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Pairing correlations play a very important role in atomic nuclei. Although several effective pairing 
interactions have been used in mean field calculations for nucleons, little is known about effective pairing 
interactions for hyperons. Based on the quark model, we propose a relationship between effective pairing 
interactions for hyperons and for nucleons; e.g., for �s, the strength of the pairing interaction is 4/9 of 
that for nucleons. A separable pairing force of finite range which has been widely applied to describing 
pairing correlations in normal nuclei is used to investigate pairing effects in multi-� Ca, Sn and Pb 
hypernuclei.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Since the discovery of the first � hypernucleus from cosmic 
rays [1], the study of hypernuclei has been one of very interesting 
topics in nuclear physics [2–9]. Most of the observed hypernuclei 
are of single-�. So far there is only one confirmed double-� hy-
pernucleus 6

��He [10] and two candidates 13
��B [11] and 10

��Be 
[12]. Nevertheless, many theoretical efforts have been devoted 
to investigating the structure of more double-� and even multi-
strangeness (−S ≥ 3) hypernuclei [13–20].

Hypernuclei are unique quantum many-body systems for the 
investigation of hyperon-nucleon (Y N) and hyperon-hyperon (Y Y ) 
interactions which are, in turn, crucial for understanding the hy-
pernuclear structure as well as the hypernuclear matter and prop-
erties of neutron stars. With the strangeness degree of freedom, a 
hyperon can move deep inside the nucleus and serve as an im-
purity for probing nuclear properties that are not accessible by 
conventional methods developed for normal nuclei. Lots of many-
body techniques for normal nuclei, including various mean-field 
models, have been extended to hypenuclei [18–39]. In particular, 
the relativistic mean-field (RMF) models [40–49] which have been 
very successful in describing normal nuclei in the whole nuclear 
chart are also used extensively to study hypernuclei.
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In the RMF models, one needs effective interactions both for the 
particle-hole (ph) and particle-particle (pp) channels. For normal 
nuclei, a large amount of effective interactions for the ph chan-
nel have been proposed, see, e.g., Refs. [50–58]. Meanwhile, both 
zero-range and finite-range pairing forces have been used in the 
pp channel [59–62]. For hypernuclei, Y N and Y Y interactions in 
the ph channel can be either obtained by fitting experimental data 
or estimated with the naive quark model [29,63–68]. However, ef-
fective interactions for hyperons in the pp channel are much less 
known. In this Letter, we propose a way to estimate the strength 
of pairing interactions for hyperons based on the meson exchange 
picture and the naive quark model.

From the quark model we know that nucleons consist of three 
u/d quarks and hyperons consist of, besides u/d quarks, one or 
more s quarks. Next we use nu/d to label the number of u/d quarks 
in a baryon (a nucleon or a hyperon) and define gBM to be the 
coupling constant of a non-strangeness meson M (σ , ω, ρ , · · · ) 
to a baryon B (N , �, · · · ). According to the OZI rule only u/d 
quarks are involved in the coupling of a non-strangeness meson to 
a baryon at the tree level. Therefore the following relation holds: 
gY M = nu/d/3 · gN M . Similar discussions have been made with the 
quark-meson coupling model [69]. If gN M is known, one can read-
ily get gY M . For example, since nu/d = 2 in �s, g�M = 2/3 · gN M ; 
this has been proposed and used in the study of �-hypernuclei 
[63,64,70–72].

The exchange of the meson M between two baryons B1 and 
B2 results in an interaction with the strength proportional to 
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gB1 M gB2 M [73]. For single-� hypernuclei, the central potential for 
the � in the mean field generated by nucleons is proportional to 
gN M g�M while that for nucleons is proportional to g2

N M , leading 
to the well known observation that the depth of the potential for 
the � is roughly 2/3 of that for nucleons [74–77].

The strength for the Y Y interaction is proportional to g2
Y M , i.e., 

n2
u/d/9

(= g2
Y M/g2

N M

)
of that for the N N interaction. Since the 

pairing force is the residual of the two-body B B interaction, the 
ratio n2

u/d/9 holds also between the strength of the pairing in-
teraction for hyperons and that for nucleons. Note that mesons 
consisting of strange quarks may be exchanged between hyperons 
and result in possible deviations of this ratio from n2

u/d/9. In this 
work we restrict our discussions in the framework of conventional 
RMF models with non-strangeness mesons.

As an illustration, we use the relativistic Hartree-Bogoliubov 
(RHB) theory to study the effects of the �� pairing in multi-
strangeness hypernuclei. The RHB theory provides a unified de-
scription of the relativistic mean field and the pairing correlations 
via the Bogoliubov transformation. The RHB equation consists of 
the single particle Hamiltonian hB and the pairing field � [42,78]
∫

d3r′
(

hB − λ �

−�∗ −hB + λ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (1)

where λ is the Fermi energy and Ek and (Uk, Vk)
T are the quasi-

particle energy and wave function, respectively.
For the ph channel, the Dirac Hamiltonian for nucleons has 

been established [40–49] and that for �s reads [72]

h�(r) = α · p + V�(r) + β (m� + S�(r)) + T�(r), (2)

where the scalar, vector and tensor potentials are

S�(r) = gσ�σ (r),

V�(r) = gω�ω0(r),

T�(r) = − fω��

2m�

β(α · p)ω0(r).

(3)

The tensor potential T�(r) is included to achieve the small spin-
orbit splitting for the � [79–81]. We adopt two effective interac-
tions NLSH-A [51,64] and PK1-Y1 [54,66] which have been exten-
sively used in the study of � hypernuclei.

In the pp channel, the pairing potential reads

�(r1σ1, r2σ2)

=
∫

d3r′
1d3r′

2

∑
σ ′

1σ
′
2

V (r1σ1, r2σ2, r′
1σ

′
1, r′

2σ
′
2)κ(r′

1σ
′
1, r′

2σ
′
2),

(4)

where V is the effective pairing interaction and κ is the pairing 
tensor

κ(r1σ1, r2σ2) =
∑
k>0

V ∗
k (r1σ1)Uk(r2σ2). (5)

We use the separable pairing force of finite range proposed by Tian 
et al. [60,82–84]

V (r1σ1, r2σ2, r′
1σ

′
1, r′

2σ
′
2) = −Gδ(R − R ′)P (r)P (r′)1 − Pσ

2
, (6)

where G is the pairing strength and R = (r1 + r2)/2 and r = r1 −
r2 are the center of mass and relative coordinates, respectively. 
P (r) denotes the Gaussian function,

P (r) =
(

4πa2
)−3/2

e−r2/4a2
, (7)
where a is the effective range of the pairing force. For nucleons, 
the pairing strength G N = 728 MeV·fm3 and the effective range 
a = 0.644 fm have been obtained by fitting the momentum depen-
dence of the pairing gap in the nuclear matter calculated from the 
Gogny force. According to our proposal discussed before, the pair-
ing strength for �s is taken to be G� = 4/9 · G N .

We have carried out calculations with the multidimensionally-
constrained (MDC) RHB theory [85], one of the recently developed 
MDC covariant density functional theories (MDC-CDFTs) [49,85–
88]. For simplicity, we choose doubly-magic 40Ca, 132Sn and 208Pb 
as the core nuclei and study even-even-even hypernuclei 40−S

−S� Ca 
(−S = 0–20), 132−S

−S� Sn (−S = 0–40) and 208−S
−S� Pb (−S = 0–70). All 

these hypernuclei are spherical and have vanishing neutron and 
proton pairing gaps according to our MDC-RHB calculations. In 
Fig. 1, the two-Lambda separation energies S2� are shown for 
them. One can find that S2� decreases monotonically with the 
number of �s increasing. As far as the two-Lambda separation en-
ergy is concerned, at least 20, 40 and 70 �s can be bound to the 
core nuclei 40Ca, 132Sn and 208Pb, respectively. There are sudden 
drops in S2� when −S = 2, 8, 20, 34, 40 and 58. These num-
bers are magic or semi-magic numbers for �s. Since the spin-orbit 
splitting is very small in the single � spectrum, these numbers 
actually correspond to shell closures or sub-closures in the single 
particle level scheme of a harmonic oscillator potential.

The pairing gap is one of the typical quantities to characterize 
pairing effects. We have calculated the average pairing gap as [89]

�� =
∑

k

〈uk vk�k〉
/∑

k

〈uk vk〉 , (8)

where �k is the pairing gap corresponding to a single � state k
in the canonical basis and u2

k and v2
k give the empty and occupa-

tion probabilities, respectively. Fig. 2 shows the �� pairing gaps 
of 40−S

−S� Ca, 132−S
−S� Sn and 208−S

−S� Pb. It can be seen that for almost ev-
ery hypernucleus, the pairing gaps of �s obtained from PK1-Y1 
and NLSH-A are very similar. One can also find that the �� pair-
ing gaps are zero when the strangeness number is 2, 8, 20, 34, 40, 
58 and 70, consistent with the conclusion drawn from the two-
Lambda separation energies that they are magic or semi-magic 
numbers for �s. There is a clear dependence of �� on the mass 
number of the core nucleus. For 40−S

−S� Ca, 132−S
−S� Sn and 208−S

−S� Pb, the 
maximal values of �� are a bit smaller than 0.8 MeV, around 0.6 
MeV and smaller than 0.6 MeV, respectively. That is, the heavier 
the core, the smaller the pairing gap of �s. This dependence is 
consistent with the observation in normal open shell nuclei that 
the pairing gap for nucleons decreases with the mass number. We 
will discuss more about this dependence later. Meanwhile, when 
comparing the maximal values of �� with �N , one may also no-
tice that the pairing effects of �s are weaker than nucleons; e.g., 
�� < 0.8 MeV for 44

4�Ca, while for an open shell nucleus with 
A = 44, �N is about 1.8 MeV according to the empirical formula 
�N ≈ 12A−1/2 MeV [90]. Since the pairing strength for �s has 
been taken as 4/9 of that for nucleons, it is not unexpected that 
the pairing effects of �s are weaker compared to nucleons.

There have not been much work on the pairing effects of hyper-
ons in finite nuclei, though some efforts were made to the study of 
double-� and multistrangeness (−S ≥ 3) hypernuclei [13–20]. In 
Ref. [19], Güven et al. have investigated multistrangeness hypernu-
clei with the Hartree-Fock-Bogoliubov (HFB) theory and obtained 
interesting results concerning pairing effects of �s. Next we make 
a brief comparison of our results with Ref. [19]. In Fig. 3(a), the 
pairing gaps for �s in three typical multistrangeness hypernuclei 
46
6�Ca, 160

28�Sn and 272
64�Pb are compared with the HFB results [19]. 

It can be seen that �� pairing gaps of these three nuclei in the 
present work are smaller than those given in Ref. [19]. Further-
more, the �� from the MDC-RHB theory decreases faster with A
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Fig. 1. (Color online) The two-Lambda separation energy as a function of the strangeness number −S for (a) 40−S
−S� Ca (−S = 0–20), (b) 132−S

−S� Sn (−S = 0–40) and (c) 208−S
−S� Pb 

(−S = 0–70) obtained in the MDC-RHB calculations. The effective interactions PK1-Y1 and NLSH-A are used for the ph channel and the separable pairing force of finite range 
with the pairing strength G� = 4/9 · G N = 323.56 MeV·fm3 is used for pp channel.

Fig. 2. (Color online) The pairing gap of �s as a function of the strangeness number −S for (a) 40−S
−S� Ca (−S = 0–20), (b) 132−S

−S� Sn (−S = 0–40) and (c) 208−S
−S� Pb (−S = 0–70) 

obtained in the MDC-RHB calculations. The effective interactions PK1-Y1 and NLSH-A are used for the ph channel and the separable pairing force of finite range with the 
pairing strength G� = 4/9 · G N = 323.56 MeV·fm3 is used for pp channel.

Fig. 3. (Color online) (a) �� pairing gaps for 46
6�Ca, 160

28�Sn and 272
64�Pb and (b) the average �� pairing gaps as defined in Eq. (9) for 40−S

−S� Ca (−S = 6–20), 132−S
−S� Sn (−S =

18–40) and 208−S
−S� Pb (−S = 58–70) compared with the HFB results [19] with SLy5 for the N N interaction and DF-NSC89, DF-NSC97a and DF-NSC97f for the �N interaction 

in the ph channel. In the MDC-RHB calculations, the effective interactions PK1-Y1 and NLSH-A are used for the ph channel and the separable pairing force of finite range 
with the pairing strength G� = 4/9 · G N = 323.56 MeV·fm3 is used for pp channel.
than the HFB predictions. This conclusion holds also for the aver-
age pairing gap

�̄� ≡ 1

m

∑
−S

��(A−S
−S�X), X = Ca,Sn and Pb, (9)

for 40−S
−S� Ca (−S = 6–20 and m = 8), 132−S

−S� Sn (−S = 18–40 and m =
12) and 208−S

−S� Pb (−S = 58–70 and m = 12), as seen in Fig. 3(b). In 
Ref. [19], a zero-range δ force is adopted for the �� pairing and its 
strength for 40−S

−S� Ca, 132−S
−S� Sn and 208−S

−S� Pb has been adjusted sepa-
rately within a sharply truncated pairing window. The adjustment 
was made by fitting the average pairing gap (9) to the maximal 
pairing gap in uniform hypernuclear matter given in Ref. [91] at 
a certain density corresponding to the averaged density of 40−S
−S� Ca 

(−S = 6–20), 132−S
−S� Sn (−S = 18–40) and 208−S

−S� Pb (−S = 58–70), 
respectively. Thus for Ca, Sn and Pb isotopes, the pairing strengths 
are different and the pairing interaction is always the strongest for 
Pb, as seen in TABLE IV of Ref. [19]. In the present work, however, 
a global finite-range pairing force [Eq. (6)] is adopted and, thus, 
there is no hard cut-off for the pairing window.

In normal nuclei, it has been well known that the pairing gap 
for nucleons �N declines more or less with 

√
A [90]. This decreas-

ing tendency is roughly consistent with the dependence of ��

pairing gaps with respect to the number of �s obtained in the 
present work. Nevertheless, in Ref. [19], the decrease of the ��
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pairing gaps is much gentler with the number of �s. This is quite 
interesting and should be investigated further.

To summarize, we have proposed a relationship between effec-
tive pairing interactions for hyperons and for nucleons based on 
the quark model. Namely, the ratio between the strength of the 
effective pairing interaction for the hyperon Y consisting of nu/d

u/d quarks and that for the nucleon is n2
u/d/9. For �s, this ratio 

is simply 4/9. A separable pairing force of finite range has been 
implemented in the MDC-RHB theory to investigate �� pairing 
effects in multi-� Ca, Sn and Pb hypernuclei. By examining the 
two-Lambda separation energy S2� and the pairing gap �� , it is 
revealed that −S = 2, 8, 20, 34, 40 and 58 are magic or semi-
magic numbers for �s. The �� decreases with the mass number 
of the core nucleus increasing. It is also found that the pairing ef-
fects of �s are weaker than nucleons due to the suppression of 
the pairing strength by a factor of 4/9.

Finally, let us make two further remarks. First, one may notice 
that the ratio n2

u/d/9 is probably very rough. Other factors such as 
the violation of the OZI rule [92,93], medium effects [69], possi-
ble different couplings of ρ to baryons [94] and mass splittings for 
baryons [80] may alternate this ratio or make the relation more 
complex between pairing interactions of �s and nucleons. Sec-
ond, although in the present work the ratio n2

u/d/9 between the 
strength of the pairing interaction for hyperons and that for nucle-
ons has been used in the framework of the RMF models, we expect 
it is also applicable to non-relativistic mean field models.
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