more regular initial conditions being misclassified as chaotic.
Given the ghost particle method’s slightly higher benchmark accuracy that sharply
increases at 10° turns, fewer chaotic misclassifications imply earlier saturation in its
FLI time evolution compared to the tangent map method, which was incorporated
into the ARIMA models.

Both methods exhibit a higher fraction of chaotic misclassifications compared
to regular ones, due to the abrupt nature of chaotic saturation. This indicates
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Figure 4.8: Progress of ARIMA extrapolation of log,,(FLI/n) (tangent map method)
from 10° to 10® turns, resulting in the poorest classification accuracy among all fit-
ting points. Left column displays log,,(FLI/n) value distribution and binary classi-
fication from single-particle tracking up to 10 turns, used for ARIMA model fitting.
Middle column shows distribution and binary classification after extrapolation to 108
turns. Right column presents ground truth classification at 10® turns. Extrapolated
binary classification at 10® reveals numerous misclassifications of regular particles
as chaotic, particularly in stable regions.
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Figure 4.9: Sample of extrapolations of log,,(FLI/n) from 10° turns to 10® turns
leading to the misclassification of both regular and chaotic initial conditions at 10®
turns. Based on the limited information provided up to 10° turns, the ARIMA
models did not grasp the overall trends, leading to misclassifications.
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Figure 4.10: Sample of log,,(FLI/n) extrapolations from 2 x 107 to 10® turns causing
misclassification of regular and chaotic conditions. Regular particles suffer from
overfitting due to data fluctuations, while chaotic particles face prediction failure of
late saturation.
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Figure 4.11: Colourmap for the parameter scan performed for log,,(FLI/n) (ghost
particle method). The selected optimal ARIMA order (3,1,0) is the same as the
one for the FLI generated with the tangent map method as shown in Fig. 4.2.

that ARIMA models are not suitable for predicting the saturation of chaotic time
evolution. Generally, the misclassification fractions are comparable between the two
methods, reflecting their similar time evolution trends.

Overall, there is no improvement upon the newly established benchmark accuracy
using Silverman’s rule of thumb with ARIMA extrapolations for the FLI, generated
with the either the tangent map or the ghost particle method.

4.3 ARIMA extrapolation of REM

4.3.1 Adaptation of the Parameter Scan for REM data

Figure 4.15 depicts the time evolution of log,,(REM) for the sample of 100 initial
conditions used in the ARIMA model fitting parameter scan. Model fitting for REM
began from the initial data point (1 x 10? turns) due to minimal initial fluctuations,
contrasting with FLI data. However, providing data up to 10° turns presents chal-
lenges for chaotic initial conditions whose log,,(REM) values saturate before this
point. Including saturated REM values in the fitting process risks overfitting by in-
corporating both exponential growth and subsequent noise. Additionally, if chaotic
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Figure 4.12: Overview of log,,(FLI/n) (ghost particle method) time evolution ex-
trapolation using ARIMA (3,1,0) models from various fitting points to 10® turns.
Coloured lines show maximum improvement, highlighted with a dot. Dotted lines
indicate that extrapolation to 10® turns is less accurate than single-particle tracking
up to the fitting point, comparable to the tangent map method in Fig. 4.6.

conditions saturate between 10° and 10® turns, extrapolation to 10% turns would fail
to predict this saturation, resulting in high absolute error.

This led to an adjustment in the parameter scan where saturated data are ex-
cluded from fitting and absolute error calculation. Figure 4.16 illustrates these
adaptations for data saturating before 10® turns. If saturation occurs at or be-
fore 10° turns, 80% of pre-saturation data is used for fitting, and extrapolation is
conducted up to the saturation point. For data saturating after 10° turns, fitting
proceeds normally up to 10° turns with extrapolation limited to the saturation point.
The log;,(REM) evolution for regular particles, which does not saturate before 10®
turns, is fit up to 10° turns, followed by extrapolation up to 10® turns following
the standard FLI procedure. These adaptations aim to assess the ARIMA models’
capability of extrapolating exponential growth trends. Figure 4.17 shows the result
of this adapted parameter scan for the REM data. The optimal order selected was
(0,2,1).

4.3.2 Extrapolation results

The extrapolation curves for REM show unexpected levelling, evident even with
data fitting up to 10° turns, as depicted in Fig. 4.19. This levelling occurs for both
regular and chaotic initial conditions and is likely due to small-amplitude fluctu-
ations in the REM data that are captured by the ARIMA model. Consequently,
while ARIMA models yield optimal results based on the parameter scan, they do
not fully capture the underlying trend. This effect causes regular particles to form
a narrower peak around —2, while chaotic particles level off at higher values, pri-
marily above zero. As a result, the histogram distribution exhibits a narrow peak
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Figure 4.13: Sample of extrapolations of log,,(FLI/n) (generated with the ghost
particle method) from 10° turns to 10® turns leading to the misclassification of both
regular and chaotic initial conditions at 10® turns. Based on the limited information
provided up to 10° turns, the ARIMA model continues various features such as
fluctuations that are not part of the overall trend, leading to misclassifications. The
same phenomenon is observed for the FLI generated with the tangent map method
in Fig. 4.9.
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Figure 4.14: Fraction of incorrectly classified chaotic and regular initial conditions
evaluated after ARIMA extrapolation to 108 turns from each fitting point, i.e. the
number of turns up to which data are provided to fit the ARIMA models. The two
figures provide a comparison between the tangent map (a) and the ghost particle
methods (b). Though the result is comparable for the two methods, the tangent
map method features slightly more chaotic misclassifications as regular, while the
ghost particle method features more regular misclassifications as chaotic.
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Figure 4.15: Time evolution of log,,(REM) for the sample of 100 initial conditions
(50 regular and 50 chaotic) provided for the ARIMA model fitting parameter scan.

for regular orbits and a widely spread region occupied by chaotic orbits, shown in
Fig. 4.19. The distribution appears unimodal, making Silverman’s rule of thumb
suitable for estimation. However, the overall classification accuracy is impacted by
several misclassifications.

Figure 4.18b showcases examples of extrapolations resulting in misclassifications
of regular and chaotic initial conditions. Misclassification of regular particles hap-
pens when the ARIMA model predicts an exaggerated exponential increase, often
due to the fitting point coinciding with an upward phase of a small fluctuation. The
direction of extrapolation is sensitive to the gradient of the time series at the fitting
point, reflecting the models prioritising fluctuations in log,,(REM) values over the
overall trend.

For chaotic particles, overfitting becomes apparent as the model predicts straight
lines despite their highly fluctuating log,,(REM) time evolution. The ARIMA mod-
els’ sensitivity to fluctuations leads to numerous misclassifications when the fitting
point coincides with a fluctuation, causing the extrapolation to continue in this di-
rection before levelling off. This results in a final log;,(REM) value below 0, leading
to a classification as regular.

Figure 4.20 shows the binary classification accuracy obtained after extrapolating
log;o(REM) from the various fitting points to 10® turns. In general, the extrapolation
accuracy never exceeds the benchmark classification accuracy, even if the extrap-
olation accuracy at 10% turns improves upon the single-particle tracking accuracy
obtained at the fitting point. Providing data up to high numbers of turns leads to
poor classification accuracy, even when extrapolating over a single data point. This
suggests that fitting the chaotic log,,(REM) time evolution only up to the saturation
point and extrapolating from there results in frequent misclassifications.

The fitting point that demonstrates the highest relative improvement in accuracy
is at 2 x 10° turns. Figure 4.21 compares histogram distributions and binary classi-
fications after extrapolation from 2 x 10° turns (or various saturation points if data
saturated earlier) up to 10® turns. While both classifications remain distant from
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Figure 4.16: Schematic of fitting and extrapolation procedures for the parameter
scan adaptation for REM. Left: Initial condition with log,,(REM) evolution fit
up to 80% before saturation, which occurs before 10° turns. Middle: log;,(REM)
evolution fit up to 10° turns, extrapolated to saturation before 10% turns. Right:
log,o(REM) evolution extrapolated from 10® to 10® turns without saturation before
10® turns.
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Figure 4.17: Result of the parameter scan for the REM sample, showing the optimal
ARIMA order of (0,2,1).

the ground truth, accuracy improves following extrapolation to 108 turns, primarily
due to a slight increase in chaotic classifications.

Fig. 4.22 illustrates that regular particles are correctly classified due to the
ARIMA model detecting a curvature in the trend, leading to a levelling off in their
time evolution. This similarity in levelling locations for certain initial conditions
contributes to the narrower peak observed in the histogram distribution after ex-
trapolation to 10® turns seen in Fig. 4.21.

Figure 4.22a demonstrates that the time series of some chaotic initial condi-
tions plateau above zero, resulting in a modest increase in the number of chaotic
classifications compared to those at 2 x 10° turns. However, many chaotic initial
conditions plateau below zero, leading to a regular classification. Interestingly, some
chaotic time series level off even earlier than the regular ones. This indicates that the
ARIMA model struggled to capture the exponential growth trend for most chaotic
initial conditions, potentially due to similarities with the power-law increase seen
in regular initial conditions or because the exponential growth did not start before
2 x 10° turns.
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Figure 4.18: (a) Extrapolation of log;,(REM) from 10° to 10® turns for a sample
of regular and chaotic initial conditions. (b) Examples of log;,(REM) extrapolation
causing misclassification: chaotic conditions exhibit trendless extrapolations due to
overfitting, while regular conditions show exaggerated exponential increases due to
data fluctuations.

This suggests that the sudden exponential increase confuses the ARIMA models
and leads to overfitting for chaotic particles, which is observed in Figure 4.23 when
data is provided up to 2 x 10° turns. Some predictions even include fluctuations,
indicating that the ARIMA models focus excessively on these fluctuations instead
of the overall exponential increase trend. Some regular particles are misclassified as
chaotic because they in fact saturate just before 10® turns, and the ARIMA model
interprets their sudden exponential increase as a fluctuation, leading to incorrect
chaotic classification. This either indicates a shortcoming in the ground truth clas-
sification of log;,(FLI/n) at 10® turns or that some regular log;,(REM) time series
reach saturation before 10® turns. Using the ground truth classification from the
tangent map method instead of the ghost particle method might have mitigated this
issue, as it yielded more chaotic classifications.

Figure 4.24 illustrates the fraction of incorrectly classified chaotic and regular
initial conditions following ARIMA extrapolation to 10® turns from various fitting
points. Initially, a higher fraction of chaotic initial conditions is misclassified as
regular due to the ARIMA model’s difficulty in predicting exponential growth. The
high fraction persists across fitting points, due to overfitting that often results in
horizontal predictions falling below the threshold for regular classification. Con-
versely, misclassifications of regular initial conditions as chaotic are minimal, one
order of magnitude lower than observed for FLI in Fig. 4.14. This shows that the
chosen ARIMA order (0,2, 1) was highly effective in predicting the final log,,(REM)
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Figure 4.19: Progress of ARIMA extrapolation of log;,(REM) from 10° to 10® turns.
The left column shows the distribution and binary classification obtained with single-
particle tracking up to 10° turns. The middle column shows the extrapolation results
at 10® turns with fewer chaotic classifications. The right column shows the ground
truth log,,(FLI/n) binary classification used as reference.

value at 10® turns, despite the extrapolations not precisely following the power-law
increase trend.

Given the extensive adaptations to the parameter scan and extrapolation re-
quired for REM, it is possible that a suboptimal ARIMA order was selected because
of these modifications. The algorithm prioritises an accurate prediction of the final
value over extrapolation, which means that the extrapolated trajectory may not
align with the trends of the various time series, even if the final value at 10® turns
is close to the true value. Many chaotic initial conditions exhibit log,,(REM) time
evolution with high-amplitude fluctuations. Incorporating these fluctuations into
the ARIMA models resulted in overfitting for almost every chaotic initial condition.
Consequently, the chosen ARIMA order does not produce a high improvement in
classification accuracy after extrapolations, even though it was very effective at pro-
ducing a similar final extrapolation value for regular initial conditions. The random
sample of initial conditions chosen for the parameter scan included time series with
fewer fluctuations. Consequently, time series with higher-amplitude fluctuations
produced extrapolations that would have led to a high absolute error in the param-
eter scan. A different ARIMA order might have been selected in the parameter scan
if the sample had included more highly fluctuating time series.
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Figure 4.20: Overview of log,,(FLI/n) (tangent map method) time evolution extrap-
olation accuracy using ARIMA (3,1,0) models from various fitting points (crosses)
to 10® turns. Lines are coloured by maximum improvement, marked with a dot.
Dotted lines indicate that some classifications improve upon single-particle tracking
up to the fitting point, but extrapolation accuracy never surpasses benchmark clas-

sification accuracy.
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log,,(REM) distribution and increased chaotic classifications at 10% turns. The right
column displays the ground truth log,,(FLI/n) classification (ghost particle method)

for comparison.
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Figure 4.22: Extrapolation of log;,(REM) from 2 x 10° turns (or earlier saturation
points) to 10® turns using ARIMA models of order (0,2,1). The top plot (a) shows
promising extrapolation performance, while the bottom plot (b) shows extrapola-
tions leading to incorrect classifications.
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Figure 4.24: Fraction of misclassified chaotic and regular initial conditions after
ARIMA extrapolation to 10® turns from each fitting point. Models often fail with
chaotic data or overfit, but produce few regular misclassifications, proving effective
in predicting log;,(REM) values at 10® turns for regular conditions.
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Chapter 5

Conclusions

This thesis investigates the potential of extrapolation techniques to enhance the
classification performance of chaos indicators computed for Hamiltonian models of
particle accelerators. The aim is to identify chaotic behaviour more rapidly, which
contributes to improving the understanding of the relationship between chaotic re-
gions in phase space and beam loss dynamics in circular accelerators.

Initially, two chaos indicators, the Fast Lyapunov Indicator (FLI) and the Re-
versibility Error Method (REM), are presented and discussed. Their distributions
are compared at 10% turns, corresponding to the typical fill time of the CERN Large
Hadron Collider. For a given indicator, a binary ground truth classification of regu-
lar or chaotic behaviour is established by placing a threshold in the distribution at
108 turns. The threshold was determined using a KDE-based algorithm designed to
divide the histogram distribution into two categories that reflect the type of orbit.
The accuracy for a given number of turns was calculated as the ratio of correctly
classified orbits, based on the threshold at that specific number of turns, to the
total number of particles that survived up to 10® turns. This accuracy provided a
benchmark classification accuracy for each chaos indicator that could be improved
through extrapolation techniques.

The standard classification algorithm used in the state-of-the-art analysis and
an alternative to the algorithm created for this study, in which the KDE-based
threshold is found using Silverman’s rule of thumb, are presented and discussed.
The adaptation using Silverman’s rule of thumb proved to be more suitable for the
histogram distributions of chaos indicators compared to the standard algorithm.
The FLI was originally one of the lower-performing chaos indicators according to
the state-of-the-art analysis, but the use of Silverman’s rule of thumb increased
the classification accuracy at low numbers of turns. This resulted in a benchmark
classification accuracy comparable to REM, which is one of the highest-performing
chaos indicators according to the state-of-the-art analysis.

In this study, the time evolution of log,,(FLI/n) and log,,(REM) is extrapolated
using ARIMA models, the orders for which were selected for each indicator by means
of a parameter scanning algorithm.

For the FLI, the extrapolations from any number of turns result in a less accu-
rate binary classification than the binary classification obtained with single-particle
tracking up to that number of turns. There is some slight improvement in accuracy
when extrapolating from lower numbers of turns, for example 10° turns, over a small
number of turns within the same order of magnitude. This occurs because although
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the ARIMA models are not provided with enough information to accurately cap-
ture and continue existing trends, the trends that are captured by the model, when
forecasted over a small number of turns, deviate minimally from the actual data.
However, when the extrapolation continues to 10® turns, there are many misclassifi-
cations due to the various cases of overfitting, which occurred due to the sensitivity
of the ARIMA model to the initial fluctuations in the log,,(FLI/n) time evolution,
and the inability of the ARIMA model to predict sudden saturation in the time
evolution for chaotic initial conditions.

Extrapolating log;,(REM) from 2 x 10° turns yielded the highest relative im-
provement in classification accuracy among all considered fitting points. Numerous
adaptations to the fitting and extrapolation procedure were necessary due to the sat-
uration of log,,(REM) values for chaotic initial conditions, potentially influencing
the selection of a suboptimal ARIMA order. The extrapolations did not capture the
true trends of the time series and the ARIMA models were sensitive to fluctuations
in REM’s time evolution, resulting in frequent misclassifications as extrapolations
followed these fluctuations. Fitting data beyond 2 x 10° turns often led to overfitting
for chaotic initial conditions, producing predictions devoid of trend and subsequent
misclassifications. Consequently, ARIMA extrapolations did not significantly im-
prove classification accuracy, failing to surpass benchmark levels. The problem of
saturation in REM data could perhaps be circumvented by considering the REM
time evolution on a linear scale.

In summary, the ARIMA models did not improve classification performance
above the benchmark accuracy for the FLI or for REM. The FLI improved in bench-
mark classification accuracy with the use of Silverman’s rule of thumb for binary
classifications, but the extrapolation did not improve upon this newly established
benchmark accuracy. If it is desired to save computation time from single-particle
tracking, extrapolation from a lower number of turns, such as 10° turns, up to a simi-
lar order of magnitude may yield a small increase in classification accuracy. However,
this approach is not recommended, as single-particle tracking up to these number of
turns is already computationally feasible and produces higher benchmark accuracy
than extrapolation. The data considerations and characterisations presented in this
work can be extended to further studies on the time evolution of chaos indicators.
It is suggested to explore machine learning-based approaches, which might more
effectively capture the trends in chaos indicators.

48



Acknowledgements

This thesis would not have been possible without the extensive advice and support
of my three supervisors. In particular, I would like to acknowledge Carlo Emilio
Montanari for his extraordinary effort and dedication to supporting me and my
work. He was always there to help, whether it was for advice on the next steps of
my project or to fix technical issues. Thanks to his patience and encouragement and
his dedication to explaining the same concepts repeatedly until I finally understood
them, I was able to grasp the theoretical content of this thesis. I am deeply grateful
for his relentless push for progress and for believing in me, which motivated me to
achieve more than I thought possible in the short span of four months.

I am also very grateful to Massimo Giovannozzi for his meticulous attention
to detail and for dissecting my results and analysis thoroughly despite his busy
schedule. His guidance on how best to proceed with various aspects of the project
was invaluable.

Additionally, I would like to thank Tatiana Pieloni for organising and setting up
this project and for her insightful selection of supervisors. Her support, including
organising a presentation that clarified the direction of the project for all of us, was
essential for our progress.

I could not have had a luckier setup for this project with such supportive and
dedicated supervisors. Their encouragement and expertise have been instrumental
in the completion of this thesis, and I am extremely grateful for their help and
perseverance. This brief acknowledgement cannot fully express my gratitude and
how much they deserve recognition for their exceptional mentorship.

49



Bibliography

1]

2l

3]

4]

[5]

(6]

17l

8]

O. S. Briining, P. Collier, P. Lebrun, et al., LHC Design Report (CERN Yellow
Reports: Monographs). Geneva: CERN, 2004. DOI: 10.5170/CERN-2004-003-
V-1.

I. Béjar Alonso, O. Briining, P. Fessia, L. Rossi, L. Tavian, and M. Zerlauth,
High-Luminosity Large Hadron Collider (HL-LHC): Technical design report
(CERN Yellow Reports: Monographs). Geneva: CERN, 2020. bor: 10.23731/
CYRM - 2020 - 0010. [Online|. Available: https://cds . cern. ch/record/
2749422.

S. Redaelli, A. Bertarelli, R. Bruce, et al., “Collimation of HL-LHC Beams,”
in The High Luminosity Large Hadron Collider. CERN, 2017, ch. Chapter 8,
pp. 225-254. DOL: 10.1142/9789811278952 _0008. eprint: https: //www .
worldscientific . com/doi/pdf /10 . 1142 /9789811278952 _0008. [On-
line|. Available: https://www.worldscientific.com/doi/abs/10.1142/
9789811278952_0008.

A. Bazzani, G. Servizi, E. Todesco, and G. Turchetti, A normal form ap-
proach to the theory of nonlinear betatronic motion (CERN Yellow Reports:
Monographs). Geneva: CERN, 1994. DOI: 10.5170/CERN-1994-002. |Online].
Available: https://cds.cern.ch/record/262179.

M. Giovannozzi, W. Scandale, and E. Todesco, “Dynamic aperture extrapo-
lation in the presence of tune modulation,” Phys. Rev. F, vol. 57, pp. 3432—
3443, 3 Mar. 1998. DOI: 10.1103/PhysRevE. 57 . 3432. [Online|. Available:
https://link.aps.org/doi/10.1103/PhysRevE.57.3432.

A. Bazzani, M. Giovannozzi, E. H. Maclean, C. E. Montanari, F. F. Van der
Veken, and W. Van Goethem, “ Advances on the modeling of the time evo-
lution of dynamic aperture of hadron circular accelerators,” Phys. Rev. Accel.
Beams, vol. 22, p. 104003, 10 Oct. 2019. DOI: 10.1103/PhysRevAccelBeams.
22.104003. [Online|. Available: https://link . aps.org/doi/10.1103/
PhysRevAccelBeams.22.104003.

C. Skokos, J. Laskar, and G. Gottwald, Chaos Detection and Predictability,
1st ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, vol. 915, ISBN:
9783662484104. DOI: 10 . 1007 /978 -3 -662-48410 - 4. [Online]. Available:
https://library.biblioboard.com/viewer/05a8f7bd-c3cf-1lea-abaa-
0ae0aa0d175d.

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series anal-
ysis, 5th ed. New York: Wiley, 2015, 1SBN: 9781118675021. [Online|. Available:
https://elib.maruzen.co.jp/elib/html/BookDetail/Id/3000065394.

20


https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.23731/CYRM-2020-0010
https://cds.cern.ch/record/2749422
https://cds.cern.ch/record/2749422
https://doi.org/10.1142/9789811278952_0008
https://www.worldscientific.com/doi/pdf/10.1142/9789811278952_0008
https://www.worldscientific.com/doi/pdf/10.1142/9789811278952_0008
https://www.worldscientific.com/doi/abs/10.1142/9789811278952_0008
https://www.worldscientific.com/doi/abs/10.1142/9789811278952_0008
https://doi.org/10.5170/CERN-1994-002
https://cds.cern.ch/record/262179
https://doi.org/10.1103/PhysRevE.57.3432
https://link.aps.org/doi/10.1103/PhysRevE.57.3432
https://doi.org/10.1103/PhysRevAccelBeams.22.104003
https://doi.org/10.1103/PhysRevAccelBeams.22.104003
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.104003
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.104003
https://doi.org/10.1007/978-3-662-48410-4
https://library.biblioboard.com/viewer/05a8f7bd-c3cf-11ea-a5aa-0ae0aa0d175d
https://library.biblioboard.com/viewer/05a8f7bd-c3cf-11ea-a5aa-0ae0aa0d175d
https://elib.maruzen.co.jp/elib/html/BookDetail/Id/3000065394

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. E. Montanari, Diffusive models and chaos indicators for non-linear betatron
motion in circular hadron accelerators, Presented 2023, 2023. DOI: 10.48676/
unibo/amsdottorato/10811. [Online|. Available: https://cds.cern.ch/
record/2863942.

C. E. Montanari, Diffusive approach for non-linear beam dynamics in a cir-
cular accelerator, Presented 25 Oct 2019, 2019. [Online|. Available: https :
//cds.cern.ch/record/2728138.

M. Hénon, “Numerical study of quadratic area-preserving mappings,” Quar-
terly of Applied Mathematics, vol. 27, no. 3, pp. 291-312, Jan. 1969. DOI:
10.1090/qam/253513. [Online|. Available: https://www. jstor.org/stable/
43635985.

A. Bazzani, M. Giovannozzi, C. E. Montanari, and G. Turchetti, “Performance
analysis of indicators of chaos for nonlinear dynamical systems,” Physical Re-
wew K, vol. 107, no. 6, -06-22 2023. DOIL: 10.1103/physreve.107.064209.

C. Froeschlé, R. Gonezi, and E. Lega, “ The fast Lyapunov indicator: a simple
tool to detect weak chaos. Application to the structure of the main asteroidal
belt,” Planetary and Space Science, vol. 45, no. 7, pp. 881-886, 1997, ID:
271836. DOI: 10.1016/30032-0633(97)00058-5. [Online|. Available: https:
//www.sciencedirect.com/science/article/pii/S0032063397000585.

E. Lega, M. Guzzo, and C. Froeschlé, “Theory and Applications of the Fast
Lyapunov Indicator (FLI) Method,” in Chaos Detection and Predictability.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 35-54, ISBN: 978-
3-662-48410-4. DOI: 10.1007/978-3-662-48410-4_2. [Online|. Available:
https://doi.org/10.1007/978-3-662-48410-4_2.

F. Panichi, K. Gozdziewski, and G. Turchetti, “ The reversibility error method
(REM): a new, dynamical fast indicator for planetary dynamics,” Monthly No-
tices of the Royal Astronomical Society, vol. 468, no. 1, pp. 469-491, Feb. 2017,
ISSN: 1365-2966. DOIL: 10 . 1093 /mnras/stx374. [Online|. Available: http :
//dx.doi.org/10.1093/mnras/stx374.

S. Weglarczyk, “Kernel density estimation and its application,” ITM Web
Conf., vol. 23, p. 00037, 2018. DOI: 10.1051/itmconf /20182300037. |On-
line]. Available: https://doi.org/10.1051/itmconf/20182300037.

G. ladarola et al., “Xsuite: an integrated beam physics simulation framework,”
(Nashville, TN, USA, May 2024), presented at IPAC’24, Nashville, TN, USA,
May 2024, paper WEPR56, unpublished, 2024.

51


https://doi.org/10.48676/unibo/amsdottorato/10811
https://doi.org/10.48676/unibo/amsdottorato/10811
https://cds.cern.ch/record/2863942
https://cds.cern.ch/record/2863942
https://cds.cern.ch/record/2728138
https://cds.cern.ch/record/2728138
https://doi.org/10.1090/qam/253513
https://www.jstor.org/stable/43635985
https://www.jstor.org/stable/43635985
https://doi.org/10.1103/physreve.107.064209
https://doi.org/10.1016/S0032-0633(97)00058-5
https://www.sciencedirect.com/science/article/pii/S0032063397000585
https://www.sciencedirect.com/science/article/pii/S0032063397000585
https://doi.org/10.1007/978-3-662-48410-4_2
https://doi.org/10.1007/978-3-662-48410-4_2
https://doi.org/10.1093/mnras/stx374
http://dx.doi.org/10.1093/mnras/stx374
http://dx.doi.org/10.1093/mnras/stx374
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037

	Introduction
	Theoretical Background
	Modelling Accelerator Lattices
	Particle Accelerators
	Frenet-Serret Coordinate System
	Hamiltonian Mechanics
	One-Turn Maps

	Detecting Chaos
	Lyapunov Exponent
	Fast Lyapunov Indicator (FLI)
	Reversibility Error Method (REM)

	ARIMA
	General form of an ARIMA Model
	Fitting an ARIMA Model


	Reproduction of the State-of-the-Art Performance Analysis of Chaos Indicators
	Kernel Density Estimation (KDE) Classification Algorithm
	Comparison of Linear Response Calculations in Single-Particle Tracking
	REM Ground Truth and Time Evolution

	Implementation of ARIMA models
	General Method of Fitting and Extrapolation
	ARIMA Extrapolation of the FLI
	FLI Generated with the Tangent Map Method
	FLI Generated with the Ghost Particle Method

	ARIMA extrapolation of REM
	Adaptation of the Parameter Scan for REM data
	Extrapolation results


	Conclusions
	Acknowledgements
	Bibliography

