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Abstract In this research article, we have considered the
Finsler—Modified Randers Cosmological model (FMRCM)
with Cosmological constant A for generalized Finsler—
Randers space time, to investigate the solutions of this model
in Einstein theory of cosmology in different variations of
energy conditions. Also, we have analyzed the role of cos-
mological constant A in various scenarios, exploring its
impact on both accelerating and decelerating phases of cos-
mic expansion.

1 Introduction

Riemannian geometry is a particular case of Finslerian geom-
etry [1-3]. A Finsler space is fundamentally defined by a
generating function F(x, y) on the tangent bundle 7 M of a
manifold M where F is positively homogeneous of degree
one in y. In particular, the Finsler—Randers space-time is
examined in [4]. Finsler geometry was introduced by Paul
Finsler in 1918. Earlier, in 1854, B. Riemann formulated
the Riemannian metric ds?> = g;jdx’dx/, which defines the
distance between two points x and x + y. The generating
function F(x, y) satisfies the following properties:

(i) F is continuous on (7 M) and smooth on (7 M) =
T M/{0}, namely the tangent bundle minus the null set
{(r,y) € TM/F(x, y) = 0},

(i1) F is positively homogeneous of first degree on its second
argument
F(x,ky) = kF(x,y) forevery k > 0.
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(iii) For each x € M the fundamental metric tensor
2712 . . . L.
gij(x,y) = %aavi];yi is non singular, with i, j =

0,1,2,3,4,........ (n—1).

The pair (M, F) is called a Finsler manifold and the
symmetric bilinear form g = g;;(x, y)dx'.dx/ is called the
Finsler metric tensor of the Finsler manifold (M, F). Some-
times, a function F satisfying the above conditions is said to
be regular Finsler metric.

According to the Big-Bang theory, the entire universe was
once in the form of a single point with extremely high energy,
density and pressure. After explosion this energy converted
into mass. This mass leads to the formation of physical struc-
ture of the universe. Thereafter geometry was used to study
1t.

Now a days, the open problem is that to calculate the
exact value of this cosmological constant A [5]. In gen-
eral, by extending the Riemannian metric we can estab-
lish a Finslerian geometric structure on a manifold, leading
the way for generalized gravitational field theories. There
have been rapid developments in the applications of Finsler
geometry in the context of fundamental relativity (FR), par-
ticularly in general relativity, astrophysics, and cosmology.
Many researchers have studied these topics, [1,6-22]. In
this context, Stavrinos, Koretsis, and Stathakopoulos [5] sug-
gested that the Finsler—Randers field equations yield a Hub-
ble parameter containing an extra geometrical term, which
may serve as a potential candidate for dark energy.

Spatially homogeneous cosmological models enable the
study of distorted and rotating universes, broadening the
scope of cosmological research. These models help to esti-
mate the effects of anisotropy on primordial element produc-
tion and the observed anisotropies in the cosmic microwave
background radiation (CMBR) [12]. In addition to the obser-
vational insights provided by Hawking and Ellis [14], sev-
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eral theoretical considerations have motivated the study of
anisotropic cosmologies.

G. Randers, in his research on asymmetric metrics in
four-dimensional spacetime within general relativity [21],
proposed the Finsler—Randers cosmological model. A broad
class of anisotropic cosmological models exists and has been
widely studied in cosmology [19]. Some theoretical argu-
ments support the presence of an anisotropic universe [17].
Additionally, anisotropic cosmological models offer an alter-
native to the assumption of specific initial conditions in stan-
dard FRW models. The universe may also exhibit an irregu-
lar expansion mechanism. Therefore, studying cosmological
models in which early-stage anisotropies diminish over time
could provide valuable insights into cosmic evolution [13].

Stavrinos et al. [5] investigated a Friedmann-like
Robertson—Walker model in a generalized metric space-
time with weak anisotropy. More recently, Basilakos and
P. C. Stavrinos [8] explored the cosmological equiva-
lence between Finsler—Randers spacetime and the Dvali—
Gabadadze—Porrati (DGP) gravity model. Building upon
these studies. We aim to analyze the evolution of the uni-
verse within the framework of Finsler—Randers cosmology.
Stavrinos et al. [23] developed a cosmological model based
on the dynamics of a varying vacuum in Finsler—Randers cos-
mology, incorporating a cosmological fluid source described
as an ideal fluid. Additionally, they investigated the connec-
tion between Finsler—Randers theory and General Relativity,
exploring the conditions under which the former approaches
the latter. In this research paper, we study the Friedman-like
Robertson—Walker model and the cosmological constant A
within the framework of generalized Finsler—Randers cos-
mology. Furthermore, we investigate both the accelerating
and decelerating expansion of the universe.

1.1 A brief introduction of osculating Riemannian metric

In this subsection, we introduce the osculating Rieman-
nian metric associated with a Finsler metric (M, F). As
mentioned already, the fundamental geometrical objects of
Finsler geometry are defined on the total space 7 M of
the tangent bundle wpry : 7M — M regarded as 2n-
dimensional differentiable manifold with the canonical coor-
dinates (x, y) [24]. Herex = (x’)and y = (y') are obviously
independent variables. For instance g;; : M /0 — R, where
0 denotes the zero section of the tangent bundle. On the other
hand, since wq : 7 M — M is a fiber bundle, we can con-
sider a local section Y : U — TU ,where U C M is an
open neighborhood on M such that Y (x) # 0, forallx € U.
We have m (Y (x)) = x on U. If we fix such a local section
Yof M : TM — M, all geometrical objects defined on the
manifold 7 M can be pulled back to M, for instance g;;oY
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is a function on U, hence we can define

8ij(x) = gij(x, Vly=rx), x € U. (1.1)
The pair (U, g;;) is a Riemannian manifold and this g;; is
called the Y -osculating Riemannian metric associated to
(M, F). The Christoffel symbols of the first kind associated
with the osculating Riemannian metric (1.1) are defined as
follows

_ 1/ 98  _ 9
Vijk(x) = 3 (m[gij(x, Y (x))] + W[gij(x, Y(x))]

0 _
— 57 i (% Y(X))]> (1.2)

and by using the derivative law of composed functions we
get

i} _ _ oyl ay!
Vijk(X) = Viji(x, Yy=rx) +2 Cijlm + Cijlw

_ oyt

—CjkIW ly=y(x)- (1.3)

If Y is a non-vanishing global section of 7. M, i.e. Y (x) # 0,
for all x € M, then we can define the osculating Rieman-
nian manifold (M, g;;). However, observe that the existence
of globally non-vanishing sections of 7 M depends on the
topology of M. For instance in the case of a 2- dimensional
sphere, such sections do not exist. It is known that all non-
compact manifolds admit non-vanishing global vector fields.
Compact manifolds admit non-vanishing global vector fields
if and only if the Euler characteristic vanishes [24]. We will
always assume that non-vanishing global vector fields exist
on our differential manifold M. With the assumption above,
in the case of an («, 8)-metric, let us consider the vector
field Y = Ahaving the components A; = a;;. A’ . The vector
field A being globally non-vanishing on M is equivalent with
the fact that 8 has no zero points. With these notations, we
consider the .A-osculating Riemannian manifold (M, g;;),
where g;; = g;;(x, A). By denoting by a the length of A with
respect to «, we have a*> = A4; A" = o?(x, A), Yi(x, A) =
A; and the A-Riemannian metric takes the form

_ Ly
gij(x) = 7')':A(x)aij

L L L
+< ;20[ +2 ;5 + Lgg — a—:) ly=A@)AiAj.

(1.4)

Furthermore, we have B(x, A) = a2, pi(x, A) = 0 ie.
éijk = 0 (see for instance [25, p. 8]).

On the other hand, in case of Y = A, (see for instance
[25, p. 7D .

Fiu Mlhy=Ax = 7j(x, ¥)ly=Aw), and furthermre,
from (1.3) we get ik (x) = Vijr (X, V) |y=A@x)-
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Hence we obtain the fundamental result that for a Finsler
space with («, 8)-metric the linear A-connection associated
with the Cartan connection is the Levi-Civita connection of
the Barthal connection is the Levi-Civita connection of the
A-Riemannian space. The curvature tensor of an affine con-
nection with local coefficients (Ff ; (x) is given by

i 31—‘51 8Fl myi
Riyy=—F - Ky i

= — = T N A (1.5)

Also, let )7/’fk are Levi-Civita coefficients, we obtain the
expressions for curvature tensor

_dyl, oyl .
Jjl ]k
and
_ 8)/’: 8)/1:.
Jjl Ji k k
Rj = Z |:W ~ oxl + Z(V;’llymk - Vﬂl’ml)] .
i m
(1.7)

respectively, where i, j, k,l,m € {0, 1, 2, 3}.
The contractions of the curvature tensor lead to the gen-
eralized Ricci tensor and Ricci scalar, respectively given by

Rji =Rl R} = g™ Ry, (1.8)
and
R=R. (1.9)

2 Einstein theory of generalized Finsler—-Randers
cosmological model with cosmological constant

The energy conditions in general relativity facilitate the
derivation of powerful and general theorems concerning
the behavior of strong gravitational fields and cosmologi-
cal geometries. However, in this section, we focus on the
generalized Finsler—Randers cosmological model with a cos-
mological constant and examine the corresponding energy
conditions for this framework.

Riemannian geometry represents a special case of Fins-
lerian geometry [1-3]. Fundamentally, a Finsler space is
defined by a generating function F (x, y) on the tangent bun-
dle 7M of a manifold M. The function F is positively
homogeneous of degree one in y. Specifically, the case of a
Finsler—Randers space-time is discussed in [4].

F(x,y) = Jaij )y y! + by,

but we have generalized Finsler Randers space-time such as

Fx,y) = /8ij(x)y' yl + Ab;y', 2.1)
const., . .

where A = q , a;j are component of a Riemannian
me?

metric and b; = (by, 0, 0, 0) is weak primordial vector field
with |b|1. The Finslerian metric tensor g;; is constructed by
Hessian

1 927>
20yiay/”

gij = (2.2)

The zero order Friedmann equation is given by [26]

3k 5
— =81Gpo — 3H" + A,
a

where £ is the curvature parametre of universe, H is the Hub-
ble parameter and A is the cosmological constant. The gen-
eralized Finsler—Randers field equation with cosmological
constant is given by [27]

1 8 G A
Rij = 58T = ——Tij + o —=8ij»

2.3
2 ct 871G (2.3)

where R;; is Ricci tensor, 7;; is the energy momentum ten-
sor, A is the Cosmological constant [26] and 7 is the trace of
energy momentum tensor and the term —(A /87 G)g;; rep-
resents the contribution of the cosmological constant to the
field equations. Modelling the expanding universe as Finsle-
rian perfect fluid [23] that induces rediation and matter with
four velocity u; for comoving observers, we have

A A
Ti==\P =12z )8 T\ P+ P H 15 ) vieie
2.4)

where p and P are the total energy density and pressure with
cosmological constant A of the cosmic fluid respectively.
Thus, the energy momentum tensor becomes

_ A A
Tij = diag P-ec) P—% g1,
p__A R 2.5)
127G ) 8% 122G ) 83|~

In view of [7,10,16], we apply the weak, dominant and
strong energy conditions within the framework of Finsle-
rian cosmology for our models. In the locally Minkowski
frame, these conditions are expressed as TO0 = (p — %),
T =1} =T} = (P -
matrix equation is

—122 G). Obviously the root of
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1= s o))+ )
(H(P* 1zic)>’<r+<P7ﬁ>>]'

It gives the eigen values r for the energy momentum tesor as
ro=(p — %) andri =rp=r3 = —(P — ﬁ). Also,
weput A = 3K for A > 0and A = —3K for A < 0 where
K > 0 be any real number [5].

We assume the energy conditions for Finsler modified Ran-
ders cosmological model are as follows:

2.6)

(i) Null energy condition with cosmological constant

(NECCO);
(@)
op+P>0,A<0 2.7
(b)
p+P>0,A>0. (2.8)

(i1)) Weak energy condition with cosmological constant

(WECCCO);
(@)
rn0>0=p0p>0,rgp—ri>0=p+P>0,A>0.
2.9
(b)
rn0=>0=p>0,rgp—ri>0=p+P>0,A <0.
(2.10)

(iii) Strong energy condition with cosmological constant

(SECCO);
(a)
rO_Zri >0= p+3P>0andp+ P >0,A>0.
2.11)
(b)
rO_Zri >0= p+3P>0andp+ P >0,A <O.
(2.12)

(iii)) Dominant energy condition with cosmological con-

stant (DECCC);
(a)
ro>0=p>0,—ro<—-ri<rg=pxP>0,A>0.
(2.13)
(b)
r0>0=>p>0,—r<-rr<rp=>pxP>0A<0.
(2.14)

Note: Among all these energy conditions, the first condition
indicates the accelerating expansion of the universe, while

@ Springer

the second condition suggests its deceleration.. FRW metric
is
a’ 2.2 22,2

aii =diag |1, ———, —a“r°, —a“rsin-0 2.15

L] g ( 1 _ kr2 ) ( )
where a is a function of # only and & is the curvature parameter
having the values —1, 0, +1 for open, flat and closed models
respectively. The non-zero components of the Ricci tensors
are

53
Roo = 3 (i’ _ _“u~0> 2.16)
a 4a
and
da + 24 + 2k + 1 —aa
Rii = — ( = ”°> , 2.17)
ii

where A; = 1 — kr2, Ay = r% and A3z = r2sin?6. From
gravitational FR field equation (2.1) for comoving observers,
then the FRW Einstein field equation with a cosmological
constant can be given in the following form [5]

a 3a . 47 A
—+—uo———(,0+3P)+ (2.18)
4a 3’
i o _a? kK 1la
—+2 —|—2 +Z‘“0—477G(/0 P)y+ A, (2.19)
From (2.18) and (2.19), we get
N2 .
a a 8t G k A
—) t-u=—F—p— 5+ 7. (2.20)
a a 3 a 3

where over the dot denotes the derivatives with respect to the
cosmic time 7 and z; = by < 0 and z; are defined as z; = u
[5,23]. Using the Hubble parameter, Eq. (2.20) becomes

k dqnG A
H2+Hz;+a—2=—,0+—.

3 3 221

Equation (2.21) represents the modified Friedmann equation,
where the additional term Hz, — % influences the dynamics
of the universe If we set bg = 0 or (Cogp = 0), it follows
that z; = —% = 0. In this case, the field equations (2.19)
and (2.20) reduce to the standard Einstein equations, whose
solution corresponds to the usual Friedmann equation. Next,
we analyze the solutions that give rise to two distinct phys-
ically relevant cosmological scenarios, which are of interest
in describing both the decelerating and accelerating phases
of the universe.
Case 1: de Sitter solution with cosmological constant
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In cosmology, it is well established that the current epoch
of accelerated cosmic expansion can be effectively approx-
imated by this model. This solution describes an exponen-
tial growth of the scale factor, leading to a constant Hubble
parameter.

From [6], we use the scalar factor as: a = ce®’, where
¢ and o are constants. For o2 > 0, it gives an accelerat-
ing universe. Using this scalar factor, the Hubble parameter
becomes

. ot
Moy =d =%,

a ceo!

(2.22)

Using energy conditions and equation (2.21), we obtain the
energy density as

> (o oz + o B (2.23)
=——|o o —_—t+ = . .
P=3%7G 4T 200 T3
From Eq. (2.18), we get the pressure as
P Lo lgp2 20, kA (2.24)
=—— 1|30 —_—— . .
871G 2 c2e20t 3
From Eqgs. (2.23) and (2.24), we obtain
+P= ‘ 2
P T 4 Gc2c2e20t T 16nG
sk A (2.25)
27Gc2e?ot 127G’ ’
and
362 lloz k A
p—P=— - .
4nG  16mG 2w Gc2e?t 127G
(2.26)
Again, from above equations, we haave
362 9 A
p3p =2 227)

Ta7G 162G anG

Notice that if z;, = % = 0, Eq. (2.21) reduces to the standard
Friedmann equatioﬂ. The above observations suggest that the
universe is anisotropic at an early stage and becomes isotropic
at later times. For physically viable choices where z; < O,
two different cases arise:

(@) zp =—e!
and
(b) r = _tin.
where n is a positive constant. (a) If z; = —e™": Putiing this

value of z; in Egs. (2.23) and (2.24), the value of pressure
and density are obtained as

3 2 _ge 4 A (2.28)
= —— |0 —o0oe —_— .
P 871G c2e20t 871G
and
P 302 Soe”t k N A (2.29)
" 81G 161G 87 Gc2eo! | 247G’ '
From Eqgs. (2.28) and (2.29), we obtained
oe™! k A
P =- . 2.30
Pt 167G | 2mGe2e | 6xG (2.30)
and
362 lloe™! k A
p—FP= - :
4G 167G 2w Gc2e?9t 127G
(2.31)
Also, the condition p + 3P is
362  9ge! A
3P =— . 2.32
Pt 172G T 162G T AnG (2.32)

Now we discuss the energy conditions with cosmological
constant, from equation (2.30) the null energy condition with
cosmological constant (NECCC) is satisfied if

_ k Ot k A
p+P=z20= 4w Gc2cleat + 167G + 2w Gele2ot + o= 0

2 24k —
=c S (306(2{7_”[78/\62”’) - Bl

from Eqs. (2.28) and (2.30) the weak energy condition with
cosmological constant (WECCC) is satisfied if

2 < min{ k 24k

€201 (3ge~1—302—A)’ (30eo—Di_gAe201)

} =B

The strong energy condition is satisfied if

9e ! — /81X —192A  9e~'+/81e¥ —192A
o€l / 24 s / 24 1=5;
The dominant energy condition with cosmological con-

stant (DECCC) is satisfied if

< { k 24k
= Y291 (3ge"—302—A)’ (Boe@—DI_gAe207)”

24k o
GaoeT 60T amer) = Ba

02

From these observations, we find that for any value of
t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if <
min{By, By, Ba}, On the other hand, the Strong Energy Con-

dition with Cosmological Constant (SECCC) is satisfied in

—t_ 2t _ —t 2t
this model if o € [9e ¢8215 192A’96 +¢821: 192A] _

Bs.
Furthermore, we observe that for large cosmic time #, the
NECCC, WECCC, and DECCC continue to hold, whereas

@ Springer
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the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

Now, we will discuss the effect of A in both conditions
(a): A > Oi.e. A = 3K, then we have

From Eq. (2.30) the null energy condition with cosmological
constant (NECCC) is satisfied if

2 24k _
= ¢ = G tipgery = Bi

from Egs. (2.28) and (2.30) the weak energy condition with
cosmological constant (WECCC) is satisfied if

k 24k

2 —
€201 (3ge~1—302-3K)’ (Boeo—Di_24K¢201) } - Bz

c §min{

The strong energy condition is satisfied if

9¢~T— /812 +576K 9e™'+./81¢2 +576K
oel = 2 . S 2 1= Bs.

The dominant energy condition with cosmological constant
(DECCQ) is satisfied if
2 < { k 24k

e2!'(3oe~'—302-3K)’ (3oe0—D1_24K 207’
24k } —-B
(B30e—3602—12K)e201 J = P4

From these observations, we find that for any value of
t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if 2 <
min{By, By, B4}, On the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

—1_ 20 —t 2t
this model if o € 9¢™"—/8le” —576K ’ 9¢™'+./81e” —576K _
24 24
Bs.

Furthermore, we observe that for large cosmic time ¢, the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

(b): A < Oi.e. A = —3K, then we have

From equation (2.30) the null energy condition with cosmo-
logical constant (NECCC) is satisfied if

2 24k _
= ¢ = Greahiagagen = B

From Egs. (2.28) and (2.30) the weak energy condition with
cosmological constant (WECCC) is satisfied if

2

cc < min{ k 24k

€291 (3oe~'—30243K)’ (306(2“")’+24Ke2‘”)} =B

The strong energy condition is satisfied if

—t__ 1 2t K —t 1 2t K
o c [9e \/822 +576 ,9e +J82: +576 ]= Bs

The dominant energy condition with cosmological constant
(DECCQ) is satisfied if

c2 k 24k
= | e*'Boe~"—302+43K)’ (3oe2o—Di424Ke20t)°
24k =B
(3BoeT—3602+12K)e2t | = P4

@ Springer

From these observations, we find that for any value of
t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if 2 <
min{By, By, B4}, on the other hand, the Strong Energy Con-

dition with Cosmological Constant (SECCC) is satisfied in

—1_ 2t —t 2t
this model if o € [9e \/8212 +576K’ 9e +\/821: +576K] _

Bs.

However, we also observed that for large cosmic time ¢,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition A = —3K , there is no information about
expanding of universe.

b)Ifz, = —t"

Putiing this value of z; in equations (2.23) and (2.24), the
value of pressure and density are obtained as

S G NLAN I (2.33)
=—— 0" -0 —_— P .
P=3%7G c2e20t 87 G
and
362 S50t7" k A
— _ — . 2.34
817G 16nG 8w Gc2e2ot + 247 G ( )
From Egs. (2.33) and (2.34), we obtained
tp=- L2 (2.35)
P T 162G 2nGclet  6nG’ ’
and
p_ 30° o™ P
P T 4xG 167G 2w Gc2e?9t  12nG™
Also, the condition p + 3P is
papo 20 0t A (2.37)
P =~ " 42G 162G ' 4nG’ '

Now we discuss the energy conditions with cosmological
constant, from equation (2.35) the null energy condition with
cosmological constant (NECCC) is satisfied if
" k A
pP+P=0= —{rm+ s + g = 0
2 24k -
= ¢ = gy = Al

from Eqgs. (2.33) and (2.35) the weak energy condition with
cosmological constant (WECCC) is satisfied if

k 24k
€201 (31" —302—A)’ (3oe20!t—"—8Ae20)

c? Smin{

| =4

The strong energy condition is satisfied if

91" — /812" +192A 91~ "+./8112"+192A
Ge[ ¢24+ ’ +¢24+ ]=A3
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The dominant energy condition with cosmological constant
(DECCC) is satisfied if

c2 k 24k
= | 291 Bot™"=302—A)’ (Boeort—n—8Ae20T)’

24k }= A

(33011 —3602—4A)e20!

From these observations, we find that for any value of
t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if 2 <
min{Aj, Az, A4}, onthe other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in
this model ifo ¢ |:9t’"—\/81t2”+192A 9t’"+\/81t2”+192A] _

24 J 24
As.
Furthermore, we observe that for large cosmic time ¢, the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.
Now, we will discuss the effect of A in both conditions

(a): A > Oi.e. A = 3K, then we have

From Eq. (2.35) the null energy condition with cosmological
constant (NECCC) is satisfied if

2 24k
< 55— =
¢ = g gy = A

from equations (2.33) and (2.35) the weak energy condition
with cosmological constant (WECCC) is satisfied if

k 24k

2 —
e20! (301~ "—302-3K)’ (30e20!t~"—24K e207) } =A

ct < min{

The strong energy condition is satisfied if

9" — /811¥+576K 9"+ /811 +576K 1 _
o€l 24 ’ 24 =4

The dominant energy condition with cosmological constant
(DECCQ) is satisfied if

C2 < k 24k
— | €29t (Bot="—-302-3K)’ (Boe0it—n_24K¢201)’

24k _
(330t~ —3602—12K )e20! } = A4

From these observations that any value of ¢, NECCC,
WECCC and DECCC are satisfied in this case if ¢? <
min{Ay, A>, A4}, whereas SECCC is satisfied in this model

—n__ 2n —n 2n
ifo e [9: \/8212 +576K’9t +\/8212 +576K]:A3_

However, we also observed that for large cosmic time
t, SECCC, WECCC and DECCC are satisfied, whereas
SECCC is violated, which is responsible for current acceler-
ated expansion of universe.

(b): A < Oi.e. A = —3K, then we have

From Eq. (2.35) the null energy condition with cosmological
constant (NECCC) is satisfied if

2 24k = A

¢ = 21 Bor124K)

from Eqgs. (2.33) and (2.35) the weak energy condition with
cosmological constant (WECCC) is satisfied if

k 24k
€201 (351" —30243K)’ (30e201t=" 424K e201)

c? < min[

=
The strong energy condition is satisfied if

9" — /811" —576K 9t +./81:"—576K | _
o & 2 s 2 =A;
The dominant energy condition with cosmological con-

stant (DECCC) is satisfied if

2 < k 24k
= | €291 (Bot7"=302+3K)’ (Boe@01t—n424Ke201)’

24k _
(3301 "—3602+12K)e20! =A4

From these observations, we find that for any value of
t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if 2 <
min{Aj, Ay, A4}, onthe other hand, the Strong Energy Con-

dition with Cosmological Constant (SECCC) is satisfied in

. . —n_ 1720 — K —n 1#2n K
this model if o € [91 */825‘ 376 , o +‘/82£ 376 1=

As.

However, we also observed that for large cosmic time ¢,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition A = —3K , there is no information about
expanding of universe.

Case-2: Power Law solution with Cosmological constant
Power-law solutions are fundamental in standard cosmology,
as they help describe the evolution of various cosmological
phases, including radiation-dominated, matter-dominated,
and dark energy-dominated eras. Consider a universe where
the scale factor follows a power-law form [20], given by
a = ct®, where ¢ and w are constants. When w > 1 the
universe undergoes accelerated expansion.

now, the Hubble parameter becomes

a  wctl w

a ct®

) (2.38)

Using this value of Hubble parameter in Eq. (2.21), we have

_ 3 (Ce, koA (2.39)
P=8ac 2 TTY T e T3 ) '

With the scalar factor and from Eq. (2.18), we get the pressure
as

p_ —30’+20 S k A 040
T 8nGr? 167Gt 87Ge22e  24nG
From Egs. (2.39) and (2.40), we have
T L PO S ST
P = %G T16nGr ' dnGe T 12nGT
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and
_ wBw—1) llw k A
T a2 T 16nG et T 2nGee T 6nGe
(2.42)

Also, the value of p + 3P is

3w (2 — w) 9w A

_ . 2.43
§7G2 162G T AnG (2.43)

p+3P =

I this case also, we discuss, as same in case-1 two different
scinario:

(i) When z; = —e™!

Putiing the value of z; in Eqs. (2.39) and (2.40), we can
determine the value of the pressure and density respectively
as

3 (L@ kA (2.44)
=—— | ——e ——+ = . .
P =8\ 2 7 22t 3

With the scalar factor and from Eq. (2.18), we get the pressure
as

k A

871G 24nG’
(2.45)

—30? + 2w n Sw
e
8w G2 167Gt

—t

From Egs. (2.44) and (2.45), we obatin

Ty S SN T
= (4 . .
P 87G12  16nGt. 4G22 127G
and
wBw—1) llo _, k A
_ — — e .
477 Gt? 167Gt 2r G2t 6nG
(2.47)
Also, the value of p + 3P is
tap=0C@) o A (2.48)
= e . .
p 87Gr2 | 167Gi 47G

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

2w ) —t k A
p+P= 87 G12 t Torgi¢ T 47 Gc2r2e t G = 0

k

A
4 G220 + 127G 20

2w w —t
= 87 Gr? + 167Gt ¢ +

2 12k
:> < =
= (12wt2@=1) 4 3e~1 201 4 A120) Ql'

The weak energy condition with cosmological condition
(WECCQC) is satisfied if

@ Springer

c? < min{

3k
3we—rt(2w—l) _3w2t(2a)—2) —AZ‘Z“’ 9

12k =0
(202 D4 3ge 1201 H4A20) | = 22

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c? < min{

3k
3we—1t20—1) _34,2;Qw=2) _As20°
12k
(RRwt2@=D) 4 3ge—1 1201 L 4 A120)°

24k 0
(12012 D =360 2@=D 133120 g1 {8AL2%) | — <3°

and the strong energy condition is satisfied if

12¢f — _ 12¢! — 2 2t 2A
w e [( e —91)—/( 1§er 9t)?+96e?' t ,

(126" —91)+/(12¢" —91)2+96e* 12 A
12¢! ’
From these observations, we find that for any value of

t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmologi-
cal Constant (WECCC), and the Dominant Energy Con-
dition with Cosmological Constant (DECCC) are satisfied
if 2 < min{Q1, Qz, Oz}, on the other hand, the Strong

Energy Condition with Cosmological Constant (SECCC) is
(12¢' —91)—/(12¢' —91)2+96 12 A
12¢! ’

satisfied in this model if w € [

(12¢' =90)+,/(12¢' —=90)2+4+96¢> 12|
12¢' = .
Furthermore, we observe that for large cosmic time ¢, the

NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

Now, we will discuss the effect of A in both conditions

(a): A > Oi.e. A = 3K, then we have

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

2 - 12k _
" = (2o T 30e P iR = Q1

The weak energy condition with cosmological condition
(WECCQCQ) is satisfied if

2

c Smin{ 3k

3we 1@ 3021 Co-D 3K 20

12k =0
(12wt2(“’_')+3a)e—’t2“’_]+12Kt2")) - 2.
Also, The dominant energy condition with cosmological con-

stant (DECCC) is satisfied if

3k
Bwe=!1C0=1) _3¢2Q0=2) 320>
12k
(]2wt2(a)—l)+3we—[t2m—1+12K,2m) ’

c? < min{

24k _ Q
(1201 D =367 2@~ D 13302 F e~ 1 424K 12%) | — <3°
and the strong energy condition is satisfied if
(12¢' —91)—/(12¢' —91)2 288K ¢! 12
12! ’
(12¢' —91)+/(12¢' —91)>+288 K > 12
12¢! ’
From these observations, we find that for any value of

t, the Null Energy Condition with Cosmological Constant

oe
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(NECCC), the Weak Energy Condition with Cosmologi-
cal Constant (WECCC), and the Dominant Energy Condi-
tion with Cosmological Constant (DECCC) are satisfied if
< min{Q1, Q», Q3}, onthe other hand, the Strong Energy

Condition with Cosmological Constant (SECCC) is satisfied
(12¢' =91)—/(12¢! —9¢)>+288K %' 1
12¢! >

(126" —90)+./(12¢' —91)>+288K > 12| _
12 = Q4-
Furthermore, we observe that for large cosmic time ¢, the

NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

(b): A < 0Oi.e. A = —3K, then we have

in this model if w € [

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

2 12k
< =
= (120t2@=D) 4 3pe=1120-1 2K t20) Q.

The weak energy condition with cosmological condition
(WECCQC) is satisfied if

2 < min{

Bwe—112o=1) 342t 20=2) L 3K 20

12k
(12ewt2@=D) 4 3pe—1120-1 12K t20)

= Qs.

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

3k
3a)e“I(Z“’_])73w2t(2“’_2)+31(t2“’ ’
12k
(R2o2@=D 30 20-T 12K 129)

c? < min{

24k -0
(201D =360 2@~ D330 2 e—1 24K 2%) | — <3°
and the strong energy condition is satisfied if

(12¢' —91)—/(12¢' —91)>—288K &2/ 1>

12¢! ’
(12¢' —90)+/(12¢' —91)>—288K e/ 1>

12¢! ’

From these observations, we find that for any value of

t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmologi-
cal Constant (WECCC), and the Dominant Energy Condi-
tion with Cosmological Constant (DECCC) are satisfied if
< min{Q1, Q», Q3}, onthe other hand, the Strong Energy

Condition with Cosmological Constant (SECCC) is satisfied
(12¢' =91)—/(12¢" —91)> —288K %' 1
12t ’

oel

in this model if w € [
(12e’79t)+«/(12e’79t)27288Kez’12]

12¢7

= Qu.

However, we also observed that for large cosmic time ¢,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition A = —3K , there is no information about
expanding of universe.

(i) When z; = —¢™"

Putiing the value of z; in equations (2.39) and (2.40), we can
determine the value of the pressure and density respectively

as

(2.49)

3 ? w k
P

A
=876 Tz‘m+m+§>-

With the scalar factor and from Eq. (2.18), we get the pressure
as

30?420 S5 k A

87 G2 167Gt"t  81Gc2t2e 247G’
(2.50)

From Egs. (2.44) and (2.45), we obatin

T U ST
P = %G T 16n Gl T AnGe22e 127G
and
_a)(3a)—1) llw k N A
T 47 Gr? 167 Gt"+l " 2n G220 672G’
(2.52)

Also, the value of p + 3P is

3w (2 — w) 9w A

. 2.53
87 Gt? 16 Gtn+! + (2.53)

+3P =
P 47G

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

2w w k A
P+ Pz 87 G2 + 16w G+l + 47 Gc2r2e + 127G =0

2w w k A
= 8xG1? + 167 Gt tl + 4x G2t * 12n6 = 0

2 12k _
A e P e ey v U -
The weak energy condition with cosmological condition
(WECCQC) is satisfied if

2 : 3k
= mln{ 30t 2o 342102 _p[20°
12k
(712601‘2(”)_2) 7360!2”’_"_1 74Al‘2“’)
=&

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c? < min{

12k
(—12wt2(@=2) _3r2o—n—1_4 Af20)°
12k
(—12012@=2) _320-n—1_4As20)°

24k - S
(1232 —w) @D 332D _gA2e) | = 3
and the strong energy condition is satisfied if
(126724971 — /(12672491 7"~ 121961 72 A

12t—2 ’
(1267249t~ /(1272497121961 72 A

12t=2 >
From these observations, we find that for any value of
t, the Null Energy Condition with Cosmological Constant
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(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if 2 <
min{S1, Sz, 83}, on the other hand, the Strong Energy Con-

dition with Cosmological Constant (SECCC) is satisfied in
(127249171 — /(126 7249t "~ 121961 "2 A
1212 ’
(12672491714 /(12672 49r "~ 124961 2 A
12t—2 )
Furthermore, we observe that for large cosmic time ¢, the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

Now, we will discuss the effect of A in both conditions

this model if @ € [

(a): A > Oi.e. A = 3K, then we have

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

2 12k Sl

< =
¢ = el @D Be2o-T_12K12)

The weak energy condition with cosmological condition
(WECCQ) is satisfied if

2 : 3k
= mln{ 3wrCo—n—1 34,2 Co—2) 3K 120
12k
(C2w12@=2 3e2o—n—1_[2K2)
=&

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

2 - 12k
¢ = ”””{ (—D2wrX@=D 3pr2o——1_12K %)
12k
(—1Rwt2@=2) _3gp20—n—1_12 K 20)°
24k
(120607 —)2@-D —330r2@1-D 24K 22
=S5,

and the strong energy condition is satisfied if

(12672497~ — /(1262491 "~ 124288 K 12

122 ’
(1267249~ V4 /(12672491 "~ 121288 K 12

12¢—2 >

From these observations, we find that for any value of

t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if <
min{S1, Sz, S3}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in
(12672491~ — (12t 72 49r "~ 1)2 4288 K12

12t=2 >
(1272491714 /(12 249"~ 1)2 4 288K 12

12172 )
Furthermore, we observe that for large cosmic time ¢, the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

(b): A < 0Oi.e. A = —3K, then we have

oc

this model if w € [

@ Springer

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

2 12k 81

< =
= w2 3e2o -1 12K 120)

The weak energy condition with cosmological condition
(WECCQCQ) is satisfied if

2 . 3k
= I’I’lll’l[ 3wt Qo—n=1) _3¢2;Qw=2) 4 3K 20’
12k
(— 2012 @-D 32011 12K120)
=38.

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

12k
(= 12012@=D _3e2o-n-11 2K 20)
12k
(= 12012@= D _3g20-n—T 12K 20)

c? < min{

24k -S
(122G’ —w) @D —33pr2@-n-D124K20) | — O3
and the strong energy condition is satisfied if
(12672491~ — /(12672 491"~ 1)2 288K ~2

12t—2 ’
(12672491714 /(1262 491"~ 12288 K12

12t=2 ’

From these observations, we find that for any value of

t, the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if 2 <
min{Sy, Sz, 83}, on the other hand, the Strong Energy Con-

dition with Cosmological Constant (SECCC) is satisfied in
(126724971 — /12t 72491~ 1)2 288 K 12
12t=2 >
(1267249~ 14 /(12672491 7"~ 1)2 288K 12
12t=2 :
However, we also observed that for large cosmic time ¢,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition A = —3K , there is no information about

expanding of universe.

[ONS]

this model if » € [

3 Conclsion

Stavrinos et al. [23] developed the cosmological scenario
of the dynamics varying vacuum Finsler—Randers cosmol-
ogy with a cosmological fluid source described by an ideal
fluid. Also, explored the limit of General Relativity provided
by the Finsler Randers theory. In this research paper, we
investigate generalized Finsler—Randers (FR) cosmological
models within the framework of Einstein-modified theories
of cosmology. We have explore the behavior of the model
in Einstein’s theory by considering the physical variables
7z = —e " and z; = —r", obtaining solutions in the pres-
ence of the cosmological constant A. Furthermore, we ana-
lyze the energy conditions, including the null energy con-
dition with the cosmological constant (NECCC), the weak
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energy condition with the cosmological constant (WECCC),
the strong energy condition with the cosmological constant
(SECCC), and the dominant energy condition with the cos-
mological constant (DECCC). Our study determines the
conditions under which the generalized FR cosmological
model remains physically stable in Einstein’s cosmology.
Finally, we have presented all energy conditions under two
distinct cases of the cosmological constant A = 3K and
A = —3K respectively, corresponding to both the acceler-
ating and decelerating phases of the universe.
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