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1. Introduction

1.1. History. The roots of quantum groups lie in physics. They are
related with the studies of integrable systems in quantum field theory and
statistical mechanics, using the quantum inverse scattering method, by
Sklyanin, Kulish, Reshetikhin, Takhtajan, and Faddeev in the 1980s. Math-
ematical abstraction and the concept of the quantum groups (1985-1995)
and the applications of quantum groups from different mathematical and
physical points of view (after 1990) are given by Drinfeld, Jimbo, Manin,
Woronowicz, Majid, Lustzig, Connes, Wess, Zumino, Macfarlane, Rosso,
Biedenharn, etc.
At the end, in references, I shall give the list of important articles and books
which would give more details and lead to the literature on the subject of
quantum groups and related topics and their applications.

1.2. Notion of quantization. It is well-known that all physical systems
are quantum mechanical. The quantum mechanical behavior is generally
revealed only at the molecular and deeper level. At the macroscopic level of
everyday experience quantum physics becomes classical physics as a good
approximation. The quantum physics was discovered in the 20th century, as
a consequence of failure of classical physics at the atomic level. In classical
and quantum physics there exist two main concepts in the description of
physical systems: states and observables. In classical physics the states of
a system are the elements of some manifolds M and the observables are the
(real) functions on M, but in quantum physics the states are 1−dimensional
subspaces of some Hilbert space H and the observables are the self-adjoint
operators on H. It is easier to understand the connection between classical
and quantum physics in terms of observables. In both cases the obsevables
form an associative algebra which is commutative in classical physics
and non-commutative in quantum physics. More precisely, let O be set
of all ”admissible” observables, then in both cases, O is a vector space with
standard operations (addition of functions and multiplication of function by
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scalars). In the case of classical physics O is an associative commutative
algebra with multiplication defined by

[f, g](p) = f(p)g(p) − g(p)f(p) = 0, ∀f, g ∈ O,m ∈ M, (1)

and in quantum physics O is an associative non-commutative algebra with
multiplication defined by

[A, B](p) = A(B(p)) − B(A(p)) ∀A, B ∈ O, p ∈ H. (2)

The transition from classical physics to quantum physics can be mathemat-
ically described as a process of deformation of the classical physics in
which the commuting classical observables of a physical system are replaced
by non-commuting self-adjoint operators. This process is characterized by
a very small deformation parameter known as the Planck constant �,

[x, px] = ı�

and roughly speaking in the limit � −→ 0 quantum physics become classical
physics.
So, the notion of the quantization from mathematical point of view is the
replacement of some commutative object with non-commutative one. This
is main reason of the appearance of the word quantum in the name of our
object. Quantum groups are not groups in ordinary sense, but essentially
they are deformed enveloping algebras which are non-cocommutative.

1.3. A classical example. Let us consider a two dimensional classical
vector space V 2 = {v = (x, y)τ | x, y ∈ R} (τ means transpose of a matrix)
and let us make a linear transformation of the vector v which preserves
orientation and area,(

x′

y′

)
= M

(
x
y

)
=
(

a b
c d

)(
x
y

)
, (3)

then a d − b c = detM = 1 so M is an element of the group SL(2, R).
The group SL(2, R) is a Lie group, it means that this set is a group (sub-
group of GL(2, R)), manifold and the multiplication and inverse mapping
are smooth mappings. It is well-known that the structure of such groups is
determined (almost completely) by the structure of some neighborhoods of
the unit element. One can show that on the dense set an element g of Lie
group SL(2, R), can be parameterized as

g = g(w, t, u) =
(

et et u
et w e−t + et u w

)
= ew F et H eu E , (4)

where the parameters {w, t, u} characterize the group element g and where

the matrices
{

F =
(

0 0
1 0

)
, H =

(
1 0
0 − 1

)
, E =

(
0 1
0 0

)}
, are con-

stant.
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When the group element g is close to the identity element 1l = g(0, 0, 0) i.e.
when the parameters {w, t, u} are sufficiently close to the 0, then one can
write

g ≈ I + w F + t H + u E. (5)

It is well-known that the matrices {E, F, H} are basis of Lie algebra sl(2)
and their commutators are

[H, E] = 2E, [H, F ] = − 2 F, [E, F ] = H. (6)

2. Quantum groups and algebras

2.1. The universal enveloping algebra as Hopf algebra. U =
U (sl(2)), of Lie algebra sl(2) is the associative C−algebra, which is generated
by 1l, E, F, H and relations (6). It means that U is a complex vector space
together with C−linear mappings m : U ⊗ U −→ U and e : C −→ U such
that the following diagrams commute,

U ⊗ U ⊗ U �Id ⊗ m
U ⊗ U

UU ⊗ U

m ⊗ Id

m

U

�

C ⊗ U

�

�

U ⊗ U�

∼=

∼=

m

e ⊗ Id

Id ⊗ e

m

U ⊗ C U ⊗ U�

� �

m

Fig. 1. Associativity of multiplication and properties of unit

The mapping m is multiplication and e is unit. Usually, we replace m by .
Using relations (6), it is easy to see that the monomials,

En Hm F l n, m, l ∈ N0,

form the basis (Poincaré-Birkhoff-Witt theorem) of the algebra U (sl(2)).
So, U (sl(2)) as vector space is isomorphic to the algebra of polynomi-
als (symmetric algebra) in the three variables E, H, F.
On the algebra U is possible to introduce the two operations comultiplication
(Δ) and counit (ε):

Δ : U −→ U ⊗ U, Δ(X) = X ⊗ 1l + 1l ⊗ X, ∀X ∈ U,
ε : U −→ C, ε(X) = 0, ∀X ∈ U,

(7)

which are C-linear mappings such that the following diagrams commute,
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U ⊗ U ⊗ U

�

Id ⊗ Δ
U ⊗ U

�

�

U ⊗ U

�

Δ ⊗ Id

Δ

U

�C ⊗ U

�
�

U ⊗ U

	∼=

∼=

Δ

ε ⊗ Id

Id ⊗ ε

Δ

U ⊗ C U ⊗ U

Δ

U

Fig. 2. Coassociativity of comultiplication and properties of counit

it means that on the U we have the structure of coalgebra. We say that
a C−algebra (or coalgebra) A is commutative (cocommutative) if for the
transposition map, σ : A ⊗ A −→ A ⊗ A, σ(X ⊗ Y ) = Y ⊗ X, the following
diagrams commute

A

A ⊗ A A ⊗ A�

m m

σ

�

A

A ⊗ A

�

A ⊗ A�

Δ Δ

σ

	

�

Fig. 3. Commutativity (Cocommutativity) of a C−algebra (or coalgebra) A

It is clear that our algebra U (sl(2)) is not commutative and it is easy to see
that it is cocommutative. The structures of algebra and coalgebra on U are
connected by commutativity of the following diagram:

U ⊗ U ⊗ U ⊗ U �Id ⊗ σ ⊗ id
U ⊗ U ⊗ U ⊗ U

� �

m ⊗ m

U ⊗ U U ⊗ U

Δ ⊗ Δ

m � U �Δ

Fig. 4. Compatibility of algebra and coalgebra structures of U

We say that an algebra and coalgebra A, together with property described
by above diagram (Fig.4) is a bialgebra. So, U is a bialgebra. One can
easily check that the map given by

S : U −→ U, S(X) = −X, ∀X ∈ U, (8)

is an automorphism of U (S(X Y ) = S(Y )S(X)) which is called antipod.
In our case, the antipodal map has property described by the following
commutative diagram,
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U ⊗ U
Id ⊗ S
S ⊗ Id

U ⊗ U
�

Δ

�

�

�

ε �
C

�
e

m

UU

Fig. 5. Compatibility of antipod with bialgebra structure of U

which made of bialgebra U a Hopf algebra. Taking in account the cocom-
mutativity of U we see that U is a cocommutative Hopf algebra.
The commutative diagrams Fig.1-5 describe the following relations for all
X, Y, Z ∈ U,

(m ◦ (m ⊗ Id))(X ⊗ Y ⊗ Z) = (m ◦ (Id ⊗ m))(X ⊗ Y ⊗ Z) (9)
(m ◦ (Id ⊗ e))(X ⊗ 1) = Id(X) = (m ◦ (e ⊗ Id))(1 ⊗ X) (10)
((Δ ⊗ Id) ◦ Δ)(X) = ((Id ⊗ Δ) ◦ Δ)(X) (11)
((Id ⊗ ε) ◦ Δ)(X) = Id(X) = ((ε ⊗ Id) ◦ Δ)(X) (12)
(σ ◦ Δ)(X) = Δ(X) (13)
((m ⊗ m) ◦ (Id ⊗ σ ⊗ Id) ◦ (Δ ⊗ Δ))(X ⊗ Y ) = (Δ ◦ m)(X ⊗ Y ) (14)
(m ◦ (Id ⊗ S) ◦ Δ)(X) = e ◦ ε)(X) = (m ◦ (S ⊗ Id) ◦ Δ)(X) (15)

2.2. Quantum plane. Let us recall classical two dimensional vector
space V 2 and let the transformation of change of coordinates, M ∈ SL(2, R)
be as in (3). We assume that the coordinate x and y of a vector v = (x, y)τ

commute
x y = y x, (16)

then on the space of function O = {f(v) = f(x, y) | v ∈ V 2} (observables)
we define partial derivative operators ∂

∂x and ∂
∂y and the operations of

multiplications by x and y. They define the differential calculus on O by
the following relations

[x , y] = 0 ,
[

∂
∂x , ∂

∂y

]
= 0 ,

[
∂
∂x , y

]
= 0 ,[

∂
∂y , x

]
= 0 ,

[
∂
∂x , x

]
= 1 ,

[
∂
∂y , y

]
= 1 .

(17)

Then, the new coordinates x′ and y′ and partial derivatives with respect to
them, ∂

∂x′ and ∂
∂y′ , also satisfy the similar relations as (3). One can easily

checked that the following relation holds,(
∂

∂x′

∂
∂y′

)
=

(
d − c

− b a

)(
∂
∂x

∂
∂y

)
= (M−1)τ

(
∂
∂x

∂
∂y

)
. (18)
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We say that the differential calculus on the two dimensional (x, y)-plane is
covariant under the group SL(2, R).

Analogously with the process of quantizing the classical physics let us now
quantize the classical vector space V 2 to get a quantum vector space V 2

q ,
assuming that the coordinates do not commute with each other at any point.
We assume that the coordinates of any vector v = (X, Y )τ of quantum plane,
V 2

q , not commute and satisfy

X Y = q Y X , (19)

where q is the deformation parameter (any nonzero complex number) and
X and Y commute with scalars. Note that in the limit q −→ 1 the non-
commuting quantum coordinates X and Y become commuting classical
coordinates.
Example. Let us consider the following operators Aβ and Bθ/β be operators
acting on functions of a real variable x as follows

Aβξ(x) = ξ(x − β) , Bθ/βξ(x) = e iθx/βξ(x) .

Then, for any ξ(x),

AβBθ/βξ(x) = e iθ(x−β)/βξ(x − β) = e− iθBθ/βAβξ(x) ,

for a given fixed value of θ. So, the operators Aβ and Bθ/β are non-
commutative variables (in β) obeying the relation

AβBθ/β = e−i θBθ/βAα = q Bθ/βAα ,

with fixed value of θ.

Let us try to define a differential calculus on the two dimensional quantum
(X, Y )-plane such that it will be covariant under some generalization of the
classical group SL(2), which will act on V 2

q .

Firstly, let us give a meaning to partial derivatives with respect to X and
Y . These have to operate on the space of polynomials in X and Y, by
which is possible to approximate any ”sufficiently good” function in X, Y.
We can write f(X, Y ) =

∑
n,l αnlX

nY l since any polynomial in X and Y ,
with coefficients commuting with X and Y , can be rewritten in this form
using the commutation relation (19). If we take

∂

∂X
Xn = n Xn−1 ,

∂

∂Y
Y l = l Y l−1 , (20)

we would have a differential calculus in the quantum (X, Y )-plane, as de-
sired. Now, we can calculate the remaining commutation relations between
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X, Y , ∂
∂X and ∂

∂Y and we obtain (without any further details),

X Y = qY X ,
∂

∂X

∂

∂Y
= q−1 ∂

∂Y

∂

∂X
,

∂

∂X
Y = qY

∂

∂X
, (21)

∂

∂Y
X = qX

∂

∂Y
,

∂

∂Y
Y − q2Y

∂

∂Y
= 1 , (22)

∂

∂X
X − q2X

∂

∂X
= 1 + (q2 − 1)Y

∂

∂Y
. (23)

This noncommutative differential calculus on the two-dimensional quantum
plane is covariant under the transformations(

X ′

Y ′

)
= T

(
X
Y

)
=
(

A B
C D

)(
X
Y

)
(

∂
∂X′

∂
∂Y ′

)
= (T−1)τ

(
∂

∂X

∂
∂Y

)
=

(
D − q C

− q−1B A

)(
∂

∂X

∂
∂Y

)
,

(24)

where

A, B, C, and D commute with X and Y

A B = q B A , C D = q D C , A C = q C A , B D = q D B , (25)
B C = C B , A D − D A =

(
q − q−1

)
B C , and

A D − q B C = det qT = 1 . (26)

The operators X ′, Y ′, ∂
∂X′ , and ∂

∂Y ′ satisfy same relations (3) and (18) (if
one replace x with X, y with Y, x′ with X ′ and y′ with Y ′). It is easy to
see that detq T defined in (26) commutes with all the matrix elements of T
and that matrix

T−1 =
(

D −q−1B
−q C A

)

is inverse of T, i.e.

T T−1 = T−1 T = 1l =
(

1 0
0 1

)
.

A matrix T =
(

A B
C D

)
is called a 2 × 2 quantum matrix if its matrix

elements {A, B, C, D} satisfy the commutation relations (25), it practically
means that the matrix elements of T may be ordinary classical matrices
satisfying the relations (25).
Firstly note that the identity matrix, 1l, is a quantum matrix and secondly
if we take the limit q −→ 1 a quantum matrix T becomes a classical matrix
with commuting elements.
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Let T1 =
(

A1 B1

C1 D1

)
and T2 =

(
A2 B2

C2 D2

)
be any two quantum ma-

trices; i.e., {A1, B1, C1, D1} and {A2, B2, C2, D2} satisfy the relations (25).
Define the product

Δ12(T ) = T1⊗̇T2 =
(

A1 B1

C1 D1

)
⊗̇
(

A2 B2

C2 D2

)

=
(

A1 ⊗ A2 + B1 ⊗ C2 A1 ⊗ B2 + B1 ⊗ D2

C1 ⊗ A2 + D1 ⊗ C2 C1 ⊗ B2 + D1 ⊗ D2

)
(27)

=
(

Δ12(A) Δ12(B)
Δ12(C) Δ12(D)

)

where ⊗ denotes product with the property (P ⊗ R)(Q ⊗ S) = PQ ⊗ RS.
Then one finds that the matrix elements of Δ12(T ), namely,

Δ12(A) = A1 ⊗ A2 + B1 ⊗ C2 , Δ12(B) = A1 ⊗ B2 + B1 ⊗ D2 ,

Δ12(C) = C1 ⊗ A2 + D1 ⊗ C2 , Δ12(D) = C1 ⊗ B2 + D1 ⊗ D2 ,
(28)

also satisfy the commutation relations (25). In other words, Δ12(T ) is also
a quantum matrix. This product, Δ12(T ) = T1⊗̇T2, is called the coproduct
or comultiplication. But this product is not so good because there is no
inverse. Under this coproduct the set of 2 × 2 quantum matrices M

2
q form

a pseudomatrix group, sometimes called a quantum group, denoted by
SLq(2).

2.3. Quantum group U q = U q(sl(2)). First, let us recall the q-numbers
[n]q, which were defined by Heine (1846).

[n]q =
1 − qn

1 − q
, [0]q! = 1 (29)

[n]q! = [n]q [n − 1]q [n − 2]q . . . [2]q [1]q , n = 1, 2, . . . .

Consider now the following q−generalization of the exponential function,
known as q-exponential function

ez
q =

∞∑
n=0

zn

[n]q!
. (30)

Note that

[n]q
q→1−→ n , ez

q
q→1−→ ez .

In the theory of quantum groups we slightly modify the q-numbers, i.e we
define

[[n]]q =
qn − q−n

q − q−1
. (31)
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The reason why new q− numbers, [[n]]q are introduced is in their symmetry
with respect to the interchange of q and q−1. Note that [[n]]q also becomes
n in the limit q → 1.

Now, we follow same idea as in classical case, consider the 2-dimensional
quantum matrix T parameterized as

T =
(

A B
C D

)
=
(

et et u
et w e−t + et u w

)
. (32)

The condition that T have to be a quantum matrix (25) leads to the following
requirements on the variable parameters {t, u, w}

[t, u] = (ln q)u , [t, w] = (ln q)w, , [u, w] = 0 .

Then, one can write
T = ew F

q−2 et H eu E
q2 , (33)

where F, H and E are same as in (5) and (6). By similar procedure as in
classical case one can find out from (33), that generators {F, H, E} have to
obey the following relations:

[H, E] = 2E, [H, F ] = − 2 F, [E, F ] =
qH − q−H

q − q−1
= [[H]]q , (34)

where q = eh (h ∈ C and here plays role of the Planck constant) and
this algebra is q−analog of sl(2), which is also called the quantum algebra,
sl q(2). The relations (34)(last one), imply that we lose the structure of
Lie algebra on the vector space generated by {F, H, E}, but in the limit
q → 1 (or equivalently h → 0), the last relation of (34) becomes classical
one and we obtain the Lie algebra sl(2). Let us now see what is happened
at the level of universal enveloping algebra. Let us consider C−associative
algebra generated by 1l, F, H, E and relations (34). Of course, this object is
an algebra which is the q-deformation of the universal enveloping algebra
U (sl(2)) and is called quantum group of Lie algebra sl(2). We denote it
by U q = U q(sl(2)).
From relations (34) is clear that the algebra U q(sl(2)) is generated by poly-
nomials in {F, H, [[H + 2 k · 1l]] (k ∈ Z), E}, so an analog of the Poincaré-
Birkoff-Witt theorem holds for U q(sl(2)). Moreover, algebra U q(sl(2)) is also
a Hopf algebra with respect to coproduct(Δq), counit(εq) and antipod(Sq)
defined by:

Δq (H) = H ⊗ 1l + 1l ⊗ H, εq (H) = 0, Sq (H) = −H,

Δq (E) = E ⊗ qH/2 + q−H/2 ⊗ E, εq (E) = 0, Sq (E) = − q−1E,

Δq (F ) = F ⊗ qH/2 + q−H/2 ⊗ F, εq (F ) = 0, Sq (F ) = − q F.

(35)
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It means that coproduct(Δq), counit(εq) and antipod(Sq) are C−linear map-
pings of U q and that relations (9-15) hold for those operations.
For example, one can easily verified that this comultiplication rule is an
algebra isomorphism of U q :

[Δq (H) , Δq (E)] = 2 Δq (E) , [Δq (H) , Δq (F )] = − 2 Δq (F ) ,

[Δq (E) , Δq (F )] = [[Δq (H)]]q .
(36)

The most important property of this coproduct is its noncommutativity. So,
as a result of our quantization process we associate with cocom-
mutative Hopf algebra U (sl(2)) the noncommutative one, namely,
U q(sl(2)).

2.4. R−matrix. Note that the algebra (34) is invariant under the inter-
change q ↔ q−1 since [[2X0]]q = [[2X0]]q−1 , but the comultiplication (35) is
not invariant under same interchange. It is obvious that the comultiplication
obtained from (35) by an interchange q ↔ q−1 should also be an equally good
comultiplication. One can verified that the coproduct Δq−1

Δq−1 (H) = H ⊗ 1l + 1l ⊗ H, Δq−1 (E) = E ⊗ q−H/2 + qH/2 ⊗ E,

Δq (F ) = F ⊗ q−H/2 + qH/2 ⊗ F,
(37)

is also an algebra isomorphism of U q. This coproduct, Δq−1 , is called the
opposite coproduct because of the obvious relation

Δq−1(X) = σ (Δq(X)) , where σ(X ⊗ Y ) = Y ⊗ X .

It is clear Δq−1 
= Δq and σ ◦Δ 
= Δ. So, the comultiplications Δq and Δq−1

of U q are noncommutative and moreover in the limit q → 1, both of those
comultiplications become the classical one of U ( Δ(X) = X ⊗ 1l + 1l ⊗ X ,)
which is commutative.
It is well-known that those two comultiplications of U q, Δq and Δq−1 , are
connected by an equivalence relation, namely, there exists a R ∈ U q ⊗ U q,
called the universal R-matrix, satisfying the relation

Δq−1(X) = RΔq(X)R−1 . (38)

The Hopf algebra which allow the existence of R matrix is called quasitri-
angular Hopf algebra. So, the quantum group U q is a quasitriangular Hopf
algebra.
The universal R-matrix is very important and it plays role of the central
object of the quantum group theory. In our case it can be shown that

R = q1/2 (H⊗H)
∞∑

n=0

(
1 − q2

)n
[[n]]q!

qn(n−1)/2
(
qH/2 E ⊗ q−H/2 F

)n
. (39)
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If we replaced the matrices from (5) and (6) in above expression for R we
get numerical R-matrix, the fundamental 4-dimensional R-matrix

R =
1√
q

⎛
⎜⎜⎝

q 0 0 0
0 1

(
q − q−1

)
0

0 0 1 0
0 0 0 q

⎞
⎟⎟⎠ . (40)

It is clear from (39), that any R we can rewrite in the form

R =
∑

i

ai ui ⊗ vi .

If we put

R12 = R ⊗ 1l , R13 =
∑

i

ai ui ⊗ 1l ⊗ vi , R23 = 1l ⊗ R .

Then, these satisfy the famous relation

R12 R13 R23 = R23 R13 R12 . (41)

known as the quantum Yang-Baxter equation, or simply the Yang-Baxter
equation (YBE).

Let us mention a few interesting propeties of quantum groups and their
applications. Firstly, let us see how these things started, for a quantum
matrix T we define

T1 = T ⊗ 1l =
(

A B
C D

)
⊗
(

1 0
0 1

)
,

T2 = 1l ⊗ T =
(

1 0
0 1

)
⊗
(

A B
C D

)
.

(42)

One can notice that

T1 T2 =

⎛
⎜⎜⎝

A2 AB BA B2

AC AD BC BD
CA CB DA DB
C2 CD DC D2

⎞
⎟⎟⎠ 
= T2 T1 =

⎛
⎜⎜⎝

A2 BA AB B2

CA DA CB DB
AC BC AD BD
C2 DC CD D2

⎞
⎟⎟⎠ ,

(43)
because {A, B, C, D} are noncommutative. The relation between T1 T2 and
T2 T1 turns out to be

R T1 T2 = T2 T1 R . (44)

The relations of this type was appeared in the quantum inverse scattering
method approach to integrable models in quantum field theory and statisti-
cal mechanics. If we substitute in (44) R from (40), and T1 and T2 from (42),
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it is found that equation (44) is a compact way of stating the commutation
relations (25) defining the quantum matrix T and SLq(2).

Similarly the defining commutation relations (34) of U q(sl(2)) is possible to
write in more compact and elegant way. Let it be

L(+) =

(
q−H/2 −√

q
(
q − q−1

)
F

0 q H/2

)
,

L(−) =

(
q H/2 0

q−1/2
(
q − q−1

)
E q−H/2

)
, (45)

L
(±)
1 = L(±) ⊗ 1l , L

(±)
2 = 1l ⊗ L(±) .

Then, the commutation relations (34), between the generators of U q(sl(2)),
can be rewritten as

R−1L
(±)
1 L

(±)
2 = L

(±)
2 L

(±)
1 R−1 , R−1L

(+)
1 L

(−)
2 = L

(−)
2 L

(+)
1 R−1 . (46)

One can easily check that the L(±)-matrices are special quantum matricies
from SLq(2) (they satisfy relations (34)).

Let R be any solution of YBE, (41), if we define

S1 = Ř ⊗ 1l, S2 = 1l ⊗ Ř ,

where

Ř = P R , P =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , (47)

then, the following relation holds

S1 S2 S1 = S2 S1 S2 , (48)

which is an alternative form of the YBE.
Let us mention here that the generators of symmetric group Sn, namely, the
transpositions σ1 = (1 2), σ2 = (2 3), . . . , σn−1 = (n − 1 n), satisfy relations

σi σj = σj σi, |i − j| > 1 , (49)
σi σi+1 σi = σi+1 σi σi+1, i = 1, 2, . . . , n, (50)
σ2

i = Id, i = 1, 2, . . . , n.

So, the relation (48) is same as relations (50). The one of the most natural
generalizations of symmetric group Sn is obtained if we consider the group
generated by generators σ1, σ2, . . . , σn−1 and relations (49) and (50). This
generalization is called braid group. An element of the braid group Bn can
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be described as a system of n strings joining two sets of n points located on
two parallel lines, say top and bottom, with over-crossings or under-crossings
of the strings.

n-2 n-1 n1 3

n-2 n-1 n1

2

32

Fig. 6. An element of braid group Bn

The over-crossings and the under-crossings of the strings make Bn (see
Fig. 6) an infinite group. Let us describe the generators of this group.
Let i and i + 1 be two consecutive
points on the top and bottom lines,
the string starting at i on the top line
can reach i+1 on the bottom line by
either over-crossing or under-crossing
the string starting at i + 1 on the
top line and reaching i on the bottom
line. The corresponding elements of
the braid group are usually denoted
by σi and σ−1

i , respectively (Fig. 7).

σi σ−1
i

i

i

i + 1

i + 1

i

i

i + 1

i + 1

Fig. 7. σi and σ−1
i

It is clear that the relations (48) and (50) are same and this fact implies that
the solutions of the YBE (R-matrices), or the quantum groups, should play
a central role in the theory of representations of braid groups. Braid groups
have many applications, in mathematics (knot theory, complex functions
of hypergeometric type having several variables) and in physics (statistical
mechanics, two-dimensional conformal field theory, and so on).

Quantum and classical mechanics, up to recently, are based on the following
two very important assumptions: the notion of continuous space-time and
mutual commutativity of all coordinates (spacelike or timelike). It is natural
to state the following question:

What will be happened if at some deeper level the space-time coordinates
themselves are non-commutative?

It is obvious, that the theory of quantum groups and non-commutative
differential calculus provide the necessary framework for dealing in such
situation.
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Example. The q-deformation of the quantum mechanical harmonic oscil-
lator algebra, i.e. the boson algebra. The algebraic treatment of boson
algebra include a creation operator

(
a†
)
, an annihilation operator (a), and

a number operator (N), and the commutation relations,[
a , a†

]
= 1 ,

[
N , a†

]
= a† , (51)

where N is a hermitian operator and a† is the hermitian conjugate of a. The
eigenvalues of the Hamiltonian operator,

H =
1
2

(
a† a + a a†

)
, (52)

give the energy spectrum of the harmonic oscillator. Let
{

a1, a
†
1, N1

}
and{

a2, a
†
2, N2

}
be the sets of oscillator operators, which are assumed to com-

mute with each other, and defining

X0 =
1
2

(N1 − N2) , X+ = a†1a2 , X− = a†2a1 , (53)

it is found that
X†

0 = X0 , X†
+ = X− , (54)

and
[X0 , X±] = ±X± , [X+ , X−] = 2X0 . (55)

The vector space spanned by {X0, X+, X−} and relations (55) is the Lie
algebra sl(2), and because of the hermiticity conditions (54) this Lie algebra
is known as su(2), the Lie algebra of the Lie group SU(2). The su(2) is
known as the algebra of three dimensional rigid rotator, where {X0, X±}
represent the angular momentum operators. The coproduct rule

Δ (X0) = X0 ⊗ 1l + 1l ⊗ X0 , Δ (X±) = X± ⊗ 1l + 1l ⊗ X± , (56)

of enveloping algebra U (sl(2)), represent the rule for addition of angular mo-
menta. Then one can ”quantize” algebra su(2), i.e. we rewrite relations (34)
as

[X0 , X±] = ±X± , [X+ , X−] = [[2X0]]q , (57)

with the hermiticity conditions

X †
0 = X0 , X †

− = X+ , (58)

represent the U q(su(2)) algebra or su q(2) the q-deformed version of the
su(2). So, su q(2) is the algebra of the q-rotator. For the q-angular momen-
tum operators there are two possible addition rules,

Δq±1 (X0) = X0 ⊗ 1l+1l⊗X0 , Δq±1 (X±) = X±⊗ q±X0 + q∓X0 ⊗X± , (59)
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as seen from (35) and (37). Let us mention also that we have a realization
of su q(2) generators given by

X0 =
1
2

(N1 −N2) , X+ = A†
1A2 , X− = A†

2A1 . (60)

This is in complete analogy with the case of su(2) , where the two sets of
operators

{
A1, A

†
1,N1

}
and

{
A2, A

†
2,N2

}
commute and obey the relations

AA† − qA†A = q−N ,
[
N , A†

]
= A† . (61)

It is obvious that N is hermitian and
{
A , A†} is a hermitian conjugate pair.

The q-deformed oscillator algebra given by the relations (61) is known as
the q-oscillator or the q-boson algebra. It is easy to see that when q −→ 1
the q-oscillator algebra (61) becomes the oscillator algebra (51).

3. Quantum group associate with Kac-Moody Lie algebra

3.1. Cartan matrix. Let A = (aij)i,j=1,...,n be a complex n × n matrix
of rank l. A is called generalized Cartan matrix if

(i1) aij ∈ Z, i, j = 1, 2, . . . , n,
(i2) aii = 2, i = 1, 2, . . . , n,
(i3) aij ≤ 0, i 
= j, i, j = 1, 2, . . . , n,
(i4) aij = 0 ⇒ aj i = 0.

(62)

If A satisfies the additional condition,

(i5) there exist di 
= 0, i = 1, 2, . . . , n such that
di aij = dj aji, i, j = 1, 2, . . . , n, (63)

then we say that A is a symmetrizable Cartan matrix. The condition (63)
means that it exists a regular diagonal matrix D such the matrix D A is
symmetric.
Firstly, to an arbitrary Cartan matrix one can associate a complex vector
space h and finite two subsets, namely Π = {α1, α2, . . . , αn} ⊆ h∗ and
Πv = {H1, H2, . . . , Hn} ⊆ h such that

(i1) Π and Πv are linearly independent,
(i2) 〈Hi, αj〉 = aij , i, j = 1, 2, . . . , n,

(i3) n − l = dim h − n,

and then to every generalized (symmetrizable) Cartan matrix one can asso-
ciate a complex Lie algebra g(A), as follows:
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Let αi(H) = aij , (i, j = 1, 2, . . . , n), then Lie algebra g(A) is generated by
h, generators Ei, Fi, (i = 1, . . . n) and relations

[Ei, Fj ] = δijHi, i, j = 1, 2, . . . , n,

[H, H ′] = 0, H, H ′ ∈ h,

[H, Ei] = aij Ei, i, j = 1, 2, . . . , n; H ∈ h,

[H, Fi] = − aij Ei, i, j = 1, 2, . . . , n; H ∈ h.

(64)

If we consider the adjoint map adX : g(A) −→ g(A), defined by formula
adX(Y ) = [X, Y ], than one can show that also hold following Serre relations :

(adEi)
1−aij (Ej) = 0, i 
= j, i, j = 1, 2, . . . , n,

(adFi)
1−aij (Fj) = 0, i 
= j, i, j = 1, 2, . . . , n.

(65)

It is known that the deep theory of Lie algebras could be developed only for
symmetrazible generalized Cartan matrices, because in that case is possible
to define an invariant symmetric bilinear form (standard invariant form) on
h. If A is non-decomposable generalized real Cartan matrix and if its rank is
equal to n then we obtain classical finite dimensional Lie algebras, and when
rank of A is n − 1 we obtain very important class of affine Lie algebras.

Let us denote by n+ (n−) the subalgebras of g(A) generated by {E1, E2 . . . ,
En} ({F1, F2 . . . , Fn}), then we emphasize the following well-known facts

T1. g(A) = n− ⊕ h ⊕ n+ . (Cartan decomposition) (66)
T2. The mapping,

Ei → −Fi, Fi → −Ei (i = 1, 2, . . . , n), H → −H (H ∈ h),
are uniquely extendable to an involution ω of g(A) .

T3. The center of g(A) is c = {H ∈ h | αi(H) = 0, i = 1, . . . , n},
and dim c = n − l.

The subalgebra h of g(A) is called Cartan subalgebra, the elements
{Ei, Fi, i = 1, . . . , n} are known as Chevalley generators of g(A) and ω is
known as Chevalley involution. For arbitrary Kac-Moody Lie algebra, g(A),
we define universal enveloping algebra, U(g(A)), on the following way.
The universal enveloping algebra U(g(A)) is an associative C−algebra gen-
erated by generators Ei, Fi, Hj (i = 1, . . . n; j = 1, . . . , 2 n − l)) and the
relations (64) and (65). Let us remark that the Serre relations (65) take the
form

1−aij∑
ν=0

(−1)ν

(
1 − aij

ν

)
E

1−aij−ν
i Ej Eν

i = 0, i 
= j, i, j = 1, 2, . . . , n ,

1−aij∑
ν=0

(−1)ν

(
1 − aij

ν

)
F

1−aij−ν
i Fj F ν

i = 0, i 
= j, i, j = 1, 2, . . . , n ,
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Because of the Cartan decomposition of g(A) (66), we obtain the following
triangular decomposition of U(g(A))

U(g(A)) = U(n−) ⊗ U(h) ⊗ U(n+) (67)

Example. The Cartan matrix of affine Lie algebra of the type A
(1)
n (n ≥ 2),

which is an affine generalization of sl(n) is the following n × n matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 − 1 0 · · · · · · · · · · · · −1
− 1 2 − 1 0 · · · · · · · · · 0

0 − 1 2 − 1 · · · · · · · · · 0
...

...
. . . . . . . . . · · · · · · ...

...
...

...
. . . . . . . . .

...
...

...
...

... · · · . . . . . . . . .
...

0 · · · · · · · · · 0 − 1 2 − 1
−1 · · · · · · · · · · · · 0 − 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (68)

The Cartan matrix of the Lie algebra sl(n) is obtained from above matrix
by dropping the first column and the first row. Let us remark that Cartan
matrix is essentially the Gram matrix of the system of simple roots of algebra
and that the Cartan matrix are in one-to-one correspondence with Dynkin
diagrams.

α3 αn−2α2 αn−1α1

α0

Fig. 8. Dynkin diagram of A
(1)
n (n ≥ 2)

3.2. Quantum group associated with g(A). Following analogous
construction as in the case of Lie algebra sl(2) one can associated to arbitrary
Lie algebra g(A) (i.e U(g(A))) corresponding quantum group. This fact
shows (from mathematical point of view) the importance of quantum groups,
because this construction is applicable on very large and important class of
objects such Kac-Moody algebras are.
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Let us recall and introduce useful notation q = eh, and for symmetrizable
Cartan matrix A we define qi = qdi and the generalized binomial coefficient[[

n
l

]]
q

=
[[n]]q !

[[l]]q ! [[n − l]]q !
=

[[n]]q [[n − 1]]q · · · [[n − l + 1]]q
[[l]]q [[l − 1]]q · · · [[2]]q [[1]]q

, n > l ≥ 0,

[[
n
l

]]
q

= 1, for n = l or l = 0. (69)

If we define aij = aji = 0, for i = 1, . . . n; j = 1, . . . , 2n−l, then the quantum
group, U q(g(A)), which is associated to U(g(A)) is an associative C−algebra
generated by generators Ei, Fi, Hj (i = 1, . . . n; j = 1, . . . , 2n − l) and the
relations

[Hi, Hj ] = 0, i, j = 1, 2, . . . , 2 n − l,

[Hj , Ei] = aji Ei, i = 1, 2, . . . , n; j = 1, 2, . . . , 2 n − l,

[Hj , Fi] = − aji Fi, i = 1, 2, . . . , n; j = 1, 2, . . . , 2 n − l,

[Ei, Fj ] = δji
qHi
i − q−Hi

i

qi − q−1
i

, i, j = 1, 2, . . . , n, (70)

1−aij∑
ν=0

(−1)ν

[[
1 − aij

ν

]]
qi

E
1−aij−ν
i Ej Eν

i = 0, i, j = 1, . . . , n, i 
= j

1−aij∑
ν=0

(−1)ν

[[
1 − aij

ν

]]
qi

F
1−aij−ν
i Fj F ν

i = 0, i, j = 1, . . . , n, i 
= j.

Then, we take for coproduct, counit and antipod the maps

Δq (Hi) = Hi ⊗ 1l + 1l ⊗ Hi, εq (Hi) = 0, Sq (Hi) = −Hi,

Δq (Ei) = Ei ⊗ q
Hi/2
i + q

−Hi/2
i ⊗ Ei, εq (Ei) = 0, Sq (Ei) = − q−1

i Ei,

Δq (Fi) = Fi ⊗ q
Hi/2
i + q

−Hi/2
i ⊗ Fi, εq (Fi) = 0, Sq (Fi) = − qi Fi.

(71)
One can directly verify that all of relations (9)-(15) hold in this case.

In the literature there exist a few slightly different definitions of quantum
group. Usually, it means that some authors replace the deformation param-
eter q = eh by eα h (where α is constant and usually equal to 1/2 or to 1/4),
and the generators Hi by Ki = qβHi (where β is equal to 1/2 or to 1/4).
Let us mention one of the most interesting definitions of quantum group, due
to Drinfeld and Jimbo. The ”good” generators are also: 1l , Xi+ = Ei q

H/2
i ,

Xi− = q
−H/2
i , Fi, Ki = qHi

i , K−1
i , then the relations (70) become

[Ki, Kj ] = 0, Ki K
−1
i = Ki K

−1
i = 1l, ∀i, j

Kj Xi+ K−1
j = q

aji

i Xi+ , ∀ i, j,
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Kj Xi− K−1
j = q

− aji

i Xi− , ∀ i, j,

[Xi+ , Xj− ] = δji
Ki − K−1

i

qi − q−1
i

, ∀ i, j, (72)

1−aij∑
ν=0

(−1)ν

[[
1 − aij

ν

]]
qi

X
1−aij−ν
i+

Xj+ Xν
i+ = 0, ∀ i, j, i 
= j,

1−aij∑
ν=0

(−1)ν

[[
1 − aij

ν

]]
qi

X
1−aij−ν
i− Xj− Xν

i− = 0, ∀ i, j, i 
= j.

and coproduct, counit and antipod are given by

Δq

(
K± 1

i

)
= K± 1

i ⊗ K± 1
i , εq

(
K± 1

i

)
= 1l, Sq

(
K± 1

i

)
= K∓ 1

i ,

Δq

(
Xi+

)
= Xi+ ⊗ Ki + 1l ⊗ Xi+ , εq

(
Xi+

)
= 0, Sq

(
Xi+

)
= −Xi+ K−1

i ,

Δq

(
Xi−

)
= Xi− ⊗ 1l + K−1

i ⊗ Xi− , εq

(
Xi−

)
= 0, Sq

(
Xi−

)
= −Ki Xi− .

(73)
It is interesting to mention here that in the case of classical Lie alge-
bras(regular Cartan matrix), their quantum groups satisfy triangular de-
composition and the analog of PBW theorem hold. More precisely we
have: Let U q(g(A)) be a quantum group associated to the regular Car-
tan matrix, A, and let n+, n− and h be the subalgebras of U(g(A))
generated by {E1, E2 . . . , En} (or {X1+, X2+ . . . , Xn+}), {F1, F2 . . . , Fn}
(or {X1−, X2− . . . , Xn−}) and {H1, H2 . . . , Hn} (or {K± 1

1 , K± 1
2 . . . , K± 1

n }).
Then we have

U q(g(A)) = U q(n−) ⊗ U q(h) ⊗ U q(n+),

and U q(g(A)) is, as the vector space, isomorphic to the algebra of polyno-
mials in {Ei, Fi, Ki, i = 1, . . . , n}.

4. Representation theory of quantum groups.

4.1. Basic facts about representation theory of Lie algebras.
Let us recall some basic facts on the representations of complex finite
dimensional Lie algebras. A representation of Lie algebra g is a linear
map ρ : g −→ gl(V ), where V is a vector space, which satisfies defining
relation for g. Sometimes is convenient to speak about representation as
about g−modules. It is possible because a vector ρ(X)(v) (X ∈ g, v ∈ V )
one can write in more compact form as X.v and then the algebra structure
of g implies that V is an g−modul. It means that the following axioms are
satisfied:

(i1) X.(v + u) = X.v + X.u, ∀X ∈ g, u, v ∈ V,

(i2) X.(Y.v) = (X Y ).v, ∀X, Y ∈ g, v ∈ V, (74)
(i3) (X + Y ).v = X.v + Y.v, ∀X, Y ∈ g, v ∈ V.
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If ρ is a representation of g in V and if there exists an invariant subspace
W ⊆ V (ρ(X)(w) ∈ W, ∀X ∈ g, w ∈ W ) then by

ϕ = ρ|W : g −→ gl(W ), ϕ(X)(w) = ρ(X)(w), and
ζ = ρV/W : g −→ gl(V/W ) ζ(v + W ) = ρ(v) + W,

is well defined subrepresentation(submodul), ϕ, (in W ) and quotient rep-
resentation(quotient modul), ζ, (in V/W ) of g, respectively. These con-
struction of new representations work with given one, ρ, and spaces of
new representations are the subspaces (or isomorphic to subspaces) of V.
The representation which doesn’t contain any subrepresentation is called
irreducible representation of g or simple g−modul. The irreducible repre-
sentations(simple modules) in the set of all representations (modules) of
Lie algebra, g, play similar role to the prime numbers in the sets of all
integers. So, the purpose of the representation theory is to describe the set
of all irreducible representations (simple modules), Ir(g) and then find the
connections between an arbitrary representation of Lie algebra g and the
elements of Ir(g). The most important ways for producing new represen-
tations from the known ρ1 in V1 and ρ2 in V2 are direct sum and tensor
product of representations:

(ρ1 + ρ2)(X)(v1, v2) = (ρ1(X)(v1), ρ2(X)(v2)), in V1 ⊕ V2,

(ρ1 ⊗ ρ2)(X) v1 ⊗ v2 = ρ1(X)(v1) ⊗ v2 + v1 ⊗ ρ2(X)(v2), in V1 ⊗ V2.

The main idea in reaching the tasks of representation theory of Lie algebra,
g, is based on the existence of Cartan subalgebra, h (maximal commutative
subalgebra of g). When we have such subalgebra, then ad is a represen-
tation of g in gl(g) and there exists a basis of g, in which all elements
of h are represented by diagonal matrices. The most important conse-
quence of this fact is Cartan decomposition (66). Now, if we consider a
g−modul V (representation of g in V ), then for λ ∈ h∗, we call the subspace
Vλ = {v ∈ V | H.v = 〈λ, H〉 v ∈ h} 
= {0} weight subspace of g−modul V.
and λ is called weight.

The well-known facts about g−modules V are:

T1. For any g−modul V exists v ∈ V such that n+.v = 0 and v ∈ Vλ for
some weight λ. Such vector v is called the highest weight vector and
λ is called highest weight.

T2. If V a is simple g−modul then such vector is unique up to scalar.

T3. The set of all simple modules of g is parameterized by so-called the
lattice of dominant weights, i.e

Λ = k1 αv
1 + k2 αv

2 + . . . + kn αv
n, ki ∈ N, ∀ i, where n = dim h,
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and where {αv
i , i = 1, . . . , n} ⊆ h are dual basis to the basis of simple

roots {αi, i = 1, . . . , n} ⊆ h∗.

T4. Weyl theorem of complete reducibility, which says that every g−modul
V is direct sum of irreducible g−moduls Vλi , i.e.

V =
l⊕

i=1

Vλi Vλi ∈ Ir(g).

T5. The set of all finite dimensional representations of g become a ring with
direct sum of representation and tensor product as ring operations.

4.2. Representation of the quantum group U q(sl(2)). Let g be a
complex finite dimensional algebra and q, the parameter of deformation, is
not root of 1. First of all it is clear that the representations of the universal
enveloping algebra U(g) is in very close relation with the representations of
corresponding Lie algebra g. Namely, PBW theorem enable us to find matrix
which correspond to arbitrary element of U(g).
Secondly, it is clear that the representations of quantum group U q(g) as
deformed enveloping algebra U(g) have to be in very close connection to the
representations of corresponding enveloping algebra. Same technic, as in the
case of Lie algebras, could be applied in the theory of the representations
of quantum groups and it is known that the same quantum analogs to the
theorems (T1)-(T4) hold also in the case of representation of quantum group
U q(g). We will describe the case of the finite dimensional representation of
quantum group U (sl(2)).
As we know the generators E, F and H satisfy the relations (34), and let
V be a non-trivial U q(sl(2))−modul, then if we take any eigenvector of H
(such exists, because C is algebraically closed field) say v, then in the series
E.v, E2.v, . . . take the last element different from null vector and this vector
will be vector of the highest weight. If we denote that vector by v0, its
eigenvalue by λ and define inductively vn = 1

[[n]] q
F (vn−1), for n ≥ 0 and

V−1 = 0, then we have the following relations:

(i1) H vn = (λ − 2n) vn

(i2) F vn = [[n + 1]] q vn+1

(i3) E vn = [[λ − n + 1]] q vn−1

(75)

Now, from the relations (75) follow (because not all vectors of vn can be
different from 0) that there exists the greatest integer l, such that E(v l) 
= 0
and E(v l+1) = 0. Then the relation (i3) from (75) for n = l+1, implies that
[[λ − n]] q = 0. Since q is not a root from 1, then

λ = l +
k π ı

h
k ∈ Z.
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So, for each l ∈ N we obtain a countable series of non-isomorphic representa-
tions of dimension l+1. Let ρl be the representation with the highest weight
λ = l, then all weights of ρl are, l, l− 2, . . . ,− l + 2,− l, and generators F, E
and H are respectively represented in C

l+1 by the matrices

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0

[[1]] q 0 · · · · · · ...

0 [[2]] q

. . . · · · ...
...

...
. . . 0

...
0 · · · · · · [[l]] q 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 [[l]] q 0 · · · 0

0 0 [[l − 1]] q · · · ...
...

...
. . . . . .

...
...

...
... 0 [[1]] q

0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 0 · · · · · · 0
0 λ − 2 · · · · · · 0
...

. . . . . . . . . · · ·
...

... · · · −λ + 2 0
0 · · · · · · 0 −λ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(76)

Let us mention the basic results on the representation theory of U q(sl(2)).

T1. The set of all irreducible representation of U q(sl(2)) is parameterized
by two integers, l ∈ N0 and k ∈ Z, it means that all irreducible
representation have the highest weight of the form λk

l = l + k π ı
h .

T2. The element C q =
[[(H+1)]]2

q1/2

[[2]]2
q1/2

+ F E is an element of the center of

U q(sl(2)), and is known as Casimir operator. Let us mention that
if q −→ 1 then C q −→ C = (H+1

2 )2 + FE, where C is the Casimir
operator in U (sl(2)).

T3. Every finite dimensional representation of U q(sl(2)) are completely re-
ducible.

T4. The representation λk
l is equivalent with representations λ0

l ⊗ λk
0 and

λk
0 ⊗ λ0

l.

T5. Clebsch-Gordon’s rule. For integers λ 1, λ 2 ≥ 0, we have

λ l1 ⊗ λ l2 = λ l1+l2 ⊕ λ l1+l2−2 ⊕ λ l1+l2−4 ⊕ · · · ⊕ λ |l1−l2|,

where λ l = λ0
l.

At the end let us tell few words on the representation of the quantum group,
Û q(sl(2)), which is generated by X+, X− and K relations (see (72) and (73))

K K−1 = K−1 K = 1l, (77)
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K X± K−1 = q±2 X±, (78)

[X+, X−] =
K − K−1

q − q−1
.

Actually, this algebra Û q(sl(2)) (which is also called quantum group) is a
subalgebra of U q(sl(2)). The representation theory of Û q(sl(2)) is essentially
same as the representation theory of U q(sl(2)), and mentioned facts (T2)-
(T5). Only, (T1) holds up to the set of irreducible representations in same
dimension. Here for each l ∈ N0 we have just two irreducible representations,
but in the case of algebra U q(sl(2)) we have a countable family of irreducible
representations. Namely, the difference between U q(sl(2)) and Û q(sl(2)) is in
replacing diagonal element H with K = qH , and because of that the highest
weights of Û q(sl(2)) in dimension l + 1 are ql and − ql. So, the matrices of
the irreducible representations, ρ+ and ρ− in dimension l + 1 are

ρ+(K) = diag[ql, ql−2, . . . , q− l], ρ−(K) = −ρ+(K),

ρ+(X+) = ρ l(E), ρ−(X+) = − ρ+(X+),

ρ+(X−) = ρ l(F ), ρ−(X−) = ρ+(X−).

(79)

where ρ l(E), ρ l(E), are matrices from (76).
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