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Abstract In this research article, we have considered the
Finsler–Modified Randers Cosmological model (FMRCM)
with Cosmological constant � for generalized Finsler–
Randers space time, to investigate the solutions of this model
in Einstein theory of cosmology in different variations of
energy conditions. Also, we have analyzed the role of cos-
mological constant � in various scenarios, exploring its
impact on both accelerating and decelerating phases of cos-
mic expansion.

1 Introduction

Riemannian geometry is a particular case of Finslerian geom-
etry [1–3]. A Finsler space is fundamentally defined by a
generating function F(x, y) on the tangent bundle T M of a
manifold M where F is positively homogeneous of degree
one in y. In particular, the Finsler–Randers space-time is
examined in [4]. Finsler geometry was introduced by Paul
Finsler in 1918. Earlier, in 1854, B. Riemann formulated
the Riemannian metric ds2 = gi j dxi dx j , which defines the
distance between two points x and x + y. The generating
function F(x, y) satisfies the following properties:

(i) F is continuous on (T M) and smooth on ˜(T M) =
T M/{0}, namely the tangent bundle minus the null set
{(x, y) ∈ T M/F(x, y) = 0}.

(ii) F is positively homogeneous of first degree on its second
argument
F(x, ky) = kF(x, y) for every k > 0.

a e-mail: drpkdwivedi@yahoo.co.in
b e-mail: chayankumarmishra@gmial.com
c e-mail: skumar17011997@gmail.com (corresponding author)

(iii) For each x ∈ M the fundamental metric tensor
gi j (x, y) = 1

2
∂2F2

∂yi ∂y j is non singular, with i, j =
0, 1, 2, 3, 4, ........(n − 1).

The pair (M,F) is called a Finsler manifold and the
symmetric bilinear form g = gi j (x, y)dxi .dx j is called the
Finsler metric tensor of the Finsler manifold (M,F). Some-
times, a function F satisfying the above conditions is said to
be regular Finsler metric.

According to the Big-Bang theory, the entire universe was
once in the form of a single point with extremely high energy,
density and pressure. After explosion this energy converted
into mass. This mass leads to the formation of physical struc-
ture of the universe. Thereafter geometry was used to study
it.

Now a days, the open problem is that to calculate the
exact value of this cosmological constant � [5]. In gen-
eral, by extending the Riemannian metric we can estab-
lish a Finslerian geometric structure on a manifold, leading
the way for generalized gravitational field theories. There
have been rapid developments in the applications of Finsler
geometry in the context of fundamental relativity (FR), par-
ticularly in general relativity, astrophysics, and cosmology.
Many researchers have studied these topics, [1,6–22]. In
this context, Stavrinos, Koretsis, and Stathakopoulos [5] sug-
gested that the Finsler–Randers field equations yield a Hub-
ble parameter containing an extra geometrical term, which
may serve as a potential candidate for dark energy.

Spatially homogeneous cosmological models enable the
study of distorted and rotating universes, broadening the
scope of cosmological research. These models help to esti-
mate the effects of anisotropy on primordial element produc-
tion and the observed anisotropies in the cosmic microwave
background radiation (CMBR) [12]. In addition to the obser-
vational insights provided by Hawking and Ellis [14], sev-
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eral theoretical considerations have motivated the study of
anisotropic cosmologies.

G. Randers, in his research on asymmetric metrics in
four-dimensional spacetime within general relativity [21],
proposed the Finsler–Randers cosmological model. A broad
class of anisotropic cosmological models exists and has been
widely studied in cosmology [19]. Some theoretical argu-
ments support the presence of an anisotropic universe [17].
Additionally, anisotropic cosmological models offer an alter-
native to the assumption of specific initial conditions in stan-
dard FRW models. The universe may also exhibit an irregu-
lar expansion mechanism. Therefore, studying cosmological
models in which early-stage anisotropies diminish over time
could provide valuable insights into cosmic evolution [13].

Stavrinos et al. [5] investigated a Friedmann-like
Robertson–Walker model in a generalized metric space-
time with weak anisotropy. More recently, Basilakos and
P. C. Stavrinos [8] explored the cosmological equiva-
lence between Finsler–Randers spacetime and the Dvali–
Gabadadze–Porrati (DGP) gravity model. Building upon
these studies. We aim to analyze the evolution of the uni-
verse within the framework of Finsler–Randers cosmology.
Stavrinos et al. [23] developed a cosmological model based
on the dynamics of a varying vacuum in Finsler–Randers cos-
mology, incorporating a cosmological fluid source described
as an ideal fluid. Additionally, they investigated the connec-
tion between Finsler–Randers theory and General Relativity,
exploring the conditions under which the former approaches
the latter. In this research paper, we study the Friedman-like
Robertson–Walker model and the cosmological constant �

within the framework of generalized Finsler–Randers cos-
mology. Furthermore, we investigate both the accelerating
and decelerating expansion of the universe.

1.1 A brief introduction of osculating Riemannian metric

In this subsection, we introduce the osculating Rieman-
nian metric associated with a Finsler metric (M,F). As
mentioned already, the fundamental geometrical objects of
Finsler geometry are defined on the total space T M of
the tangent bundle πM : T M → M regarded as 2n-
dimensional differentiable manifold with the canonical coor-
dinates (x, y) [24]. Here x = (xi ) and y = (yi ) are obviously
independent variables. For instance gi j : M/0 → R, where
0 denotes the zero section of the tangent bundle. On the other
hand, since πM : T M → M is a fiber bundle, we can con-
sider a local section Y : U → T U ,where U ⊂ M is an
open neighborhood on M such that Y (x) �= 0, for all x ∈ U .
We have πM(Y (x)) = x on U . If we fix such a local section
Y of M : T M → M, all geometrical objects defined on the
manifold T M can be pulled back to M, for instance ḡi j oY

is a function on U , hence we can define

ḡi j (x) := ḡi j (x, y)|y=Y (x), x ∈ U. (1.1)

The pair (U, ḡi j ) is a Riemannian manifold and this ḡi j is
called the Y -osculating Riemannian metric associated to
(M,F). The Christoffel symbols of the first kind associated
with the osculating Riemannian metric (1.1) are defined as
follows

γ̄i jk(x) := 1

2

(
∂

∂x j
[ḡi j (x,Y (x))] + ∂

∂xk
[ḡi j (x,Y (x))]

− ∂

∂xi
[ḡi j (x,Y (x))]

)
(1.2)

and by using the derivative law of composed functions we
get

γ̄i jk(x) = γ̄i jk(x, y)|y=Y (x) + 2

(
C̄i jl

∂Y l

∂xk
+ C̄i jl

∂Y l

∂x j

−C̄ jkl
∂Y l

∂xi

)
|y=Y (x). (1.3)

If Y is a non-vanishing global section of T M, i.e. Y (x) �= 0,
for all x ∈ M, then we can define the osculating Rieman-
nian manifold (M, gi j ). However, observe that the existence
of globally non-vanishing sections of T M depends on the
topology of M. For instance in the case of a 2- dimensional
sphere, such sections do not exist. It is known that all non-
compact manifolds admit non-vanishing global vector fields.
Compact manifolds admit non-vanishing global vector fields
if and only if the Euler characteristic vanishes [24]. We will
always assume that non-vanishing global vector fields exist
on our differential manifold M. With the assumption above,
in the case of an (α, β)-metric, let us consider the vector
field Y = A having the componentsAi = ai jA j . The vector
field A being globally non-vanishing onM is equivalent with
the fact that β has no zero points. With these notations, we
consider the A-osculating Riemannian manifold (M, ḡi j ),
where ḡi j = ḡi j (x,A). By denoting by a the length ofAwith
respect to α, we have ā2 = AiAi = α2(x,A),Yi (x,A) =
Ai and the A-Riemannian metric takes the form

ḡi j (x) = Lα

ā
|y=A(x)ai j

+
(Lαα

ā2 + 2
Lαβ

ā
+ Lββ − Lα

ā3

)
|y=A(x)AiA j .

(1.4)

Furthermore, we have β(x,A) = a2, pi (x,A) = 0 i.e.
C̄i jk = 0 (see for instance [25, p. 8]).

On the other hand, in case of Y = A, (see for instance
[25, p. 7])

F i
jk(x, y)|y=A(x) = γ̄ i

jk(x, y)|y=A(x), and furthermre,
from (1.3) we get γ̄i jk(x) = γ̄i jk(x, y)|y=A(x).
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Hence we obtain the fundamental result that for a Finsler
space with (α, β)-metric the linear A-connection associated
with the Cartan connection is the Levi-Civita connection of
the Barthal connection is the Levi-Civita connection of the
A-Riemannian space. The curvature tensor of an affine con-
nection with local coefficients (�i

i j (x) is given by

Ri
jkl = ∂�i

jl

∂xk
− ∂�i

jk

∂xl
+ �m

jl�
i
mk − �m

jk�
i
ml . (1.5)

Also, let γ̄ i
jk are Levi-Civita coefficients, we obtain the

expressions for curvature tensor

R̄i
jkl = ∂γ i

jl

∂xk
− ∂γ i

jk

∂xl
+ γm

jl γ
i
mk − γm

jkγ
i
ml . (1.6)

and

R̄ jl =
∑
i

[
∂γ i

jl

∂xi
− ∂γ i

j i

∂xl
+

∑
m

(γm
jl γ

k
mk − γm

jkγ
k
ml)

]
,

(1.7)

respectively, where i, j, k, l,m ∈ {0, 1, 2, 3}.
The contractions of the curvature tensor lead to the gen-

eralized Ricci tensor and Ricci scalar, respectively given by

R̄ jl = R̄i
j il , R̄

j
l = ḡ jm R̄ml , (1.8)

and

R̄ = R̄i
i . (1.9)

2 Einstein theory of generalized Finsler–Randers
cosmological model with cosmological constant

The energy conditions in general relativity facilitate the
derivation of powerful and general theorems concerning
the behavior of strong gravitational fields and cosmologi-
cal geometries. However, in this section, we focus on the
generalized Finsler–Randers cosmological model with a cos-
mological constant and examine the corresponding energy
conditions for this framework.

Riemannian geometry represents a special case of Fins-
lerian geometry [1–3]. Fundamentally, a Finsler space is
defined by a generating function F(x, y) on the tangent bun-
dle T M of a manifold M. The function F is positively
homogeneous of degree one in y. Specifically, the case of a
Finsler–Randers space-time is discussed in [4].

F(x, y) = √
ai j (x)y

i y j + bi y
i ,

but we have generalized Finsler Randers space-time such as

F(x, y) = √
gi j (x)y

i y j + Abi y
i , (2.1)

where A =
{
const.,
q

mc2

, ai j are component of a Riemannian

metric and bi = (b0, 0, 0, 0) is weak primordial vector field
with |b|1. The Finslerian metric tensor gi j is constructed by
Hessian

gi j = 1

2

∂2F2

∂yi∂y j
. (2.2)

The zero order Friedmann equation is given by [26]

3k

a2 = 8πGρ0 − 3H2 + �,

where k is the curvature parametre of universe, H is the Hub-
ble parameter and � is the cosmological constant. The gen-
eralized Finsler–Randers field equation with cosmological
constant is given by [27]

Ri j − 1

2
gi jT = −8πG

c4 Ti j + �

8πG
gi j , (2.3)

where Ri j is Ricci tensor, Ti j is the energy momentum ten-
sor, � is the Cosmological constant [26] and T is the trace of
energy momentum tensor and the term −(�/8πG)gi j rep-
resents the contribution of the cosmological constant to the
field equations. Modelling the expanding universe as Finsle-
rian perfect fluid [23] that induces rediation and matter with
four velocity ui for comoving observers, we have

Ti j = −
(
P − �

12πG

)
gi j +

(
ρ + P + �

12πG

)
uiu j ,

(2.4)

where ρ and P are the total energy density and pressure with
cosmological constant � of the cosmic fluid respectively.
Thus, the energy momentum tensor becomes

Ti j = diag

[(
ρ − �

6πG

)
,−

(
P − �

12πG

)
g11,

−
(
P − �

12πG

)
g22,−

(
P − �

12πG

)
g33

]
. (2.5)

In view of [7,10,16], we apply the weak, dominant and
strong energy conditions within the framework of Finsle-
rian cosmology for our models. In the locally Minkowski
frame, these conditions are expressed as T 0

0 = (ρ − �
6πG ),

T 1
1 = T 2

2 = T 3
3 = −(P − �

12πG ). Obviously the root of
matrix equation is
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|Ti j − rgi j | = diag

[((
ρ − �

6πG

)
− r

)
,

(
r +

(
P − �

12πG

))
,

(
r +

(
P − �

12πG

))
,

(
r +

(
P − �

12πG

))]
.

(2.6)

It gives the eigen values r for the energy momentum tesor as
r0 = (ρ − �

6πG ) and r1 = r2 = r3 = −(P − �
12πG ). Also,

we put � = 3K for � > 0 and � = −3K for � < 0 where
K > 0 be any real number [5].
We assume the energy conditions for Finsler modified Ran-
ders cosmological model are as follows:

(i) Null energy condition with cosmological constant
(NECCC);

(a)
ρ + P ≥ 0,� < 0 (2.7)

(b)
ρ + P ≥ 0,� > 0. (2.8)

(ii) Weak energy condition with cosmological constant
(WECCC);

(a)
r0 ≥ 0 ⇒ ρ ≥ 0, r0 − ri ≥ 0 ⇒ ρ + P ≥ 0,� > 0.

(2.9)

(b)
r0 ≥ 0 ⇒ ρ ≥ 0, r0 − ri ≥ 0 ⇒ ρ + P ≥ 0,� < 0.

(2.10)

(iii) Strong energy condition with cosmological constant
(SECCC);

(a)
r0 −

∑
ri ≥ 0 ⇒ ρ + 3P ≥ 0andρ + P ≥ 0,� > 0.

(2.11)

(b)
r0 −

∑
ri ≥ 0 ⇒ ρ + 3P ≥ 0andρ + P ≥ 0,� < 0.

(2.12)

(iii) Dominant energy condition with cosmological con-
stant (DECCC);

(a)
r0 ≥ 0 ⇒ ρ ≥ 0,−r0 ≤ −ri ≤ r0 ⇒ ρ ± P ≥ 0,� > 0.

(2.13)

(b)
r0 ≥ 0 ⇒ ρ ≥ 0,−r0 ≤ −ri ≤ r0 ⇒ ρ ± P ≥ 0,� < 0.

(2.14)

Note: Among all these energy conditions, the first condition
indicates the accelerating expansion of the universe, while

the second condition suggests its deceleration.. FRW metric
is

ai j = diag

(
1,− a2

1 − kr2 ,−a2r2,−a2r2sin2θ

)
(2.15)

wherea is a function of t only and k is the curvature parameter
having the values −1, 0, +1 for open, flat and closed models
respectively. The non-zero components of the Ricci tensors
are

R00 = 3

(
ä

a
− 3ȧ

4a
u̇0

)
, (2.16)

and

Ri i = −
(
äa + 2ȧ2 + 2k + 11

4 aȧu̇0

�i i

)
, (2.17)

where �11 = 1 − kr2, �22 = r2 and �33 = r2sin2θ . From
gravitational FR field equation (2.1) for comoving observers,
then the FRW Einstein field equation with a cosmological
constant can be given in the following form [5]

ä

a
+ 3ȧ

4a
u̇0 = −4πG

3
(ρ + 3P) + �

3
, (2.18)

ä

a
+ 2

ȧ2

a2 + 2
k

a2 + 11

4

ȧ

a
u̇0 = 4πG(ρ − P) + �, (2.19)

From (2.18) and (2.19), we get

(
ȧ

a

)2

+ ȧ

a
zt = 8πG

3
ρ − k

a2 + �

3
. (2.20)

where over the dot denotes the derivatives with respect to the
cosmic time t and zt = b0 < 0 and zt are defined as zt = u̇0

[5,23]. Using the Hubble parameter, Eq. (2.20) becomes

H2 + Hzt + k

a2 = 8πG

3
ρ + �

3
. (2.21)

Equation (2.21) represents the modified Friedmann equation,
where the additional term Hzt − �

3 influences the dynamics
of the universe. If we set b0 = 0 or (C000 = 0), it follows
that zt = −�

3 = 0. In this case, the field equations (2.19)
and (2.20) reduce to the standard Einstein equations, whose
solution corresponds to the usual Friedmann equation. Next,
we analyze the solutions that give rise to two distinct phys-
ically relevant cosmological scenarios, which are of interest
in describing both the decelerating and accelerating phases
of the universe.

Case 1: de Sitter solution with cosmological constant
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In cosmology, it is well established that the current epoch
of accelerated cosmic expansion can be effectively approx-
imated by this model. This solution describes an exponen-
tial growth of the scale factor, leading to a constant Hubble
parameter.

From [6], we use the scalar factor as: a = ceσ t , where
c and σ are constants. For σ 2 > 0, it gives an accelerat-
ing universe. Using this scalar factor, the Hubble parameter
becomes

H(t) = ȧ

a
= σceσ t

ceσ t
= σ (2.22)

Using energy conditions and equation (2.21), we obtain the
energy density as

ρ = 3

8πG

(
σ 2 + σ zt + k

c2e2σ t
+ �

3

)
. (2.23)

From Eq. (2.18), we get the pressure as

P = − 1

8πG

[
3σ 2 + 5σ zt

2
+ k

c2e2σ t
− �

3

]
. (2.24)

From Eqs. (2.23) and (2.24), we obtain

ρ + P = − k

4πGc2c2e2σ t
+ σ zt

16πG

+ k

2πGc2e2σ t
+ �

12πG
. (2.25)

and

ρ − P = − 3σ 2

4πG
+ 11σ zt

16πG
+ k

2πGc2e2σ t
− �

12πG
.

(2.26)

Again, from above equations, we haave

ρ + 3P = − 3σ 2

4πG
− 9σ zt

16πG
+ �

4πG
. (2.27)

Notice that if zt = �
3 = 0, Eq. (2.21) reduces to the standard

Friedmann equation. The above observations suggest that the
universe is anisotropic at an early stage and becomes isotropic
at later times. For physically viable choices where zt < 0,
two different cases arise:

(a) zt = −e−t

and
(b) zt = −t−n .

where n is a positive constant. (a) If zt = −e−t : Putiing this
value of zt in Eqs. (2.23) and (2.24), the value of pressure
and density are obtained as

ρ = 3

8πG

(
σ 2 − σe−t + k

c2e2σ t

)
+ �

8πG
. (2.28)

and

P = 3σ 2

8πG
− 5σe−t

16πG
− k

8πGc2e2σ t
+ �

24πG
. (2.29)

From Eqs. (2.28) and (2.29), we obtained

ρ + P = − σe−t

16πG
+ k

2πGc2e2σ t
+ �

6πG
. (2.30)

and

ρ − P = 3σ 2

4πG
− 11σe−t

16πG
+ k

2πGc2e2σ t
+ �

12πG
.

(2.31)

Also, the condition ρ + 3P is

ρ + 3P = − 3σ 2

4πG
+ 9σe−t

16πG
+ �

4πG
. (2.32)

Now we discuss the energy conditions with cosmological
constant, from equation (2.30) the null energy condition with
cosmological constant (NECCC) is satisfied if

ρ + P ≥ 0 ⇒ − k
4πGc2c2e2σ t + σ zt

16πG + k
2πGc2e2σ t + �

12 ≥ 0

⇒ c2 ≤ 24k
(3σe(2σ−1)t−8�e2σ t )

= B1

from Eqs. (2.28) and (2.30) the weak energy condition with
cosmological constant (WECCC) is satisfied if

c2 ≤ min{ k
e2σ t (3σe−t−3σ 2−�)

, 24k
(3σe(2σ−1)t−8�e2σ t )

} = B2

The strong energy condition is satisfied if

σ ∈ [ 9e−t−√
81e2t−192�

24 ,
9e−t+√

81e2t−192�

24 ] = B3

The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ { k
e2σ t (3σe−t−3σ 2−�)

, 24k
(3σe(2σ−1)t−8�e2σ t )

,

24k
(33σe−t−36σ 2−4�)e2σ t } = B4

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{B1,B2,B4}, On the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if σ ∈
[

9e−t−√
81e2t−192�

24 ,
9e−t+√

81e2t−192�

24

]
=

B3.
Furthermore, we observe that for large cosmic time t , the

NECCC, WECCC, and DECCC continue to hold, whereas
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the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

Now, we will discuss the effect of � in both conditions

(a): � > 0 i.e. � = 3K , then we have

From Eq. (2.30) the null energy condition with cosmological
constant (NECCC) is satisfied if

⇒ c2 ≤ 24k
(3σe(2σ−1)t−24Ke2σ t )

= B1

from Eqs. (2.28) and (2.30) the weak energy condition with
cosmological constant (WECCC) is satisfied if

c2 ≤ min
{

k
e2σ t (3σe−t−3σ 2−3K )

, 24k
(3σe(2σ−1)t−24Ke2σ t )

}
= B2

The strong energy condition is satisfied if

σ ∈ [ 9e−t−√
81e2t+576K
24 ,

9e−t+√
81e2t+576K
24 ] = B3.

The dominant energy condition with cosmological constant
(DECCC) is satisfied if

c2 ≤ { k
e2σ t (3σe−t−3σ 2−3K )

, 24k
(3σe(2σ−1)t−24Ke2σ t )

,

24k
(33σe−t−36σ 2−12K )e2σ t

} = B4

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{B1,B2,B4}, On the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if σ ∈
[

9e−t−√
81e2t−576K
24 ,

9e−t+√
81e2t−576K
24

]
=

B3.

Furthermore, we observe that for large cosmic time t , the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

(b): � < 0 i.e. � = −3K , then we have

From equation (2.30) the null energy condition with cosmo-
logical constant (NECCC) is satisfied if

⇒ c2 ≤ 24k
(3σe(2σ−1)t+24Ke2σ t )

= B1

From Eqs. (2.28) and (2.30) the weak energy condition with
cosmological constant (WECCC) is satisfied if

c2 ≤ min
{

k
e2σ t (3σe−t−3σ 2+3K )

, 24k
(3σe(2σ−1)t+24Ke2σ t )

}
= B2

The strong energy condition is satisfied if

σ ∈
[

9e−t−√
81e2t+576K
24 ,

9e−t+√
81e2t+576K
24

]
= B3

The dominant energy condition with cosmological constant
(DECCC) is satisfied if

c2 ≤
{

k
e2σ t (3σe−t−3σ 2+3K )

, 24k
(3σe(2σ−1)t+24Ke2σ t )

,

24k
(33σe−t−36σ 2+12K )e2σ t

}
= B4

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{B1,B2,B4}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if σ ∈ [ 9e−t−√
81e2t+576K
24 ,

9e−t+√
81e2t+576K
24 ] =

B3.

However, we also observed that for large cosmic time t ,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition � = −3K , there is no information about
expanding of universe.

(b) If zt = −t−n :

Putiing this value of zt in equations (2.23) and (2.24), the
value of pressure and density are obtained as

ρ = 3

8πG

(
σ 2 − σ t−n + k

c2e2σ t

)
+ �

8πG
. (2.33)

and

P = 3σ 2

8πG
− 5σ t−n

16πG
− k

8πGc2e2σ t
+ �

24πG
. (2.34)

From Eqs. (2.33) and (2.34), we obtained

ρ + P = − σ t−n

16πG
+ k

2πGc2e2σ t
+ �

6πG
. (2.35)

and

ρ − P = 3σ 2

4πG
− 11σ t−n

16πG
+ k

2πGc2e2σ t
+ �

12πG
. (2.36)

Also, the condition ρ + 3P is

ρ + 3P = − 3σ 2

4πG
+ 9σ t−n

16πG
+ �

4πG
. (2.37)

Now we discuss the energy conditions with cosmological
constant, from equation (2.35) the null energy condition with
cosmological constant (NECCC) is satisfied if

ρ + P ≥ 0 ⇒ − σ t−n

16πG + k
4πGc2e2σ t + �

6πG ≥ 0

⇒ c2 ≤ 24k
e2σ t (3σ t−n−8�)

= A1

from Eqs. (2.33) and (2.35) the weak energy condition with
cosmological constant (WECCC) is satisfied if

c2 ≤ min
{

k
e2σ t (3σ t−n−3σ 2−�)

, 24k
(3σe2σ t t−n−8�e2σ t )

}
= A2

The strong energy condition is satisfied if

σ ∈
[

9t−n−√
81t2n+192�

24 ,
9t−n+√

81t2n+192�

24

]
= A3
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The dominant energy condition with cosmological constant
(DECCC) is satisfied if

c2 ≤
{

k
e2σ t (3σ t−n−3σ 2−�)

, 24k
(3σe(2σ t t−n−8�e2σ t )

,

24k
(33σ t−n−36σ 2−4�)e2σ t

}
= A4

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{A1,A2,A4}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model ifσ ∈
[

9t−n−√
81t2n+192�

24 ,
9t−n+√

81t2n+192�

24

]
=

A3.
Furthermore, we observe that for large cosmic time t , the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

Now, we will discuss the effect of � in both conditions

(a): � > 0 i.e. � = 3K , then we have

From Eq. (2.35) the null energy condition with cosmological
constant (NECCC) is satisfied if

c2 ≤ 24k
e2σ t (3σ t−n−24K )

= A1

from equations (2.33) and (2.35) the weak energy condition
with cosmological constant (WECCC) is satisfied if

c2 ≤ min
{

k
e2σ t (3σ t−n−3σ 2−3K )

, 24k
(3σe2σ t t−n−24Ke2σ t )

}
= A2

The strong energy condition is satisfied if

σ ∈ [ 9t−n−√
81t2n+576K
24 ,

9t−n+√
81t2n+576K
24

] = A3

The dominant energy condition with cosmological constant
(DECCC) is satisfied if

c2 ≤
{

k
e2σ t (3σ t−n−3σ 2−3K )

, 24k
(3σe(2σ t t−n−24Ke2σ t )

,

24k
(33σ t−n−36σ 2−12K )e2σ t

}
= A4

From these observations that any value of t , NECCC,
WECCC and DECCC are satisfied in this case if c2 ≤
min{A1,A2,A4}, whereas SECCC is satisfied in this model

if σ ∈
[

9t−n−√
81t2n+576K
24 ,

9t−n+√
81t2n+576K
24

]
= A3.

However, we also observed that for large cosmic time
t , SECCC, WECCC and DECCC are satisfied, whereas
SECCC is violated, which is responsible for current acceler-
ated expansion of universe.

(b): � < 0 i.e. � = −3K , then we have

From Eq. (2.35) the null energy condition with cosmological
constant (NECCC) is satisfied if

c2 ≤ 24k
e2σ t (3σ t−n+24K )

= A1

from Eqs. (2.33) and (2.35) the weak energy condition with
cosmological constant (WECCC) is satisfied if

c2 ≤ min
{

k
e2σ t (3σ t−n−3σ 2+3K )

, 24k
(3σe2σ t t−n+24Ke2σ t )

}
= A2

The strong energy condition is satisfied if

σ ∈
[

9t−n−√
81t2n−576K
24 ,

9t−n+√
81t2n−576K
24

]
= A3

The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤
{

k
e2σ t (3σ t−n−3σ 2+3K )

, 24k
(3σe(2σ t t−n+24Ke2σ t )

,

24k
(33σ t−n−36σ 2+12K )e2σ t

}
= A4

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{A1,A2,A4}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if σ ∈ [ 9t−n−√
81t2n−576K
24 ,

9t−n+√
81t2n−576K
24 ] =

A3.

However, we also observed that for large cosmic time t ,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition � = −3K , there is no information about
expanding of universe.

Case-2: Power Law solution with Cosmological constant
Power-law solutions are fundamental in standard cosmology,
as they help describe the evolution of various cosmological
phases, including radiation-dominated, matter-dominated,
and dark energy-dominated eras. Consider a universe where
the scale factor follows a power-law form [20], given by
a = ctω, where c and ω are constants. When ω > 1 the
universe undergoes accelerated expansion.

now, the Hubble parameter becomes

H(t) = ȧ

a
= ωctω−1

ctω
= ω

t
, (2.38)

Using this value of Hubble parameter in Eq. (2.21), we have

ρ = 3

8πG

(
ω2

t2 + ω

t
zt + k

c2t2ωt
+ �

3

)
. (2.39)

With the scalar factor and from Eq. (2.18), we get the pressure
as

P = −3ω2 + 2ω

8πGt2 − 5ω

16πGt
zt− k

8πGc2t2ω
− �

24πG
. (2.40)

From Eqs. (2.39) and (2.40), we have

ρ+P = 2ω

8πGt2 + ω

16πGt
zt + k

4πGc2t2ω
+ �

12πG
. (2.41)
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and

ρ − P = ω(3ω − 1)

4πGt2 + 11ω

16πGt
zt + k

2πGc2t2ω
+ �

6πG
.

(2.42)

Also, the value of ρ + 3P is

ρ + 3P = 3ω(2 − ω)

8πGt2 − 9ω

16πGt
zt + �

4πG
. (2.43)

I this case also, we discuss, as same in case-1 two different
scinario:

(i) When zt = −e−t

Putiing the value of zt in Eqs. (2.39) and (2.40), we can
determine the value of the pressure and density respectively
as

ρ = 3

8πG

(
ω2

t2 − ω

t
e−t + k

c2t2ωt
+ �

3

)
. (2.44)

With the scalar factor and from Eq. (2.18), we get the pressure
as

P = −3ω2 + 2ω

8πGt2 + 5ω

16πGt
e−t − k

8πGc2t2ω
− �

24πG
.

(2.45)

From Eqs. (2.44) and (2.45), we obatin

ρ+P = 2ω

8πGt2 + ω

16πGt
e−t+ k

4πGc2t2ω
+ �

12πG
. (2.46)

and

ρ − P = ω(3ω − 1)

4πGt2 − 11ω

16πGt
e−t + k

2πGc2t2ω
+ �

6πG
.

(2.47)

Also, the value of ρ + 3P is

ρ + 3P = 3ω(2 − ω)

8πGt2 + 9ω

16πGt
e−t + �

4πG
. (2.48)

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

ρ + P ≥ 2ω
8πGt2

+ ω
16πGt e

−t + k
4πGc2t2ω + �

12πG ≥ 0

⇒ 2ω
8πGt2

+ ω
16πGt e

−t + k
4πGc2t2ω + �

12πG ≥ 0

⇒ c2 ≤ 12k
(12ωt2(ω−1)+3ωe−t t2ω−1+4�t2ω)

= Q1.

The weak energy condition with cosmological condition
(WECCC) is satisfied if

c2 ≤ min
{

3k
3ωe−t t (2ω−1)−3ω2t (2ω−2)−�t2ω ,

12k
(12ωt2(ω−1)+3ωe−t t2ω−1+4�t2ω)

}
= Q2.

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ min
{

3k
3ωe−t t (2ω−1)−3ω2t (2ω−2)−�t2ω ,

12k
(12ωt2(ω−1)+3ωe−t t2ω−1+4�t2ω)

,

24k
(12ωt2(ω−1)−36ω2t2(ω−1)+33ωt2ω+1e−t+8�t2ω)

}
= Q3.

and the strong energy condition is satisfied if

ω ∈
[

(12et−9t)−√
(12et−9t)2+96e2t t2�

12et ,

(12et−9t)+√
(12et−9t)2+96e2t t2�

12et

]
,

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmologi-
cal Constant (WECCC), and the Dominant Energy Con-
dition with Cosmological Constant (DECCC) are satisfied
if c2 ≤ min{Q1,Q2,Q3}, on the other hand, the Strong
Energy Condition with Cosmological Constant (SECCC) is

satisfied in this model if ω ∈
[

(12et−9t)−√
(12et−9t)2+96e2t t2�

12et ,

(12et−9t)+√
(12et−9t)2+96e2t t2�

12et

]
= Q4.

Furthermore, we observe that for large cosmic time t , the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.
Now, we will discuss the effect of � in both conditions
(a): � > 0 i.e. � = 3K , then we have
From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

c2 ≤ 12k
(12ωt2(ω−1)+3ωe−t t2ω−1+12Kt2ω)

= Q1.
The weak energy condition with cosmological condition
(WECCC) is satisfied if

c2 ≤ min
{

3k
3ωe−t t (2ω−1)−3ω2t (2ω−2)−3Kt2ω ,

12k
(12ωt2(ω−1)+3ωe−t t2ω−1+12Kt2ω)

}
= Q2.

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ min
{

3k
3ωe−t t (2ω−1)−3ω2t (2ω−2)−3Kt2ω ,

12k
(12ωt2(ω−1)+3ωe−t t2ω−1+12Kt2ω)

,

24k
(12ωt2(ω−1)−36ω2t2(ω−1)+33ωt2ω+1e−t+24Kt2ω)

}
= Q3.

and the strong energy condition is satisfied if

ω ∈
[

(12et−9t)−√
(12et−9t)2+288Ke2t t2

12et ,

(12et−9t)+√
(12et−9t)2+288Ke2t t2

12et

]
,

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
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(NECCC), the Weak Energy Condition with Cosmologi-
cal Constant (WECCC), and the Dominant Energy Condi-
tion with Cosmological Constant (DECCC) are satisfied if
c2 ≤ min{Q1,Q2,Q3}, on the other hand, the Strong Energy
Condition with Cosmological Constant (SECCC) is satisfied

in this model if ω ∈
[

(12et−9t)−√
(12et−9t)2+288Ke2t t2

12et ,

(12et−9t)+√
(12et−9t)2+288Ke2t t2

12et

]
= Q4.

Furthermore, we observe that for large cosmic time t , the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

(b): � < 0 i.e. � = −3K , then we have

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

c2 ≤ 12k
(12ωt2(ω−1)+3ωe−t t2ω−1−12Kt2ω)

= Q1.

The weak energy condition with cosmological condition
(WECCC) is satisfied if

c2 ≤ min
{

3k
3ωe−t t (2ω−1)−3ω2t (2ω−2)+3Kt2ω ,

12k
(12ωt2(ω−1)+3ωe−t t2ω−1−12Kt2ω)

}
= Q2.

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ min
{

3k
3ωe−t t (2ω−1)−3ω2t (2ω−2)+3Kt2ω ,

12k
(12ωt2(ω−1)+3ωe−t t2ω−1−12Kt2ω)

,

24k
(12ωt2(ω−1)−36ω2t2(ω−1)+33ωt2ω+1e−t−24Kt2ω)

}
= Q3.

and the strong energy condition is satisfied if

ω ∈
[

(12et−9t)−√
(12et−9t)2−288Ke2t t2

12et ,

(12et−9t)+√
(12et−9t)2−288Ke2t t2

12et

]
,

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmologi-
cal Constant (WECCC), and the Dominant Energy Condi-
tion with Cosmological Constant (DECCC) are satisfied if
c2 ≤ min{Q1,Q2,Q3}, on the other hand, the Strong Energy
Condition with Cosmological Constant (SECCC) is satisfied

in this model if ω ∈
[

(12et−9t)−√
(12et−9t)2−288Ke2t t2

12et ,

(12et−9t)+√
(12et−9t)2−288Ke2t t2

12et

]
= Q4.
However, we also observed that for large cosmic time t ,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition � = −3K , there is no information about
expanding of universe.

(ii) When zt = −t−n

Putiing the value of zt in equations (2.39) and (2.40), we can
determine the value of the pressure and density respectively

as

ρ = 3

8πG

(
ω2

t2 − ω

tn+1 + k

c2t2ωt
+ �

3

)
. (2.49)

With the scalar factor and from Eq. (2.18), we get the pressure
as

P = −3ω2 + 2ω

8πGt2 + 5ω

16πGtn+1 − k

8πGc2t2ω
− �

24πG
.

(2.50)

From Eqs. (2.44) and (2.45), we obatin

ρ+P = 2ω

8πGt2 + ω

16πGtn+1 + k

4πGc2t2ω
+ �

12πG
. (2.51)

and

ρ − P = ω(3ω − 1)

4πGt2 − 11ω

16πGtn+1 + k

2πGc2t2ω
+ �

6πG
.

(2.52)

Also, the value of ρ + 3P is

ρ + 3P = 3ω(2 − ω)

8πGt2 + 9ω

16πGtn+1 + �

4πG
. (2.53)

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

ρ + P ≥ 2ω
8πGt2

+ ω
16πGtn+1 + k

4πGc2t2ω + �
12πG ≥ 0

⇒ 2ω
8πGt2

+ ω
16πGtn+1 + k

4πGc2t2ω + �
12πG ≥ 0

⇒ c2 ≤ 12k
(−12ωt2(ω−2)−3ωt2ω−n−1−4�t2ω)

= S1.
The weak energy condition with cosmological condition
(WECCC) is satisfied if

c2 ≤ min
{

3k
3ωt (2ω−n−1)−3ω2t (2ω−2)−�t2ω ,

12k
(−12ωt2(ω−2)−3ωt2ω−n−1−4�t2ω)

}
= S2.
Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ min
{

12k
(−12ωt2(ω−2)−3ωt2ω−n−1−4�t2ω)

,

12k
(−12ωt2(ω−2)−3ωt2ω−n−1−4�t2ω)

,

24k
(12(3ω2−ω)t2(ω−2)−33ωt2(ω−n−1)−8�t2ω)

}
= S3.

and the strong energy condition is satisfied if

ω ∈
[

(12t−2+9t−n−1)−√
(12t−2+9t−n−1)2+96t−2�

12t−2 ,

(12t−2+9t−n−1)+√
(12t−2+9t−n−1)2+96t−2�

12t−2

]
,

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
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(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{S1,S2,S3}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if ω ∈
[

(12t−2+9t−n−1)−√
(12t−2+9t−n−1)2+96t−2�

12t−2 ,

(12t−2+9t−n−1)+√
(12t−2+9t−n−1)2+96t−2�

12t−2

]
.

Furthermore, we observe that for large cosmic time t , the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

Now, we will discuss the effect of � in both conditions

(a): � > 0 i.e. � = 3K , then we have

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

c2 ≤ 12k
(−12ωt2(ω−2)−3ωt2ω−n−1−12Kt2ω)

= S1.

The weak energy condition with cosmological condition
(WECCC) is satisfied if

c2 ≤ min
{

3k
3ωt (2ω−n−1)−3ω2t (2ω−2)−3Kt2ω ,

12k
(−12ωt2(ω−2)−3ωt2ω−n−1−12Kt2ω)

}
= S2.

Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ min
{

12k
(−12ωt2(ω−2)−3ωt2ω−n−1−12Kt2ω)

,

12k
(−12ωt2(ω−2)−3ωt2ω−n−1−12Kt2ω)

,

24k
(12(3ω2−ω)t2(ω−2)−33ωt2(ω−n−1)−24Kt2ω)

}
= S3.

and the strong energy condition is satisfied if

ω ∈
[

(12t−2+9t−n−1)−√
(12t−2+9t−n−1)2+288Kt−2

12t−2 ,

(12t−2+9t−n−1)+√
(12t−2+9t−n−1)2+288Kt−2

12t−2

]
,

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{S1,S2,S3}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if ω ∈
[

(12t−2+9t−n−1)−√
(12t−2+9t−n−1)2+288Kt−2

12t−2 ,

(12t−2+9t−n−1)+√
(12t−2+9t−n−1)2+288Kt−2

12t−2

]
.

Furthermore, we observe that for large cosmic time t , the
NECCC, WECCC, and DECCC continue to hold, whereas
the SECCC is violated. This violation is responsible for the
current accelerated expansion of the universe.

(b): � < 0 i.e. � = −3K , then we have

From Eq. (2.46), The null energy conditions with cosmolog-
ical constant (NECCC) satisfied if

c2 ≤ 12k
(−12ωt2(ω−2)−3ωt2ω−n−1+12Kt2ω)

= S1.

The weak energy condition with cosmological condition
(WECCC) is satisfied if

c2 ≤ min
{

3k
3ωt (2ω−n−1)−3ω2t (2ω−2)+3Kt2ω ,

12k
(−12ωt2(ω−2)−3ωt2ω−n−1+12Kt2ω)

}
= S2.
Also, The dominant energy condition with cosmological con-
stant (DECCC) is satisfied if

c2 ≤ min
{

12k
(−12ωt2(ω−2)−3ωt2ω−n−1+12Kt2ω)

,

12k
(−12ωt2(ω−2)−3ωt2ω−n−1+12Kt2ω)

,

24k
(12(3ω2−ω)t2(ω−2)−33ωt2(ω−n−1)+24Kt2ω)

}
= S3.

and the strong energy condition is satisfied if

ω ∈
[

(12t−2+9t−n−1)−√
(12t−2+9t−n−1)2−288Kt−2

12t−2 ,

(12t−2+9t−n−1)+√
(12t−2+9t−n−1)2−288Kt−2

12t−2

]
,

From these observations, we find that for any value of
t , the Null Energy Condition with Cosmological Constant
(NECCC), the Weak Energy Condition with Cosmological
Constant (WECCC), and the Dominant Energy Condition
with Cosmological Constant (DECCC) are satisfied if c2 ≤
min{S1,S2,S3}, on the other hand, the Strong Energy Con-
dition with Cosmological Constant (SECCC) is satisfied in

this model if ω ∈
[

(12t−2+9t−n−1)−√
(12t−2+9t−n−1)2−288Kt−2

12t−2 ,

(12t−2+9t−n−1)+√
(12t−2+9t−n−1)2−288Kt−2

12t−2

]
.

However, we also observed that for large cosmic time t ,
SECCC, WECCC, DECCC and SECCC are satisfied, so for
the condition � = −3K , there is no information about
expanding of universe.

3 Conclsion

Stavrinos et al. [23] developed the cosmological scenario
of the dynamics varying vacuum Finsler–Randers cosmol-
ogy with a cosmological fluid source described by an ideal
fluid. Also, explored the limit of General Relativity provided
by the Finsler Randers theory. In this research paper, we
investigate generalized Finsler–Randers (FR) cosmological
models within the framework of Einstein-modified theories
of cosmology. We have explore the behavior of the model
in Einstein’s theory by considering the physical variables
zt = −e−t and zt = −t−n , obtaining solutions in the pres-
ence of the cosmological constant �. Furthermore, we ana-
lyze the energy conditions, including the null energy con-
dition with the cosmological constant (NECCC), the weak
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energy condition with the cosmological constant (WECCC),
the strong energy condition with the cosmological constant
(SECCC), and the dominant energy condition with the cos-
mological constant (DECCC). Our study determines the
conditions under which the generalized FR cosmological
model remains physically stable in Einstein’s cosmology.
Finally, we have presented all energy conditions under two
distinct cases of the cosmological constant � = 3K and
� = −3K respectively, corresponding to both the acceler-
ating and decelerating phases of the universe.
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