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Abstract

Quantum Chromodynamics (QCD) is the prototypical strongly interacting Quantum
Field Theory (QFT). It is the interaction that yields the strong nuclear force that
binds protons and neutrons together. The underlying mathematical picture of QCD
is known exactly: it is an 𝑆𝑈(3) gauge theory coupled to six flavors of fermions
(the quarks). Despite this, it remains difficult to compute QCD observables because
QCD is strongly-coupled, and typical perturbative methods used in QFT only work
in specific regimes of validity for QCD. The most successful ab initio method to
study QCD is Lattice Gauge Theory (LGT). This computational formalism computes
observables by discretizing spacetime to render the path integral tractable. The
primary focus of LGT in the 40 years since its inception has been the study of QCD,
as the theory has direct physical relevance to so much of our universe, and the desire
to understand QCD has driven many conceptual breakthroughs and advancements in
LGT. Despite the focus on QCD, lattice methods find significant utility in studying
other strongly-coupled gauge theories related to and unrelated to QCD.

This thesis will focus on applying LGT to strongly-coupled physics inside and
outside of QCD and on developing techniques within LGT that may be used to bet-
ter understand said theories. First, the spectral function reconstruction problem in
LGT is considered, and a new method for spectral function reconstruction in LGT is
presented. Spectral functions describe the energy states of a theory: bound states,
resonances, and continuum thresholds. The presented reconstruction method uses the
analytic properties of the retarded Green’s function to constrain the full set of spectral
functions that may be reconstructed from LGT data using the Nevanlinna-Pick inter-
polation problem. Next, two theories will be numerically studied using LGT. The first
is the Standard Model Effective Field Theory (SMEFT). The SMEFT process that
is considered is neutrinoless double 𝛽 (0𝜈𝛽𝛽) decay, a hypothetical decay of two neu-
trons into two protons and two electrons. LGT is used to compute non-perturbative
matrix elements for the unphysical 𝜋− → 𝜋+𝑒−𝑒− transition, which contributes to
nuclear 0𝜈𝛽𝛽 decay, and for the decay of the dinucleon 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−. Connec-
tions to Effective Field Theory studies of 0𝜈𝛽𝛽 decay will also be discussed. Finally,
adjoint QCD (QCD2), the theory of a Majorana fermion coupled to a 𝑆𝑈(𝑁) gauge
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field in the adjoint representation in 1+1 spacetime dimensions, will be studied using
LGT. QCD2 is a well-studied QCD-like theory whose properties have been crucial in
the study of confinement. Lattice methods are used to compute the static quark po-
tential, string tensions, and the low-lying spectrum of the theory, which will provide
input that may be used to understand better QCD2 and the confinement mechanism
in general.

Thesis Supervisor: Phiala E. Shanahan
Title: Associate Professor

4



Acknowledgments

It takes support from all types of places to get through the process of writing a Ph.D.
thesis. I’ve had a host of mentors throughout my time in academia that have made
this dissertation possible. My love for the physical sciences began in the Chatham
High School science wing under the instruction of David Bandel and James Cai. Both
of you taught me so much about physics and chemistry and helped to nurture my
ever-growing love of science. I wouldn’t be here today without the support I found
in high school. Second, the place where I went from a hopeful practitioner of the
physical sciences to a researcher: the University of California, Berkeley. I did my
undergraduate research in Laura Waller’s Computational Imaging Lab, and Laura
and the graduate students and postdocs in the lab took me under their wing and
taught me so much about how to be a scientific researcher. Dan Shuldman, Zack
Phillips, Nick Antipa, and Emrah Bostan were all instrumental mentors at various
stages throughout my tenure in the Waller Lab. In fact, my first introduction to
inverse problems (discussed in Chapter 4) was actually not in the field of physics, but
in the Waller Lab, while working with Nick and Emrah on a project on computational
photography.

Throughout graduate school, I have had a host of collaborators to whom I am
immensely grateful. My advisor, Phiala Shanahan, who took in a student who knew
nothing about the field of lattice gauge theory and taught me almost all of what I
know about the field. Will Detmold, who has been my co-advisor in all but name,
who was a huge source of guidance and advice throughout my Ph.D. Will Jay, who
has had endless patience with me and been exactly the type of mentor and friend
that I needed to get me to the finish line. Thank you all for the time and effort you
have put in to turn me into the scientiest I am today. The other graduate students
in the group have also been a huge source of support and knowledge for me, without
which I could not have written this thesis: Artur Avkhadiev, Anthony Grebe, Çağin
Yunus, Dimitra Pefkou, Josh Lin, Ryan Abbott, and Tej Kanwar.

Without the support from my family, I could not have gotten through any amount
of school, let alone completing a Ph.D. degree. Mom and Dad, I know when I started
this neither of you (nor me) knew what I was in for, but you’ve been unwaveringly
by my side throughout the last five years, and for all the years I’ve had before that. I
couldn’t have asked for better parents. Adam and Kierra, we’ve watched one another
grow up, and things weren’t always pleasant. I’m so glad that we’re friends now, and
I’m so proud of the people you both have become. My grandparents: Nana Mom and

5



Nana Dad, and Gong-Gong: thank you for always loving and supporting me, and for
teaching me so much about world. I wish Paw-Paw were here to see this in person,
but I know she’s been watching over me for the last 8 years.

There are so many friends that I consider family at this point. The Sordillos: An-
drew and Ashley, John, Nancy, Nicky, and Ryan. Thank you for all the food you’ve
fed me and all the vacations we’ve spent together over the years. My roommates
and friends from Berkeley: Cade Hermeling, Caolan John, Dan Ferenc Segedin, Jack-
son Michalski, Nathan Cheng, Peter Baumbacher, Spencer Doyle, Teddy Yerxa, and
Thomas McClave. All of you made Berkeley such a fun place to study physics and
math, and I’m grateful to have such a great group of friends.

I’ve made a number of very important friends in graduate school who I would like
to thank. Ben Reichelt, the first new person I met at MIT, who has become one of
my closest friends throughout the last five years. I am so glad I helped you move that
couch on that sweaty August morning in 2019. My Moral Support group: Wenzer Qin,
Sam Alipour-fard, and Artur Avkhadiev. This has been such an important group to
me: I don’t know that anyone else knows exactly what my journey through graduate
school was like as much as the three of you, and I’m so grateful to have had such a
great support group when things got tough. Rahul Jayaraman and Nick Kamp, with
whom I have spent so many hours gossiping and destressing in the climbing gym:
thank you for helping me escape into moments of levity, but also being there for me
when I needed more than that. I would be remiss to not mention Daniel Mayer and
Kaliroë Pappas, who wrote their theses at essentially the same time as I did. It was
so helpful having two people going through the same trials as me, and I’m glad to
call you both my friends– we did it! To everyone mentioned, and all the other friends
I’ve made at MIT, thank you for making MIT an amazing place to work and live. I
will cherish the memories I’ve made here for the rest of my life.

My final and most important acknowledgement is to my partner, Emily Glazer.
Without her constant support throughout the years, my journey throughout graduate
school would have been infinitely harder. She has been my rock when times got tough,
and has always been there for me with a smile. She’s set an immensely high bar as a
partner, and I hope that I can do the same for her as she continues her Ph.D. studies.
Emily, thank you for all your support throughout my time at MIT. I know you always
say that “[I] could have done without [you]”, but I really do not think that is the case,
at least without a significant increase in difficulty. Thank you for everything.

6



Contents

1 Introduction 19
1.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Quantum Chromodynamics and the Standard Model 23
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 The Static Quark Potential and Confinement . . . . . . . . . . 30
2.2.2 Asymptotic Freedom . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Neutrino Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Neutrino masses . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . 39

3 Lattice Gauge Theory 43
3.1 Introduction to LGT . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Lattice Degrees of Freedom . . . . . . . . . . . . . . . . . . . 45

3.2 Discretizing the QCD action . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 A First Discretization: the Doubling Problem . . . . . . . . . 49
3.2.2 Wilson and Wilson-Clover Fermions . . . . . . . . . . . . . . . 51

3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Extracting the Energy Spectrum . . . . . . . . . . . . . . . . 53
3.3.2 Calculating Correlators in LGT . . . . . . . . . . . . . . . . . 57
3.3.3 Dirac Operators and Propagators . . . . . . . . . . . . . . . . 60
3.3.4 Lattice Units and Scale Setting . . . . . . . . . . . . . . . . . 62

3.4 Generating Gauge Configurations . . . . . . . . . . . . . . . . . . . . 64
3.5 Statistics for LGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Resampling and the Bootstrap . . . . . . . . . . . . . . . . . . 67

7



3.5.2 Fitting correlated data . . . . . . . . . . . . . . . . . . . . . . 68

4 Spectral Functions from Lattice Gauge Theory 73
4.1 Introduction: the R-Ratio . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Thermal Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Green’s Functions in Finite Volume . . . . . . . . . . . . . . . . . . . 78

4.3.1 Preparing the Fourier Coefficients 𝐺(ℓ)
𝐸 from LGT Data . . . . 82

4.4 Spectral Reconstruction from Euclidean Correlation Functions . . . . 84
4.4.1 Infinite-Volume Spectral Reconstruction from LGT . . . . . . 84
4.4.2 The Inverse Problem: Mathematical Considerations . . . . . . 87

4.5 Nevanlinna-Pick Spectral Reconstruction . . . . . . . . . . . . . . . . 89
4.5.1 Mapping the problem to the unit disk . . . . . . . . . . . . . . 90
4.5.2 The Nevanlinna-Pick Problem . . . . . . . . . . . . . . . . . . 94
4.5.3 Solving the Nevanlinna Problem: The Schur Algorithm . . . . 96
4.5.4 Optimization of 𝑓𝑁 . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.5 Nevanlinna Coefficients and the Wertevorrat . . . . . . . . . . 103
4.5.6 Constraining 𝜌𝜖±(𝜔) from Δ𝑁(𝜁) . . . . . . . . . . . . . . . . . 105
4.5.7 Summary of the NPSR method . . . . . . . . . . . . . . . . . 107

4.6 NPSR Method Simulations . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6.1 Simulation 1: Isolated poles . . . . . . . . . . . . . . . . . . . 111
4.6.2 Simulation 2: Gaussian Peaks . . . . . . . . . . . . . . . . . . 111
4.6.3 Simulation 3: The 𝑅-Ratio . . . . . . . . . . . . . . . . . . . . 113
4.6.4 Simulation 4: Toy Model of Interacting Scalars . . . . . . . . . 115
4.6.5 An Aside: Numerical Precision . . . . . . . . . . . . . . . . . 117

4.7 Outlook: Monte Carlo Data and The Pick Criterion . . . . . . . . . . 121
4.7.1 The Pick Criterion . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7.2 Reformulations of the Pick Criterion . . . . . . . . . . . . . . 123
4.7.3 Monte Carlo Data and the Pick Space . . . . . . . . . . . . . 125

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Neutrinoless Double 𝛽 Decay from Lattice QCD 129
5.1 Neutrinoless Double 𝛽 Decay . . . . . . . . . . . . . . . . . . . . . . . 130
5.2 Matrix Elements for 0𝜈𝛽𝛽 Decay . . . . . . . . . . . . . . . . . . . . 133

5.2.1 Long-Distance Mechanisms . . . . . . . . . . . . . . . . . . . . 133
5.2.2 Short-Distance Mechanisms . . . . . . . . . . . . . . . . . . . 136
5.2.3 Relative Contributions and ΛLNV . . . . . . . . . . . . . . . . 139

5.3 The short-distance 𝜋− → 𝜋+𝑒−𝑒− amplitude . . . . . . . . . . . . . . 140

8



5.3.1 LGT Calculation of Bare Matrix Elements . . . . . . . . . . . 141
5.3.2 Chiral Extrapolation . . . . . . . . . . . . . . . . . . . . . . . 144

5.4 The short-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− amplitude . . . . . . . . . . . . 147
5.5 Renormalization of short-distance operators . . . . . . . . . . . . . . 151
5.6 The long-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− amplitude . . . . . . . . . . . . 160

5.6.1 LGT methodology for long-distance 0𝜈𝛽𝛽 . . . . . . . . . . . 160
5.6.2 LGT calculation of long-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− . . . . . . 162

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6 Confinement and Two-Dimensional Adjoint QCD 173
6.1 Confinement in Lattice Gauge Theory . . . . . . . . . . . . . . . . . . 173

6.1.1 Scaling of the Wilson Loop . . . . . . . . . . . . . . . . . . . . 175
6.1.2 Adjoint Matter and 𝑁 -ality . . . . . . . . . . . . . . . . . . . 176
6.1.3 String tension . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.1.4 Center Symmetry and Polyakov Loops . . . . . . . . . . . . . 178

6.2 Two-Dimensional Adjoint QCD . . . . . . . . . . . . . . . . . . . . . 180
6.2.1 The String Tension in QCD2 . . . . . . . . . . . . . . . . . . . 182
6.2.2 The QCD2 Spectrum . . . . . . . . . . . . . . . . . . . . . . . 184

6.3 Discretizing QCD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.3.1 The Dirac operator . . . . . . . . . . . . . . . . . . . . . . . . 185
6.3.2 Implementation of the Dirac Operator . . . . . . . . . . . . . 188

6.4 Markov Chain Monte Carlo for QCD2 . . . . . . . . . . . . . . . . . . 189
6.4.1 The “Sign” Problem for Majorana Fermions . . . . . . . . . . 189
6.4.2 Pseudofermions and the Rational Approximation . . . . . . . 191
6.4.3 Rational Hamiltonian Monte Carlo (RHMC) . . . . . . . . . . 193

6.5 Lattice Gauge Theory Setup . . . . . . . . . . . . . . . . . . . . . . . 196
6.6 The Static Quark Potential and String Tension . . . . . . . . . . . . . 200
6.7 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.7.1 Wick’s Theorem for Majorana Fermions . . . . . . . . . . . . 205
6.7.2 Local Fermion Bilinears . . . . . . . . . . . . . . . . . . . . . 206
6.7.3 The Two-Point Spectrum . . . . . . . . . . . . . . . . . . . . . 211
6.7.4 The GEVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Conclusion 223

A Abbreviations and Notation 227

9



B Lie Groups, Lie Algebras, and their Representations 229

B.1 Lie Groups and Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 229

B.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.3.1 Sums and Products of Representations . . . . . . . . . . . . . 232

B.3.2 Conjugate (dual) representations . . . . . . . . . . . . . . . . 234

B.4 The Lorentz Group 𝑆𝑂(1, 3) and its Representations . . . . . . . . . 235

B.4.1 Representation theory of the Lorentz group . . . . . . . . . . 236

B.4.2 Weyl Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

B.4.3 Dirac and Majorana spinors . . . . . . . . . . . . . . . . . . . 241

B.4.4 Spinor indices and invariant symbols . . . . . . . . . . . . . . 244

B.4.5 Discrete symmetries . . . . . . . . . . . . . . . . . . . . . . . 246

C Gamma Matrices in 𝑑 = 4 249

C.1 Gamma Matrix Conventions . . . . . . . . . . . . . . . . . . . . . . . 249

C.2 Dirac Bilinears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

D Fierz Identities 253

E Mathematical Background for Nevanlinna-Pick Interpolation 255

E.1 Hardy Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

E.2 Matrix-vector notation for continued fractions . . . . . . . . . . . . . 256

E.3 Blaschke Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

F Three-Point Contractions for Short-Distance 𝜋− → 𝜋+𝑒−𝑒− 261

G Effective Matrix Elements for Short-Distance 𝜋− → 𝜋+𝑒−𝑒− 263

H Vector and Axial-Vector Renormalization Coefficients for Short-Distance
𝜋− → 𝜋+𝑒−𝑒− 269

I Renormalization coefficient 𝑎𝑚ℓ → 0 extrapolation 273

J Spinors in 𝑑 = 2 279

J.1 Bispinors in 𝑑 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

J.2 Majorana Spinors in 𝑑 = 2 . . . . . . . . . . . . . . . . . . . . . . . . 280

J.3 Dirac Bilinears in 𝑑 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 281

10



K Computation of the QCD2 Driving Forces 283
K.1 The Gauge Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
K.2 The Pseudofermion Force . . . . . . . . . . . . . . . . . . . . . . . . . 284

11





List of Figures

2.1 String breaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 The running coupling in QCD. . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Lattice gauge theory setup. . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 The clover term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Underfitting and overfitting. . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Inclusive 𝑒+𝑒− scattering. . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Experimental data for the 𝑅-ratio. . . . . . . . . . . . . . . . . . . . 75
4.3 Spectral functions in the complex plane. . . . . . . . . . . . . . . . . 78
4.4 Evaluation of the Fourier coefficients𝐺(ℓ)

𝐸 at different interpolation den-
sities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 The Cayley and ̃︀𝐶 transforms. . . . . . . . . . . . . . . . . . . . . . . 93
4.6 The evaluation axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Pulling back the Wertevorrat. . . . . . . . . . . . . . . . . . . . . . . 106
4.8 Simulated reconstructions of the 3-pole spectral density. . . . . . . . . 112
4.9 Simulated reconstructions of the Gaussian spectral density. . . . . . . 113
4.10 Extrapolations of Gaussian reconstructions to the unsmeared limit, 𝜖 ↓ 0.114
4.11 Simulated reconstructions of the 𝑅-ratio. . . . . . . . . . . . . . . . . 116
4.12 Simulated reconstructions of the toy model of interacting scalars. . . 118
4.13 Nevanlinna determinant at double precision. . . . . . . . . . . . . . . 120
4.14 Nevanlinna determinant at extended precision. . . . . . . . . . . . . . 121

5.1 Nuclear and quark level 0𝜈𝛽𝛽 decay. . . . . . . . . . . . . . . . . . . 130
5.2 Example long-distance 0𝜈𝛽𝛽 decay. . . . . . . . . . . . . . . . . . . . 131
5.3 Schechter-Valle black box theorem. . . . . . . . . . . . . . . . . . . . 132
5.4 Neutrino mass hierarchy from 0𝜈𝛽𝛽 decay. . . . . . . . . . . . . . . . 132
5.5 Example short-distance 0𝜈𝛽𝛽 decay. . . . . . . . . . . . . . . . . . . . 133
5.6 EFT treatment of mechanisms of 0𝜈𝛽𝛽 decay. . . . . . . . . . . . . . 135

13



5.7 Short-distance 0𝜈𝛽𝛽 decay EFT. . . . . . . . . . . . . . . . . . . . . 139
5.8 Bare effective matrix elements for 𝜋− → 𝜋+𝑒−𝑒− on the 32I, 𝑎𝑚ℓ =

0.004 ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.9 Chiral, continuum, and infinite-volume extrapolation of renormalized

matrix elements for 𝜋− → 𝜋+𝑒−𝑒−. . . . . . . . . . . . . . . . . . . . 145
5.10 Fits to the dinucleon effective mass. . . . . . . . . . . . . . . . . . . . 149
5.11 Fits to the effective ratio for the scalar operators 𝒪𝑘 for 𝑛0𝑛0 →

𝑝+𝑝+𝑒−𝑒− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.12 Kinematics for four-quark operator renormalization. . . . . . . . . . . 157
5.13 Contractions for the long-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− computation. . . 163
5.14 Correlator ratio 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) as a function of operator separation 𝑡. 165
5.15 Correlator ratio 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) at fixed operator separation 𝑡/𝑎 = 3. 166
5.16 The ratio 𝑅𝑖→𝑓 (𝑡), extracted from sequential fits to 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src). . 167
5.17 Effective energy 𝐸(𝑅)

eff and amplitude 𝐴(𝑅)
eff . . . . . . . . . . . . . . . . 168

6.1 Volume-averaged plaquette on each ensemble. . . . . . . . . . . . . . 199
6.2 Pfaffian of the Dirac operator on the 20× 20 ensemble. . . . . . . . . 199
6.3 Volume-averaged Wilson loops ⟨𝑊 (𝑟, 𝑡)⟩ for the 20× 20 ensemble. . . 202
6.4 Volume-averaged Wilson loops ⟨𝑊 (𝑟, 𝑡)⟩ for the 20× 20 ensemble with

linear fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.5 Static quark potential for the 20× 20 ensemble. . . . . . . . . . . . . 203
6.6 Scale setting for QCD2 ensembles. . . . . . . . . . . . . . . . . . . . . 204
6.7 Correlator data for QCD2 fermion bilinears. . . . . . . . . . . . . . . 208
6.8 Effective masses 20× 20 ensemble. . . . . . . . . . . . . . . . . . . . 209
6.9 Correlator 𝐶𝛾1

2 at non-zero momentum. . . . . . . . . . . . . . . . . . 210
6.10 Fits to QCD2 fermion bilinears. . . . . . . . . . . . . . . . . . . . . . 212

E.1 Blaschke Factors on the Disk . . . . . . . . . . . . . . . . . . . . . . . 259
E.2 Blaschke Factors on the Evaluation Contour . . . . . . . . . . . . . . 260

G.1 Bare effective matrix elements for {𝒪𝑘} on the 24I, 𝑎𝑚ℓ = 0.01 ensemble.264
G.2 Bare effective matrix elements for {𝒪𝑘} on the 24I, 𝑎𝑚ℓ = 0.005 en-

semble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
G.3 Bare effective matrix elements for {𝒪𝑘} on the 32I, 𝑎𝑚ℓ = 0.008 en-

semble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
G.4 Bare effective matrix elements for {𝒪𝑘} on the 32I, 𝑎𝑚ℓ = 0.006 en-

semble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

14



H.1 Vector and axial-vector renormalization coefficients for the domain-wall
fermion ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

I.1 𝑎𝑚ℓ → 0 extrapolation for 𝒵RI𝛾
𝑞 /𝒵𝑉 on the 𝑎 = 0.11 fm ensembles. . . 273

I.2 𝑎𝑚ℓ → 0 extrapolation for {𝐹11} on the 𝑎 = 0.11 fm ensembles. . . . . 274
I.3 𝑎𝑚ℓ → 0 extrapolation for {𝐹22, 𝐹23, 𝐹32, 𝐹33} on the 𝑎 = 0.11 fm

ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
I.4 𝑎𝑚ℓ → 0 extrapolation for {𝐹44, 𝐹45, 𝐹54, 𝐹55} on the 𝑎 = 0.11 fm

ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
I.5 𝑎𝑚ℓ → 0 extrapolation for 𝒵RI𝛾

𝑞 /𝒵𝑉 on the 𝑎 = 0.08 fm ensembles. . . 275
I.6 𝑎𝑚ℓ → 0 extrapolation for {𝐹11} on the 𝑎 = 0.08 fm ensembles. . . . . 276
I.7 𝑎𝑚ℓ → 0 extrapolation for {𝐹22, 𝐹23, 𝐹32, 𝐹33} on the 𝑎 = 0.08 fm

ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
I.8 𝑎𝑚ℓ → 0 extrapolation for {𝐹44, 𝐹45, 𝐹54, 𝐹55} on the 𝑎 = 0.08 fm

ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

15





List of Tables

2.1 Standard Model field charges. . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Standard Model fermion content. . . . . . . . . . . . . . . . . . . . . 28
2.3 Mass hierarchy of the Standard Model. . . . . . . . . . . . . . . . . . 28
2.4 Neutrino mass splittings. . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Notation for the Green’s functions. . . . . . . . . . . . . . . . . . . . 77
4.2 Correspondence between the Pick criterion, the Wertevorrat, and the

𝑤
(𝑘−1)
𝑘 parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 ΛLNV and 0𝜈𝛽𝛽 decay mechanisms. . . . . . . . . . . . . . . . . . . . 140
5.2 Gauge field ensembles used in 𝜋− → 𝜋+𝑒−𝑒− computation. . . . . . . 141
5.3 Renormalized 𝜋− → 𝜋+𝑒−𝑒− matrix elements on each ensemble, and

results of the chiral, continuum, and infinite-volume extrapolation. . . 144
5.4 Gauge field ensembles used in the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− computation. . . 148
5.5 Renormalized scalar 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− short-distance matrix elements. 151
5.6 Bare vector 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− short-distance matrix elements. . . . . 151
5.7 Diagonal MS renormalization coefficients for scalar NPR basis {𝑄𝑛}. 159
5.8 Chirally allowed, off-diagonal MS renormalization coefficients for scalar

NPR basis {𝑄𝑛}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.9 Chirally disallowed off-diagonal MS renormalization coefficients for scalar

NPR basis {𝑄𝑛}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1 QCD2 lattice ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.2 Numerical results for the string tension for each adjoint QCD ensemble.204
6.3 Numerical results for the pseudoscalar ground-state energy for each

adjoint QCD ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.1 Abbreviations defined in this thesis. . . . . . . . . . . . . . . . . . . . 227
A.2 Mathematical symbols defined in this thesis. . . . . . . . . . . . . . . 228

17



A.3 Mathematical notation used in this thesis. . . . . . . . . . . . . . . . 228

B.1 Low dimensional representations of the Lorentz group. . . . . . . . . 239
B.2 Common invariant symbols in spinor analysis. . . . . . . . . . . . . . 245

C.1 Basis of Dirac Bilinears . . . . . . . . . . . . . . . . . . . . . . . . . . 251

G.1 Bare effective matrix elements on each ensemble used in the 𝜋− →
𝜋+𝑒−𝑒− decay calculation. . . . . . . . . . . . . . . . . . . . . . . . . 263

J.1 Transformation properties for the Dirac algebra in 𝑑 = 2. . . . . . . . 281

18



Chapter 1

Introduction

The development of the Standard Model of particle physics in the mid- to late-20th

century was an incredible triumph for the high-energy physics community. The Stan-
dard Model describes the building blocks of nature: the quarks, leptons, gauge bosons,
and the Higgs boson. The theory explains the interactions between all these parti-
cles in a way consistent with their symmetries and has remarkable predictive power.
It is known that the Standard Model does not provide a Theory of Everything, as
phenomena such as dark matter and neutrino masses have been observed that cannot
be predicted within the context of the Standard Model. Nonetheless, the theory is
remarkably useful and remains the theoretical description of nature that best matches
the empirical evidence.

The specific component of the Standard Model that will be focused on in this
thesis is Quantum Chromodynamics (QCD), the theory of the strong nuclear force
that describes the interactions between quarks and gluons. QCD is a confining theory,
meaning that lone quarks and gluons are not found in nature; instead, the rich struc-
ture of QCD manifests as hadronic states, composite particles made up of quarks and
gluons. The theory describes the individual quarks and gluons themselves. Hadronic
operators may be written down, but the complicated structure of QCD as a gauge
theory makes the computation of hadronic observables impossible with conventional
field-theoretic means like perturbation theory. The only systematically-improvable
ab initio method for understanding QCD is lattice gauge theory (LGT), which com-
putes QCD observables by discretizing spacetime to render the path integral finite-
dimensional. LGT is an inherently numerical method based on Markov Chain Monte
Carlo techniques for evaluating high-dimensional integrals. It provides a framework
to compute estimators for QCD correlation functions in a systematically improvable
way. These correlation functions may then be analyzed to extract estimators for
underlying quantities of interest in the theory.
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LGT was first formalized in the 1970s to study strongly-coupled field theories from
a non-perturbative lens. As computational power has increased and more sophisti-
cated algorithms for LGT have been developed [6, 7], it has become tractable to use
LGT to study QCD directly. Since then, the LGT community has focused primarily
on studying QCD because of the phenomenological value of the theory. However,
there remains value in studying strongly-coupled theories that are not QCD using
LGT. Such theories often provide a simpler setting to study interesting physics than
full QCD, or allow one to focus their attention on the consequences that specific prop-
erties have on the structure of a field theory. The canonical example is the Schwinger
model, the theory of a single Dirac fermion coupled to a 𝑈(1) gauge field in 1 + 1

spacetime dimensions [8], which provides a toy model of confinement that is easier
to study analytically than four-dimensional 𝑆𝑈(3) Yang-Mills theory. Other exam-
ples include Beyond the Standard Model (BSM) theories, with many applications
seeking to understand theories of supersymmetry [9] and dark matter [10]. My doc-
toral research at MIT has used LGT to understand the physics of strongly-coupled
gauge theories both inside and outside of QCD, which will be outlined in Sections 1.1
and 1.2.

1.1 Publications

Throughout my PhD I have contributed to several publications, which I have listed
below:

1. W. Detmold, M. Illa, D. Murphy, P. Oare, K. Orginos, P. Shanahan, M. Wag-
man, F. Winter, Lattice QCD constraints on the parton distribution
functions of 3He. Phys. Rev. Lett. 126, 202001 (2021) [1].

2. W. Detmold, W. Jay, D. Murphy, P. Oare, P. Shanahan, Neutrinoless Dou-
ble Beta Decay from Lattice QCD: The Short-Distance 𝜋− → 𝜋+𝑒−𝑒−

Amplitude. Phys. Rev. D 107 (2023) 9, 094501 [2].

3. T. Bergamaschi, W. Jay, P. Oare, Hadronic Structure, Conformal Maps,
and Analytic Continuation, Phys. Rev. D 108 (2023) 7, 074516 [3].

4. D. Hackett, P. Oare, D. Pefkou, P. Shanahan, Gravitational form factors of
the pion from lattice QCD, Phys. Rev. D 108 (2023) 11, 114504 [4].

5. Z. Davoudi, W. Detmold, Z. Fu, A. Grebe, W. Jay, D. Murphy, P. Oare, P.
Shanahan, M. Wagman, Long-Distance Nuclear Matrix Elements for
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Neutrinoless Double-Beta Decay from Lattice QCD, Phys. Rev. D
109 (2024) 11, 114514 [5].

Although most of my research contributions will be outlined in this thesis, I have
left out a discussion of Refs. [1, 4]. My primary contribution to these works was the
calculation of the renormalization of the quark energy-momentum tensor, which is
described in each manuscript.

1.2 Outline

This thesis contains five content chapters. The first two are background chapters, first
on QCD and the Standard Model (Chapter 2), and second on LGT (Chapter 3). These
chapters should provide the tools to understand the following three chapters, which
detail my research contributions. Each research chapter begins with a discussion of
my specific contributions to each project.

Chapter 4 defines the notion of a spectral density in quantum field theory and the
role that the spectral density plays in the theory of thermal Green’s functions. The
reconstruction of a spectral density from LGT data for correlation functions is an
ill-posed inverse problem. This chapter presents a new method for the reconstruction
of smeared spectral functions developed by Thomas Bergamaschi, William Jay, and
myself [3], based on the Nevanlinna Analytical Continuation method of Ref. [11]. Our
method is based on the analytic properties of retarded Green’s functions and allows
for constructing a rigorous bound on where the smeared spectral density may lie. The
chapter presents simulations where the method is rigorously tested and concludes with
a discussion of the application of our method to noisy Monte Carlo data.

Chapter 5 describes the calculation of neutrinoless double 𝛽 (0𝜈𝛽𝛽) decay matrix
elements with LGT. 0𝜈𝛽𝛽 decay is a hypothesized decay mode of two down quarks
into two up quarks and two electrons that is being searched for in experiments world-
wide. If observed, 0𝜈𝛽𝛽 decay would have many interesting corollaries, including the
definitive proof that the Standard Model neutrino is a Majorana particle. 0𝜈𝛽𝛽 decays
generally fall into two categories: long-distance decays, mediated by the exchange of a
light Majorana neutrino, and short-distance decays, mediated by heavy BSM physics.
This chapter will outline LGT calculations of long- and short-distance matrix elements
in two systems: 𝜋− → 𝜋+𝑒−𝑒− and 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− . It will present the current
status of our work, which in particular has presented calculations of the short-distance
𝜋− → 𝜋+𝑒−𝑒− decay [2]1 and the long-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− decay [5].

1The long-distance 𝜋− → 𝜋+𝑒−𝑒− decay calculation was performed by David Murphy and Will

21



§ 1.2. Outline

Chapter 6 details an ongoing project studying two-dimensional adjoint QCD
(QCD2), the theory of a Majorana fermion coupled to an 𝑆𝑈(𝑁) gauge field in the
adjoint representation. QCD2 has been a toy model for the study of confinement
for the last 30 years, which, in particular, has provided numerous insights into the
mechanism that underlies confinement. In particular, the rich symmetry structure
of QCD2 implies it confines when the Majorana fermion has mass but deconfines
when the Majorana fermion is taken to be massless. The strongly-coupled nature
of this theory makes it a natural candidate for a LGT calculation. We have com-
puted the static quark potential, string tensions, and the ground state energy in the
pseudoscalar sectors on ten ensembles drawing from a discretized QCD2 action with
𝑁 = 2 colors.

Detmold in Ref. [12].
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Chapter 2

Quantum Chromodynamics and

the Standard Model

Modern understanding of particle physics is encoded in the Standard Model, a renor-
malizable quantum field theory (QFT) that has proven remarkably robust in de-
scribing the universe. The Standard Model has yielded many celebrated predictions,
including a prediction of the 𝑊 and 𝑍 bosons [13, 14] and the top quark [15]. Despite
the basic structure of the Standard Model having been mapped out in the 1960s and
1970s, the theory is still the subject of a large amount of active research today.

One particularly vibrant area of research is quantum chromodynamics (QCD),
the sector of the Standard Model which describes the strong force that binds nuclei
together. QCD is a challenging area of study because it is non-perturbative at the
low energies (e.g., at nuclear energy scales) and cannot be studied with perturbation
theory, the predominant tool used to study most QFTs. At these energies, QCD
must instead be matched onto an effective field theory (EFT) or studied with non-
perturbative means like lattice gauge theory (LGT). The LGT approach is the subject
of this thesis and will be extensively detailed.

The Standard Model is a triumph of modern physics but has shortcomings. Many
phenomena have been observed beyond the Standard Model (BSM)—i.e., neutrino os-
cillations [16], dark matter [17], and matter-antimatter asymmetry [18]—that cannot
be described solely by the Standard Model. Furthermore, gravity cannot be added to
the Standard Model in a renormalizable way, so although one can naïvely write down
a quantum theory of gravity, it cannot be completely described by a finite number of
input parameters. Whatever physical theory underlies the universe must answer all
these questions. It is thus essential to identify possible channels for BSM physics and
study these channels theoretically and experimentally to constrain whatever theory
lies beyond the Standard Model.
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2.1 The Standard Model

The Standard Model is a non-abelian gauge theory with gauge group 𝑆𝑈(3)×𝑆𝑈(2)×
𝑈(1). The different factors of this gauge group encode different physical phenomena
with different dynamics. The 𝑆𝑈(3) factor describes QCD and is often called 𝑆𝑈(3)𝑐
(“𝑆𝑈(3)-color”), while the 𝑆𝑈(2)×𝑈(1) describes the electroweak force, and is often
called 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 (“𝑆𝑈(2)-left times 𝑈(1)-hypercharge”). Each factor of the
gauge group has a corresponding gauge coupling, a set of generators that implement
the symmetry, and a spin-1 gauge boson that transforms in the adjoint representation
of its respective gauge group: 𝑆𝑈(3)𝑐 has coupling 𝑔, generators {𝑡𝑎}8𝑎=1, and gauge
bosons 𝐺𝑎

𝜇; 𝑆𝑈(2)𝐿 has coupling 𝑔′, generators {𝑇𝐴}3𝐴=1, and gauge bosons 𝑊𝐴
𝜇 ; and

𝑈(1) has coupling 𝑔𝑌 , a single generator 𝑌 , and gauge boson 𝐵𝜇.

The fermionic content of the Standard Model is contained in three generations of
particles. Each generation contains five fields 𝑞𝐿, 𝑢𝑅, 𝑑𝑅, ℓ𝐿, and 𝑒𝑅, with transforma-
tion properties under 𝑆𝑈(3)𝑐×𝑆𝑈(2)𝐿×𝑈(1)𝑌 and the Lorentz group 𝑆𝑂(1, 3) given
in Table 2.1. Across generations, particles transform in the same way and are only
distinguished by their mass and couplings. Fermions that transform in the fundamen-
tal of 𝑆𝑈(3)𝑐 (𝑞𝐿, 𝑢𝑅, and 𝑑𝑅) are called quarks, and fermions that transform as a
singlet of 𝑆𝑈(3)𝑐 (ℓ𝐿 and 𝑒𝑅) are called leptons. The last particle that makes up the
Standard Model is the Higgs boson 𝐻. This scalar field only transforms non-trivially
under the electroweak symmetry [19, 20], with charges given in Table 2.1.

Field 𝑆𝑈(3)𝑐 𝑆𝑈(2)𝐿 𝑈(1)𝑌 Lorentz
𝑞𝐿 3 2 1/6 (1/2, 0)
𝑢𝑅 3 1 2/3 (0, 1/2)
𝑑𝑅 3 1 −1/3 (0, 1/2)
ℓ𝐿 1 2 −1

2
(1/2, 0)

𝑒𝑅 1 1 −1 (0, 1/2)
H 1 2 1/2 (0, 0)

Table 2.1. Charges of each Standard Model fermion field in a given generation,
and the Higgs boson. Note that only the left-handed fermion fields (the (1/2, 0)
representation of the Lorentz group) transform non-trivially under 𝑆𝑈(2)𝐿, hence
the nomenclature “𝑆𝑈(2)-left”.

We can express the Standard Model Lagrangian as the sum of four parts,

ℒSM = ℒGauge + ℒFermion + ℒHiggs + ℒYukawa, (2.1)
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§ 2.1. The Standard Model

each of which can be written in terms of the defined fields. The gauge sector ℒGauge

is simply a Yang-Mills Lagrangian for each of the respective gauge fields,

ℒGauge = −
1

4
𝐺𝑎
𝜇𝜈𝐺

𝜇𝜈𝑎 − 1

4
𝑊𝐴
𝜇𝜈𝑊

𝜇𝜈𝐴 − 1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 , (2.2)

where here for each gauge boson 𝐴𝜇 ∈ {𝐺𝜇,𝑊𝜇, 𝐵𝜇} with coupling 𝑔𝐴 ∈ {𝑔, 𝑔′, 𝑔𝑌 }
and structure constants1 𝑓𝑎𝑏𝑐, the field strength is defined as 𝐴𝑎𝜇𝜈 = 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴𝑎𝜇 +

𝑔𝐴𝑓
𝑎𝑏𝑐𝐴𝑏𝜇𝐴

𝑐
𝜈 . The indices 𝑎 and 𝐴 respectively parameterize the 𝑆𝑈(3) and 𝑆𝑈(2)

generators, 𝑎 ∈ {1, ..., 8} and 𝐴 ∈ {1, 2, 3}. The fermion sector ℒFermion describes
the kinetic terms of each Standard Model fermion and will be expanded in terms of
a QCD fermion sector and an electroweak fermion sector

ℒFermion = 𝑖
∑︁
𝜓

𝜓𝛾𝜇𝐷SM
𝜇 𝜓 ≡ ℒQCD

Fermion + ℒEW
Fermion (2.3)

where 𝜓 sums over each fermion field in Table 2.1 (𝑞𝐿, 𝑢𝑅, 𝑑𝑅, ℓ𝐿, and 𝑒𝑅) for each
generation2. Here the gauge covariant derivative is defined as 𝐷SM

𝜇 = 𝜕𝜇 − 𝑖𝑔𝐺𝑎
𝜇𝑡
𝑎 −

𝑖𝑔′𝑊𝐴
𝜇 𝑇

𝐴 − 𝑖𝑔𝑌 𝑌 , and ℒQCD
Fermion and ℒEW

Fermion are defined as

ℒQCD
Fermion = 𝑖

∑︁
𝜓

𝜓𝛾𝜇(𝜕𝜇 − 𝑖𝑔𝐺𝑎
𝜇𝑡
𝑎)𝜓 ≡ 𝑖

∑︁
𝜓

𝜓𝛾𝜇𝐷QCD
𝜇 𝜓,

ℒEW
Fermion = 𝑖

∑︁
𝜓

𝜓𝛾𝜇(−𝑖𝑔′𝑊𝐴
𝜇 𝑇

𝐴 − 𝑖𝑔𝑌 𝑌 )𝜓.
(2.4)

The advantage of this definition is that electroweak symmetry breaking (EWSB) will
only affect ℒEW

Fermion and leave ℒQCD
Fermion untouched.

The Higgs sector ℒHiggs is responsible for EWSB [19, 21, 22],

ℒHiggs = |𝐷SM
𝜇 𝐻|2 + 𝜇2𝐻†𝐻 − 𝜆(𝐻†𝐻)2. (2.5)

where 𝜇, 𝜆 are couplings. The potential for the Higgs, 𝑉 (𝐻) = −𝜇2𝐻†𝐻 +𝜆(𝐻†𝐻)2,
is minimized when the Higgs field has norm |⟨𝐻⟩| = 𝑣 ≡ 𝜇2

𝜆
, which induces EWSB.

This is the vacuum expectation value (vev) for the Higgs. In nature, the electroweak
symmetry breaking scale is 𝑣 = 247 GeV. At energies are below 𝑣, 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌

1The structure constants of a gauge group define its Lie algebra. For a Lie group generated by
algebra elements {𝑡𝑎}, the structure constants are defined as [𝑡𝑎, 𝑡𝑏] = 𝑓𝑎𝑏𝑐𝑡𝑐.

2The fermion fields in Table 2.1 are Weyl fermions, although Dirac conjugation is only defined for
Dirac fermions. This notation will be abused to embed Weyl fermions into Dirac spinors whenever

necessary; for example, if 𝜓 = 𝑞𝐿, one considers 𝜓 to be the left-handed Dirac spinor
(︂
𝑞𝐿
0

)︂
.
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is spontaneously broken to a subgroup 𝑈(1)EM generated by the electric charge 𝑄

𝑄 = 𝑌 + 𝑇 3. (2.6)

The natural basis for the gauge fields after EWSB is the photon 𝐴𝜇, the 𝑍 boson 𝑍𝜇,
and the charged 𝑊 bosons 𝑊±

𝜇 , given by(︃
𝐴𝜇

𝑍𝜇

)︃
=

(︃
cos 𝜃𝑤 sin 𝜃𝑤

− sin 𝜃𝑤 cos 𝜃𝑤

)︃(︃
𝐵𝜇

𝑊 3
𝜇

)︃
𝑊±
𝜇 =

1√
2

(︀
𝑊 1
𝜇 ∓ 𝑖𝑊 2

𝜇

)︀
(2.7)

where 𝜃𝑤 is the weak mixing angle, with value sin2 𝜃𝑤 ≈ 0.223 [23, 24]. The photon is
the gauge boson corresponding to the unbroken subgroup 𝑈(1)EM ⊂ 𝑆𝑈(2)𝐿×𝑈(1)𝑌 ,
and hence remains massless at all energies, while the 𝑍 and 𝑊 bosons are massive
with masses given in Table 2.3.

After EWSB, the 𝑆𝑈(2) doublets 𝑞𝐿 and ℓ𝐿 are often written in terms of their
individual components,

𝑞𝐿 =

(︃
𝑢𝐿

𝑑𝐿

)︃
ℓ𝐿 =

(︃
𝜈𝐿

𝑒𝐿

)︃
, (2.8)

as the pairs (𝑢𝐿, 𝑢𝑅), (𝑑𝐿, 𝑑𝑅), and (𝑒𝐿, 𝑒𝑅) have the same quantum numbers under
the unbroken subgroup 𝑆𝑈(3)𝑐 × 𝑈(1)EM. In terms of these fields, the electroweak
fermion Lagrangian ℒEW

Fermion is recast as:

ℒEW
Fermion =

𝑔√
2

3∑︁
𝑖=1

(︁
𝑢𝑖𝐿 /𝑊

+
𝑑𝑖𝐿 + 𝜈𝑖𝐿 /𝑊

+
𝑒𝑖𝐿 + h.c.

)︁
+

𝑔

cos 𝜃𝑤

∑︁
𝜓

𝜓/𝑍(𝑡3𝑃𝐿 −𝑄𝜓 sin
2 𝜃𝑤)𝜓 + 𝑒

∑︁
𝜓

𝑄𝜓𝜓 /𝐴𝜓

(2.9)

where 𝑄𝜓 is the eigenvalue of 𝑄 = 𝑌 + 𝑇 3 acting on 𝜓, and can be read off from
Table 2.1.

The Yukawa sector ℒYukawa couples the fermion fields to the Higgs and gives the
fermions mass at energies ≪ 𝑣,

ℒYukawa = −𝑦𝑒𝑖𝑗ℓ
𝑖

𝐿𝐻𝑒
𝑗
𝑅 − 𝑦𝑑𝑖𝑗𝑞𝑖𝐿𝐻𝑑𝑗𝑅 − 𝑦𝑢𝑖𝑗𝑞𝑖𝑎𝐿 𝜖𝑎𝑏𝐻*𝑏𝑢𝑗𝑅 + h.c., (2.10)

where 𝑦𝑒𝑖𝑗, 𝑦𝑑𝑖𝑗, and 𝑦𝑢𝑖𝑗 are the Yukawa couplings. The 𝑆𝑈(2) doublets 𝑞𝐿 and ℓ𝐿 are
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often written in terms of their individual components,

𝑞𝐿 =

(︃
𝑢𝐿

𝑑𝐿

)︃
ℓ𝐿 =

(︃
𝜈𝐿

𝑒𝐿

)︃
, (2.11)

as the pairs (𝑢𝐿, 𝑢𝑅), (𝑑𝐿, 𝑑𝑅), and (𝑒𝐿, 𝑒𝑅) have the same quantum numbers under
𝑆𝑈(3)𝑐 × 𝑈(1)EM. After EWSB, the Higgs takes its vev |⟨𝐻⟩| = 𝑣, which induces
Dirac masses for the fermions 𝑢, 𝑑, and 𝑒. To see this, the mass term from ℒYukawa

may be expanded as

ℒmass
Yukawa

𝐸≪𝑣−−−→ −𝑣
(︀
𝑒𝐿𝑦

𝑒𝑒𝑅 + 𝑑𝐿𝑦
𝑑𝑑𝑅 + 𝑢𝐿𝑦

𝑢𝑢𝑅
)︀
, (2.12)

where generation indices are suppressed in favor of matrix-vector notation.

The matrices 𝑦𝑒, 𝑦𝑑, and 𝑦𝑢 may be diagonalized by rotating the fermion fields,

𝜓 → 𝐾𝜓𝜓 (2.13)

where 𝜓 ∈ {𝑑𝐿, 𝑢𝐿, 𝑒𝐿, 𝑑𝑅, 𝑢𝑅, 𝑒𝑅}. This new (rotated) basis is called the mass basis,
while the original basis is called the flavor basis. The remainder of this work will
assume the fermion fields are written in the mass basis unless otherwise specified.
In the mass basis, observe that the Yukawa terms induce Dirac masses for up-type
quarks, down-type quarks, and electron-type leptons. Each mass 𝑚𝜓 is related to the
corresponding diagonal Yukawa coupling by 𝑚𝜓 = 𝑦𝜓𝜓𝑣/

√
2, with 𝑦𝜓 corresponding

to the diagonal component of the Yukawa matrix for the fermion 𝜓, i.e. either 𝑦𝑒𝜓𝜓,
𝑦𝑑𝜓𝜓, or 𝑦𝑢𝜓𝜓. These particles are interpreted as massive Dirac fermions 𝑢, 𝑑, and 𝑒

at energies ≪ 𝑣, while at high energies & 𝑣, they are interpreted as massless left- or
right-handed Weyl fermions. The generations and names of each fermion are listed in
Table 2.2, and the mass of each massive Standard Model particle is given in Table. 2.3.
Note that the only fermion that remains massless is the neutrino 𝜈𝐿; the neutrino is
known to be a massive particle because of neutrino oscillations [25], but the neutrino
is massless within the context of the Standard Model. The role of the neutrino will
be discussed further in Section 2.3.

The Standard Model Lagrangian is only affected by rotation from the flavor to
the mass basis in one place: the couplings between the quarks and the 𝑊 bosons,
which are given by the first term in Eq. (2.9). Because 𝐾𝑢𝐿 and 𝐾𝑑𝐿 do not need to
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Generation 𝑢-type quark 𝑑-type quark 𝑒-type lepton 𝜈-type lepton
1 Up (𝑢) Down (𝑑) Electron (𝑒) Electron neutrino (𝜈𝑒)
2 Charm (𝑐) Strange (𝑠) Muon (𝜇) Muon neutrino (𝜈𝜇)
3 Top (𝑡) Bottom (𝑏) Tau (𝜏) Tau neutrino (𝜈𝜏 )

Table 2.2. Standard Model fermion content after EWSB. Each generation consists
of: an up-type quark (𝑢, 𝑐, 𝑡); a down-type quark (𝑑, 𝑠, 𝑏); an electron-type lepton
(𝑒, 𝜇, 𝜏); and a neutrino-type lepton (𝜈𝑒, 𝜈𝜇, 𝜈𝜏 ).

e u d s 𝜇 c 𝜏 b W Z H t
511k 2.2M 4.7M 93M 110M 1.3G 1.8G 4.7G 80G 91G 125G 172G

Table 2.3. Mass hierarchy of the Standard Model. Units are listed in electron
volts, i.e., 511k corresponds to 511 keV. Masses are sourced from the Particle Data
Group’s Review of Particle Physics [26]. Note that although neutrino oscillations
prove neutrinos have mass, in the Standard Model, neutrinos do not have mass,
hence 𝑚𝜈 is set to zero.

be the same, in the mass basis, this term transforms to

ℒEW
Fermion ⊃

𝑔√
2

3∑︁
𝑖=1

(︁
𝑢𝑖𝐿 /𝑊

+
𝑉 𝑖𝑗
CKM𝑑

𝑗
𝐿 + 𝜈𝑖𝐿 /𝑊

+
𝑒𝑖𝐿 + h.c.

)︁
(2.14)

where 𝑉CKM is the Cabibbo-Kobayashi-Maskawa (CKM) Matrix [27, 28], de-
fined as

𝑉CKM ≡ 𝐾†𝑢𝐿𝐾𝑑𝐿 . (2.15)

The CKM matrix mixes quark flavors, enabling flavor-changing processes like 𝑑 →
𝑢𝑊−, which will become important later when neutrinoless double beta decay is
considered in Chapter 5. Note that there is no corresponding CKM-like matrix for
the leptons (𝑒, 𝜈) in the Standard Model because the Standard Model neutrino is
massless; hence, there is no need to rotate it between its flavor and mass bases. If
neutrinos are given a mass, then a corresponding matrix mixes lepton flavors; this
will be discussed in Chapter 2.3.

While the gauge symmetries of the Standard Model have been extensively dis-
cussed, its global symmetries are also important to consider. There are four ac-
cidental symmetries3 in the Standard Model Lagrangian [29]: baryon number,

3These symmetries are called “accidental” because, unlike gauge symmetry, they are not imposed
in the theory in its construction. Instead, the Standard Model Lagrangian just happens to have
these symmetries; however, they are important to consider nonetheless.
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§ 2.2. Quantum Chromodynamics

electron number, muon number, and tau number. The accidental symmetry group is

𝑈(1)𝐵 × 𝑈(1)𝑒 × 𝑈(1)𝜇 × 𝑈(1)𝜏 , (2.16)

and each subgroup is respectively generated by the operators 𝐵, 𝐿𝑒, 𝐿𝜇, and 𝐿𝜏 .
These generators act on Standard Model fields in the following way:

∙ 𝐵𝑞 = 1
3
𝑞, 𝐵𝑞 = −1

3
𝑞 for any quark field 𝑞. 𝐵 annihilates any lepton field.

Baryon number 𝐵 is normalized so that baryons, composite states of three
quarks, have charge +1.

∙ 𝐿𝑒𝑒 = 𝑒, 𝐿𝑒𝑒 = −𝑒, where 𝑒 is the electron field. 𝐿𝑒 annihilates any other field.

∙ 𝐿𝜇𝜇 = 𝜇, 𝐿𝜇𝜇 = −𝜇, where 𝜇 is the muon field. 𝐿𝜇 annihilates any other field.

∙ 𝐿𝜏𝜏 = 𝜏 , 𝐿𝜏𝜏 = −𝜏 , where 𝜏 is the tau field. 𝐿𝜏 annihilates any other field.

Although each lepton number 𝐿𝑒, 𝐿𝜇, and 𝐿𝜏 is separately conserved, only total
baryon number 𝐵 is conserved. This is because there is no CKM-like matrix for
leptons in the Standard Model, as Standard Model neutrinos have no mass. When
neutrino masses are added, separate lepton numbers are no longer conserved, and
instead, only the total lepton number

𝐿 ≡ 𝐿𝑒 + 𝐿𝜇 + 𝐿𝜏 (2.17)

is conserved.
This story holds at the classical level but changes when quantum effects are in-

cluded. Several mixed gauge-global anomalies affect the accidental symmetry group
𝑈(1)𝐵×𝑈(1)𝑒×𝑈(1)𝜇×𝑈(1)𝜏 [30]. The non-anomalous symmetries of the Standard
Model are 𝐵 − 𝐿, 𝐿𝑒 − 𝐿𝜇, 𝐿𝜇 − 𝐿𝜏 , and 𝐿𝑒 − 𝐿𝜏 . When neutrino mixing is consid-
ered (Section 2.3), there is only a single remaining non-anomalous symmetry: baryon
number minus lepton number, 𝐵 − 𝐿.

2.2 Quantum Chromodynamics

QCD is the study of the strong force; more precisely, it is the study of the 𝑆𝑈(3)𝑐
sector of the Standard Model gauge group. It is a simple theory to write down—
six fermions (quarks) coupled to 𝑆𝑈(3)𝑐 in the fundamental representation— but it
boasts perhaps the richest dynamics of all the Standard Model sectors. This force
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§ 2.2.1. The Static Quark Potential and Confinement

confounded scientists for decades, and it was the last of the three fundamental Stan-
dard Model forces (electromagnetic, weak, strong) to be understood as a quantum
field theory. Quantum electrodynamics (QED), the quantum field theory describ-
ing the electromagnetic force, was primarily worked out in the 1940s by Feynman,
Schwinger, and Tomonaga [31–33]. The weak force, although first understood as an
effective theory by Fermi in 1934 [34], was unified with the electromagnetic force with
contributions from Glashow, Weinberg, and Salam in the 1960s [23, 35, 36]. In 1962,
Anderson proposed a mechanism for superconductivity based on spontaneous symme-
try breaking that could give rise to the Meissner effect in superconductors [37]. This
work was reformulated in a particle physics context in 1964, when three works– led
by Higgs; Brout and Englert; and Guralnik, Hagen, and Kibble– proposed a variant
of Anderson’s mechanism, the Higgs mechanism, as a way to give the fermions mass
in a gauge invariant way [19, 21, 38]. Note that although these theories were written
down, they were not experimentally confirmed until later; the 𝑊 and the 𝑍 bosons
were not discovered until 1983 [13, 14, 39], and the Higgs until 2012 [20]. Although
QCD was written down as a Yang-Mills theory in the 1960s, it was not understood
as governing the strong force until the 1970s, when the discovery of asymptotic free-
dom [40, 41] led physicists to be able to interpret QCD as the description of the strong
force. In the 2010s, LGT calculations had matured enough to reproduce the low-lying
hadronic spectrum, which had previously only been known from experiment [42].

2.2.1 The Static Quark Potential and Confinement

A unique feature that distinguishes QCD from the other Standard Model sectors is
confinement. QCD describes the interactions of gluons with quarks and antiquarks;
however, unlike leptons like the electron or the muon, lone quarks have never been
observed in nature. Instead, quarks are bound together in hadrons, composite par-
ticles made of constituent quarks. Anytime a quark is found in nature4, it can be
seen as a constituent particle of a hadron.

QCD is confining because of the nature of its potential, which is best explored in
pure 𝑆𝑈(3) Yang-Mills theory. Unlike the QED potential 𝑉 (𝑟) ∝ 1/𝑟, the static quark
potential in 𝑆𝑈(3) Yang-Mills theory has an additional linear term that dominates
as 𝑟 increases [44, 45]:

𝑉static quark(𝑟) ⊃
𝑎

𝑟
+ 𝜎𝑟, (2.18)

where 𝑎 and 𝜎 are proportionality constants. The Coulomb part of the potential falls

4Except highly energetic scales where phases of matter like quark-gluon plasma can be found [43].
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§ 2.2.1. The Static Quark Potential and Confinement

off as 𝑟 → ∞, but the linear part grows stronger. Consider two particles charged
under a gauge theory, first with a Coulomb potential and second with a Coulomb +

linear potential.

1. 𝑉 (𝑟) ∝ 𝐴/𝑟. As these particles are separated, they eventually become free and
do not interact; the force between them scales as 1/𝑟2, which goes to zero as
they become infinitely far apart.

2. 𝑉 (𝑟) ∝ 𝐴/𝑟 + 𝜎𝑟. As these particles are separated, they do not become free.
Although the Coulomb part of the potential dies off, the linear part does not;
the force between the particles stays constant. No matter how far these particles
are separated, they still feel the influence of one another; there is a constant
force between them.

Henceforth one only considers the Coulomb + linear case, which will describe specific
regimes of the QCD potential.

In such a potential, the Coulombic piece dominates at short-distances, and the lin-
ear piece dominates at long-distances. In terms of the parameterization of Eq. (2.18),
“short” and “long” mean relative to some inverse energy scale, which may be written
in terms of 𝑎 and 𝜎5. This energy scale is called ΛQCD: a mass scale generated by
QCD that sets the scale of the hadronic interactions.

Quarks will interact strongly with one another, regardless of distance apart, un-
less they are screened by other quarks or antiquarks. As quarks transform in the
fundamental representation 3 of 𝑆𝑈(3), tensoring together the appropriate copies of
3 and 3 determines if a combination of quarks and antiquarks can produce a color-
neutral singlet. Any such state is called a hadron. For example, consider a quark 𝑞
and an antiquark 𝑞, which are respectively in the 3 and 3 representations of 𝑆𝑈(3).
The composite 𝑞𝑞 state lies in the tensor product 3⊗3, which can be decomposed as
follows [46]:

3⊗ 3 = 1⊕ 8. (2.19)

The 𝑞𝑞 state can lie in a singlet under 𝑆𝑈(3) or in the adjoint representation of 𝑆𝑈(3).
The color-neutral singlet forms a type of hadron called a meson, a hadron formed
from a 𝑞𝑞 pair. Another useful color-neutral combination of quarks is to consider
three quarks:

3⊗ 3⊗ 3 = 3⊗ (3⊕ 6) = 1⊕ 8⊕ 8⊕ 10 (2.20)

5In QCD, 𝐴 may be computed in perturbation theory, and 𝜎 using LGT techniques that will be
described later in this thesis.
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The color-singlet combination 𝑞𝑞𝑞 is called a baryon. Given three quark fields
𝑞1, 𝑞2, 𝑞3, a baryon can be explicitly constructed with the Levi-Civita tensor 𝜖 as
𝜖𝑎𝑏𝑐 𝑞

𝑎
1 𝑞

𝑏
1 𝑞

𝑐
1.

The pieces may now be put together, which will be illustrated for the case of
a 𝑞𝑞 pair in full QCD, for simplicity. Without an external force, the 𝑞 and 𝑞 will
bind together into a color-neutral meson. Suppose now that the 𝑞 and 𝑞 particles
are pulled apart from one another. The 𝑞 and 𝑞 will still strongly interact with one
another because of the long-range nature of the QCD potential. This long-range
interaction is mediated by gluons and is called a flux tube, or a QCD string6, as
depicted in Fig. 2.1. As the 𝑞𝑞 pair is separated further and further, eventually, it
becomes energetically favorable for the QCD vacuum to pair-produce another quark-
antiquark pair 𝑞′𝑞′ and create two mesons: 𝑞′ and 𝑞 form a meson, and 𝑞 and 𝑞′ form
a meson. In this way, the string breaks and becomes two different color-neutral
particles. Note this phenomenon does not occur in pure 𝑆𝑈(3) Yang-Mills theory, as
this theory cannot pair produce fundamental matter. Classically, one can compute
the distance 𝑅𝑞 the string will break at, in terms of the mass 𝑚𝑞 of the lightest meson
containing a 𝑞 quark, and the string tension 𝜎𝑞 of the 𝑞𝑞 pair:

2𝑚𝑞 = 𝜎𝑅𝑞 =⇒ 𝑅𝑞 =
2𝑚𝑞

𝜎𝑞
. (2.21)

𝑅𝑞 is an estimate for an inherently quantum quantity but Eq. (2.21) provides a useful
back-of-the-envelope estimate to gain an intuition for the string-breaking scale.

When string breaking occurs, the 𝑞 and 𝑞 no longer feel the confining force between
one another: each is screened by the respective particle that was created to bind it
into a meson. The static quark potential is no longer in a linear regime but instead in
a flat regime: after string breaking, the 𝑞 and 𝑞 will feel no force between one another.
To summarize, the QCD potential acts qualitatively different in three regimes:

1. Short-range, 𝑟 ≪ Λ−1QCD. The Coulombic potential 𝑎/𝑟 dominates in this regime,
and QCD is perturbative in this sector.

2. Mid-range, Λ−1QCD ≪ 𝑟 ≪ 𝑅𝑞. The linear potential 𝜎𝑟 dominates in this regime.
Here, 𝑞𝑞 pairs form flux tubes, and the theory is non-perturbative.

3. Long-range, 𝑅𝑞 ≪ 𝑟. The potential in this region is constant. This sector
describes the potential after string breaking, where the individual quarks are

6This name for the flux tube originates from Effective String Theory, which describes QCD flux
tubes as string degrees of freedom [47–49].
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(a) Time 𝑡1. (b) Time 𝑡2. (c) Time 𝑡3.

Figure 2.1. Cartoon depiction of string breaking. At time 𝑡1 (Figure 2.1a), a 𝑞𝑞 pair
is created and subsequently pulled apart. When the distance between the valence
quarks is < 𝑅𝑞 (time 𝑡2, Figure 2.1b), a flux tube of gluons and sea quarks (not
depicted) is created between the valence quarks. As the distance between the quarks
reaches 𝑅𝑞, the string breaks, and it is energetically favorable for the 𝑞𝑞 pair to split
into two mesons (time 𝑡3, Figure 2.1c).

screened and no longer interact with quarks outside their respective hadrons.

2.2.2 Asymptotic Freedom

The Minkowski space QCD action is

𝑆QCD =

∫︁
𝑑4𝑥

⎛⎝−1

4
𝐺𝑎
𝜇𝜈𝐺

𝜇𝜈𝑎 + 𝑖
∑︁

𝑞∈{𝑢,𝑑,𝑠,𝑐,𝑏,𝑡}

𝑞𝛾𝜇𝐷QCD
𝜇 𝑞

⎞⎠ , (2.22)

where 𝐷QCD
𝜇 is the QCD covariant derivative defined in Eq. (2.4). Correlation func-

tions of local operators 𝒪1(𝑥), ...,𝒪𝑛(𝑥) may be defined with respect to the QCD
action via the path integral, which is a functional integral over the fields 𝜓, 𝜓, 𝐺𝜇

defined as,

𝐶𝑛(𝑥1, ..., 𝑥𝑛) ≡ ⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩ =
1

𝒵

∫︁
𝐷𝜓𝐷𝜓𝐷𝐺𝜇 𝑒

𝑖𝑆QCD[𝜓,𝜓,𝐺]𝒪1(𝑥1) · · · 𝒪𝑛(𝑥𝑛).
(2.23)

Here 𝒵 is the partition function of QCD, and the path integral measure𝐷𝜓 is formally
the infinite-dimensional measure [50],∫︁

𝐷𝜓 =

∫︁ ∏︁
𝑥∈R4

𝑑𝜓(𝑥), (2.24)
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with equivalent definitions for 𝐷𝜓 and 𝐷𝐺𝜇
7. Eq. (2.23) allows one to compute any

information that is desired from the theory.
Despite the compact and deterministic form of Eq. (2.23), QCD is not a solved

theory. One may write down the equation describing any correlation function, but
explicitly evaluating the path integral that defines the correlator is often extremely
difficult. A particularly well-studied way to evaluate the path integral (Eq. (2.23)) is
by performing a perturbative expansion in the strong coupling,

𝛼𝑠 =
𝑔2

4𝜋
, (2.25)

and computing Feynman diagrams to a given order 𝑀 in perturbation theory in 𝛼𝑠.
Perturbative approaches yield a solution for 𝐶𝑛(𝑥1, ..., 𝑥𝑛) as an asymptotic series in
𝛼𝑠, truncated at order 𝛼𝑀𝑠 . If 𝛼𝑠 ≪ 1, this truncated perturbation series approximates
the actual result. However, if 𝛼𝑠 ̸≪ 1, then the perturbation expansion breaks down;
either the perturbation series expansion converges too slowly and 𝐶𝑛(𝑥1, ..., 𝑥𝑛) must
be calculated to higher order𝑀 than is computationally tractable; or the perturbation
series does not converge at all, and this technique does not allow for the calculation
of 𝐶𝑛(𝑥1, ..., 𝑥𝑛) at all.

After renormalization the strong coupling 𝛼𝑠(𝜇) runs with energy scale, 𝜇, with
its running described by the QCD 𝛽-function 𝛽𝑠,

𝜇
𝑑

𝑑𝜇
𝛼𝑠(𝜇) = 𝛽𝑠(𝛼𝑠). (2.26)

The strong coupling 𝛼𝑠(𝜇) is determined at all energies by 𝛽𝑠(𝛼𝑠) and by its experi-
mentally measured value at the Z boson mass 𝑚𝑍 [26, 51–54]

𝛼𝑠(𝑚𝑍) = 0.1179(9). (2.27)

The QCD 𝛽-function was first computed independently by Gross and Wilczek [40]
and Politzer [35] to one-loop in perturbation theory, with the result

𝛽𝑠(𝛼𝑠) = −
1

2𝜋

(︂
11

3
𝑁𝑐 −

2

3
𝑁𝑓

)︂
𝛼2
𝑠, (2.28)

where 𝑁𝑐 is the number of colors (𝑁𝑐 = 3 for QCD) and 𝑁𝑓 is the number of active
quark flavors (𝑁𝑓 = 6 for QCD at high energies). As 𝜇 passes each quark mass

7For compactness an integral over the additional degrees of freedom in 𝜓(𝑥) is suppressed, i.e.,
𝑑𝜓(𝑥) =

∏︀
𝛼,𝑎 𝑑𝜓

𝑎
𝛼(𝑥) where 𝛼, 𝑎 range over the spinor and color components of 𝜓.
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§ 2.2.2. Asymptotic Freedom

threshold in Table 2.3, the respective quark is integrated out of the theory, and 𝑁𝑓

decreases by one. For 𝑁𝑓 ≤ 6, observe that 11
3
(3)− 2

3
𝑁𝑓 > 0, hence8

𝛽𝑠(𝛼𝑠) < 0. (2.29)

As the scale 𝜇 increases, 𝛼𝑠(𝜇) will grow smaller, while as 𝜇 decreases, 𝛼𝑠(𝜇) will
increase. This behavior can be seen in Fig. 2.2, which shows the strong coupling as a
function of energy scale. This property of QCD is called asymptotic freedom. The
QCD coupling is small at high energies 𝜇 ≫ 1 GeV, and the theory is perturbative
at these scales. At lower energies 𝜇 . 1 GeV, the coupling will become large and
non-perturbative; for example, 𝛼𝑠(1 GeV) ≈ 0.59.
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Table 9.1: Unweighted and weighted pre-averages of –s(m2
Z) for each sub-

field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the ‰2 averaging method.
The same ‰2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
· decays & low Q2 0.1173± 0.0017 0.1174± 0.0009 0.1177± 0.0013
QQ̄ bound states 0.1181± 0.0037 0.1177± 0.0011 0.1175± 0.0011
PDF fits 0.1161± 0.0022 0.1168± 0.0014 0.1179± 0.0011
e+e≠ jets & shapes 0.1189± 0.0037 0.1187± 0.0017 0.1174± 0.0011
hadron colliders 0.1168± 0.0027 0.1169± 0.0014 0.1177± 0.0011
electroweak 0.1203± 0.0028 0.1203± 0.0016 0.1171± 0.0011
PDG 2023 (without lattice) 0.1175± 0.0010 0.1178± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023

α s
(Q

2 )

Q [GeV]

τ decay (N3LO)
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Figure 9.5: Summary of determinations of –s as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
–s(m2

Z) = 0.1180± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value
of –s(m2

Z), but also a clear signature and proof of the energy dependence of –s in full agreement

31st May, 2024

Figure 2.2. Status of determinations of the running coupling 𝛼𝑠 as a function of
the energy scale 𝑄, as of August 2023. Each data point represents a method of
determining 𝛼𝑠 at a given energy scale, with the order of perturbation theory used in
the extraction denoted in parentheses next to each method. This figure is taken from
the Particle Data Group’s 2024 Review of Particle Physics [26].

The renormalization group equations for 𝛼𝑠(𝜇) imply that it will become infinite

8Note that although Eq. (2.28) is only calculated to one-loop, this statement is general and holds
to all orders in perturbation theory.

9Throughout this thesis, strong coupling will be run to different scales using the RunDec 3 [55]
package, which integrates the renormalization group equation for 𝛼𝑠 (Eq. (2.26)) at 3-loop order
from 𝛼𝑠(𝑚𝑍) = 0.1179(9) to the desired scale.
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§ 2.3. Neutrino Physics

at some finite scale 𝜇; it has a Landau pole. This scale 𝜇 is called ΛQCD, and in MS,
has a numerical value of about ΛQCD ≈ 200 MeV [56]. This is called dimensional
transmutation: QCD generates a new mass scale independent of the quark masses,
which approximately sets the scale of hadronic interactions. For example, the mass
of the rho meson, the lightest hadronic vector resonance, is 770 MeV, which is the
same order of magnitude as ΛQCD.

Understanding QCD, therefore, requires non-perturbative methods to compute
QCD observables at low energies. This thesis will focus on one particular method,
LGT, which discretizes QCD on a Euclidean spacetime lattice and evaluates the path
integral numerically. LGT will be discussed in detail in Chapter 3.

2.3 Neutrino Physics

The Standard Model does not tell the entire story of the neutrino. In the Standard
Model, neutrinos are forbidden from having a mass term because of gauge invariance:
Standard Model masses are generated via the Higgs mechanism, and there is no
gauge-invariant Higgs coupling to the lepton doublet that can produce a neutrino
mass. However, it is experimentally known that neutrinos have mass, indicating that
BSM physics must generate the neutrino mass. It is unknown whether the neutrino
mass is Dirac or Majorana, or even how many of the Standard Model neutrinos are
massive: all that is known is that some of these neutrinos have mass.

There are a host of other mysteries about the nature of the neutrino. It is the
only chiral fermion in the Standard Model. Each other fermion has left- and right-
handed species that couple to one another to produce a massive Dirac fermion, and
the neutrino is the only particle with no such chiral partner. Every Standard Model
neutrino is left-handed, and every Standard Model antineutrino is right-handed [57].
Many BSM theories postulate the existence of a right-handed neutrino that is not
charged under 𝑆𝑈(3) × 𝑆𝑈(2)𝐿 × 𝑈(1) [58]. Such a particle is called sterile, as
conventional Standard Model probes may not detect it.

2.3.1 Neutrino masses

The origin of neutrino masses is not known, but it is enlightening to briefly sum-
marize a few mechanisms via which neutrino masses may be added to the Standard
Model. Suppose three generations of sterile right-handed neutrinos 𝜈𝑖𝑅 are added to
the Standard Model. As stated, the presence of 𝜈𝑅 cannot be detected under probes
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§ 2.3.1. Neutrino masses

other than gravity or the Higgs. The right-handed neutrinos can be added to the
Standard Model Lagrangian via the Yukawa couplings:

ℒ𝜈𝑅 ≡ 𝑖𝜈𝑅𝛾
𝜇𝐷SM

𝜇 𝜈𝑅 − 𝑦𝜈𝑖𝑗ℓ
𝑎𝑖
𝜖𝑎𝑏𝐻

†𝑏𝜈𝑗𝑅 + h.c. . (2.30)

After spontaneous symmetry breaking, Eq. (2.30) generates a Dirac mass term for
the neutrino

𝜈𝐿𝑚𝜈𝜈𝑅 + h.c. (2.31)

where the generation matrix 𝑚𝜈 can be computed as usual in terms of the Yukawa
𝑦𝜈 and the Higgs vev 𝑣.

There are two types of Lorentz-invariant mass terms that a spinor may have: a
Dirac mass term couples a fermion to its corresponding antifermion, and is invariant
under all symmetries the fermion is charged under; a Majorana mass term couples a
fermion to itself, and is not invariant under the symmetries the fermion is charged
under. These masses are explained further in Appendix B.4. A Majorana mass term
may be added to the Standard Model Lagrangian depending on the quantum numbers
of the right-handed neutrino. If 𝜈𝑅 is charged under lepton number (if lepton number
is conserved), then adding a Majorana mass term is forbidden, and the Lagrangian
describing the theory is ℒSM + ℒ𝜈𝑅 . The neutrino is then a Dirac particle whose
right-handed components are not charged under the Standard Model gauge group.

If, instead, the right-handed neutrino is not charged under lepton number, then a
Majorana mass may be added to the theory

ℒ𝑀 ≡ −𝑀𝑖𝑗𝜖𝑎̇𝑏̇𝜈
𝑖𝑎̇
𝑅 𝜈

𝑗𝑏̇
𝑅 + h.c. , (2.32)

and the full theory is described by the Lagrangian ℒSM + ℒ𝜈𝑅 + ℒ𝑀 . Here 𝜖𝑎̇𝑏̇ is the
2× 2 antisymmetric tensor, and the spinor dot notation is detailed in Appendix B.4.
Embedding the Weyl spinors 𝜈𝐿 and 𝜈𝑅 into Dirac spinors

𝜈𝐿
Dirac−−−→

(︃
𝜈𝐿𝑎

𝜖𝑎̇𝑏̇𝜈†
𝐿𝑏̇

)︃
𝜈𝑅

Dirac−−−→
(︃
𝜖𝑎𝑏𝜈

†𝑏
𝑅

𝜈 𝑎̇𝑅

)︃
(2.33)
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§ 2.3.1. Neutrino masses

makes it clear the effect that the Majorana mass term 𝑀 has on the neutrino mass:

ℒ𝜈𝑅 + ℒ𝑀 ⊃ −(𝜈𝐿𝑎𝑚𝜈𝜈
†𝑎
𝑅 + h.c.)− 𝜈 𝑎̇𝑅𝑀𝜈𝑅𝑎̇

= −1

2
(𝜈𝐿𝑚𝜈𝜈𝑅 + 𝜈𝑅𝑚𝜈𝜈𝐿)− 𝜈𝑅

𝑀

2
𝜈𝑅

= −1

2

(︁
𝜈𝐿 𝜈𝑅

)︁(︃ 0 𝑚𝜈

𝑚𝜈 𝑀

)︃(︃
𝜈𝐿

𝜈𝑅

)︃
,

(2.34)

where the generation indices are suppressed for brevity. When 𝑚𝜈 and 𝑀 are diago-
nalized (the neutrinos are rotated into the mass basis), the light and heavy particles
have masses on the order of:

𝑚𝜈,light ≈
𝑚2
𝜈

𝑀
𝑚𝜈,heavy ≈𝑀 (2.35)

This is called the seesaw mechanism: the light mass eigenstates are the left-handed
neutrinos which have been observed, and the heavy eigenstates are the sterile right-
handed neutrinos [59, 60]. When the mass scale 𝑀 increases, the heavy particle gets
heavier, but the light particle gets lighter.

The seesaw mechanism provides an elegant solution to the naturalness problem of
why the left-handed neutrinos have such light masses [61, 62]. 𝑀 is naturally a large
parameter: it is coupled to a dimension-3 operator sensitive to the theory’s UV cutoff.
The Yukawa couplings 𝑦𝜈 should naturally be expected to be on the same order of
magnitude as the other Yukawa couplings 𝑦𝑒, 𝑦𝑑, and 𝑦𝑢, indicating that the masses
of the neutrinos should be the same order of magnitude as the masses of the other
Standard Model fermions. If the right-handed neutrinos were not sterile, or if they
were charged under lepton number, it would not be possible to add a Majorana mass
term to the Lagrangian, and the left-handed neutrinos would have mass of order 𝑚𝜈 .
However, when a Majorana mass term is present, the mixing between the left- and
right-handed neutrinos lowers the mass of the light neutrinos to be very small, in line
with what is observed experimentally, and consistent with naturalness expectations.

Right-handed neutrinos do not need to be added to the Standard Model to de-
scribe neutrino masses. Left-handed neutrinos can still generate their mass from the
dimension-5 Weinberg operator [63, 64]:

ΔℒSM =
𝑐5
Λ
𝜖𝑖𝑗(𝜖𝑎𝑏ℓ

𝑎
𝑖𝐻

𝑏)(𝜖𝑐𝑑ℓ
𝑐
𝑗𝐻

𝑑), (2.36)

where 𝜖𝑖𝑗 is the 2-dimensional antisymmetric tensor with 𝜖12 ≡ −𝜖21 ≡ 1. The heavy
scale Λ is the UV cutoff of the theory. It provides a natural reason for the light
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§ 2.3.2. Neutrino oscillations

neutrino mass: the order 1 Wilson coefficient 𝑐5 is suppressed by the heavy scale
Λ, as the neutrino mass will be proportional to 𝑐5

Λ
. The Weinberg operator is also

generated by integrating heavy right-handed neutrinos out of the theory. In this
case, the scale Λ is identified with the Majorana mass of the right-handed neutrinos,
Eq. (2.32).

The existence of neutrino masses implies the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix [65, 66], the leptonic analog of the CKM matrix, is non-
trivial, as it describes the difference in flavor eigenstates for electrons and neutrinos.
In the Standard Model, the PMNS matrix is trivial because there is no barrier to ro-
tating the neutrino flavors in the same way as the electron flavors, as Standard Model
neutrinos have no mass coupling that prevents this. The PMNS matrix has the same
physics as the CKM matrix and describes couplings between the electrons and the
neutrinos but is conventionally defined differently than the CKM matrix. Recall the
CKM matrix is defined as the difference in rotations between the mass and flavor
eigenbases for the up and down quarks. In contrast, the PMNS matrix 𝑈 is defined
as simply the rotation that takes neutrinos into their mass eigenbasis:

|𝜈𝑎⟩ = 𝑈𝑎𝑖|𝜈𝑖⟩ (2.37)

where the 𝑎 ∈ {𝑒, 𝜇, 𝜏} index denotes flavor and the 𝑖 ∈ {1, 2, 3} index denotes
mass eigenstate. Note that the mass eigenbasis {|𝜈𝑖⟩}3𝑖=1 is not necessarily ordered
according to mass; the neutrino mass ordering is discussed next.

2.3.2 Neutrino oscillations

The smoking gun that proved the existence of non-zero neutrino masses was the
observation of neutrino oscillations [67–69] by the Super-Kamiokande Collabora-
tion [16] in 1998 and the Sudbury Neutrino Observatory (SNO) Collaboration [70]
in 2002. Neutrino oscillations are flavor-mass eigenstate oscillations that neutrinos
undergo as they propagate from one place to another. They are detected by studying
a known source of a single neutrino type and seeing how these neutrinos interact
with the same lepton type (i.e., a 𝜈𝑒 source interacting with electrons) after they
have traveled a far distance; if some of the neutrinos have changed flavor, there will
be fewer interactions with this lepton source than one would expect. A small but
nonzero mass is needed for this phenomenon to occur because the neutrino’s flavor
eigenstates will differ from its mass eigenstates.

The frequency of neutrino oscillations is proportional to the mass-squared differ-
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§ 2.3.2. Neutrino oscillations

ence Δ𝑚2
𝑖𝑗 = 𝑚2

𝑖 − 𝑚2
𝑗 between the neutrino mass eigenstates |𝜈𝑖⟩ and |𝜈𝑗⟩. The

mass-squared differences are known through experiments and are known to be non-
zero. This does not provide an absolute value for any neutrino mass, only a mass
difference between the different mass eigenstates. Different neutrino sources allow
experimental access to study the different mass-squared mixings, Δ𝑚2

𝑖𝑗. There are
two main types of natural neutrino sources.

1. Solar neutrinos [71] are predominantly electron neutrinos 𝜈𝑒, produced from
fusion reactions in the sun, 𝑝+𝑝+ → 𝑑+𝑒+𝜈𝑒 where 𝑑+ is a deuteron. SNO first
observed oscillations in solar neutrinos.

2. Atmospheric neutrinos [72] are produced from cosmic ray interactions and are
primarily muon neutrinos 𝜈𝜇 because of the decay 𝜋+ → 𝜇+𝜈𝜇. Super-Kamiokande
first observed neutrino oscillations in atmospheric neutrinos.

Neutrino oscillation data for atmospheric and solar neutrinos is consistent with the
initial neutrinos oscillating only into a single other flavor, not both remaining flavors
(i.e., solar neutrino oscillations imply the electron neutrino oscillates primarily with
either the muon neutrino or the tau neutrino, but not both), hence each corresponds
to a single value of the mass-squared matrix Δ𝑚2

𝑖𝑗. Two conventions are typically
adopted in the definition of the mass eigenstates: first, that they are ordered so that
the solar neutrino mass probes the mass difference Δ𝑚2

21; and second, that 𝑚1 < 𝑚2,
i.e., Δ𝑚2

12 > 0. Atmospheric neutrino oscillations either correspond to Δ𝑚2
31 or Δ𝑚2

32;
data shows that this splitting is much larger than Δ𝑚2

21 [73]. This means that the
neutrino masses have two possible hierarchies:

𝑚1 < 𝑚2 ≪ 𝑚3 𝑚3 ≪ 𝑚1 < 𝑚2. (2.38)

The first hierarchy is called the normal hierarchy (NH), and the second is called
the inverted hierarchy (IH) [74]. Estimates of Δ𝑚2

21 and Δ𝑚2
31 from Ref. [73] are

given in Table 2.4.

Δ𝑚2
21 (eV2) Δ𝑚2

31 (eV2), NH Δ𝑚2
23 (eV2), IH

7.50+0.19
−0.17 × 10−5 2.458+0.046

−0.047 × 10−3 2.448+0.047
−0.047 × 10−3

Table 2.4. Mass splittings between the different neutrino mass eigenstates assuming
a NH and IH. The mass splitting Δ𝑚2

21 is independent of which hierarchy is assumed.
Results are sourced from Ref. [73].

Many specifics about the nature of the neutrino remain unknown. The only way
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to answer these questions is to experimentally understand the neutrino’s properties.
As such, many theoretical efforts to understand the neutrino focus on interpreting
experimental results and establishing pipelines to determine the physics that can be
extracted from hypothesized experimental results. Perhaps the largest such effort
underway is the search for neutrinoless double 𝛽 (0𝜈𝛽𝛽) decay, a hypothetical
decay that, if observed, would definitively prove that the neutrino is a Majorana
particle. 0𝜈𝛽𝛽 decay has been a large focus of my thesis research, which will be
discussed extensively in Chapter 5.
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Chapter 3

Lattice Gauge Theory

Lattice gauge theory is a formalism that allows for the non-perturbative computa-
tion of matrix elements by explicitly evaluating the path integral numerically. This
chapter will define LGT and discuss some of its fundamental features. The canonical
example used throughout this section will be QCD. Section 3.1 introduces LGT and
its degrees of freedom. Section 3.2 discusses discretizations of the fermion field. The
fermion doubling problem will be introduced, and some basic actions that circumvent
the doubling problem. Section 6.7 introduces the basics of spectroscopy in LGT,
and Section 3.4 discusses sampling of gauge fields. This chapter concludes with a
discussion of statistics in LGT calculations (Section 3.5).

3.1 Introduction to LGT

3.1.1 Discretization

Consider the path integral for an arbitrary QCD correlation function, Eq. (2.23),

𝐶𝑛(𝑥1, ..., 𝑥𝑛) =
1

𝒵

∫︁
𝐷𝜓𝐷𝜓𝐷𝐺𝜇 𝑒

−𝑆QCD[𝜓,𝜓,𝐺𝜇]𝒪1(𝑥1) · · · 𝒪𝑛(𝑥𝑛) (3.1)

where 𝑆QCD is the Euclidean action of the theory. This path integral is formalized in
Euclidean space after Wick rotation1 in order to use Euclidean geometry and have
an exponentially decaying action 𝑒−𝑆QCD . The remainder of this thesis will work in
Euclidean space unless otherwise specified. The advantage of working in Euclidean
space is that the density 1

𝒵𝐷𝜓𝐷𝜓𝐷𝐺𝜇 𝑒
−𝑆QCD[𝜓,𝜓,𝐺𝜇] becomes a probability density,

1Here Wick rotation means the redefinition of the time variable, 𝑡 → 𝑖𝜏 , in order to make the
metric Euclidean. After this variable redefinition, the theory is defined via its analytic continuation
from the imaginary axis to the real axis, hence the name “rotation”. The variable 𝑡 denotes Euclidean
time unless otherwise specified.
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and correlation functions become integrals against this probability distribution. The
difficulty lies in the dimension of this distribution: as formulated, it is an integral
over an uncountable number of dimensions (each point 𝑥𝜇 in spacetime, Eq. (2.24))
with no closed form solution.

To evaluate Eq. (3.1), lattice methods discretize Euclidean spacetime (R4) with a
4-dimensional lattice of spatial size 𝐿 ∈ Z+ and temporal size 𝑇 ∈ Z+, with isotropic
lattice spacing 𝑎 between the sites2:

Λ ≡ {𝑎(𝑛𝑥, 𝑛𝑦, 𝑛𝑧, 𝑛𝑡) ∈ (𝑎Z)4 : 1 ≤ 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ≤ 𝐿, 1 ≤ 𝑛𝑡 ≤ 𝑇 }. (3.2)

Note that Λ is equivalently indexed by 𝑛 ∈ Λ and 𝑎𝑛 ∈ Λ; this notation will often
be abused WLOG. LGT calculations primarily use lattice units, where the lattice
spacing 𝑎 defines the length scale and is set equal to 1. Upon discretization, the path
integral measure becomes finite-dimensional:∫︁

𝐷𝜓 −→
∫︁ ∏︁

𝑎𝑛∈Λ

𝑑𝜓(𝑛) (3.3)

where 𝜓(𝑛) represents the value of the field at site 𝑥 = 𝑎𝑛 ∈ Λ. The correlation
functions of interest (Eq. (3.1)) may now be explicitly computed with numerical
methods like Markov Chain Monte Carlo (MCMC), which is explored in Section 3.4.

Note that the lattice theory simultaneously makes two approximations: the finite-
volume approximation and the discretization approximation. As the box size 𝑉 ≡
vol(Λ) = 𝐿3 × 𝑇 is made larger and the lattice spacing 𝑎 is made smaller, the ap-
proximation to the continuum path integral becomes better. The tradeoff is that this
increases the path integral’s dimensionality, making it more difficult to compute.

The volume 𝑉 and the lattice spacing 𝑎 must be removed from the calculation to
compute quantities in the continuum and infinite-volume limit3. To do this, the de-
sired observables 𝒪(𝑎, 𝑉 ) are explicitly computed in the discretized theory, at several
different values for the lattice volume and spacing4. These different samples are then

2This thesis will only consider isotropic lattice geometries, where the lattice spacing in the spatial
direction equals the lattice spacing in the temporal direction. Anisotropic and random geometries
have also been studied and are discussed in Refs. [75, 76].

3Additional parameters like the quark mass are often modified in the lattice action as well, and
extrapolated to their physical values at the end of the calculation alongside 𝑎 and 𝑉 .

4Note that lattice simulations on a computer are inherently dimensionless and work with lattice
units 𝑎 = 1. In order to compare to experiment or other lattice calculations, the scale 𝑎 is deter-
mined by comparison of a chosen observable to experiment or theory. This is discussed further in
Section 3.3.4.
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used to extrapolate the result to the continuum, infinite-volume limit,

lim
𝑉 ↑∞

lim
𝑎↓0
𝒪(𝑎, 𝑉 ), (3.4)

which defines the infinite-volume, continuum limit observable that one could extract
if the path integral of Eq. (3.1) could be computed analytically.

3.1.2 Lattice Degrees of Freedom

The degrees of freedom one considers in LGT differ slightly from those of continuum
theory. For concreteness, consider continuum QCD, which has three fields of interest:
the quark field 𝜓(𝑥), the anti-quark field 𝜓(𝑥), and the gauge field 𝐺𝜇(𝑥). The quark
field 𝜓(𝑥) and antiquark field 𝜓(𝑥) transform respectively in the fundamental and
antifundamental representation of 𝑆𝑈(3) under gauge transformation Ω ∈ 𝑆𝑈(3) as,

𝜓(𝑥)→ Ω(𝑥)𝜓(𝑥), 𝜓(𝑥)→ 𝜓(𝑥)Ω†(𝑥). (3.5)

The gauge field acts as a connection and allows one to parallel transport the quark
field to different positions with the Wilson line:

𝑊 (𝑥, 𝑦) = P exp

(︂
𝑖

∫︁ 𝑦

𝑥

𝑑𝑧𝜇𝐺𝜇(𝑧)

)︂
. (3.6)

The Wilson line transforms under a gauge transformation Ω(𝑥) ∈ 𝑆𝑈(3) as𝑊 (𝑥, 𝑦)→
Ω(𝑥)𝑊 (𝑥, 𝑦)Ω†(𝑦), which ensures that a quantity like 𝑊 (𝑥, 𝑦)𝜓(𝑦) transforms under
𝑆𝑈(3) like 𝜓(𝑥).

On the lattice, it is advantageous to instead consider an analog of the Wilson line
as the fundamental degree of freedom for the gauge field, as this is easier to work with
and makes gauge invariance more manifest. Because the lattice spacing 𝑎 provides
a natural unit of length and a finite number of directions that are traversable from
each point on the lattice, we work with the link variables 𝑈𝜇(𝑛):

𝑈𝜇(𝑛) ≡ 𝑊 (𝑎𝑛, 𝑎(𝑛+ 𝜇̂)) (3.7)

where 𝜇̂ ∈ {0̂, 1̂, 2̂, 3̂} is the unit vector in the 𝜇 direction. Link variables transform
under the gauge transformation Ω(𝑛) ≡ Ω(𝑥 = 𝑎𝑛) ∈ 𝑆𝑈(3) as

𝑈𝜇(𝑛)
Ω−→ Ω(𝑛)𝑈𝜇(𝑛)Ω

†(𝑛+ 𝜇̂). (3.8)
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§ 3.1.2. Lattice Degrees of Freedom

Note that when evaluating lattice-valued fields, notation will be abused and indexing
the field at 𝑛 will correspond to indexing the continuum field at 𝑥 = 𝑎𝑛. One can
likewise define a negative orientation for the link variables,

𝑈−𝜇(𝑛) ≡ 𝑊 (𝑎𝑛, 𝑎𝑛− 𝑎𝜇̂) = 𝑈 †𝜇(𝑛− 𝜇̂), (3.9)

which satisfies the gauge transformation property 𝑈−𝜇(𝑛)
Ω−→ Ω(𝑛)𝑈−𝜇(𝑛)Ω

†(𝑛 − 𝜇̂),
as one would expect. The relation 𝑈−𝜇(𝑛) = 𝑈 †𝜇(𝑛−𝜇̂) implies that 𝑈𝜇(𝑛) and 𝑈−𝜇(𝑛)
are not independent gauge fields; rather, 𝑈−𝜇(𝑛) is simply a variable redefinition of
𝑈𝜇(𝑛) that is often used for convenience. The field 𝑈𝜇(𝑛) is referred to as the gauge
field, as it contains the same information as 𝐺𝜇(𝑎𝑛); they are related as

𝑈𝜇(𝑛) = P exp

(︂
𝑖

∫︁ 𝑎𝑛+𝑎𝜇̂

𝑎𝑛

𝑑𝑧𝜇𝐺𝜇(𝑧)

)︂
𝑎↓0−−→ 𝑒𝑖𝑎𝐺𝜇(𝑎𝑛) = 1 + 𝑖𝑎𝐺𝜇(𝑎𝑛) (3.10)

where the equality on the right-hand side is only valid in the 𝑎 ↓ 0 limit.

The natural gauge-invariant quantity one can construct from the gauge field is the
plaquette, the ordered product of the links around each square on the lattice,

𝒫𝜇𝜈(𝑛) ≡ 𝑈𝜇(𝑛)𝑈𝜈(𝑛+ 𝜇̂)𝑈−𝜇(𝑛+ 𝜇̂+ 𝜈)𝑈−𝜈(𝑛+ 𝜈)

= 𝑈𝜇(𝑛)𝑈𝜈(𝑛+ 𝜇̂)𝑈 †𝜇(𝑛+ 𝜈)𝑈 †𝜈(𝑛).
(3.11)

The plaquette is defined on each square in the lattice, and the set of all plaquettes
is {𝒫𝜇𝜈(𝑛) : 𝑛 ∈ Λ, 𝜇 < 𝜈}. Each plaquette measures the circulation of the gauge
field around each closed loop, which has the appealing interpretation as the gauge
flux through each loop on the lattice,

𝒫𝜇𝜈(𝑛)
⃒⃒⃒⃒
𝑎↓0

= 𝑒𝑖𝑎
2 𝐹𝜇𝜈(𝑎𝑛)+𝒪(𝑎3). (3.12)

The plaquette contains information about the continuum field strength. The simplest
action for a gauge field is the Wilson gauge action [77],

𝑆𝑔[𝑈 ] = 𝛽
∑︁
𝑛∈Λ

∑︁
𝜇<𝜈

(︂
1− 1

𝑁
ReTr𝒫𝜇𝜈(𝑛)

)︂
. (3.13)

To summarize, fermion fields live on the links of the lattice and are much the same
as their continuum counterparts. However, the algebra-valued continuum gauge field
𝐺𝜇(𝑎𝑛) is replaced on the lattice with the group-valued gauge field 𝑈𝜇(𝑛), which lives
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§ 3.2. Discretizing the QCD action

Figure 3.1. Lattice gauge theory setup. Here 𝜓(𝑛) (green) is the fermion field that
lives on the sites of the lattice, 𝑈𝜇(𝑛) (orange, magenta) is the gauge field which lives
on the links of the lattice, and 𝒫𝜇𝜈(𝑛) (red) is the plaquette and lives on the faces of
the lattice.

on the links of the lattice. The continuum field strength 𝐹𝜇𝜈(𝑎𝑛) is likewise replaced
with the plaquette 𝒫𝜇𝜈(𝑛), which lives on each square of the lattice. The lattice setup
is depicted in Figure 3.1.

3.2 Discretizing the QCD action

Now that the degrees of freedom have been introduced, the QCD action must be
discretized. The basic ideas of discretization can be found in a simpler example:
discretizing the derivative of a field 𝜑. Recall the definition of the derivative in the
continuum:

𝜕𝜇𝜑(𝑥) = lim
𝑎↓0

𝜑(𝑥+ 𝑎𝜇̂)− 𝜑(𝑥)
𝑎

. (3.14)

A discretization of the derivative is defined as any operator 𝜕(𝑎)𝜇 that has the correct
continuum limit:

lim
𝑎↓0

𝜕(𝑎)𝜇 𝜑(𝑛)

⃒⃒⃒⃒
𝑛=𝑥

= 𝜕𝜇𝜑(𝑥). (3.15)

The simplest possible discretization of 𝜕𝜇 removes the limit in Eq. (3.14) and defines
the derivative at finite lattice spacing as

𝜕(𝑎)𝜇 𝜑(𝑛) ≡ 𝜑(𝑛+ 𝜇̂)− 𝜑(𝑛)
𝑎

. (3.16)
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§ 3.2. Discretizing the QCD action

This is a valid discretization of the derivative because it has the correct continuum
limit.

The definition of the discretized derivative, Eq. (3.16), is not unique. This can be
immediately seen because the symmetric derivative,

𝜕(𝑎)𝜇 𝜑(𝑛) ≡ 𝜑(𝑛+ 𝜇̂)− 𝜑(𝑛− 𝜇̂)
2𝑎

, (3.17)

has the correct continuum limit and does not equal Eq. (3.16). There are an infinite
number of discretizations of 𝜕𝜇𝜑(𝑛) because given a valid discretization, one can
arbitrarily add additional terms to the discretization as long as they go to zero in the
continuum limit5.

Although there are infinite possible discretizations of 𝜕𝜇, there are usually reasons
to prefer one definition. Although all discretizations approach the continuum defini-
tion as 𝑎 ↓ 0, each discretization (and each observable for a given discretization of the
action) approaches this limit differently. Some definitions approach the continuum
limit quickly, while others take much longer. Choosing a definition that approaches
the continuum limit quickly is often beneficial because it means that the 𝑎 ↓ 0 ex-
trapolation will be simpler to perform and that the results of a calculation at finite
lattice spacing may look more directly like the continuum calculation.

Consider the difference between 𝜕
(𝑎)
𝜇 𝜑(𝑛) and 𝜕

(𝑎)
𝜇 𝜑(𝑛) as 𝑎 ↓ 0. Each definition

may be Taylor expanded to determine its approach to the continuum limit. For the
forward derivative, one determines the corrections to the continuum definition of 𝜕𝜇𝜑
by Taylor expanding the definition:

𝜕(𝑎)𝜇 𝜑(𝑛) =
(𝜑(𝑛) + 𝑎𝜕𝜇𝜑(𝑛) +

1
2
𝑎2𝜕2𝜇𝜑(𝑛) +𝒪(𝑎3))− 𝜑(𝑛)
𝑎

= 𝜕𝜇𝜑(𝑛) +𝒪(𝑎). (3.19)

The 1
2
𝑎2𝜕2𝜇𝜑(𝑛) term is the first correction to the derivative and enters as an 𝒪(𝑎)

correction to the continuum definition. However, upon performing the same expan-
sion with the symmetric derivative, observe that the corrections to the continuum

5For example, for 𝑛 ∈ Z>0 and 𝑐 ∈ C, the operator

𝜕(𝑎)𝜇 + 𝑐 𝑎𝑛 (3.18)

is a discretization of 𝜕𝜇, because as 𝑎 ↓ 0 the polynomial terms in 𝑎 vanish.
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§ 3.2.1. A First Discretization: the Doubling Problem

derivative begin to appear at higher order in 𝑎:

𝜕(𝑎)𝜇 𝜑(𝑛)

=
(𝜑(𝑛) + 𝑎𝜕𝜇𝜑(𝑛) +

1
2
𝑎2𝜕2𝜇𝜑(𝑛))− (𝜑(𝑛)− 𝑎𝜕𝜇𝜑(𝑛) + 1

2
𝑎2𝜕2𝜇𝜑(𝑛)) +𝒪(𝑎3)

2𝑎

= 𝜕𝜇𝜑(𝑛) +𝒪(𝑎2).
(3.20)

The 1
2
𝑎2𝜕2𝜇𝜑(𝑛) terms cancel out, so the leading order corrections to the continuum

definition enter at 𝒪(𝑎2). This definition is 𝒪(𝑎2)-improved; for small 𝑎, the sym-
metric derivative provides a better discretization than the forward derivative. One
can extend this argument to higher-order in 𝑎 and define a derivative improved to a
given order in the lattice spacing.

The same ideas hold when discretizing the QCD action. There are infinitely many
possible discretizations, which will have advantages and drawbacks. This thesis will
explore the naïve discretization of the QCD action, then two types of discretizations:
Wilson and Wilson-Clover.

3.2.1 A First Discretization: the Doubling Problem

The first discretization of the QCD action that is considered is the naïve discretiza-
tion, obtained by simply discretizing the covariant derivative with a symmetric dif-
ference and the integral with a discrete sum,

𝐷𝜇𝜓(𝑥)
𝑥=𝑎𝑛−−−→ 𝑈𝜇(𝑛)𝜓(𝑛+ 𝜇̂)− 𝑈 †𝜇(𝑛− 𝜇̂)𝜓(𝑛− 𝜇̂)

2𝑎
,∫︁

𝑑4𝑥
𝑥=𝑎𝑛−−−→ 𝑎4

∑︁
𝑛∈Λ

.
(3.21)

The gauge fields 𝑈𝜇(𝑛) appear in order to enforce that the derivative is well-defined
and that 𝐷𝜇𝜓(𝑥) transforms covariantly as 𝜓(𝑥). With these replacements, the dis-
cretized fermion action 𝜓(𝛾𝜇𝐷𝜇 +𝑚)𝜓 becomes

𝑆naive = 𝑎4
∑︁
𝑛∈Λ

(︃
𝜓(𝑛)𝛾𝜇

𝑈𝜇(𝑛)𝜓(𝑛+ 𝜇̂)− 𝑈 †𝜇(𝑛− 𝜇̂)𝜓(𝑛− 𝜇̂)
2𝑎

+𝑚𝜓(𝑛)𝜓(𝑛)

)︃
= 𝑎4

∑︁
𝑛,𝑚∈Λ

𝜓
𝑎

𝛼(𝑛)𝒟𝑎𝑏𝛼𝛽(𝑛,𝑚)𝜓𝑏𝛽(𝑚).

(3.22)
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§ 3.2.1. A First Discretization: the Doubling Problem

The operator 𝒟𝑎𝑏𝛼𝛽(𝑛,𝑚) is the Dirac operator for the naïve discretization. It is the
kernel that allows the action to be written as a bilinear in 𝜓 and 𝜓, which explicitly
allows the fermions to be integrated out of the theory in LGT calculations (this will be
discussed further in Section 6.7). Each discretization will have its own Dirac operator,
vital to implementing the calculation.

It is illuminating to Fourier transform the Dirac operator and study its momentum-
space behavior:

𝒟̃(𝑝, 𝑞) ≡
∑︁
𝑎𝑛,𝑎𝑚

𝑒−𝑖𝑎(𝑝·𝑛−𝑞·𝑚)𝒟(𝑛,𝑚) = 𝛿(4)(𝑝− 𝑞)𝒟̃(𝑝) (3.23)

where 𝒟(𝑝) is the result after splitting off the 𝛿-function,

𝒟̃(𝑝) = 𝑚+
𝑖

𝑎

∑︁
𝜇

𝛾𝜇 sin(𝑎𝑝𝜇). (3.24)

Periodicity of the position-space Dirac operator implies periodicity of the momentum-
space Dirac operator: the domain of the momentum-space Dirac operator is called
the Brillouin zone. For antiperiodic boundary conditions on a 𝐿3 × 𝑇 lattice, the
Brillouin zone is [78]

𝑝𝜇 ∈ Λ𝑝 ≡
{︃(︂

2𝜋

𝑎𝐿𝜇
(𝑘𝜇 + 𝑏𝜇)

)︂
𝜇

∈ R4 : 𝑘𝜇 ∈
{︂
−𝐿𝜇

2
+ 1, ..., 𝐿𝜇 − 1, 𝐿𝜇

}︂}︃
(3.25)

where 𝐿𝜇 = (𝐿,𝐿, 𝐿, 𝑇 ) and the vector 𝑏𝜇 = (0, 0, 0, 1
2
) accounts for the antiperiodic

boundary conditions in time. The inverse of the Dirac operator is the propagator
𝑆(𝑝); poles in the propagator give particle masses in the theory (not considering mass
renormalization), which are equivalently zeroes of the Dirac operator.

Consider the massless Dirac operator. When 𝑝𝜇 takes a value of either 0 or 𝜋
in any component, sin(𝑎𝑝𝜇) vanishes identically. This implies that at any of the 16
values

𝑝𝜇 ∈
{︂(︂

0, 0, 0, 0

)︂
,

(︂
0, 0, 0,

𝜋

𝑎

)︂
,

(︂
0, 0,

𝜋

𝑎
, 0

)︂
, ...,

(︂
𝜋

𝑎
,
𝜋

𝑎
,
𝜋

𝑎
,
𝜋

𝑎

)︂}︂
, (3.26)

the Dirac operator (Eq. (3.24)) has a zero, and this represents a particle in the
theory. The analysis begins in the continuum case with only a single massless particle
(corresponding to a pole at (0, 0, 0, 0) in momentum space) which thence produces
15 additional particles. These extra particles are called doublers, and they are an
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§ 3.2.2. Wilson and Wilson-Clover Fermions

artifact of the discretization of the theory. Despite attempting to write down a theory
with a single particle, the periodicity of the lattice has yielded these extra unphysical
modes.

3.2.2 Wilson and Wilson-Clover Fermions

The Wilson discretization of the QCD action removes the doublers from the theory
by explicitly gapping them out: this can be done by augmenting the Dirac operator
𝒟̃(𝑝) with an additional term that removes the zero at each of the 15 unphysical
modes. Explicitly, one adds the Wilson term to the naïve Dirac operator to form
the Wilson-Dirac operator [77],

𝒟𝑊 (𝑛,𝑚) ≡ 𝒟(𝑛,𝑚)− 𝑎𝑟
2

1

2𝑎2

∑︁
𝜇

(︀
𝑈𝜇(𝑛)𝛿𝑛+𝜇̂,𝑚 − 2𝛿𝑛,𝑚 + 𝑈 †𝜇(𝑛− 𝜇̂)𝛿𝑛−𝜇̂,𝑚

)︀
, (3.27)

where here 𝑟 ∈ (0, 1] is a free parameter. The Wilson term is a discretization of the
covariant Laplacian,

− 𝑎𝑟

2
𝜓𝐷2𝜓 (3.28)

which is an irrelevant operator that may be added to a lattice action without affecting
the continuum limit. The corresponding momentum-space Dirac operator is

𝒟̃𝑊 (𝑝) = 𝑚+
𝑖

𝑎

∑︁
𝜇

𝛾𝜇 sin(𝑎𝑝𝜇) +
𝑟

𝑎

∑︁
𝜇

(1− cos(𝑎𝑝𝜇)) . (3.29)

Observe the effect the Wilson term has on the theory: it lifts the degeneracy of the
doublers. In the massless theory, the 15 doubler modes with 𝑝double𝜇 ̸= (0, 0, 0, 0) and
𝑝double𝜇 ≡ (0, 0, 0, 0) mod 𝜋

𝑎
no longer specify a zero of the Dirac operator: instead,

𝒟̃𝑊 (𝑝double) is non-zero. The Wilson action describes only a single particle rather
than 16 particles.

The Wilson action finds utility in its simplicity: it is easy to implement and un-
derstand and efficiently removes the doublers from the theory. However, it does leave
several properties to be desired. The Wilson term explicitly breaks chiral symmetry,
even for 𝑚 = 0. The naïve massless Dirac operator 𝒟 couples left-handed quarks to
left-handed quarks, and vice versa for right-handed quarks:

𝜓𝒟𝜓 = 𝜓𝐿𝒟𝜓𝐿 + 𝜓𝑅𝒟𝜓𝑅. (3.30)

For the Wilson-Dirac operator, this symmetry breaks. Expand 𝒟𝑊 = 𝒟 + 𝛿𝒟𝑊 ,
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§ 3.2.2. Wilson and Wilson-Clover Fermions

where 𝛿𝒟𝑊 is the discretization of the covariant Laplacian given in Eq. (3.27). This
term couples together left-handed quarks with right-handed quarks,

𝜓𝛿𝒟𝑊𝜓 = 𝜓𝐿𝛿𝒟𝑊𝜓𝑅 + 𝜓𝑅𝛿𝒟𝑊𝜓𝐿, (3.31)

which breaks chiral symmetry. In general, it remains a difficult problem to formu-
late a discretization of QCD with chiral symmetry and remove the doublers from the
theory because of the Nielsen-Ninomiya no-go theorem [79]. The theorem states that
it is impossible to have a fermion action on a four-dimensional lattice that respects
chiral symmetry, is local, and has no doublers. Attempts to introduce a fermion dis-
cretization that respects chiral symmetry must circumvent one of the assumptions
of the no-go theorem. A clear example of this is the domain-wall fermion dis-
cretization, which realizes four-dimensional chiral fermions as edge states living on a
five-dimensional bulk space [80, 81]. Domain-wall fermions will be used in Chapter 5
because of their chiral symmetry properties.

The Wilson action is not improved: corrections to the continuum QCD action
enter at 𝒪(𝑎). From the Wilson action, one can construct a 𝒪(𝑎)-improved action: it
is known as the Wilson-Clover action. Two additional dimension-5 operators can
be added to the Wilson action to remove the 𝒪(𝑎) discretization artifacts: 𝜓 /𝐷 /𝐷𝜓,
and the Pauli operator 𝜓𝜎𝜇𝜈𝐹 𝜇𝜈𝜓. The first term provides no additional information,
as /𝐷 /𝐷 = 𝐷2 + 1

2
𝜎𝜇𝜈𝐹

𝜇𝜈 , hence to improve the action, one thus must consider adding
a discretization of 𝜓𝜎𝜇𝜈𝐹 𝜇𝜈𝜓 with the appropriate coefficient to remove the 𝒪(𝑎)
artifacts.

The field strength 𝐹𝜇𝜈 can be discretized with the clover term 𝑄𝜇𝜈(𝑛),

𝐹𝜇𝜈(𝑥) −→ −
𝑖

8𝑎2
(𝑄𝜇𝜈(𝑛)−𝑄𝜈𝜇(𝑛)) . (3.32)

The clover term is a sum of plaquettes oriented in a “clover” geometry around the site
𝑛,

𝑄𝜇𝜈(𝑛) = 𝒫𝜇,𝜈(𝑛) + 𝒫𝜈,−𝜇(𝑛) + 𝒫−𝜇,−𝜈(𝑛) + 𝒫−𝜈,𝜇(𝑛). (3.33)

The clover term is depicted in Figure 3.2.

The full 𝒪(𝑎2) improved action yielded by the addition of the Pauli operator is
the Wilson-Clover action, with Dirac operator

𝒟WC(𝑛,𝑚) = 𝒟𝑊 (𝑛,𝑚)− 𝑖

8𝑎
𝑐sw
∑︁
𝜇<𝜈

1

2
𝜎𝜇𝜈 (𝑄𝜇𝜈(𝑛)−𝑄𝜈𝜇(𝑛)) . (3.34)
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The coupling 𝑐sw is called the Sheikholeslami-Wohlert coefficient [82]. It is chosen
to eliminate the 𝒪(𝑎) term in the Taylor expansion of the continuum action to yield
a 𝒪(𝑎2)-improvement.

Figure 3.2. The clover term (pink) at 𝑛 ∈ Λ (green), 𝑄𝜇𝜈(𝑛) = 𝒫𝜇,𝜈(𝑛)+𝒫𝜈,−𝜇(𝑛)+
𝒫−𝜇,−𝜈(𝑛) + 𝒫−𝜈,𝜇(𝑛) (Eq. (3.33)). The clover term is a sum of the positive-oriented
plaquettes around the point 𝑛 and acts as a discretization of the field strength tensor
𝐹𝜇𝜈 , as in Eq. (3.32).

3.3 Spectroscopy

The remainder of the thesis will use lattice units, where 𝑎 is set to unity, unless
otherwise specified. This choice will be discussed further in Section 3.3.4.

Lattice gauge theory provides a framework to non-perturbatively calculate the
correlation functions of operators. The correlation functions of a theory encode all
the information about the theory and can be used to compute observables of interest.
This section will discuss the calculation of correlation functions and work through the
explicit example of mass spectroscopy.

3.3.1 Extracting the Energy Spectrum

Let {|𝑛⟩} denote the energy eigenstates of a theory, and let |0⟩ denote the interacting
ground state. The charges of an operator under the symmetries of a theory are called

its quantum numbers. For example, if 𝑞 =

(︃
𝑢

𝑑

)︃
is the quark isospin doublet, the

53



§ 3.3.1. Extracting the Energy Spectrum

quantum numbers of the operator

𝜒5(𝑥) ≡ 𝑞(𝑥)𝛾5𝑞(𝑥) (3.35)

are spin zero, charge zero, parity odd, and isospin zero. Let |0⟩ denote the vacuum
state of the interacting theory. The operator 𝒪(𝑥) may be used to determine in-
formation about the energy states of the theory with the same quantum numbers:
the matrix element ⟨𝑛|𝒪†(𝑥)|0⟩ may only be non-zero if the state |𝑛⟩ has the same
quantum numbers as 𝒪(𝑥), where |𝑛⟩ is the 𝑛th energy state of the theory. The
state 𝒪†(𝑥)|0⟩ is thus a superposition of states in the theory with the same quantum
numbers as 𝒪(𝑥)6.

The operator 𝜒5(𝑥) (Eq. (3.35)) is an example of an interpolating operator [83].
In a given LGT calculation, one typically wants to study a specific state or set of
states with given quantum numbers, denoted by {|𝑘⟩}. An interpolating operator
is any operator that excites the desired set of states. There is freedom to choose
between different interpolating operators, and the best interpolator to use to study
the states {|𝑘⟩} is the interpolator 𝜒(𝑥) that maximizes the overlap onto these states,
⟨𝑘|𝜒†(𝑥)|0⟩.

One is typically interested in states of definite three-momentum p, as this rep-
resents a particle with definite momentum and energy (note that p = 0 denotes a
particle in its rest frame). To excite states with momentum p, one momentum
projects the interpolator 𝜒(𝑥):

𝜒̃p(𝑡) ≡
1√
𝐿3

∑︁
x

𝑒−𝑖p·x𝜒(x, 𝑡). (3.36)

The state 𝜒̃p(𝑡)|0⟩ is interpreted as a combination of states with the same quantum
numbers as the operator 𝜒, all at time 𝑡 with definite momentum p.

To explicitly see the interplay of the different components, recall the resolution of
the identity,

1 =
∑︁
𝑛

1

2𝐸𝑛
|𝑛⟩⟨𝑛| (3.37)

where {|𝑛⟩} denotes all the energy eigenstates in the theory, and the eigenstates
are relativistically normalized according to ⟨𝑛|𝑛′⟩ = 2𝐸𝑛𝛿𝑛,𝑛′ . The resolution of the
identity allows us to spectrally decompose any state or correlation function in the

6Note that although any state |𝑛⟩ with the same quantum numbers can potentially be excited by
𝒪†(𝑥), it does not have to be; such a state could have zero, or very small, overlap with the operator
𝒪†(𝑥), i.e., ⟨𝑛|𝒪†(𝑥)|0⟩ ≈ 0.
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basis {|𝑛⟩} of energy eigenstates:

𝜒̃†p(𝑡)|0⟩ = 1𝜒̃†p(𝑡)|0⟩ =
∑︁
𝑛

1

2𝐸𝑛
|𝑛⟩⟨𝑛|𝜒̃†p(𝑡)|0⟩. (3.38)

The overlap factor 𝑍𝑛,p ≡ ⟨𝑛|𝜒̃†p(𝑡)|0⟩ is the weight of the state |𝑛⟩ in the decomposi-
tion of the state 𝜒̃†p(𝑡)|0⟩. To study a specific state, one chooses an interpolator that
maximizes its overlap with said state. The decomposition of Eq. (3.38) also clarifies
that operators only excite states with the same quantum numbers. If |𝑛⟩ and 𝜒̃p(𝑡)

have different quantum numbers, the matrix element ⟨𝑛|𝜒̃†p(𝑡)|0⟩ vanishes identically,
hence |𝑛⟩ will not be present in the superposition of states 𝜒̃†p(𝑡)|0⟩.

Two-point correlation functions will provide the basic ingredient to determine the
spectrum of a theory. Consider the two-point function of the interpolator 𝜒̃p(𝑡),
separated by time 𝑡:

𝐶2(𝑡;p) ≡ ⟨0|𝜒̃p(𝑡)𝜒̃
†
p(0)|0⟩ (3.39)

𝐶2(𝑡;p) is a function of 𝑡 at fixed p. Recall that in Euclidean space, the Heisenberg
picture evolution of an operator (with spatial indices suppressed) is:

𝒪(𝑡) = 𝑒𝐻𝑡𝒪(0)𝑒−𝐻𝑡, (3.40)

where 𝐻 is the Hamiltonian. Inserting a resolution of the identity into 𝐶2(𝑡;p) yields
(denoting by 𝐸𝑛 the energy of state |𝑛⟩),

𝐶2(𝑡;p) =
∑︁
𝑛

1

2𝐸𝑛
⟨0|𝜒̃p(𝑡)|𝑛⟩⟨𝑛|𝜒̃†p(0)|0⟩

=
∑︁
𝑛

1

2𝐸𝑛
⟨0|𝑒𝐻𝑡𝜒̃p(0)𝑒

−𝐻𝑡|𝑛⟩⟨𝑛|𝜒̃†p(0)|0⟩

=
∑︁
𝑛

1

2𝐸𝑛

⃒⃒
⟨𝑛|𝜒̃†p(0)|0⟩

⃒⃒2
𝑒−𝐸𝑛𝑡

=
∑︁
𝑛

|𝑍𝑛,p|2
2𝐸𝑛

𝑒−𝐸𝑛𝑡

(3.41)

The spectral decomposition of 𝐶2(𝑡;p) shows that it is a sum of decaying exponentials
in 𝑡, each weighted by the energy of the corresponding state in the tower.

Suppose that the states are labeled in terms of energy, i.e., 𝐸0 < 𝐸1 < 𝐸2 < ...

(with no degeneracies, for simplicity). Although the sum in Eq. (3.41) has an infinite
number of terms, as 𝑡 → ∞ the lowest-lying states dominate the correlator because
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higher-energy terms are exponentially suppressed:

lim
𝑡→∞

𝐶2(𝑡;p) =
|𝑍0;p|2
2𝐸0

𝑒−𝐸0𝑡. (3.42)

This is an explicit parameterization of the large-time behavior of 𝐶2(𝑡;p) in terms
of the system’s ground state energy 𝐸0. Computing and analyzing the correlator
𝐶2(𝑡;p) in the large-time limit allows one to estimate the ground state energy 𝐸0

from the exponential decay rate. One can also fit additional exponential corrections
to the model of Eq. (3.42) to model excited-state dependence; this will be discussed
further in Chapter 5.

A simple way to extract the ground state energy 𝐸0 from a two-point correlator
𝐶(𝑡) (here the p dependence is suppressed) is to construct the correlator’s effective
mass, defined as

𝑚eff(𝑡) ≡ log

(︂
𝐶(𝑡)

𝐶(𝑡+ 1)

)︂
. (3.43)

In a correlator satisfying the asymptotic limit of Eq. (3.42), the effective mass asymp-
totes to the desired value, 𝐸0, as 𝑡→∞. When there is a gap Δ between the ground
state and first excited state such that Δ/𝐸0 ̸≪ 1 (i.e., the ground state and first
excited state may be well-distinguished), Monte Carlo data for 𝑚eff(𝑡) will plateau
when 0 ≪ 𝑡 ≪ 𝑇/2. The value of this plateau is an estimator for 𝐸0. The effective
mass is a useful heuristic, but it may be improved by considering boundary condi-
tions. When the spectral decomposition (Eq. (3.42)) is applied with finite temporal
boundary conditions, a backward-propagating state becomes apparent when 𝑡 ̸≪ 𝑇 ,

lim
𝑡→∞

𝐶2(𝑡;p) =
|𝑍0;p|2
2𝐸0

(︀
𝑒−𝐸0𝑡 ± 𝑒−𝐸0(𝑇−𝑡)

)︀
. (3.44)

The sign ± depends on the system (see Section 4.3 for further discussion). This sign
modifies the behavior of the effective mass, and from the decomposition of Eq. (3.44),
the proper quantity to compute for a symmetric (+) correlator is the cosh-corrected
effective mass,

𝑚cosh
eff (𝑡) ≡ arccosh

(︂
𝐶(𝑡+ 1) + 𝐶(𝑡− 1)

𝐶(𝑡)

)︂
. (3.45)

This variant of the effective mass correctly accounts for the boundary conditions in
the system.

The calculation of 𝐶2(𝑡;p) is a simple example but illustrates the general principle
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that LGT uses to extract observable quantities from the theory. To calculate an
observable, one decides on a set of correlation functions to compute and shows that in
specific limits, a combination (often a ratio) of these correlation functions asymptotes
to the desired observable. The next thing to consider is the computation of correlation
functions in LGT.

3.3.2 Calculating Correlators in LGT

Let {𝑈 (𝑖)
𝜇 (𝑥)}𝑁𝑖=1 be an ensemble of 𝑁 gauge field configurations that sample the Boltz-

mann distribution for some lattice QCD gauge action, and suppose that one wishes
to compute correlation functions on each gauge configuration. This computation be-
gins with the partition function to illustrate the basic ideas and then computes an
arbitrary 𝑛-point correlation function.

Let 𝒟[𝑈 ] be the discretized Dirac operator, so the full action 𝑆 may be expanded
in terms of a fermion piece and a gauge part 𝑆𝑔[𝑈 ]:

𝑆[𝜓, 𝜓, 𝑈 ] =

∫︁
𝑑4𝑥 𝑑4𝑦 𝜓(𝑥)𝒟[𝑈 ](𝑥, 𝑦)𝜓(𝑦) + 𝑆𝑔[𝑈 ] (3.46)

Recall that the Dirac operator 𝒟[𝑈 ] = 𝒟[𝑈 ]𝑎𝑏𝛼𝛽(𝑥, 𝑦) is a matrix in spin-color space,
as well as on the discrete spacetime7. The advantage of the representation of the
fermion action as 𝜓𝒟[𝑈 ]𝜓 is that the path integral is explicitly a Gaussian integral
over the Grassmann-valued fields 𝜓 and 𝜓, which may be explicitly evaluated before
integrating over the gauge degrees of freedom. This yields a fermion determinant,

𝒵 =

∫︁
𝐷𝑈𝐷𝜓𝐷𝜓 𝑒−

∫︀
𝑑4𝑥 𝑑4𝑦 𝜓(𝑥)𝒟[𝑈 ](𝑥,𝑦)𝜓(𝑦)−𝑆𝑔 [𝑈 ] =

∫︁
𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ] Det[𝒟[𝑈 ]], (3.48)

where Det denotes a functional determinant. The main takeaway is that the fermion
degrees of freedom may be explicitly integrated out of the path integral, reducing
the path integral to an integral solely over the gauge degrees of freedom. The gauge
integral may be computed numerically with Markov Chain Monte Carlo (MCMC) [84].
Explicit implementation details for MCMC in LGT will be discussed in Section 3.4.

When operators are inserted into the path integral, expressions become more
complicated. Still, the core idea holds: evaluate the fermion path integral analytically,

7 Note that these inner products will often be abbreviated with matrix-vector notation, for
example

𝜓𝒟[𝑈 ]𝜓 =

∫︁
𝑑4𝑥 𝑑4𝑦 𝜓

𝑎

𝛼(𝑥)𝒟[𝑈 ]𝑎𝑏𝛼𝛽(𝑥, 𝑦)𝜓
𝑏
𝛽(𝑦). (3.47)
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then use MCMC to numerically estimate the path integral over the gauge degrees of
freedom. Suppose one wishes to compute the correlation function ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩.
As before, this may be reduced down to an integral over gauge degrees of freedom:

⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩ =
∫︁
𝐷𝑈𝐷𝜓𝐷𝜓 𝑒−

∫︀
𝑑4𝑥 𝑑4𝑦 𝜓(𝑥)𝒟[𝑈 ](𝑥,𝑦)𝜓(𝑦)−𝑆𝑔 [𝑈 ]𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)

=

∫︁
𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ] (Det𝒟[𝑈 ]) ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 ].

(3.49)

Here, Eq. (3.49) introduces the notation ⟨·⟩𝐹 [𝑈 ] to denote the fermion expectation
value of an expression:

⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 ] ≡
1

Det𝒟[𝑈 ]

∫︁
𝐷𝜓𝐷𝜓 𝑒−

∫︀
𝑑4𝑥 𝑑4𝑦 𝜓(𝑥)𝒟[𝑈 ](𝑥,𝑦)𝜓(𝑦)𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘).

(3.50)
Splitting the integral into these two pieces clarifies how the computation proceeds.
The fermion expectation value is first evaluated analytically, and then the resulting
path integral over gauge degrees of freedom is evaluated with MCMC.

When the operators 𝒪𝑖(𝑥) are polynomials in 𝜓(𝑥) and 𝜓(𝑥), the fermion expec-
tation value can be evaluated with Wick’s theorem [85] since Eq. (3.50) computes
the moments of a Gaussian path integral. Wick’s theorem says that the fermion
path integral may be computed by summing over all possible Wick contractions in
an expression:

⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 ] =
∑︁

(𝑎,𝑏,...,𝑐,𝑑)∈Wick

𝒟−1𝑎𝑏 [𝑈 ]...𝒟−1𝑐𝑑 [𝑈 ]. (3.51)

Here, the indices (𝑎, 𝑏, ..., 𝑐, 𝑑) are multi-indices that package together each inverse
Dirac operator’s spin, color, and spacetime indices. A Wick contraction is any way to
connect a field with its anti-partner. For example, if 𝑞 is a quark field, the expression
⟨𝑞𝑞⟩ has one possible Wick contraction: there is one way to connect 𝑞 with 𝑞. This is
denoted by ⟨𝑞𝑞⟩. In the more complicated example of 𝒪1 = 𝒪2 = 𝒪3 = 𝑞𝑞, there are
six possible Wick contractions (the spacetime argument is written as a subscript to
avoid clutter):

⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩ ⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩ ⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩

⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩ ⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩ ⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩. (3.52)
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§ 3.3.2. Calculating Correlators in LGT

Here the Wick contraction ⟨𝑞𝑥...𝑞𝑧...⟩ denotes that the field 𝑞𝑥 should be contracted
with the field 𝑞𝑧, (anti)commuting all necessary fields in order to form the propagator
⟨𝑞𝑧𝑞𝑥...⟩ = 𝒟−1𝑧𝑥 [𝑈 ]⟨...⟩. As an explicit example,

⟨𝑞𝑥𝑞𝑥𝑞𝑦𝑞𝑦𝑞𝑧𝑞𝑧⟩ = (−1)2⟨𝑞𝑧𝑞𝑥𝑞𝑥𝑞𝑧𝑞𝑦𝑞𝑦⟩ = 𝒟−1𝑧𝑥 [𝑈 ]𝒟−1𝑥𝑧 [𝑈 ]𝒟−1𝑦𝑦 [𝑈 ], (3.53)

where the two factors of −1 come from anticommuting 𝑞𝑦 past 𝑞𝑦, and 𝑞𝑧 past each
other field in the correlator. Computing the correlation function ⟨𝒪1(𝑥)𝒪2(𝑦)𝒪3(𝑧)⟩
hence requires six different contractions of 𝒟−1, each corresponding to one set of
Wick contractions. Fields can only contract with anti-partners of the same type. For
example, there is only one Wick contraction of ⟨𝑢𝑢𝑑𝑑⟩, which results from contracting
𝑢 with 𝑢, and 𝑑 with 𝑑. The inverse of the Dirac operator is called a propagator,
often denoted by 𝑆. Propagators describe the probability amplitude for a particle
to propagate between 𝑥 and 𝑦. Note that in the case where some subset of the
operators 𝒪𝑖(𝑥) contain the gauge field (for example, 𝒪1(𝑥) =

∑︀
𝜇<𝜈

∑︀
𝑥 𝑃𝜇𝜈(𝑥), or

𝒪(𝑥) =
∑︀

𝑥 𝜓(𝑥)𝑈𝜇(𝑥)𝜓(𝑥 + 𝜇̂)), one simply factors these gauge factors out of the
fermion expectation value ⟨...⟩𝐹 , as the fermionic path integral can be evaluated
without considering gauge observables. So, for example,⟨∑︁

𝑥

𝜓(𝑥)𝑈𝜇(𝑥)𝜓(𝑥+ 𝜇̂)

⟩
𝐹

[𝑈 ] = −
∑︁
𝑥

𝒟𝑥+𝜇̂,𝑥[𝑈 ]𝑈𝜇(𝑥). (3.54)

After computing the Wick contractions for the given correlation function and fac-
toring out the pure gauge observables, the correlation function is obtained by taking
the gauge average over ⟨𝒪1...𝒪𝑘⟩𝐹 [𝑈 ]. Naïvely, one would do this by using a Markov
chain to sample {𝑈 (𝑖)} ∼ 𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ], compute Det𝒟[𝑈 (𝑖)]⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 (𝑖)] on
each sample, then average this quantity over all samples. The problem with this is
the fermion determinant, Det𝒟[𝑈 (𝑖)]. Computing the determinant of a 𝑛× 𝑛 matrix
is a 𝒪(𝑛3) operation. This is prohibitively expensive for even modest lattice sizes
(e.g., 163 × 48).

Instead of direct evaluation of the determinant of the Dirac operator, one absorbs
the fermion determinant into the definition of the probability measure. Rather than
sampling gauge configurations from the density 𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ], one samples configura-
tions from the density

{𝑈 (𝑖)} ∼ 𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ] Det𝒟[𝑈 ]. (3.55)

The exact details of how this sampling is implemented and its limitations are described
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in Section 3.4. Once the configurations {𝑈 (𝑖)} are generated, the fermion expectation
value ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 (𝑖)] is computed on each configuration and averaged over
configurations. All work described in this thesis will use dynamical fermions.

To summarize, the workflow to calculate a correlation function ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩
in LGT is thus as follows.

1. Specify an action and set of correlation functions to compute.

2. Generate an ensemble of gauge configurations corresponding to the desired ac-
tion.

3. Compute the fermion expectation value ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 ] of each correla-
tion function by performing all possible Wick contractions and factoring out
factors of the gauge field.

4. Compute ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩𝐹 [𝑈 ] on each gauge configuration in the ensemble to
determine a Monte Carlo estimate of ⟨𝒪1(𝑥1)...𝒪𝑘(𝑥𝑘)⟩.

3.3.3 Dirac Operators and Propagators

Given a Dirac operator 𝐷𝑎𝑏
𝛼𝛽(𝑥, 𝑦), the propagator is defined as its inverse 𝑆𝑎𝑏𝛼𝛽(𝑥, 𝑦),∑︁

𝑧∈Λ

𝐷𝑎𝑐
𝛼𝛾(𝑥, 𝑧)𝑆

𝑐𝑏
𝛾𝛽(𝑧, 𝑦) =

∑︁
𝑧∈Λ

𝑆𝑎𝑐𝛼𝛾(𝑥, 𝑧)𝐷
𝑐𝑏
𝛾𝛽(𝑧, 𝑦) = 𝛿𝛼𝛽𝛿

𝑎𝑏𝛿(4)(𝑥− 𝑦) (3.56)

On the lattice, the Dirac operator 𝐷𝑎𝑏
𝛼𝛽(𝑥, 𝑦) is explicitly a (𝑁𝑐 × 𝑁𝑠 × 𝐿3 × 𝑇 ) ×

(𝑁𝑐 ×𝑁𝑠 × 𝐿3 × 𝑇 ) dimensional matrix, so theoretically the matrix can be inverted
numerically. However, the size of a matrix in a large-scale LGT calculation almost
always makes direct inversion of 𝐷𝑎𝑏

𝛼𝛽(𝑥, 𝑦) prohibitively expensive; for example, a
QCD Dirac fermion in 𝑑 = 4 on a lattice of size 483× 96 has a Dirac operator matrix
of size ≈ 108 × 108, which is much too large to invert or store numerically.

Conventional LGT methods circumvent this problem in a variety of ways. In addi-
tion to being the inverse of the Dirac operator, the propagator also has an appealing
interpretation as a two-point function of the quark field:

𝑆𝑎𝑏𝛼𝛽(𝑥, 𝑦) = ⟨0|𝑇{𝑞𝑎𝛼(𝑥)𝑞𝑏𝛽(𝑦)}|0⟩. (3.57)

Eq. (3.57) shows that 𝑆𝑎𝑏𝛼𝛽(𝑥, 𝑦) is the amplitude for a particle to propagate from
the multi-index (𝑦, 𝛽, 𝑏) (the source) to the multi-index (𝑥, 𝛼, 𝑎) (the sink). The
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full propagator is called an all-to-all propagator because it contains propagation
amplitudes from all sources to all sinks.

The Wick contractions describing a given correlation function (e.g., Eq. (3.51)) de-
construct a given correlation function into a superposition of propagator components
that connect specific source and sink points that are compatible with the symmetries
of the desired correlation function and underlying theory. As such, for a given cor-
relation function, the full all-to-all propagator is not necessary to compute: one can
instead focus on computing propagation amplitudes between specific source and sink
points, which significantly reduces the computational complexity of the problem: in
simpler terms, it is easier to compute a row or column of a matrix inverse than to
perform the full matrix inversion.

The discrete system has translation invariance in the limit of infinite statis-
tics. One can use translation invariance to reduce the number of inversions required
for the calculation by fixing the source or sink to the time-slice at 0. Computing
𝑆((x, 𝑡); (y, 0)) instead of 𝑆((x, 𝑡); (y, 𝑠)) reduces the number of inversions by a factor
of 𝑇 , which can speed up the computation greatly. One can likewise use symme-
tries to reduce the number of propagator inversions. For example, if one considers
an amplitude describing the interaction between two parity-even particles, only the
parity-even components of the propagator need to be computed.

A particularly important symmetry of the Dirac operators considered in this thesis
is 𝛾5-hermicity. A Dirac operator 𝒟(𝑛,𝑚) is 𝛾5-hermitian if

𝛾5𝒟(𝑛,𝑚)𝛾5 = 𝒟†(𝑚,𝑛). (3.58)

Here, ·† is applied to the color-spin blocks of the Dirac operator so that the right-
hand side may be regarded as a full Hermitian conjugate over the full set of color,
spin, and spacetime indices. A useful property of 𝛾5-hermicity is that it relates a
forward-moving propagator to a backward-moving propagator: this can significantly
cut down on the number of inversions required to compute a correlation function.

To compute a specific superposition of propagator components, one first chooses
a source 𝜎𝑎𝛼(𝑥) to invert the propagator on. The source describes the initial state of
the system before propagation. The following linear system is solved for 𝑀 𝑏

𝛽(𝑦),∑︁
𝑏,𝛽,𝑦

𝒟𝑎𝑏𝛼𝛽(𝑥, 𝑦)𝑀 𝑏
𝛽(𝑦) = 𝜎𝑎𝛼(𝑥), (3.59)

61



§ 3.3.4. Lattice Units and Scale Setting

which is a specific superposition of propagator components dictated by 𝜎:

𝑀𝑎
𝛼(𝑥) =

∑︁
𝑦

(𝒟−1)𝑎𝑏𝛼𝛽(𝑥, 𝑦)𝜎𝑏𝛽(𝑦) =
∑︁
𝑦

𝑆𝑎𝑏𝛼𝛽(𝑥, 𝑦)𝜎
𝑏
𝛽(𝑦). (3.60)

Eq. (3.59) is typically solved using a numerical inversion algorithm like the Conjugate
Gradient Method [86].

Several important sources will be considered in this thesis, each of which corre-
sponds to specific initial states. This list is not exhaustive; any field 𝜎𝑎𝛼(𝑥) can be
used as a source.

∙ A point source at (𝛾, 𝑐, 𝑧):

𝜎𝑎𝛼(𝑥) = 𝛿𝛼𝛾𝛿
𝑎𝑐𝛿𝑥𝑧 𝑀𝑎

𝛼(𝑥) = 𝑆𝑎𝑐𝛼𝛾(𝑥, 𝑧). (3.61)

Inverting from a point source isolates the column of the propagator correspond-
ing to the index (𝛾, 𝑐, 𝑧); the field 𝑀𝑎

𝛼(𝑥) contains the propagation amplitude
for a particle to propagate from the source (𝛾, 𝑐, 𝑧) to any sink (𝛼, 𝑎, 𝑥) on the
lattice.

∙ A three-dimensional wall source at time 𝑡0 with momentum p:

𝜎𝑎𝛼((x, 𝑡)) = 𝑒𝑖p·x𝛿𝑡,𝑡0 𝑀𝑎
𝛼(𝑥) =

∑︁
𝛽,𝑏,y

𝑒𝑖p·y𝑆𝑎𝑏𝛼𝛽(𝑥, (y, 𝑡0)) (3.62)

The three-dimensional wall source describes a particle with fixed momentum p

at time 𝑡0. It can also be used with a Dirac and color structure to excite specific
Dirac and color components to this momentum.

∙ A four-dimensional wall source, with four-momentum 𝑝:

𝜎𝑎𝛼(𝑥) = 𝑒−𝑖𝑝·𝑥 𝑀𝑎
𝛼(𝑥) =

∑︁
𝛽,𝑏,𝑦

𝑆(𝑥, 𝑦)𝑒−𝑖𝑝·𝑦 (3.63)

The four-dimensional wall source projects the source to definite four-momentum
𝑝 and is conventionally used in non-perturbative renormalization calculations.

3.3.4 Lattice Units and Scale Setting

The inputs to a LGT calculation are the couplings, masses, and the lattice size 𝐿3×𝑇 .
The lattice spacing 𝑎 is not an input parameter to the calculation; on the lattice, all
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dimensionful quantities come in factors of lattice units. The spacing 𝑎 cannot be
measured directly on the lattice but can only be determined by comparison to a
benchmark. In the case of Standard Model field theories, this benchmark can be
taken to be a physical quantity that has been experimentally measured. This may
not always be possible in lattice field theories other than QCD, as there may be no
experimental measurements to compare to. This will be discussed in Chapter 6 in
the case of 2-dimensional adjoint QCD.

On a given ensemble, lattice quantities are computed at fixed spacing 𝑎, and the
scale is set by matching a dimensionful observable 𝑀 (e.g., the proton mass 𝑚𝑝)
computed on the lattice to its experimental value [87]. Let 𝑎𝑀lat be the value of 𝑀
computed on the lattice, and 𝑀exp the experimentally known value of 𝑀 . The lattice
spacing is determined as

𝑎𝑀 ≡
𝑎𝑀lat

𝑀exp

. (3.64)

Note that different choices of 𝑀 will yield different values for the lattice spacing.
Depending on the precision that 𝑎𝑀lat and 𝑀exp are known to, the statistical precision
that 𝑎𝑀 is known to will vary.

There are many important considerations when choosing an observable 𝑀 to set
the scale. The lattice spacing 𝑎 should have as little statistical and systematic error
as possible, as it enters every calculation that has a mass scale. Thus, 𝑀 should be
chosen as a quantity that can be computed to high precision on the lattice, and is
known to high precision through the experiment. The computational cost of com-
puting 𝑎𝑀lat should also be factored into the choice of 𝑀 : cheaper quantities are
preferred over more expensive ones. Finally, all LGT calculations are done at finite
lattice spacing and volume, and many are performed at unphysically heavy quark
masses. One should pick an observable for 𝑀 that has little dependence on the lat-
tice spacing, volume, and quark mass. Useful choices for scale setting to experiment
are the pion decay constant 𝑓𝜋, the proton mass 𝑚𝑝, and the Ω baryon mass 𝑚Ω [88].

Comparison to experiment is not always needed: it is often useful to only com-
pare the lattice spacing between different ensembles, without regard for the absolute
physical scale. This is called indirect scale setting. In this case, other observables can
be used to set the scale that are not experimentally measurable, but can be measured
precisely and cheaply in a lattice calculation. Often, these observables are solely
functions of the gauge fields and do not require the inversion of quark propagators,
like 𝑓𝜋 or baryon masses. The various projects discussed in this thesis will use two
different scale-setting parameters: the Sömmer parameter 𝑟0[89, 90], and the Wilson
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flow scale 𝑤0 [91].

3.4 Generating Gauge Configurations

One important bottleneck in LGT calculations is sampling the desired probability
distribution on the space of gauge fields. The gauge fields must be generated according
to the probability distribution P specified by the desired choice of action, and they
must be independent and identically distributed (iid):

{𝑈 (𝑖)} iid∼ P. (3.65)

Gauge fields will be sampled from this distribution with a Markov Chain, which is
a chain of configurations 𝑈 (0) → 𝑈 (1) → 𝑈 (2) → ... that are sampled from the law
P. The variable 𝑖 is called the computer time, and this specifies the number of
iterations the chain has been run for.

Given a configuration 𝑈 (𝑖), the Markov Chain describes how to compute the next
state in the chain 𝑈 (𝑖+1). The Markov Chain requires an initial configuration 𝑈 (0) to
begin; once it is seeded with this configuration, it can be run to produce more samples.
Typically, the initial configuration is either randomly sampled from the space of gauge
fields (a hot start) or set equal to the identity field (a cold start). The law of the
chain at small computer time will depend on the initial configuration 𝑈 (0), and as
such, will not obey the desired distribution P. However, after a sufficiently long time,
the law of the chain will converge to the measure P [84], regardless of where the chain
was started. This process is known as thermalization. The thermalization time
𝜏therm of the chain is the computer time required to make the law of {𝑈 (𝑖)}𝑖≥𝜏therm
equal P in distribution. One can compute 𝜏therm by performing a hot and cold start
and seeing when the distribution of the two Markov chains appear equal. Once 𝜏therm
is computed, one drops all configurations generated with computer time 𝑖 ≤ 𝜏therm.

Depending on the updating scheme, the configurations in the chain may not be
independent over short computer time separations: configuration 𝑈 (𝑖+1) is typically
highly correlated with configuration 𝑈 (𝑖). These correlations must be removed to
generate independent configurations. To determine the correlation length, one
picks a set of gauge observables {𝜒} that is easy to compute on each configuration (for
example, the sum of all plaquettes and the topological charge). For each observable
𝜒, one computes the autocorrelation Corr[𝜒(𝑈 (𝑖)), 𝜒(𝑈 (𝑖+𝛿))], which can be shown
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to decay as an exponential in the computer time separation 𝛿

Corr[𝜒(𝑈 (𝑖)), 𝜒(𝑈 (𝑖+𝛿))] ∝ 𝑒−𝛿𝜏𝜒 (3.66)

The maximum value of 𝜏𝜒 over all observables (rounded up to the next integer) is the
correlation length of the system

𝜏 ≡ sup
𝜒
𝜏𝜒. (3.67)

This is the computer time that must separate configurations if they are to be sam-
pled with little or no autocorrelation. To generate independent configurations, one
subsamples all configurations {𝑈 (𝑖)} and only uses configurations that are at least 𝜏
apart in computer time: that is, the set

{𝑈 ′(𝑘)} ≡ {𝑈 (𝑘𝜏)} (3.68)

for 𝑘 ∈ Z>0. The configurations 𝑈 ′(𝑘) produce the desired iid distribution after
thermalization. The ′ superscript on 𝑈 will be dropped, and this thesis will only
refer to the original, non-independent links if the gauge generation process is being
discussed.

Any Markov chain is characterized by a transition probability 𝑇 ,

𝑇 [𝑈 |𝑈 ′] ≡ P
[︀
𝑈 (𝑖) = 𝑈 |𝑈 (𝑖−1) = 𝑈 ′

]︀
(3.69)

which is the probability of the chain evolving to the configuration 𝑈 from configuration
𝑈 ′8. The transition probabilities are chosen to make the desired probability measure
P an invariant measure for the Markov chain. Once the law of the Markov chain
becomes P (after the chain thermalizes), further transitions within the Markov chain
will continue to have the law P. This is encoded in the definition of the invariant
measure as the eigenvectors of the transition matrix with unit eigenvalue [92]:

P[𝑈 ] =
∑︁
𝑈 ′

T[𝑈 |𝑈 ′]P[𝑈 ′] (3.70)

The transition probabilities are constrained to satisfy a balance equation that
determines there is no net probability flux. In other words, the probability of transi-

8Note the Markov property implies that chain is completely characterized by its current state:
the transition probabilities only depend on the configurations they connect, not on the computer
time each configuration was sampled at.
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tioning into a state equals the probability of transitioning out of a state. The balance
equation is: ∑︁

𝑈 ′

𝑇 [𝑈 |𝑈 ′]P[𝑈 ′] =
∑︁
𝑈 ′

𝑇 [𝑈 ′|𝑈 ]P[𝑈 ]. (3.71)

Here, the left-hand side represents the probability of transition from any state into
𝑈 , and the right-hand side represents the probability of transition from 𝑈 into any
state. If the balance equation is satisfied, the invariant measure of the Markov chain
will be P. Typically, in LGT, the stronger condition of detailed balance is imposed,
in which the balance equation holds configuration-by-configuration:

𝑇 [𝑈 |𝑈 ′]P[𝑈 ′] = 𝑇 [𝑈 ′|𝑈 ]P[𝑈 ]. (3.72)

Any transition probability satisfying Eq. (3.72) will fulfill Eq. (3.71), the balance
equation, although it is not a necessary condition to satisfy the detailed balance
equation.

State-of-the-art LGT calculations with dynamical fermions use Hamiltonian Monte
Carlo (HMC) [93, 94] to construct a Markov chain satisfying the detailed balance
equation. The general principles behind HMC will be discussed in Section 6.4.3 in
generating gauge configurations for two-dimensional adjoint QCD.

3.5 Statistics for LGT

At the heart of LGT lies the statistical analysis of Monte Carlo data. LGT calculations
generate correlated9 Monte Carlo samples for correlation functions: these samples
must be fit to different models to extract estimators of physical quantities. Assume
that one has an ensemble of 𝑛cfgs gauge field configurations 𝑈 (𝑖) and a family of
correlation functions {𝐶(𝑖)

𝑘 (𝑡)} computed on each configuration. Here 𝑘 ∈ [𝐾] indexes
the number of correlation functions that are computed, and 𝑡 ∈ 𝒯 parameterizes each
correlation function, where 𝒯 is a finite indexing set10. Note that for any 𝑛 ∈ N, this
work adopts the notation

[𝑛] ≡ {1, ..., 𝑛}. (3.73)
9Note that here “correlated” refers to correlations between different correlation functions. For

a given correlation function, the Monte Carlo samples are independent, as one assumes that the
Markov Chain 𝑈 (𝑖) is sampling independent samples.

10This suggestive notation is picked because the parameter 𝑡 is often the time separation of the
correlation function, in which case 𝒯 = [𝑇 ] indexes all the time-slices on the lattice. However, the
general techniques in this section can be applied to any parameterization of correlation functions,
particularly in cases like non-perturbative renormalization (NPR) where 𝑡 is a four-momentum and
𝒯 is the set of all four-momenta accessible on the lattice.
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This gives us an ensemble of correlation functions{︁
𝐶

(𝑖)
𝑘 (𝑡) : 𝑖 ∈ [𝑛cfgs], 𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯

}︁
, (3.74)

which is the starting point for LGT data analysis. Furthermore, the samples 𝐶(𝑖)
𝑘 (𝑡)

are assumed to be independent in 𝑖 because the gauge fields 𝑈 (𝑖) are all separated by
a computer time of at least the autocorrelation length in the original generation of
the Markov chain.

3.5.1 Resampling and the Bootstrap

Resampling methods generate new samples from the existing data measurements:
they provide an efficient way to compute statistical estimators when given a correlated
data set. There are two primary advantages of resampling the data, both of which
are beneficial in the context of a LGT calculation [95]:

1. Resampling makes it very simple to track correlations.

2. Resampling allows one to compute standard errors of statistical estimators with
simulation without an explicit closed form for the estimator.

This work will primarily consider a resampling method called the bootstrap [96],
although the jackknife method [97] is also often used in LGT calculations.

For simplicity, fix 𝑘 and 𝑡 and consider only the samples for one part of one
correlation function, 𝐶(𝑖) ≡ 𝐶

(𝑖)
𝑘 (𝑡); this will extended to the full set of correlators

later. The best guess of the distribution from which 𝐶(𝑖) is drawn is the empirical
distribution of 𝐶(𝑖), which evenly distributes mass at each observed sample. The
empirical distribution has PDF

𝑓emp(𝑐) ≡
1

𝑛cfgs

𝑛cfgs∑︁
𝑖=1

𝛿
(︀
𝑐− 𝐶(𝑖)

)︀
. (3.75)

A bootstrap sample 𝐶𝑏 is the average of 𝑛cfgs samples drawn from the empirical dis-
tribution. In practice, this means that 𝐶𝑏 is constructed by uniformly sampling with
replacement 𝑛cfgs times from 𝐶(𝑖) and averaging these samples together. This pro-
cedure is repeated independently 𝐵 times to form a bootstrap distribution {𝐶𝑏}𝐵𝑏=1,
where 𝐵 is the size of the resampled distribution. 𝐵 is a hyperparameter in the anal-
ysis and is typically chosen to be the same order of magnitude as 𝑛cfgs, but can be
increased or decreased depending on the specifics of the calculation.
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To extend the bootstrap to the full set of correlation functions {𝐶(𝑖)
𝑘 (𝑡)}, one

generates a bootstrap ensemble for each correlation function 𝐶𝑘(𝑡). Note that the
correlation between 𝐶𝑘(𝑡) and 𝐶ℓ(𝑠) must be preserved for each choice of 𝑘, ℓ, 𝑡, and
𝑠: as such, each bootstrap sample must be drawn in a correlated way. For each
bootstrap 𝑏 ∈ [𝐵], one thus draws 𝑛cfgs samples with replacement {𝑖1, ..., 𝑖ncfgs} from
the set [𝑛cfgs], and 𝐶𝑏

𝑘(𝑡) is the average

𝐶𝑏
𝑘(𝑡) =

1

𝑛cfgs

𝑛cfgs∑︁
𝑗=1

𝐶
(𝑖𝑗)
𝑘 (𝑡). (3.76)

This retains the correlation between the measurements and constructs the bootstrap
distribution {𝐶𝑏

𝑘(𝑡)}.
One computes several important estimators from the bootstrap distribution. One

first defines the sample mean of a bootstrap distribution:

̂︀E[𝐶𝑘(𝑡)] ≡ 𝐶𝑘(𝑡) ≡
1

𝐵

𝐵∑︁
𝑏=1

𝐶𝑏
𝑘(𝑡). (3.77)

This notation is used interchangeably: first, to emphasize that this quantity is an
estimator of the mean of the random variable 𝐶𝑘(𝑡); and second, to emphasize that
this quantity is the sample mean over bootstraps of 𝐶𝑘(𝑡). The unbiased sample
covariance of the distribution is also defined,

̂︂Cov[𝐶𝑘(𝑡), 𝐶ℓ(𝑠)] ≡ 1

𝐵 − 1

𝐵∑︁
𝑏=1

(︀
𝐶𝑏
𝑘(𝑡)− 𝐶𝑘(𝑡)

)︀ (︀
𝐶𝑏
ℓ (𝑠)− 𝐶ℓ(𝑠)

)︀
. (3.78)

The diagonal elements of the covariance matrix are the variance of the respective
random variables 𝐶𝑘(𝑡),

̂︂Var[𝐶𝑘(𝑡)] = 1

𝐵 − 1

∑︁
𝑏

(︀
𝐶𝑏
𝑘(𝑡)− 𝐶𝑘(𝑡)

)︀2
= Cov[𝐶𝑘(𝑡), 𝐶𝑘(𝑡)]. (3.79)

3.5.2 Fitting correlated data

Suppose one measures correlation functions 𝐶𝑘(𝑡), and that 𝐵 bootstrap samples
{𝐶𝑏

𝑘(𝑡)}𝐵𝑏=1 are constructed from the data. Each correlation function 𝐶𝑘(𝑡) must be
fit to a model 𝑓𝑘(𝑡;p𝑘). The models 𝑓𝑘 are determined by analytic methods, for
example, the spectral decomposition of a correlator, or derived in EFT, and the p𝑘

are undetermined parameters for the 𝑘th model determined through the fit procedure.
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Let 𝛼𝑘 be the number of parameters in model 𝑘, i.e. ||p𝑘|| = 𝛼𝑘, and let 𝛼 ≡∑︀𝐾
𝑘=1 𝛼𝑘 denote the total number of fit coefficients. For example, for a 3-state multi-

exponential fit to a single correlation function 𝐶(𝑡), one has six unknown parameters,
p = (𝒵1, 𝐸1,𝒵2, 𝐸2,𝒵3, 𝐸3), with

𝑓(𝑡;p) =
3∑︁

𝑘=1

𝒵𝑘𝑒−𝐸𝑘𝑡, (3.80)

where the interpretation is that this model describes a theory with three energy
states of energy {𝐸𝑘} and with ground state overlaps of the interpolating operator
{𝒵𝑘}. Typically, one assumes that the data obeys the given model for some range
𝑡 ∈ 𝒯sub ⊆ 𝒯 and not for the entire domain 𝒯 , as many models are only valid for a
subset of the entire fit range consistent with assumptions on the theory in which they
were derived11

The fitting question asks how to determine posteriors on the parameters {p𝑘}
that are consistent with the statistical fluctuations on the input data {𝐶𝑏

𝑘(𝑡)}. One
typically assumes that the full vector of coefficients p ≡ (p1, ...,p𝐾) follows a normal
distribution, p ∼ 𝒩 (𝜇𝑘,Σ𝑘), where 𝜇p is the mean of the distribution and Σp is the
𝛼× 𝛼 covariance matrix. The goal is to estimate 𝜇p and Σp from the {𝐶𝑏

𝑘(𝑡)}, along
with a metric of “how consistent” the final statistical model is with the input data.

Given a model 𝑓𝑘(𝑡;p𝑘) and data with mean 𝐶𝑘(𝑡) and covariance ̂︂Cov[𝐶𝑘(𝑡), 𝐶ℓ(𝑠)]
(Eqs. (3.77) and (3.78)), the 𝜒2 goodness-of-fit parameter [98] is defined as

𝜒2(p) ≡
∑︁
𝑡,𝑠

∑︁
𝑘,ℓ

𝛿𝑘(𝑡;p𝑘)̂︂Cov−1[𝐶𝑘(𝑡), 𝐶ℓ(𝑠)] 𝛿ℓ(𝑠,pℓ). (3.81)

Here 𝛿𝑘(𝑡;p𝑘) is the difference between the mean of the data and the model, evaluated
at a given set of parameters p𝑘,

𝛿𝑘(𝑡;p𝑘) = 𝐶𝑘(𝑡)− 𝑓𝑘(𝑡;p𝑘). (3.82)

The parameters p* which best fit the data, equivalently the coefficients that best esti-
mate the mean 𝜇𝑘 of the distribution obeyed by the parameters p, are the minimizers
of the 𝜒2 [99]

p* = argmin
p

𝜒2(p), (3.83)

11Many models are derived from EFT. The validity of such a model breaks down when the power-
counting parameters in the EFT become large, for example, in chiral EFT at large values of the
quark mass.
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while the covariance Σp is estimated from the data as the derivative of the 𝜒2,

Σ̂p(p
𝑎
𝑘,p

𝑏
ℓ) =

𝜕2

𝜕p𝑎𝑘𝜕p
𝑏
ℓ

⃒⃒⃒⃒
p=p*

𝜒2(p). (3.84)

Various packages exist to perform this minimization numerically; the one I primarily
used throughout my Ph.D. research is Peter Lepage’s lsqfit package [100].

When the measurement errors are assumed to be normally distributed, the 𝜒2 test
statistic (Eq. (3.81)) follows a 𝜒2 distribution with 𝑑 degrees of freedom [101]. The
degrees of freedom of a fit is defined to be the difference in the number of data points
and the number of fit parameters,

𝑑 ≡ |𝒯 | −𝐾. (3.85)

This distribution is denoted 𝜒2
𝑑, formally defined as the distribution resulting from

summing the squares of 𝑑 iid standard normal random variables. The 𝑝-value of the
fit is then obtained from the 𝜒2

𝑑 distribution,

𝑝 =

∫︁ ∞
𝜒2(p*)

𝑑𝑥𝜒2
𝑑(𝑥) (3.86)

where 𝜒2
𝑑(𝑥) denotes the PDF of the 𝜒2

𝑑 distribution. The 𝑝-value tests the null
hypothesis 𝐻0 : {The data is drawn from the model 𝑓𝑘}.

The 𝑝-value does not tell the entire story because it cannot detect overfitting. The
reduced 𝜒2 (𝜒2 per degree of freedom) for the best-fit parameters p*,

𝜒2
𝑟(p
*) ≡ 1

𝑑
𝜒2(p*) (3.87)

is a test statistic that can be used to roughly estimate the fit’s quality. A “good fit”
has a 𝜒2

𝑟(p
*) of around 1: this means that the (normalized) deviations of the data

from the model are order one and are due to statistical noise, not due to a model
mismatch. If 𝜒2

𝑟(p
*) ≫ 1, there are large deviations between the model predictions

and the data that are unlikely to be unaccounted for by statistical fluctuation. This
is called underfitting. The other case is when 𝜒2(p*)≪ 1. Naïvely, this seems like
the desired case because the model almost perfectly predicts the data measurements.
However, because the data is randomly sampled from the model with some amount
of error, 𝜒2(p*) ≪ 1 represents a case where the model fits the data too well: the
statistical fluctuations that one would expect if the data were sampled from the model
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§ 3.5.2. Fitting correlated data

are not present. This case is called overfitting. Figure 3.3 depicts the three possible
cases of underfitting, overfitting, and a good fit.

Data

χ2¿ 1

χ2 ≈ 1

χ2À 1

Figure 3.3. Example of underfitting, overfitting, and a good fit. Generated data
with 1𝜎 error bars are shown in red. The orange curve is overfit: the curve’s value at
each point exactly equals the mean of the data and is not consistent with statistical
fluctuations in the data. The green curve is well fit, with 𝜒2

𝑑 ≈ 1. In this case, the
residuals from the fit are relatively small but are consistent with the error bars on
the data. The final case of the blue curve is underfit: the model does not account for
the fluctuations in the data, even considering that the measurements are drawn from
a statistical distribution with non-trivial variance.

It is often the case that one wishes to select the “best model” from a set of 𝑁
models ℳ for a fit to the data. The “best model” should minimize the 𝜒2

𝑑 of the
fit, but not at the expense of overcomplicating the fit; it is therefore desirable to
reduce the 𝜒2

𝑑 with the simplest (least number of parameters) model possible12. This
condition is encapsulated in the Akaike Information Criterion (AIC) [102]. Given
a model 𝑚, the AIC of 𝑚 is defined as

AIC(𝑚) ≡ 𝜒2(𝑚) + 2𝐾(𝑚) (3.88)

where 𝜒2(𝑚) is the minimum of the 𝜒2 (previously denoted 𝜒2(p*)) for the model 𝑚,
and 𝐾(𝑚) is the number of parameters in 𝑚. Suppose WLOG thatℳ is parameter-

12To see why, suppose the set of models is the set of polynomial models, indexed by degree 𝑛 ∈ N.
For a finite data set as 𝑛→∞, the Stone-Weierstrauss theorem implies that the data can be perfectly
fit once sufficiently many polynomial terms are included, so infinitely many models have 𝜒2

𝑑 = 0.
These high-order polynomial models completely overfit the data available, so they should not be
chosen as the “best model” despite fitting the data perfectly.
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ized by [𝑁 ] in order of complexity,

ℳ = {𝑚𝑛 : 𝑛 ∈ [𝑁 ] s.t. 𝑘 ≤ ℓ =⇒ 𝐾(𝑚𝑘) ≤ 𝐾(𝑚ℓ)}. (3.89)

The AIC is used to select the best model fromℳ. The model with the largest grading
(𝑚𝑁) will have the lowest 𝜒2

𝑑, as it has the most parameters. However, one wishes
to select the simplest model that fits the data well. The best model is denoted 𝑚*.
To iteratively construct this model, initialize 𝑚* ← 𝑚1 to be the first model. For
𝑘 ∈ {2, 3, ..., 𝑁}, accept model 𝑚𝑘 as the current best model if and only if

AIC(𝑚𝑘)− AIC(𝑚*) < −𝒜 𝑑(𝑚𝑘), (3.90)

in which case 𝑚* ← 𝑚𝑘 and the iteration continues. The iteration is terminated when
the next model is not accepted, or all models are exhausted. In Eq. (3.90), 𝑑(𝑚𝑘+1) is
the number of degrees of freedom of model 𝑘 + 1 and 𝒜 ∈ [0, 1] is a hyperparameter.
Larger values of 𝒜 emphasize simpler models, as it takes a larger reduction in the
AIC to accept the next model.
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Chapter 4

Spectral Functions from Lattice

Gauge Theory

This chapter discusses spectral function reconstruction from LGT and presents a novel
method for spectral function reconstruction. I worked on this project with William
Jay and Thomas Bergamischi. Will had the idea for this project in 2022, which was
to take a technique recently developed in the Condensed Matter Theory community,
called Nevanlinna Analytical Continuation [11], and use it in LGT calculations. We
began working together to understand the theory and, along the way, learned that
other aspects of the Nevanlinna-Pick theory could be brought to field theory. This
work culminated in the Wertevorrat (Section 4.5.5), which is the capstone of our
method and distinguishes it from all other spectral reconstruction methods. Along
with developing the theory with Will, I also wrote the majority of the code base for
the project, which can be found in the Github repository here.

This chapter begins with a general introduction to spectral densities in QFT
(Section 4.1) and then presents analytic properties of thermal Green’s functions (Sec-
tions 4.2 and 4.3). Section 4.5 details a new method for spectral reconstruction, the
Nevanlinna-Pick Spectral Reconstruction method [3], which is tested via simulation
in Section 4.6. Section 4.7 discusses applying this method to noisy Monte Carlo data,
which is an active area of research: the problem is precisely formulated, and one
potential solution is presented.
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§ 4.1. Introduction: the R-Ratio

4.1 Introduction: the R-Ratio

Figure 4.1. Inclusive 𝑒+𝑒− → hadrons
scattering. Here, |𝑋⟩ denotes any final
hadronic state and is summed over. The
hatched circle denotes the hadronic inter-
action with the electromagnetic current
𝑗𝜇EM, which is defined non-perturbatively
through the matrix element of Eq. (4.2).

The spectral functions of a quantum field
theory encode a wealth of information
about the structure of energy states in
the theory. The conventional approach
to spectral functions is through current-
current correlators in inclusive processes,
where an inclusive process is defined as
any scattering process where the final
states are summed over. The canoni-
cal example of such a process is inclusive
𝑒+𝑒− scattering,

𝑒+𝑒− → hadrons. (4.1)

This process is typically studied through
the hadronic polarization tensor 𝜌𝜇𝜈(𝑞),
defined as a momentum-projected com-
mutator of two electromagnetic currents,

𝜌𝜇𝜈(𝑞) =
1

2𝜋

∫︁
𝑑4𝑥 𝑒𝑖𝑞·𝑥⟨0|[𝑗EM𝜇 (𝑥), 𝑗EM𝜈 (0)]|0⟩. (4.2)

Here, |0⟩ denotes the vacuum state of the interacting theory. The tensor 𝜌𝜇𝜈 describes
the hadronic interaction with the electromagnetic current and can be expanded in
terms of a scalar structure function 𝜌(𝑞2) multiplying a tensor structure dictated by
symmetry,

𝜌𝜇𝜈(𝑞) = (𝑞𝜇𝑞𝜈 − 𝑞2𝑔𝜇𝜈)𝜌(𝑞2). (4.3)

The function 𝜌(𝑞2) is called the spectral function of the process.

The cross-section of this process is conventionally defined in terms of the R-
ratio [103, 104], which is the ratio of the inclusive cross-section to the tree-level
𝑒+𝑒− → 𝜇+𝜇− cross-section at center-of-mass energy

√
𝑠,

𝑅(𝑠) ≡ 𝜎(𝑒+𝑒− → hadrons)

𝜎tree(𝑒+𝑒− → 𝜇+𝜇−)
= 12𝜋2𝜌(𝑠). (4.4)

The 𝑅-ratio encodes the same information as the spectral function 𝜌(𝑠). Experimental
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§ 4.1. Introduction: the R-Ratio

data for 𝑅(𝑠) is shown in Figure 4.2. The 𝑅(𝑠) data shows resonances near the vector
mesons 𝜌, 𝜔, 𝜑, and 𝐽/𝜓 and its excited states. Clear steps in 𝑅(𝑠) can also be seen:
for example, the step in 𝑅(𝑠) between 4 and 5 GeV is due to the 𝑐𝑐 creation threshold.
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ρ ω φ ψJ/ (2S)ψ
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4415
ψ

 hadrons data→ -e+e
(HVPTools compilation)

BES
KEDR
pQCD (massless)

Davier-Hoecker-Malaescu-Zhang, 2019

Figure 4.2. Experimental data for the 𝑅-ratio 𝑅(𝑠), compiled in Ref. [105].

Any inclusive process has a spectral function that similarly encodes its hadronic
information. Delta functions in the spectral function correspond to bound states in
the theory; extended peaks correspond to resonances, with the width of the peak pro-
portional to the particle’s decay width; and steps in the spectral function correspond
to kinematic thresholds. The spectral function contains all the kinematic informa-
tion about the inclusive process at hand, and as such, it is vital to understand how to
compute spectral functions. Computation of the spectral function in non-perturbative
QFTs requires the use of lattice gauge theory, where a zero-temperature Euclidean
time correlation function G𝐸(𝜏) is related to a corresponding spectral density 𝜌(𝜔) by
the Laplace transformation [106],

G𝐸(𝜏) =

∫︁ ∞
0

𝑑𝜔 𝑒−𝜔𝜏𝜌(𝜔). (4.5)

Given 𝜌(𝜔), solving for G𝐸(𝜏) requires inverting the Laplace transformation. This is an
ill-posed inverse problem: the Euclidean correlator G𝐸(𝜏) is known at a finite number
of points, whereas the spectral function 𝜌(𝜔) is a function, defined at an uncountable
number of points. There is no analytic inversion method to solve Eq. (4.5), and many
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LGT groups are working on different methods to solve this inverse problem [107–113].

4.2 Thermal Green’s Functions

The formal definition of the spectral density is in terms of the thermal Green’s func-
tions of the theory, which is now reviewed from Ref. [106]. Consider a QFT at finite
temperature 1/𝛽 with Hamiltonian ℋ. The density matrix describing this theory is,

𝜌 =
1

𝒵 exp (−𝛽ℋ) , (4.6)

where 𝒵 is the partition function of the theory. Operator expectation values are
formally defined with respect to 𝜌 as

⟨𝒪1...𝒪𝑛⟩ ≡ Tr [𝜌𝒪1...𝒪𝑛] . (4.7)

For an operator 𝐴(𝑡), define the following correlation functions,

G (𝑡) ≡ ⟨𝐴(𝑡)𝐴(0)⟩ G±(𝑡) ≡ 𝑖⟨{𝐴(𝑡), 𝐴(0)}±⟩ (4.8)

where {·, ·}+ ({·, ·}−) is the anticommutator (commutator) which arises for fermionic
(bosonic) operators 𝐴(𝑡). The Euclidean Green’s function of Eq. (4.5) is defined in
terms of the Green’s function G (𝑡) by evaluation on the imaginary axis,

G𝐸(𝜏) ≡ G (−𝑖𝜏). (4.9)

Note that 𝜏 ∈ R is the real-valued Euclidean time, although it evaluates G (𝑡) at an
imaginary time. The Fourier coefficients of the Euclidean correlator are computed as

𝐺
(ℓ)
𝐸 ≡

∫︁ 𝛽

0

𝑑𝜏 𝑒𝑖𝜔ℓ𝜏 G𝐸(𝜏), (4.10)

where 𝜔ℓ are the Matsubara frequencies of the system,

𝜔ℓ ≡

⎧⎨⎩2ℓ𝜋
𝛽

bosons

(2ℓ+1)𝜋
𝛽

fermions
, (4.11)

defined for ℓ ∈ Z. The notation used for the Greens functions in this thesis is
summarized in Table 4.1.
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§ 4.2. Thermal Green’s Functions

Symbol Description Definition
G±(𝑡) Real-time Green function Eq. (4.8)
G𝐸(𝜏) Euclidean-time Green function Eq. (4.9)
𝐺±(𝜔) Retarded Green function, 𝜔 ∈ R Eq. (4.12)
𝐺±(𝑧) Retarded Green function, 𝑧 ∈ C+ Eq. (4.12)
𝒢±(𝜁) Retarded Green function, 𝜁 ∈ D Eqs. (4.55, 4.58)

Table 4.1. Notation for the Green’s functions appearing in this thesis. Bosonic and
fermionic Green’s functions are distinguished by the sign ± of the commutator or
anti-commutator.

The retarded, or causal, correlator is the Fourier transform of G±(𝑡),

𝐺±(𝜔) ≡
∫︁ ∞
0

𝑑𝑡 𝑒𝑖𝜔𝑡 G±(𝑡), (4.12)

for 𝜔 ∈ R. This definition is analytically continued to the upper half-plane

C+ ≡ {𝑧 ∈ C : Im 𝑧 > 0} (4.13)

to define a map 𝐺±(𝑧), evaluated at complex energies 𝑧 ∈ C+. The maps 𝐺±(𝜔) and
𝐺±(𝑧) will both be referred to as the retarded correlator, with the domain understood
from context. Viewed as a map on C+, 𝐺± is an analytic function

𝐺± : C+ → Ω± ⊆ C+ (4.14)

with image Ω±, which will be specified shortly. This object lies at the heart of the
theory of spectral functions. It is related to the Fourier coefficients of the Euclidean
correlator, Eq. (4.10), by evaluation on the imaginary axis,

𝐺
(𝑙)
𝐸 = 𝐺±(𝑖𝜔ℓ) (ℓ ̸= 0), (4.15)

which will be explicitly derived in the next section. One regards 𝐺±(𝑧) as the analytic
continuation of the Fourier coefficients 𝐺(ℓ)

𝐸 to the entire upper half-plane1. From the

1Note that because 𝐺(ℓ)
𝐸 is only defined at a finite number of points, its analytic continuation to

an open subset of C is not uniquely defined: it has infinitely many analytic continuations. Carlson’s
theorem [114] may be used to define a unique analytic continuation to an open domain given the
function values on a countable subset of C along with growth constraints on the function. However,
one would still require knowledge of 𝐺(ℓ)

𝐸 at an infinite number of points. Section 4.4.2 will discuss
these mathematical details further.
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§ 4.3. Green’s Functions in Finite Volume

retarded correlator, one defines the spectral function as the Fourier transform of G±(𝑡),

𝜌±(𝜔) ≡
1

2𝜋𝑖

∫︁ ∞
−∞

𝑑𝑡 𝑒𝑖𝜔𝑡 G±(𝑡)

=
1

2𝜋𝑖
(𝐺±(𝜔)−𝐺±(𝜔)*)

=
1

𝜋
Im [𝐺±(𝜔)]

(4.16)

for 𝜔 ∈ R, which is proportional to Im [𝐺±(𝜔)]. The equality 𝜌±(𝜔) =
1
𝜋
Im [𝐺±(𝜔)]

is conceptually very useful and is depicted in Figure 4.3 for an example spectral
function.

0.4 0.6 0.8 1.0 1.2 1.4

ω (GeV)

0.0
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0.3

0.4

ρ

(a) Example spectral function. (b) Spectral function in the complex plane.

Figure 4.3. Example spectral function viewed (left, Fig. 4.3a) as a function of energy,
and viewed (right, Fig. 4.3b) in the complex energy plane. The spectral function is
related to the imaginary part of the retarded Green’s function by evaluation on the
real axis, 𝜌±(𝜔) = 1

𝜋
Im [𝐺±(𝜔)]. The specific form of this spectral function is from

the parameterization of the 𝑅-ratio, Eq. (4.120), from Ref. [104].

4.3 Green’s Functions in Finite Volume

Section 4.2 made no assumptions about the underlying QFT other than the finite-
temperature assumption. Consider now the case where the QFT of interest is defined
in a finite box of spatial volume 𝑉 = 𝐿3. In finite volume, the spectrum of the theory
becomes discrete, and the resolution of the identity is given by Eq. (3.37). Inserting
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§ 4.3. Green’s Functions in Finite Volume

Eq. (3.37) into the definition of G±(𝑡) (Eq. (4.8)) yields2

G±(𝑡) =
𝑖

𝒵
∑︁
𝑛,𝑚

𝑒−𝑖𝐸𝑛𝑚𝑡|𝐴𝑚𝑛|2
4𝐸𝑚𝐸𝑛

(︀
𝑒−𝛽𝐸𝑚 ± 𝑒−𝛽𝐸𝑛

)︀
, (4.17)

where 𝐸𝑛𝑚 ≡ 𝐸𝑛−𝐸𝑚 is the energy gap between states |𝑛⟩ and |𝑚⟩, and the operator
matrix elements are 𝐴𝑚𝑛 ≡ ⟨𝑚|𝐴|𝑛⟩. Likewise, using the identity∫︁ ∞

0

𝑑𝑡 𝑒𝑖𝑧𝑡𝑒−𝑖𝐸𝑛𝑚𝑡 =
𝑖

𝑧 − 𝐸𝑛𝑚
(4.18)

for 𝐸𝑚𝑛 ∈ R and 𝑧 ∈ C+, the finite-volume retarded correlator may be expanded as,

𝐺±(𝑧) =
1

𝒵
∑︁
𝑛,𝑚

|𝐴𝑚𝑛|2
4𝐸𝑚𝐸𝑛

(︀
𝑒−𝛽𝐸𝑚 ± 𝑒−𝛽𝐸𝑛

)︀ −1
𝑧 − 𝐸𝑛𝑚

. (4.19)

The retarded correlator is a sum of poles at each energy gap in the theory and is
analytic on C+.

The finite-volume spectral density may be determined by expanding 𝐺±(𝑧) near
the imaginary axis as 𝑧 ↓ R. Let 𝜖 > 0 be given, and let 𝑧 = 𝜔 + 𝑖𝜖 with 𝜔 ∈ R. The
pole term in Eq. (4.19) becomes,

1

𝜋
Im

−1
(𝜔 + 𝑖𝜖)− 𝐸𝑛𝑚

=
1

𝜋

𝜖

(𝜔 − 𝐸𝑛𝑚)2 + 𝜖2
(4.20)

≡ 𝛿𝜖(𝜔 − 𝐸𝑛𝑚), (4.21)

where 𝛿𝜖(𝜔−𝐸𝑛𝑚) is the Poisson kernel [115], which smoothly approximates the Dirac
𝛿 distribution,

lim
𝜖 ↓ 0

𝛿𝜖(𝑥) = 𝛿(𝑥), (4.22)

where the convergence is understood to be as a sequence of distributions [116]. Ex-
panding the poles in Eq. (4.19) yields the representation of the finite-volume spectral

2This thesis has adopted the relativistic normalization of states, 1 =
∑︀

𝑛
1

2𝐸𝑛
|𝑛⟩⟨𝑛|, Eq. (3.37).

Much of the presentation of the Green’s function formalism (i.e. [106]) uses the normalization 1 =∑︀
𝑛 |𝑛⟩⟨𝑛|, hence these equations presented in this thesis may differ from external sources by factors

of 1/2𝐸𝑛. This does not affect any conclusions of the work and is purely cosmetic.
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function as a sum of poles,

𝜌±(𝜔) =
1

𝒵
∑︁
𝑛,𝑚

|𝐴𝑚𝑛|2
4𝐸𝑚𝐸𝑛

(︀
𝑒−𝛽𝐸𝑚 ± 𝑒−𝛽𝐸𝑛

)︀
𝛿(𝜔 − 𝐸𝑛𝑚)

𝛽→∞
=

∑︁
𝑛

|𝐴0𝑛|2
4𝐸0𝐸𝑛

(︀
𝛿(𝜔 − 𝐸𝑛)± 𝛿(𝜔 + 𝐸𝑛)

)︀
.

(4.23)

Note the parity of 𝜌±, which is independent of the system’s temperature: the spectral
function is even for fermionic systems and odd for bosonic systems. The second line of
Eq. (4.23) is the zero-temperature spectral function. In this case, the fermionic and
bosonic spectral functions only differ by a relative sign between each pair of poles
(although the energy levels 𝐸𝑛 may shift between different fermionic and bosonic
systems).

The Poisson kernel (Eq. (4.21)) defines a natural smearing kernel for the spectral
function,

𝜌𝜖±(𝜔) =

∫︁
𝑑𝜔′𝛿𝜖(𝜔 − 𝜔′)𝜌±(𝜔′). (4.24)

The smeared spectral function 𝜌𝜖±(𝜔) is now a well-defined function rather than a
distribution like the original, unsmeared spectral function. Integrating 𝛿𝜖 in Eq. (4.24)
against the finite-volume representation of 𝜌± (Eq. (4.23)) yields the identity,

𝜌𝜖±(𝜔) =
1

𝜋
Im𝐺±(𝜔 + 𝑖𝜖), (4.25)

which holds for arbitrary 𝑧 = 𝜔+ 𝑖𝜖 ∈ C+. The smeared spectral function 𝜌𝜖±(𝜔) thus
has the interpretation as the imaginary part of the retarded correlator, evaluated on
the shifted real axis R + 𝑖𝜖 = {𝜔 + 𝑖𝜖 : 𝜔 ∈ R}. Observe that 𝜖 does not need to be
small for Eq. (4.25) to be valid; this identity holds for arbitrary 𝜖 > 0.

To reconstruct the spectral function from a Euclidean correlation function, one
expands the Euclidean correlator G𝐸(𝜏) (Eq. (4.9)) and the Fourier coefficients 𝐺(ℓ)

𝐸

(Eq. (4.10)) in finite volume,

G𝐸(𝜏) =
1

𝒵
∑︁
𝑛,𝑚

𝑒−𝛽𝐸𝑚𝑒−𝐸𝑛𝑚𝜏 |𝐴𝑚𝑛|2
4𝐸𝑚𝐸𝑛

, 𝐺
(ℓ)
𝐸 = 𝐺±(𝑖𝜔ℓ). (4.26)

This confirms the identity of Eq. (4.15) and shows that the retarded correlator 𝐺±(𝑧)
is the analytic continuation of the Fourier coefficients𝐺(ℓ)

𝐸 , evaluated at the Matsubara
frequencies {𝑖𝜔ℓ}, to the upper half-plane. Furthermore, note that Eq. (4.26) may be
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expanded in terms of the finite-volume spectral function (Eq. (4.23)) as

G𝐸(𝜏) =

∫︁ ∞
0

𝑑𝜔 𝜌±(𝜔)

[︂
𝑒−𝜔𝜏 + 𝑒−𝜔(𝛽−𝜏)

1± 𝑒−𝜔𝛽
]︂

𝛽→∞
=

∫︁ ∞
0

𝑑𝜔 𝜌±(𝜔)𝑒
−𝜔𝜏 .

(4.27)

This provides an explicit derivation of Eq. (4.5): the Euclidean Green’s function is
the Laplace transformation of the spectral function at zero temperature. At finite
temperature for a fermionic (bosonic) system, G𝐸(𝜏) is given by integrating 𝜌±(𝜔)

against a Fermi-Dirac (Bose-Einstein) distribution.

The image Ω± of 𝐺±(𝑧) is crucial to understanding the analytic structure of 𝐺±.
From Eqs. (4.19, 4.21), one immediately sees that the fermionic retarded correlator
𝐺+ has strictly positive imaginary part, Im𝐺+(𝑧) > 0 for each 𝑧 ∈ C+. This implies
that Ω+, the image of 𝐺+, is the upper half of the complex plane,

Ω+ = C+. (4.28)

An analytic map from C+ → C+ is called a Nevanlinna function, named for the
mathematician Rolf Nevanlinna, who pioneered the study of such functions in the
early 20th century [117, 118]. In contrast, the image of the bosonic Green’s function
𝐺− is not a Nevanlinna function. It is an odd function, and the expansion of Eq. (4.19)
shows that its imaginary part is positive in quadrant I and negative in quadrant II of
C+. Symmetry implies that Im𝐺− can only vanish on the positive imaginary axis, I+.
Note that for 𝑦 > 0, Re𝐺−(𝑖𝑦) > 0, hence on this half-axis 𝐺− only takes positive real
values. This makes it clear that the image of 𝐺− is all of C, except for the negative
real axis R− ≡ {𝑥 ∈ R : 𝑥 < 0}, hence

Ω− = C ∖ R−. (4.29)

The method presented in Section 4.5 will reconstruct the smeared spectral function
𝜌𝜖± by explicitly mapping the retarded correlator 𝐺± to the unit disk

D ≡ {𝑧 ∈ C : |𝑧| < 1}. (4.30)

Knowledge of the image Ω± is essential in order to define the maps into D.
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4.3.1 Preparing the Fourier Coefficients 𝐺(ℓ)
𝐸 from LGT Data

It is useful to discuss the computation of the Euclidean Fourier coefficients 𝐺
(ℓ)
𝐸

(Eq. (4.26)) from the correlation function G𝐸(𝜏). Naïvely, one would expect to simply
evaluate 𝐺(ℓ)

𝐸 via a discrete Fourier transform of {G𝐸(𝜏)}𝛽−1𝜏=0 ,∫︁ 𝛽

0

𝑑𝜏 𝑒𝑖𝜔ℓ𝜏G𝐸(𝜏)
?≈
𝛽−1∑︁
𝑡=0

𝑒𝑖𝜔ℓ𝜏G𝐸(𝜏). (4.31)

While this approximation works well in some instances, it is not always the best way
to prepare 𝐺(ℓ)

𝐸 from lattice data.

To illustrate this, consider a bosonic Euclidean Green’s function for a single state
of mass 𝑚,

G𝐸(𝜏) = 𝑒−𝑚𝜏 + 𝑒−𝑚(𝑇−𝜏). (4.32)

The discrete Fourier transform of this correlator is

𝛽−1∑︁
𝜏=0

𝑒𝑖𝜔ℓ𝜏G𝐸(𝜏) =

(︀
1− 𝑒−𝛽𝑚

)︀
sinh(𝑚𝑎)

cosh(𝑚𝑎)− cos(𝜔𝑙𝑎)
, (4.33)

where factors of the lattice spacing 𝑎 have explicitly been included. The right-hand
side immediately presents a problem if it is directly interpreted as 𝐺+(𝑖𝜔ℓ). It is not
analytic in the upper half-plane, as required of the retarded correlator. In addition
to the expected pair of poles at 𝜔ℓ = ±𝑚, there are additional poles at ±𝑚+ 2𝜋𝑖𝑎Z
due to the periodicity of the cosine. Regardless, the continuum limit has the correct
analytic structure,

lim
𝑎→0

𝑎

(︀
1− 𝑒−𝛽𝑚

)︀
sinh(𝑚𝑎)

cosh(𝑚𝑎)− cos(𝜔ℓ𝑎)
=

2𝑚

𝑚2 + 𝜔2
. (4.34)

This suggests a better method to construct the Fourier coefficients than Eq. (4.10),
namely to perform a Fourier transform closer to the continuum limit than the naïve
LGT data G𝐸(𝜏). Because the Euclidean correlator G𝐸(𝑡) (Eq. (4.32)) is smooth (in
the sense that data is drawn from a smooth curve in the continuum) and monotonic
for 𝑡 ∈ R, it can be interpolated, and this interpolation can be evaluated on a finer
grid and Fourier transformed to produce the Fourier coefficients 𝐺(ℓ)

𝐸 . In practice, this
is done by fitting a polynomial spline to logG𝐸(𝜏), as logG𝐸(𝜏) varies much slower
than G𝐸(𝜏). This interpolation procedure is shown in Figure 4.4 for a grid refinements
with 𝑁 ∈ {1, 2, 5, 25}𝛽/𝑎 points. As expected, finer refinements yield results for the
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Fourier coefficients 𝐺(ℓ)
𝐸 that agree much more closely with the continuum correlation

function. This is expected to hold for any finite-volume system as the refinement
becomes infinitely fine, as spectral densities in finite-volume are the sum of poles.

0 /2 3 /2 2
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101
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a)

Exact
N = 1 /a
N = 2 /a
N = 5 /a
N = 25 /a

Figure 4.4. Numerical evaluation of the Fourier coefficients 𝐺(ℓ)
𝐸 using different inter-

polation densities, using a Euclidean correlator 𝐺𝐸(𝜏) = 𝑒−𝑚𝜏 +𝑒−𝑚(𝛽−𝜏) (Eq. (4.32))
with 𝛽 = 96 and 𝑚 = 0.25. Results are shown for every third Matsubara frequency,
and the different marker types show different interpolation refinements. The blue
circles show the coarsest refinement, which directly evaluates the discrete Fourier
transform (Eq. (4.33)). These agree well with the exact Green’s function for small 𝜔ℓ
but deviate as 𝑎𝜔ℓ approaches the boundary of the Brillouin zone. The red stars de-
pict the Fourier coefficients obtained from the finest refinement of G𝐸(𝜏), 𝑁 = 25𝛽/𝑎.
These results agree with the exact continuum results to the sub-percent level.
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4.4 Spectral Reconstruction from Euclidean Corre-

lation Functions

4.4.1 Infinite-Volume Spectral Reconstruction from LGT

The ultimate goal of LGT calculations is to extract continuum and infinite-volume
physics. It is thus important to consider how the finite-volume spectral densities
reconstructed on a finite Euclidean lattice relate to their infinite-volume counterparts.
In the infinite-volume continuum, the momentum space for each field is indexed by
a continuous variable 𝑝 ∈ R3, the three-momentum of the particle. Suppose one
discretizes a continuum theory onto a spatially isotropic lattice with 𝐿 spatial sites in
each direction. Momentum space becomes discretized, and the continuous 𝑝 becomes
a discrete variable,

𝑝𝑛 =
2

𝑎
sin
(︁𝜋𝑛
𝐿

)︁
≡ 2

𝑎
sin𝑘𝑛 (4.35)

where 𝑛 ∈ Z3. The momentum space is {𝑝𝑛 : 𝑛 ∈ (Z ∩ [0, 2𝐿))3}, and in particular
is a discrete, finite variable that takes (2𝐿− 1)3 values, as Eq. (4.35) is periodic in 𝑛.
Let the set of possible energies arising from this discrete momentum space be denoted
{𝜔𝑖}𝐾𝑖=1, where 𝐾 is the total number of unique energies allowed in finite-volume3.

Let 𝜌(𝜔) be an extended spectral feature to be discretized4. Upon discretization,
𝜌(𝜔) becomes a 𝛿-train,

𝜌(𝜔) ↦→ 𝜌𝐿(𝜔) ≡
𝐾∑︁
𝑖=1

𝑤𝑖𝛿(𝜔 − 𝜔𝑖) (4.36)

i.e., a sum of 𝛿-functions placed at each finite-volume energy 𝜔𝑖 with weight 𝑤𝑖. Note
the dependence of ̃︀𝜌𝐿 on the spatial size 𝐿 is made explicit, while the energy modes
𝜔𝑖 implicitly carry a dependence on 𝐿. The weights 𝑤𝑖 are chosen so that the finite-
volume feature ̃︀𝜌𝐿 converges in distribution to the infinite-volume feature 𝜌,

𝜌𝐿
𝑑−→ 𝜌, (4.37)

3Each finite-volume momentum 𝑝𝑛 yields an energy via the dispersion relation 𝜔(𝑝), for example
the single-particle dispersion 𝜔(𝑝) = 𝑝2 + 𝑚2. One reindexes {𝜔(𝑝𝑛) : 𝑛 ∈ Z3} = {𝜔𝑖} to avoid
duplicates that arise when 𝑝2

𝑛 = 𝑝2
𝑚 for 𝑛 ̸= 𝑚.

4For example, a square root cut starting at a mass threshold or a Breit-Wigner peak describing
a resonance.
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where convergence in distribution means that for any smooth test function 𝑓 ,∫︁
𝜌𝐿(𝑑𝑥) 𝑓(𝑥)

𝐿→∞−−−→
∫︁
𝜌(𝑑𝑥) 𝑓(𝑥), (4.38)

where 𝜌𝐿(𝑑𝑥), 𝜌(𝑑𝑥) are the measures respectively induced by the push-forward of
the Lebesgue measure 𝑑𝑥 on R from the distributions 𝜌𝐿, 𝜌.

The convergence of Eq. (4.37) is defined in distribution but is not defined almost
surely (a.s.) or in measure. Indeed, this is clear because the locations of each 𝛿 func-
tion in 𝜌𝐿(𝜔) moves as 𝐿 increases, although the density of the 𝛿 functions increases.
The set

{𝜔 ∈ R : 𝜌𝐿(𝜔) ̸→ 𝜌(𝜔) as𝐿 −→∞} (4.39)

certainly does not have measure zero since there is no point-wise convergence of 𝜌𝐿
to 𝜌 anywhere. A similar argument holds to show that 𝜌𝐿 does not converge to 𝜌 in
measure.

Consider now the numerical procedure that one would use to extract 𝜌(𝜔) from
data 𝜌𝐿(𝜔) at a finite number of spatial sizes 𝐿. One would ideally define 𝜌(𝜔) as the
point-wise limit of 𝜌𝐿(𝜔),

𝜌(𝜔)
?≡ lim
𝐿→∞

𝜌𝐿(𝜔). (4.40)

But, 𝜌𝐿 does not converge almost surely to 𝜌, so in practice, this would not work, as
this limit is not defined anywhere. It is possible to choose the spatial sizes 𝐿 so that
the existing energy modes 𝜔𝑖 do not move, for example, 𝐿 = 2𝑛 for 𝑛 ∈ N>0, where
N>0 is the natural numbers (originating at 1 to avoid confusion). In this case, the
point-wise limit will formally exist on the dense subset { 𝑘

2𝑛
: 𝑛 ∈ N>0, 𝑘 ∈ Z} ⊂ R

and can be continued to a continuous function. However, this would not work in
practice, as the lattice’s spatial size cannot be taken to be arbitrarily large because
of computational reasons; even lattices with 𝐿 = 64 or 𝐿 = 128 are extremely costly
to generate.

A more efficient and stable way to achieve the desired infinite-volume limit via a
point-wise extrapolation is to smear the finite-volume spectral function. Let 𝛿𝜖(𝜔)
be a smearing kernel, defined to be a positive function 𝛿𝜖 ≥ 0 with normalization one
which converges to the 𝛿 function in distribution,

𝛿𝜖
𝑑−→ 𝛿 as 𝜖 ↓ 0. (4.41)

The parameter 𝜖 is called the smearing width of the kernel. A popular smearing kernel
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is the centered Gaussian with variance 𝜖2,

1√
2𝜋𝜖

exp

(︂
− 𝜔

2

2𝜖2

)︂
(4.42)

but the kernel can generally be any normalized bump form [119]. The smearing kernel
primarily used throughout the remainder of the chapter will be the Poisson kernel
defined in Eq. (4.21) because of its relation to the analytic continuation of the thermal
Green’s function.

Given a smearing kernel 𝛿𝜖, one defines a smeared finite-volume spectral density
as

𝜌𝜖𝐿(𝜔) = (𝛿𝜖 * 𝜌𝐿)(𝜔) =
𝐾∑︁
𝑖=1

𝑤𝑘𝛿𝜖(𝜔 − 𝜔𝑖), (4.43)

where * denotes convolution. This definition “smears out” the finite-volume spectral
density; the divergences caused by the 𝛿 train have been regulated, and 𝜌𝜖𝐿 is much
better behaved than 𝜌𝐿. In particular, at finite smearing width 𝜖, it converges a.s. to
the smeared, infinite-volume spectral density 𝜌𝜖∞,

𝜌𝜖𝐿
𝑎.𝑠.−→ 𝜌𝜖∞ as 𝐿→∞. (4.44)

The well-behaved limiting behavior of the smeared spectral density, Eq. (4.44),
makes it desirable to formulate the infinite-volume extrapolation of the spectral den-
sity as follows. First, Eq. (4.44) implies that the definition,

𝜌𝜖(𝜔) ≡ lim
𝐿→∞

𝜌𝜖𝐿(𝜔), (4.45)

is well-defined almost surely. This limit is numerically stable and can be used to
extract the smeared infinite-volume spectral density. The smeared, infinite-volume
spectral densities are then used to extract 𝜌(𝜔) [112],

𝜌(𝜔) = lim
𝜖↓0

lim
𝐿→∞

𝜌𝜖𝐿(𝜔). (4.46)

The order of the limits is important; if they are interchanged, one will be left with
all the problems discussed above.

Reconstructions of the spectral function in LGT focus on extracting smeared,
finite-volume spectral densities from the Euclidean correlator data. As the targets
of LGT calculations are infinite-volume theories, it does not matter if one does not
know the exact finite-volume spectral density. Rather, the smeared finite-volume
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spectral density is computed at various values of 𝐿 and 𝜖, then extrapolated to the
infinite-volume limit using Eq. (4.46). In practice, it is also easier to reconstruct
smeared finite-volume spectral densities rather than unsmeared finite-volume spectral
densities.

4.4.2 The Inverse Problem: Mathematical Considerations

The inverse problem of extracting the smeared spectral density 𝜌𝜖(𝜔) from Euclidean
correlator data 𝐺(ℓ)

𝐸 is one of analytic continuation. Given data (𝑖𝜔ℓ, 𝐺
(ℓ)
𝐸 ), the spectral

density is obtained by analytic continuation of (𝑖𝜔ℓ, 𝐺
(ℓ)
𝐸 ) to a thermal Green’s function

𝐺(𝑧) on C+, whose evaluation on the shifted contour {𝜔 + 𝑖𝜖 : 𝜔 ∈ R} yields 𝜌𝜖(𝜔).
The difficult part of this prescription is the analytic continuation (𝑖𝜔ℓ, 𝐺

(ℓ)
𝐸 ) →

𝐺(𝑧). Suppose a complex-valued holomorphic function 𝑓Ω is defined on a subset Ω ⊆
C+. The analytic continuation of 𝑓Ω on C+ is any holomorphic function 𝑓 : C+ → C
which extends 𝑓 to C+, i.e.,

𝑓 |Ω = 𝑓Ω. (4.47)

It is commonly known that when Ω is an open subset of C+, the analytic continuation
of 𝑓Ω is a well-defined mathematical concept: there is a unique analytic continuation
of 𝑓Ω to C+.

The assumption that Ω is open is too strong. This can be lifted in many cases;
for example, for Ω = R, there is a unique analytic continuation of 𝑓R(𝑥) ≡ 𝑒𝑥 to C
given by 𝑓(𝑧) = 𝑒𝑧 (the complex exponential). However, this is not true in general:
unless Ω and 𝑓Ω are chosen with specific properties, an arbitrary subset Ω ⊆ C+ is not
guaranteed to support a unique analytic continuation of 𝑓Ω to C+. One may consider
the space of holomorphic functions on C+ that restrict to 𝑓Ω on Ω; this space will
typically have cardinal greater than one.

The discussion will now be restricted to the case when Ω is a discrete subset of the
positive imaginary numbers, I+ ≡ 𝑖R≥0, as is the case for the analytic continuation
of Euclidean correlation function data. Carlson’s theorem [114, 120] is a uniqueness
relation about analytic continuation that may be applied if 𝑓Ω, formally stated5 as
follows:

Theorem 4.4.1 (Carlson). Suppose that 𝑓Ω has an analytic continuation 𝑓 on C and
5Note that Carlson’s theorem applies to C, not C+. However, the identical theorem holds for

analytic continuations to C+ by analytic continuation from C+ to the entirety of C. Suppose that
𝑓C+ is an analytic continuation of 𝑓Ω to C+ satisfying Eqs. (4.48, 4.49), with C replaced by C+.
Then 𝑓C+ may be analytically continued to 𝑓 on C satisfying Eqs. (4.48, 4.49), and Carlson’s theorem
implies this is unique.
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that the following assumptions hold.

1. ∃𝐶, 𝜏 ∈ R such that for each 𝑧 ∈ C,

|𝑓(𝑧)| ≤ 𝐶𝑒𝜏 |𝑧|. (4.48)

In this case, one says 𝑓 is of exponential type [121].

2. ∃𝜏 ′ < 𝜋 such that for each 𝑦 ∈ R,

|𝑓(𝑖𝑦)| ≤ 𝐶𝑒𝜏
′|𝑦|. (4.49)

3. Ω = 𝑖N>0.

Then, the analytic continuation of 𝑓Ω to C is unique.

Carlson’s theorem heuristically says that if the function’s value is known on 𝑖N>0

and the function does not grow too fast at infinity (sub-exponentially), then a unique
analytic continuation of this function exists. This is useful when considering spectral
reconstructions, as the spectral density and thermal Green’s function can be shown to
grow polynomially at infinity [122]. This implies that if the Euclidean Green’s function
is known at each point in 𝑖N>0, then it may be uniquely analytically continued, and
it corresponds to a unique spectral density6.

When Ω is a finite subset of I+ (as in the case of spectral function reconstruction),
Carlson’s theorem does not apply, and no analog of the theorem implies a unique
analytic continuation of the data. Nonetheless, Carlson’s theorem provides valuable
information about the structure of the problem. As the number of Matsubara fre-
quencies increases (i.e., by increasing the number of sites in the temporal direction),
the number of solutions to the spectral reconstruction problem decreases. In the limit
where the correlator is evaluated at infinitely many Matsubara frequencies, a unique
spectral function that is consistent with the Euclidean data exists. Carlson’s theorem
has also been used as the basis for a novel method of spectral function reconstruction,
as in Refs. [124, 125].

There are infinite solutions to the spectral reconstruction problem for a given Eu-
clidean correlation function computed in LGT, even if the points are known to infinite
precision. Any inverse problem with this property is called ill-posed: such problems

6The assumptions in Carlson’s theorem are overly stringent and can be lifted slightly, as done by
Rubel [123]. One technically only requires Ω to be an unbounded, infinite subset of 𝑖N>0 (e.g., Ω
must provide information about the function’s value as it tends towards infinity).
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are ubiquitous in physical sciences and extremely difficult, even impossible, to solve,
because the formal problem statement lacks a unique solution [126, 127], with appli-
cations in fields ranging from astrophysics [128] to computational photography [129].
That such a problem does not have a unique solution means that one must impose
priors onto the solution space to determine a “best” solution to the problem. Different
methods often incorporate different priors, leading to entirely different approaches to
solving the inverse problem. Given the same input data, different approaches will
thus typically produce solutions that are not equal numerically. One therefore hopes
that the qualitative features of the solutions from different methods are similar, rather
than the exact numerical details. In the case of spectral function reconstruction, ex-
amples of features that one would ideally like to reconstruct faithfully are the location
of peaks, number of peaks, and shape of extended spectral features such as thresholds.

4.5 Nevanlinna-Pick Spectral Reconstruction

The work presented in this thesis (Ref. [3]) will reconstruct the spectral density 𝜌±(𝜔)
from the Euclidean correlation function 𝐺

(ℓ)
𝐸 by exploiting the analytic relations be-

tween 𝜌±(𝜔), 𝐺±(𝑧), and 𝐺
(ℓ)
𝐸 that have been hitherto discussed in Section 4.3. As

opposed to directly inverting the Laplace transform in Eq. (4.27), this method presents
an algorithm that takes as input the Fourier coefficients 𝐺(ℓ)

𝐸 (which may be computed
in LGT) and constructs all possible analytic continuations 𝐺±(𝑧) which are consis-
tent with this input data. The smeared spectral function 𝜌𝜖±(𝜔) is then constrained
by evaluating each possible analytic continuation on the contour R + 𝑖𝜖. For the
reader’s convenience, the existing Green’s function definitions have been summarized
in Table 4.1. This method is called Nevanlinna-Pick Spectral Reconstruction
(NPSR), for reasons that will be discussed shortly.

To state the spectral reconstruction problem, assume that one has precisely7

computed 𝑁 Euclidean Fourier coefficients {𝐺(ℓ)
𝐸 }𝑁ℓ=1 at the Matsubara frequencies

{𝜔ℓ}𝑁ℓ=1. The reconstruction algorithm will be presented assuming that the Euclidean
correlator is known at the first 𝑁 Matsubara frequencies; however, the algorithm
remains valid when the inputs {𝜔ℓ}𝑁ℓ=1 and {𝐺(ℓ)

𝐸 }𝑁ℓ=1 are replaced with data taken at
an arbitrary cardinal 𝑀 subset of the Matsubara frequencies {𝜔ℓ𝑗}𝑀𝑗=1 and {𝐺(ℓ𝑗)

𝐸 }𝑀𝑗=1.
The spectral reconstruction problem is to reconstruct the set Λ({𝐺(ℓ)

𝐸 }) of all possible
7The presentation of this method assumes there is no statistical error on the inputs, even though

any LGT calculation for {𝐺(ℓ)
𝐸 } will have finite statistical errors. The extension of this algorithm

to LGT data with finite statistics is underway. The current state of this work will be detailed in
Section 4.7.

89



§ 4.5.1. Mapping the problem to the unit disk

analytic continuations 𝐺±(𝑧) for the data {𝐺(ℓ)
𝐸 }: in other words, to construct the

space of analytic functions consistent with {(𝑖𝜔ℓ, 𝐺(ℓ)
𝐸 )}𝑁ℓ=1,

Λ({𝐺(ℓ)
𝐸 }) ≡

{︂
𝐺± : C+ → Ω± analytic

⃒⃒⃒⃒
∀ℓ ∈ [𝑁 ], 𝐺±(𝑖𝜔ℓ) = 𝐺

(ℓ)
𝐸

}︂
. (4.50)

Let 𝜖 > 0 be a smearing parameter. The function space Λ({𝐺(ℓ)
𝐸 }) is then used to

construct the space SF𝜖({𝐺(ℓ)
𝐸 }) of all spectral functions consistent with the data,

SF𝜖({𝐺(ℓ)
𝐸 }) ≡

{︁
𝜔 ↦→ 𝐺±(𝜔 + 𝑖𝜖) : 𝐺± ∈ Λ({𝐺(ℓ)

𝐸 })
}︁
. (4.51)

The spaces Λ({𝐺(ℓ)
𝐸 }) and SF𝜖({𝐺(ℓ)

𝐸 }) were first parameterized in fermionic condensed
matter systems in the seminal work by Fei, Yeh, and Gull [11, 130]. The NPSR uses an
identical approach to parameterize Λ({𝐺(ℓ)

𝐸 }) and SF𝜖({𝐺(ℓ)
𝐸 }) for fermionic systems,

but presents a novel approach to parameterize these spaces in bosonic systems. The
following sections will keep precise the contributions of Ref. [11] and emphasize where
the NPSR method differs from this reconstruction method. Moreover, the NPSR also
allows one to construct an explicit bound (𝜌min

± (𝜔), 𝜌max
± (𝜔)) on the space of smeared

spectral functions, in the sense that

𝜌min
± ≤ 𝜌± ≤ 𝜌max

± almost everywhere (4.52)

for each 𝜌± ∈ SF𝜖({𝐺(ℓ)
𝐸 }). This is in contrast to conventional spectral function

reconstruction methods that choose some “best” spectral density 𝜌best ∈ SF𝜖({𝐺(ℓ)
𝐸 }),

where “best” means that 𝜌best extremizes a heuristically chosen loss function [107–113].
The NPSR method is based on the formative work of Rolf Nevanlinna [131, 132]

and Georg Pick [133] in the early 20th century, who first studied an analogous in-
terpolation problem, named the Nevanlinna-Pick problem, in the unit disk D. The
Nevanlinna-Pick problem will be rigorously defined in the following sections. Much
of the modern understanding of the mathematics behind the interpolation problem
has been presented by Arthur Nicolau [134], whose notation is adopted in this work
whenever possible. Additional detail about the underlying complex analysis can be
found in Refs. [135, 136].

4.5.1 Mapping the problem to the unit disk

The NPSR method relies on the properties of the finite-volume retarded correlator
𝐺±(𝑧) (Eq. (4.19)), which are used to map the analytic continuation problem onto a
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§ 4.5.1. Mapping the problem to the unit disk

well-studied interpolation problem on the open unit disk D. Recall the image of 𝐺±
is Ω±, computed in Eqs. (4.28, 4.29),

Ω+ = C+ Ω− = C ∖ R≤0. (4.53)

The Cayley transform 𝐶 : C+ → D is a conformal bijection between C+ and D:

𝐶(𝑧) =
𝑧 − 𝑖
𝑧 + 𝑖

𝐶−1(𝜁) = −𝑖
(︂
𝜁 + 1

𝜁 − 1

)︂
. (4.54)

To clarify the domains, 𝑧 will refer to a variable in C+, while 𝜁 will be used for
variables in D. The Cayley transform is used to lift the fermionic Green’s function
from Hol(C+) to the Hol(D), where Hol(𝑆) denotes the space of holomorphic functions
on a domain 𝑆 ⊆ C. One defines the map 𝒢+ : D→ D,

𝒢+(𝜁) = (𝐶 ∘𝐺+ ∘ 𝐶−1)(𝜁). (4.55)

which is clear from the commutative diagram,

C+ C+

D D.

𝐺+

𝐶 𝐶

𝒢+

(4.56)

The Cayley transform is represented pictorially in Figure 4.5a.

For the bosonic Green’s function with image Ω− = C∖R−, one can likewise define
an associated conformal bijection ̃︀𝐶 : C ∖ R− → D,

̃︀𝐶(𝑧) = √𝑧 − 1√
𝑧 + 1

, ̃︀𝐶−1(𝜁) = (︂1 + 𝜁

1− 𝜁

)︂2

. (4.57)

The Green’s function 𝐺− maps C+ onto C ∖R−, so defines the associated map 𝒢− on
Hol(D) by lifting the domain of 𝐺− with 𝐶−1 and projecting the image with ̃︀𝐶,

𝒢−(𝜁) = ( ̃︀𝐶 ∘𝐺− ∘ 𝐶−1)(𝜁), (4.58)
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§ 4.5.1. Mapping the problem to the unit disk

which is shown in the commutative diagram,

C+ C ∖ R−

D D,

𝐺−

𝐶 ̃︀𝐶
𝒢−

(4.59)

and depicted in Figure 4.5b.

To streamline notation, one packages together the 𝐶 and ̃︀𝐶 transforms into a
single transform C±,

C± : Ω± → D

⎧⎨⎩C+ ≡ 𝐶

C− ≡ ̃︀𝐶 , (4.60)

with the analogous definition for C −1± . With this notation, the transformed Green’s
function may be written in both cases as

𝒢±(𝜁) = (C ∘𝐺± ∘ 𝐶−1)(𝜁), (4.61)

and summarized in the diagram,

C+ Ω±

D D.

𝐺±

𝐶 C

𝒢±

(4.62)

The transformed Green’s functions 𝒢± are elements of the Schur class of analytic
functions,

S = {𝑓 : D→ D : 𝑓 is analytic}, (4.63)

where D denotes the closure of D, the closed unit disk. The Schur class comprises
constant functions on D and non-constant, analytic functions D → D. Further de-
tails about the mathematical structure of the interpolation problem are discussed in
Appendix E.

To reframe the reconstruction problem entirely on the unit disk, one must also
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§ 4.5.1. Mapping the problem to the unit disk

(a) Cayley Transform 𝐶 : C+ → D. (b) ̃︀𝐶 Transform ̃︀𝐶 : C ∖ R− → D.

Figure 4.5. Diagrammatic representation of the Cayley transform 𝐶 : C+ → D and
the inverse transform 𝐶−1 : D→ C+. The real line is mapped to the boundary of the
unit disk, while the upper half-plane is mapped to its interior.

map the inputs {𝑖𝜔ℓ} ⊆ C+, {𝐺±(𝑖𝜔ℓ)} ⊆ Ω± to corresponding points {𝜁ℓ}, {𝑤ℓ} ⊆ D,

D ∋ 𝜁ℓ ≡ 𝐶(𝑖𝜔ℓ)

D ∋ 𝑤ℓ ≡ C±(𝐺±(𝑖𝜔ℓ)),
(4.64)

with the transform C± defined in Eq. (4.60). The interpolation problem is now to
determine the space of all possible functions 𝒢± ∈ S (Eq. (4.63)) consistent with the
input data,

𝒢±(𝜁ℓ) = 𝑤ℓ. (4.65)

For given 𝜖 > 0, each 𝒢± yields a transformed smeared spectral function by evaluation
on the contour 𝐶({𝜔 + 𝑖𝜖 : 𝜔 ∈ R}) ⊂ D, which is then lifted to the corresponding
𝜌𝜖±(𝜔) with the inverse C± transform,

𝜌𝜖±(𝜔) = C −1± (𝐺±(𝐶(𝜔 + 𝑖𝜖))) . (4.66)

This reformulates the interpolation problem as an interpolation problem on the unit
disk D. The setting for the Matsubara frequencies and the evaluation axis is summa-
rized in Figure 4.6. The Matsubara frequencies {𝑖𝜔ℓ} and their images in D, {𝜁ℓ}, are
depicted in red, and the transformed evaluation axis {𝐶(𝜔 + 𝑖𝜖) : 𝜔 ∈ R} is depicted
in blue.
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§ 4.5.2. The Nevanlinna-Pick Problem

Figure 4.6. Analytic structure of the interpolation problem. The Cayley transform
(Eq. (4.54)) maps the Matsubara frequencies {𝑖𝜔ℓ} ⊆ C+ to {𝜁ℓ} ⊂ D (depicted in
red), and maps the evaluation contour for the smeared spectral function R + 𝑖𝜖 =
{𝜔 + 𝑖𝜖 : 𝜔 ∈ R} to the contour {𝐶(𝜔 + 𝑖𝜖) : 𝜔 ∈ R} (depicted in blue). The same
mapping to the disk has been considered in Refs [130, 137] (cf. Fig 1 in Ref. [137])
for fermionic correlators.

4.5.2 The Nevanlinna-Pick Problem

The preceding section (Section 4.5.1) mapped the objects of interest for the interpo-
lation problem to the unit disk D. The problem now remains to construct a valid
interpolation function for the data {(𝜁ℓ, 𝑤ℓ)}𝑁ℓ=1 ⊆ D2; that is, to construct an analytic
function 𝑓 that interpolates these points,

𝑓 : D→ D 𝑓(𝜁ℓ) = 𝑤ℓ. (4.67)

The space of all such interpolants 𝑓 immediately yields the space Λ({𝐺(ℓ)
𝐸 }) by pulling

each function back to a map between the domains C+ → Ω±, using the inverse
transformation to Eq. (4.61). This function 𝑓 is a member of the Hardy space 𝐻∞,
defined as the space of functions 𝑓 on D whose sup-norm is finite,

||𝑓 ||∞ = sup
𝑧∈D
|𝑓(𝑧)| <∞. (4.68)

Additional information about Hardy spaces are given in Appendix E.1, with more
detail given in Ref. [138]. This interpolation problem is known as the Nevanlinna-
Pick interpolation problem, first considered independently by mathematicians
Rolf Nevanlinna and Georg Pick. Nevanlinna’s contribution to the problem was the

94



§ 4.5.2. The Nevanlinna-Pick Problem

construction of a valid interpolation function that parameterizes the space of all
possible solutions in 𝐻∞ [131, 132]. In contrast, Pick studied the existence of an
interpolating function, given an arbitrary set of input data [133]. Both approaches
provide valuable insight into the structure and solution to this interpolation problem.
When appropriate, the problem of constructing a solution 𝑓 to Eq. (4.67) is referred
to as the Nevanlinna problem, and the problem of determining if such an 𝑓 exists as
the Pick problem.

The Nevanlinna construction of an interpolant is formulated in terms of Blaschke
products. For 𝑎 ∈ D ∖ {0}, the Blaschke factor centered at 𝑎 is defined to be the
analytic map 𝑏𝑎 : D→ D given by

𝑏𝑎(𝜁) =
|𝑎|
𝑎

𝑎− 𝜁
1− 𝑎*𝜁 , (4.69)

and conventionally define 𝑏0 ≡ idD. A product of Blaschke factors is known as a
Blaschke product. Blaschke products play a privileged role in the theory of complex
function interpolation because of the properties they satisfy. First, for any 𝑎 ∈ D,
the Blaschke factor 𝑏𝑎 ∈ Aut(D), where Aut(D) denotes the automorphism ring of
the unit disk. Second, Eq. (4.69) clearly implies that 𝑏𝑎(𝑎) = 0. These facts may be
applied in conjunction with the maximum modulus principle [139] to “factor out” the
zeros of a function. Suppose that 𝑔 : D→ D is analytic and has a zero at 𝑎 ∈ D. The
maximum modulus principle then implies that 𝑔 may be written as

𝑔(𝜁) = 𝑏𝑎(𝜁)̃︀𝑔(𝜁) (4.70)

where ̃︀𝑔 : D→ D is another analytic function on D. This fact will be used to construct
the Nevanlinna interpolant for the problem. Further properties of Blaschke products
and visualizations are presented in Appendix E.3.

The following will provide a convenient notation for continued fraction composi-
tion, (︃

𝑎(𝜁) 𝑏(𝜁)

𝑐(𝜁) 𝑑(𝜁)

)︃
ℎ(𝜁) ≡ 𝑎(𝜁)ℎ(𝜁) + 𝑏(𝜁)

𝑐(𝜁)ℎ(𝜁) + 𝑑(𝜁)
. (4.71)

Here, 𝑎, 𝑏, 𝑐, 𝑑, and ℎ are analytic functions on D. This matrix-vector notation co-
incides nicely with the composition of continued fractions: two continued fraction
expansions correspond to matrix multiplication, and inverting a continued fractions
expansion corresponds to matrix inversion. Further details and proofs of these prop-
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erties are in Appendix E.2.

4.5.3 Solving the Nevanlinna Problem: The Schur Algorithm

Nevanlinna’s approach to constructing an interpolation function expanded on ideas
from Issai Schur [140] published in 1918. As such, the interpolation algorithm to
solve the Nevanlinna problem is called the Schur algorithm. The Schur algorithm’s
central pillar is using Eq. (4.70) to strip off each zero and iteratively construct a
solution. To build intuition, consider the Nevanlinna-Pick problem with 𝑁 = 1.
Suppose that 𝑓 : D→ D is a solution to Eq. (4.67), which simply means 𝑓(𝜁1) = 𝑤1.
The function 𝜁 ↦→ 𝑓(𝜁)−𝑤1

1−𝑤*
1𝑓(𝑧)

has a zero at 𝜁1 (the normalization guarantees this function
has codomain D), hence Eq. (4.70) implies that this function may be written as

𝑓(𝜁)− 𝑤1

1− 𝑤*1𝑓(𝜁)
= 𝑏𝜁1(𝜁)𝑓1(𝜁) (4.72)

where 𝑓1 ∈ 𝐻∞ is an arbitrary function. Solving for 𝑓(𝜁) yields the expansion,

𝑓(𝜁) =
𝑏𝜁1(𝜁)𝑓1(𝜁) + 𝑤1

𝑤*1𝑏𝜁1(𝜁)𝑓1(𝜁) + 1
≡ 𝑈1(𝜁)𝑓(𝜁) 𝑈1(𝜁) ≡

1√︀
1− |𝑤1|2

(︃
𝑏𝜁1(𝜁) 𝑤1

𝑤*1𝑏𝜁1(𝜁) 1

)︃
,

(4.73)

where the matrix-vector notation is used in the equality 𝑓(𝜁) = 𝑈1(𝜁)𝑓1(𝜁). The
normalization of 𝑈1(𝜁) by 1/

√︀
1− |𝑤1|2 is conventional and guarantees det𝑈1(𝜁) =

𝑏𝜁1(𝜁), with no effect on the continued fractions expansion (c.f. Appendix E.2). This
expansion makes it clear that any function 𝑓1 ∈ 𝐻∞ will yield a valid interpolating
function 𝑓(𝜁) defined by Eq. (4.73) since 𝑓1(𝜁) is always multiplied by a Blaschke
factor 𝑏𝜁1(𝜁) which vanishes at 𝜁1.

The general solution to the Nevanlinna problem for 𝑁 points is a generalization
of this idea. To fix 𝑓(𝜁2) = 𝑤2, one continues to expand 𝑓(𝜁) as a continued fraction.
Using the expansion of Eq. (4.73), the interpolation condition 𝑓(𝜁2) = 𝑤2 yields,

𝑤2 = 𝑓(𝜁2) =
𝑏𝜁1(𝜁2)𝑓1(𝜁2) + 𝑤1

𝑤*1𝑏𝜁1(𝜁2)𝑓1(𝜁2) + 1
(4.74)

which is rearranged for 𝑓1(𝜁2) to yield,

𝑓1(𝜁2) =
1

𝑏𝜁1(𝜁2)

𝑤2 − 𝑤1

1− 𝑤*1𝑤2

≡ 𝑤
(1)
2 . (4.75)
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Imposing the interpolation condition 𝑓(𝜁2) = 𝑤2 enforces a constraint on 𝑓1. The

zero at 𝜁2 in the function 𝑓1(𝜁)−𝑤(1)
2

1−𝑤(1)*
2 𝑓1(𝜁)

can again be factored out using Eq. (4.70) to
strip off a Blaschke factor,

𝑓1(𝜁)− 𝑤(1)
2

1− 𝑤(1)*
2 𝑓1(𝜁)

= 𝑏𝑧2(𝜁)𝑓2(𝜁) ⇐⇒ 𝑓1(𝜁) =
𝑏𝜁2(𝜁)𝑓2(𝜁) + 𝑤

(1)
2

𝑤
(1)*
2 𝑏𝜁2(𝜁)𝑓2(𝜁) + 1

(4.76)

where 𝑓2 ∈ 𝐻∞ is an arbitrary function. As before, any 𝑓2 ∈ 𝐻∞ will yield a valid
interpolant 𝑓(𝜁), and in fact any analytic 𝑓 : D → D that interpolates (𝜁1, 𝑤1) and
(𝜁2, 𝑤2) must be able to be expanded as Eq. (4.76).

The extension to the 𝑁 -point Nevanlinna problem becomes clear by formulating
the expansion for the zero at 𝜁2 in terms of the matrix-vector notation of Eq. (4.71).
The first interpolation point yields 𝑓(𝜁) = 𝑈1(𝜁)𝑓1(𝜁), where 𝑓1 is an arbitrary func-
tion and 𝑈1 is defined in Eq. (4.73). The interpolation constraint 𝑓(𝜁2) = 𝑤2 can be
expanded with this notation,

𝑤2 = 𝑓(𝜁2) = 𝑈1(𝜁2)𝑓1(𝜁2) =⇒ 𝑓1(𝜁2) = 𝑈1(𝜁2)
−1𝑤2 (4.77)

where 𝑤2 is considered as the column vector

(︃
𝑤2

1

)︃
. Note that this is indeed the

definition of 𝑤(1)
2 , and one can confirm that 𝑈1(𝜁2)

−1𝑤2 indeed equals Eq. (4.77) by
computing the matrix inverse and matrix-vector product. The key point is that the
matrix-vector notation simplifies the complicated continued fractions expansion for
𝑤

(1)
2 (the value 𝑓1 takes at 𝜁2) into the compact expression of Eq. (4.77). The zero

in 𝑓1(𝜁) − 𝑤
(1)
2 can then be factored out with a Blaschke product to produce the

expansion in Eq. (4.76). The expansion for 𝑓1 of Eq. (4.76) yields,

𝑓1(𝜁) = 𝑈2(𝜁)𝑓2(𝜁) 𝑈2(𝜁) ≡
1√︁

1− |𝑤(1)
2 |2

(︃
𝑏𝜁2(𝜁) 𝑤

(1)
2

𝑤
(1)*
2 𝑏𝜁2(𝜁) 1

)︃
. (4.78)

This is the same form as 𝑈1(𝜁), with 𝜁1 ↦→ 𝜁2 and 𝑤1 ↦→ 𝑤
(1)
2 . The matrix-vector

notation makes it simple to expand 𝑓 in terms of 𝑓2,

𝑓(𝜁) = 𝑈1(𝜁)𝑈2(𝜁)𝑓2(𝜁) (4.79)

as continued fraction composition corresponds to matrix multiplication.
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The general case is clear: the function

𝑓(𝜁) = 𝑈1(𝜁)...𝑈𝑁(𝜁)𝑓𝑁(𝜁) (4.80)

solves the 𝑁 -point Nevanlinna problem, with 𝑓𝑁 ∈ 𝐻∞ an arbitrary function, where
for each ℓ ∈ {1, ..., 𝑁}, the matrix 𝑈ℓ(𝜁) is defined as

𝑈ℓ(𝜁) ≡
1√︁

1− |𝑤(ℓ−1)
ℓ |2

(︃
𝑏𝜁ℓ(𝜁) 𝑤

(ℓ−1)
ℓ

𝑤
(ℓ−1)*
ℓ 𝑏𝜁ℓ(𝜁) 1

)︃
. (4.81)

Here 𝑤(ℓ−1)
ℓ ∈ D are defined recursively in terms of the previously defined 𝑓ℓ ∈ 𝐻∞ as

𝑤
(ℓ)
𝑘 = 𝑓ℓ(𝜁𝑘), (4.82)

defined for 1 ≤ ℓ < 𝑘. The explicit value of 𝑤(ℓ)
𝑘 is computed in terms of 𝑤𝑘 and the

values 𝑈1(𝜁𝑘), ..., 𝑈𝑛(𝜁𝑘),

𝑤𝑘 = 𝑓(𝜁𝑘) = 𝑈1(𝜁𝑘)...𝑈𝑛(𝜁𝑘)𝑤
(ℓ)
𝑘

=⇒ 𝑤
(ℓ)
𝑘 = 𝑈−1ℓ (𝜁𝑘)𝑈

−1
ℓ−1(𝜁𝑘) · · ·𝑈−11 (𝜁𝑘)𝑤𝑘.

(4.83)

Moreover, Eq. (4.80) not only solves the Nevanlinna problem but also any solution
to the Nevanlinna problem may be written in this form for some 𝑓𝑁 ∈ 𝐻∞. It is
conventional to define the Nevanlinna coefficients 𝑃𝑁 , 𝑄𝑁 , 𝑅𝑁 , 𝑆𝑁 : D→ D as(︃

𝑃𝑁(𝜁) 𝑄𝑁(𝜁)

𝑅𝑁(𝜁) 𝑆𝑁(𝜁)

)︃
≡ 𝑈1(𝜁)𝑈2(𝜁)...𝑈𝑁(𝜁). (4.84)

The Nevanlinna coefficients are analytic functions on D and contain all the informa-
tion about the interpolation problem {(𝜁ℓ, 𝑤ℓ)}𝑁ℓ=1. They will be discussed further in
Section 4.5.5.

To prove the previous claim, one proceeds by strong induction on 𝑁 , which has
already been shown for 𝑁 = 1, 2. Suppose that 𝑓(𝜁) = 𝑈1(𝜁)...𝑈𝑁(𝜁)𝑓𝑁(𝜁). To
include a point (𝜁𝑁+1, 𝑤𝑁+1) into the interpolation, one expands

𝑤𝑁+1 = 𝑓(𝜁𝑁+1) = 𝑈1(𝜁𝑁+1)...𝑈𝑁(𝜁𝑁+1)𝑓𝑁(𝜁𝑁+1). (4.85)

This immediately yields 𝑤(𝑁)
𝑁+1 = 𝑓𝑁(𝜁𝑁+1) = 𝑈𝑁(𝜁𝑁+1)

−1...𝑈1(𝜁𝑁+1)
−1𝑤𝑁+1. Note

that 𝑤(𝑁)
𝑁+1 is constructible from the current data, as the 𝑈1(𝜁), ..., 𝑈𝑁(𝜁) are assumed
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to have already been computed. As before, Eq. (4.70) is used to expand

𝑓𝑁(𝜁)− 𝑤(𝑁)
𝑁+1

1− 𝑤(𝑁)*
𝑁+1𝑓𝑁(𝜁)

= 𝑏𝑧𝑁+1
(𝜁)𝑓𝑁+1(𝜁) ⇐⇒ 𝑓𝑁(𝜁) = 𝑈𝑁+1(𝜁)𝑓𝑁+1(𝜁) (4.86)

with 𝑈𝑁+1(𝜁) defined as in Eq. (4.81) and 𝑓𝑁+1 ∈ 𝐻∞ an arbitrary function. It is
clear that this implies 𝑓(𝜁) = 𝑈1(𝜁)...𝑈𝑁(𝜁)𝑈𝑁+1(𝜁)𝑓𝑁+1(𝜁) as claimed. Conversely,
any such interpolating function must likewise satisfy these identities because of the
interpolation condition 𝑓(𝜁𝑁+1) = 𝑤𝑁+1, so any such 𝑓(𝜁) solving the 𝑁 + 1-point
interpolation problem can be parameterized in this way. This completes the induction
and proves the claim.

The Schur interpolation algorithm is specified by Eqs. (4.80–4.83). The algorithm
iteratively constructs the 𝑈𝑛(𝜁), and therefore 𝑤(𝑛−1)

𝑛 , in terms of 𝑈𝑘(𝜁) for 1 ≤ 𝑘 ≤
𝑛 − 1. The expansion of 𝑓(𝜁) = 𝑈1(𝜁)...𝑈𝑁(𝜁)𝑓𝑁(𝜁) (Eq. (4.80)) parameterizes the
full space of analytic functions D→ D that interpolate the points {(𝜁𝑛, 𝑤𝑛)}𝑁𝑛=1. This
presents an explicit parameterization of Λ({𝐺(ℓ)

𝐸 }) and SF𝜖({𝐺(ℓ)
𝐸 }) (Eqs. (4.50, 4.51)

by the Hardy space 𝐻∞. The parameterization for Λ({𝐺(ℓ)
𝐸 }) is

Λ({𝐺(ℓ)
𝐸 }) =

{︀
C −1 ∘ (𝑈1...𝑈𝑁𝑓𝑁) ∘ 𝐶 : 𝑓𝑁 ∈ 𝐻∞

}︀
(4.87)

where the matrices 𝑈𝑛(𝜁) are constructed as stated, and the function (𝑈1(𝜁)...𝑈𝑁𝑓𝑁)(𝜁) =

𝑈1(𝜁)...𝑈𝑁(𝜁)𝑓𝑁(𝜁), which yields the corresponding parameterization for SF𝜖({𝐺(ℓ)
𝐸 })

SF𝜖({𝐺(ℓ)
𝐸 }) =

{︀
𝜔 ↦→ (C −1 ∘ (𝑈1...𝑈𝑁𝑓𝑁) ∘ 𝐶)(𝜔 + 𝑖𝜖) : 𝑓𝑁 ∈ 𝐻∞

}︀
. (4.88)

This parameterization is the first result of the NPSR method, which was first written
down by Fei, Yeh, and Gull in Ref. [11] for fermionic systems. The NPSR method
extends their work to bosonic systems by introducing the transform C : Ω± → D.

That the space of analytic continuations Λ({𝐺(ℓ)
𝐸 }) is parameterized by the func-

tion space 𝐻∞ shows that the inverse problem is ill-posed. Given a set of data
{(𝑖𝜔ℓ, 𝐺(ℓ)

𝐸 )}, there are an infinite number of possible analytic continuations of this
data to a retarded correlator 𝐺±(𝑧) that is consistent with the analytic properties
of Section 4.3 (Eq. (4.87)). However, the interpolation problem constrains the set of
solutions to the problem: although 𝑓𝑁 ∈ 𝐻∞ is an arbitrary function, the matrices
𝑈1(𝜁), ..., 𝑈𝑁(𝜁) (equivalently the Nevanlinna coefficients 𝑃𝑁(𝜁), 𝑄𝑁(𝜁), 𝑅𝑁(𝜁), 𝑆𝑁(𝜁))
contain the information about the interpolation problem, and constrain the behavior
of the interpolant 𝑈1(𝜁)...𝑈𝑁(𝜁)𝑓𝑁(𝜁) regardless of the choice of 𝑓𝑁(𝜁). This param-
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eterization may be used to determine a “best” spectral function that satisfies the
interpolation data, which will be discussed in the next section.

This parameterization is theoretically sound, but it does not immediately tell one
about the behavior of an arbitrary spectral function 𝜌𝜖±(𝜔) that is consistent with
the data. Section 4.5.5 will present the second part of the NPSR method, which
will construct an envelope that any reconstructed smeared spectral function must be
found in. Such an envelope is more valuable than a parameterization of SF𝜖({𝐺(ℓ)

𝐸 })
because it yields information about the geometry of the entire space rather than a
specific element in the space.

4.5.4 Optimization of 𝑓𝑁

As discussed, the connection between spectral reconstruction and Nevanlinna-Pick
interpolation was first made explicit by Fei, Yeh, and Gull [11]. Here the method of
spectral reconstruction presented in Ref. [11] is summarized, which involves searching
the space SF𝜖({𝐺(ℓ)

𝐸 }) of all possible smeared spectral functions for a “best” smeared
spectral function (𝜌𝜖±)*(𝜔) by extremizing a cost functional. This section will suppress
the ± subscript on 𝜌𝜖±(𝜔), and denote the “best” smeared spectral function as 𝜌𝜖*(𝜔).

To formalize this, one chooses a cost functional that is consistent with the prop-
erties desired by the reconstructed spectral function. The most immediate example
of this is to enforce that 𝜌𝜖(𝜔) is smooth and non-oscillatory, which is equivalent to
the second derivative (𝜌𝜖)′′(𝜔) having a small 𝐿2 norm. Consider, for example, the
cost functional,

𝐹𝜆[𝜌] =

(︂
1−

∫︁
𝑑𝜔 𝜌(𝜔)

)︂2

+ 𝜆

∫︁
𝑑𝜔 (𝜌′′(𝜔))

2
, (4.89)

where 𝜆 ≪ 1 is a regulator that enforces the relative importance of the second term
that damps oscillations,

∫︀
(𝜌′′)2, compared to the first term that enforces normaliza-

tion of the spectral function, (1−
∫︀
𝜌)2. The “best” spectral function 𝜌𝜖* is chosen to

minimize 𝐹𝜆[𝜌]
𝜌𝜖* = argmin

𝜌𝜖∈SF𝜖({𝐺(ℓ)
𝐸 })

𝐹𝜆[𝜌
𝜖]. (4.90)

Note that the reconstructed spectral density 𝜌𝜖* is implicitly a function of the specified
cost functional 𝐹𝜆. The cost functional 𝐹𝜆[𝜌] is arbitrary and, as mentioned, can be
modified to include whatever properties of 𝜌𝜖 one wants to enforce. Eq. (4.89) uses
a Tikhonov regularization [141, 142] on 𝜌′′ to enforce the output spectral density is

100



§ 4.5.4. Optimization of 𝑓𝑁

smooth. Ideally, one would desire 𝜌𝜖* to be independent of the choice of 𝐹𝜆, but in
practice, this is not the case; the reconstructed spectral density can heavily depend
on 𝐹𝜆, indicating this reconstruction method may rely too heavily on heuristics.

There are many additional choices of 𝐹𝜆 that would impose different properties
on the spectral density. A physically well-informed constraint that may be used as
a regulator comes from sum rules [143] that the spectral density is known to satisfy
analytically. Sum rules constrain the moments of the spectral density; an arbitrary
sum rule has the form, ∫︁

𝑑𝜔 𝜌𝑛(𝜔) = 𝐼(𝑛), (4.91)

where 𝑛 and 𝐼𝑛 are known analytically [144]. Enforcing this constraint amounts to
adding the term,

𝐹𝜆[𝜌] ⊃ 𝜉𝑛

(︂
𝐼(𝑛) −

∫︁
𝑑𝜔 𝜌𝑛(𝜔)

)︂2

, (4.92)

to the cost functional, where 0 < 𝜉𝑛 ≪ 1 is a hyperparameter. Note that here the
deviation between the 𝑛th moment of 𝜌 and 𝐼𝑛 is squared in order to make the term
differentiable. One can add an arbitrary number of sum rules to the cost functional,
but additional regulator terms increase the complexity of the optimization problem.
In particular, as each regulator has its own hyperparameter, tuning the hyperparame-
ters may bottleneck the calculation if a large number of sum rules are enforced. Given
a set of input Euclidean correlation function data {𝐺(ℓ)

𝐸 }, the full space SF𝜖({𝐺(ℓ)
𝐸 })

is not mathematically guaranteed to satisfy the sum rules, and in general, one should
only consider the subset of SF𝜖({𝐺(ℓ)

𝐸 }) that is consistent with all applicable sum rules
for a given system.

The optimization of Eq. (4.90) can be simplified in terms of the Hardy space 𝐻∞.
Recall that any 𝜌𝜖 ∈ SF𝜖({𝐺(ℓ)

𝐸 }) may be expanded as

𝜌𝜖[𝑓𝑁 ](𝜔) = C −1 (𝑈1(𝜔 + 𝑖𝜖)...𝑈𝑁(𝜔 + 𝑖𝜖)𝑓𝑁(𝜔 + 𝑖𝜖)) (4.93)

for 𝑓𝑁 ∈ 𝐻∞. The domain of the optimization problem is hence reduced to searching
over the Hardy space 𝐻∞,

𝑓 *𝑁 = argmin
𝑓𝑁∈𝐻∞

𝐹𝜆 [𝜌
𝜖[𝑓𝑁 ]] . (4.94)

Note that because 𝐻∞ ⊆ 𝐻𝑝 for 1 ≤ 𝑝 < ∞8, moments of 𝑓𝑁(𝜁) and its derivatives
are well-defined. The optimization of Eq. (4.94) is a functional optimization over

8The 𝑝th Hardy space 𝐻𝑝 is defined as the space of holomorphic functions on D whose angular
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the full Hardy space 𝐻∞ and is hard to implement generally because the dimension
of 𝐻∞ is countably infinite. Computationally, the simplest way to implement this
optimization is to instead restrict the optimization to a finite-dimensional subspace
of 𝐻∞. One expands 𝑓𝑁 in a basis for this finite-dimensional subspace and optimizes
the finite number of basis coefficients, turning the problem into a tractable convex
optimization in Euclidean space.

In order to define a square-integrable norm that can be optimized, 𝑓𝑁 is considered
as an element of the Hardy space9 𝐻2. A basis for 𝐻2 is {𝑔𝑘, 𝑔*𝑘}∞𝑘=1 (the functions 𝑔𝑘
and their complex conjugates) given by [145],

𝑔𝑘(𝜁) ≡
𝑖

2
√
𝜋
(𝜁 − 1)𝜁𝑘. (4.96)

with 𝑘 ∈ {0, 1, 2, ...}. The function 𝑓𝑁(𝜁) is expanded with the first 2𝑀 elements of
the Hardy basis and is written as

𝑓𝑁(𝜁) =
𝑀∑︁
𝑘=0

(𝛼𝑖𝑔𝑘(𝜁) + 𝛽𝑖𝑔
*
𝑘(𝜁)) (4.97)

This expansion reduces the functional 𝜌𝜖[𝑓𝑁 ] to a function 𝜌𝜖({(𝛼𝑘, 𝛽𝑘)}𝑀𝑘=0) of 2𝑀+2

real parameters {(𝛼𝑘, 𝛽𝑘)}𝑀𝑘=0, which recasts the optimization problem into a problem
on finite-dimensional Euclidean space R2𝑀+2 with cost function (note 𝜖 > 0 is fixed
and not optimized over)

𝐹𝜆({(𝛼𝑘, 𝛽𝑘)}𝑀𝑘=0; 𝜖) =

(︂
1−

∫︁
𝑑𝜔 𝜌𝜖({(𝛼𝑘, 𝛽𝑘)}𝑀𝑘=0)(𝜔)

)︂2

+ 𝜆

∫︁
𝑑𝜔
(︀
𝜌𝜖({(𝛼𝑘, 𝛽𝑘)}𝑀𝑘=0)

′′(𝜔)
)︀2
.

(4.98)

The solution to this optimization is not the “best” choice of 𝑓𝑁 over the space of

integral

sup
𝑟∈[0,1)

(︂∫︁
𝑆1

𝑑𝜃

2𝜋
|𝑓(𝑟𝑒𝑖𝜃)|𝑝

)︂ 1
𝑝

(4.95)

is finite; for more details, refer to Appendix E.1.
9Note that the mathematical formalism presented thus far has considered 𝑓𝑁 ∈ 𝐻∞, while

Ref. [11] considers 𝑓𝑁 ∈ 𝐻2. Although 𝐻∞ ⊆ 𝐻2, it is my view that 𝑓𝑁 ∈ 𝐻∞ is a necessary
constraint for the resulting interpolating function 𝑓 to be a valid analytic map D→ D. Expanding
𝑓𝑁 in a basis for 𝐻2 may produce results of the Nevanlinna interpolation that are not analytic
functions D→ D, since elements in 𝐻2 ∖𝐻∞ may not necessarily satisfy the constraints in the Schur
algorithm. The resulting functions 𝑓(𝜁) will still interpolate the correct points, but they may have
image(𝑓) ̸⊆ D. This is likely a small concern, as the elements in 𝐻∞ ∖𝐻2 are pathological.
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all functions 𝑓𝑁 ∈ 𝐻∞, but rather the “best” choice of 𝑓𝑁 in the space spanned by
{𝑔0, 𝑔*0, ..., 𝑔𝑀 , 𝑔*𝑀}, which is a subspace of 𝐻2.

4.5.5 Nevanlinna Coefficients and the Wertevorrat

Recall the functions 𝑃𝑁 , 𝑄𝑁 , 𝑅𝑁 , 𝑆𝑁 : D → C defined in Section 4.5.3 are called
Nevanlinna coefficients. They lie in the Smirnov class of functions (see Appendix E.1
for more details) and determine the possible solutions to the Schur interpolation
problem.

The Nevanlinna coefficients satisfy many properties directly from their defini-
tion (Eq. (4.84)) [146, 147], which are stated here for convenience. The functions
𝑃𝑁(𝜁), 𝑄𝑁(𝜁), 𝑅𝑁(𝜁), 𝑆𝑁(𝜁) are rational functions by construction, and they have
poles at 1/𝜁ℓ. The Nevanlinna coefficient matrix satisfies a constraint on its determi-
nant,

𝑃𝑁(𝜁)𝑆𝑁(𝜁)−𝑄𝑁(𝜁)𝑅𝑁(𝜁) = 𝐵𝑁(𝜁), (4.99)

where 𝐵𝑁(𝜁) is the Blaschke product 𝐵𝑁(𝜁) =
∏︀𝑁

𝑖=1 𝑏𝜁𝑖(𝜁) (Appendix E.3). This
result is immediate because each 𝑈𝑗(𝜁) is normalized to satisfy det𝑈𝑗(𝜁) = 𝑏𝜁𝑗(𝜁)

(Eq. (4.81)), hence det(
∏︀𝑁

𝑖 𝑈𝑖(𝜁)) =
∏︀𝑁

𝑖 det𝑈𝑖(𝜁) yields the result. Additionally, for
𝜁 ∈ D, one has the following relations between the sizes of the coefficients,

|𝑆𝑁(𝜁)| ≥ 1, |𝑆𝑁(𝜁)| ≥ max{𝑃𝑁(𝜁), 𝑄𝑁(𝜁), 𝑅𝑁(𝜁)}, (4.100)

and the following constraints on the coefficients themselves,

𝑃𝑁(𝜁) = 𝐵𝑁(𝜁)𝑆
*
𝑁(1/𝜁

*), 𝑄𝑁(𝜁) = 𝐵𝑁(𝜁)𝑅
*
𝑁(1/𝜁

*). (4.101)

Eqs. (4.100, 4.101) are proved in Ref. [134].
A remarkable fact about the Nevanlinna coefficients is that they may be used to

compute an explicit bound on the output interpolation function 𝑓(𝜁) for arbitrary
𝑓𝑁(𝜁), which in turn extends to a rigorous bound on the values that the smeared
spectral function 𝜌𝜖±(𝜔) can take. Recall that for any 𝑓𝑁 ∈ 𝐻∞, the function

𝑓(𝜁) =
𝑃𝑁(𝜁)𝑓𝑁(𝜁) +𝑄𝑁(𝜁)

𝑅𝑁(𝜁)𝑓𝑁(𝜁) + 𝑆𝑁(𝜁)
(4.102)

solves the Nevanlinna-Pick interpolation problem (Eqs. (4.80, 4.84). Conversely,
any solution to the Nevanlinna-Pick interpolation problem may be parameterized
as Eq. (4.102) for some choice of 𝑓𝑁 ∈ 𝐻∞. Varying 𝑓𝑁 over all possible functions
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in 𝐻∞ gives an envelope for 𝑓 containing all possible solutions to the interpolation
problem.

The Wertevorrat10 is defined for each 𝜁 ∈ D as

Δ𝑁(𝜁) ≡ {𝑓(𝜁) : 𝑓 ∈ 𝐻∞ s.t. ∀ℓ ∈ {1, ..., 𝑁}, 𝑓(𝜁ℓ) = 𝑤ℓ} , (4.103)

which is a closed subset of D. In other words, the Wertevorrat at 𝜁 is the set of all
possible values an interpolating function consistent with the input data can take at 𝜁.
Knowledge of the Wertevorrat directly quantifies how ill-posed the inverse problem
is. If the Wertevorrat can be computed, the uncertainty associated with the inverse
problem can be precisely constrained.

The key to the NPSR method is that Δ𝑁(𝜁) can be directly quantified in terms
of the Nevanlinna coefficients and the 𝑁 -point Blaschke product,

𝐵𝑁(𝜁) =
𝑁∏︁
ℓ=1

𝑏𝜁ℓ(𝜁). (4.104)

Let 𝜁 ∈ D be fixed. To compute the Wertevorrat Δ𝑁(𝜁), the main idea will be to
vary 𝑓𝑁(𝜁) in the expansion of Eq. (4.102), since |𝑓𝑁(𝜁)| ≤ 1. The Wertevorrat may
be rewritten as,

Δ𝑁(𝜁) = {𝑇𝑁,𝜁(𝑤) : 𝑤 ∈ D}, (4.105)

where 𝑇𝑁,𝜁 : D→ D is defined as

𝑇𝑁,𝜁(𝑤) =
𝑃𝑁(𝜁)𝑤 +𝑄𝑁(𝜁)

𝑅𝑁(𝜁)𝑤 + 𝑆𝑁(𝜁)
, (4.106)

because 𝑓𝑁(𝜁) ∈ D can take on an arbitrary value in the disk as 𝑓𝑁 is varied over
all of 𝐻∞. The map 𝑤 ↦→ 𝑇𝑁,𝜁(𝜁) is a Möbius transformation [148], which has the
property that it maps circles to circles. Hence, Δ𝑁(𝜁) must be a disk.

It remains to compute the center and radius of this disk. To compute the center of
this disk, note that 𝑇𝑁,𝜁(−𝑆𝑁(𝜁)/𝑅𝑁(𝜁)) =∞ in the extended complex plane. The re-
flection property of Möbius transformations implies that 𝑇𝑁,𝜁 maps −(𝑅𝑁(𝜁)/𝑆𝑁(𝜁))

*

10The codomain of a function 𝑓 : 𝐴→ 𝐵 is called the “Wertevorrat” in German. The terminology
is meant to evoke the codomain of a function, as the Wertevorrat is the space of values that the
analytic continuation can possibly take on.
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to the center of Δ𝑁(𝜁), hence the disk is centered at

𝑐𝑁(𝜁) =
𝑃𝑁(𝜁) (−𝑅𝑁(𝜁)/𝑆𝑁(𝜁))

* +𝑄𝑁(𝜁)

𝑅𝑁(𝜁) (−𝑅𝑁(𝜁)/𝑆𝑁(𝜁))
* + 𝑆𝑁(𝜁)

(4.107)

=
𝑄𝑁(𝜁)𝑆

*
𝑁(𝜁)− 𝑃𝑁(𝜁)𝑅*𝑁(𝜁)

|𝑆𝑁(𝜁)|2 − |𝑅𝑁(𝜁)|2
. (4.108)

The radius of the disk is given by the distance between any point 𝑇𝑁,𝜁(𝑒𝑖𝜃) on the
boundary of Δ𝑁(𝜁) and the enter 𝑐𝑁(𝜁), which evaluates to

𝑟𝑁(𝜁) =
|𝐵𝑁(𝜁)|

|𝑆𝑁(𝜁)|2 − |𝑅𝑁(𝜁)|2
, (4.109)

where the Blaschke product is the result of the Nevanlinna determinant, Eq. (4.99).

To summarize, at fixed 𝜁 ∈ D, the Wertevorrat is a Euclidean disk Δ𝑁(𝜁) ⊆ D with
center 𝑐𝑁(𝜁) (Eq. (4.108)) and radius 𝑟𝑁(𝜁) (Eq. (4.109)). This is a remarkable result:
it means one has a direct measure of how “ill-posed" the reconstruction problem is
via the Wertevorrat. When the radius 𝑟𝑁(𝜁) of the Wertevorrat is small compared to
its center 𝑐𝑁(𝜁), the reconstructed smeared spectral function is easily resolvable, and
any reconstruction that singles out a specific Poisson-smeared spectral function must
lie in the Wertevorrat. In this way, the Wertevorrat itself can be used as a proxy for
the reconstructed spectral function.

4.5.6 Constraining 𝜌𝜖±(𝜔) from Δ𝑁(𝜁)

The Wertevorrat Δ𝑁(𝜁) ⊆ D is inherently a subset of the unit disk D. For physical
interpretation, it must be pulled back to the correct domain and codomain wherein
the smeared spectral function resides. Given an interpolating function 𝒢± : D → D,
one maps 𝒢± back to a retarded correlator with the transform C± (Eq. (4.60))

𝐺± : C+ → Ω±

𝐺±(𝑧) = (C −1± ∘ 𝒢± ∘ 𝐶)(𝑧)
(4.110)

The Wertevorräte11 are pulled back to the upper half-plane in a similar manner,

𝒟𝑁(𝑧) ≡ (C −1± ∘Δ𝑁 ∘ 𝐶)(𝑧). (4.111)

11Everything I have learned about how to pluralize German words comes from my collaborator
and friend William Jay.
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For each 𝑧 ∈ C+, the retarded correlator 𝐺±(𝑧) must lie inside the domain 𝒟𝑁(𝑧) ⊆
Ω± to be a valid interpolating function for the Nevanlinna-Pick problem. The set
𝒟𝑁(𝑧) is indeed a domain (an open, connected subset of C) because it is the preimage
of an open, connected set (a disk). Recall that for any interpolating function 𝐺±(𝑧),
one extracts the spectral density via evaluation on the shifted real axis,

𝜌𝜖±(𝜔) =
1

𝜋
Im𝐺±(𝜔 + 𝑖𝜖). (4.112)

The uncertainty in the reconstruction of 𝜌𝜖±(𝜔) induced by the ill-posed inverse prob-
lem is, therefore, the size of the Wertevorrat, mapped back to the correct domain
and pulled back through Eq. (4.112), which is the full width of the imaginary part of
𝒟𝑁(𝜔 + 𝑖𝜖),

𝛿𝜌𝜖±(𝜔) =
1

𝜋
[sup Im 𝜕𝒟𝑁(𝜔 + 𝑖𝜖)− inf Im 𝜕𝒟𝑁(𝜔 + 𝑖𝜖)] , (4.113)

where 𝜕𝒟𝑁(𝑧) denotes the boundary of 𝒟𝑁(𝑧). The computation of 𝛿𝜌𝜖±(𝜔) is sum-
marized in Figure 4.7. Numerically, 𝛿𝜌𝜖±(𝜔) is computed by uniformly sampling the
circle 𝜕Δ𝑁(𝐶(𝜔 + 𝑖𝜖)) at 1,000 points, pulling each point back through the transfor-
mations of Eqs. (4.111, 4.113), and computing the maximum and minimum of these
samples.

Figure 4.7. Interpretation of the Wertevorrat Δ𝑁(𝜁) as the uncertainty on the
smeared spectral function 𝜌𝜖±(𝜔). The Wertevorrat is mapped back to C+ with the
transform C −1 and then projected onto its imaginary component. The resulting
projection is proportional to the uncertainty in the smeared spectral density 𝛿𝜌𝜖±(𝜔).
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It is insightful to study the behavior of the Wertevorrat𝒟(𝜔+𝑖𝜖) as one approaches
the real axis from above, 𝜖 ↓ 0, which is equivalent to studying Δ𝑁(𝜁) as 𝜁 → 𝜕D.
The following lemma, proved in Ref. [3], is helpful.

Lemma 4.5.1. Let 𝑤, 𝑧 ∈ C with 𝑤*𝑧 ̸= 1. If |𝑧| < 1 and |𝑤| < 1, then | 𝑤−𝑧
1−𝑤*𝑧 | < 1.

If |𝑧| = 1 or |𝑤| = 1, then | 𝑤−𝑧
1−𝑤*𝑧 | = 1.

This implies that when |𝜁| = 1, the Wertevorrat is the full unit disk Δ𝑁(𝜁) = D.
As C −1± (D) = Ω±, this means that as the smearing 𝜖 approaches 0, the spectral
function is unconstrained by the interpolation,

𝛿𝜌𝜖±(𝜔)

⃒⃒⃒⃒
𝜖↓0

=∞. (4.114)

This means the unsmeared spectral density cannot be directly reconstructed from the
interpolation data, even with analytic guarantees on 𝐺±(𝑧). The smaller the smearing
width 𝜖, the larger the Wertevorrat will grow, until it eventually fills the entire space,
at which point the interpolation procedure yields no information.

4.5.7 Summary of the NPSR method

The NPSR method presented in this section takes the following steps to reconstruct
a smeared spectral function.

1. From Euclidean correlator data G𝐸(𝜏), compute the Fourier coefficients 𝐺(ℓ)
𝐸

for each desired Matsubara frequency 𝜔ℓ via Eq. (4.10) and the discussion in
Section 4.3.1. The pairs {(𝑖𝜔ℓ, 𝐺(ℓ)

𝐸 )} are the input data to the algorithm.

2. Transform the data {(𝑖𝜔ℓ, 𝐺(ℓ)
𝐸 )} to D with 𝜁ℓ = 𝐶(𝑖𝜔ℓ) and 𝑤ℓ = C±(𝐺

(ℓ)
𝐸 )

(Eq. (4.64)).

3. Construct the Nevanlinna coefficients 𝑃𝑁(𝜁), 𝑄𝑁(𝜁), 𝑅𝑁(𝜁), 𝑆𝑁(𝜁) from the data
using the Schur algorithm, Eqs. (4.80–4.83). Use the Nevanlinna coefficients to
compute the center 𝑐𝑁(𝜁) and the radius 𝑟𝑁(𝜁) of the Wertevorrat, Eqs. (4.108, 4.109).

4. Pull back the Wertevorrat to 𝒟𝑁(𝑧), evaluated on the domain of interest Ω±

for the system at hand, using Eq. (4.111).

5. Compute the space of smeared spectral functions 𝛿𝜌𝜖±(𝜔) using Eq. (4.113). The
true smeared spectral function is rigorously guaranteed to lie within 𝛿𝜌𝜖±(𝜔).
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§ 4.5.7. Summary of the NPSR method

The presented algorithm treats the bosonic and fermionic cases exactly the same,
other than the transforms that are applied to map the data to the disk (C±), and
where the Matsubara frequencies 𝑖𝜔ℓ ∈ C+ lie (Eq. (4.11)). This can be exploited
in the zero-temperature limit, where the finite-volume spectral function (Eq. (4.23))
satisfies the relation,

𝜌+(𝜔) = sgn(𝜔)𝜌−(𝜔). (4.115)

This implies that the fermionic and bosonic smeared spectral densities must converge
to the same result as the smearing parameter 𝜖 ↓ 0,

lim
𝜖→0

𝜌𝜖+(𝜔) = sgn(𝜔) lim
𝜖→0

𝜌𝜖−(𝜔). (4.116)

The fermionic and the bosonic reconstructions contain the same information at zero
temperature as the smearing goes to zero, and the choice of which to use is a ques-
tion of ease. These methods can be used in conjunction to take the zero-smearing
limit, as they both converge to the same unsmeared spectral density (up to sgn(𝜔)).
Section 4.6.2 explores this idea in a numerical example.

It is illuminating to discuss the differences between the NPSR method and other
recent work in this area, namely with the Nevanlinna Analytical Continuation (NAC)
approach to spectral reconstruction developed by Fei, Yeh, and Gull [11], which heav-
ily influenced many of the ideas in the NPSR method. The NAC method uses the
Nevanlinna property of fermion correlation functions𝐺+(𝑧) to map the problem to the
disk using the Cayley transform 𝐶 : C+ → D (Eq. (4.54)). While the NPSR method
uses the same approach for fermionic correlators, it is generalizable to bosonic corre-
lators via the map ̃︀𝐶 : C ∖ R → D (Eq. (4.57)). Our perspective is that the unique
property of fermionic correlators is not that they are Nevanlinna but rather that they
can be conformally mapped to the unit disk. The prerequisite for the NPSR is that a
conformal map exists between the image of the retarded correlator and the unit disk
to apply the theory of Nevanlinna-Pick interpolation. A follow-up to Ref. [11] is the
work of Nogaki and Shinaoka [149] in 2023, which uses the “hyperbolic tangent trick”
to transform a bosonic system to a system of auxiliary fermions, at which point the
method of Fei, Yeh, and Gull can be applied to the system.

Another essential difference between the NPSR and the NAC is the existence of the
Wertevorrat, which allows the NPSR to rigorously constrain the full space of smeared
spectral functions consistent with the data. The algorithms of Refs. [11, 149, 150]
output a single smeared spectral function 𝜌𝜖*(𝜔) that extremizes some chosen cost
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§ 4.5.7. Summary of the NPSR method

functional (c.f. Section 4.5.4). In contrast, the NPSR method outputs the full space
𝛿𝜌𝜖±(𝜔) that the smeared spectral function is rigorously guaranteed to lie in. While the
optimization step of the NAC outputs a spectral function with nicer properties than
the naïve reconstruction resulting from choosing 𝑓𝑁 ∈ 𝐻∞ to be some random element
of the Hardy space, to our knowledge there is no rigorous field-theoretic reason why
the smeared spectral function should extremize the cost functional of Eq. (4.89). One
can modify this cost functional to add in desired properties of the output smeared
spectral function, and in particular, one can add in constraints from field theoretic
identities like sum rules [143]. The authors of Ref. [11] added constraints on the
moments of the retarded correlator to the cost functional [144] and did not find any
significant improvement to the reconstruction. Our perspective is that choosing a cost
functional to filter through the space of possible smeared spectral functions induces
an uncontrolled systematic into the reconstruction problem. For LGT calculations,
statistical error and uncertainty must be precisely controlled, which is not possible
via the optimization step of the NAC. The advantage of the Wertevorrat is that it
can be identified with the reconstruction error and allows for a conservative estimate
of the unavoidable error induced by the inverse problem.

The interpretation of 𝐺±(𝜔 + 𝑖𝜖) as a Poisson-smeared spectral function is ap-
pealing in that the smeared spectral function is directly computable from the main
analytic object of the study, the retarded Green’s function. However, a down-
side of this method compared to other works like the Hansen-Lupo-Tantalo (HLT)
method [112, 113] is that the smearing kernel cannot be chosen and manipulated:
it is fixed to a Poisson kernel. While the Poisson kernel is a valid smearing kernel,
dealing with other kernels like the standard Gaussian is mathematically more chal-
lenging. For example, the moments of the Poisson kernel are infinite, while other
distributions behave better. While this does not influence the reconstruction of the
smeared spectral function, the presence of a non-negligible amount of mass far away
from the center of the distribution may make it harder to extrapolate the smeared
spectral function to the infinite-volume limit.

One intriguing possibility for infinite-volume spectral reconstruction currently be-
ing explored by T. Blum, W. Jay, L. Jin, and D. Stewart is the possibility of “tri-
angulating” the unsmeared infinite-volume spectral function using different smearing
kernels. Each smearing kernel will have a different trajectory to the infinite-volume
spectral density, but the limit should be independent of which smearing kernel is
used. This idea would allow the NPSR method to be used in conjunction with the
HLT method [112, 113], which takes the desired smearing kernel as input and jointly
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§ 4.6. NPSR Method Simulations

extrapolates the smeared spectral densities to the infinite-volume limit. One poten-
tial difficulty with this idea is that, as mentioned previously, the HLT method only
produces a single smeared spectral function consistent with the data; it does not yield
a Wertevorrat-like object that specifies where the reconstruction can lie. As a result,
it is difficult to quantify the error of the spectral reconstruction due to the nature of
the inverse problem. Hence, errors from the extrapolation in the HLT method may
undershoot the true error.

4.6 NPSR Method Simulations

The NPSR method (Section 4.5) is tested on simulated data to establish proof-of-
concept when the Euclidean correlation function, Eq. (4.9), is known precisely. Even
when known exactly, the nature of the inverse problem implies that there is not
a unique smeared spectral function 𝜌𝜖±(𝜔) corresponding to the input data, but an
entire family of possible solutions. The goal of the simulations is to provide numerical
evidence of the claim that the Wertevorrat indeed rigorously bounds the smeared
spectral function when the G𝐸(𝜏) is known precisely.

Simulation data is generated by fixing a ground truth finite-volume spectral func-
tion, which extends uniquely to a retarded correlator 𝐺±(𝑧) by analytic continuation
once either a fermionic or bosonic system is specified. Both systems will be considered
in each simulation. The spectral density is expanded using its finite-volume decom-
position, Eq. (4.23). In the case with extended features, this representation will be
on a discrete mesh with mesh size Δ𝐸. The corresponding spectral weights are

|𝐴0𝑛|2 =
∫︁ 𝐸𝑛+Δ𝐸

𝐸𝑛

𝑑𝜔 𝜌(𝜔), (4.117)

where 𝐸𝑛 are the energies in the mesh. The retarded Green’s function 𝐺±(𝑧) is then
computed via Eq. (4.19), and the Euclidean Fourier coefficients 𝐺(ℓ)

𝐸 follow from the
evaluation of 𝐺±(𝑧) at the Matsubara frequencies 𝑖𝜔ℓ. These coefficients, along with
the Matsubara frequencies, are then input into the NPSR method.

Simulations were run in four different representative systems: a discrete sum
of three poles (Section 4.6.1), a sum of Gaussians (Section 4.6.2), a parameteriza-
tion of the 𝑅-ratio (Section 4.6.3), and an example from a toy theory of interacting
scalars [112, 113] (Section 4.6.4). This section concludes by discussing numerical
precision in Section 4.6.5.
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§ 4.6.1. Simulation 1: Isolated poles

4.6.1 Simulation 1: Isolated poles

Consider a fermionic spectral density with three poles placed at {𝑎𝜔𝑛} = {0.2, 0.5, 0.8},

𝜌(𝜔) = 𝛿(𝜔 − 0.2) + 𝛿(𝜔 − 0.5) + 𝛿(𝜔 − 0.8). (4.118)

The corresponding Euclidean Green’s function is computed at 𝛽 = 64 Matsubara
frequencies 𝑖𝜔ℓ, both in the fermionic and bosonic cases. Figure 4.8 depicts the recon-
structed Wertevorrat and the exact smeared spectral density in both cases for smear-
ing widths 𝜖 ∈ {0.06, 0.08, 0.1, 0.12}. The upper (lower) panel shows the fermionic
(bosonic) reconstruction result. In all cases, the exact smeared spectral density rig-
orously lies within the Wertevorrat; in the fermionic case, the Wertevorrat is so small
that it is difficult to see visually. Observe that as the smearing width is made smaller
(as one approaches the real axis from above, in evaluating 𝐺±(𝜔 + 𝑖𝜖)), the size
of the Wertevorrat increases. This is also seen in the remainder of the numerical
simulations (Sections 4.6.2, 4.6.3, and 4.6.4) and is the expected behavior from the
discussion surrounding Eq. (4.114).

4.6.2 Simulation 2: Gaussian Peaks

The next considered example tests the NPSR method against extended spectral fea-
tures. Although finite-volume spectral functions are discrete delta trains, nothing
in the formalism of the NPSR method prevents one from considering a continuous
spectral density. The spectral density considered is the sum of two Gaussians,

𝜌(𝜔) =
∑︁
𝑖

1√
2𝜋𝜎𝑖

exp

(︂
−(𝜔 − 𝜇𝑖)2

2𝜎2
𝑖

)︂
, (4.119)

with 𝜇 = {0.25, 0.75} and 𝜎 = {0.1, 0.1}. Euclidean Fourier coefficients are generated
as discussed at 𝛽 = 48 Matsubara frequencies and input to the NPSR algorithm.

Reconstructions from the simulated data are again performed for the fermionic and
bosonic methods at smearing widths 𝜖 ∈ {0.08, 0.1, 0.12, 0.14}. Fermionic (bosonic)
reconstructions are shown in the upper (lower) panel of Figure 4.9. The fermionic
and bosonic reconstructions are also extrapolated at fixed 𝜔 (𝑎𝜔 = 0.16) using a
polynomial model to the 𝜖 ↓ 0 limit (Eq. (4.116)). The results of this extrapolation
are shown in Figure 4.10 with the fermionic extrapolation in orange, the bosonic
extrapolation in blue, and the exact value of the unsmeared spectral density at 𝜔 =

0.16 denoted with a star. Jointly extrapolating both sets of data to the unsmeared
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Figure 4.8. Results from the simulated reconstruction of the three-pole spectral
density, Eq. (4.118), with 𝛽 = 64. The fermionic (bosonic) reconstruction is shown in
the upper (lower) panel. The smearing parameter 𝜖 is varied in {0.06, 0.08, 0.1, 0.12}
as shown in the legend. In each reconstruction, the exact smeared spectral function
(dashed line) lies rigorously within the bound provided by the Wertevorrat. In the
top panel, the thickness of the Wertevorrat is comparable to the thickness of the
dashed line.
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limit helps to reduce the error on the extrapolation.
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Figure 4.9. Results from the simulated reconstruction of the Gaussian spectral
density, Eq. (4.119), with 𝛽 = 48. The fermionic (bosonic) reconstruction is shown in
the upper (lower) panel. The smearing parameter 𝜖 is varied in {0.08, 0.1, 0.12, 0.14}
as shown in the legend. In each reconstruction, the exact smeared spectral function
(dashed line) lies rigorously within the bound provided by the Wertevorrat.

4.6.3 Simulation 3: The 𝑅-Ratio

A parameterization of the 𝑅-ratio data (Figure 4.2) is presented in Ref. [104] in terms
of a phase space factor (with a non-trivial branch cut) and a sum of Breit-Wigner
curves with parameters chosen to match the data in the PDG’s Review of Particle
Physics. The formula for 𝑅(𝑠) is

𝑅(𝑠) = 𝜃(
√
𝑠− 2𝑚𝜋)𝜃(4.4𝑚𝜋 −

√
𝑠)
1

4

[︂
1− 4𝑚2

𝜋

𝑠

]︂3/2
(0.6473 + 𝑓0(

√
𝑠))𝜃(

√
𝑠− 4.4𝑚𝜋)

× 𝜃(𝑀3 −
√
𝑠)

(︃
2∑︁
𝑖=1

𝑓𝑖(
√
𝑠)

)︃
+ 𝑓3(

√
𝑠) + 3

(︀
(2
3
)2 + 2(1

3
)2
)︀
𝜃(
√
𝑠−𝑀3)

(4.120)
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Figure 4.10. Joint extrapolation at fixed 𝜔 = 0.16 to the unsmeared 𝜖 ↓ 0 limit for
the fermionic (orange) and bosonic (blue) reconstructions of the Gaussian spectral
density, Eq. (4.119). The curve shows the result of a polynomial fit to the 𝜖 > 0
data, and the black star denotes the exact value of the unsmeared spectral density at
𝜔 = 0.16.
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with 𝑓𝑖(
√
𝑠) = 𝐶𝑖Γ

2
𝑖 / (4(

√
𝑠−𝑀𝑖)

2 + Γ2
𝑖 ) simulating a resonance centered at 𝑀𝑖 with

width Γ𝑖 and relative height 𝐶𝑖. Here for 𝑖 ∈ {0, 1, 2, 3}, 𝑀𝑖, Γ𝑖, 𝐶𝑖 are parameters
that are determined by fits to experimental data, with explicit values given in Table
1 of Ref. [104].

Numerical data for 𝐺(ℓ)
𝐸 was computed for this spectral density using the meth-

ods described above with 𝛽 = 96 Euclidean data points. The energy range of the
parameterization was rescaled to fit in the unit interval, which places the peak of the
𝜌(770) resonance at 𝑎𝜔 ≈ 0.25. This corresponds to a lattice spacing of 𝑎 ≈ 0.07 fm,
a typical value of 𝑎 that appears in recent calculations of the anomalous magnetic
moment of the muon [151–160].

The reconstructions are shown for several smearing widths 𝜖 in Figure 4.11, for
both fermionic (top panel) and bosonic (bottom panel) reconstructions. The bosonic
reconstruction is physical, and the fermionic reconstruction is used as an additional
test case, as one can define an exact fermionic system with the 𝑅-ratio as its spectral
density for positive 𝜔. The peaks from the 𝜌(770)/𝜔(782) and from the 𝜑(1020)

resonances are clearly identifiable in both cases. In all cases, the exact smeared
spectral densities lie within the Wertevorrat.

4.6.4 Simulation 4: Toy Model of Interacting Scalars

The final proof-of-concept simulation is a toy model of scalar fields 𝜋, 𝜑, and 𝐾 from
Refs. [112, 113]. These fields have masses 3𝑚𝜋 < 2𝑚𝐾 < 𝑚𝜑 and interact via the
Lagrangian

ℒ =
𝑔𝜋
6
𝜑(𝑥)𝜋3(𝑥) +

𝑔𝐾
𝑚𝜑

2𝜑(𝑥)𝐾2(𝑥), (4.121)

where 𝑔𝜋 and 𝑔𝐾 are couplings. A correlation function in Ref. [112] was computed
with associated finite-volume spectral density,

𝜌𝐿(𝐸) =
𝑔2𝐾𝑚

2
𝜑

2(𝑚𝜋𝐿)3

∑︁
𝑝

𝛿(𝐸 − 2𝐸𝐾(𝑝))

4𝐸2
𝐾(𝑝)

𝑔2𝜋
48𝑚3

𝜋𝐿
6

∑︁
𝑝,𝑞

𝛿(𝐸 − 𝐸𝜋(𝑝)− 𝐸𝜋(𝑞)− 𝐸𝜋(𝑝+ 𝑞)

𝐸𝜋(𝑝)𝐸𝜋(𝑞))𝐸𝜋(𝑝+ 𝑞))
,

(4.122)

with 𝐸2
𝜋 = 𝑚2

𝜋+𝑝2 (similarly for 𝐸𝐾) and 𝐿 the number of spatial sites in the lattice.
The sum on momenta runs over each finite-volume mode 𝑝 = 2𝜋

𝐿
𝑛 with 𝑛 ∈ N3. In

the infinite-volume limit, the discrete poles converge (distributionally) to a continuum
spectral density with kinematic factors involving multi-particle branch cuts (i.e., the
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Figure 4.11. Results from the simulated reconstruction of the 𝑅-ratio, Eq. (4.119),
with 𝛽 = 96. The fermionic (bosonic) reconstruction is shown in the upper (lower)
panel. The smearing parameter 𝜖 is varied in {0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25}
as shown in the legend. In each reconstruction, the exact smeared spectral function
(dashed line) lies rigorously within the bound provided by the Wertevorrat. The peaks
from the 𝜌(770)/𝜔(782) and from the 𝜑(1020) resonances are clearly identifiable in
both the fermionic and the bosonic reconstructions at sufficiently small smearing.
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first sum of Eq. (4.122) is proportional to
√︀

1− 4𝑚2
𝐾/𝐸

2𝜃(𝐸 − 2𝑚𝐾)). The explicit
infinite-volume limit of Eq. (4.122) is given in Refs. [112, 113].

To simulate the theory, the particle masses are chosen to be 𝑚𝜋 = 0.066, 𝑚𝐾 =

3.55𝑚𝜋, and 𝑚𝜑 = 7.3𝑚𝜋, as in Ref. [112]. The volume is taken to be 𝐿 = 64, and
𝛽 = 2𝐿 points are sampled. Three-particle interactions are neglected (𝑔𝜋 = 0) as
they are volume-suppressed, and the coupling 𝑔𝐾 is set to unity; the input spectral
density is hence the first line 𝜌𝐿(𝐸) in Eq. (4.122).

This reconstruction only considers the bosonic case because this is a theory of
interacting bosons. The smearing widths are taken to be 𝜖 ∈ {0.2, 0.225, 0.25}, and
the reconstructions are shown in Figure 4.12. The finite-volume energy levels of the
system (corresponding to the sum of Eq. (4.122)) are denoted by vertical lines on the
plot with height proportional to the corresponding spectral weight. As in all previous
examples, the exact smeared spectral function rigorously lies within the Wertevorrat
for each smearing width.

4.6.5 An Aside: Numerical Precision

The mathematical identities satisfied by the Nevanlinna coefficients (Eqs. (4.99–4.101)
provide insight into the numerical stability of the algorithms. Many spectral function
reconstruction methods rely on extended-precision floating point numbers to perform
the reconstruction because of the poor condition number of the Laplace kernel, as
discussed in Section 4.4. This section uses an example of a spectral reconstruction
from two isolated poles at 𝑎𝜔 ∈ {0.05, 0.1},

𝜌(𝜔) = 𝛿(𝜔 − 0.05) + 𝛿(𝜔 − 0.1), (4.123)

to provide further context on why extended-precision floating point arithmetic must
be used in the NPSR method.

Recall that the Nevanlinna coefficients 𝑃𝑁(𝜁), 𝑄𝑁(𝜁), 𝑅𝑁(𝜁), 𝑆𝑁(𝜁) of the the-
ory, Eq. (4.84) satisfy a number of identities. The Nevanlinna determinant identity,
𝑃𝑁(𝜁)𝑆𝑁(𝜁)−𝑄𝑁(𝜁)𝑅𝑁(𝜁) = 𝐵𝑁(𝜁), Eq. (4.99), relates the determinant of the Nevan-
linna coefficient matrix to the Blaschke product 𝐵𝑁 =

∏︀𝑁
ℓ=1 𝑏𝜁ℓ , and must be satisfied

by the Nevanlinna coefficients. Simulated data is computed from the spectral density
at double precision, Eq. (4.123), as described previously in this section, and com-
puted at 𝛽 = 48 Euclidean points. The first 20 nonzero Matsubara frequencies and
their corresponding Euclidean correlator values are input to the NPSR algorithm, but
identical results are obtained if all 48 data points are input to the algorithm.
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Figure 4.12. Results from the simulated bosonic reconstruction of the scalar toy
model spectral density, Eq. (4.122), with 𝛽 = 96. The smearing parameter 𝜖 is
varied in {0.2, 0.225, 0.25}. The finite-volume energy levels of the system are denoted
by the vertical black lines, with height proportional to the spectral weight of the
corresponding state. In each reconstruction, the exact smeared spectral function
(dashed line) lies rigorously within the bound provided by the Wertevorrat.
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The resulting Nevanlinna determinant 𝑃𝑁(𝜁)𝑆𝑁(𝜁)−𝑄𝑁(𝜁)𝑅𝑁(𝜁), computed with
the NPSR algorithm using double-precision floats, is shown in Figure 4.13 in red, and
the exact value of 𝐵𝑁(𝜁) is denoted by the dashed black line. Both curves are plotted
on the contour 𝜁(𝜔) = 𝐶(𝜔 + 𝑖𝜖) for 𝜔 ∈ R and 𝜖 = 0.01, with 𝜔 ∈ [0, 0.2]. At small
𝜔, the identity is confirmed precisely by the data for the Nevanlinna determinant.
However, at large 𝜔, there is a discrepancy, and the Nevanlinna coefficient begins to
rapidly fluctuate off its predicted value of 𝐵𝑁(𝜁(𝜔)).

The rapid fluctuations in the Nevanlinna determinant in Figure 4.13 are numerical
artifacts due to truncation error for the floating point numbers used in the compu-
tation. This can be confirmed by computing the Nevanlinna determinant for this
problem to extended precision. In this case, 128 bits of precision were used, imple-
mented with the GNU MPC library [161]. Identical input data at double precision to
the previous case was used for this reconstruction: these double precision inputs were
padded with zeros to create extended precision inputs. The results of this computa-
tion are shown in Figure 4.14. The rapid fluctuations in the Nevanlinna determinant
data are gone, and the curve lies directly on top of its predicted value of 𝐵𝑁(𝜁(𝜔)).

The result of this experiment indicates that extended precision is needed for the
mathematical guarantees of the NPSR method to hold. Despite using identical input
data, the double-precision arithmetic used in the reconstruction introduces enough
round-off error into the algorithm that the mathematical identity of Eq. (4.99) did
not hold. It is important to stress that this error is not due to double-precision
input data, as the algorithm was run on identical input data. Although the double-
precision data does not equal the analytic value of the correlator at arbitrary precision,
the reconstruction with double-precision input is still mathematically a well-posed
problem, and the mathematical guarantees of the NPSR method will hold if the
Nevanlinna coefficients are computed at sufficiently high precision. This suggests a
necessary12 check to see if the Nevanlinna coefficients have been constructed to high
enough precision: namely, anytime a new set of Nevanlinna coefficients are computed,
to verify they satisfy Eqs. (4.99, 4.101).

12But not sufficient, as there is a chance other mathematical identities or guarantees require higher
precision in the calculation.
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Figure 4.13. Evaluation of the determinant of the Nevanlinna coefficients,
𝑃𝑁(𝜁)𝑆𝑁(𝜁)−𝑄𝑁(𝜁)𝑅𝑁(𝜁), plotted against the theoretical value of the determinant,
𝐵𝑁(𝜁), on the contour {𝐶(𝜔 + 𝑖𝜖) : 𝜔 ∈ R} with 𝜖 = 0.01. These Nevanlinna coef-
ficients were determined at double precision using simulated data generated from a
spectral function 𝜌(𝜔) = 𝛿(𝜔−𝑚1)+𝛿(𝜔−𝑚2) with 𝑎𝑚1 = 0.05 and 𝑎𝑚2 = 0.1, using
a lattice with temporal extent 𝛽 = 48, and the first 20 nonzero Matsubara frequen-
cies as input to the reconstruction algorithm. At large 𝜔 (𝜔 & 0.1), the computed
Nevanlinna determinant deviates from its theoretical value due to round-off error.
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Figure 4.14. Same setup as Fig. 4.13, but for 128-bits of precision. In this case, the
Nevanlinna determinant 𝑃𝑁(𝜁)𝑆𝑁(𝜁)−𝑄𝑁(𝜁)𝑅𝑁(𝜁) agrees with its predicted value of
𝐵𝑁(𝜁). The extra precision is required to verify Eq. (4.99) numerically, and the large
deviations at 𝜔 & 0.1 due to round-off error are no longer observed, as in Figure 4.13.

4.7 Outlook: Monte Carlo Data and The Pick Cri-

terion

As discussed, the simulations performed in this work were done at extended precision
with the input data known precisely. For practical use in LGT calculations, the NPSR
method must be robust enough to handle uncertainties in the input data that arise
from the Monte Carlo calculation. This is an ongoing area of research, the basis of
which will be detailed in this section.

4.7.1 The Pick Criterion

Section 4.5 has discussed solving the Nevanlinna problem at length, but this is
only half the story. The Pick problem asks the following question: given data
{(𝜁ℓ, 𝑤ℓ)}𝑁ℓ=1 ⊂ D2, when does there exist an interpolating function 𝑓 ∈ S ? Indeed,
not every data set has a valid interpolating solution, illustrated in a simple example
from Ref. [136]. Consider the Schwarz Lemma from complex analysis [162].

Lemma 4.7.1 (Schwarz). Let 𝑓 ∈ S s.t. 𝑓(0) = 0. Then |𝑓(𝑧)| ≤ 𝑧 for each 𝑧 ∈ D.

Suppose an interpolant 𝑓 ∈ S solves the Pick problem for 𝑁 = 2 points: (0, 0),
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and (𝜁2, 𝑤2). Then the Schwarz Lemma implies that |𝑤2| ≤ |𝜁2|. This constraint on
the values of 𝜁2 and 𝑤2 shows that not every data set will satisfy the Pick problem,
even in the simplest possible case. In a sense, the Schur class S is extremely well-
behaved, so members of S cannot take on arbitrary values: this is encoded in the
constraint |𝑤2| ≤ |𝜁2| for this specific example.

Georg Pick generalized this idea to the full Pick problem in 1915 [133], where he
proved an existence condition for the full problem with an arbitrary number of points
{(𝜁ℓ, 𝑤ℓ)}𝑁ℓ=1. The Pick matrix is the 𝑁 ×𝑁 matrix defined from the data as

𝒫𝑖𝑗 ≡
1− 𝑤𝑖𝑤*𝑗
1− 𝜁𝑖𝜁*𝑗

(4.124)

Pick proved that there is an interpolating function 𝑓 ∈ S if and only if the Pick
matrix is positive semi-definite,

𝒫 ≥ 0, (4.125)

i.e. if 𝒫 has only non-negative eigenvalues. Furthermore, there is a unique interpolant
if and only if the Pick matrix has a zero eigenvalue, equivalently

det𝒫 = 0. (4.126)

The conditions of Eqs. (4.125, 4.126) constitute the Pick criterion. Note that the
Schur algorithm does not assume the Pick matrix is positive semi-definite. As pre-
sented, the algorithm will always construct a valid interpolating function for the data
regardless of whether the data satisfies the Pick criterion. The key is that the pre-
sented interpolant will only lie in the Schur class S if the Pick criterion is satisfied
by the data. If the Pick criterion is not satisfied, the image of the interpolant will not
be contained in D.

For physical problems, it is expected that the Pick criterion always holds, at
least if the input data is specified to sufficient precision, because the existence of a
retarded Green’s function satisfying the constraints of Section 4.2 should always yield
a valid interpolating function in the Schur class for the data (once 𝐺±(𝑧) is mapped
to the correct domain). However, the Pick criterion need not be satisfied for LGT
calculations with noisy Monte Carlo data, which was also observed in Refs. [11, 130].
If the data is specified to arbitrary precision, the Pick criterion must be satisfied,
but with finite statistical error bars, the data need not satisfy Eq. (4.125). In this
case, the mathematical guarantees of the NPSR method need not hold, and the
constructed interpolating function may not have the correct codomain. Numerical
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examples suggest that the Wertevorrat still provides guidance on where the smeared
spectral density lies, even when the data does not satisfy the Pick criterion; however,
it is not formally guaranteed.

4.7.2 Reformulations of the Pick Criterion

It is insightful to explore the Pick criterion through different lenses. This section will
consider two different perspectives on the Pick criterion: first, through the Wertevor-
rat, and second, through the interpolation parameters 𝑤(𝑘−1)

𝑘 of Eq. (4.82).
Recall the Wertevorrat Δ𝑁 [𝑤1, ..., 𝑤𝑛](𝜁) defined in Eq. (4.103)13 is the full space

of solutions to the Nevanlinna-Pick problem. The Pick matrix and the Wertevorrat
both tell us about the existence of solutions to the problem. Clearly, if (𝜁ℓ, 𝑤ℓ) does
not satisfy the Pick criterion, there must exist 𝜁 ∈ D such that Δ𝑁 [𝑤1, ..., 𝑤𝑛](𝑧) = ∅.
If the data satisfies the Pick criterion, then Δ𝑁 [𝑤1, ..., 𝑤𝑛] is non-empty everywhere
and can be computed from the Nevanlinna coefficients defined in Eq. (4.84). If the
problem is extremal (det𝒫 = 0), then the Wertevorrat only contains a single point
at each 𝜁 ∈ D, i.e., |Δ[𝑤1, ..., 𝑤𝑛](𝜁)| = 1. The correspondence is summarized in
Table 4.2.

The second perspective to consider is through the coefficients 𝑤(ℓ−1)
ℓ , defined in

the Schur algorithm in Eq. (4.82). When a Nevanlinna interpolant exists, it is clear
that

𝑤
(ℓ−1)
ℓ ∈ D (4.128)

as 𝑤(ℓ−1)
ℓ = 𝑓ℓ−1(𝜁ℓ) and 𝑓ℓ−1 has image contained in D. The converse holds as well.

Lemma 4.7.2. There exists a Nevanlinna interpolant for the interpolation problem
with points (𝜁ℓ, 𝑤ℓ) if and only if 𝑤(ℓ−1)

ℓ ∈ D for each 1 ≤ ℓ ≤ 𝑛.

Proof. The forward direction is immediate from the Nevanlinna theorem: given data
that satisfies the Pick criterion, Nevanlinna proved the existence of the interpolant
(Eq. (4.80)), which in particular constrains 𝑤(ℓ−1)

ℓ ∈ D. The backward direction is
also straightforward: suppose that 𝑤(ℓ−1)

ℓ ∈ D. Regardless of the assumption that

13This section will make the dependence of the Wertevorrat on the input data {𝑤ℓ} explicit with
the notation Δ𝑁 [𝑤1, ..., 𝑤𝑛](𝜁). Note that the Matsubara frequencies {𝜁ℓ} are assumed to be fixed,
hence Δ𝑁 is only considered a function of the {𝑤ℓ}. Likewise, the pullback of the Wertevorrat to
the Ω± domain, 𝒟𝑁 , is denoted

𝒟𝑁 [𝐺1, ..., 𝐺𝑛](𝑧) := C−1
± (Δ𝑁 [C±(𝐺1), ...,C±(𝐺𝑛)](𝐶(𝑧))). (4.127)
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𝑤
(ℓ−1)
ℓ ∈ D, the function 𝑓(𝜁) = 𝑈1(𝜁)...𝑈𝑛(𝜁)𝑓𝑛(𝜁) will always be a valid interpolant

of the points {(𝜁ℓ, 𝑤ℓ)}; it remains to show that when 𝑤
(ℓ−1)
ℓ ∈ D, this interpolant

maps D→ D.
To prove this, consider the following claim: if 𝑤(ℓ−1)

ℓ ∈ D and 𝑎(𝜁) ∈ D, then
𝑈ℓ(𝜁)𝑎(𝜁) ∈ D, where 𝑈ℓ(𝜁)𝑎(𝜁) denotes the continued fractions matrix multiplication
of Eq. (4.71). Note that proving this claim will complete the proof because this fact
can inductively be applied, first to 𝑓𝑘(𝜁) ∈ D, then to 𝑈ℓ(𝜁) acting on the iterated
product 𝑈ℓ+1(𝜁)...𝑈𝑘(𝜁)𝑓𝑘(𝜁), for any 1 ≤ ℓ < 𝑘 ≤ 𝑁 . The proof now proceeds by
direct computation:

|𝑈ℓ(𝜁)𝑎(𝜁)|2 =
⃒⃒⃒⃒
⃒ 𝑏𝜁ℓ(𝜁)𝑎(𝜁) + 𝑤

(ℓ−1)
ℓ

𝑤
(ℓ−1)
ℓ 𝑏𝜁ℓ(𝜁)𝑎(𝜁) + 1

⃒⃒⃒⃒
⃒
2

=
𝑏𝜁ℓ(𝜁)𝑎(𝜁) + 𝑤

(ℓ−1)
ℓ

𝑤
(ℓ−1)
ℓ 𝑏𝜁ℓ(𝜁)𝑎(𝜁) + 1

𝑏𝜁ℓ(𝜁)𝑎(𝜁) + 𝑤
(ℓ−1)
ℓ

𝑤
(ℓ−1)
ℓ 𝑏𝜁ℓ(𝜁)𝑎(𝜁) + 1

=
|𝑏𝜁ℓ(𝜁)𝑎(𝜁)|2 + 2Re[𝑤

(ℓ−1)
ℓ 𝑏𝜁ℓ(𝜁)𝑎(𝜁)] + |𝑤

(ℓ−1)
ℓ |2

|𝑤(ℓ−1)
ℓ |2|𝑏𝜁ℓ(𝜁)𝑎(𝜁)|2 + 2Re[𝑤

(ℓ−1)
ℓ 𝑏𝜁ℓ(𝜁)𝑎(𝜁)] + 1

(4.129)

This is ≤ 1 iff the numerator is less than the denominator: in other words, iff

|𝑏𝜁ℓ(𝜁)𝑎(𝜁)|2 + |𝑤
(ℓ−1)
ℓ |2 ≤ |𝑤(ℓ−1)

ℓ |2|𝑏𝜁ℓ(𝜁)𝑎(𝜁)|2 + 1

⇐⇒ |𝑤(ℓ−1)
ℓ |2(1− |𝑏𝜁ℓ(𝜁)𝑎(𝜁)|2) ≤ 1− |𝑏𝜁ℓ(𝜁)𝑎(𝜁)|2

⇐⇒ |𝑤(ℓ−1)
ℓ |2 ≤ 1.

(4.130)

We have now reduced this to the assertion that 𝑤(ℓ−1)
ℓ ∈ D: this proves the claim and

completes the proof of the theorem.

Lemma 4.7.2 and the Nevanlinna theorem now imply three equivalent ways to
reformulate the Pick criterion. This correspondence is also explicitly summarized in
Table 4.2.

Theorem 4.7.3. Let (𝑤ℓ) ∈ D𝑛. The following are equivalent:

1. (𝑤ℓ) satisfies the Pick criterion, i.e. the Pick matrix 𝒫 is positive semi-definite.

2. The Wertevorrat Δ𝑁 [𝑤1, ..., 𝑤𝑁 ](𝜁) is non-empty for each 𝜁 ∈ D.

3. The 𝑤(ℓ−1)
ℓ defined recursively in the construction of the Nevanlinna interpolant,

Eq. (4.82), satisfy
𝑤

(ℓ−1)
ℓ ∈ D. (4.131)
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Nevanlinna-Pick Solution? det𝒫 Δ𝑁(𝜁) 𝑤
(𝑘−1)
𝑘

No solution det𝒫 < 0 ∃𝜁 ∈ D s.t. Δ(𝜁) = ∅ ∃𝑘 s.t. 𝑤(𝑘−1)
𝑘 /∈ D

Unique solution det𝒫 = 0 |Δ(𝜁)| = 1 ∃𝑘 s.t. 𝑤(𝑘−1)
𝑘 ∈ 𝜕D

Infinite solutions det𝒫 > 0 |Δ(𝜁)| =∞ ∀𝑘, 𝑤(𝑘−1)
𝑘 ∈ Do

Table 4.2. Correspondence between the Pick criterion, the Wertevorrat, and the
𝑤

(𝑘−1)
𝑘 parameters. Note that the dependence of the Wertevorrat on the input inter-

polation points has been suppressed, i.e., Δ𝑁(𝑧) represents Δ𝑁 [𝑤1, ..., 𝑤𝑘](𝑧) for some
fixed 𝑤1, ..., 𝑤𝑘 ∈ D.

4.7.3 Monte Carlo Data and the Pick Space

To solve the Nevanlinna-Pick problem in the presence of numerical noise, it is crucial
to understand the space of valid inputs to the Nevanlinna-Pick theorem. In the
NPSR reconstruction problem, the Cayley-transformed Matsubara frequencies (𝜁ℓ)

are fixed, and the reconstruction takes the transformed correlator data (𝑤ℓ) as input.
Each possible input to the problem is a vector (𝑤ℓ) ∈ D𝑛, and the space of inputs
that are compatible with the Pick criterion is defined as

P := {(𝑤𝑘) ∈ D𝑛 : 𝒫 [𝑤1, ..., 𝑤𝑛] ≥ 0}. (4.132)

In other words, P is the set of input transformed correlator data that satisfies the
Pick criterion and can be viewed as a subset P ⊆ D𝑛. The space P is called the Pick
space in D𝑛.

The general approach to inputting Monte Carlo data to the NPSR method will
be to “project” the Monte Carlo data onto the Pick space. The sample mean of the
Euclidean Fourier coefficients (𝑤ℓ) will typically not lie in the Pick space, as it is not
required to because of the statistical fluctuation. However, in the infinite-statistics
limit (𝑤ℓ) should approach P. Rather, (𝜔ℓ) will be an element of D𝑛 ∖ P. Using the
NPSR method with this Monte Carlo data first requires valid input to the method:
the best input is the projection (𝑤′ℓ) of (𝑤ℓ) onto P,

(𝑤′ℓ) ≡ projP(𝑤ℓ) ∈ P. (4.133)

The projected data (𝑤′ℓ) can then be input to the NPSR algorithm. Defining the
projection operator projP : D𝑛 → P is the difficult part of the problem: one may

125



§ 4.8. Conclusion

abstractly write down projP as the 𝐿2 projection,

projP(𝑤ℓ) ≡ min
(𝑤′

ℓ)∈P
||(𝑤ℓ)− (𝑤′ℓ)||22, (4.134)

but without a numerical understanding of the Pick space, the projection is impossible
to implement.

Current ideas on defining the projection operator rely on convex optimization to
search the Pick space for the element with minimal 𝐿2 norm to the data. Fortunately,
the Pick space P is convex due to the convexity of the underlying space D𝑛. To prove
this, let (𝑤ℓ), (𝑣ℓ) ∈ P, and 𝑡 ∈ [0, 1]. One must show that the convex combination
(𝑡𝑤ℓ + (1− 𝑡)𝑣ℓ) ∈ P. Note that this implies that there exist Nevanlinna interpolants
𝑓, 𝑔 : D→ D such that

𝑓(𝜁ℓ) = 𝑤ℓ 𝑔(𝜁ℓ) = 𝑣ℓ. (4.135)

Because D is convex, note that the function

ℎ(𝜁) := 𝑡𝑓(𝜁) + (1− 𝑡)𝑔(𝜁) (4.136)

maps D→ D. In particular, ℎ is a Nevanlinna interpolant of (𝑡𝑤ℓ + (1− 𝑡)𝑣ℓ):

ℎ(𝜁𝑘) = 𝑡𝑓(𝜁ℓ) + (1− 𝑡)𝑔(𝜁ℓ) = 𝑡𝑤ℓ + (1− 𝑡)𝑣ℓ. (4.137)

This implies that (𝑡𝑤ℓ + (1− 𝑡)𝑣ℓ) ∈ P, which completes the proof.
For numerical implementation, a specific projection operator projP to the Pick

space must be defined. This is the crux of the difficulty of handling Monte Carlo
data; the Pick space is non-parametric, so defining such an operator is a difficult
problem. Research is ongoing into defining such an operator, which will allow the
NPSR method to be extended to handle noisy Monte Carlo data.

4.8 Conclusion

This chapter has presented a novel method for spectral density reconstruction in
LGT. Reconstructing a finite-volume spectral density from a Euclidean correlator is
an ill-posed inverse problem: given (infinitely precise) data for the Euclidean correla-
tion function at the Matsubara frequencies, there are an infinite number of spectral
functions that are consistent with the Euclidean correlator. Spectral reconstruction
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methods in LGT typically focus on reconstructing the smeared finite-volume spec-
tral density. This problem is still ill-posed but numerically much easier than naïvely
attempting to reconstruct the full spectral function.

Spectral density reconstruction has many mathematical difficulties, but it is an
extremely useful tool worth understanding. Typical spectroscopic methods in LGT
only allow for the extraction of the low-lying spectrum of a theory and assume a
parametric dependence of the correlation function on the energy levels of the the-
ory (i.e., Eq. (3.41)). Spectral reconstruction techniques instead are non-parametric
methods to extract the LGT spectrum which aim to reconstruct the full spectrum.
Computation of the spectrum from ab initio QFT is desirable (even required in many
cases) input for many theoretical and experimental research programs, as the full
spectrum encodes all information about the bound states, resonances, and thresholds
for a given process.

The 𝑅-ratio (Section 4.1) reveals the hadronic structure of QCD (c.f., Figure 4.2)
and is a necessary ingredient to understand the anomalous magnetic moment of the
muon from first principles [103]. A first-principles calculation of the 𝑅-ratio with
LGT requires reconstructing a spectral density from the two-point correlator of the
electromagnetic current, Eq. (4.2). A computation of the smeared 𝑅-ratio has been
presented in Ref. [163], using the HLT method with a Gaussian smearing kernel of
various widths. The computation is in mild tension with experimental results for the
smeared 𝑅-ratio [164] but is still remarkable given the difficulties of spectral function
reconstruction on the lattice. The tension between the theoretical LGT results and
the experimental results is likely due to the ill-posed nature of the inverse problem
(Section 4.4.2).

The systematic error that results from the ill-posed inverse problem has not been
precisely quantifiable until now with the development of the Nevanlinna-Pick Spec-
tral Reconstruction method (Section 4.5). The NPSR method provides a unique tool
to analytically constrain the values the resulting smeared spectral density can take,
as it is the only method that allows for accurate computation of the systemic errors
in the ill-posed problem (the Wertevorrat). We hope to apply the NPSR method
to reconstruct the 𝑅-ratio reconstruction in the future, both to augment the exist-
ing calculation of Ref. [163] (see Section 4.5.7 for ideas about “triangulating” the
resulting spectral density in the infinite-volume limit) and to demonstrate the use the
Wertevorrat has in constraining the systematic error of the spectral reconstruction.

The NPSR method has been developed and simulated (Section 4.6) without Monte
Carlo noise. For applications to LGT, the technique must robustly handle Monte
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Carlo error on the input Euclidean correlation function. We are developing an algo-
rithm to apply the NPSR method to noisy Monte Carlo data. Once these algorithms
are mature, we plan to calculate the smeared 𝑅-ratio from first principles. The main
hurdle in such a calculation is the Pick criterion (Section 4.7), which encodes the an-
alytic structure of the thermal Green’s function. Any physical correlator must satisfy
the Pick criterion, and the NPSR method assumes an input correlator that satisfies
this criterion. However, noisy Monte Carlo data need not fulfill the Pick criterion.
Understanding the interplay of the Pick criterion with the analytic structure of LGT
correlators may lead to future techniques for denoising correlators because physical
correlation functions must reside in the Pick space (Eq. (4.132)).

The smeared 𝑅-ratio is the first target for many spectral reconstruction methods
because the 𝑅-ratio has been experimentally measured to high precision. Inclusive
𝑒+𝑒− scattering is a rich sandbox that can be used to test theoretical predictions by
verifying they match experimental data. The long-term goal of spectral reconstruction
is to theoretically compute spectral densities that cannot be experimentally measured
to the requisite precision. One such spectral density is the axial structure function of
the nucleon, 𝐹𝐴(𝑞2) [165]. This form factor is necessary input for neutrino oscillation
experiments like the Deep Underground Neutrino Experiment (DUNE) [166], which
seeks to understand the nature of the neutrino. DUNE, and other long-baseline neu-
trino experiments [167], have backgrounds that require 𝐹𝐴(𝑞2) to be known at the
percent-level to meet the precision goals of the experiment [168]. The axial struc-
ture function is poorly constrained from experimental data [169]; hence, theoretical
methods must be used to extract 𝐹𝐴(𝑞2) in the absence of new neutrino scattering
experiments.

Lattice gauge theory is the natural candidate for such a calculation because it is
systematically improvable; such a calculation can be performed as a reconstruction
of spectral density from the Euclidean correlator ⟨𝑁(𝑥)𝑗𝜇5 (𝑦)𝑁(𝑦)⟩, where 𝑁 is the
nucleon interpolator and 𝑗5 is the axial current. The form factor 𝐺𝐴(𝑞

2) has been
computed with LGT [170, 171] by fitting correlation functions to a 𝑧-expansion, but
LGT results are in tension with results from experimental data [172]. These LGT
techniques must be further developed to produce reliable extractions of spectral den-
sities and form factors, especially to meet the precision goals of DUNE and other
neutrino experiments. The NPSR method provides a significant step toward this goal
by increasing understanding of the nature of the spectral reconstruction problem in
LGT and providing a new algorithm for spectral reconstruction.
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Chapter 5

Neutrinoless Double 𝛽 Decay

from Lattice QCD

This chapter will summarize the general theory of 0𝜈𝛽𝛽 decay and the LGT com-
putation of inputs for 0𝜈𝛽𝛽 decay. A classification of 0𝜈𝛽𝛽 decay mechanisms into
long- and short-distance mechanisms will be outlined in Section 5.2. The remaining
sections will detail the LGT 0𝜈𝛽𝛽 decay calculations that I was involved in during
my Ph.D., culminating in two papers, Refs. [2, 5], with a third paper expected to be
completed soon.

Our LGT calculations of 0𝜈𝛽𝛽 decay considered two systems: the unphysical
𝜋− → 𝜋+𝑒−𝑒− transition, and the decay 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−. Only the short-distance
contribution for the 𝜋− → 𝜋+𝑒−𝑒− transition is considered (Section 5.3), as the long-
distance 𝜋− → 𝜋+𝑒−𝑒−matrix elements have been computed in LGT in Refs. [12, 173].
Our calculation [2] was the second LGT calculation of these matrix elements and
found different results than the first calculation by the CalLat collaboration [174];
differences between the results and the methodology of the two calculations will be
considered in Section 5.3. Both the long- and short-distance contributions to the
𝑛0𝑛0 → 𝑝+𝑝+ decay are computed (Sections 5.4, 5.6) on a single gauge field ensemble.
These are the first computations of 0𝜈𝛽𝛽 decay in a nuclear system, and they provide
proof-of-principle of the calculation methodology. Finally, operator renormalization
for the short-distance operators will be discussed in Section 5.5.

David Murphy began this research program at MIT shortly before I arrived in 2019
and, along with Will Detmold, performed the initial calculation of the long-distance
𝜋− → 𝜋+𝑒−𝑒− transition [12]. David initially led the calculation of the short-distance
𝜋− → 𝜋+𝑒−𝑒− transition (Section 5.3), and I became involved with the project
through the renormalization of the short-distance operators (Section 5.5). David
left the project after the two- and three-point functions were computed (Eqs. (5.19
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and 5.20), and I inherited and finished the remainder of the calculation. The cal-
culations of 0𝜈𝛽𝛽 decay in the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− system were led by Anthony
Grebe in an extremely impressive computational effort. The long-distance 𝑛0𝑛0 →
𝑝+𝑝+𝑒−𝑒− section in this thesis is primarily added for additional context: I was in-
volved in the calculation through discussions and performing cross-checks for the EFT
matching but did not contribute to the numerical calculation. For the short-distance
𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− project, I identified and Fierzed the vector operator basis and
performed the non-perturbative renormalization of the scalar and vector operators,
in addition to performing some numerical cross-checks on the fits to the bare matrix
elements.

5.1 Neutrinoless Double 𝛽 Decay

0𝜈𝛽𝛽 decay is the hypothetical decay inside a nucleus of two neutrons 𝑛0 into two
protons 𝑝+ and two electrons 𝑒−,

𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−. (5.1)

At the quark level, the decay is induced by the decay of two down quarks into two
up quarks and two electrons, 𝑑𝑑 → 𝑢𝑢𝑒𝑒. This process is depicted in Figure 5.1 at
the hadronic level, with the quark-level process colored in blue.

Figure 5.1. Diagram depicting nuclear 0𝜈𝛽𝛽 decay (𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−). The solid
lines denote fermions, and the hatched circle denotes the quark-level process that
induces 0𝜈𝛽𝛽 decay. The quark-level process mediating the decay, 𝑑𝑑 → 𝑢𝑢𝑒𝑒, is
depicted in blue.
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§ 5.1. Neutrinoless Double 𝛽 Decay

Figure 5.2. Example 0𝜈𝛽𝛽 decay induced
through light Majorana neutrino exchange.
Long-distance decays are mediated by a
light Majorana neutrino 𝜈, denoted with
a dashed line.

There are a variety of different BSM
mechanisms that may induce 0𝜈𝛽𝛽 de-
cay. The best-understood mechanism is
light Majorana neutrino exchange, de-
picted in Figure 5.2. This is very sim-
ilar to the neutrinoful double 𝛽 (2𝜈𝛽𝛽)
diagram, the rarest Standard Model pro-
cess, except that the neutrinos annihi-
late one another because they are Majo-
rana fermions and thus their own par-
ticles. Such a transition is induced
by the dimension-5 Weinberg operator
𝜖𝑖𝑗(𝜖𝑎𝑏ℓ

𝑎
𝑖𝐻

𝑏)(𝜖𝑐𝑑ℓ
𝑐
𝑗𝐻

𝑑)1, Eq. (2.36), which
violates lepton number by two units.
Any mechanism induced by light Majo-
rana neutrino exchange is called a long-distance mechanism. The different classes of
mechanisms for 0𝜈𝛽𝛽 decay will be discussed further in Section 5.2.

Depending on the specifics of the observed 0𝜈𝛽𝛽 decay, it may also yield insights
into the neutrino mass hierarchy (Section 2.3.2). The effective Majorana neutrino
mass 𝑚𝛽𝛽 is defined as

𝑚𝛽𝛽 =
∑︁
𝑘

|𝑈𝑒𝑘|2𝑚𝑘. (5.2)

where 𝑈 is the PMNS matrix (Eq. (2.37)) and 𝑚𝑘 are the neutrino masses. The
effective Majorana neutrino mass appears in the diagram of Figure 5.2 from the
annihilation of the massive Majorana neutrino. Constraints on the neutrino mass-
squared differences allow one to put constraints on the region of parameter space for
which 0𝜈𝛽𝛽 decay may be observed, in terms of 𝑚𝛽𝛽 and the lightest neutrino mass,
𝑚lightest. Note that Eq. (2.38) implies that 𝑚lightest = 𝑚1 for the normal hierarchy
and 𝑚3 for the inverted hierarchy.

Either hierarchy can be used to produce an exclusion plot for the detection of
0𝜈𝛽𝛽 decay in (𝑚lightest,𝑚𝛽𝛽) space, which is depicted in Figure 5.4 [175]. The two
hierarchies exclude very similar regions of parameter space for values of 𝑚lightest &

0.01 eV. If 𝑚lightest lies in this region, then the discovery of 0𝜈𝛽𝛽 decay will not be
able to distinguish between the normal hierarchy and the inverted hierarchy. However,

1Note that the Higgs takes on its vev 𝑣 the energy scale of 0𝜈𝛽𝛽 decay, with the two factors of
the Higgs vev being absorbed into the Majorana mass of the neutrino.

131
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if 𝑚lightest . 0.01 eV, then the observation of 0𝜈𝛽𝛽 decay and measurement of these
parameters can be used to determine the mass hierarchy of the three Standard Model
neutrinos.

Figure 5.3. The Schechter-Valle diagram.
The blue hatched circle denotes 0𝜈𝛽𝛽 de-
cay (the “black box”) and radiatively gen-
erates a Majorana mass for the neutrino.

The existence of a Majorana mass
term for the Standard Model neutrino
implies 0𝜈𝛽𝛽 decay through the diagram
of Figure 5.2. This statement may be
made stronger, into an if and only if:
any 0𝜈𝛽𝛽 decay mechanism will induce
a Majorana mass for the neutrino, re-
gardless of how exotic the underlying
physics behind the decay is. This is
the Schechter-Valle Black-Box The-
orem [176]. The existence of 0𝜈𝛽𝛽 decay
allows one to draw the diagram in Figure 5.3, which generates a Majorana mass for
the neutrino. It does not matter how 0𝜈𝛽𝛽 decay is induced or the underlying mech-
anism, only that the decay is possible. In this sense, the decay is a “black box”: the
box’s contents do not matter, only that the box exists and induces 0𝜈𝛽𝛽 decay.

Figure 5.4. Regions of parameter space (𝑚lightest,𝑚𝛽𝛽) where 0𝜈𝛽𝛽 decay is kine-
matically possible if the neutrino masses follow a normal hierarchy (red) or an inverted
hierarchy (green). This figure and its 0𝜈𝛽𝛽 decay bounds are sourced from Ref. [175].

132
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5.2 Matrix Elements for 0𝜈𝛽𝛽 Decay

Mechanisms that induce 0𝜈𝛽𝛽 decay can be split into two broad classes [177]. As
discussed in Section 5.1, the first class is called long-distance mechanisms, in
which 0𝜈𝛽𝛽 decay is induced by a non-local interaction mediated by a light particle
of mass much less than the hadronic scale [178, 179]. The standard example of this
mechanism is light Majorana neutrino exchange, shown in Figure 5.2 (although other
scenarios have been considered [180–183]) and discussed in Section 5.1.

The other mechanism class that may induce 0𝜈𝛽𝛽 decay is a short-distance
mechanism, which is mediated by heavy BSM physics [184]. An exotic example of
this is the supersymmetric exchange of two squarks and a gluino in 𝑅-parity-violating
supersymmetry (RPV SUSY) [185–188], depicted in Figure 5.5. Here, the gluino 𝑔 is
a heavy supersymmetric particle and can be integrated out of the theory at the 0𝜈𝛽𝛽

decay scale. Bounds on 0𝜈𝛽𝛽 decay can be used to impose bounds on the Wilson
coefficients of RPV SUSY. Wilson coefficients are the couplings for effective operators
in EFT which determine the strength of the corresponding effective interaction.

Figure 5.5. Example short-distance 0𝜈𝛽𝛽 decay. Short-distance decays are mediated
by heavy BSM physics. In this case, this comes in the form of two heavy squarks 𝑢̃
(denoted by dashed lines) and one heavy gluino 𝑔 (denoted by a double line) in this
example in RPV SUSY.

5.2.1 Long-Distance Mechanisms

At the energy scale of the decay, the 𝑊 bosons in Figure 5.2 can be integrated out,
and the theory can be matched to a four-Fermi effective theory [189, 190]. In the four-
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Fermi theory, the decay is mediated by two insertions of the electroweak Hamiltonian,

ℋ𝑊 = 2
√
2𝐺𝐹𝑉

𝑢𝑑
CKM (𝑒𝛾𝜇𝑃𝐿𝜈𝑒) 𝑗𝜇, 𝑗𝜇 = 𝑢𝛾𝜇𝑃𝐿𝑑. (5.3)

Here 𝐺𝐹 = 1.16 × 10−5 GeV−2 is the Fermi coupling constant, 𝑉CKM is the CKM
matrix (Eq. (2.15)), and 𝑗𝜇 is the electroweak charge current. The resulting diagram
from matching to the four-Fermi theory is depicted in Figure 5.6a, with the elec-
troweak Hamiltonian insertion denoted by the green crossed circle. The lowest-order
contribution to the amplitude in Figure 5.6a between an initial hadronic state |𝑖⟩ and
a final state |𝑓𝑒𝑒⟩ (here |𝑓⟩ is the hadronic final state) is the second-order matrix
element [191],

⟨𝑓 |𝑆(2)|𝑖⟩ ≡
∫︁
𝑑4𝑥 𝑑4𝑦 ⟨𝑓 |𝑇{ℋ𝑊 (𝑥)ℋ𝑊 (𝑦)}|𝑖⟩

= −4𝑚𝛽𝛽𝐺
2
𝐹𝑉

2
𝑢𝑑𝒩𝑒1𝒩𝑒2

∫︁
𝑑4𝑥 𝑑4𝑦 𝐻𝛼𝛽(𝑥, 𝑦)𝐿

𝛼𝛽(𝑥, 𝑦),

(5.4)

where 𝑆(2) is the 𝑆 matrix at second order in perturbation theory and 𝒩𝑒𝑖 is the
normalization of the outgoing electron states, which are put at rest for computational
simplicity. This factors into the convolution of a leptonic tensor 𝐿𝛼𝛽 with a hadronic
tensor 𝐻𝛼𝛽(𝑥, 𝑦),

𝐿𝛼𝛽(𝑥, 𝑦) ≡ Γ𝛼𝛽𝑆𝜑(𝑥, 𝑦) 𝐻𝛼𝛽(𝑥, 𝑦) ≡ ⟨𝑁𝑓 |𝑇{𝑗𝛼(𝑥)𝑗𝛽(𝑦)}|𝑁𝑖⟩. (5.5)

Here |𝑁𝑖⟩ and |𝑁𝑓⟩ are the initial and final hadronic states with momenta 𝑝𝑖 and 𝑝𝑓 ,
respectively. The leptonic tensor 𝐿𝛼𝛽 is comprised of a massless scalar propagator
𝑆𝜑(𝑥, 𝑦) and a spinor Γ𝛼𝛽 ≡ 𝑢1(𝑝1)𝛾𝛼𝛾𝛽(1 + 𝛾5)𝑢

𝐶
2 (𝑝2), where 𝑢1(𝑝1), 𝑢2(𝑝2) are the

Dirac spinors corresponding to the outgoing electrons, and 𝑢(𝑝)𝐶 = 𝐶 𝑢𝑇 (𝑝) is the
charge-conjugated electron spinor, with charge conjugation operator 𝐶 = −𝑖𝛾0𝛾2
(Eq. (C.7)). Note that the momenta of the two electrons, 𝑝1 and 𝑝2, have vanishing
spatial components, 𝑝1 = 𝑝2 = 0. The propagator 𝑆𝜑 arises from the neutrino
propagator,

/𝑞 +𝑚𝛽𝛽

𝑞2 +𝑚𝛽𝛽

=
�
���

��/𝑞

𝑞2 +𝑚𝛽𝛽

+
𝑚𝛽𝛽

𝑞2 +𝑚𝛽𝛽

−→ 𝑚𝛽𝛽

𝑞2
(5.6)

because the term proportional to /𝑞 has the wrong chirality to contribute to the decay,
and in the remaining term, the neutrino mass 𝑚𝛽𝛽 ≪

√︀
𝑞2. The hadronic tensor

𝐻𝛼𝛽(𝑥, 𝑦) is inherently non-perturbative, and its convolution with 𝐿𝛼𝛽 can be com-
puted within the context of LGT to yield the long-distance 0𝜈𝛽𝛽 decay amplitude
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between given initial and final hadronic states |𝑁𝑖⟩ and |𝑁𝑓⟩.

(a) Four-Fermi theory for long-distance decay. (b) SMEFT for short-distance decay.

Figure 5.6. EFT treatment of the two classes of 0𝜈𝛽𝛽 decay. In the long-distance
case (Figure 5.6a), the 𝑊 boson is integrated out and the decay is matched onto the
four-Fermi EFT, where the decay 𝑑 → 𝑢𝑒𝜈 is mediated by an insertion of the elec-
troweak Hamiltonian ℋ𝑊 , denoted in green. The heavy BSM physics is integrated
out of the theory in the short-distance case (Figure 5.6b). The short-distance con-
tribution is matched onto the SMEFT where the decay 𝑑𝑑→ 𝑢𝑢𝑒𝑒 is mediated by a
product of leptonic contact operators ℓ and four-quark contact operators 𝐻, denoted
in red, regardless of the physics inducing the decay at the microscopic level.

One can rewrite Eq. (5.4) as [5]

⟨𝑓 |𝑆(2)|𝑖⟩ = 𝑖(2𝜋)4𝛿4(𝑝𝑓 − 𝑝𝑖 + 𝑝1 + 𝑝2)ℳ𝑖→𝑓 , (5.7)

with

ℳ𝑖→𝑓 = 4𝐺2
𝐹𝑉

2
𝑢𝑑𝑚𝛽𝛽𝒩𝑒1𝒩𝑒2

∑︁
𝑛

Γ𝜇𝜈
(︀
⟨𝑁𝑓 |𝑗𝜇(0)|𝑛⟩⟨𝑛|𝑗𝜈(0)|𝑁𝑖⟩+ 𝜇↔ 𝜈

)︀
4𝐸̃𝑛|𝑞|(|𝑞|+ 𝐸̃𝑛 − 𝐸𝑖 +𝑚𝑒)

⃒⃒⃒⃒
⃒
𝑞=𝑝𝑖−𝑝𝑛

.

(5.8)

It is useful to normalize the matrix element ℳ𝑖→𝑓 by stripping off the prefactors in
Eq. (5.8). Defining the amplitude 𝒜𝑖→𝑓 as

𝒜𝑖→𝑓 ≡ ℳ𝑖→𝑓

4𝐺2
𝐹𝑉

2
𝑢𝑑𝑚𝛽𝛽𝒩𝑒1𝒩𝑒2

, (5.9)
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this amplitude simplifies to,

𝒜𝑖→𝑓 =
∑︁
𝑛

⟨𝑁𝑓 |𝑗𝜇(0)|𝑛⟩⟨𝑛|𝑗𝜇(0)|𝑁𝑖⟩
2𝐸̃𝑛|𝑞|(|𝑞|+ 𝐸̃𝑛 − 𝐸𝑖 +𝑚𝑒)

⃒⃒⃒⃒
𝑞=𝑝𝑖−𝑝𝑛

. (5.10)

The quantity 𝒜𝑖→𝑓 is the subject of the LGT calculation in Ref. [5]; it contains all
the non-perturbative physics in the long-distance decay, and its calculation in LGT
is described in Section 5.6.

5.2.2 Short-Distance Mechanisms

For an arbitrary short-distance mechanism, the heavy mediating particle can be inte-
grated out in Standard Model EFT (SMEFT) to generate contact interactions [184].
In the SMEFT framework, the Standard Model enters as the renormalizable sector
of a non-renormalizable theory [192]. Potential short-distance contributions to 0𝜈𝛽𝛽

decay are induced by physics at the scale ΛLNV & 𝑣, where 𝑣 = 247 GeV is the
electroweak scale set by the Higgs vacuum expectation value, and described in the
SMEFT by operators with mass dimension greater than 4. Any SMEFT operator con-
tributing to 0𝜈𝛽𝛽 decay must induce the process 𝑑𝑑→ 𝑢𝑢𝑒𝑒 at the quark level. Every
such operator must therefore contain at least six fermion fields, and so have mass di-
mension 𝑑 ≥ 9, with contributions to the 𝜋− → 𝜋+𝑒−𝑒− decay power-suppressed by a
factor of Λ𝑑−4LNV. The dimension-9 lepton-number violating operators thus contribute
to the decay at leading-order (LO) in inverse powers of ΛLNV.

There are fourteen 𝑆𝑈(3)𝑐 × 𝑈(1)EM-invariant dimension-9 SMEFT operators
which violate lepton number and may contribute to the decays 𝜋− → 𝜋+𝑒−𝑒− and
𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−; they can be factorized into a 4-quark operator multiplying a lep-
tonic operator. Of these operators, four have corresponding 4-quark operators that
transform as Lorentz 4-vectors and therefore match to the chiral EFT (𝜒EFT) oper-
ator 𝜋(𝜕𝜇𝜋)𝑒𝛾𝜇𝛾5𝑒c + h.c., where the superscript c denotes charge conjugation and 𝜋
and 𝑒 represent the pion and electron fields. Integration by parts shows that pionic
matrix elements of this operator are proportional to one power of the electron mass
and give sub-leading contributions to the decay 𝜋− → 𝜋+𝑒−𝑒−. However, they are not
necessarily suppressed in 0𝜈𝛽𝛽 decays of nuclear systems like 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−. Of
the remaining ten operators, five have corresponding 4-quark operators with positive
parity and contribute to 𝜋− → 𝜋+𝑒−𝑒− and 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−, while the five opera-
tors containing 4-quark operators of negative parity do not contribute. Consequently,
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at LO, these decays are described with the Lagrangian [193]

ℒ𝜋→𝜋𝑒𝑒SMEFT =
𝐺2
𝐹

ΛLNV

𝑒𝑒c
∑︁
𝑘

𝑐𝑘𝒪𝑘,

ℒ𝑛𝑛→𝑝𝑝𝑒𝑒SMEFT =
𝐺2
𝐹

ΛLNV

(︃
𝑒𝑒c
∑︁
𝑘

𝑐𝑘𝒪𝑘 + 𝑒𝛾𝜇𝛾5𝑒
c
∑︁
𝑝

̃︀𝑐𝑝𝒱𝜇𝑝
)︃
,

(5.11)

where 𝐺𝐹 is the Fermi coupling constant and 𝑐𝑘 and ̃︀𝑐𝑝 are dimensionless Wilson
coefficients. The scalar operator basis {𝒪𝑘(𝑥)} is

𝒪1(𝑥) = (𝑞𝐿(𝑥)𝜏
+𝛾𝜇𝑞𝐿(𝑥))[𝑞𝑅(𝑥)𝜏

+𝛾𝜇𝑞𝑅(𝑥)]

𝒪2(𝑥) = (𝑞𝑅(𝑥)𝜏
+𝑞𝐿(𝑥))[𝑞𝑅(𝑥)𝜏

+𝑞𝐿(𝑥)] + (𝑞𝐿(𝑥)𝜏
+𝑞𝑅(𝑥))[𝑞𝐿(𝑥)𝜏

+𝑞𝑅(𝑥)]

𝒪3(𝑥) = (𝑞𝐿(𝑥)𝜏
+𝛾𝜇𝑞𝐿(𝑥))[𝑞𝐿(𝑥)𝜏

+𝛾𝜇𝑞𝐿(𝑥)] + (𝑞𝑅(𝑥)𝜏
+𝛾𝜇𝑞𝑅(𝑥))[𝑞𝑅(𝑥)𝜏

+𝛾𝜇𝑞𝑅(𝑥)]

𝒪1′(𝑥) = (𝑞𝐿(𝑥)𝜏
+𝛾𝜇𝑞𝐿(𝑥)][𝑞𝑅(𝑥)𝜏

+𝛾𝜇𝑞𝑅(𝑥))

𝒪2′(𝑥) = (𝑞𝑅(𝑥)𝜏
+𝑞𝐿(𝑥)][𝑞𝑅(𝑥)𝜏

+𝑞𝐿(𝑥)) + (𝑞𝐿(𝑥)𝜏
+𝑞𝑅(𝑥)][𝑞𝐿(𝑥)𝜏

+𝑞𝑅(𝑥)),

(5.12)

with 𝑘 ∈ {1, 2, 3, 1′, 2′}, and the vector operator basis {𝒱𝜇𝑝 (𝑥)} is

𝒱𝜇1 (𝑥) = (𝑞𝐿(𝑥)𝛾
𝜇𝜏+𝑞𝐿(𝑥))[𝑞𝐿(𝑥)𝜏

+𝑞𝑅(𝑥)] + (𝑞𝑅(𝑥)𝛾
𝜇𝜏+𝑞𝑅(𝑥))[𝑞𝑅(𝑥)𝜏

+𝑞𝐿(𝑥)]

𝒱𝜇2 (𝑥) = (𝑞𝐿(𝑥)𝛾
𝜇𝜏+𝑞𝐿(𝑥))[𝑞𝑅(𝑥)𝜏

+𝑞𝐿(𝑥)] + (𝑞𝑅(𝑥)𝛾
𝜇𝜏+𝑞𝑅(𝑥))[𝑞𝐿(𝑥)𝜏

+𝑞𝑅(𝑥)]

𝒱𝜇1′(𝑥) = (𝑞𝐿(𝑥)𝑡
𝑎𝛾𝜇𝜏+𝑞𝐿(𝑥))[𝑞𝐿(𝑥)𝑡

𝑎𝜏+𝑞𝑅(𝑥)] + (𝑞𝑅(𝑥)𝑡
𝑎𝛾𝜇𝜏+𝑞𝑅(𝑥))[𝑞𝑅(𝑥)𝑡

𝑎𝜏+𝑞𝐿(𝑥)]

𝒱𝜇2′(𝑥) = (𝑞𝐿(𝑥)𝑡
𝑎𝛾𝜇𝜏+𝑞𝐿(𝑥))[𝑞𝑅(𝑥)𝑡

𝑎𝜏+𝑞𝐿(𝑥)] + (𝑞𝑅(𝑥)𝑡
𝑎𝛾𝜇𝜏+𝑞𝑅(𝑥))[𝑞𝐿(𝑥)𝑡

𝑎𝜏+𝑞𝑅(𝑥)]

(5.13)

with 𝑝 ∈ {1, 2, 1′, 2′} [186, 193]. Here 𝑞𝐿(𝑥) and 𝑞𝑅(𝑥) are the left and right-handed
components of the quark field isospin doublet, respectively, 𝑡𝑎 are the generators of
𝑆𝑈(3), and

𝜏+ =

(︃
0 1

0 0

)︃
(5.14)

is the isospin-raising operator. The round and square brackets in Eq. (5.12) denote
color contraction: for arbitrary Dirac matrices Γ1 and Γ2, the operators 𝒪1(𝑥), 𝒪2(𝑥),
and 𝒪3(𝑥) factor into products of color singlets, (𝑢Γ1𝑑)[𝑢Γ2𝑑] ≡ (𝑢𝑎Γ1𝑑

𝑎)(𝑢𝑏Γ2𝑑
𝑏),

whereas the operators 𝒪1′(𝑥) and 𝒪2′(𝑥) mix color between the two Dirac bilinear
terms, (𝑢Γ1𝑑][𝑢Γ2𝑑) ≡ (𝑢𝑎Γ1𝑑

𝑏)(𝑢𝑏Γ2𝑑
𝑎), where 𝑎, 𝑏 are color indices. The vector op-

erators 𝒱𝜇1 (𝑥) and 𝒱𝜇2 (𝑥) likewise factor into color singlets, while the operators 𝒱𝜇1′(𝑥)
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§ 5.2.2. Short-Distance Mechanisms

and 𝒱𝜇2′(𝑥) mix color between the Dirac bilinears because of the 𝑡𝑎 insertions2, which
will be discussed in Section 5.5. The operator bases {𝒪𝑘(𝑥)} (Eq. (5.12)) and {𝒱𝜇𝑝 (𝑥)}
(Eq. (5.13)) are named the BSM bases and are typically used in phenomenological
calculations of 0𝜈𝛽𝛽 decay [193].

Chiral EFT is useful for studying 0𝜈𝛽𝛽 decay in systems with approximate chiral
symmetry. Although the 𝜋− → 𝜋+𝑒−𝑒− transition is unphysical, it has phenomeno-
logical importance as it is an input for calculations of nuclear 0𝜈𝛽𝛽 decay with
𝜒EFT [194]. In particular, the two-nucleon decay 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− is induced in
𝜒EFT by the diagrams in Fig. (5.7) and has LO contributions from the 𝜋𝜋 and 𝑁𝑁
vertices [181, 193].3 The associated effective Lagrangian relevant for 𝜋− → 𝜋+𝑒−𝑒−

(i.e., omitting 𝑁𝑁 and 𝜋𝑁 operators which do not contribute) is [174],

ℒ𝜋→𝜋𝑒𝑒𝜒EFT = 𝑒𝑒c
𝐺2
𝐹

ΛLNV

Λ4
𝜒

(4𝜋)2
𝑓 2
𝜋

8

(︂
𝑐1𝛽1𝒪𝜒1 −

𝑐2𝛽2
2
𝒪𝜒2 − 𝑐3𝛽3𝒪𝜒3 + 𝑐1′𝛽1′𝒪𝜒1′ −

𝑐2′𝛽2′

2
𝒪𝜒2′
)︂
.

(5.15)

Here, 𝑓𝜋 is the pion decay constant in the chiral limit, Λ2
𝜒 ≡ 8𝜋2𝑓 2

𝜋 is the scale of
chiral symmetry breaking, and 𝒪𝜒𝑘 denote the leading 𝜒EFT operators corresponding
to 𝒪𝑘 [195]. Note that the operators 𝒪𝜒𝑘 are normalized to be dimensionless. The
𝜒EFT low energy constants (LECs) 𝛽𝑘 determine the 𝜋𝜋 coupling and are also an
essential input to study the nuclear decay. The 𝛽𝑘 can be determined by evaluating
the pion matrix elements of the 𝒪𝑘 in LQCD and matching them to the corresponding
matrix elements of 𝒪𝜒𝑘 in Eq. (5.15).

Lattice calculations of short-distance 0𝜈𝛽𝛽 decay aim to compute the matrix ele-
ments,

⟨𝑓 |𝒪𝑘|𝑖⟩, ⟨𝑓 |𝒱𝜇𝑝 |𝑖⟩, (5.16)

where |𝑖⟩ and |𝑓⟩ are, respectively, the decay’s initial and final hadronic states. These
matrix elements are essential inputs for EFT and may only be computed theoretically
using LGT. They must be renormalized to make contact with phenomenology, which is
conventionally done in the MS scheme. Explicit calculations of these matrix elements
in the 𝜋− → 𝜋+𝑒−𝑒− and 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− systems are detailed in Sections 5.3

2The correspondence between the color-mixing in {𝒪1′(𝑥),𝒪2′(𝑥)} and {𝒱𝜇
1′(𝑥),𝒱𝜇

2′(𝑥)} is due to
color Fierz identities, which allow products 𝑡𝑎 ⊗ 𝑡𝑎 to be recast as color-mixed Takahashi brackets.
See Appendix D for more detail.

3Earlier work using the Weinberg power counting suggested the 𝜋𝜋 contribution dominates, but
subsequently, Weinberg power counting was found to be incorrect in this channel [186] and other
contributions to 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− are equally important.
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𝑝+
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(a) 𝜋𝜋 vertex.
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𝑝+

𝑛0

𝑛0

𝑒−
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(b) 𝑁𝑁 vertex.
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𝑛0
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(c) 𝜋𝑁 vertex.

Figure 5.7. Diagrams illustrating short-distance contributions to the 𝑛0𝑛0 →
𝑝+𝑝+𝑒−𝑒− 0𝜈𝛽𝛽 decay in 𝜒EFT. The solid lines denote nucleons or electrons, and
the dotted lines denote pions. The hatched circles represent EFT operators built
from hadronic fields, which at LO for the 𝜋𝜋 vertex diagram, Fig. (5.7a), are deter-
mined by 𝒪𝜒𝑘 in Eq. (5.15). The 𝜋𝜋 (Fig. (5.7a)) and 𝑁𝑁 (Fig. (5.7b)) diagrams are
the LO 𝜒EFT contributions to 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−.

and 5.4, and the renormalization of these matrix elements is presented in Section 5.5.

5.2.3 Relative Contributions and ΛLNV

The numerical value of amplitudes of different 0𝜈𝛽𝛽 decay diagrams will depend on
the specific mechanism of the decay and the exact value of the Wilson coefficients in
the theory. Still, general order-of-magnitude estimates can be made to compare the
contribution of long-distance mechanisms to short-distance mechanisms [196, 197].
Let 𝒜LD denote the amplitude for a general long-distance process and 𝒜SD the am-
plitude for a general short-distance process. One obtains a ratio of these amplitudes
by power counting in EFT with the estimate [185]

𝒜SD

𝒜LD

≈ 𝑚4
𝑊 𝑞

2

𝑚𝛽𝛽ΛLNV

, (5.17)

where 𝑚𝑊 ≈ 80GeV is the 𝑊 boson mass (Table 2.3), 𝑞2 ≈ (50 MeV)2 is the typical
virtuality of the exchanged light Majorana neutrino, 𝑚𝛽𝛽 is the effective Majorana
neutrino mass (Eq. (5.2)), on the order of 1 eV, and ΛLNV is the lepton number
violating scale. As ΛLNV is an unknown parameter, the value of ΛLNV will determine
the relative short-distance and long-distance contributions, if both are present in
nature, as displayed in Table 5.1. If ΛLNV ≫ 10 TeV, then long-distance mechanisms
will dominate [198], whereas if ΛLNV ≪ 1 TeV, then short-distance mechanisms will
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§ 5.3. The short-distance 𝜋− → 𝜋+𝑒−𝑒− amplitude

dominate [194, 199]. In the intermediate regime ΛLNV ∼ 1 − 10 TeV, both types of
0𝜈𝛽𝛽 decay mechanisms are roughly comparable. Both cases must be understood to
draw conclusions about the underlying BSM physics from any experimental detection
of 0𝜈𝛽𝛽 decay.

ΛLNV Relative contribution
≪ 1TeV Short-distance dominates
∼ 1− 10TeV Short-distance and long-distance are comparable
≫ 10TeV Long-distance dominates

Table 5.1. Effect of ΛLNV on the dominance of different 0𝜈𝛽𝛽 decay mechanisms.
As ΛLNV increases, short-distance effects become further suppressed.

5.3 The short-distance 𝜋− → 𝜋+𝑒−𝑒− amplitude

The pion matrix elements of each of the SMEFT operators in Eq. (5.12) are computed
in LGT using gauge-field ensembles with 𝑁𝑓 = 2 + 1 quark flavors generated by the
RBC/UKQCD collaboration [200, 201], with parameters given in Table 5.2. Each
ensemble uses the Shamir kernel [202] for the domain-wall fermion action [80] and
the Iwasaki action [203] for the gauge field. The parameters of each ensemble are
detailed in Table 5.2, and additional details regarding the ensemble generation can
be found in Refs. [200, 201, 204]. The scale is set using the Wilson flow scale 𝑤0 [205].
The pion mass, 𝑚𝜋, the pion decay constant, 𝑓𝜋, and the axial-vector renormalization
constant, 𝒵𝐴, for each ensemble were determined in Ref. [12]. In the conventions
used here, the physical pion decay constant [26] is 𝑓 (phys)

𝜋 = 130.2 MeV. The vector
renormalization constant, 𝒵𝑉 , for these ensembles was computed in the chiral limit in
Refs. [205, 206], and is approximately equal to 𝒵𝐴, indicating the ensembles exhibit
approximate chiral symmetry. For more discussion on the vector and axial-vector
renormalization coefficients, see Appendix H.

The short-distance contribution to the 𝜋− → 𝜋+𝑒−𝑒− transition is encoded in the
matrix elements

⟨𝜋+|𝒪𝑘|𝜋−⟩, (5.18)

where the operators {𝒪𝑘} are the five dimension-6 scalar operators in the BSM basis
the contribute to 𝜋− → 𝜋+𝑒−𝑒− at LO (Eq. (5.12)). The bare matrix elements are
computed on each ensemble (Section 5.3.1) and renormalized in MS at the scale 3 GeV
(Section 5.5). Results for these matrix elements are presented after extrapolation to
the chiral, continuum, and infinite-volume limit (Section 5.3.2).
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§ 5.3.1. LGT Calculation of Bare Matrix Elements

Label 𝑎𝑚𝑙 𝑎𝑚𝑠 𝛽 𝐿3 × 𝑇 𝑎 [fm] 𝑚𝜋 [MeV] 𝑓𝜋 [MeV] 𝒵𝐴
24I

0.01
0.04 2.13 243 × 64 0.1106(3)

432(1) 163.7(6)
0.7167(2)0.005 340(1) 151.6(6)

32I
0.008 411(2) 162.0(9)

0.7448(2)0.006 0.03 2.25 323 × 64 0.0828(3) 360(1) 154.3(7)
0.004 302(1) 147.5(8)

Table 5.2. Parameters of the gauge field ensembles used in the 𝜋− →
𝜋+𝑒−𝑒− computation. Each ensemble was generated with two degenerate light quark
flavors of mass 𝑚ℓ and one heavy quark flavor of mass 𝑚𝑠. The lattice volumes are
𝐿3 × 𝑇 × 𝐿𝑠, with the fifth dimension having 𝐿𝑠 = 16 sites. Derived quantities are
computed in Ref. [12] (the pion mass 𝑚𝜋, the pion decay constant 𝑓𝜋, and the axial
current renormalization 𝒵𝐴) and Refs. [205, 206] (the inverse lattice spacing 𝑎−1).

5.3.1 LGT Calculation of Bare Matrix Elements

On each ensemble used in the 𝜋− → 𝜋+𝑒−𝑒− calculation (Table 5.2), the time-averaged
two-point function

𝒞2pt(𝑡) =
1

𝑇

𝑇−1∑︁
𝑡−=0

∑︁
𝑥,𝑦

⟨0|𝜒𝜋(𝑥, 𝑡+ 𝑡−)𝜒
†
𝜋(𝑦, 𝑡−)|0⟩ (5.19)

and three-point functions

𝒞𝑘(𝑡−, 𝑡𝑥, 𝑡+) =
∑︁
𝑥,𝑦,𝑧

⟨0|𝜒†𝜋(𝑥, 𝑡+)𝒪𝑘(𝑧, 𝑡𝑥)𝜒†𝜋(𝑦, 𝑡−)|0⟩, (5.20)

where the pion interpolating operator 𝜒𝜋(𝑥) = 𝑢(𝑥)𝛾5𝑑(𝑥) has the quantum numbers
of the 𝜋− and 𝑡+ ≥ 𝑡𝑥 ≥ 𝑡−, are computed for each operator 𝒪𝑘(𝑥) in the BSM basis
(Eq. (5.12)). Wall-source propagators are computed at each available time slice on
each configuration, where “wall" denotes projection to vanishing three-momentum in
the Coulomb gauge (Section 3.3.3). Note that wall sources are not gauge-invariant;
hence, there is a need for gauge fixing. The two-point functions (Eq. (5.19)) are
constructed using a wall source propagator at 𝑡− and a wall sink at 𝑡 + 𝑡−, and the
three-point functions (Eq. (5.20)) are constructed using wall source propagators at
𝑡− and 𝑡+ and a point (local) sink at 𝑡𝑥. The explicit Wick contractions are given in
Appendix F.

The bare pion matrix elements in lattice units

⟨𝒪𝑘⟩ ≡ 𝑎4⟨𝜋+|𝒪𝑘(𝑝 = 0)|𝜋−⟩ = 𝑎4
∑︁
x

⟨𝜋+|𝒪𝑘(𝑥, 0)|𝜋−⟩ (5.21)
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§ 5.3.1. LGT Calculation of Bare Matrix Elements

are extracted from the effective matrix elements

𝑂eff
𝑘 (𝑡) ≡ 2𝑚𝜋

𝒞𝑘(0, 𝑡, 2𝑡)
𝒞2pt(2𝑡)− 1

2
𝒞2pt(𝑇/2)𝑒𝑚𝜋(2𝑡−𝑇/2)

. (5.22)

Subtracting 1
2
𝒞2pt(𝑇/2)𝑒𝑚𝜋(2𝑡−𝑇/2) in the denominator of Eq. (5.22) isolates the backward-

propagating state in the two-point function, and in the 0 ≪ 𝑡 ≪ 𝑇 limit 𝑂eff
𝑘 (𝑡)

asymptotes to ⟨𝒪𝑘⟩. The effective matrix elements are computed on between 33 and
53 gauge field configurations for each ensemble (details in Appendix G, Table G.1),
resampled using a bootstrap procedure with 𝑛𝑏 = 50 bootstrap samples. The spec-
tral decomposition of 𝑂eff

𝑘 (𝑡) up to and including the first excited state with energy
𝑚𝜋 +Δ,

𝑂eff
𝑘 (𝑡) =

⟨𝒪𝑘⟩+𝒩 (𝑘)
1 𝑒−Δ𝑡 +𝒩 (𝑘)

2 𝑒−(𝑚𝜋+Δ)(𝑇−2𝑡)

1 +𝒩 (𝑘)
3 𝑒−2Δ𝑡 +𝒩 (𝑘)

4 𝑒−(𝑚𝜋+Δ)𝑇+2(2𝑚𝜋+Δ)𝑡
, (5.23)

parameterizes the ground and excited-state contributions to 𝑂eff
𝑘 (𝑡), where the coeffi-

cients 𝒩 (𝑘)
𝑖 are constants determined by the spectral content of the theory. Eq. (5.23)

can be Taylor expanded to first order in 𝒩 (𝑘)
3 and 𝒩 (𝑘)

4 , yielding

𝑓𝑘(𝑡; ⟨𝒪𝑘⟩,𝑚(𝑘),Δ(𝑘), 𝐴
(𝑘)
𝑖 ) ≡ ⟨𝒪𝑘⟩+ 𝐴

(𝑘)
1 𝑒−Δ

(𝑘)𝑡 + 𝐴
(𝑘)
2 𝑒−(𝑚

(𝑘)+Δ)(𝑇−2𝑡)

− 𝐴(𝑘)
3 𝑒−2Δ

(𝑘)𝑡 − 𝐴(𝑘)
4 𝑒−(𝑚

(𝑘)+Δ)𝑇+2(2𝑚(𝑘)+Δ(𝑘))𝑡.

(5.24)

This function is used to model the temporal dependence of𝑂eff
𝑘 (𝑡), treating ⟨𝒪𝑘⟩, 𝑚(𝑘),Δ(𝑘),

and 𝐴(𝑘)
𝑖 as free parameters.
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Figure 5.8. Effective matrix elements
𝑂eff
𝑘 (𝑡) (Eq. (5.22)) computed on the 32I,

𝑎𝑚ℓ = 0.004 ensemble. Colored bands
denote the best-fit band for the corre-
sponding excited-state fit to the model
of Eq. (5.24), with [𝑡min, 𝑡max] = [6, 32]
and 𝜆 = 0.1. The grey band in each
panel denotes the extracted value of ⟨𝒪𝑘⟩
(Eq. (5.24)).

Fits of 𝑂eff
𝑘 (𝑡) to the model of

Eq. (5.24) are performed using a corre-
lated least-squares fit. Each fit is per-
formed over a given range [𝑡min, 𝑡max],
with the covariance matrix obtained
from the bootstrapped sample covari-
ance matrix via linear shrinkage with pa-
rameter 𝜆; the hyperparameters are var-
ied, with 𝑡min ∈ [6, 11], 𝑡max ∈ [30, 32],
and 𝜆 ∈ {0.1, 0.2, 0.3, 0.4}. Bayesian pri-
ors are placed on the model parameters,
informed by the results of a two-state fit
to 𝐶2pt(𝑡). The priors on the spectral co-
efficients are set to 𝐴(𝑖)

𝑘 = 0.0±0.1, where
𝜇 ± 𝜎 denotes the normal distribution
with mean 𝜇 and width 𝜎. To enforce
positivity, log-normal priors are chosen
for the mass 𝑚(𝑘)

𝜋 and excited state gap
Δ(𝑘) such that 𝑚(𝑘) = 𝑚𝜋 ± 𝛿𝑚𝜋, where
𝑚𝜋 (𝛿𝑚𝜋) is the mean (standard devia-
tion) of the pion mass (Table 5.2), and
Δ(𝑘) = 2𝑚𝜋 ±𝑚𝜋. Statistically indistin-
guishable results are obtained for ⟨𝒪𝑘⟩
under variation of all hyperparameters
within the ranges described above, and
when widths of the priors are inflated by
a factor of 2, hence fiducial values of the
hyperparameters are chosen as [𝑡min, 𝑡max] = [6, 32] and 𝜆 = 0.14. Posterior values for
𝐴

(𝑘)
3 and 𝐴

(𝑘)
4 are found to be ≪ 1, thus the Taylor expansion in Eq. (5.24) is valid.

The fits have 𝜒2/dof between 0.10 and 0.73. Fit results and the complete set of fits
for each operator on each ensemble with the fiducial hyperparameters are shown in
Appendix G. Illustrative fits to data from the 32I, 𝑎𝑚ℓ = 0.004 ensemble with the
fiducial hyperparameters are shown in Fig. (5.8).

Before extrapolation to the chiral, continuum, and infinite-volume limit, the bare

4This choice for 𝜆 is statistically the most conservative within the range, as 𝜆 = 0 corresponds
to no shrinkage.

143
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Operator 𝒪1 𝒪2 𝒪3 𝒪1′ 𝒪2′

Label 𝑎𝑚ℓ 𝑂𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿)

24I 0.01 -0.0190(11) -0.0467(15) 0.001602(59) -0.0850(32) 0.01556(50)
0.005 -0.0162(11) -0.0391(15) 0.000815(28) -0.0733(32) 0.01305(45)

32I
0.008 -0.0204(15) -0.0436(18) 0.001383(57) -0.0863(39) 0.01393(66)
0.006 -0.0179(13) -0.0387(14) 0.000937(39) -0.0771(36) 0.01239(50)
0.004 -0.0160(15) -0.0347(16) 0.000569(24) -0.0696(37) 0.01115(60)

Extrapolated 𝑂𝑘(𝑚
(phys)
𝜋 , 𝑓

(phys)
𝜋 , 0,∞)

𝑂𝑘 (GeV4) -0.0127(16) -0.0245(22) 0.0000869(80) -0.0535(48) 0.00757(75)
𝛽𝑘 -1.21(17) -2.37(23) 0.606(66) -5.17(51) 0.735(80)

𝛼𝑘 (fm−2) -0.27(31) 0.33(23) 0.13(22) -0.04(23) 0.58(26)
𝑐𝑘 -0.6(1.4) -1.17(98) 8.6(1.4) -1.18(98) -1.5(1.0)

𝜒2/dof 0.02 0.03 0.22 0.08 0.03

Table 5.3. Renormalized pion matrix elements 𝑂𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿), Eq. (5.61), of each
operator 𝒪𝑘 in the BSM basis computed on each of the ensembles (upper), and the
results of chiral continuum extrapolation (lower). The parameters 𝛼𝑘, 𝛽𝑘, and 𝑐𝑘 are
the 𝜒EFT LECs, Eq. (5.25), and ⟨𝜋+|𝒪MS

𝑘 |𝜋−⟩ is the extrapolated matrix element in
the continuum and infinite volume limit at physical quark masses in the MS scheme
at 𝜇 = 3 GeV.

matrix elements must be renormalized. Renormalization coefficients 𝒵MS are com-
puted in MS at scale 𝜇 = 3GeV for each of the five scalar operators 𝒪𝑘 for each
ensemble. The calculation of 𝒵MS is presented in Section 5.5, with results shown in
Tables 5.7 and 5.8.

5.3.2 Chiral Extrapolation

Computation of the non-perturbative renormalization coefficients necessary to renor-
malize the scalar operators on the five ensembles used in this calculation is described
in Section 5.5. The renormalized matrix elements 𝑂𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿), Eq. (5.61), com-
puted on each ensemble, are extrapolated to the continuum and infinite volume limit
and physical pion mass using 𝜒EFT at NLO; the relevant expressions have been de-
rived in Ref. [174] using the Lagrangian in Eq. (5.15). The chiral models ℱ𝑘 for 𝑂𝑘
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Figure 5.9. Chiral extrapolation of renormalized matrix elements. The LQCD
results are shown at 𝜖2𝜋 = 𝑚2

𝜋/(8𝜋
2𝑓 2
𝜋) calculated using the pion mass of each ensemble

and the physical value of 𝑓𝜋, and the values of 𝑂𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿) have been shifted by
−ℱ𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿;𝛼𝑘, 𝛽𝑘, 𝑐𝑘) +ℱ𝑘(𝑚𝜋, 𝑓

(phys)
𝜋 , 0,∞;𝛼𝑘, 𝛽𝑘, 𝑐𝑘), where 𝛼𝑘, 𝛽𝑘, 𝑐𝑘 are the

best-fit coefficients given in Table 5.3. The dashed line denotes the physical pion
mass.

are given by

ℱ1(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿;𝛼1, 𝛽1, 𝑐1) =

𝛽1Λ
4
𝜒

(4𝜋)2

[︂
1 + 𝜖2𝜋(log 𝜖

2
𝜋 − 1 + 𝑐1 − 𝑓0(𝑚𝜋𝐿) + 2𝑓1(𝑚𝜋𝐿)) + 𝛼1𝑎

2

]︂
,

ℱ2(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿;𝛼2, 𝛽2, 𝑐2) =

𝛽2Λ
4
𝜒

(4𝜋)2

[︂
1 + 𝜖2𝜋(log 𝜖

2
𝜋 − 1 + 𝑐2 − 𝑓0(𝑚𝜋𝐿) + 2𝑓1(𝑚𝜋𝐿)) + 𝛼2𝑎

2

]︂
,

ℱ3(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿;𝛼3, 𝛽3, 𝑐3) =

𝜖2𝜋
𝛽3Λ

4
𝜒

(4𝜋)2

[︂
1− 𝜖2𝜋(3 log 𝜖2𝜋 + 1− 𝑐3 + 𝑓0(𝑚𝜋𝐿) + 2𝑓1(𝑚𝜋𝐿)) + 𝛼3𝑎

2

]︂
,

(5.25)

where 𝜖2𝜋 = 𝑚2
𝜋/Λ

2
𝜒 is a power-counting parameter for 𝜒EFT, 𝛽𝑘 are the LO LECs

defined in Eq. (5.15), and 𝛼𝑘 and 𝑐𝑘 are the additional NLO LECs. The matrix
elements 𝑂1′ and 𝑂2′ have the same chiral behavior as 𝑂1 and 𝑂2 and are modeled
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by ℱ1 and ℱ2, respectively, but with different LECs, 𝛼1′ , 𝛽1′ , 𝑐1′ and 𝛼2′ , 𝛽2′ , 𝑐2′ . The
functions

𝑓0(𝑚𝐿) = −2
∑︁
|𝑛|̸=0

𝐾0(𝑚𝐿|𝑛|),

𝑓1(𝑚𝐿) = 4
∑︁
|𝑛|̸=0

𝐾1(𝑚𝐿|𝑛|)
𝑚𝐿|𝑛| ,

(5.26)

are sums of modified Bessel functions𝐾𝑖(𝑧) arising from one-loop, finite volume 𝜒EFT
in the 𝑝-regime.

The models are fit to the data in Table 5.3, using least-squares minimization
including the correlations between 𝑂𝑘, 𝑚𝜋, and 𝑓𝜋 on each ensemble. The final
extrapolated results for the matrix elements and corresponding LECs are given in
Table 5.3. The resulting fits are shown in Fig. (5.9), where to isolate the pion-
mass dependence of the matrix elements, 𝜖2𝜋 has been rescaled by (𝑓

(lat)
𝜋 /𝑓

(phys)
𝜋 )2

and the values of 𝑂𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿) have been shifted by −ℱ𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿;𝛼𝑘, 𝛽𝑘, 𝑐𝑘)+

ℱ𝑘(𝑚𝜋, 𝑓
(phys)
𝜋 , 0,∞;𝛼𝑘, 𝛽𝑘, 𝑐𝑘), where 𝛼𝑘, 𝛽𝑘, 𝑐𝑘 are the best-fit coefficients given in

Table 5.3. The extrapolation bands for each 𝒪𝑘 depict the functional form for the
model ℱ𝑘(𝑚𝜋, 𝑓

(phys)
𝜋 , 0,∞;𝛼𝑘, 𝛽𝑘, 𝑐𝑘). The results for ⟨𝜋+|𝒪MS

𝑘 |𝜋−⟩ obey the same
hierarchy as the chiral 𝑆𝑈(3) estimates [207], and are consistent with these results
within two standard deviations.

The results for the renormalized, extrapolated, matrix elements differ from the
results of Ref. [174] by about 2.0 to 5.0 standard deviations. Several differences
between the two calculations may account for the discrepancy. The present calculation
was performed with the same domain-wall action for the valence and sea-quarks and
is thus unitary, while that of Ref. [174] used a mixed action where unitarity is only
restored in the continuum limit. Using the domain-wall action for valence and sea
quarks yields matrix elements with a mild dependence on the lattice spacing. In
contrast, the mixed action results appear to have a larger dependence on the lattice
spacing. However, the analysis of Ref. [174] was performed on nine ensembles with
pion masses 𝑚𝜋 . 310 MeV, including one ensemble with pion mass below the
physical point, which allows for an interpolation to the physical point. Ref. [174]
also uses three lattice spacings as opposed to the two used in this computation,
which allows for higher control of discretization artifacts in the non-perturbative
renormalization and the chiral and continuum extrapolation.
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5.4 The short-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− amplitude

The calculation of the short-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−matrix elements proceeds
similarly to the short-distance 𝜋− → 𝜋+𝑒−𝑒−matrix elements, with a few notable
differences. First, to excite the desired states, one requires nucleon interpolating
operators,

𝜒𝜌𝑝(𝑥) ≡ 𝜖𝑎𝑏𝑐[𝑢
𝛼
𝑎 (𝑥)(𝑃+𝐶𝛾5)

𝛼𝛽𝑑𝛽𝑏 (𝑥)](𝑃+𝑢(𝑥))
𝜌
𝑐 ,

𝜒𝜌𝑛(𝑥) ≡ 𝜖𝑎𝑏𝑐[𝑑
𝛼
𝑎 (𝑥)(𝑃+𝐶𝛾5)

𝛼𝛽𝑢𝛽𝑏 (𝑥)](𝑃+𝑑(𝑥))
𝜌
𝑐 ,

(5.27)

where 𝜌 is a free spinor index, 𝜖𝑎𝑏𝑐 is the 𝑆𝑈(3)𝑐 Levi-Civita tensor, 𝐶 is the charge
conjugation operator, and the projector 𝑃+ ≡ 1+𝛾0

2
projects the operator to positive

parity. Each nucleon interpolator 𝜒𝜌𝑁(𝑥) with 𝑁 ∈ {𝑛, 𝑝} is used to construct a
dinucleon interpolator,

𝜒𝑁𝑁(𝑥) ≡ 𝜒𝛼𝑁(𝑥)(𝐶𝛾5)
𝛼𝛽𝜒𝛽𝑁(𝑥). (5.28)

Second, because only a single ensemble (Table 5.4) is used, no extrapolation is
performed on the renormalized, finite-volume matrix elements computed at 𝑚𝜋 ≈
806MeV, and these finite-volume matrix elements constitute the final results as a
proof-of-concept of the calculation. Finally, because the vector operators are not sup-
pressed in the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− decay, hadronic matrix elements of both the scalar
operators ⟨𝑝𝑝|𝒪𝑘|𝑛𝑛⟩ (Eq. (5.12)) and the vector operators ⟨𝑝𝑝|𝒱𝑝|𝑛𝑛⟩ (Eq. (5.13))
are computed and presented. To condense notation, let

{𝐻𝑖}9𝑖=1 = {𝒪1,𝒪2,𝒪3,𝒪1′ ,𝒪2′ ,𝒱1,𝒱2,𝒱1′ ,𝒱2′} (5.29)

denote the set of operators that can induce the short-distance contribution to 𝑛0𝑛0 →
𝑝+𝑝+𝑒−𝑒− , where the vector indices are suppressed.

The nucleon matrix elements of the SMEFT operators in Eqs. (5.12, 5.13) are
computed in LGT on a gauge-field ensemble at the 𝑆𝑈(3) flavor symmetric point
with 𝑚𝜋 ≈ 806 MeV [208], with parameters given in Table 5.4. The ensemble uses a
clover fermion action and a tadpole-improved Lüscher-Weisz gauge action [209]. The
lattice spacing 𝑎 is set with the ϒ spectrum [210], and the renormalization coefficients
𝒵𝐴 and 𝒵𝑉 are calculated in the RI/sMOM scheme [211, 212].
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𝑎𝑚𝑞 𝛽 𝐿3 × 𝑇 𝑎 [fm] 𝑚𝜋 [MeV] 𝒵𝐴 𝒵𝑉 𝑛cfg

-0.2450 6.1 323 × 48 0.1453(16) 806.9(8.9) 0.879(12) 0.802(22) 12,139

Table 5.4. Parameters of the gauge field ensemble used in the 𝑛0𝑛0 →
𝑝+𝑝+𝑒−𝑒− computation. The ensemble was generated at the 𝑆𝑈(3)-flavor symmet-
ric point where 𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠 ≡ 𝑚𝑞. The lattice volume is 𝐿3 × 𝑇 , and 𝑛cfg

configurations were used. Derived quantities are computed in Ref. [208] (the pion
mass 𝑚𝜋 and the lattice spacing 𝑎) and Refs. [213] (the axial current renormalization
𝒵𝐴, the vector current renormalization 𝒵𝑉 ).

On this ensemble, two-point functions for the dinucleon

𝒞nn2pt(𝑡) = ⟨0|𝜒𝑛𝑛(𝑡)𝜒†𝑛𝑛(0)|0⟩, (5.30)

and three-point functions

𝒞nnpp𝑖 (𝑡, 𝜏) = ⟨0|𝜒𝑝𝑝(𝑡)𝐻𝑖(𝜏)𝜒
†
𝑛𝑛(0)|0⟩, (5.31)

are constructed. The two-point function 𝒞nn2pt(𝑡) are constructed with a wall source
and point sink, and the three-point functions 𝒞nnpp𝑖 (𝑡, 𝜏) are constructed with a wall
source, point operator, and point sink (Section 3.3.3).

The two-point function is used to extract the dinucleon mass by fitting 𝒞nn2pt(𝑡) to
a constant 𝑎𝑚eff . The fits are performed over a range of windows [𝑡min, 𝑡max] with
𝑡min ∈ {9, 10, ..., 13} and 𝑡max = 16 with multi-exponential models,

𝑓𝑛(𝑡) =
𝑛∑︁
𝑘=0

𝒵𝑛𝑒−𝐸𝑘𝑡, (5.32)

with 𝑛 ∈ {0, 1, 2}. In practice for 𝑛 ≥ 1, fits are performed by imposing log-normal
priors on the energy gaps 𝐸𝑘 −𝐸𝑘−1, which must be positive by the assumption that
𝐸𝑘 monotonically increases. The best fit for a given window is selected via the AIC
(Eq. (3.90)), and fits across all windows are averaged according to the procedure in
Section 5.3.1. The fit results are shown in Figure 5.10. The displayed effective mass
𝑎𝑚eff is the cosh-corrected effective mass (Eq. (3.45)) constructed from 𝒞nn2pt(𝑡) and
the resulting posterior for 𝑎𝐸0 is shown in Figure 5.10, with the result,

𝑎𝐸0 = 2.3930(40). (5.33)

This result is consistent with other studies on this ensemble that used different inter-
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polating operators to compute the dineutron mass [214–217]. The level of precision
with which 𝑎𝐸0 was extracted is not enough to determine if the dinucleon is a bound
state or a scattering state at the set of parameters that define this gauge field ensemble
(Table 5.4).
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Figure 5.10. Data for the effective mass 𝑎𝑚eff (Eq. (3.45)) is shown in blue, and
the result of the averaged multi-exponential fit to 𝒞nn2pt(𝑡) is depicted by the red band.
The data is fit with a series of multi-exponential models (Eq. (5.32)), and the best
fit is selected with the AIC (Eq. (3.90)). Fit ranges are averaged according to the
procedure described in Section 5.3.1, and the averaged fit result yields a value of
𝑎𝐸0 = 2.3930(40).

These correlators are used to form the ratio,

𝑅𝑖(𝑡, 𝜏) ≡
𝒞nnpp𝑖 (𝑡, 𝜏)

𝒞nn2pt(𝑡)
, (5.34)

which in the 0 ≪ 𝜏 ≪ 𝑡 ≪ 𝑇 limit asymptotes to 2𝐸0⟨𝑝𝑝|𝐻𝑖|𝑛𝑛⟩. The data is
observed to have minor excited state contamination, hence is fit to the model,

𝑓(𝑡, 𝜏) = 𝐴+𝐵𝑒−𝛿𝜏 + 𝐶𝑒−𝛿(𝑡−𝜏). (5.35)

Here 𝛿 corresponds to the excited state gap 𝐸1 − 𝐸0. The 𝐴 coefficient corresponds
to the desired quantity 2𝐸0⟨𝑝𝑝|𝐻𝑖|𝑛𝑛⟩. Fits are performed over windows with the
minimum sink-operator separation 𝑡−𝜏 and operator-source separation 𝜏 in {3, ..., 8},
and averaged using the prescription in Section 5.3.1. Figure 5.11 shows the data for
the effective matrix elements for each operator and the resulting posterior for 𝐴. The
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𝜒2/dof for the fits were very good, with most fits having a 𝜒2/dof between 0.5 and
1.4, although a few exceptional ranges had low 𝜒2/dof values between 0.2 and 0.5.
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Figure 5.11. Data and fit results for the 9 effective matrix elements𝑅𝑖(𝑡) (Eq. (5.34))
for the scalar operator basis 𝒪𝑘 (left, Eq. (5.12)) and the vector operator basis (right,
Eq. (5.12)), plotted against the sink-operator separation 𝑡−𝜏 . Note that each operator
is labeled by 𝒪𝑘 or 𝒱𝑝 instead of 𝐻𝑖. The color of each point corresponds to the
operator-source separation 𝑡, given in the legend. The fit is performed to the single-
exponential model 𝑓(𝑡, 𝜏) given in Eq. (5.35), and the blue hatched band denotes the
posterior on the 𝐴 coefficient for the fit for each effective matrix element. The value
of 𝐴 extracted from each fit corresponds to 2𝐸0⟨𝑝𝑝|𝐻𝑖|𝑛𝑛⟩.

The operator bases {𝒪𝑘} and {𝒱𝑝} must be renormalized to make contact to
phenomenology. The operator renormalization calculation is described in Section 5.5.
The renormalization coefficients are computed in MS at scale 𝜇 = 3 GeV. The
computation for the scalar operator basis yields the results presented in Tables 5.7–
5.9. The vector operator renormalization is still ongoing, so the bare vector matrix
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elements will be presented. An upcoming paper will present the full renormalized
vector matrix elements when the renormalization calculation has been completed.

The results for the renormalized scalar matrix elements ⟨𝑝𝑝|𝒪MS
𝑘 |𝑛𝑛⟩ are shown

in Table 5.5, and the results for the bare vector matrix elements ⟨𝑝𝑝|𝒱𝜇; (0)𝑝 |𝑛𝑛⟩ are
shown in Table 5.6. The diagonal renormalization factors are expected to be 𝑂(1),
with the off-diagonal renormalization factors suppressed relative to the diagonal ones.
Therefore, although the vector operator results are bare, the relative magnitudes of
the vector and scalar matrix elements may be roughly compared. There are two items
of particular note in the results. First, that the contributions of the vector and scalar
matrix elements to 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− are roughly the same order of magnitude. Un-
like the 𝜋− → 𝜋+𝑒−𝑒− case where the vector operators are suppressed, they should not
be neglected in the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation. Second, the result for ⟨𝑝𝑝|𝒪3|𝑛𝑛⟩
is of the same order of magnitude, or even larger, than the other scalar operators. In
the 𝜋− → 𝜋+𝑒−𝑒− case, this operator was suppressed in the chiral power counting,
evident in the final extrapolated results for the renormalized 𝜋− → 𝜋+𝑒−𝑒−matrix
elements (Table 5.3).

Operator 𝒪1 𝒪2 𝒪3 𝒪1′ 𝒪2′

⟨𝒪𝑘⟩ (GeV4) -0.00033(44) -0.00606(43) -0.0129(32) -0.0070(10) -0.00190(27)

Table 5.5. Results for the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− short-distance matrix elements for the
scalar operators, ⟨𝒪𝑘⟩ ≡ ⟨𝑝𝑝|𝒪𝑘|𝑛𝑛⟩, renormalized in MS at 𝜇 = 3 GeV.

5.5 Renormalization of short-distance operators

To make contact with phenomenological calculations, lattice-regulated matrix ele-
ments must be renormalized in the MS scheme. The renormalization calculation
proceeds identically for the two short-distance decays considered here, 𝜋− → 𝜋+𝑒−𝑒−

and 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−. The only difference is the ensembles used for each calculation
and that the vector operator renormalizations (Eq. (5.13)) must also be considered
for the case of 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−.

Operator 𝒱1 𝒱2 𝒱1′ 𝒱2′
⟨𝒱𝜇𝑝 ⟩ (GeV4) -0.0030(16) -0.00066(74) -0.00098(21) -0.001523(55)

Table 5.6. Results for the bare 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− short-distance matrix elements
for the vector operators, ⟨𝒱𝜇𝑝 ⟩ ≡ ⟨𝑝𝑝|𝒱𝜇𝑝 |𝑛𝑛⟩. The calculation for the vector renormal-
ization coefficients is still ongoing and described in Section 5.5.
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In this calculation, the renormalization coefficients are computed non-perturbatively
in the RI/sMOM-(𝛾𝜇, 𝛾𝜇) (abbreviated as RI𝛾) scheme [211, 212] and perturbatively
matched to MS. In terms of the operator basis {𝒪𝑘(𝑥)} (Eq. (5.12)), the renormalized
matrix elements can be expressed as

𝒪MS
𝑘 (𝑥;𝜇2, 𝑎) = 𝒵MS;𝒪

𝑘ℓ (𝜇2, 𝑎)𝒪ℓ(𝑥; 𝑎)
= 𝒞MS←RI𝛾;𝒪

𝑘𝑗 (𝜇2, 𝑎)𝒵RI𝛾;𝒪
𝑗ℓ (𝜇2, 𝑎)𝒪ℓ(𝑥; 𝑎),

(5.36)

where sums over repeated indices are implied. Here𝒪ℓ(𝑥; 𝑎) denotes the bare operator
at lattice spacing 𝑎, and

𝒞MS←RI𝛾;𝒪
𝑘𝑗 (𝜇2, 𝑎) ≡ 𝒵MS;𝒪

𝑘𝑖 (𝜇2, 𝑎)
[︀
𝒵RI𝛾;𝒪(𝜇2, 𝑎)

]︀−1
𝑖𝑗

(5.37)

is the multiplicative matching coefficient from the RI𝛾 to MS schemes, computed at
one-loop in perturbation theory in the strong coupling 𝛼𝑠(𝜇) [212, 218]. The vector op-
erator renormalization coefficients 𝒵MS;𝒱

𝑘ℓ and matching coefficients 𝒞MS←RI𝛾;𝒱
𝑘𝑗 (𝜇2, 𝑎)

are defined identically in terms of the basis {𝒱𝜇𝑘 } (Eq. (5.13)). Note that each renor-
malization coefficient is mass-independent and defined in the chiral limit.

The scalar operator renormalization coefficients, Eq. (5.36), are conventionally
computed in the Non-Perturbative Renormalization (NPR) operator basis, {𝑄𝑛(𝑥)},
which contains different linear combinations of operators than the BSM basis of
Eq. (5.12). Correlation functions involving the color-mixed operators 𝒪1′(𝑥),𝒪2′(𝑥)

may be rewritten with Fierz identities (Appendix D) as combinations of color-unmixed
quark bilinears, which simplifies the calculation. The NPR basis is defined in terms
of the quark bilinears:

𝑆𝑆(𝑥) = (𝑢(𝑥)𝑑(𝑥))(𝑢(𝑥)𝑑(𝑥)),

𝑃𝑃 (𝑥) = (𝑢(𝑥)𝛾5𝑑(𝑥))(𝑢(𝑥)𝛾5𝑑(𝑥)),

𝑉 𝑉 (𝑥) = (𝑢(𝑥)𝛾𝜇𝑑(𝑥))(𝑢(𝑥)𝛾
𝜇𝑑(𝑥)),

𝐴𝐴(𝑥) = (𝑢(𝑥)𝛾𝜇𝛾5𝑑(𝑥))(𝑢(𝑥)𝛾
𝜇𝛾5𝑑(𝑥)),

𝑇𝑇 (𝑥) =
∑︁
𝜇<𝜈

(𝑢(𝑥)𝛾𝜇𝛾𝜈𝑑(𝑥))(𝑢(𝑥)𝛾
𝜇𝛾𝜈𝑑(𝑥)),

(5.38)
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as ⎛⎜⎜⎜⎜⎜⎜⎝
𝑄1(𝑥)

𝑄2(𝑥)

𝑄3(𝑥)

𝑄4(𝑥)

𝑄5(𝑥)

⎞⎟⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎜⎝
𝑉 𝑉 (𝑥) + 𝐴𝐴(𝑥)

𝑉 𝑉 (𝑥)− 𝐴𝐴(𝑥)
𝑆𝑆(𝑥)− 𝑃𝑃 (𝑥)
𝑆𝑆(𝑥) + 𝑃𝑃 (𝑥)

𝑇𝑇 (𝑥)

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.39)

This basis is related to the positive-parity projection of the BSM basis, Eq. (5.12), as⎛⎜⎜⎜⎜⎜⎜⎝
𝑄1(𝑥)

𝑄2(𝑥)

𝑄3(𝑥)

𝑄4(𝑥)

𝑄5(𝑥)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 2 0 0

4 0 0 0 0

0 0 0 −2 0

0 2 0 0 0

0 2 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝒪1(𝑥)

𝒪2(𝑥)

𝒪3(𝑥)

𝒪1′(𝑥)

𝒪2′(𝑥)

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.40)

The space spanned by {𝑄𝑛(𝑥)} splits into three irreducible subspaces under chiral
symmetry, with bases {𝑄1(𝑥)}, {𝑄2(𝑥), 𝑄3(𝑥)}, and {𝑄4(𝑥), 𝑄5(𝑥)}. As both the MS

and RI𝛾 schemes obey chiral symmetry, the renormalization coefficients 𝒵MS;𝑄
𝑛𝑚 (𝜇2; 𝑎)

and 𝒵RI𝛾;𝑄
𝑛𝑚 (𝜇2; 𝑎), which satisfy analogous equations to Eqs. (5.36) and (5.37), each

factorize into a direct sum of three block diagonal matrices, each of which spans an
irreducible subspace. This is particularly notable for the domain-wall ensembles (Ta-
ble 5.2), as they have approximate chiral symmetry. For the Wilson-Clover ensemble
(Table 5.4), one expects mixing between the different irreducible chiral subspaces
because the ensemble does not respect chiral symmetry.

One can likewise define a NPR basis {𝒲𝜇
𝑝 } for the vector operators in terms of

the vector bilinears

𝑉 𝜇𝑆(𝑥) ≡ (𝑢(𝑥)𝛾𝜇𝑑(𝑥))[𝑢(𝑥)𝑑(𝑥)]

𝐴𝜇𝑃 (𝑥) ≡ (𝑢(𝑥)𝛾𝜇𝛾5𝑑(𝑥))[𝑢(𝑥)𝛾5𝑑(𝑥)]

𝑇 𝜇𝜈𝑉 𝜈(𝑥) ≡ (𝑢(𝑥)𝛾𝜇𝛾𝜈𝑑(𝑥))[𝑢(𝑥)𝛾𝜈𝑑(𝑥)]

𝑖𝜖𝜇𝜈𝛼𝛽𝐴𝜈𝑇𝛼𝛽(𝑥) ≡ 𝑖𝜖𝜇𝜈𝛼𝛽(𝑢(𝑥)𝛾𝜈𝛾5𝑑(𝑥))[𝑢(𝑥)𝛾
𝛼𝛾𝛽𝑑(𝑥)].

(5.41)
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as ⎛⎜⎜⎜⎜⎝
𝒲𝜇

1 (𝑥)

𝒲𝜇
2 (𝑥)

𝒲𝜇
3 (𝑥)

𝒲𝜇
4 (𝑥)

⎞⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎝

𝑉 𝜇𝑆(𝑥)− 𝐴𝜇𝑃 (𝑥)
𝑉 𝜇𝑆(𝑥) + 𝐴𝜇𝑃 (𝑥)

𝑖
2
𝜖𝜇𝜈𝛼𝛽𝐴𝜈𝑇𝛼𝛽(𝑥) + 𝑇 𝜇𝜈𝑉 𝜈(𝑥)
𝑖
2
𝜖𝜇𝜈𝛼𝛽𝐴𝜈𝑇𝛼𝛽(𝑥)− 𝑇 𝜇𝜈𝑉 𝜈(𝑥)

⎞⎟⎟⎟⎟⎠ . (5.42)

Color and Dirac Fierz identities (Appendix D) allow the BSM basis of vector operators
to be rewritten as linear combinations of the NPR basis,⎛⎜⎜⎜⎜⎝

𝒲𝜇
1 (𝑥)

𝒲𝜇
2 (𝑥)

𝒲𝜇
3 (𝑥)

𝒲𝜇
4 (𝑥)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
2

0 0 0

0 1
2

0 0
1
4

0 1
4

0

0 1
4

0 1
4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝒱𝜇1 (𝑥)
𝒱𝜇2 (𝑥)
𝒱𝜇1′(𝑥)
𝒱𝜇2′(𝑥)

⎞⎟⎟⎟⎟⎠ . (5.43)

The space of vector operators splits into two irreducible subspaces under chiral sym-
metry, with bases {𝒲𝜇

1 (𝑥),𝒲𝜇
3 (𝑥)} and {𝒲𝜇

2 (𝑥),𝒲𝜇
4 (𝑥)}. As in the scalar operator

case, this implies that 𝒵MS;𝒲
𝑝𝑞 (𝜇2; 𝑎) and 𝒵RI𝛾;𝒲

𝑝𝑞 (𝜇2; 𝑎) will factor as a direct sum of
two 2× 2 matrices, each spanning one irreducible subspace. For ease of notation, let
{ℋ𝑞}9𝑞=1 denote the set of NPR basis operators,

{ℋ𝑞}9𝑞=1 = {𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5,𝒲1,𝒲2,𝒲3,𝒲4} (5.44)

where the vector index on 𝒲𝑝 is suppressed. This is the equivalent definition to the
BSM basis {𝐻𝑖}9𝑖=1, presented in Eq. (5.29), for the NPR basis.

To renormalize the NPR basis operators, the four-point functions

(𝐺𝑞)
𝛼𝛽𝛾𝛿
𝑎𝑏𝑐𝑑 (𝑞; 𝑎,𝑚ℓ) ≡

1

𝑉

∑︁
𝑥

∑︁
𝑥1,...,𝑥4

𝑒𝑖(𝑝1·𝑥1−𝑝2·𝑥2+𝑝1·𝑥3−𝑝2·𝑥4+2𝑞·𝑥)

× ⟨0|𝑑𝛿𝑑(𝑥4)𝑢𝛾𝑐 (𝑥3)ℋ𝑞(𝑥)𝑑
𝛽

𝑏 (𝑥2)𝑢
𝛼
𝑎 (𝑥1)|0⟩

(5.45)

are computed on each ensemble, where 𝑉 = 𝐿3 × 𝑇 is the lattice volume and 𝑞 =

𝑝2−𝑝1. Latin letters 𝑎, 𝑏, 𝑐, 𝑑 denote color indices, while Greek letters 𝛼, 𝛽, 𝛾, 𝛿 denote
Dirac indices. All correlation functions used for the renormalization are computed
in the Landau gauge with momentum sources [219] using ten configurations for each
ensemble, as the 𝑉 2 averaging from the momentum sources significantly reduces noise.
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The momenta are chosen subject to the symmetric constraint,

𝑝21 = 𝑝22 = 𝑞2 = 𝜇2, (5.46)

with the particular choice

𝑝1 =
2𝜋

𝑎𝐿
(−𝑗, 0, 𝑗, 0) 𝑝2 =

2𝜋

𝑎𝐿
(0, 𝑗, 𝑗, 0), (5.47)

with 𝑞 = 𝑝2−𝑝1 and 𝑗 ∈ Z. The kinematic configuration corresponding to 𝐺𝑛(𝑞; 𝑎,𝑚ℓ)

is depicted in Fig. (5.12). Note that with this choice of momentum, each value of 𝑞
corresponds to a unique value of 𝑝1 and 𝑝2. Hence, functions of (𝑝1, 𝑝2, 𝑞) are labeled
as functions of 𝑞 for conciseness. The four-point functions are amputated,

(Λ𝑞)
𝛼𝛽𝛾𝛿
𝑎𝑏𝑐𝑑 (𝑞) ≡ (𝑆−1)𝛼𝛼

′
𝑎𝑎′ (𝑝1)(𝑆

−1)𝛾𝛾
′

𝑐𝑐′ (𝑝1)(𝐺𝑞)
𝛼′𝛽′𝛾′𝛿′

𝑎′𝑏′𝑐′𝑑′ (𝑞)(𝑆
−1)𝛽

′𝛽
𝑏′𝑏 (𝑝2)(𝑆

−1)𝛿
′𝛿
𝑑′𝑑(𝑝2), (5.48)

where
𝑆(𝑝; 𝑎,𝑚ℓ) =

1

𝑉

∑︁
𝑥,𝑦

𝑒𝑖𝑝·(𝑥−𝑦)⟨0|𝑞(𝑥)𝑞(𝑦)|0⟩ (5.49)

is the Landau-gauge momentum-projected quark propagator. The (𝑎,𝑚ℓ) dependence
of Λ𝑛(𝑞), 𝐺𝑛(𝑞), and 𝑆(𝑝) has been suppressed in Eq. (5.48) for clarity.

Projectors (𝒫𝑞)𝛽𝛼𝛿𝛾𝑏𝑎𝑑𝑐 are introduced to project (Λ𝑟)𝛼𝛽𝛾𝛿𝑎𝑏𝑐𝑑 onto the NPR basis for RI𝛾
to yield a matrix of projected four-point functions with components

ℱ𝑟𝑞(𝑞; 𝑎,𝑚ℓ) ≡ (𝒫𝑞)𝛽𝛼;𝛿𝛾𝑏𝑎;𝑑𝑐 (Λ𝑟)
𝛼𝛽;𝛾𝛿
𝑎𝑏;𝑐𝑑 (𝑞; 𝑎,𝑚ℓ). (5.50)

The projection matrix splits as a direct sum,

𝒫 = 𝑃 (𝑄) ⊕ 𝑃 (𝒲), (5.51)

where 𝑃 (𝑄)
𝑚𝑛 and 𝑃

(𝒲)
𝑞𝑝 are respectively a 5 × 5 and 4 × 4 projection matrix for the

scalar and vector NPR bases. This is because these operator bases do not mix under
renormalization; in other words, the projectors for the scalar and vector bases may
be written separately, and these bases are treated independently. This likewise allows
ℱ to be written as a direct sum,

ℱ = 𝐹 (𝑄) ⊕ 𝐹 (𝒲), (5.52)

where 𝐹 (𝑄), 𝐹 (𝒲) are the matrix of projections for the scalar and vector NPR operator
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bases. It is also useful to introduce the matrix of tree-level projected vertex functions
ℱ (tree) = 𝐹 (𝑄; tree)⊕𝐹 (𝒲; tree) = 𝒫Λ(tree), where Λ(tree) are the tree-level vertex functions
for the operators ℋ, which will be required to state the renormalization condition.

The scalar projectors 𝑃𝑄 and the tree-level projections 𝐹 (𝑄; tree) are given in
Ref. [212]. For the vector operators, the projectors 𝑃 (𝒲) and tree-level values 𝐹 (𝒲)

have not been previously computed. In the (𝛾𝜇, 𝛾𝜇) scheme,(︁
𝑃

(𝒲)
1, 𝜇

)︁𝛽𝛼;𝜎𝛾
𝑏𝑎;𝑑𝑐

= 𝛾𝛽𝛼𝜇 𝛿𝜎𝛾𝛿𝑏𝑎𝛿𝑑𝑐(︁
𝑃

(𝒲)
2, 𝜇

)︁𝛽𝛼;𝜎𝛾
𝑏𝑎;𝑑𝑐

= (𝛾𝜇𝛾5)
𝛽𝛼𝛾𝜎𝛾5 𝛿𝑏𝑎𝛿𝑑𝑐(︁

𝑃
(𝒲)
3, 𝜇

)︁𝛽𝛼;𝜎𝛾
𝑏𝑎;𝑑𝑐

=
∑︁
𝜈

(𝛾𝜇𝛾𝜈)
𝛽𝛼𝛾𝜎𝛾𝜈 𝛿𝑏𝑎𝛿𝑑𝑐(︁

𝑃
(𝒲)
4, 𝜇

)︁𝛽𝛼;𝜎𝛾
𝑏𝑎;𝑑𝑐

= 𝜖𝜇𝜈𝜁𝜂(𝛾𝜈𝛾5)
𝛽𝛼(𝛾𝜁𝛾𝜂)

𝜎𝛾𝛿𝑏𝑎𝛿𝑑𝑐

(5.53)

and,(︁
Λ

(tree;𝒲)
1, 𝜇

)︁𝛼𝛽;𝛾𝜎
𝑎𝑏;𝑐𝑑

= 2
[︀
𝛾𝛼𝛽𝜇 𝛿𝛾𝜎 − (𝛾𝜇)

𝛼𝜎𝛿𝛽𝛾
]︀
𝛿𝑎𝑏𝛿𝑐𝑑(︁

Λ
(tree;𝒲)
2, 𝜇

)︁𝛼𝛽;𝛾𝜎
𝑎𝑏;𝑐𝑑

= 2
[︁
(𝛾𝜇𝛾5)

𝛼𝛽𝛾𝛾𝜎5 − (𝛾𝜇𝛾5)
𝛼𝜎𝛾𝛽𝛾5

]︁
𝛿𝑎𝑏𝛿𝑐𝑑(︁

Λ
(tree;𝒲)
3, 𝜇

)︁𝛼𝛽;𝛾𝜎
𝑎𝑏;𝑐𝑑

= 2
∑︁
𝜈

[︀
(𝛾𝜇𝛾𝜈)

𝛼𝛽𝛾𝛾𝜎𝜈 − (𝛾𝜇𝛾𝜈)
𝛼𝜎𝛾𝛽𝛾𝜈

]︀
𝛿𝑎𝑏𝛿𝑐𝑑(︁

Λ
(tree;𝒲)
4, 𝜇

)︁𝛼𝛽;𝛾𝜎
𝑎𝑏;𝑐𝑑

= 2 𝜖𝜇𝜈𝜁𝜂
[︀
(𝛾𝜈𝛾5)

𝛼𝛽(𝛾𝜁𝛾𝜂)
𝛾𝜎 − (𝛾𝜈𝛾5)

𝛼𝜎(𝛾𝜁𝛾𝜂)
𝛽𝛾
]︀
𝛿𝑎𝑏𝛿𝑐𝑑.

(5.54)

The remaining quantities that are computed non-perturbatively on each ensemble
(Tables 5.2 and 5.4) are the RI𝛾 quark-field renormalization(︃

𝒵RI𝛾
𝑞

𝒵𝑉

)︃
(𝜇2; 𝑎,𝑚ℓ)

⃒⃒⃒⃒
𝑞2=𝜇2

=
1

48
Tr[𝛾𝜇Λ

𝜇
𝑉 (𝑞)], (5.55)

and the vector and axial-vector renormalizations, 𝒵𝑉 (𝜇2; 𝑎,𝑚ℓ) and 𝒵𝐴(𝜇2; 𝑎,𝑚ℓ),
whose computation is described in Appendix H. Here Λ𝜇𝑉 (𝑞) = 𝑆−1(𝑝1)𝐺

𝜇
𝑉 (𝑞)𝑆

−1(𝑝2)

is the amputated vector three-point function, where

𝐺𝜇
𝑉 (𝑞; 𝑎,𝑚ℓ) =

1

𝑉

∑︁
𝑥,𝑥1,𝑥2

𝑒𝑖(𝑝1·𝑥1−𝑝2·𝑥2+𝑞·𝑥)⟨0|𝑢(𝑥1)𝑉 𝜇(𝑥)𝑑(𝑥2)|0⟩ (5.56)

is the vector three-point function, with 𝑉 𝜇(𝑥) = 𝑢(𝑥)𝛾𝜇𝑑(𝑥) the vector-current.
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ℋ

𝑢𝛾𝑐

𝑑𝜎𝑑

𝑑𝛽𝑏

𝑢𝛼𝑎

𝑝2

𝑝2𝑝1

𝑝1

Figure 5.12. Kinematics for operator renormalization. The red crossed circle de-
notes the operator ℋ, which injects momentum 2𝑞 into the vertex, while the solid
lines denote up quarks, with momentum 𝑝1 into the vertex, and down quarks, with
momentum 𝑝2 out of the vertex. The momenta are chosen subject to the symmetric
constraint, Eq. (5.46).

The renormalization coefficients for the 𝜋− → 𝜋+𝑒−𝑒− calculation are defined in
the chiral limit at fixed lattice spacing. In contrast, the renormalization coefficients
for the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation are defined at fixed quark mass and fixed lat-
tice spacing. This is because the computation was performed on multiple ensembles
for each of the two lattice spacings (𝑎 = 0.11 fm, 𝑎 = 0.08 fm) that the 𝜋− →
𝜋+𝑒−𝑒− calculation was performed on, while for the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation,
only one ensemble in total was used.

For the 𝜋− → 𝜋+𝑒−𝑒− calculation, the quantities 𝑍 ∈ {𝒵RI𝛾
𝑞 /𝒵𝑉 , 𝐹𝑛𝑚} display

mild dependence on quark mass, and are extrapolated to the chiral limit via a joint
fit over ensembles with different masses to the model

𝑍(𝜇2; 𝑎,𝑚ℓ) = 𝑍(𝜇2; 𝑎) + 𝑍(𝜇2; 𝑎)𝑚ℓ (5.57)

where 𝑍(𝜇2; 𝑎) and 𝑍(𝜇2; 𝑎) are fit coefficients, and 𝑍(𝜇2; 𝑎) is understood as the chiral
limit of 𝑍(𝜇2; 𝑎,𝑚ℓ). Correlations between 𝒵RI𝛾

𝑞 /𝒵𝑉 and 𝐹𝑛𝑚 on each ensemble are
retained in the fits, and the covariance matrix is block-diagonal as data from different
ensembles is uncorrelated. Fitted values of 𝑍(𝜇2; 𝑎) are statistically consistent when
a constant model 𝑍(𝜇2; 𝑎,𝑚ℓ) = 𝑍(𝜇2; 𝑎) is used in place of the linear model of
Eq. (5.57). The full set of extrapolations for (𝒵RI𝛾

𝑞 /𝒵𝑉 )(𝜇2; 𝑎) and 𝐹𝑚𝑛(𝑞; 𝑎) for both
the 𝑎 = 0.11 fm and 𝑎 = 0.08 fm ensembles is shown in Appendix I.

With the definitions above, the NPR-basis renormalization coefficients in the RI𝛾
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scheme can be computed as

𝒵RI𝛾;ℋ
𝑞𝑟

𝒵2
𝑉

(𝜇2; 𝑎)

⃒⃒⃒⃒
sym

=

(︃
𝒵RI𝛾
𝑞 (𝜇2; 𝑎)

𝒵𝑉

)︃2 [︀
ℱ (tree)
𝑞𝑠 ℱ−1𝑠𝑟 (𝑞; 𝑎)

]︀
(5.58)

where the notation |sym denotes evaluation at the symmetric kinematic point, Eq. (5.46).
Note that for the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− renormalization, there is an additional depen-
dence of 𝒵RI𝛾;ℋ

𝑞𝑟 and 𝒵RI𝛾
𝑞 (𝜇2; 𝑎) on the quark mass 𝑎𝑚𝑞 which is suppressed in

Eq. (5.58) for clarity.

The renormalization coefficients must be perturbatively matched to MS. For the
vector operators for 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− , the computation of the anomalous dimension
𝛾RI𝛾;𝒱 and matching factor 𝒞MS←RI𝛾;𝒱

𝑘𝑗 (𝜇2, 𝑎) is still ongoing. Hence, the perturbative
matching will be presented only for the scalar operators {𝑄𝑛}. The vector oper-
ator matching will follow an identical procedure once 𝛾RI𝛾;𝒱 and 𝒞MS←RI𝛾;𝒱

𝑘𝑗 (𝜇2, 𝑎)

are computed. The renormalization coefficients 𝒵RI𝛾;𝑄
𝑛𝑚 (𝜇2; 𝑎)/𝒵2

𝑉 are only computed
non-perturbatively at scales 𝜇𝑗 = 2𝜋

𝑎𝐿
||(𝑗, 𝑗, 0, 0)|| corresponding to the lattice mo-

menta given in Eq. (5.47), where || · || denotes the Euclidean norm of the lattice
vector. However, the matching coefficients 𝒞MS←RI𝛾;𝑄

𝑛𝑚 (𝜇2, 𝑎) in Eq. (5.36) have been
computed at 𝜇 = 𝑀 ≡ 3 GeV [212, 218], and therefore the renormalization coeffi-
cients must be perturbatively evolved from 𝜇𝑗 to 𝑀 . To minimize the artifacts from
truncating the perturbative expansion of the matching coefficients, the closest scale
𝜇𝑗* to 𝑀 which lies in the Rome-Southampton window [220, 221],

ΛQCD ≪ 𝜇𝑗* ≪
(︁𝜋
𝑎

)︁
, (5.59)

which also satisfies 𝜇𝑗* ≤ 𝑀 to minimize discretization artifacts, is chosen as a
starting point for perturbative evolution to 𝑀 . In practice, the scale 𝜇4 is used
for renormalization at both 𝑎 = 0.11 fm and 𝑎 = 0.08 fm, as this is the nearest
available scale to𝑀 satisfying these constraints, and 𝜇5 is used for the clover ensemble.
Numerically, these scales are 𝜇4 = 2.64GeV for the 𝑎 = 0.11 fm ensemble, 𝜇4 =

2.65 GeV for the 𝑎 = 0.08 fm ensemble, and 𝜇5 = 1.88 GeV for the clover ensemble.
Scale evolution from 𝜇𝑗* to 𝑀 is performed by integrating the evolution equation,(︂𝒵RI𝛾;𝑄

𝑛𝑚

𝒵2
𝑉

)︂
(𝑀 ; 𝑎) =

(︂𝒵RI𝛾;𝑄
𝑛𝑚

𝒵2
𝑉

)︂
(𝜇𝑗*; 𝑎)

+

∫︁ 𝑀

𝜇𝑗*

𝑑𝜇

𝜇
𝛾RI𝛾;𝑄
𝑛𝑝 (𝛼𝑠(𝜇))

(︃
𝒵RI𝛾;𝑄
𝑝𝑚

𝒵2
𝑉

(𝜇; 𝑎)

)︃
,

(5.60)
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where the NPR basis anomalous dimensions 𝛾RI𝛾;𝑄
𝑛𝑚 (𝛼𝑠(𝜇)) have been computed at two-

loop order in 𝛼𝑠(𝜇) in Ref. [222]. Statistically consistent results for (𝒵RI𝛾;𝑄
𝑛𝑚 /𝒵2

𝑉 )(𝑀)

are obtained when 𝜇3 is instead used as 𝜇𝑗* in Eq. (5.60) for the 24I and 32I ensembles,
and when 𝜇4 is used for 𝜇𝑗* for the clover ensemble.

The results for the NPR basis renormalization coefficients, computed at 𝜇 = 3 GeV

in MS, are shown in Tables 5.7–5.9. The components corresponding to transitions
between operators in different irreducible chiral representations are consistent with
|𝒵MS;𝑄

𝑛𝑚 /𝒵2
𝑉 | < 10−5 for the 24I and 32I results, and thus not shown. This is expected

since all five ensembles used in the extrapolations were domain-wall fermions with ap-
proximate chiral symmetry. For the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− renormalization, non-chirally
suppressed renormalization coefficients were not consistent with zero and are shown
in Figure 5.9. This is also expected, as the fermion action does not have approximate
chiral symmetry and has heavy quarks (𝑚𝜋 ≈ 806MeV). The renormalization coeffi-
cients for the 24I and 32I geometries have been computed for the NPR operator basis
(Eq. (5.39)) in Ref. [212] using 𝑠 quarks in place of 𝑑 quarks. The results in Ref. [212]
agree with Table 5.7 and 5.8 at the percent level, and deviations between the results
are likely due to perturbative truncation errors, as Ref. [212] used non-perturbative
step-scaling [220, 221].

Ensemble 𝒵11/𝒵2
𝑉 𝒵22/𝒵2

𝑉 𝒵33/𝒵2
𝑉 𝒵44/𝒵2

𝑉 𝒵55/𝒵2
𝑉

24I 0.90746(43) 1.04052(14) 0.95333(75) 0.91775(71) 1.13952(35)
32I 0.92625(51) 1.03941(31) 0.85916(82) 0.84035(87) 1.19362(57)

Clover 1.05286(50) 1.14953(86) 1.01262(59) 1.23365(87) 1.13916(11)

Table 5.7. Diagonal MS renormalization coefficients for the scalar NPR basis {𝑄𝑛},
computed with the RI/sMOM renormalization condition, Eq. (5.58), and perturba-
tively matched at scale 3 GeV. The renormalization coefficients for the 24I and 32I
ensembles are defined at finite lattice spacing in the chiral limit (extrapolation shown
in Appendix (I)) for the 𝜋− → 𝜋+𝑒−𝑒− calculation. In contrast, the renormalization
for the “Clover” ensemble is defined at finite lattice spacing and quark mass and used
for the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation.

Ensemble 𝒵23/𝒵2
𝑉 𝒵32/𝒵2

𝑉 𝒵45/𝒵2
𝑉 𝒵54/𝒵2

𝑉

24I 0.26154(56) 0.05286(12) -0.02367(13) -0.28140(66)
32I 0.27661(50) 0.04203(67) -0.01061(40) -0.29928(71)

Clover 8.73722(66)× 10−3 -0.17768(41) 9.17662(12)× 10−3 0.0236114(20)

Table 5.8. Same as Figure 5.7, but for the chirally allowed, off-diagonal MS renor-
malization coefficients for the scalar NPR basis {𝑄𝑛} at 3 GeV.
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𝒵12/𝒵2
𝑉 𝒵13/𝒵2

𝑉 𝒵14/𝒵2
𝑉 𝒵15/𝒵2

𝑉

-0.0531075(43) -0.0301354(27) -0.0229017(46) 0.00574317(11)
𝒵21/𝒵2

𝑉 𝒵24/𝒵2
𝑉 𝒵25/𝒵2

𝑉 𝒵31/𝒵2
𝑉

9.58158(80)× 10−3 -0.121115(95) -0.0363164(61) -0.151727(13)
𝒵34/𝒵2

𝑉 𝒵35/𝒵2
𝑉 𝒵41/𝒵2

𝑉 𝒵42/𝒵2
𝑉

0.0123607(13) 0.0402692(29) -0.0855981(83) -0.17768(14)
𝒵43/𝒵2

𝑉 𝒵51/𝒵2
𝑉 𝒵52/𝒵2

𝑉 𝒵53/𝒵2
𝑉

-0.0122713(12) 2.69506(82)× 10−3 9.63359(40)× 10−3 4.61145(34)× 10−3

Table 5.9. Chirally disallowed, off-diagonal MS renormalization coefficients for the
scalar NPR basis {𝑄𝑛} at 3 GeV for the “clover” ensemble (Table 5.4) used in the
𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation. Note that in the 24I and 32I renormalization coeffi-
cient calculation, these matrix elements were all consistent with zero, which indicates
approximate chiral symmetry.

The NPR basis renormalization coefficients are converted to the BSM basis using
the change of basis matrix, Eq. (5.40), and combined with the bare matrix elements
to form renormalized matrix elements,

𝑂𝑘(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿) ≡ ⟨𝜋+|𝒪MS
𝑘 (𝑝 = 0)|𝜋−⟩(𝑚𝜋, 𝑓𝜋, 𝑎, 𝐿). (5.61)

On a given ensemble, the renormalization coefficients and bare matrix elements
are computed on different configurations, as the former are only computed on a
subset of 10 configurations used to compute the matrix elements on each ensem-
ble. As such, they are combined as an uncorrelated product, and their errors are
added in quadrature. Table 5.3 shows the renormalized matrix elements for the
𝜋− → 𝜋+𝑒−𝑒− calculation.

5.6 The long-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− amplitude

5.6.1 LGT methodology for long-distance 0𝜈𝛽𝛽

As discussed in Section 5.2.1, the non-perturbative dynamics of the long-distance
decay are encoded in the amplitude 𝒜𝑖→𝑓 defined in Eq. (5.10). To extract 𝒜𝑖→𝑓 for
the initial state |𝑖⟩ = |𝑛𝑛⟩ and the final state |𝑓⟩ = |𝑝𝑝⟩, one computes the four-point
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function

𝒞𝑖→𝑓4 (𝑡snk, 𝑡, 𝑡src) ≡
∫︁
𝑑3𝑥𝑓 𝑑

3𝑥 𝑑3𝑦𝐷(𝑥− 𝑦)⟨0|𝜒𝑓 (𝑥𝑓 , 𝑡𝑓 )𝑗𝜇(𝑥)𝑗𝜇(𝑦)𝜒†𝑖 (0, 𝑡𝑖)|0⟩.

(5.62)

Here 𝜒𝑖 and 𝜒𝑓 are interpolators that excite the dineutron and diproton, respectively
(Eq. (5.28)). Translation invariance implies that the correlators only depend on the
relative time separations,

𝑡src ≡ min{𝑡𝑥, 𝑡𝑦} − 𝑡𝑖 𝑡 ≡ 𝑡𝑥 − 𝑡𝑦 (5.63)

𝑡snk ≡ 𝑡𝑓 −max{𝑡𝑥, 𝑡𝑦} 𝑡′ ≡ 𝑡𝑓 − 𝑡𝑖, (5.64)

where 𝑡src, 𝑡snk > 0. Note that 𝑡′ = 𝑡src + 𝑡snk + |𝑡|. Each correlator is defined in
Euclidean space, projected to zero three-momentum via the integration over spatial
coordinates, and accessible through LGT calculations in a compact, discrete space-
time.

The spectral decomposition of the matrix element in Eq. (5.62) yields,

⟨0|𝜒𝑓 (𝑥𝑓 , 𝑡𝑓 )𝑗𝜇(𝑥, 𝑡𝑥)𝑗𝜇(𝑦, 𝑡𝑦)𝜒†𝑖 (0, 𝑡𝑖)|0⟩ =∫︁
𝑑3𝑝𝑖
(2𝜋)3

𝑑3𝑝𝑓
(2𝜋)3

⟨0|𝒪𝑓 (𝑥𝑓 )|𝑁𝑓 (𝑝𝑓 )⟩⟨𝑁𝑖(𝑝𝑖)|𝒪†𝑖 (0)|0⟩
2𝐸0

𝑒−𝐸0(𝑡𝑓−𝑡𝑖)

×
∑︁
𝑛

⟨𝑁𝑓 (𝑝𝑓 )|𝐽𝜇(𝑥)|𝑛⟩⟨𝑛|𝐽𝜇(𝑦)|𝑁𝑖(𝑝𝑖)⟩
(2𝐸0)(2 ̃︀𝐸𝑛)

× 𝑒−Δ ̃︀𝐸𝑛0|𝑡|
(︀
1 + 𝐴𝑒−Δ𝐸10𝑡src +𝐵𝑒−Δ𝐸10𝑡snk + 𝐶𝑒−Δ𝐸10(𝑡snk+𝑡src) + · · ·

)︀
,

(5.65)

where Δ𝐸𝑛 ≡ 𝐸𝑛−𝐸0 is the energy gap between the 𝑛th excited state and the ground
state excited by the interpolator 𝜒𝑖, and Δ𝐸̃𝑛 ≡ 𝐸̃𝑛 − 𝐸0 is the gap between the 𝑛th

excited state of the intermediate hadronic system and the ground state. The coeffi-
cients 𝐴, 𝐵, and 𝐶 are expressible in terms of matrix elements of excited states of the
system, and the explicit form of these coefficients is not required for the calculation.

To extract the amplitude 𝒜𝑖→𝑓 (Eq. (5.10)), consider the spectral decomposition
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of the two-point function 𝒞2(𝑡), defined in Eq. (5.30),

⟨𝜒𝑖(𝑥𝑓 , 𝑡𝑓 )𝜒†𝑖 (0, 𝑡𝑖)⟩ =∫︁
𝑑3𝑝𝑖
(2𝜋)3

⟨0|𝜒𝑖(𝑥𝑓 )|𝑁𝑖(𝑝𝑖)⟩⟨𝑁𝑖(𝑝𝑖)|𝜒†𝑖 (0)|0⟩
2𝐸0

𝑒−𝐸0(𝑡𝑓−𝑡𝑖)
(︁
1 +𝐷𝑒−Δ𝐸10(𝑡𝑓−𝑡𝑖) + · · ·

)︁
,

(5.66)

where 𝐷 is another coefficient constructed from excited-state matrix elements. One
constructs the ratio between the four-point function and 𝒞𝑛𝑛2 (𝑡), which has the de-
composition,

𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) ≡
𝒞𝑖→𝑓4 (𝑡snk, 𝑡, 𝑡src)

𝒞𝑛𝑛2 (𝑡snk + |𝑡|+ 𝑡src)
(5.67)

=
∑︁
𝑛

⟨𝑓 |𝐽𝜇(0)|𝑛⟩⟨𝑛|𝐽𝜇(0)|𝑖⟩
(2𝐸0)(2𝐸̃𝑛)(2|𝑞|)

𝑒−(|𝑞|+Δ𝐸̃𝑛0)|𝑡|
⃒⃒⃒⃒
𝑞=−𝑝𝑛

(︂
1 + 𝐴𝑒−Δ𝐸10𝑡src

+𝐵𝑒−Δ𝐸10𝑡snk + 𝐶𝑒−Δ𝐸10(𝑡snk+𝑡src) −𝐷𝑒−Δ𝐸10𝑡′ + · · ·
)︂
. (5.68)

Comparison to the definition of𝒜𝑖→𝑓 reveals that the large-time limit of𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src)

is the desired amplitude,

𝒜𝑖→𝑓 = 2𝐸0

∫︁ ∞
−∞

𝑑𝑡 lim
𝑡src→∞
𝑡snk→∞

𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) . (5.69)

These asymptotics are used to extract the amplitude 𝒜𝑖→𝑓 with a LGT calculation.

5.6.2 LGT calculation of long-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−

The correlation functions 𝒞𝑛𝑛2 (𝑡) and 𝒞𝑖→𝑓4 (𝑡snk, 𝑡, 𝑡src), Eqs. (5.30, 5.62), are com-
puted on the Wilson-Clover ensemble of Table 5.4 on 12,139 configurations. The
two-point function 𝒞𝑛𝑛2 (𝑡) is constructed with a wall source and a point-sink, and
the spectral analysis of this correlator is described in the short-distance 𝑛0𝑛0 →
𝑝+𝑝+𝑒−𝑒− analysis, Section 5.4. For the four-point function, propagators were con-
structed from the operator insertion positions 𝑥 and 𝑦, where 𝑥 and 𝑦 range over a
sparsened spatial grid of 43 point sources (a sparsening factor of 32/4 = 8) on every
8th timeslice on each configuration5. On each configuration, 432 quark propagators
were computed.

5As shown in Ref. [223], sparsening the spatial grid does not change the low-energy spectrum of
the theory.
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The computational details of the quark propagator computation and the con-
tractions are described in Refs. ([5, 224]). In particular, Anthony Grebe’s thesis
(Ref. [224]) details the extraordinary computational effort to compute these propaga-
tors and contractions. Without many of the optimizations he made (for the computa-
tion of the three-point functions described in Section 5.4 as well), this project would
realistically not have been feasible from a computational point of view. A total of 576
quark contractions were formed to construct each measurement of 𝒞𝑖→𝑓4 (𝑡snk, 𝑡, 𝑡src),
and a heuristic depiction of a single quark contraction is shown in Figure 5.13.

Figure 5.13. Heuristic depiction of the four-point contractions for the long-distance
𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− computation. Quark propagators are denoted by solid lines from
a zero-momentum wall source with point sinks that are summed over the sparse grid.
The interacting quarks for each contraction are denoted in orange, with the current
insertions at time 𝑡𝑥 and 𝑡𝑦 denoted by the orange circles. The orange dashed line
denotes the neutrino propagator between the two current insertions (Eq. (5.70)). The
blue circles denote the sparse point grid of sinks, and the relevant times of interest
(Eq. (5.64)) are explicitly labeled in the diagram.

The scalar propagator used for the neutrino, 𝑆𝜑(𝑥, 𝑦), is defined in finite-volume
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by subtracting the zero-mode out from the propagator,

𝑆𝜑(𝑥, 𝑦) =
1

2𝐿3

|q|≤𝜋/𝑎∑︁
𝑞∈ 2𝜋

𝐿
Z3∖{0}

1

|𝑞|𝑒
𝑖𝑞·(𝑥−𝑦)𝑒−|𝑞||𝑡|. (5.70)

The propagator is defined in this way to ease the matching to the nuclear EFT [225].
An advantage of this particular choice of regulator is that all intermediate states in
the calculation are now at higher energy than the initial and final hadronic states.
In the long-distance 𝜋− → 𝜋+𝑒−𝑒− calculations [12, 173], degenerate intermediate
states caused the four-point function to grow exponentially with operator separation
time and had to be removed carefully. This regulation of the scalar propagator with
zero-mode subtraction means that this does not apply in this calculation.

The electroweak currents 𝑗𝜇(𝑥) that define the four-point function require renor-
malization. This current is proportional to the difference in a left-handed vector
current and a left-handed axial current, which renormalize via the vector renormaliza-
tion 𝒵𝑉 and the axial-vector renormalization 𝒵𝐴, respectively. These renormalization
coefficients are given in Table 5.4. This yields the renormalized current,

𝑗r𝑒𝑛𝜇 (𝑥) =
1

2
𝑢(𝑥)𝛾𝜇(𝒵𝑉 −𝒵𝐴𝛾5)𝑑(𝑥), (5.71)

which is used in calculations of the four-point function.

To extract 𝒜𝑖→𝑓 from 𝑅(𝑡snk, 𝑡, 𝑡src), the limit of Eq. (5.68) must be taken carefully
to avoid excited-state contamination. A two-step procedure will be followed. First,
at fixed operator separations 𝑡, the Euclidean time dependence of 𝑅(𝑡snk, 𝑡, 𝑡src) is
modeled as a function of (𝑡snk, 𝑡src) to extract the limit,

𝑅𝑖→𝑓 (𝑡) ≡ lim
𝑡src→∞
𝑡snk→∞

𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src). (5.72)

while removing excited-state contamination. Next, 𝑅𝑖→𝑓 (𝑡) must be integrated over
𝑡 (Eq. (5.69)) to evaluate 𝒜𝑖→𝑓 . The spectral decomposition of 𝒜𝑖→𝑓 reveals that
𝑅𝑖→𝑓 (𝑡) decays as

∑︀
𝑞,𝑛 𝑒

−(|𝑞|+Δ𝐸𝑛0)|𝑡|. As shown below, this sum can be well-approximated
to the present level of statistical precision by an exponential,

𝑅𝑖→𝑓 (𝑡) ≈ 𝐴(𝑅)𝑒−𝐸
(𝑅)|𝑡| , (5.73)

where 𝐸(𝑅) and 𝐴(𝑅) are an effective energy gap and amplitude associated with the
asymptotic ratio 𝑅𝑖→𝑓 (𝑡). Additional terms from the spectral decomposition will
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make this approximation invalid at small temporal separations. However, because
these additional excited-state terms cannot be resolved at the current lattice spacing,
the integral defining 𝒜𝑖→𝑓 (Eq. (5.69)) can be approximated as,

𝒜𝑖→𝑓 = 2𝐸0

∫︁ ∞
−∞

𝑑𝑡𝑅𝑖→𝑓 (𝑡) ≈ 4𝐸0
𝐴(𝑅)

𝐸(𝑅)
. (5.74)

The measurements of 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) on this ensemble are shown in Figure 5.14
as a function of the separation 𝑡 between operator insertions (Eq. (5.63)). The de-
pendence of 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) on 𝑡snk is shown through the color-coding of the plot,
while its dependence on 𝑡src is demonstrated through the data’s offset at fixed (𝑡, 𝑡snk).
Another view of the data is depicted in Figure 5.15, which depicts the ratio data at
fixed 𝑡/𝑎 = 3 as 𝑡snk and 𝑡src are varied.
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Figure 5.14. The ratio 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) between the four- and two-point functions,
Eq. (5.67), plotted as a function of the separation 𝑡 (Eq. (5.63)) between the operator
insertions. The points are color-coded according to the sink-operator separation 𝑡snk
as given in the legend. Points at fixed (𝑡, 𝑡snk) have been slightly offset proportional
to 𝑡src to make the dependence of the data on 𝑡src more clear. Note that this Figure
was taken from Ref. [5], which also computed the long-distance matrix elements for
the Σ− → Σ+𝑒−𝑒− transition, although this work has only described the calculation
for 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− .

The first stage of fits extracts 𝑅𝑖→𝑓 (𝑡) from 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) by fitting the data to
the spectral decomposition of Eq. (5.68). Inspection of the data (Figure 5.14) reveals
that there is no statistically significant dependence of 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) on 𝑡src, hence
only the terms dependent on 𝑡snk in Eq. (5.68) are kept in the model. The model,
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Figure 5.15. The ratio 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) (Eq. (5.67)) computed at fixed operator
separation 𝑡/𝑎 = 3. The left (right) subplot shows the dependence of 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src)
on the sink-operator (operator-sink) separation 𝑡snk/𝑎 (𝑡src). The data in each panel
is identical: to make this clearer, identical points across the two plots have the same
color. The black curve shows the result of a correlated fit to the displayed data. In
each row, the value of 𝑅𝑖→𝑓 (𝑡) determined by the fit (Eq. (5.72)) is depicted by the
red horizontal line, which is shared between both plots.

therefore, has two unknown parameters, 𝐵 and Δ𝐸10. Figure 5.15 shows these fits’
results at a single value of 𝑡/𝑎 = 3. The black curves show the best-fit curve from a
correlated fit to the data, and the extracted value of 𝑅𝑖→𝑓 (𝑡) from 𝑅𝑖→𝑓 (𝑡snk, 𝑡, 𝑡src) is
shown by the horizontal red line. The 𝜒2/dof for the joint fit is 1.15, with 72 degrees
of freedom, indicating a high-quality fit. This procedure is repeated for all operator
separations 𝑡, and the result for 𝑅(𝑡) is shown in Figure 5.16.

At each 𝑡, the stability of the fit is determined by varying the domains of (𝑡snk, 𝑡src)
that the fit is performed over. The minimum values of 𝑡snk and 𝑡src are varied inde-
pendently in {3, 4, 5, 6}, and the resulting values for 𝑅𝑖→𝑓 (𝑡) from this variation are
depicted as a cluster of colored points in Figure 5.16 at fixed 𝑡. Results at fixed 𝑡 are
combined by model averaging with AIC weights (Section 3.5.2), with the final results
depicted by the black points in Figure 5.16.

The second stage of fits extracts the amplitude 𝒜𝑖→𝑓 from the ratio 𝑅𝑖→𝑓 (𝑡). As
the ratio 𝑅𝑖→𝑓 (𝑡) decreases linearly on a logarithmic scale (Figure 5.16), the single
exponential model (Eq. (5.73)) is expected to describe the data well. Figure 5.17
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Figure 5.16. The ratio 𝑅𝑖→𝑓 (𝑡) (Eq. (5.72)) shown on a logarithmic scale. Each
cluster of colored points represents the fit results at the given value of 𝑡 by varying
the minimum 𝑡src and 𝑡snk of the fit: each point represents a different fit. The results
at each fixed 𝑡 are combined using model averaging with weights based on the AIC to
yield the black points. The gray line and error band depict the result of the second
stage of fits, which model the dependence of 𝑅𝑖→𝑓 (𝑡) on the operator separation 𝑡 for
𝑡/𝑎 ≥ 3 (data for 𝑡/𝑎 ≤ 2 appear in light gray and are not included in the second-stage
analysis). The bottom panel denotes the difference between the fit and the data in
units of the uncertainty of the fit, which is called the pull of the fit at time 𝑡.
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shows the effective ratios,

𝑎𝐸
(𝑅)
eff (𝑡) ≡ ln

(︂
𝑅𝑖→𝑓 (𝑡)

𝑅𝑖→𝑓 (𝑡+ 𝑎)

)︂
, (5.75)

𝐴
(𝑅)
eff (𝑡) ≡ 𝑅𝑖→𝑓 (𝑡)𝑒𝐸

(𝑅)
eff (𝑡) 𝑡 , (5.76)

which are defined from the single-exponential model. Both quantities plateau at
intermediate times, which indicates that a single exponential well describes the data.
The data for 𝑅𝑖→𝑓 (𝑡) are fit to Eq. (5.73), varying 𝑡min ∈ {3, 4, . . . , 7} and 𝑡max ∈
{𝑡min +3, 𝑡min +4, . . . , 𝑡max

max} to check for stability, where the variations in 𝑡max extend
to 𝑡max

max = 10. Results are again combined using AIC weights, and the final posterior
values for 𝐸(𝑅) and 𝐴(𝑅) are denoted by the horizontal bands in Figure 5.17. The
grey band in Figure 5.16 depicts the results of the fit against the data 𝑅𝑖→𝑡(𝑡).

The integral of Eq. (5.74) can thus be evaluated by using the fit posteriors for
𝐸(𝑅) and 𝐴(𝑅). The resulting amplitude is,

𝑎2𝒜𝑛𝑛→𝑝𝑝 = 0.078(16) . (5.77)

Uncertainties on this result include statistical uncertainties from the Monte Carlo
data and systematic uncertainties from the model averaging procedure. They also
include uncertainties on the value of 𝒵𝑉 used (Table 5.4) in the renormalization of
the currents 𝑗𝜇.

0 2 4 6 8 10 12 14 16

t/a

0.0

0.2

0.4

0.6

0.8

1.0

Σ
−
→

Σ
+

aE
(R)
eff

a2A
(R)
eff × 103

aE(R) (AIC avg)

a2A(R) × 103 (AIC avg)

0 1 2 3 4 5 6 7 8

t/a

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

n
n
→
p
p

aE
(R)
eff

a2A
(R)
eff × 200

aE(R) (AIC avg)

a2A(R) × 200 (AIC avg)

Figure 5.17. Effective energy 𝐸
(𝑅)
eff and amplitude 𝐴

(𝑅)
eff from fits to the ratio

𝑅𝑛𝑛→𝑝𝑝(𝑡). The horizontal lines and error bands show the final posterior results from
fits to the exponential decay in Eq. (5.73). The amplitudes have been re-scaled by
arbitrary factors for ease of visualization.
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The determination of the amplitude 𝑎2𝒜𝑛𝑛→𝑝𝑝 is physically useful as input to
nuclear EFT. As discussed in Section 5.2, LGT calculations of 0𝜈𝛽𝛽 decay matrix
elements in phenomenologically relevant nuclei are unfeasible given the factorial in-
crease in computational complexity with the number of quarks in the system. LGT
calculations are hence performed in simpler systems and used to extract LECs of
nuclear EFTs which can be used to study systems with larger atomic number. The
amplitude 𝑎2𝒜𝑛𝑛→𝑝𝑝 can be studied in pionless EFT (/𝜋EFT) [226–228], an EFT that
provides a framework to study low-energy nucleon-nucleon interactions by integrating
out the pions, which are much heavier than the scale of typical low-energy nuclear
processes. The /𝜋EFT describes dynamical nucleon fields which interact via contact
interactions. The relevant interaction for 0𝜈𝛽𝛽 decay is the four-nucleon two-electron
coupling 𝑔𝑛𝑛𝜈 (𝜇), which describes the strength of the interaction 𝑛𝑛 → 𝑝𝑝𝑒𝑒. The
matching procedure from the finite-volume, Euclidean space amplitude 𝑎2𝒜𝑛𝑛→𝑝𝑝 to
the infinite-volume, Minkowski space LEC 𝑔𝑛𝑛𝜈 (𝜇) at 𝑚𝜋 ≈ 800MeV is described in
Ref. [229] and implemented in Ref. [5].

The matching calculation takes additional input from LGT in the form of the low-
lying two-nucleon spectrum and various scattering observables (the scattering length
and effective range), which have been computed independently in two ways. The first
method constructs asymmetric correlation functions and indicates that the dinucleon
is deeply bound on the parameters given in the ensemble used in this work (Ta-
ble 5.4) [230–233]. Note that at the resulting value of the finite-volume two-nucleon
ground state energy determined from these works, /𝜋EFT converges poorly when the
corresponding values of the scattering length and effective range are used, indicating
alternative power counting schemes must be considered to rigorously constrain the
LEC 𝑔𝑛𝑛𝜈 (𝜇). The second method constructs symmetric nucleon correlators and uses
a variational method to bound the low-lying two-nucleon spectrum [234–236]. These
results are consistent with the dinucleon being less deeply bound, or even a weakly
attractive but unbound state, at the parameter values on this ensemble. However,
the non-linearity in the matching relations between the variational bounds on the
low-lying spectrum and the resulting LEC 𝑔𝑛𝑛𝜈 (𝜇) makes matching these results to
the EFT difficult as well.

The resulting values for 𝑔𝑛𝑛𝜈 (𝜇) using the results from both of the described meth-
ods differ by about a factor of four. Both results have the same order of magni-
tude as the estimate of 𝑔𝑛𝑛𝜈 (𝜇) computed from a dispersive analysis in Ref. [237].
To better constrain 𝑔𝑛𝑛𝜈 (𝜇) from LGT, the finite-volume two-nucleon spectrum at
𝑚𝜋 ≈ 800MeV and at lighter quark mass must be better constrained, as the dis-
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agreement between the two extracted values of 𝑔𝑛𝑛𝜈 (𝜇) indicates uncontrolled system-
atics in the calculation. Looking towards the future, constraining 𝑎2𝒜𝑛𝑛→𝑝𝑝 and the
finite-volume two-nucleon spectrum closer to the physical quark masses would be the
most useful LGT inputs for phenomenological studies of long-distance 0𝜈𝛽𝛽 decay, as
knowledge of 𝑔𝑛𝑛𝜈 at the physical point is essential input for nuclear many-body calcu-
lations of 0𝜈𝛽𝛽 decay. However, the 𝑚𝜋 ≈ 800MeV systems must first be understood
in the hopes that resolving the discrepancies in the calculations of the finite-volume
spectrum will yield insight into the calculation at smaller values of the quark masses.

5.7 Conclusion

Neutrinoless double 𝛽 decay is a hypothesized BSM decay that has garnered sig-
nificant interest in the high-energy and nuclear physics community because of its
implications for the nature of the neutrino. In particular, observation of 0𝜈𝛽𝛽 decay
would imply the neutrino is a Majorana particle and that 𝐵 − 𝐿 is not a conserved
quantum number beyond the Standard Model. Numerous experiments around the
world are currently searching for experimental signatures of 0𝜈𝛽𝛽 decay, with next-
generation experiments planned to come online in the coming decade. If 0𝜈𝛽𝛽 decay
is ever observed, the decay and its possible mechanisms must be understood theoret-
ically to link experimental measurements with an underlying theoretical framework.
This chapter has detailed the different classes of 0𝜈𝛽𝛽 decay mechanisms and com-
puted the short-distance contribution to the 𝜋− → 𝜋+𝑒−𝑒− transition and the long-
and short-distance contributions to the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− transition.

Lattice gauge theory provides the only framework to compute ab initio 0𝜈𝛽𝛽 decay
matrix elements in a systematically improvable way. However, LGT calculations in
nuclear systems are very expensive computationally, even in the smallest nuclear
systems (i.e., the dinucleon decay, Sections 5.4 and 5.6). Computational cost scales
factorially with the number of quarks in the system, making LGT calculations of
0𝜈𝛽𝛽 decay in heavy nuclei unfeasible without further algorithmic and computational
developments. In order to study 0𝜈𝛽𝛽 decay in nuclear systems, nuclear many-body
methods must be used. The models used in these methods are derived with EFT,
and they require LGT input in the form of LECs.

The 𝜋− → 𝜋+𝑒−𝑒− transition is an essential building block to understanding
full nuclear EFT (c.f., Figure 5.7). The long-distance contribution to the 𝜋− →
𝜋+𝑒−𝑒− amplitude has been previously computed in Refs. [12, 173]. This thesis (Sec-
tion 5.3) has computed the leading-order short-distance matrix elements. These ma-
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trix elements are renormalized in MS at 𝜇 = 3GeV and are extracted to the chiral,
continuum, and infinite-volume limit to extract the 𝜒EFT LECs 𝛽𝑘. These LECs are
the primary input from the calculation to nuclear EFT models; they have also been
computed in a separate LGT calculation (Ref. [174]), and a mild tension between the
two calculations still needs to be resolved.

This thesis also presents the first LGT calculation of 0𝜈𝛽𝛽 decay in a nuclear
system (Sections 5.4 and 5.6). The long- and short-distance contributions to the
𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− decay are computed on a single ensemble at the 𝑆𝑈(3)-flavor sym-
metric point, corresponding to 𝑚𝜋 ≈ 806 MeV, with ensemble parameters given in
Table 5.4. The long-distance contribution is complete and provides the first deter-
mination of a long-distance 0𝜈𝛽𝛽 decay in a nuclear system. The calculation of the
short-distance 0𝜈𝛽𝛽 decay is ongoing. Bare matrix elements have been computed for
each of the nine operators, and renormalization coefficients in MS at 3 GeV have been
calculated for five of these nine operators (the scalar operator basis). Calculation of
the remaining renormalization coefficients is underway, with results expected to be
published soon.

To improve understanding of short-distance nuclear 0𝜈𝛽𝛽 decay, NLO matrix
elements in 𝜒EFT should also be computed. This includes both the 𝑁𝑁 vertex
(Figure 5.7b) and the 𝜋𝑁 vertex (Figure 5.7c). For both of these diagrams, matrix
elements of the scalar operators {𝒪𝑘} (Eq. (5.12)) and the vector operators {𝒱𝜇𝑝 }
(Eq. (5.13)) must be computed. Preliminary calculation of the 𝑁𝑁 vertex is under-
way on the ensemble with parameters given in Table 5.4. When the operator renor-
malization is complete, the result of this calculation will be presented at finite lattice
spacing, finite volume, and heavy quark mass. The pion mass of 𝑚𝜋 ≈ 800MeV)
explicitly breaks chiral symmetry on this ensemble (also encoded in the fact that
𝒵𝑉 ̸= 𝒵𝐴), and hence values of the matrix elements should not be matched to 𝜒EFT.
To extract the 𝑁𝑁 LECs for 𝜒EFT, further calculations must be performed on a
variety of ensembles closer to the physical point; in particular, with lighter quark
masses and with discretizations that approximately preserve chiral symmetry, i.e., a
domain-wall or overlap action. The algorithmic advances presented in the calculation
performed in this work will provide a stepping stone for future LGT calculations of
the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− decay.

The 𝜋𝑁 vertex in Figure 5.7c has not been computed in LGT at any set of
couplings or parameters and should be a target for future LGT calculations. The
corresponding LECs must be computed to understand the full behavior of short-
distance nuclear 0𝜈𝛽𝛽 decay in 𝜒EFT. The matrix elements to compute take the
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form ⟨𝜋𝑝+|𝐻𝑖|𝑛0⟩ (Figure 5.7c), where {𝐻𝑖} is the full basis of dimension-6 scalar and
vector operators given in Eq. (5.29). The leading-order contributions to this vertex
come from the operators {𝒪3,𝒱𝜇1 ,𝒱𝜇2 ,𝒱𝜇1′ ,𝒱𝜇2′} [193]. As the matrix element only has
a single nucleon in the initial and final state, it is computationally simpler to access
the dinucleon matrix elements and should be accessible closer to the physical point
than the existing dinucleon calculation.

The neutrino is the most poorly understood particle in the Standard Model. It
has been experimentally observed to have non-zero mass, but the nature of the mass
term is unknown; it may be a Majorana mass or Dirac mass. If the former holds, then
(𝐵−𝐿) is not conserved in whatever theory of physics lies beyond the Standard Model.
The smoking gun for a Majorana mass term for the neutrino is 0𝜈𝛽𝛽 decay. The
importance of this decay has made it a central focus of experimental particle physics
in the 21st century, with proposed next-generation experiments like CUPID [238] and
LEGEND-1000 [239] that will soon be able to probe regions of parameter space that
are predicted to contain 0𝜈𝛽𝛽 decay if the three Standard Model neutrinos obey an
inverted mass hierarchy. If 0𝜈𝛽𝛽 decay exists in this universe, it may be discovered
in the coming decades, in which case theoretical input will be required to interpret
experimental signatures of the decay. Simply observing the decay is not enough; to
understand the nature of the neutrino, nuclear 0𝜈𝛽𝛽 decay must be understood on
theoretical grounds to make sense of any observed experimental data.

Although LGT calculations are not yet sophisticated enough to perform ab initio
calculations of 0𝜈𝛽𝛽 decay in phenomenologically relevant nuclei, they still provide
valuable input about the decay in simpler systems. As discussed in this chapter, these
techniques work hand-in-hand with EFT and nuclear many-body methods in order
to further understand 0𝜈𝛽𝛽 decay in complex nuclear systems. Neutrinoless double
𝛽 decay can only be understood theoretically with each of these three communities
continuing to work hand-in-hand with the same goal in mind. The calculations pre-
sented in this chapter are a step on the way toward a theoretical understanding of
0𝜈𝛽𝛽 decay.
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Chapter 6

Confinement and

Two-Dimensional Adjoint QCD

This chapter details my involvement with a project simulating two-dimensional ad-
joint QCD (QCD2), a QCD-like theory which will be defined in Section 6.2, with
LGT. I have worked on this project with my collaborators William Jay, Manki Kim,
Phiala Shanahan, and Neill Warrington. I synthesized an idea for this project in
Spring 2023 and have been working on it for about a year. I have been the main
driver of the project, deciding which observables to calculate and writing the code
to compute these observables. This chapter will detail the theory and preliminary
results of an in-progress LGT calculation of QCD2. Section 6.1 provides a mathemat-
ical overview of the confinement problem and how confining theories are studied with
LGT. Section 6.2 defines and reviews QCD2 and will detail two explicit examples of
observables that will be studied numerically. Sections 6.3 and 6.4 discuss the lattice
implementation of QCD2. The numerical calculation is detailed in Section 6.5, and
preliminary numerical results are presented in Sections 6.6 and 6.7.

6.1 Confinement in Lattice Gauge Theory

As discussed in Chapter 2, QCD confines quarks: the bound states of QCD are
color-neutral, and lone quarks are not observed in nature outside of hadrons1. All of
hadronic physics and the rich tapestry of emergent phenomena arising from hadronic
interactions is due to confinement. However, the confinement mechanism itself is
not well understood. In particular, pure 𝑆𝑈(3) Yang-Mills theory (QCD without
quarks) confines and has been postulated to have a mass gap that arises because of

1Specifically, this is below the Hagedorn temperature [240]. Above the Hagedorn temperature,
quarks are found in quark-gluon plasma.
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§ 6.1. Confinement in Lattice Gauge Theory

the confining nature of the theory (the emergence of glueballs) [241]. This mass gap
has been shown through numerical studies of QCD like LGT calculations but has not
been proven mathematically [242, 243]. One of the long-standing Clay Millennium
Problems is to prove the existence of a mass gap in QCD [244].

The study of confinement in gauge theories has spurred much interest in recent
decades. It is a deeply interesting problem where formal and numerical quantum
field theory meet. This section will provide some mathematical background about
the structure of the confinement mechanism for a gauge theory with gauge group
𝑆𝑈(𝑁). Many of the ideas in this section are taken from Ref. [245], which provides
a well-written introduction to the basics of the confinement problem.

In Section 2.2.1, the confinement of quarks in QCD was discussed. The indicator
of a confinement-like mechanism in QCD was the linear part of the QCD potential:
as two test charges are pulled apart, a flux tube is formed between them, creating
this linear potential. This part of the potential implies that the force between them
stays constant. These charges attract one another to minimize this force and form
bound states (hadrons) with neutral color charge (color singlets). Because hadrons
have no net color charge, they are not influenced by external, far-away quarks.

In QCD, the static quark potential eventually stops being linear at large 𝑟 because
of string breaking (Figure 2.1). This is not a feature of pure 𝑆𝑈(3) gauge theory
but is a feature of QCD because it has matter coupled to the gauge field in the
fundamental representation (quarks). Any theory with fundamental matter will have
string breaking, as will be discussed later.

The simplest definition of a confining theory is one that has a linear potential
between two static test charges in the fundamental representation of the gauge group.
With this definition, QCD is not actually a confining theory. It shares many properties
of confining theories (it is a “confinement-like theory”), but string breaking makes the
QCD potential plateau at large 𝑟, hence the theory does not satisfy this criterion.
In contrast, pure 𝑆𝑈(3) gauge theory (QCD without quarks) is confining and has a
linear potential that does not plateau asymptotically as 𝑟 →∞. Flux tubes in pure
𝑆𝑈(3) gauge theory do not break like those in QCD. This definition of a confining
theory is the starting point for the study of confinement.

The definition of the confining phase of a gauge theory as one with an asymptot-
ically linear static quark potential is too strict in many cases, and should be consid-
ered with additional context. For example, by this definition QCD is not confining,
as in the string-breaking regime the potential of the theory plateaus. As QCD is the
canonical example of a confining theory, it is important to keep in mind that there
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is more to the confinement mechanism than whether or not a theory satisfies this
binary condition. Nonetheless, a key feature of confinement is that in some regime,
the potential is linear (in QCD it is at distance scales below the string breaking dis-
tance). In 𝑆𝑈(𝑁), this behavior is induced by gluons, which transform in the adjoint
representation. The transformation properties of adjoint particles are essential to
understanding why theories confine.

6.1.1 Scaling of the Wilson Loop

The confinement picture is often formulated on a discrete Euclidean spacetime lattice
so that the definitions can be made rigorously. A key object that indicates if a gauge
theory is confining is the fundamental Wilson loop 𝑊𝒞 around some particular closed
curve 𝒞, which is simply the Wilson line (Eq. (3.6)) evaluated on 𝒞. Consider a
rectangular loop 𝒞 on a Euclidean lattice of spatial size 𝑟 and temporal size 𝑡, with
corresponding Wilson loop by 𝑊 (𝑟, 𝑡). From a LGT perspective, this is simply the
product of the gauge links 𝑈𝜇(𝑥) around 𝒞. The expectation value of the Wilson loop
takes the form [78],

⟨𝑊 (𝑟, 𝑡)⟩ ∝ 𝑒−𝑉 (𝑟)𝑡
(︀
1 +𝒪(𝑒−𝑡Δ𝐸)

)︀
, (6.1)

as 𝑡→∞, where 𝑉 (𝑟) is the static quark potential and Δ𝐸 is the energy gap between
𝑉 (𝑟) and the first excited state of a 𝑞𝑞 pair. The static quark potential thus informs
the behavior of Wilson loops, and vice versa: the behavior of the Wilson loop is often
used to determine the phase a theory is in, as discussed below. Wilson loops will
subsequently be considered in the 𝑡≫ 𝑟 limit, called the large Wilson loop limit.

There are many possible forms the static quark potential can take, but this section
will restrict to a few specific examples. In a confining phase, the potential is linear,
𝑉 (𝑟) = 𝜎𝑟 + 𝑉0, where 𝜎 is the string tension and 𝑉0 is some arbitrary scale. This
yields,

⟨𝑊 (𝑟, 𝑡)⟩ 𝑟≫𝑉0/𝜎, 𝑡→∞−−−−−−−−→ exp (−𝜎𝑟𝑡) = exp (−𝜎Area(𝒞)) , (6.2)

where Area(𝒞) is the area of the domain bounded by 𝒞. The behavior of the large
Wilson loop in Eq. (6.2) is called an area law because the Wilson loop decays as
the exponential of the area bounded by 𝒞. Area law falloff is a key indicator of a
confining theory and can be taken to be an equivalent definition of a confining theory
in a discrete Euclidean spacetime, as the converse holds: area law decay of large
Wilson loops implies the static quark potential is asymptotically linear.

Suppose that the theory is in a deconfining phase and the potential is instead
Coulomb, 𝑉 (𝑟) = 𝛼(𝑟)/𝑟 + 2𝑉0, where 𝛼(𝑟) is the renormalized coupling and 𝑉0 is
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again an arbitrary scale. The behavior of a large Wilson loop with this potential is,

𝑊 (𝑟, 𝑡)
𝑟≫𝑉 −1

0 , 𝑡→∞−−−−−−−−→ exp (−2𝑉0𝑡) ≈ exp (−𝑉0Perim(𝒞)) (6.3)

where the perimeter of the loop 𝒞 is Perim(𝒞) = 2(𝑡 + 𝑟) ≈ 2𝑡 in the large Wilson
loop limit. This scaling is called a perimeter law because the decay of the Wilson
loop is dictated by its perimeter. Perimeter vs. area law scaling is a key indicator of
whether or not a gauge theory is confining.

6.1.2 Adjoint Matter and 𝑁-ality

The 𝑁 -ality of a representation 𝑟 is the number of boxes in its Young tableau mod 𝑁 .
𝑁 -ality allows one to rigorously examine the effect of the dimension of a representation
on the confining structure of the theory. Gluons, and in general any adjoint field,
have 𝑁 -ality 0. They may bind to particles with 𝑁 -ality 𝑘 to produce a charge in
a representation with a lower dimension of the same 𝑁 -ality 𝑘. If a field binds to
a test charge, one says the test charge is screened by the field: in this case, color
screening of a test charge by gluons produces a charge with the same 𝑁 -ality. A
similar phenomenon will hold if any adjoint field screens a test charge: screening by
adjoint fields cannot change the 𝑁 -ality of a test charge, only the dimension of the
representation.

Pure 𝑆𝑈(𝑁) Yang-Mills theory only has fields in the adjoint representation, as it
only contains a gluon. Consider a pair of 𝑞𝑞 test charges that interact with this theory
in the fundamental representation of 𝑆𝑈(𝑁). Gluons screen this 𝑞𝑞 pair, but gluon
screening cannot change the 𝑁 -ality of the representation, only the dimension of the
representation2. Although gluons screen the 𝑞𝑞 pair, this pair will still feel a constant
non-zero force (linear potential) due to its color charge. The physical picture to keep
in mind is that even when a cloud of gluons screens the quark and antiquark, these
gluons cannot completely remove the interaction of the quarks from their charge. A
similar situation arises when the 𝑆𝑈(𝑁) gauge field is coupled to fermions in the
adjoint representation. Adjoint fermions can screen a 𝑞𝑞 pair of test charges, but if
the pair has non-zero 𝑁 -ality, this screening does not change the potential between
these particles.

This behavior changes when considering full QCD instead of pure 𝑆𝑈(3) Yang-
Mills theory or, in general, with any gauge theory coupled to matter in a representa-

2In this case, gluons cannot even change the representation of the 𝑞𝑞 charges, as the fundamental
representation is the lowest-dimensional irrep with 𝑁 -ality 1.
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tion with non-zero 𝑁 -ality. This change leads to the string-breaking phenomenon. In
QCD, quarks and antiquarks are coupled to the gauge field in representations of non-
zero 𝑁 -ality (the fundamental and anti-fundamental representations, respectively).
Consider a 𝑞𝑞 pair of test charges in the fundamental representation of 𝑆𝑈(3) inter-
acting with full QCD. In addition to screening by gluons (which cannot change the
potential between 𝑞 and 𝑞), the 𝑞𝑞 pair can now be screened by quarks and anti-
quarks. These quarks and antiquarks can bind to the 𝑞 and 𝑞 and produce two color
singlets that feel no force between one another. This is illustrated in Figure 2.1 and
is a restatement of the string-breaking mechanism.

To summarize, an 𝑆𝑈(𝑁) theory coupled to matter with non-zero𝑁 -ality will have
string-breaking and deconfine because the static quark potential is asymptotically flat,
not linear. One expects pure gauge 𝑆𝑈(𝑁), or 𝑆𝑈(𝑁) coupled to adjoint matter, to
be confining, as adjoint fields cannot break strings in representations with non-zero𝑁 -
ality. However, when 𝑆𝑈(𝑁) is coupled to adjoint matter, there are specific examples
where the theory can become deconfining, as will be seen in Section 6.2.

6.1.3 String tension

The string tension of a 𝑞𝑞 pair only depends on the 𝑁 -ality 𝑘 of the representation
that the matter 𝑞 is charged under, as gluons can bind to a 𝑞 and modify its charge
to the representation of the same 𝑁 -ality with the lowest dimension. The 𝑘-string
tension 𝜎𝑘 is the string tension of a 𝑞𝑞 pair when 𝑞 (𝑞) in the representation with
𝑁 -ality 𝑘 (𝑁 − 𝑘) of the lowest dimension. The string tension 𝜎1 of fundamental
matter will often be denoted as 𝜎 ≡ 𝜎1, for example, the string tension of the flux
tube between a quark-antiquark pair in QCD.

The scaling of 𝑘-string tensions is a question of interest in the study of confine-
ment of 𝑆𝑈(𝑁) gauge theories, as different classes of theories that confinement yield
different analytic predictions for the scaling of the 𝑘-string tension 𝜎𝑘 as a function
of 𝑘. Of the postulated scalings, two have found particular relevance. The first is
Casimir scaling,

𝜎𝑘
𝜎

=
𝑘(𝑁 − 𝑘)
𝑁 − 1

, (6.4)

Casimir scaling was first postulated in the weak-coupling limit of two-dimensional
gauge theory [246, 247] and is thought to extend to more intricate systems via di-
mensional reduction [248]. The second scaling of interest is the sine-law,

𝜎𝑘
𝜎

=
sin(𝜋𝑘/𝑁)

sin(𝜋𝑁)
, (6.5)
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which arises in the study of supersymmetric gauge theories [249].

6.1.4 Center Symmetry and Polyakov Loops

An important question about confinement is whether a symmetry or order parameter
distinguishes a confined phase of a gauge theory from a deconfined phase. Indeed,
there is, and the modern understanding of such a symmetry is through higher-form
symmetries [250–252]. Loosely speaking, higher-form symmetries allow one to act
a symmetry on a higher-dimensional object. Ordinary global symmetries are called
0-form symmetries: they act on 0-dimensional submanifolds of spacetime (points).
For 0 ≤ 𝑝 ≤ 𝑑, where 𝑑 is the dimension of spacetime, a 𝑝-form symmetry acts on
𝑝-dimensional operators defined on 𝑝-dimensional submanifolds of spacetime. Each
𝑝-form symmetry yields a conserved (𝑑− 1− 𝑝)-dimensional charge. For example, a
0-form symmetry yields a conserved spatial charge through Noether’s theorem [253],
a (𝑑− 1)-dimensional charge.

The particular 𝑝-form symmetry of interest in the study of confinement is called
center symmetry, which is a 1-form symmetry and hence acts on line operators.
In LGT, line operators are Wilson lines and are products of the gauge field 𝑈𝜇(𝑥).
Recall the center of a group 𝐺 is the set of elements in 𝐺 that commute with all other
elements of 𝐺, center(𝐺) ≡ {𝑔 ∈ 𝐺 : ∀ℎ ∈ 𝐺, [𝑔, ℎ] = 0}. The center elements of
𝑆𝑈(𝑁) are the 𝑁 th roots of unity,

center(𝑆𝑈(𝑁)) = {𝑧𝑖1𝑁 : 𝑖 = 0, 1, ..., 𝑁 − 1} 𝑧𝑖 ≡ exp

(︂
2𝜋𝑖𝑛

𝑁

)︂
, (6.6)

where 1𝑁 is the identity element of 𝑆𝑈(𝑁). Center symmetry acts on gauge fields
𝑈𝜇(𝑥) by rotating every time-like link at fixed spatial slice 𝑡 = 𝑡0 with an element of
𝑧𝑖 ∈ center(𝑆𝑈(𝑁)),

𝑈0(𝑥, 𝑡0) ↦→ 𝑧𝑖𝑈0(𝑥, 𝑡0) (6.7)

while leaving the links 𝑈𝜇(𝑥, 𝑡) for 𝜇 ̸= 0 or 𝑡 ̸= 𝑡0 unaffected. This is a 1-form
symmetry of the Wilson action, as the only place this can modify the action is through
a time-like plaquette at time 𝑡0, 𝒫0𝑖(𝑥, 𝑡0) (Eq. (3.11)). This transforms as,

𝒫0𝑖(𝑥, 𝑡0) = 𝑈0(𝑥, 𝑡0)𝑈𝑖(𝑥, 𝑡0 + 1)𝑈 †0(𝑥+ 𝑖̂, 𝑡0)𝑈
†
𝑖 (𝑥, 𝑡0)

𝑧𝑖−→ (𝑧𝑖𝑈0(𝑥, 𝑡0))𝑈𝑖(𝑥, 𝑡0 + 1)(𝑧†𝑖𝑈
†
0(𝑥+ 𝑖̂, 𝑡0))𝑈

†
𝑖 (𝑥, 𝑡0) = 𝒫0𝑖(𝑥, 𝑡0)

(6.8)
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where 𝑖 is a spatial index. Because 𝑧𝑖 ∈ center(𝑆𝑈(𝑁)), it commutes through each
link, and 𝑧𝑖𝑧†𝑖 = 1, which implies the plaquette is unchanged. Thus, center symmetry
leaves the gauge action invariant.

Center symmetry is crucial to understanding confinement because matter fields of
non-zero 𝑁 -ality break center symmetry. Suppose 𝜓 is a fermion coupled to 𝑆𝑈(𝑁)

in representation ℛ with 𝑁 -ality 𝑘 ̸= 0. The matter field couples to 𝑈𝜇 through
a coupling of the form 𝜓(𝑥)ℛ(𝑈𝜇(𝑥))𝜓(𝑥 + 𝜇̂). Under center symmetry, this term
does not leave the action invariant, which is evident by transforming the term on the
time-slice 𝑡0 in the 0̂ direction,

𝜓(𝑥, 𝑡0)ℛ(𝑈0(𝑥, 𝑡0))𝜓(𝑥, 𝑡0 + 1)
𝑧𝑖−→ 𝜓(𝑥, 𝑡0)𝑧

𝑘
𝑖ℛ(𝑈0(𝑥, 𝑡0))𝜓(𝑥, 𝑡0 + 1). (6.9)

For 𝑘 ∈ {1, 2, ..., 𝑁 − 1}, the phase factor 𝑧𝑘𝑖 cannot be unity if 𝑧𝑖 is a fundamental
𝑁 th root of unity (i.e., if 𝑖 and 𝑁 are coprime), hence coupling to matter fields of
non-zero 𝑁 -ality must break center symmetry.

This, therefore, identifies that if a system breaks center symmetry, it must not
be confining: it must have string breaking, and the asymptotic potential cannot be
linear. If the system instead respects center symmetry, it is confining and will have
an asymptotically linear potential. An equivalent definition of a confining theory is,
therefore, whether or not the system respects the 1-form center symmetry.

An order parameter that detects the existence of center symmetry is the Polyakov
loop [254], which is a closed loop winding around the temporal direction of the lattice,

𝑃 (𝑥) =
∏︁
𝑡

𝑈0(𝑥, 𝑡). (6.10)

The Polyakov loop transforms non-trivially under center symmetry, as for center
symmetry acting on time-slice 𝑡0, the link 𝑈0(𝑥, 𝑡0)

𝑧𝑖−→ 𝑧𝑖𝑈0(𝑥, 𝑡0). This makes clear
that

𝑃 (𝑥)
𝑧𝑖−→ 𝑧𝑖𝑃 (𝑥) (6.11)

under center symmetry acting on any time-slice of the lattice. The Polyakov loop
thus provides an order parameter to determine if the theory is in a confining or
deconfining phase. If ⟨𝑃 (𝑥)⟩ = 0 is zero, then the system respects center symmetry
and is confining, whereas if ⟨𝑃 (𝑥)⟩ ̸= 0, then the system does not respect center
symmetry and is deconfining.

The Polyakov loop is related to the free energy of a lone quark. Let 𝐹𝑞 denote the
difference in free energy between a gauge theory containing a single static quark and
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a gauge theory without a static quark. The free energy difference satisfies [255]

⟨𝑃 (𝑥)⟩ ∝ 𝑒−𝛽𝐹𝑞 , (6.12)

where 𝛽 is the inverse temperature of the system, 𝛽 = 𝑇 , the temporal size of the
lattice. If the Polyakov loop vanishes, the free energy 𝐹𝑞 must be infinite. In this
case, isolated quarks cannote exist because they would have infinite energy, i.e., the
theory is in a confining phase. The two-point correlator of the Polyakov loop is,

⟨𝑃 (𝑥)𝑃 †(𝑦)⟩ = 𝑒−𝑉 (𝑟)𝑇
(︀
1 +𝒪(𝑒−𝑇Δ𝐸)

)︀
, (6.13)

where 𝑉 (𝑟) is the static quark potential at distance 𝑟 = |𝑥−𝑦|. This is an alternative
way to extract 𝑉 (𝑟) without computing large Wilson loops, as in Eq. (6.1).

6.2 Two-Dimensional Adjoint QCD

It is a question of great interest to know what properties of QCD are a result of the
confining structure of the theory, and if these properties can be found in an arbitrary
confining QFT. A particular example of this is the Yang-Mills mass gap conjecture
discussed in Section 6.1. The conjecture asks one to prove that a general confining
theory, for example a pure 𝑆𝑈(𝑁) gauge theory, has a mass gap in its spectrum. The
conjecture can be better understood by studying the spectrum of confining gauge
theories, which should contain only massive bound states. The spectrum of a theory
can also reveal other hints of the confining structure of a theory; namely, it can be
used to distinguish between confining theories and confinement-like theories that have
string breaking. If a theory has an asymptotically linear static quark potential (if it
is confining in the sense of the definition provided in Section 6.1), the spectrum is
discrete, whereas if the theory has a linear static quark potential which is asymptoti-
cally flat (QCD-like), then the spectrum is discrete at low energies with a branch cut
at some kinematic threshold [256].

To provide insight into the confinement mechanism, other confining theories must
be studied in addition to QCD. It is often advantageous to consider simpler theories,
whether that is with fewer fields or in a lower number of dimensions, because there
are more field theoretic tools available to study such theories. Different methods
can provide insights into different aspects of the theory and how the physics behaves
in different regions of parameter space. The closest cousin to QCD is pure four-
dimensional 𝑆𝑈(𝑁) gauge theory, i.e., QCD without quarks. Pure 𝑆𝑈(𝑁) allows
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one to study the dynamics of the gauge sector without string breaking. The theory
exhibits an asymptotically linear potential and is confining. In the context of pure
𝑆𝑈(𝑁), the Yang-Mills conjecture asks if the glueball mass has a lower bound, a topic
that has been studied using lattice gauge theory (LGT) [243] but not definitively
proven. A salient feature of pure gauge 𝑆𝑈(𝑁) is that the only propagating degrees
of freedom are the gauge fields 𝐴𝑎𝜇(𝑥), which transform in the adjoint representation
of 𝑆𝑈(𝑁). As discussed in Section 6.1.2, adjoint fields can screen test charges in
a given representation of 𝑆𝑈(𝑁), but in most cases leave the confining structure of
the theory unchanged because they cannot change the 𝑁 -ality of the test charge’s
representation.

An even simpler theory than four-dimensional 𝑆𝑈(𝑁) gauge theory is two-dimensional
adjoint QCD (QCD2), the theory of a single Majorana fermion 𝜓(𝑥) in (1+ 1) space-
time dimensions coupled to an 𝑆𝑈(𝑁) gauge field in the adjoint representation,

𝑆QCD2
[𝜓,𝐺] =

∫︁
𝑑2𝑥Tr

[︂
1

2𝑔2
𝐺𝜇𝜈(𝑥)𝐺

𝜇𝜈(𝑥) + 𝜓(𝑥)(𝑖𝛾𝜇𝐷𝜇 −𝑚)𝜓(𝑥)

]︂
(6.14)

where 𝐺𝜇𝜈 is the 𝑆𝑈(𝑁) field strength, 𝐷𝜇 is the covariant derivative, 𝑔 is the cou-
pling, and 𝑚 is the fermion mass. The fermion field 𝜓(𝑥) has adjoint indices,

𝜓(𝑥) = 𝜓𝑎(𝑥)𝑡𝑎 (6.15)

where 𝑎 ranges from 1 to 𝑑𝑁 ≡ 𝑁2−1, the dimension of the adjoint representation of
𝑆𝑈(𝑁). In two spacetime dimensions, pure 𝑆𝑈(𝑁) gauge theory is solvable and does
not have propagating local degrees of freedom [257], hence matter must be coupled
to the theory to generate interesting dynamics.

Many studies of QCD2 set the fermion mass 𝑚 = 0. However, the massive and
massless theories both contain interesting dynamics, and the mass will be kept as
a free parameter in this work. When the adjoint fermion is massive, the theory
confines. Interestingly enough, when the adjoint fermion is massless, the theory
deconfines, counter to the intuition that the adjoint particles should screen, not shield,
test charges [258, 259]. This deconfinement transition is related to the symmetry
structure of the problem: when the Majorana fermion is massless, the theory boasts
a non-invertible 1-form symmetry that can be shown to produce a perimeter law for
a fundamental Wilson loop. This non-invertible symmetry is not present when the
Majorana fermion is massive, hence yielding an area law for the Wilson loop.

The two dimensional setting of the theory allows for many non-perturbative tech-
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niques to be used to study the theory, and is a toy model for confinement and how
adjoint fields can influence the confining structure of a theory. In the last 30 years,
there has been significant progress using tools like lightcone quantization [260, 261],
supersymmetry [262], and bosonization [263] to understand the structure of QCD2.
Specific limits have been mapped out: the large 𝑁 limit [264–266], and the large
fermion mass limit [267, 268]. These studies of QCD2 have revealed a rich dynamical
structure with higher-form and non-invertible symmetries influencing the dynamics
of the theory.

The spectrum of QCD2 is known in a number of specific cases. The low-lying
spectrum was first computed in ‘t Hooft’s 𝑁 → ∞ limit [265, 269]. More recently,
the spectrum has been computed with Discretized Lightcone Quantization (DLCQ)
for 𝑁 = 2, 3, 4 [261]. The results of Ref. [261] indicate that the spectrum approaches
the large 𝑁 limit quickly. The 𝑁 = 2 case is qualitatively different than 𝑁 > 2, and
for 𝑁 = 3, 4, the spectrum is very close to its predicted value for large 𝑁 . In other
words, the spectrum approaches the 𝑁 → ∞ limit rapidly. The light dependence of
the spectrum on 𝑁 has been observed in other 𝑆𝑈(𝑁) gauge theories, in particular
in the glueball spectrum of three- and four-dimensional 𝑆𝑈(𝑁) gauge theories [242,
243, 270].

Many of the methods used to compute the spectrum of QCD2 are employable
only in a specific regime of validity; analytical computations in QCD2 at arbitrary
𝑚, 𝑔, and 𝑁 are not always possible because the theory is strongly coupled, and an
ab initio understanding of the theory in all sectors does not currently exist. Lattice
gauge theory (Chapter 3) provides a systematically improvable framework to non-
perturbatively compute correlation functions of QCD2 in Euclidean space when the
Majorana fermion is massive. Lattice gauge theory was first used to study QCD2 in
2011 [271], and more recently [272] has been used to extract the static quark potential
𝑉 (𝑟) (Section 6.1.1), string tension 𝜎 (Section 6.1.3), and Polyakov loop expectation
value ⟨𝑃 ⟩ (Section 6.1.4) for a number of different choices of 𝑔, 𝑚, and 𝑁 .

6.2.1 The String Tension in QCD2

The 𝑘-string tension of QCD2 has been computed analytically in two cases [259].
First is the 𝑚→∞ limit, where the Majorana fermion is integrated from the theory,
leaving only pure 𝑆𝑈(𝑁) gauge theory in 2 dimensions. In this case, the 𝑘-string
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tension obeys Casimir scaling (Eq. (6.4)),

𝜎𝑘

⃒⃒⃒⃒
𝑚↑∞

= 𝐶𝑔2𝑘(𝑁 − 𝑘) (6.16)

where the constant of proportionality 𝐶 is independent of the representation 𝑘. Note
that the string tension vanishes in the adjoint representation (𝑘 = 𝑁).

The second limiting case where the string tension has been computed is the small
mass limit for 𝑁 ≤ 5, where the theory is perturbed about the massless theory.
Computations have only been performed for 𝑁 ≤ 5 because the relevant technique
does not scale well to arbitrary 𝑁 [259]. With these assumptions, non-invertible
symmetries may be used to compute the behavior of the string tension. The behavior
is observed to follow a sine-law (Eq. (6.5)),

𝜎𝑘

⃒⃒⃒⃒
𝑚↓0, 𝑁≤5

= 𝐶 ′𝑔|𝑚| sin
(︂
𝜋𝑘

𝑁

)︂
(6.17)

where as in Eq. (6.16), 𝐶 ′ is a representation-independent coefficient. The mass
dependence of this relation agrees with expectation, as at 𝑚 = 0, the theory becomes
deconfining and should have zero string tension, and at finite 𝑚, the string tension
vanishes for adjoint lines.

LGT provides a framework for the direct computation of 𝑘-string tensions, as
shown in Ref. [273] for pure 𝑆𝑈(𝑁) gauge theory. Although LGT calculations cannot
definitively prove the existence of the sine law for all 𝑁 , these calculations may be
used to strengthen the existing hypotheses and determine the relevant coefficients
of proportionality. Depending on the outcome of the calculation, such calculations
may also disprove a class of scaling behaviors. Such calculations may also provide
insight into the mass scales at which a crossover from sine-law scaling to Casimir
scaling would occur at in QCD2. Calculation of this crossover would give insight
into how the adjoint fermions influence the dynamics of the pure gauge theory, as
the adjoint fermions are the degrees of freedom that cause the theory to shift from
Casimir scaling in the pure gauge case to the sine-law prediction of adjoint QCD with
𝑚 → 0. The string tension of QCD2 is computed in Section 6.6 for a number of
different parameters (𝑚, 𝑔) for 𝑁 = 2 colors. For this number of colors, there is no
way to distinguish between Casimir scaling and sine-law scaling. Future work will
extend the calculation to larger numbers of colors and probe the difference between
the two scaling regimes.
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6.2.2 The QCD2 Spectrum

The first calculation of the spectrum of QCD2 at finite 𝑚 and 𝑁 was performed in
1998 using Discretized Lightcone Quantization (DLCQ) in the Hamiltonian formal-
ism [274]. The calculation extracted the masses of the lowest-lying boson and fermion
states but was not extendable to the entire spectrum. DLCQ computes the spectrum
of the theory by discretizing and numerically diagonalizing the theory’s Hamiltonian.
The discrete Hamiltonian is constructed with a momentum cutoff proportional to an
integer 𝐾: DLCQ computes the spectrum at finite 𝐾, then extrapolates the results
to remove the cutoff, 𝐾 →∞. Increasing 𝐾 increases the number of states accessible
in the discretization, making the Hamiltonian larger and more numerically intensive
to diagonalize.

Recent developments have allowed this calculation to be extended to compute the
spectrum of small 𝑁 QCD2 (𝑁 = 2, 3, 4) in the massive and massless case and, in
particular, determine the continuum threshold for the theory in these cases [261].
The breakthrough of this work was using the Cayley-Hamilton theorem to determine
and remove the null states of the theory from the overcomplete basis in which the
Hamiltonian was computed and diagonalized. As the cutoff 𝐾 increases, the number
of null states grows significantly. Without removing the null states, it is intractable to
compute the finite 𝑁 spectrum for even moderate values of 𝐾. Removal of these null
states allowed the study of a much larger part of the low-lying spectrum at finite 𝐾.
This method was able to access 𝐾 = 60 for 𝑁 = 2, 𝐾 = 30 for 𝑁 = 3, and 𝐾 = 25

for 𝑁 = 4, and then extrapolate the results at finite 𝐾 to 𝐾 → ∞. The results of
Ref. [261] numerically found the supersymmetric point in the theory, 𝜋𝑚2 = 𝑔2𝑁 , and
verified the equivalence of the bosonic and fermionic spectrum at this point. They
also found that the spectrum received very small 1/𝑁2 corrections, and the results at
𝑁 = 3 and 𝑁 = 4 are very close to the 𝑁 → ∞ results and determined the number
of bound states that were found below the continuum threshold.

The DLCQ has been extremely useful in computing the spectrum of QCD2. Still,
because the DLCQ computes the spectrum at finite 𝐾, the extrapolation required
means that there is a systematic uncertainty on the final result from the extrapolation.
Many extrapolated states have a very light dependence on 1/𝐾, indicating a controlled
extrapolation to 1/𝐾 → 0. However, the range of the values of 1/𝐾 for which there is
data is significantly smaller than the size of the extrapolation. This is not necessarily
a problem and, indeed, is a required part of the method, but additional methods of
computing the spectrum would provide valuable cross-checks on these extrapolations
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and allow for the reduction of systematic errors that are associated with the 𝐾 →∞
extrapolation.

Lattice gauge theory allows for a calculation of the low-lying spectrum of QCD2 in
a systematically improvable way that can be used to study the QCD2 spectrum from
an alternative perspective, the Lagrangian formulation of the theory. The scaling of
the computation with 𝑁 is quadratic, and a priori, there is no barrier to accessing
the spectrum for larger values of 𝑁 , i.e., 𝑁 = 10 or 𝑁 = 20. LGT calculations may
only study QCD2 at finite mass, so exploring the theory at 𝑚 = 0 must be done via
a chiral extrapolation. In addition, using a lattice regulator instead of the cutoff 𝐾

in the DLCQ approach suffers from the same problems, requiring an extrapolation
to the continuum limit, 𝑎→ 0. This may be viewed as complementary to the DLCQ
approach. Both methods have finite errors, and if they are computed at the same
areas of parameter space, they can constrain existing results further. The calculation
of the low-lying spectrum and preliminary results are presented in Section 6.7 at finite
lattice spacing for a number of values of (𝑚, 𝑔) with 𝑁 = 2 colors.

6.3 Discretizing QCD2

6.3.1 The Dirac operator

The first step to studying QCD2 with LGT is discretizing the action. This work uses
the Wilson action for Majorana fermions coupled to 𝑆𝑈(𝑁) in the adjoint represen-
tation [275],

𝑆𝐹𝑊 [𝜓, 𝑉 ] =
1

2

∑︁
𝑥,𝑦∈Λ

𝜓𝑇 (𝑥)𝒟𝑊 (𝑥, 𝑦)𝜓(𝑦)

=
1

2

∑︁
𝑥∈Λ

{︂
𝜓
𝑎
(𝑥)𝜓𝑎(𝑥)− 𝜅

4∑︁
𝜇=1

[𝜓
𝑎
(𝑥+ 𝜇̂)𝑉 𝑎𝑏

𝜇 (𝑥)(1 + 𝛾𝜇)𝜓
𝑏(𝑥)

+ 𝜓
𝑎
(𝑥)(𝑉 𝑎𝑏

𝜇 )𝑇 (𝑥)(1− 𝛾𝜇)𝜓𝑏(𝑥+ 𝜇̂)

}︂
.

(6.18)

Here 𝜅 is the hopping parameter for the theory and encodes the bare fermion mass
𝑚, and 𝜓(𝑥) = 𝜓𝑎(𝑥)𝑡𝑎 is the adjoint fermion field, which transforms under gauge
transformations Ω(𝑥) ∈ 𝑆𝑈(𝑁) as

𝜓(𝑥) ↦→ Ω(𝑥)𝜓(𝑥)Ω†(𝑥) (6.19)
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where 𝑉𝜇(𝑥) are the adjoint links of the theory, defined in terms of the fundamental
links 𝑈𝜇(𝑥) (Eq. (3.7)) as,

𝑉 𝑎𝑏
𝜇 (𝑥) = 2Tr[𝑈 †𝜇(𝑥)𝑡

𝑎𝑈𝜇(𝑥)𝑡
𝑏], (6.20)

and 𝒟𝑊 (𝑥, 𝑦) is the Dirac operator for the Wilson discretization,

(𝒟𝑊 )𝑎𝑏𝛼𝛽(𝑥, 𝑦) = 𝛿𝑎𝑏𝛿𝛼𝛽𝛿𝑥,𝑦−𝜅
2∑︁

𝜇=1

[︀
𝑉 𝑎𝑏
𝜇 (𝑥)(1− 𝛾𝜇)𝛼𝛽𝛿𝑥+𝜇̂,𝑦 + (𝑉 𝑇

𝜇 )𝑎𝑏(𝑦)(1 + 𝛾𝜇)𝛼𝛽𝛿𝑥−𝜇̂,𝑦
]︀
.

(6.21)
The Dirac operator 𝒟𝑊 will often be denoted as either a function of the adjoint links
𝒟𝑊 [𝑉 ], or the fundamental links 𝒟𝑊 [𝑈 ], depending on what is more convenient, as
the adjoint links may be constructed from the fundamental links by Eq. (6.20). Note
that the adjoint links are real,

(𝑉 𝑎𝑏
𝜇 )*(𝑥) = 2Tr[(𝑡𝑏)†𝑈 †𝜇(𝑥)(𝑡

𝑎)†𝑈𝜇(𝑥)] = 2Tr[𝑈 †𝜇(𝑥)𝑡
𝑎𝑈𝜇(𝑥)𝑡

𝑏] = 𝑉 𝑎𝑏
𝜇 (𝑥), (6.22)

and satisfy similar properties to the fundamental links,

𝑉−𝜇(𝑥) = 𝑉 𝑇
𝜇 (𝑥− 𝜇̂) = 𝑉 †𝜇 (𝑥− 𝜇̂). (6.23)

The Dirac operator satisfies the usual fermionic boundary conditions, periodic in
space and antiperiodic in time. These boundary conditions manifest themselves as
the 2-vector

𝑏 =

(︃
1

−1

)︃
. (6.24)

With the boundary conditions 𝑏𝜇, the Dirac operator with fermionic boundary con-
ditions can be expanded as,

(𝐷𝑊 )𝑎𝑏𝛼𝛽(𝑥, 𝑦) = 𝛿𝑎𝑏𝛿𝛼𝛽̃︀𝛿𝑥,𝑦 − 𝜅 2∑︁
𝜇=1

[︁
𝑉 𝑎𝑏
𝜇 (𝑥)(1− 𝛾𝜇)𝛼𝛽̃︀𝛿𝑥+𝜇̂,𝑦 + (𝑉 𝑇

𝜇 )𝑎𝑏(𝑦)(1 + 𝛾𝜇)𝛼𝛽̃︀𝛿𝑥−𝜇̂,𝑦]︁

̃︀𝛿𝑥,𝑦 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑥 = 𝑦

𝑏0 (𝑥0 ≡ 𝑦0 mod 𝐿) and 𝑥1 = 𝑦1

𝑏1 𝑥0 = 𝑦0 and (𝑥1 ≡ 𝑦1 mod 𝑇 )

(6.25)

The augmented spacetime 𝛿 function ̃︀𝛿 ensures that anytime the fermion hops across
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the boundary of the lattice, it incurs the appropriate sign change. Note that 𝑥 ± 𝜇̂
takes values in the discrete box [−1, 𝐿+1]× [−1, 𝑇 +1] to account for the boundaries
in the definition.

The Wilson action is used for the fundamental gauge field,

𝑆𝑔𝑊 [𝑈 ] = 𝛽
∑︁
𝑥∈Λ

∑︁
𝜇<𝜈

(︂
1− 1

𝑁
ReTr𝒫𝜇𝜈(𝑥)

)︂
(6.26)

where 𝒫𝜇𝜈 is the plaquette in direction (𝜇, 𝜈) at 𝑥 ∈ Λ. For 𝑑 = 2, this reduces to,

𝑆𝑔𝑊 [𝑈 ] = 𝛽
∑︁
𝑥∈Λ

(︂
1− 1

𝑁
ReTr𝒫(𝑥)

)︂
(6.27)

where 𝒫(𝑥) ≡ 𝒫01(𝑥) is the only direction of plaquette that can be formed on a 2d
lattice. Note that the gauge action is written in terms of the fundamental gauge links
𝑈𝜇(𝑥); one could equivalently rewrite 𝑆𝑔𝑊 as a functional of the adjoint links 𝑉𝜇(𝑥),
but the conventions adhered to here will use 𝑈𝜇(𝑥) as the basic degrees of freedom,
as the adjoint links 𝑉𝜇 are functions of 𝑈𝜇.

A particularly important property for the Dirac operator to satisfy is 𝛾5-hermicity.
Recall a Dirac operator 𝒟(𝑥, 𝑦) is 𝛾5-hermitian (Eq. (3.58)) if 𝛾5𝒟𝑊𝛾5 = 𝒟†𝑊 , where
·† is taken over all spin, color, and spacetime indices on 𝒟𝑊 . This property is verified
by direct computation,

𝛾5𝒟𝑊 (𝑥, 𝑦)𝛾5

= 𝛾5

(︃
1𝑠1𝑐𝛿𝑥,𝑦 − 𝜅

∑︁
𝜇=1,2

[︀
𝑉𝜇(𝑥)(1𝑠 − 𝛾𝜇)𝛿𝑥+𝜇̂,𝑦 + 𝑉 𝑇

𝜇 (𝑦)(1𝑠 + 𝛾𝜇)𝛿𝑥−𝜇̂,𝑦
]︀)︃

𝛾5

= 1𝑠1𝑐𝛿𝑥,𝑦 − 𝜅
∑︁
𝜇=1,2

[︀
𝑉𝜇(𝑥)(1𝑠 + 𝛾𝜇)𝛿𝑥+𝜇̂,𝑦 + 𝑉 𝑇

𝜇 (𝑦)(1𝑠 − 𝛾𝜇)𝛿𝑥−𝜇̂,𝑦
]︀

= 1𝑠1𝑐𝛿𝑥,𝑦 − 𝜅
∑︁
𝜇=1,2

[︀
(𝑉 𝑇

𝜇 )†(𝑥)(1𝑠 + 𝛾𝜇)
†𝛿𝑥+𝜇̂,𝑦 + 𝑉 †𝜇 (𝑦)(1𝑠 − 𝛾𝜇)†𝛿𝑥−𝜇̂,𝑦

]︀
=

(︃
1𝑠1𝑐𝛿𝑥,𝑦 − 𝜅

∑︁
𝜇=1,2

[︀
𝑉 𝑇
𝜇 (𝑥)(1𝑠 + 𝛾𝜇)𝛿𝑦,𝑥+𝜇̂ + 𝑉𝜇(𝑦)(1𝑠 − 𝛾𝜇)𝛿𝑦,𝑥−𝜇̂

]︀)︃†

=

(︃
1𝑠1𝑐𝛿𝑥,𝑦 − 𝜅

∑︁
𝜇=1,2

[︀
𝑉𝜇(𝑦)(1𝑠 − 𝛾𝜇)𝛿𝑦+𝜇̂,𝑥 + 𝑉 𝑇

𝜇 (𝑥)(1𝑠 + 𝛾𝜇)𝛿𝑦−𝜇̂,𝑥
]︀)︃†

= 𝒟𝑊 (𝑦, 𝑥)†.

(6.28)
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Using 𝛾5-hermicity, one defines the Hermitian Dirac operator 𝑄 as

𝑄 = 𝛾5𝒟𝑊 , (6.29)

which satisfies 𝑄† = 𝑄 by definition. Note that the charge conjugation matrix is
𝐶 = 𝛾5, so 𝑄 can equivalently be defined as 𝑄 = 𝐶𝒟𝑊 . Importantly, this operator is
also skew-symmetric,

𝑄𝑇 = −𝑄. (6.30)

The skew-symmetry of 𝑄 means that it has a Pfaffian Pf 𝑄, which will be important
for Monte Carlo calculations involving the Dirac operator of Eq. (6.21).

6.3.2 Implementation of the Dirac Operator

The Dirac operator must be implemented efficiently for computations in this theory to
be tractable. Observe that in the definition of the Wilson-Dirac operator (Eq. (6.21)),
the 𝛿𝑥,𝑦 and 𝛿𝑥,𝑦±𝜇̂ functions imply that the Dirac operator only couples nearest-
neighbor sites together. Therefore, the best way to construct the Dirac operator is in
spin-color blocks, where the Dirac operator will be identically zero across most spin-
color blocks. One first needs to vectorize the Dirac operator and the Dirac fermion
fields as a 𝑑𝑁𝑁𝑠𝐿𝑇 × 𝑑𝑁𝑁𝑠𝐿𝑇 matrix, where:

𝐷𝑖𝑗 = (𝐷𝑊 )𝑎𝑏𝛼𝛽(𝑥
𝜇, 𝑦𝜇) (6.31)

where 𝑖 and 𝑗 are multi-indices encoding (𝑎, 𝛼, 𝑥𝜇) and (𝑏, 𝛽, 𝑦𝜇), respectively. Here
𝑑𝑁 = 𝑁2 − 1 is the dimension of the adjoint representation of 𝑆𝑈(𝑁), and 𝑁𝑠 = 2 is
the number of spin degrees of freedom. Note that here 𝑥𝜇 = (𝑥, 𝑡) and 𝑦𝜇 = (𝑦, 𝑠) are
the two-positions corresponding to the scalar coordinates 𝑥, 𝑡 and 𝑦, 𝑠. For a natural
spacetime blocking, these multi-indices traverse first in color, then in spin, then in the
spatial dimension, and finally in the temporal direction. The multi-index (𝑎, 𝛼, 𝑥, 𝑡)

is flattened with
𝑖 = 𝑎+ 𝑑𝑁𝛼 + 𝑑𝑁𝑁𝑠𝑥+ 𝑑𝑁𝑐𝑁𝑠𝐿𝑡. (6.32)

Likewise, given a flattened index 𝑖 ∈ {0, 1, ..., 𝑑𝑁𝑁𝑠𝐿𝑇}, one recovers the correspond-
ing multi-index (𝑎, 𝛼, 𝑥, 𝑡) with the procedure,

t → i // (𝑑𝑁𝑁𝑠𝐿)
i = i − t * (𝑑𝑁𝑁𝑠𝐿)
x → i // (𝑑𝑁𝑁𝑠 )
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i = i − x * (𝑑𝑁𝑁𝑠 )
𝛼 → i // 𝑑𝑁

a → i − 𝑑𝑁𝛼

which divides out by the correct block sizes for each step in the process.

The specific sparse representation of the Dirac operator used in this work is the
Block Sparse Row (BSR) format [276]. The BSR format stores each dense subarray,
along with a pointer to where the dense subarray may be found in the full matrix.
For concrete visualization, for 𝑁 = 2 colors the spin-color Dirac matrix blocks are,

𝒟(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝒟00
00(𝑥, 𝑦) 𝒟01

00(𝑥, 𝑦) 𝒟02
00(𝑥, 𝑦) 𝒟00

01(𝑥, 𝑦) 𝒟01
01(𝑥, 𝑦) 𝒟02

01(𝑥, 𝑦)

𝒟10
00(𝑥, 𝑦) 𝒟11

00(𝑥, 𝑦) 𝒟12
00(𝑥, 𝑦) 𝒟10

01(𝑥, 𝑦) 𝒟11
01(𝑥, 𝑦) 𝒟12

01(𝑥, 𝑦)

𝒟20
00(𝑥, 𝑦) 𝒟21

00(𝑥, 𝑦) 𝒟12
00(𝑥, 𝑦) 𝒟20

01(𝑥, 𝑦) 𝒟21
01(𝑥, 𝑦) 𝒟22

01(𝑥, 𝑦)

𝒟00
10(𝑥, 𝑦) 𝒟01

10(𝑥, 𝑦) 𝒟02
10(𝑥, 𝑦) 𝒟00

11(𝑥, 𝑦) 𝒟01
11(𝑥, 𝑦) 𝒟02

11(𝑥, 𝑦)

𝒟10
10(𝑥, 𝑦) 𝒟11

10(𝑥, 𝑦) 𝒟12
10(𝑥, 𝑦) 𝒟10

11(𝑥, 𝑦) 𝒟11
11(𝑥, 𝑦) 𝒟12

11(𝑥, 𝑦)

𝒟20
10(𝑥, 𝑦) 𝒟21

10(𝑥, 𝑦) 𝒟12
10(𝑥, 𝑦) 𝒟20

11(𝑥, 𝑦) 𝒟21
11(𝑥, 𝑦) 𝒟22

11(𝑥, 𝑦)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.33)

with the whole Dirac matrix 𝐷𝑖𝑗 decomposed as,

𝐷 =

⎛⎜⎜⎜⎜⎝
𝒟(⃗0, 0⃗) 𝒟(⃗0, 1⃗) 0 ...

𝒟(⃗1, 0⃗) 𝒟(⃗1, 1⃗) 𝒟(⃗1, 2⃗) ...

0 𝒟(⃗2, 1⃗) 𝒟(⃗2, 2⃗) ...

... ... ... ...

⎞⎟⎟⎟⎟⎠ (6.34)

where 1⃗ ≡ 0̂ = (1, 0), 2⃗ ≡ 20̂ are respectively the first and second vector traversed
in the spacetime indices. Blocks that are not nearest neighbors (i.e., 𝒟(⃗0, 2⃗)) are not
coupled and are set to zero.

6.4 Markov Chain Monte Carlo for QCD2

6.4.1 The “Sign” Problem for Majorana Fermions

MCMC calculations with Majorana fermions build on the formalism built up in Chap-
ter 3, with one important difference. When 𝜓 is a Majorana fermion,

𝒵 =

∫︁
𝐷𝑈𝐷𝜓𝐷𝜓 𝑒−

∫︀
𝑑2𝑥 𝑑2𝑦 𝜓(𝑥)𝒟𝑊 [𝑈 ](𝑥,𝑦)𝜓(𝑦)−𝑆𝑔 [𝑈 ] =

∫︁
𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ] Pf[𝒟𝑊 [𝑈 ]],

(6.35)
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where Pf[𝐴] is the Pfaffian [277] of the skew-symmetric 2𝑛× 2𝑛 dimensional matrix
𝐴,

Pf[𝐴] ≡ 1

2𝑛𝑛!

∑︁
𝜎∈𝑆2𝑛

sgn(𝜎)
𝑛∏︁
𝑖=1

𝐴𝜎(2𝑖−1),𝜎(2𝑖). (6.36)

In this case, 𝑛 = (𝑁2 − 1)𝑁𝑠𝐿𝑇/2 is the dimension of the Dirac operator. Here
𝑆2𝑛 denotes the symmetric group on 2𝑛 letters. The Pfaffian satisfies the identity
Pf[𝐴]2 = Det[𝐴] and is often considered the square root of the determinant. Eq. (6.35)
should be compared to Eq. (3.48) for the fermion path integral over a Dirac fermion
field, which produces a determinant Det[𝒟𝑊 [𝑈 ]] of the Dirac operator.

The replacement of the determinant with the Pfaffian can introduce a sign problem
into the theory. To compute dynamical Dirac fermions, the fermion determinant is ab-
sorbed into the probability measure 𝐷P 𝑒−𝑆𝑔 [𝑈 ]Det𝒟𝑊 [𝑈 ], and in many situations of
interest3 can be taken to be real and positive. The Pfaffian Pf 𝒟𝑊 [𝑈 ] does not need to
be real and positive, and although it is constrained to have norm

√︀
Det𝒟𝑊 [𝑈 ], there

is no such constraint on its phase. Any non-trivial phase factor makes it impossible
to absorb into an effective gauge field probability measure fully.

This problem is treated using a procedure called reweighting, which has success-
fully been applied to sign problems in many areas of LGT, including thermodynamic
systems at finite chemical potential [275, 278–284]. The idea behind reweighting is
to absorb any non-trivial phase for the Pfaffian into the observable. One expands
Pf 𝒟[𝑈 ] in polar coordinates as,

Pf 𝒟𝑊 [𝑈 ] = 𝑒𝑖𝛼[𝑈 ] |Pf 𝒟𝑊 [𝑈 ]| 𝛼[𝑈 ] ≡ arg Pf 𝒟𝑊 [𝑈 ], (6.37)

where 𝛼[𝑈 ] ∈ [0, 2𝜋) and |Pf 𝒟𝑊 [𝑈 ]| is manifestly non-negative. This parameteriza-
tion of Pf 𝒟𝑊 [𝑈 ] now allows for the definition of a valid probability measure, called
the partially quenched measure, as

𝐷Ppq ≡ 𝐷𝑈𝑒−𝑆𝑔 [𝑈 ] |Pf 𝒟𝑊 [𝑈 ]| . (6.38)

Note that Eq. (6.35) may now be recast in terms of 𝐷Ppq,

𝒵 =

∫︁
𝐷Ppq 𝑒

𝑖𝛼[𝑈 ]. (6.39)

3The most common of these situations is the assumption that there are two degenerate light
quarks 𝑢 and 𝑑, which allows (Det𝒟𝑢

𝑊 [𝑈 ])(Det𝒟𝑑
𝑊 [𝑈 ]) to be written as (Det𝒟𝑢

𝑊 [𝑈 ])2, which is an
inherently positive quantity. If Det𝒟𝑊 [𝑈 ] is not real and positive, which it is typically not, then
the calculation must also be reweighted, as will be discussed here for the Pfaffian case.
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Reweighting provides a framework for the calculation of correlation functions of
arbitrary operators. Consider the 𝑛-point correlator ⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩. This is rewrit-
ten in terms of 𝐷Ppq as

⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩ =
1

𝒵

∫︁
𝐷𝑈𝐷𝜓𝐷𝜓 𝑒−

∫︀
𝑑2𝑥 𝑑2𝑦 𝜓(𝑥)𝒟𝑊 [𝑈 ](𝑥,𝑦)𝜓(𝑦)−𝑆𝑔 [𝑈 ]𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)

=
1

𝒵

∫︁
𝐷𝑈 𝑒−𝑆𝑔 [𝑈 ]Pf 𝒟𝑊 [𝑈 ] ⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩𝐹

=
1

𝒵

∫︁
𝐷Ppq ⟨𝑒𝑖𝛼[𝑈 ]𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩𝐹

=
⟨𝑒𝑖𝛼[𝑈 ]𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩pq

⟨𝑒𝑖𝛼[𝑈 ]⟩pq
(6.40)

where ⟨·⟩𝐹 [𝑈 ] denotes the fermionic expectation value, Eq. (3.50), and ⟨·⟩pq denotes
the partially-quenched expectation value,

⟨𝒪(𝑥1, ..., 𝑥𝑘)⟩pq ≡
1

𝒵pq

∫︁
𝐷Ppq𝒪(𝑥1, ..., 𝑥𝑘) 𝒵pq ≡

∫︁
𝐷Ppq. (6.41)

Thus, one can compute the correlator ⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩ via the partially-quenched
measure as long as the denominator of Eq. (6.40), ⟨𝑒𝑖𝛼[𝑈 ]⟩pq, is never zero. Configu-
rations are thus generated with respect to the partially-quenched measure Ppq. On
each configuration, the phase of the Dirac operator’s Pfaffian, 𝑒𝑖𝛼[𝑈 ], is computed and
used to evaluate ⟨𝑒𝑖𝛼[𝑈 ]⟩pq. The closer the phase is to zero, the more difficult the sign
problem in the theory is to remove.

6.4.2 Pseudofermions and the Rational Approximation

The Dirac operator Pfaffian of Eq. (6.40) is computationally prohibitive to compute in
a sampling algorithm. Instead, sampling the desired probability density Ppq proceeds
via the introduction of pseudofermions [285] to rewrite the norm of the Pfaffian as

|Pf 𝒟[𝑈 ]| = |Det𝒟[𝑈 ]|1/2 = (Det[𝒟†[𝑈 ]𝒟[𝑈 ]])1/4

∝
∫︁
𝐷Φ𝐷Φ† exp

[︀
−Φ†(𝒟†[𝑈 ]𝒟[𝑈 ])−1/4Φ

]︀
≡
∫︁
𝐷Φ𝐷Φ†𝑒−Φ

†𝐾−1/4[𝑈 ]Φ

(6.42)
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where here, Φ and Φ† are bosonic pseudofermion fields that carry adjoint gauge, Dirac,
and spacetime indices, Φ𝑎

𝛼(𝑛). The kernel 𝐾[𝑈 ] is defined as

𝐾[𝑈 ] ≡ 𝒟†[𝑈 ]𝒟[𝑈 ] = 𝑄†[𝑈 ]𝑄[𝑈 ] (6.43)

where 𝑄[𝑈 ] is the Hermitian Dirac operator, Eq. (6.29).

Numerical evaluation of 𝐾−1/4[𝑈 ] is very expensive. Instead of direct evaluation,
a rational approximation 𝑟(−1/4)(𝐾) to 𝐾−1/4 is used,

𝐾−1/4 ≈ 𝑟(−1/4)(𝐾). (6.44)

The choice of this function 𝑟(−1/4) is the heart of Rational HMC (RHMC). Rational
approximations work well when the eigenvalues 𝜆 of 𝐾[𝑈 ] fall within a given window
[𝜆

(−1/4)
low , 𝜆

(−1/4)
high ], so 𝐾 is scaled dynamically by multiplication with a constant to make

its eigenvalues fall within that range [286]. For a given configuration 𝑈 , its minimum
and maximum eigenvalues of 𝐾[𝑈 ], 𝜆min(𝑈) and 𝜆max(𝑈), must therefore fall within
the domain of convergence,

𝜆
(−1/4)
low < 𝜆min(𝑈)≪ 𝜆max(𝑈) < 𝜆

(−1/4)
high . (6.45)

This must be monitored as the simulation progresses to ensure no dynamic rescal-
ing is needed. This is cheaper to monitor than the Pfaffian and can be monitored
using algorithms such as those found in the PReconditioned Iterative Multi-Method
Eigensolver (PRIMME) library [287].

The specifics of the approximation can be found in the Remez Algorithm [288],
which also provides the coefficients for the following expansion of 𝐾𝑞 for 𝑞 ∈ (−1, 1)∩
Q in terms of 𝑃 partial fractions:

𝐾𝑞 ≈ 𝑟(𝑞)(𝐾) ≡ 𝛼
(𝑞)
0 +

𝑃∑︁
𝑖=1

𝛼
(𝑞)
𝑖

𝐾 + 𝛽
(𝑞)
𝑖

. (6.46)

Note here that this is an operator-valued equation, so 𝛽(𝑞)
𝑖 is really 𝛽

(𝑞)
𝑖 id, with the

same shape as 𝐾. This approximation will be used for 𝑞 = −1/4 to approximate
the integral kernel and 𝑞 = 1/8 to initialize the pseudofermions Φ, which will be
discussed in Section 6.4.3. For a given range [𝜆

(𝑞)
low, 𝜆

(𝑞)
high], the Remez algorithm allows

us to deterministically compute the (𝛼
(𝑞)
𝑖 , 𝛽

(𝑞)
𝑖 ) parameters, and provides a bound on

the error of the rational approximation, provided the eigenvalues of 𝐾[𝑈 ] lie within
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the spectral bound [𝜆
(𝑞)
low, 𝜆

(𝑞)
high]

4.

6.4.3 Rational Hamiltonian Monte Carlo (RHMC)

To sample gauge fields from the desired probability distribution (Eq. (6.35)), one
simultaneously draws both gauge fields 𝑈 and pseudofermion fields Φ from the Boltz-
mann distribution

𝑈,Φ ∼ 𝑒−𝑆eff [𝑈,Φ], (6.49)

with the effective action given by,

𝑆eff [𝑈,Φ] = 𝑆𝑔[𝑈 ] + Φ†𝑟(−1/4)(𝐾)Φ⏟  ⏞  
𝑆𝐹 [𝑈,Φ]

. (6.50)

Here 𝑆𝑔[𝑈 ] is the Wilson gauge action (Eq. (3.13)) and 𝑟(−1/4)(𝐾) is the rational
approximation to 𝐾−1/4[𝑈 ], Eq. (6.46).

Sampling will be performed with the HMC algorithm5 [290]. The degrees of
freedom in the initial problem are the pseudofermion fields Φ(𝑛) and the gauge fields
𝑈𝜇(𝑛), which are parameterized in terms of the su(𝑁) algebra as

𝑈𝜇(𝑛) = exp
(︀
𝑖𝜔𝑎𝜇(𝑛)𝑡

𝑎
)︀
. (6.51)

where 𝜔𝜇(𝑛) = 𝜔𝑎𝜇(𝑛)𝑡
𝑎 ∈ su(𝑛). HMC introduces an auxiliary momentum variable

for the gauge field and simulates the system via Hamiltonian evolution. It is most
convenient to implement the sampling in terms of the 𝑑𝑁 = 𝑁2 − 1 real variables
𝜔𝑎𝜇(𝑛), as opposed to the 𝑆𝑈(𝑁)-valued variables 𝑈𝜇(𝑛). The conjugate momenta to
𝜔𝑎𝜇(𝑛) have coordinates Π𝑎

𝜇(𝑛), with Π𝜇(𝑛) = Π𝑎
𝜇(𝑛)𝑡

𝑎 ∈ su(𝑁) and 𝑒𝑖Π𝜇(𝑛) ∈ 𝑆𝑈(𝑁)

the conjugate momenta to the fundamental links 𝑈𝜇(𝑛). The effective Hamiltonian

4Another common convention for 𝑟(𝑞)(𝐾) is called the Zolotarev rational approximation [285],
which is cited here for completeness,

𝑟(𝑞)(𝐾) = 𝑎
(𝑞)
0

𝑃∏︁
𝑘=1

𝐾 + 𝑎
(𝑞)
2𝑘−1

𝐾 + 𝑎
(𝑞)
2𝑘

. (6.47)

The Zolotarev approximation is equivalent to Eq. (6.46) with the identifications,

𝑎
(𝑞)
0 = 𝛼

(𝑞)
0 𝑎

(𝑞)
2𝑘 = 𝛽

(𝑞)
𝑘

𝛼
(𝑞)
𝑘

𝛼
(𝑞)
0

=

∏︀𝑃
ℓ=1(−𝑎

(𝑞)
2𝑘 − 𝑎

(𝑞)
2ℓ−1)∏︀𝑃

ℓ ̸=𝑘(−𝑎
(𝑞)
2𝑘 − 𝑎

(𝑞)
2ℓ )

. (6.48)

5The RHMC algorithm describes anytime HMC is used with a rational expansion of the kernel
𝐾−𝑝 for 0 < 𝑝 < 1 [289].
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is,

𝐻[𝑈,Π,Φ] =
1

2

∑︁
𝑛∈Λ

Tr[Π𝜇(𝑛)
2] + 𝑆eff [𝑈,Φ]

=
1

2

∑︁
𝑛

Tr[Π𝜇(𝑛)
2] + 𝑆𝑔[𝑈 ] + Φ†𝐾−1/4[𝑈 ]Φ.

(6.52)

where the notation 𝐻[𝜔,Π,Φ] is used interchangeably with 𝐻[𝑈,Π,Φ].
The degrees of freedom for the problem must be initialized, which is performed as

follows at computer time 𝑠 = 0.

∙ Π𝜇(𝑛; 𝑠 = 0): The conjugate momenta at time 𝑠 = 0 is distributed to a random
Gaussian [285],

𝑓(Π𝜇) = 𝑒−Tr[
∑︀

𝑛∈Λ Π𝜇(𝑛)2] = 𝑒−Tr[
1
2

∑︀
𝑛∈Λ(Π

𝑎
𝜇(𝑛))

2]. (6.53)

∙ 𝑈𝜇(𝑛; 𝑠 = 0): There are two general methods to initialize 𝑈𝜇(𝑛), which both
must agree after thermalization (Section 3.4). One either uses a hot start and
initializes 𝑈𝜇(𝑛; 𝑠 = 0) to a random 𝑆𝑈(𝑁) gauge field, or a cold start and
initializes 𝑈𝜇(𝑛; 𝑠 = 0) to the identity link field.

∙ Φ(𝑛; 𝑠 = 0): Pseudofermions at 𝑠 = 0 are distributed according to

𝑓(Φ) ∝ 𝑒−Φ
†𝐾−1/4Φ. (6.54)

The choice of the distribution 𝑓(Φ) as well as a practical implementation for
sampling from 𝑓(Φ) are discussed below.

Computer-time evolution of Φ(𝑛; 𝑠), 𝑈𝜇(𝑛; 𝑠), and Π𝜇(𝑛; 𝑠) proceeds via Hamil-
ton’s equations for the system governed by the effective Hamiltonian, Eq. (6.52),

𝛿𝑠Π
𝑎
𝜇(𝑛) = −𝛿𝜔𝑎

𝜇(𝑛)𝐻 = −
(︂
𝛿𝑆𝑔[𝜔]

𝛿𝜔𝑎𝜇(𝑛)
+ Φ†

𝛿𝐾[𝜔]−1/4

𝛿𝜔𝑎𝜇(𝑛)
Φ

)︂
≡ −𝐹 𝑎

𝜇 (𝑛)[𝜔,Φ]

𝛿𝑠𝜔
𝑎
𝜇(𝑛) = 𝛿Π𝑎

𝜇(𝑛)𝐻 = Π𝑎
𝜇(𝑛)

(6.55)

where the derivative is the force driving the conjugate momenta update,

𝐹 𝑎
𝜇 (𝑛)[𝜔,Φ] =

𝛿𝑆𝑔[𝜔]

𝛿𝜔𝑎𝜇(𝑛)
+ Φ†

𝛿𝐾[𝜔]−1/4

𝛿𝜔𝑎𝜇(𝑛)
Φ ≡ (𝐹𝑔)

𝑎
𝜇(𝑛)[𝜔] + (𝐹pf)

𝑎
𝜇(𝑛)[𝜔,Φ]. (6.56)

Note that these forces depend functionally on 𝜔 and Φ, but in terms of indices, they
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have an adjoint color, Lorentz, and spacetime index (𝑎, 𝜇, 𝑛). The explicit form for
each force is computed in Appendix K.

It is often useful to recast the evolution equations to algebra-valued equations,

𝛿𝑠Π𝜇(𝑛) = −𝛿𝜔𝜇(𝑛)𝐻 = −
(︂
𝛿𝑆𝑔[𝜔]

𝛿𝜔𝜇(𝑛)
+ Φ†

𝛿𝐾[𝜔]−1/4

𝛿𝜔𝜇(𝑛)
Φ

)︂
≡ −𝐹𝜇(𝑛)[𝜔,Φ]

𝛿𝑠𝜔𝜇(𝑛) = 𝛿Π𝜇(𝑛)𝐻 = Π𝜇(𝑛)

(6.57)

where here Π𝜇(𝑛) = Π𝑎
𝜇(𝑛)𝑡

𝑎 ∈ su(𝑁) and 𝜔𝜇(𝑛) = 𝜔𝑎𝜇(𝑛)𝑡
𝑎 ∈ su(𝑁). The algebra

representation is more compact in certain cases, which will specified if this is the case.
Hamilton’s equations (Eqs. (6.55, 6.57)) are used to evolve the fields in computer

time via leapfrog integration, a symplectic integrator [291]. Let Φ0 ≡ Φ(𝑠), 𝜔0 ≡ 𝜔(𝑠),
and Π0 ≡ Π(𝑠) denote the values of the fields at computer time 𝑠. Evolution of these
fields to computer time 𝑠 + 1 consists of 𝑛inner ≥ 1 inner iterations with step size 𝜖
which proceed as follows:

1. (Initialize pseudofermions) Draw a pseudofermion Φ from the distribution

𝑓(Φ) ∝ 𝑒−Φ
†𝐾−1/4Φ. (6.58)

In practice, this is done by defining,

Ψ(Φ) = 𝐾−1/8[𝑈 ]Φ Φ(Ψ) = 𝐾1/8[𝑈 ]Ψ (6.59)

reducing the probability density to,

𝑓(Ψ) = 𝑓(Φ)

(︂
Det

𝜕Φ

𝜕Ψ

)︂−1
= Det

(︀
𝐾−1/8[𝑈 ]

)︀
𝑒−Ψ

†Ψ. (6.60)

The Det
(︀
𝐾−1/8[𝑈 ]

)︀
is a constant normalization independent of Ψ, hence one

samples Ψ from the 2 × (𝑁2
𝑐 − 1)-dimensional Gaussian distribution and con-

structs Φ(𝑛) from Eq. (6.59) using the rational approximation 𝑟(1/8)(𝐾) to 𝐾1/8,

Φ ≈ 𝑟(1/8)(𝐾)Ψ. (6.61)

2. (Initial inner update) Π1/2 ← Π0 − 𝜖
2
𝐹 [𝜔0,Φ].

3. (Intermediate inner updates) For 𝑘 = 1, 2, ..., 𝑛inner − 1, update 𝜔𝑘 ← 𝜔𝑘−1 +

𝜖Π𝑘−1/2 and Π𝑘+1/2 ← Π𝑘−1/2 − 𝜖𝐹 [𝜔𝑘,Φ].
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4. (Final inner update) 𝜔𝑛 ← 𝜔𝑛−1 + 𝜖Π𝑛−1/2 and Π𝑛 ← Π𝑛−1/2 − 𝜖
2
𝐹 [𝜔𝑛,Φ].

5. (Accept-reject step) Accept the new trajectory (𝜔𝑛,Π𝑛) only if a random 𝑟 ∼
Unif[0, 1] satisfies,

𝑟 < exp (𝐻[𝜔0,Π0,Φ]−𝐻[𝜔𝑛,Π𝑛,Φ]) (6.62)

where 𝐻 is the effective Hamiltonian for the system, Eq. (6.52).

The updated fields are then defined as either (𝜔(𝑠 + 1),Π(𝑠 + 1) ← (𝜔𝑛,Π𝑛) is the
accept-reject condition (Eq. (6.62)) holds, or (𝜔(𝑠+1),Π(𝑠+1)← (𝜔0,Π0) if not (i.e.
the fields are not updated in this case).

The number of inner iterations 𝑛inner and the step size 𝜖 must be tuned for the
set of parameters the theory is simulated at. The more inner iterations performed,
the better the accuracy of the leapfrog integrator. However, the cost of updating a
configuration will scale linearly with 𝑛inner, so it cannot be taken to be too large, or
the computation will be prohibitively expensive. The simulations performed in this
project typically use 𝑛inner to be about 10 to 25. The step size 𝜖 is chosen to make the
accept-reject rate close to 50%. If 𝜖 is large, each update will cover a large amount
of field space but is more likely to be rejected.

6.5 Lattice Gauge Theory Setup

The data and figures presented throughout this section will be for the set of ensembles
shown in Table 6.1. Each ensemble is generated with 𝑁 = 2 colors, although it
is planned to generate configurations at larger 𝑁 (𝑁 = 3, 4, 5) to explore the 𝑁

dependence of the spectrum. Representative plots shown in the remaining sections
will be of the 𝐿×𝑇 = 20×20 ensemble, which has a large enough lattice size that the
physics is representative of the other ensembles, with sufficient statistics such that
the signal-to-noise ratio is small. The values of 𝛽 and 𝜅 are chosen to fix the one-loop
fermion mass.

All code for this project (RHMC implementation, correlator measurements, and
fitting) is implemented in Python and can be found in the adjoint_qcd Github repos-
itory. The ensembles of Table 6.1 were generated on personal computers. Ensembles
are now being generated using MIT’s SuperCloud computing cluster [292].

To test that the RHMC code was sampling the correct distribution, two ensembles
were generated for each set of parameters in Table 6.1. For each set of parameters,
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𝐿 𝑇 𝛽 𝜅 𝑁cfgs

10 10 3.125 0.138889 90
12 12 4.5 0.15 90
14 14 6.125 0.159091 90
16 16 8.0 0.166667 90
18 18 10.125 0.173077 90
20 20 12.5 0.178571 90
22 22 15.125 0.183333 90
24 24 18.0 0.1875 76
26 26 21.125 0.191176 58
28 28 24.5 0.194444 45

Table 6.1. Parameters for the lattice ensembles used in this study. Each study
was performed on a 2-dimensional lattice with size 𝐿× 𝑇 with 𝑁 = 2 adjoint colors.
The gauge coupling is 𝛽, and the fermion hopping parameter is 𝜅. The total number
of independent configurations (after thermalization) generated on each ensemble is
𝑁cfgs.

the first ensemble was seeded with a cold start (𝑈𝜇(𝑠 = 0) = 1𝑁), and the second
ensemble was seeded with a hot start (𝑈𝜇(𝑠 = 0) taken to be a random 𝑆𝑈(𝑁)

matrix at each link). Four gauge observables were monitored on each configuration:
the plaquette expectation value,

⟨𝒫⟩ ≡ 1

𝐿𝑇

∑︁
𝑥∈Λ

⟨𝒫(𝑥)⟩, (6.63)

and the expectation value of the 2 × 1, 3 × 1, and 2 × 2 Wilson loops ⟨𝑊 (2, 1)⟩,
⟨𝑊 (3, 1)⟩, and ⟨𝑊 (2, 2)⟩, where 𝑊 (𝑟, 𝑡)(𝑥) is the Wilson loop formed around a 𝑙 × 𝑡
rectangle starting at 𝑥 ∈ Λ,

𝑊 (𝑟, 𝑡) =

(︃
𝑟−1∏︁
𝑘=0

𝑈0(𝑥+ 𝑘 0̂)

)︃(︃
𝑡−1∏︁
𝑘=0

𝑈1(𝑥+ 𝑟 0̂ + 𝑘 1̂)

)︃
(︃

𝑟∏︁
𝑘=1

𝑈0(𝑥+ (𝑟 − 𝑘) 0̂ + 𝑡 1̂)

)︃†(︃ 𝑡∏︁
𝑘=1

𝑈1(𝑥+ (𝑡− 𝑘) 1̂)
)︃†

.

(6.64)

Note that 𝑊 (1, 1)(𝑥) = 𝒫(𝑥). For each set of ensembles, the hot start and cold
start for all three observables converged to the same value, indicating that the same
distribution is being sampled regardless of where the Markov chain is started.

Data for the volume-averaged plaquette ⟨𝒫⟩ is shown in Figure 6.1 and used to
determine the Markov chain’s thermalization time and correlation length. The total
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number of configurations generated for each ensemble is given by 𝑁total in Table 6.1.
The thermalization time for each ensemble is about 1,000 samples, which may be
seen from when each trajectory in Figure 6.1 approaches its plateau value. Only the
configurations sampled after the thermalization time are used in the analysis. The
correlation length 𝜏𝑃 of ⟨𝒫⟩ is between 50 and 100 units of computer time on each
ensemble, computed as [293],

𝜏𝑃 (𝑀) = 1 + 2
𝑀∑︁
𝑠=1

𝜌𝑃 (𝑠). (6.65)

Here 𝜌𝑃 (𝑠) is the normalized autocorrelation function for {𝑃𝑖}, defined as 𝜌𝑃 (𝑠) ≡
𝑐(𝑠)/𝑐(0), where 𝑐(𝑠) is the autocorrelation function with lag 𝑠,

𝑐(𝑠) ≡ 1

𝑁cfgs − 𝑠

𝑁cfgs−𝑠∑︁
𝑛=1

(𝑃𝑖 − ⟨𝑃 ⟩)(𝑃𝑖+𝑠 − ⟨𝑃 ⟩), (6.66)

and 𝑀 < 𝑁cfgs is a cutoff on the lag of the autocorrelation function because large
values of 𝑠 will be statistically noisy. In practice, one chooses 𝑀 ≪ 𝑁cfgs to be the
smallest value such that 𝑀 > 𝐶𝜏𝑃 (𝑀), for a constant 𝐶 ≈ 5 which is empirically
determined by the data. The plaquette values in Figure 6.1 are shown in units of 100
samples, so that each point is an approximately independent measurement. The set
of ensembles shown in Table 6.1 has a relatively weak coupling, as the free-field value
of ⟨𝒫⟩ is 1. Additional ensembles of parameters are currently being run with larger
values of 𝛽 to sample the theory in the strongly-coupled regime.

The Pfaffian of the Dirac operator has been measured with the pfapack Python
library [294] on each configuration to determine if the calculation must be reweighted
(Section 6.4.1). Figure 6.2 shows determined to be real and positive, with ImPf 𝒟[𝑈 ] <
10−15. An example of this is shown in Figure 6.2 for the 20× 20 ensemble. This indi-
cates there is no need to reweight the observables on these configurations. However,
this is not an exhaustive proof that the Pfaffian is real and positive. Every config-
uration sampled must have the phase of the Pfaffian computed to determine if the
observables must be reweighted during the computation.
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Figure 6.1. Volume-averaged plaquette ⟨𝒫⟩ (Eq. (6.63)) on each ensemble. Each
colored curve corresponds to an ensemble in Table 6.1. The correlation length on each
ensemble is between 50 and 100 units of computer time, hence each point shows an
independent sample. Because fewer configurations are generated for the larger values
of 𝐿 (24, 26, 28), the plaquette streams stop earlier. Note that after 10 samples, ⟨𝒫⟩
has thermalized on all ensembles.
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Figure 6.2. The Pfaffian of the Dirac operator, measured on the 𝑁cfgs independent
configurations for the 𝐿 × 𝑇 = 20 × 20 ensemble. The real part of the Pfaffian is
denoted in blue, and the imaginary part is in orange. The magnitude of ImPf 𝒟[𝑈 ]
is less than 10−14, indicating that the Pfaffian is purely real and there is no need to
reweight the calculation on these configurations.
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6.6 The Static Quark Potential and String Tension

The static quark potential 𝑉 (𝑟) is computed through the asymptotic form for the
fundamental Wilson loop as 𝑡→∞,

⟨𝑊 (𝑟, 𝑡)⟩ = 𝐶𝑒−𝑉 (𝑟)𝑡, (6.67)

given in Eq. (6.1), where 𝐶 is a constant independent of 𝑟 and 𝑡. Corrections to this
equation occur at 𝒪(𝑒−𝑡Δ𝐸), where Δ𝐸 is the gap between 𝑉 (𝑟) and the first excited
𝑞𝑞 state. The large 𝑡 limit of the Wilson loop hence allows for an extraction of the
static quark potential 𝑉 (𝑟). The static quark potential for a confining theory may be
parameterized as a linear term plus a Coulomb term,

𝑉 (𝑟) ∼ 𝐴+ 𝜎𝑟 +
𝐵

𝑟
, (6.68)

where 𝐴,𝐵 are coefficients and 𝜎 is the string tension. Note that Eq. (6.68) is in
lattice units; units will be restored to this equation later in this section to set the
scale.

The static quark potential is defined for a fundamental fermion. In general,
one can compute the static quark potential between fermions in a representation
ℛ with 𝑁 -ality 𝑘, 𝑉ℛ(𝑟), by using the ℛ-Wilson line 𝑊ℛ(𝑟, 𝑡). An explicit formula
for 𝑊ℛ(𝑟, 𝑡) can be obtained by replacing 𝑈𝜇 in the definition of the fundamental line
𝑊 (𝑟, 𝑡), Eq. (6.64), with its image under ℛ,

𝑊ℛ(𝑟, 𝑡) =

(︃
𝑟−1∏︁
𝑘=0

ℛ(𝑈0)(𝑥+ 𝑘 0̂)

)︃(︃
𝑡−1∏︁
𝑘=0

ℛ(𝑈1)(𝑥+ 𝑟 0̂ + 𝑘 1̂)

)︃
(︃

𝑟∏︁
𝑘=1

ℛ(𝑈0)(𝑥+ (𝑟 − 𝑘) 0̂ + 𝑡 1̂)

)︃†(︃ 𝑡∏︁
𝑘=1

ℛ(𝑈1)(𝑥+ (𝑡− 𝑘) 1̂)
)︃†

.

(6.69)

The static quark potential in representation ℛ is extracted from the ℛ-Wilson loop
identically to the fundamental case, Eq. (6.1), as ⟨𝑊ℛ(𝑟, 𝑡)⟩ 𝑡→∞−−−→ 𝑒−𝑉ℛ(𝑟)𝑡. This
ℛ-potential has an analogous parameterization to Eq. (6.68) with 𝑘-dependent coef-
ficients 𝐴𝑘, 𝐵𝑘, and 𝜎𝑘. The linear coefficient 𝜎𝑘 is the 𝑘-string tension.

On each configuration in each ensemble of Table 6.1, all possible Wilson loops
are calculated. This is not computationally intensive because the lattice sizes are
relatively small; for larger lattices, all Wilson loops up to a given maximum spatial

200



§ 6.6. The Static Quark Potential and String Tension

and temporal size will be computed: it is not necessary to keep every Wilson loop, as
the signal-to-noise degrades with the size of the loop. The data is bootstrapped with
𝑛𝑏 = 100 bootstrap samples drawn on each ensemble. Figure 6.3 shows measurements
of all volume-averaged Wilson loops 𝑊 (𝑟, 𝑡) on the 20× 20 ensemble.

The set of all Wilson loops on the 20 × 20 ensemble, ⟨𝑊 (𝑟, 𝑡)⟩, is shown in Fig-
ure 6.3. For each fixed 𝑟, the static quark potential 𝑉 (𝑟) is extracted by performing
a correlated fit to the data with the exponential model,

𝑓𝑟(𝑡) = 𝐶𝑒−𝑉 (𝑟)𝑡 (6.70)

The model has unknown parameters 𝐶 and 𝑉 (𝑟) and models the lowest-order term
in the expansion of Eq. (6.1). The data for ⟨𝑊 (𝑟, 𝑡)⟩ becomes too noisy to constrain
the fit around 𝑡 = 10: when this data is included, it does not shift the fit at all,
and its contribution to the 𝜒2 function is very small because of its large uncertainty.
As a result, fits are performed over the range 𝑡 ∈ [1, 10]. Correlations in ⟨𝑊 (𝑟, 𝑡)⟩
are propagated to correlations in 𝑉 (𝑟) fitting each bootstrap to extract an ensemble
{𝑉𝑏(𝑟)}𝑛𝑏

𝑏=1. The statistical error on the bootstrap ensemble {𝑉𝑏(𝑟)}𝑏 is consistent with
the error on 𝑉 (𝑟) from the fit.

The best-fit bands on the 20× 20 ensemble are shown in Figure 6.4. The fits for
low 𝑟 (on this ensemble, 𝑟 ≤ 4) have 𝜒2/dof between 0.5 and 1.5, which degrades as 𝑟
increases and the signal-to-noise ratio becomes smaller. The fit results for the static
quark potential 𝑉 (𝑟) are plotted against 𝑟 in Figure 6.5 for the 20 × 20 ensemble.
The trend in the data is linear, which indicates a confining potential. A correlated fit
is performed of the potential 𝑉 (𝑟) to a linear model 𝐴+ 𝜎𝑟 (Eq. (6.68) with 𝐵 = 0),
as the data does not appear to have a Coulomb term. Adding the Coulomb term
𝐵/𝑟 to the model causes overfitting— identified as the posterior value of 𝐵 being
significantly larger than the posterior values of 𝐴 and 𝜎— which drastically changes
the behavior of the functional form fit to the data. The simulated ensembles are likely
too coarse to see the appearance of such a term, as it dominates at short distances.
Only the first 4 points in 𝑉 (𝑟) are used for the fit, as extracting 𝑉 (𝑟) is difficult
at higher 𝑟: the resulting fits have 𝜒2/dof ≫ 1, indicating a poor goodness of fit.
Figure 6.5 shows the resulting static quark potential, with the fit band overlaid onto
the data. Although the fit band underestimates 𝑉 (𝑟) for 𝑟 ≥ 5, this is likely due to
the difficulty of extracting 𝑉 (𝑟) at these values of 𝑟. As seen in Figure 6.4, there are
only a small number of resolved points for the Wilson loop ⟨𝑊 (𝑟, 𝑡)⟩ at these values,
which makes the fits performed to extract 𝑉 (𝑟) unreliable. The posterior on 𝜎 is the
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string tension for the given ensemble in lattice units. The extracted values of the
string tension for each ensemble are shown in Table 6.2.
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Figure 6.3. All volume-averaged Wilson loops ⟨𝑊 (𝑟, 𝑡)⟩ for the 20 × 20 ensemble,
plotted on a logarithmic scale as a function of the temporal size 𝑡. The color of
each point denotes its spatial size 𝑟, which is further emphasized in the plot by
offsetting points with different values of 𝑟. At fixed 𝑟, the slope of the log plot
roughly corresponds to the static quark potential 𝑉 (𝑟).

The string tension is used to set the scale of each ensemble. The general method-
ology behind scale setting in LGT is reviewed in Section 3.3.4. QCD2 is not a physical
theory, hence there are no experimental measurements of observables that one can
match to set the scale. The scale must, therefore, be set with a relative scale setting
scheme: scales between different ensembles are meaningful, but the absolute mag-
nitude of a scale is not meaningful. The scheme adopted in this calculation hence
measures the lattice spacing in units of 𝜎−1, where 𝜎 is the physical value of the
constant string tension across ensembles. This implies that the lattice spacing may
be computed as,

𝑎 = 𝑎𝜎 [𝜎−1] (6.71)

where the quantity 𝑎𝜎 is tabulated in Table 6.2. The scale of each ensemble is plotted
in Figure 6.6 in units of 𝜎−1.
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Figure 6.4. Volume-averaged Wilson loops ⟨𝑊 (𝑟, 𝑡)⟩ for the 20× 20 ensemble with
𝑟 ≤ 4, plotted against the temporal extent 𝑡 of the loop for 𝑡 ≤ 10. The shaded colored
band on each plot denotes the best-fit band from an exponential fit (Eq. (6.70)). The
single-exponential model fits the data well, with 𝜒2/dof values between 0.5 and 1.5.
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Figure 6.5. Static quark potential for the 20 × 20 ensemble, computed for 𝑟 ≤ 5.
The static quark potential is fit to the linear model 𝑉 (𝑟) ∼ 𝐴 + 𝜎𝑟 to determine
the string tension 𝜎. Results for the string tension on each ensemble are given in
Table 6.2.
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Ensemble 𝑎𝜎
10 0.534(33)
12 0.389(13)
14 0.2614(50)
16 0.2029(33)
18 0.1518(24)
20 0.1347(16)
22 0.1029(15)
24 0.0818(10)
26 0.083(46)
28 0.06640(78)

Table 6.2. Numerical results for the string tension (and lattice scale 𝑎) for each
adjoint QCD ensemble in Table 6.1. The string tension is computed by fitting the
static quark potential 𝑉 (𝑟) to a linear model. The scale is then set by the string
tension, and the lattice spacing of each ensemble equals 𝑎𝜎 in units of 𝜎−1.
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Figure 6.6. Scales for each ensemble set by the string tension, in units of 𝜎−1.
Note the value on the vertical axis is simply the dimensionless string tension 𝑎𝜎 of
Table 6.2.
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6.7 Spectroscopy

6.7.1 Wick’s Theorem for Majorana Fermions

Wick’s theorem (Section 3.3.2) is typically derived in the context of Dirac fermion
observables. The theorem’s conclusion remains the same for Majorana fermions, but it
is insightful to confirm this explicitly. Consider the two-point function for a Majorana
fermion 𝜓, with the action of Eq. (6.21).

⟨𝜓𝑎𝛼(𝑥)𝜓𝑏𝛽(𝑦)⟩ =
1

𝒵

∫︁
𝐷𝑈𝑒−𝑆𝐺[𝑈 ]

∫︁
𝐷𝜓 exp

(︂
−1

2

∫︁
𝑑4𝑥 𝑑4𝑦 𝜓(𝑥)𝒟(𝑥, 𝑦)𝜓(𝑦)

)︂
𝜓𝑎𝛼(𝑥)𝜓

𝑏
𝛽(𝑦).

(6.72)
The key identity used here is 𝜓 = 𝜓𝑇𝐶, where 𝐶 = 𝛾5 is the charge conjugation ma-
trix. This integral must be explicitly performed to evaluate the base case of Wick’s
theorem; the rest extends by standard combinatorial arguments. The fermion gener-
ating functional with a Majorana fermion source 𝐽𝑎𝛼(𝑥) is,

𝒵[𝐽 ] =
∫︁
𝐷𝜓 exp

(︂
−1

2

∫︁
𝑑4𝑥 𝑑4𝑦 𝜓(𝑥)𝒟(𝑥, 𝑦)𝜓(𝑦)−

∫︁
𝑑4𝑥 𝐽𝑎𝛼(𝑥)𝜓

𝑎
𝛼(𝑥)

)︂
. (6.73)

This integral is evaluated by completing the square in the integrand,

−1

2
𝜓𝒟 𝜓 = −1

2
𝜓𝑇𝑄𝜓 − 𝐽𝑇𝜓 = −1

2
(𝜓𝑇𝑄𝜓 − 𝐽𝑇𝜓 + 𝜓𝑇𝐽)

= −1

2
(𝜓𝑇 − 𝐽𝑇𝑄−1)𝑄(𝜓 +𝑄−1𝐽)− 1

2
𝐽𝑇𝑄−1𝐽

= −1

2
(𝜓 +𝑄−1𝐽)𝑇𝑄(𝜓 +𝑄−1𝐽)− 1

2
𝐽𝑇𝑄−1𝐽

≡ −1

2
̃︀𝜓𝑇𝑄 ̃︀𝜓 − 1

2
𝐽𝑇𝑄−1𝐽.

(6.74)

where 𝐽𝑇𝜓 = −𝜓𝑇𝐽 , and note that 𝜓𝒟 = 𝜓𝑇𝐶𝒟 = 𝜓𝑇𝑄 and 𝑄𝑇 = −𝑄 by definition.
Here ̃︀𝜓 ≡ 𝜓 +𝑄−1𝐽 is the shifted 𝜓 variable which can now be integrated over:

𝒵[𝐽 ] =
∫︁
𝐷𝜓 𝑒−

1
2
𝜓𝒟𝜓−𝐽𝑇𝜓 =

∫︁
𝐷 ̃︀𝜓 𝑒− 1

2
̃︀𝜓𝑇𝑄 ̃︀𝜓− 1

2
𝐽𝑇𝑄−1𝐽 = Pf[𝑄] exp

(︂
−1

2
𝐽𝑇𝑄−1𝐽

)︂
.

(6.75)
Note that as expected, 𝒵[0] = 𝒵 = Pf[𝑄].

The explicit evaluation of 𝒵[𝐽 ] may now be used to compute correlation functions.

205



§ 6.7.2. Local Fermion Bilinears

Consider the fermion two-point function,

⟨𝜓𝑎𝛼(𝑥)𝜓𝑏𝛽(𝑦)⟩ =
1

𝒵[0]
𝛿

𝛿𝐽𝑎𝛼(𝑥)

𝛿

𝛿𝐽 𝑏𝛽(𝑦)

⃒⃒⃒⃒
𝐽=0

𝒵[𝐽 ] = −(𝑄−1)𝑎𝑏𝛼𝛽(𝑥, 𝑦). (6.76)

This yields the correlator,

⟨𝜓𝑎𝛼(𝑥)𝜓
𝑏

𝛽(𝑦)⟩ = 𝜓
𝑎

𝛼(𝑥)𝜓
𝑏
𝛽(𝑦)⟩𝐶𝛿𝛽 = −(𝑄−1𝐶)𝑎𝑏𝛼𝛽(𝑥, 𝑦) = −(𝒟−1)𝑎𝑏𝛼𝛽(𝑥, 𝑦), (6.77)

which in turn produces an expression for the chiral condensate in terms of the prop-
agator 𝑆(𝑥, 𝑦) ≡ 𝒟−1(𝑥, 𝑦) of the theory,

𝑣 ≡ 1

𝐿𝑇

∑︁
𝑥∈Λ

⟨𝜓(𝑥)𝜓(𝑥)⟩ = 1

𝐿𝑇

∑︁
𝑥∈Λ

⟨𝜓𝑎𝛼(𝑥)𝜓𝑎𝛼(𝑥)⟩ = −
1

𝐿𝑇

∑︁
𝑥∈Λ

Tr𝑆(𝑥, 𝑥). (6.78)

For the numerical calculation, this allows for the extension of the usual LGT ma-
chinery to Majorana fermions once the correct configurations are sampled with RHMC
(Section 6.4.3). Propagators are the fundamental building blocks of any fermionic ob-
servable. In four-dimensional LQCD, entire propagators (“all-to-all propagators”) are
not computed fully, as they require huge amounts of computation and storage to use
(c.f. Section 3.3.3). For the two-dimensional lattices used in this work (Table 6.1),
the number of lattice sites is small enough that propagators can be computed and
stored directly using matrix inversion routines. The computation size is small enough
that this is not prohibitive as it is in 𝑑 = 4. For each ensemble, the Dirac operator
is constructed on each configuration (Section 6.3.2) and then inverted. The inverse
matrix is stored in memory, and correlation functions may then be computed at will
without the need for simplifications.

6.7.2 Local Fermion Bilinears

Spectroscopic calculations are performed to extract the ground-state energies of the
scalar and pseudoscalar mesons on the ensembles of Table 6.1. For an overview of
the quantum numbers of fermion bilinears in 𝑑 = 2, see Appendix J.3. The quantum
numbers of the fermion bilinear 𝜓Γ𝜓 are different in 𝑑 = 2 than in 𝑑 = 4 and given
in Table J.1. There are only two classes of states that may be excited– scalar and
pseudoscalar– each of which is characterized by its transformation under parity 𝑃 and
charge conjugation 𝐶. Scalar states satisfy 𝑃𝐶 = ++ and are excited by the Dirac
structures 1 and 𝛾1, while pseudoscalar states satisfy 𝑃𝐶 = −− and are excited by
the structures 𝛾5 and 𝛾0.
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To excite a mesonic state with the quantum numbers of Γ ∈ {1, 𝛾5, 𝛾0, 𝛾1}, consider
the momentum-projected interpolator,

𝜒Γ(𝑡; 𝑝) =
1√
𝐿

∑︁
𝑥

𝑒−𝑖𝑝𝑥 𝜓(𝑥, 𝑡)Γ𝜓(𝑥, 𝑡). (6.79)

Ground-state energies are extracted by constructing the two-point function at 𝑝 = 0

momentum6,

𝐶Γ
2 (𝑡; 𝑝) =

1

𝑇

∑︁
𝑠

⟨𝜒Γ(𝑡+ 𝑠; 𝑝)𝜒Γ(𝑠; 𝑝)⟩. (6.80)

This is directly computable on these ensembles by performing all possible Wick con-
tractions (Section 6.7.1),

𝐶Γ
2 (𝑡; 𝑝) =

1

𝑉

∑︁
𝑠

∑︁
𝑥,𝑦

𝑒−𝑖𝑝(𝑥−𝑦)
(︂
Tr
[︁
𝑆(𝑦, 𝑠;𝑥, 𝑡+ 𝑠)Γ𝑆(𝑥, 𝑡+ 𝑠; 𝑦, 𝑠)̃︀Γ]︁

+Tr [𝑆(𝑥, 𝑡+ 𝑠;𝑥, 𝑡+ 𝑠)Γ] Tr
[︁
𝑆(𝑦, 𝑠; 𝑦, 𝑠)̃︀Γ]︁)︂, (6.81)

where ̃︀Γ ≡ 𝛾0Γ†𝛾0. Note that in 𝑑 = 4, ̃︀Γ = Γ for Γ = 𝛾𝜇, which may be used to
simplify ̃︀Γ; in 𝑑 = 2, this does not necessarily hold (i.e., for Γ = 𝛾1).

The two-point correlator 𝐶Γ
2 (𝑡; 0) is computed on each of the ensembles in Table 6.1

for each Γ ∈ {1, 𝛾5, 𝛾0, 𝛾1}. Data for 𝐶Γ
2 (𝑡; 0) is shown in Figure 6.7 on the 20 × 20

ensemble, plotted on a logarithmic scale against time 𝑡. The same data is shown
as cosh-corrected effective masses (Eq. (3.45)) in Figure 6.8. Observe that the data
for Γ = 𝛾5 and Γ = 𝛾0 is nearly degenerate, which indicates that both interpolators
excite the same set of states. This is consistent with the analytic structure of these
operators, as both operators are expected to excite states with the same quantum
numbers, 𝑃𝐶 = −−.

6Eq. (6.80) is presented at arbitrary 𝑝 to keep the equation at full generality.
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Figure 6.7. Data for the two-point correlator 𝐶Γ
2 (𝑡; 0) plotted on a logarithmic

scale against time 𝑡 in lattice units. Each plot is labeled by its Γ structure. For
Γ = 1, 𝛾1 (blue, red), the correlator data plateaus to a constant, indicating that these
interpolators excite the vacuum state |0⟩.
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Figure 6.8. Cosh-corrected effective masses on the 20 × 20 ensemble computed
for Γ ∈ {𝛾5, 𝛾0}. The data for 𝛾0 (green) has been offset slightly, as it is nearly
degenerate with 𝛾5 (orange), indicating that the interpolators excite the same ground
state. The correlator data for Γ ∈ {1, 𝛾1} is consistent with a constant, indicating
these operators overlap onto the vacuum state, with an effective mass consistent with
zero.
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Figure 6.9. Boosted correlator 𝐶𝛾1

2 (𝑡; 𝑝)
at non-zero momentum 𝑝 = 𝜋/𝐿, plotted
on a logarithmic scale. The correlator now
shows an exponential decay and no longer
overlaps onto the vacuum.

Of particular note is the correlator
data for Γ = 𝛾1, which is observed to
have similar behavior on each ensem-
ble in Table 6.1. The correlator data is
statistically consistent with zero, shown
in Figure 6.7. This is because the in-
terpolator 𝜒𝛾1(𝑡; 0) has non-zero overlap
with the vacuum state |0⟩, which domi-
nates the spectral decomposition. This
behavior can be removed by consider-
ing the correlator at non-zero momentum
𝑝 = 𝜋/𝐿. In this case, the correlator is
no longer expected to overlap onto the
vacuum. Figure 6.9 shows the correlator
data at momentum 𝑝 = 𝜋/𝐿 on a loga-
rithmic scale. The correlator is now ex-
ponentially decaying, as is expected for
an interpolator that does not overlap onto the vacuum.

To determine the pseudoscalar ground state 𝑚𝑃𝐶 in the sector 𝑃𝐶 = −−, the
correlation function data for 𝐶𝛾5

2 (𝑡; 0) and 𝐶𝛾0

2 (𝑡; 0) is fit with two exponential models,

𝑓0(𝑡) = 𝐶0𝑒
−𝑚𝑃𝐶𝑡, (6.82)

𝑓1(𝑡) = 𝐶0𝑒
−𝑚𝑃𝐶𝑡 + 𝐶1𝑒

−(𝑚𝑃𝐶+𝛿)𝑡. (6.83)

Here 𝛿 > 0 is the energy gap between the ground state and the first excited state,
and 𝐶0 and 𝐶1 are the overlap coefficients, which are arbitrary parameters. Data for
𝐶𝛾2

2 (𝑡; 0) and 𝐶𝛾2
2 (𝑡; 0) shows that the bilinear operators 𝜒1(𝑡; 𝑝) and 𝜒𝛾1(𝑡; 𝑝) overlap

onto the vacuum state, so the scalar state with the lowest non-zero energy cannot
be extracted without first removing the vacuum contribution. Data for 𝐶𝛾5

2 (𝑡; 0) and
𝐶𝛾0

2 (𝑡; 0) are fit with the models of Eqs. (6.82, 6.83) to extract 𝑚−−7. Note that on
each ensemble for Γ ∈ {𝛾5, 𝛾0}, 𝐶Γ

2 (𝑡; 0) and 𝐶Γ
2 (𝑇 − 𝑡, 0) are statistically consistent,

hence correlation function data is folded over the midpoint of the lattice to symmetrize

7This analysis performs separate fits for 𝐶𝛾5

2 (𝑡; 0) and 𝐶𝛾0

2 (𝑡; 0) and verifies that the extracted
values of𝑚−− are consistent with one another, before determining a final value for𝑚−− by averaging
both estimates while keeping track of correlations. In the future, a joint fit to both sets of correlation
functions to estimate a single value for 𝑚−− will be performed instead.
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the correlators,

𝐶Γ
2 (𝑡; 0) −→

1

2

(︀
𝐶Γ

2 (𝑡; 0) + 𝐶Γ
2 (𝑇 − 𝑡, 0)

)︀
, (6.84)

where 𝑡 ∈ [𝑇/2]. Correlated fits to both models are performed over ranges [𝑡min, 𝑡max],
where 𝑡min ∈ {2, 3, 4} and 𝑡max ∈ {𝑇/2− 2, 𝑇/2− 1, 𝑇/2} are varied independently. A
given fit is accepted only if its 𝑝-value is > 0.05, and accepted fits are averaged with
the AIC weight [295].

Figure 6.10 shows the result of each series of fits on the 20× 20 ensemble, plotted
against the effective mass of the correlator. The posterior value of 𝑚−− is denoted in
each panel by the colored band. If any fits to the excited-state model 𝑓1 (Eq. (6.83))
are accepted, the averaged fit band of all accepted fits with model 𝑓1 is shown on
the corresponding panel in gray. The extracted value of 𝑚−− from 𝐶𝛾5

2 (𝑡; 0) and
𝐶𝛾0

2 (𝑡; 0) are consistent on all ensembles. Table 6.3 shows the posterior values for the
pseudoscalar ground state energy 𝑚−− on each ensemble in units of 𝜎, where 𝜎 is the
scale set by the string tension in Section 6.6.

Ensemble 𝑚−− [𝜎]
10 4.63(29)
12 5.80(19)
14 7.91(15)
16 9.33(15)
18 11.49(18)
20 11.98(14)
22 14.53(21)
24 16.96(21)
26 15.7(8.7)
28 18.55(22)

Table 6.3. Numerical results for the pseudoscalar ground-state energy for each
adjoint QCD ensemble in Table 6.1. Data for 𝑚−− is computed by taking a correlated
average of the determinations of this quantity extracted from 𝐶𝛾5

2 and 𝐶𝛾0

2 .

6.7.3 The Two-Point Spectrum

The previous operator construction only enabled access to the lowest-lying states in
each sector. To expand on this, the Generalized Eigenvalue Problem (GEVP) is used
to access additional low-lying states. Given a set of quantum numbers, one constructs
a set of operators consistent with those quantum numbers and the symmetries of the
lattice (c.f. Ref. [296, 297] for the construction of (3 + 1)𝑑 lattice operators). Two
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Figure 6.10. Fits to the two-point correlator 𝐶Γ
2 (𝑡; 𝑝 = 0) on the 20×20 ensemble for

Γ ∈ {𝛾5, 𝛾0} with fitting procedure described in the text. Fits are displayed against
the corresponding cosh-corrected effective masses. In each panel, the model-averaged
posterior for 𝑚−− is displayed by the colored horizontal band. If any excited-state fits
are accepted (model 𝑓1, Eq. (6.83)), the averaged fit band of all accepted fits for this
model is displayed in gray. Determinations of 𝑚−− from 𝐶𝛾5

2 and 𝐶𝛾0

2 are consistent
with one another.
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classes of symmetries must be respected: translational symmetry and 1D hypocubic
symmetry (rotation and inversion on the lattice). For translational symmetry, cor-
relators are projected to 𝑝 = 0 1-momentum. Constructing operators that satisfy
lattice rotations and translations in 1-dimension is trivial in (1 + 1)𝑑. There is only
a single non-trivial symmetry of the 1-dimensional (fixed time) spatial lattice cell,
inversion, which is denoted as 𝜎. Thus, the symmetry group is the cyclic group of
order 2,

Z/2Z = ⟨𝜎|𝜎2 = 1⟩. (6.85)

This group has two conjugacy classes, {1} and {𝜎}, hence two irreducible representa-
tions (irreps), both of which are 1-dimensional. The first is denoted 𝐴𝑔 and has even
parity,

𝐴𝑔(1) = 1 𝐴𝑔(𝜎) = 1. (6.86)

The second has odd parity and is denoted 𝐴𝑢,

𝐴𝑢(1) = 1 𝐴𝑢(𝜎) = −1. (6.87)

Next, operators are constructed that are consistent with each irrep. The basic
building blocks for these operators are the gauge-invariant displaced quark fields,

𝐷(𝜂)𝜓(𝑥) = 𝑉0(𝑥)𝑉0(𝑥+ 0̂)...𝑉0(𝑥+ (𝜂 − 1)0̂)𝜓(𝑥+ 𝜂0̂) = 𝑊Adj(𝑥, 𝑥+ 𝜂0̂)𝜓(𝑥+ 𝜂0̂),

(6.88)
with 𝜂 ≥ 1, and where conventionally 𝐷(0)𝜓(𝑥) ≡ 𝜓(𝑥) and the adjoint Wilson line
𝑊Adj(𝑥, 𝑥+ 𝜂0̂) is

𝑊Adj(𝑥, 𝑥+ 𝜂0̂) = 𝑉0(𝑥)𝑉0(𝑥+ 0̂)...𝑉0(𝑥+ (𝜂 − 1)0̂), (6.89)

which performs parallel transport on the adjoint fermion field from site 𝑥+ 𝜂0̂ to site
𝑥. This is defined similarly to the adjoint Wilson loop 𝑊Adj(𝑟, 𝑡) (Eq. (6.69)), but for
an open Wilson line. Note that notation will often be abused, and 𝑊Adj(𝑥, 𝑡;𝑦, 𝑠) ≡
𝑊Adj((𝑥, 𝑡), (𝑦, 𝑠)). It is also useful to construct the opposite Wilson line,

𝑊Adj(𝜎𝑥− 𝜂0̂,−𝑥) = 𝑉0(𝜎𝑥− 𝜂0̂)𝑉0(𝜎𝑥− (𝜂 − 1)0̂)...𝑉0(𝜎𝑥− 0̂), (6.90)

which performs parallel transport from −𝑥 − 𝜂0̂ to −𝑥. Note here that 𝜎 ∈ Z/2Z
acts on 2-vectors (𝑥, 𝑡) as spatial inversion, 𝜎(𝑥, 𝑡) = (−𝑥, 𝑡).
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To construct a bilinear operator, a 𝛾-matrix Γ ∈ {1, 𝛾0, 𝛾1, 𝛾5} is inserted between
two displaced quark fields,

𝐵𝜂
Γ(𝑡) =

∑︁
𝑥

𝜓(𝑥)Γ𝐷(𝜂)𝜓(𝑥) (6.91)

=
∑︁
𝑥

𝜓(𝑥)𝑊Adj(𝑥, 𝑥+ 𝜂0̂)Γ𝜓(𝑥+ 𝜂0̂) (6.92)

=
∑︁
𝑥

𝜓(𝑥)𝑉0(𝑥)𝑉0(𝑥+ 0̂)...𝑉0(𝑥+ (𝜂 − 1)0̂)Γ𝜓(𝑥+ 𝜂0̂), (6.93)

with 𝜂 ∈ {0, 1, ..., 𝐿 − 1} (note 𝜂 = 0 corresponds to the non-displaced operators
of Section 6.7.2). In general, it is unnecessary to compute every displaced operator
on the lattice because the GEVP must be solved on a matrix that is the size of
the number of displacements. For small lattices, all displacements will be computed,
but for larger lattices, the maximum number of displacements is truncated to 8, i.e.,
𝜂 ∈ {0, 1, ..., 𝑁shift − 1} where

𝑁shift = min{8, 𝐿}. (6.94)

Let 𝐵Γ
𝜂 (𝑡) denote any operator that is gauge invariant and invariant under all

spatial rotations, i.e., a 0-momentum projected operator. A projected operator is
constructed from 𝐵 consistent with 𝐺 ≡ Z/2Z symmetry in irrep Λ as

ℬΛ,Γ
𝜂 (𝑡) =

𝑑Λ
|𝐺|

∑︁
𝑔∈𝐺

Ω𝑔𝐵
Γ
𝜂 (𝑡)Ω

†
𝑔, (6.95)

where 𝑑Λ = 1 is the dimension of irrep Λ, |𝐺| = 2 is the order of the symmetry group
𝐺, and Ω𝑔𝐵

Γ
𝜂 (𝑡)Ω

†
𝑔 implements the symmetry operation 𝑔 on the operator 𝐵Γ

𝜂 (𝑡). For
the elemental displaced operators, this is explicitly:

Ω𝑔(𝐷
(𝑝)

0̂
𝜓)𝑎𝛼(𝑥)Ω

†
𝑔 = 𝐷

(𝑝)

𝑔0̂
𝑆(𝑔)𝛼𝛽𝜓

𝑎
𝛽(𝑔𝑥) (6.96)

where the 𝑔0̂ and 𝑔𝑥 denote the group action of 𝑔 on the vector 0̂ and on the coordinate
𝑥 = (𝑥, 𝑡), i.e.

10̂ = 0̂ 1𝑥 = 𝑥 𝜎0̂ = −0̂ 𝜎𝑥 = (−𝑥, 𝑡), (6.97)

and 𝑆(𝑔) denotes the passage of the element 𝑔 = 𝑒𝑖𝜃𝐽 to the spinor representation.
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The only non-trivial element of 𝐺 is inversion, with 𝑆(𝜎) computed in Eq. (J.8),

𝑆(𝜎) = 𝑆(𝜋) =

(︃
0 1

−1 0

)︃
. (6.98)

Note that the displaced quark field under parity is (with 𝜎𝑥 = (−𝑥, 𝑡))

𝐷
(𝜂)

𝜎0̂
𝜓(𝜎𝑥) = 𝑉−0̂(𝜎𝑥)...𝑉−0̂(𝜎𝑥− 𝜂0̂)𝜓(𝜎𝑥− (𝜂 − 1)0̂)

= 𝑊Adj(𝜎𝑥, 𝜎𝑥− 𝜂0̂)𝜓(𝜎𝑥− 𝜂0̂)
(6.99)

Hence, the elemental displacement operators 𝐵𝜂
Γ(𝑡) can be expressed as

Ω𝑔𝐵
𝜂
Γ(𝑡)Ω

†
𝑔 =

∑︁
𝑥

𝜓
𝑎

𝛼(𝑔𝑥)𝐷
(𝜂)

𝑔0̂
𝑆(𝑔)𝛼𝛽𝜓

𝑎
𝛽(𝑔𝑥) (6.100)

where 𝑥 = (𝑥, 𝑡).

Projectors onto each of the two lattice irreps may now be explicitly computed.
The first is trivial and corresponds to symmetrization by parity,

ℬ𝐴𝑔 ,Γ
𝜂 (𝑡) =

1

2

∑︁
𝑥

(︁
𝜓(𝑥, 𝑡)Γ𝐷

(𝜂)

0̂
𝜓(𝑥, 𝑡) + 𝜓(−𝑥, 𝑡)Γ𝐷(𝜂)

−0̂𝜓(−𝑥, 𝑡)
)︁

=
1

2

∑︁
𝑥

(︂
𝜓(𝑥)𝑊Adj(𝑥, 𝑥+ 𝜂0̂)Γ𝜓(𝑥+ 𝜂0̂)

+ 𝜓(𝜎𝑥)𝑊Adj(𝜎𝑥, 𝜎𝑥− 𝜂0̂)Γ𝜓(𝜎𝑥− 𝜂0̂)
)︂
.

(6.101)

The second is the parity-odd sector 𝐴𝑢, where the lattice-projected operators are
written in terms of 𝑆(𝜎),

ℬ𝐴𝑢,Γ
𝜂 (𝑡) =

1

2

∑︁
𝑥

(︁
𝜓(𝑥, 𝑡)Γ𝐷

(𝜂)

0̂
𝜓(𝑥, 𝑡) + 𝜓(−𝑥, 𝑡)Γ𝑆(𝜎)𝐷(𝜂)

−0̂𝜓(−𝑥, 𝑡)
)︁

=
1

2

∑︁
𝑥

(︂
𝜓(𝑥)𝑊Adj(𝑥, 𝑥+ 𝜂0̂)Γ𝜓(𝑥+ 𝜂0̂)

+ 𝜓(𝜎𝑥)𝑊Adj(𝜎𝑥, 𝜎𝑥− 𝜂0̂)Γ𝑆(𝜎)𝜓(𝜎𝑥− 𝜂0̂)
)︂
.

(6.102)

Correlation functions of the lattice projected operators {ℬΛ,Γ
𝜂 (𝑡)} are computed for

each irrep Λ ∈ {𝐴𝑔, 𝐴𝑢} and each 𝛾 structure Γ ∈ {1, 𝛾0, 𝛾1, 𝛾5}. This is a matrix in
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the space of displaced operators, with indices 𝑝, 𝑞 that range from 0 to 𝑁shift:

𝐶Λ,Γ
𝜂𝜁 (𝑡) =

1

𝑇

∑︁
𝑠

⟨ℬΛ,Γ
𝜂 (𝑡+ 𝑠)(ℬΛ,Γ

𝜁 )†(𝑠)⟩ (6.103)

The result is written in terms of 8 possible propagator contractions,

𝐶Λ,Γ
𝜂𝜁 (𝑡) =

1

4𝑇

∑︁
𝑠

∑︁
𝑥,𝑦

(︁
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

)︁
, (6.104)
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where the contraction structures k are defined as,

1 = Tr

[︂
𝑆(𝑦, 𝑠;𝑥, 𝑡+ 𝑠)𝑊Adj(𝑥, 𝑡+ 𝑠;𝑥+ 𝜂, 𝑡+ 𝑠)Γ

× 𝑆(𝑥+ 𝜂, 𝑡+ 𝑠;𝑦 + 𝜁, 𝑠)𝑊 †
Adj(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝛾0Γ†𝛾0

]︂
2 = Tr

[︂
𝑆(−𝑦, 𝑠;𝑥, 𝑡+ 𝑠)𝑊Adj(𝑥, 𝑡+ 𝑠;𝑥+ 𝜂, 𝑡+ 𝑠)Γ

× 𝑆(𝑥+ 𝜂, 𝑡+ 𝑠;−𝑦 − 𝜁, 𝑠)𝑊 †
Adj(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝛾0Σ†ΛΓ†𝛾0

]︂
3 = Tr

[︂
𝑆(𝑦, 𝑠;−𝑥, 𝑡+ 𝑠)𝑊Adj(−𝑥, 𝑡+ 𝑠;−𝑥− 𝜂, 𝑡+ 𝑠)ΓΣΛ

× 𝑆(−𝑥− 𝜂, 𝑡+ 𝑠;𝑦 + 𝜁, 𝑠)𝑊 †
Adj(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝛾0Γ†𝛾0

]︂
4 = Tr

[︂
𝑆(−𝑦, 𝑠;−𝑥, 𝑡+ 𝑠)𝑊Adj(−𝑥, 𝑡+ 𝑠;−𝑥− 𝜂, 𝑡+ 𝑠)ΓΣΛ

× 𝑆(−𝑥− 𝜂, 𝑡+ 𝑠;−𝑦 − 𝜁, 𝑠)𝑊 †
Adj(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝛾0Σ†ΛΓ†𝛾0

]︂
5 = Tr

[︂
𝑆(𝑥+ 𝜂, 𝑡+ 𝑠;𝑥, 𝑡+ 𝑠)𝑊Adj(𝑥, 𝑡+ 𝑠;𝑥+ 𝜂, 𝑡+ 𝑠)Γ

]︂
× Tr

[︂
𝑆(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝑊 †

Adj(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝛾0Γ†𝛾0
]︂

6 = Tr

[︂
𝑆(𝑥+ 𝜂, 𝑡+ 𝑠;𝑥, 𝑡+ 𝑠)𝑊Adj(𝑥, 𝑡+ 𝑠;𝑥+ 𝜂, 𝑡+ 𝑠)Γ

]︂
× Tr

[︂
𝑆(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝑊 †

Adj(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝛾0Σ†ΛΓ†𝛾0
]︂

7 = Tr

[︂
𝑆(−𝑥− 𝜂, 𝑡+ 𝑠;−𝑥, 𝑡+ 𝑠)𝑊Adj(−𝑥, 𝑡+ 𝑠;−𝑥− 𝜂, 𝑡+ 𝑠)ΓΣΛ

]︂
× Tr

[︂
𝑆(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝑊 †

Adj(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝛾0Γ†𝛾0
]︂

8 = Tr

[︂
𝑆(−𝑥− 𝜂, 𝑡+ 𝑠;−𝑥, 𝑡+ 𝑠)𝑊Adj(−𝑥, 𝑡+ 𝑠;−𝑥− 𝜂, 𝑡+ 𝑠)ΓΣΛ

]︂
× Tr

[︂
𝑆(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝑊 †

Adj(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝛾0Σ†ΛΓ†𝛾0
]︂
,

(6.105)
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and the irrep-dependent spinor matrix ΣΛ is

ΣΛ ≡

⎧⎨⎩12×2 Λ = 𝐴𝑔

𝑆(𝜎) Λ = 𝐴𝑢
. (6.106)

Contractions 5-8 are made up of four simpler terms, denoted 𝑑1, 𝑑2, 𝑑3, 𝑑4,

𝑑1 = Tr [𝑆(𝑥+ 𝜂, 𝑡+ 𝑠;𝑥, 𝑡+ 𝑠)𝑊 (𝑥, 𝑡+ 𝑠;𝑥+ 𝜂, 𝑡+ 𝑠)Γ]

𝑑2 = Tr
[︀
𝑆(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝑊 †(𝑦, 𝑠;𝑦 + 𝜁, 𝑠)𝛾0Γ†𝛾0

]︀
𝑑3 = Tr [𝑆(−𝑥− 𝜂, 𝑡+ 𝑠;−𝑥, 𝑡+ 𝑠)𝑊 (−𝑥, 𝑡+ 𝑠;−𝑥− 𝜂, 𝑡+ 𝑠)ΓΣΛ]

𝑑4 = Tr
[︁
𝑆(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝑊 †(−𝑦, 𝑠;−𝑦 − 𝜁, 𝑠)𝛾0Σ†ΛΓ†𝛾0

]︁
,

(6.107)

and 5 = 𝑑1𝑑2, 6 = 𝑑1𝑑4, 7 = 𝑑3𝑑2, 8 = 𝑑3𝑑4. Note that in 𝑑 = 4, the identity
𝛾0Γ†𝛾0 = Γ may be used to simplify this equation further; however, this identity does
not hold in 𝑑 = 2, hence 𝛾0Γ†𝛾0 will be kept explicit. This is the sum of four terms,
each with two possible Wick contractions.

6.7.4 The GEVP

From the correlation matrix 𝐶Λ,Γ
𝜂𝜁 (𝑡) of Eq. (6.104), the Generalized Eigenvalue Prob-

lem (GEVP) may be solved to determine a variational upper bound on the low-lying
spectrum of the theory [215, 298]. 𝐶Λ,Γ

𝜂𝜁 (𝑡) is an 𝑁shift×𝑁shift matrix for each 𝑡 ∈ [𝑇 ].
One solves the GEVP for the generalized eigenvalues and eigenvectors to perform the
variational analysis. For each combination (𝑡, 𝑡0), there is a GEVP for the (at most)
𝑁shift eigenvalues {𝜆(𝑘)(𝑡, 𝑡0)}𝑁shift

𝑘=1 and 𝑁shift eigenvectors {𝑣(𝑘)𝜂 }𝑁shift
𝑘=1 . That is, for each

(𝑡, 𝑡0) and 𝑘 ∈ {1, ..., 𝑁shift},∑︁
𝜂′

𝐶𝜂,𝜂′(𝑡)𝑣
(𝑘)
𝜂′ (𝑡, 𝑡0) = 𝜆(𝑘)(𝑡, 𝑡0)

∑︁
𝜂′

𝐶𝜂,𝜂′(𝑡0)𝑣
(𝑘)
𝜂′ (𝑡, 𝑡0) (6.108)

Suppressing the (𝜂, 𝜂′) indices makes the structure of this problem more obvious:

𝐶(𝑡)𝑣⃗(𝑘)(𝑡, 𝑡0) = 𝜆(𝑘)(𝑡, 𝑡0)𝐶(𝑡0)𝑣⃗
(𝑘)(𝑡, 𝑡0). (6.109)

The easiest way to solve the GEVP is to turn it into a standard eigenvalue problem.
Note that the correlation matrix 𝐶(𝑡0) can be inverted to obtain

𝐶(𝑡0)
−1𝐶(𝑡)𝑣⃗(𝑘)(𝑡, 𝑡0) = 𝜆(𝑘)(𝑡, 𝑡0)𝑣⃗

(𝑘)(𝑡, 𝑡0) (6.110)
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which is the standard eigenvalue problem for the 𝑛×𝑛matrix 𝐶(𝑡0)−1𝐶(𝑡); solving this
will give the 𝑁shift eigenvalues and eigenvectors {𝜆(𝑘)(𝑡, 𝑡0)}𝑁shift

𝑘=1 and {𝑣⃗(𝑘)(𝑡, 𝑡0)}𝑁shift
𝑘=1 .

The GEVP is a standard calculation in most linear algebra libraries: this project
uses scipy’s scipy . linalg .eigh function to solve the GEVP [299]. The generalized
eigenvalues {𝜆(𝑘)(𝑡, 𝑡0)} correspond to the low-lying spectrum of the theory,

𝜆(𝑘)(𝑡, 𝑡0) ∼ 𝑒−𝐸𝑘(𝑡−𝑡0), (6.111)

where 𝐸𝑘 is the variational bound on the 𝑘th energy. The energies are extracted from
fitting the generalized eigenvalues to this functional form.

When considering statistics, each correlation matrix becomes drawn from a boot-
strap sample. That is, for each configuration 𝑖 ∈ {1, ..., 𝑛cfgs}, one computes a sample
of the correlation matrix:

𝐶
(𝑖)
𝜂,𝜂′(𝑡) :=

1

𝑇

∑︁
𝑠

⟨ℬΛ,Γ
𝜂 (𝑡+ 𝑠)(ℬΛ,Γ

𝜁 )†(𝑠)⟩𝑈(𝑖) (6.112)

where ⟨...⟩𝑈(𝑖) denotes the value of this correlation function with the gauge field 𝑈 (𝑖).
These correlation matrices are then bootstrapped,

{𝐶(𝑖)
𝜂,𝜂′(𝑡)}

𝑛cfgs

𝑖=1 −→ {𝐶𝑏
𝜂,𝜂′(𝑡)}𝑛𝑏

𝑏=1, (6.113)

and the analysis is run on the bootstrap samples of the correlation matrix. This anal-
ysis will thus return a bootstrapped set of generalized eigenvalues and eigenvectors,

{𝜆(𝑘)𝑏 (𝑡, 𝑡0)}, {𝑣⃗(𝑘)𝑏 (𝑡, 𝑡0)}, (6.114)

where 𝑏 ∈ {1, ..., 𝑛𝑏}, 𝑘 ∈ {1, ..., 𝑁shift}, and 𝑡, 𝑡0 ∈ {1, ..., 𝑇}.

6.8 Conclusion

Two-dimensional adjoint QCD is an important theory for understanding the implica-
tions that confinement has on gauge theories. The theory confines when the adjoint
Majorana fermion is massive and interestingly becomes deconfining when the fermion
is made massless. Many different field theoretical techniques have been used over
the last 30 years to understand QCD2 and have led to a deep understanding of the
dynamics of the theory in different sectors. In particular, calculations of the 𝑘-string
tension for small and large 𝑚 have been performed using non-invertible symmetries,
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and the spectrum of the theory for 𝑁 = 2, 3, 4 has been computed using DLCQ.
The theory as 𝑁 → ∞ is well-studied, using ‘t Hooft’s large 𝑁 expansion, and the
spectrum has also been computed in this case.

Non-perturbative input is crucial to improve understanding of QCD2 in all regions
of parameter space, and LGT provides a useful numerical tool that can be used to ob-
tain said input. This is the second study of QCD2 using lattice Monte Carlo methods.
Ensembles have been generated with 𝑁 = 2 colors at ten different values of the lattice
size, gauge coupling, and fermion mass, ranging from 10× 10 to 28× 28 lattices. The
static quark potential and fundamental string tension have been computed on each
ensemble, and the scale has been set with the string tension. Preliminary spectro-
scopic calculations have been performed, and the lightest pseudoscalar mass has been
computed on each ensemble in units of the string tension. These calculations have
shown that the vacuum has the quantum numbers of a scalar meson, as the matrix
elements ⟨0|𝜒†1(0; 0)|0⟩ and ⟨0|𝜒†𝛾1(0; 0)|0⟩ are non-zero. Work is ongoing to extend
the calculation to 𝑁 = 3 and 𝑁 = 4 colors to study the 𝑘-string tension of these
theories outside the fundamental representation and to study the low-lying spectrum
of the theory using the GEVP.

The calculation of the QCD2 spectrum presented in this chapter, while still in
progress, aims to corroborate the results of Ref. [261] for 𝑁 = 2, 3, 4, and provide
a framework to extend the calculation of the low-lying states to higher values of 𝑁 .
Existing calculations have hinted that the 𝑁 dependence of the spectrum is heavily
suppressed and that at 𝑁 = 3, 4, the spectrum is similar to its large-𝑁 counterpart.
The spectrum is predicted to follow a power-law in 𝑁−2,

𝑀2(𝑖;𝑁) =
𝑔2𝑁

𝜋

(︀
𝑎0(𝑖) + 𝑎1(𝑖)𝑁

−2 +𝒪(𝑁−4)
)︀

(6.115)

where 𝑀2(𝑖;𝑁) is the energy-squared of the 𝑖th bound state with 𝑁 colors. The
coefficients 𝑎0 and 𝑎1 are independent of 𝑁 and have been computed for the fermionic
and bosonic ground states in Ref. [261]. They are observed to obey 𝑎1 ≪ 𝑎0, indicating
the spectrum has light dependence on the number of colors. LGT calculations can
precisely map out this statement and verify that this is indeed the case for larger
values of 𝑁 > 4.

The calculation performed in this section is performed with the bare Wilson action,
Eq. (6.18), and is the first LGT calculation of fermion observables using this action.
As discussed in Ref. [300], the four-fermion terms (Tr[𝜓𝜓])2 and Tr[(𝜓𝜓)2] (which
are equal in 𝑁 = 2) are not forbidden by any symmetries of the theory. Without
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fine-tuning the fermion mass and coupling, these terms will be radiatively generated
by the Wilson term, and the physics of the system will be that of the theory with non-
zero four-fermion couplings. In the continuum limit, these couplings vanish; hence,
although any quantities computed at finite lattice spacing feel the effects of the four-
fermion operators, their values must match the theory with no four-fermion couplings
after continuum extrapolation. The extrapolation of the spectrum to the continuum
limit will provide the first numerical exploration of how the four-fermion couplings
postulated in Ref. [301] influence the spectrum and string tension of the theory.
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Chapter 7

Conclusion

Quantum Chromodynamics is a beautiful example of a strongly-coupled QFT. The
theory is responsible for a rich hadronic spectrum that has been extensively studied
in the last 75 years. It is unique compared to the other Standard Model sectors
because of its confinement mechanism, prompting abundant research into QCD-like
theories. Lattice gauge theory is a tool that is uniquely capable of dealing with the
non-perturbative physics found in QCD. It provides a systematically improvable, ab
initio framework to compute correlation functions and observables in a given theory,
regardless of how strongly coupled the theory is. Lattice calculations have been
immensely useful in studying QCD, and many theoretical predictions for experimental
quantities have come through LQCD calculations.

QCD is the only sector of the Standard Model that is strongly interacting, but
strongly-coupled QFTs are useful experimentally not just in the study of QCD, but
also in the study of condensed matter theory. Many QFTs found in condensed matter
are strongly coupled, finding applications in the study of Bose-Einstein Condensa-
tion [302] and chiral spin liquids [303], among other systems. Studying the dynamics
of other strongly-coupled QFTs may inform knowledge of QCD and such condensed
matter theories. This thesis explores strongly-coupled theories inside and outside of
QCD, using LGT as the primary numerical tool to understand said theories.

To better understand such gauge theories, new methods and techniques for LGT
can provide novel insights into said theories. In particular, spectral reconstruction
problems are ubiquitous in high-energy physics. The spectral density of a theory con-
tains information about all the energy states, resonances, and kinematic thresholds in
a theory. It is an object which, if known, illuminates the entire structure of a QFT.
Spectral densities underlie the connection between correlation functions, computable
with LGT techniques, and the direct physical observables of interest. Most LGT cal-
culations truncate the spectral expansion for a correlation function quickly, retaining
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information from only the ground state and possibly a few excited states. Spectral
reconstruction techniques aim to holistically reconstruct the entire (smeared) spec-
tral density from a Euclidean correlator. Spectral function reconstruction from LGT
data is a notoriously ill-posed method: an infinite number of spectral functions can
yield a given set of LGT data. A new method for spectral function reconstruction
from LGT data, Nevanlinna-Pick Spectral Reconstruction, is presented in Chapter 4.
The NPSR method exploits the analytic structure of the thermal Green’s function to
reconstruct the smeared spectral density of a theory. A novel feature of the NPSR
method absent from other spectral density reconstruction methods is its ability to
constrain the full set of smeared spectral densities consistent with the input data (the
Wertevorrat). The NPSR method is tested through simulation on four input spectral
densities, which vary in complexity. Extensions of the NPSR method to handle data
with statistical uncertainties are now underway.

Spectral reconstruction methods enable the ab initio reconstruction of inclusive
cross sections and form factors directly from Euclidean correlator data computed
with LGT. Examples of spectral reconstruction problems are the reconstruction of
the smeared 𝑅-ratio for inclusive electron-positron scattering and the calculation of
the axial form factor for neutrino-nucleus scattering. Many smeared spectral densi-
ties are experimentally measurable but not directly computable from theory without
the existence of a reliable spectral reconstruction method. A particularly important
area that would benefit from such a method for spectral reconstruction is upcoming
neutrino-nucleon scattering experiments like DUNE, which require knowledge of the
nucleon’s axial structure functions to constrain the experimental background. The
structure functions can only be constrained from neutrino-nucleon scattering, which
do not have sufficient statistics to compute the structure functions to meet DUNE’s
precision benchmarks. The structure functions must hence be computed theoretically,
which can be done with LGT. Spectral reconstruction methods can provide access to
the behavior of these structure functions in the resonance regime, which current LGT
methods [304] cannot access.

The first QFT directly studied in this thesis is the Standard Model EFT (Chap-
ter 5). The SMEFT allows one to study extensions of the Standard Model by instead
studying the matrix elements of higher-dimensional operators formed from Standard
Model fields. The SMEFT is used to study 0𝜈𝛽𝛽 decay, a hypothesized BSM pro-
cess in which two down quarks convert to two up quarks and two electrons. This
decay is being searched for worldwide because of the wealth of neutrino physics
it would reveal if found. If 0𝜈𝛽𝛽 decay is ever discovered, non-perturbative input
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from QCD and its extensions will be required to understand the data. This the-
sis details the computation of the short-distance matrix elements that induce the
𝜋− → 𝜋+𝑒−𝑒− transition and the calculation of the long- and short-distance matrix
elements that induce the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− decay. The 𝜋− → 𝜋+𝑒−𝑒−matrix ele-
ments are computed on five domain-wall fermion ensembles, and the renormalized
results in MS at 3 GeV are extrapolated to the chiral, continuum, and infinite-volume
limit. The 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒−matrix elements are computed on a single ensemble
of Wilson-Clover fermions at pion mass 806 MeV and are the first calculation of
0𝜈𝛽𝛽 decay in a nuclear system. The short-distance 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation is
ongoing, and results are expected to be published soon.

The calculation of the short-distance 𝜋− → 𝜋+𝑒−𝑒− presented in Section 5.3,
along with long-distance calculation of Ref. [12], completes the LGT computation
of 𝜋− → 𝜋+𝑒−𝑒− on the domain wall fermion ensembles in Table 5.2. The short-
distance contribution yields the leading-order LECs for 𝜒EFT, which can be used
to better constrain nuclear many-body models for 0𝜈𝛽𝛽 decay. These models are
currently the only ab initio way to study 0𝜈𝛽𝛽 decay in a nuclear system which can
undergo 0𝜈𝛽𝛽 decay (the lightest of which is 48Ca), as direct LGT calculations are too
computationally expensive in such a system. The LO vertex that contributes in 𝜒EFT
is the nucleon-nucleon vertex 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− , Figure 5.7b. There are nine LECs
which must be computed for this vertex, corresponding to the five scalar operators
{𝒪𝑘} (Eq. (5.12)) and the four vector operators {𝒱𝜇𝑝 } (Eq. (5.13)). The calculation
of the short-distance dinucleon decay in Section 5.4 is the first step on the road to-
wards such a calculation. The presented 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− calculation is performed
at finite volume and at heavy pion mass (𝑚𝜋 ≈ 806 MeV), and is the first calcu-
lation of short-distance 0𝜈𝛽𝛽 decay in a nuclear system. It has shown numerically
that many of the matrix elements that were suppressed in the 𝜋− → 𝜋+𝑒−𝑒− decay
(matrix elements of 𝒪3 and the vector operators 𝒱𝜇𝑝 ) are not necessarily suppressed
in the 𝑛0𝑛0 → 𝑝+𝑝+𝑒−𝑒− case, and all nine matrix elements must be treated equally.
Future calculations must compute the same matrix elements with parameters closer
to the physical point in order to have a systematically controlled extrapolation to use
as input to 𝜒EFT. Such a calculation is increasingly important as next-generation
0𝜈𝛽𝛽 decay calculations come online and begin to take data, as if 0𝜈𝛽𝛽 decay is
discovered, nuclear inputs will be required to understand the underlying physics of
the decay from experimentally measured signals.

This thesis concludes with studying two-dimensional adjoint QCD, the theory
of a single Majorana fermion in the adjoint representation coupled to an 𝑆𝑈(𝑁)
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gauge field, in Chapter 6. This theory is strongly interacting and has very interest-
ing physics: in particular, it deconfines when the Majorana fermion is made mass-
less, but confines when the Majorana fermion is massive. Over the last 30 years,
QCD2 has been a playground to study the confinement mechanism in gauge theories.
The two-dimensional nature of the theory allows for a wealth of calculations using
non-perturbative techniques from QFT to understand the theory, but many of these
techniques are not valid over the entire parameter space of the theory. Until very
recently [272], a lattice Monte Carlo calculation had not been performed on the the-
ory. Chapter 6 details an in-progress LGT calculation of QCD2 and presents current
preliminary results. The static quark potential and string tension are computed on
ten different ensembles with 𝑁 = 2 colors, and the scale is set between ensembles with
the string tension. Fermionic observables are considered, and the ground-state energy
of the pseudoscalar sector of the theory are computed. Work is ongoing to extend
this calculation with the GEVP method, which variationally bounds the low-lying
spectrum of the theory.

Knowledge of the low-lying spectrum of QCD2 would allow for the verification of
the results in Ref. [261], which computed the spectrum using DLCQ, and would allow
for these results to be extended larger numbers of colors. It would be particularly
interesting to compare these results to existing calculations of the glueball spectrum
for 𝑆𝑈(𝑁) gauge theories in 2+ 1 and 3+ 1 dimensions. The underlying systems are
very different: QCD2 is constructed in two spacetime dimensions with adjoint matter,
while the glueball spectrum is computed in a higher number of spacetime dimensions
with only gauge field degrees of freedom. Nonetheless, the spectra of each of these
systems share the broad qualitative feature that its dependence on the number of
colors is very mild, and they each approach the 𝑁 → ∞ limit rapidly (for QCD2,
𝑁 = 3 can be considered “large 𝑁 ” by empirical calculation, as is also true in four-
dimensional QCD). The predominant similarity between these two types of theories
is that they are confining theories of adjoint fields, and correlations between these
theories may have broad implications for the confinement mechanism as a whole.
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Abbreviations and Notation

Abbreviation Meaning Defined
QFT Quantum Field Theory Page 23
QCD Quantum Chromodynamics Page 23
EFT Effective Field Theory Page 23
BSM Beyond the Standard Model Page 23
LGT Lattice Gauge Theory Page 23
EWSB Electroweak Symmetry Breaking Page 25
vev vacuum expectation value Page 25
CKM Cabibbo-Kobayashi-Maskawa Page 28
PMNS Pontecorvo-Maki-Nakagawa-Sakata Page 39
SNO Sudbury Neutrino Observatory Page 39
NH (IH) normal hierarchy (inverted hierarchy) Page 40
0𝜈𝛽𝛽 Neutrinoless double 𝛽 Page 41
MCMC Markov Chain Monte Carlo Page 44
HMC Hamiltonian Monte Carlo Page 66
NPR Non-perturbative renormalization Page 66
AIC Akaike Information Criterion Page 71
NPSR Nevanlinna-Pick Spectral Reconstruction Page 89
NAC Nevanlinna Analytical Continuation Page 108
DUNE Deep Underground Neutrino Experiment Page 128
SMEFT Standard Model EFT Page 136
(N)LO (next to) leading-order Page 136
𝜒EFT Chiral EFT Page 136
LEC low-energy constant Page 138
QCD2 Two-dimensional adjoint QCD Page 173
DLCQ Discretized Lightcone Quantization Page 184
RHMC Rational HMC Page 192
GEVP Generalized Eigenvalue Problem Page 218

Table A.1. Abbreviations defined in this thesis.
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Symbol Meaning Defined
C+ The upper half-plane in C Page 77, Eq. (4.13)
R− The negative real axis Page 81
I+ The positive imaginary axis Page 87
D The (open) unit disk Page 81, Eq. (4.30)
𝐻𝑝 The Hardy space 𝐻𝑝, with 𝑝 ≥ 1 Page 101

Table A.2. Mathematical symbols defined in this thesis.

Abbreviation Meaning
≡ Defined as
·
= Equals in a given basis
s.t. Such that
a.e. Almost everywhere (off a set of measure 0)
TFAE The following are equivalent
𝐴 Closure of the set 𝐴
𝑎𝑛 ↑ 𝑎 (𝑎𝑛 ↓ 𝑎) 𝑎𝑛 approaches 𝑎 from above (below)
Det Functional determinant
Pf Functional Pfaffian
𝑓 |Ω Restriction of 𝑓 to subdomain Ω
sup𝐴, inf 𝐴 Supremum and infimum of a set 𝐴
sgn(𝑥) Sign of 𝑥 ∈ R.

Table A.3. Mathematical notation used in this thesis.
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Appendix B

Lie Groups, Lie Algebras, and

their Representations

Let K be a field, and let 𝑀𝑛×𝑚(K) denote the set of all 𝑚 × 𝑛 matrices with values
in K (usually here K will be either R or C). Group representations will typically be
denoted by Π or by 𝐷 depending on whether the group is a Lie group or finite group,
and Lie algebra representations will typically be denoted 𝜋. For algebraic objects 𝑀
and 𝑁 (by this I mean objects in a category), the set of morphisms between them
will be denoted Hom(𝑀,𝑁).

Let 𝑉 be a 𝑛-dimensional K-vector space. The dual of 𝑉 is denoted by 𝑉 *, and
recall for finite dimensional vector spaces there is an isomorphism 𝑉 → 𝑉 *. An
endomorphism of 𝑉 is an homomorphism 𝜑 : 𝑉 → 𝑉 . If 𝜑 is invertible (an isomor-
phism 𝑉 → 𝑉 ) then 𝜑 is called an automorphism. One denotes the automorphism
group of 𝑉 by Aut(𝑉 ) and its endomorphism ring by End(𝑉 ). The group Aut(𝑉 )

is naturally isomorphic to the group 𝐺𝐿(𝑉 ) := 𝐺𝐿(K𝑛) of 𝑛× 𝑛 invertible matrices
with values in K1, and the group End(𝑉 ) is naturally isomorphic to 𝑔𝑙(𝑉 ) := 𝑔𝑙(K𝑛),
the set of all 𝑛× 𝑛 matrices with values in K.

B.1 Lie Groups and Algebras

The theory of Lie groups and algebras is used to describe continuous symmetries. A
Lie group (𝐺, ·) is a group which is also a differentiable manifold, in which the group
operation respects the structure of the manifold. Namely, one requires that the maps
· : 𝐺2 → 𝐺 and ·−1 : 𝐺→ 𝐺 be smooth. A Lie algebra g over a field K is a K-valued
vector space equipped with a map [·, ·] : g× g→ g, called a Lie bracket, such that

1Once a basis is chosen for 𝑉 , invertible linear maps 𝑉 → 𝑉 are in bijection with invertible
matrices
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the following hold:

1. [·, ·] is bilinear.

2. [·, ·] is antisymmetric.

3. [·, ·] satisfies the Jacobi identity, i.e. for 𝐴,𝐵,𝐶 ∈ g:

[𝐴, [𝐵,𝐶]] + [𝐵, [𝐶,𝐴]] + [𝐶, [𝐴,𝐵]] = 0. (B.1)

In physics, one typically considers matrix Lie groups and algebras, in which case the
Lie bracket is simply the commutator, [𝐴,𝐵] = 𝐴𝐵 − 𝐵𝐴. In the case of matrix
groups, our Lie algebras will also be matrix-valued, so g is a matrix-valued vector
space. g is called an algebra because the map [·, ·] gives the vector space an algebra-
like structure2.

The essential idea behind Lie groups is this: Lie groups act on a vector space 𝑉 as
the symmetry operation (for example, the group 𝑆𝑂(3) of orthogonal real valued 3×3
matrices with determinant 1 act as rotations in 𝑉 = R3). Lie algebras generate the Lie
group via the exponential map in the following way: suppose 𝑈 ∈ 𝐺 is an arbitrary
element (assume 𝐺 is path-connected, or at least that 𝑈 is in the path-component of
1 ∈ 𝐺). Then, there exists 𝑋 ∈ g such that:

𝑈 = exp(𝑖𝑋). (B.2)

The proof of this existence is one of the fundamental theorems of Lie theory. In
essence, the Lie algebra parameterizes the Lie group. Let 𝑛 = dim(g). A basis
{𝑇 𝑎}𝑛𝑎=1 is called a set of generators for the Lie group 𝐺 because an arbitrary
element of 𝐺 can be represented as

exp(𝑖𝑋𝑎𝑇 𝑎). (B.3)

The coordinates 𝑋𝑎 thus parameterize the Lie group 𝐺 (really they parameterize the
path-component of 1), thus an element of 𝐺 is specified by a given set of {𝑋𝑎}.

Every Lie algebra is defined by its Lie bracket. Because the Lie bracket [·, ·] maps
g2 into g, one can expand

[𝑇 𝑎, 𝑇 𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑇 𝑐 (B.4)
2An algebra is simply a vector space with a ring structure, i.e. with a multiplication · : g×g→ g.

However, the axioms that ring multiplication must satisfy are different than those that [·, ·] must
satisfy.
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where 𝑓𝑎𝑏𝑐 is an antisymmetric tensor of numbers known as the structure constants
of the Lie algebra. Specifying the structure constants of an algebra exactly define the
algebra and its Lie bracket. The associated Lie algebra with a Lie group can be defined
by taking its tangent space at the identity, and in this way defines a correspondence
from Lie groups to Lie algebras, and back.

B.2 Representations

Symmetry operations in the Lie group act on vector spaces via representations. Note
that the endomorphism ring End(𝑉 ) of a vector space is also a Lie algebra, by allow-
ing the Lie bracket to equal the commutator of operators 𝐴,𝐵 ∈ End(𝑉 ). A repre-
sentation of a Lie algebra g on a vector space 𝑉 is a Lie algebra homomorphism3

𝜋 : g → End(𝑉 ). A representation of a Lie group 𝐺 is a Lie group homomorphism
Π : 𝐺→ Aut(𝑉 ). The dimension of a representation Π : 𝐺→ Aut(𝑉 ) is the dimen-
sion of 𝑉 . Given a Lie algebra representation 𝜋 : g → End(𝑉 ) and the Lie group 𝐺

associated with g, if 𝐺 is simply connected (i.e. 𝜋1(𝐺) ∼= {1}), then 𝜋 induces a Lie
group representation,

Π : 𝐺→ Aut(𝑉 ) Π(𝑒𝑖𝑋) ≡ 𝑒𝑖𝜋(𝑋). (B.5)

The assumption that 𝐺 is simply connected is essential because Lie groups inherently
contain more structure than Lie algebras: the algebra g describes the local structure
of 𝐺 near the identity, but does not capture the global structure. Two isomorphic Lie
groups must have the same Lie algebra, but the converse is not necessarily true.

Irreducible representations (irreps) are the simplest representations that can
be constructed– they are akin to simple groups in standard group theory, or prime
ideals in ring theory. Irreps provide the building blocks to form more complicated
representations, and understanding the full set of representations of a group is equiva-
lent to understanding its irreps. If Π : 𝐺→ Aut(𝑉 ) is a representation of 𝐺, one says
that a subspace 𝑊 ⊂ 𝑉 is an invariant subspace if 𝜋(𝑔)(𝑊 ) ⊆ 𝑊 for each 𝑔 ∈ 𝐺,
i.e. that the group always goes into itself under symmetry transformations. 𝑊 is a
nontrivial subspace of 𝑉 if 𝑊 is a nonempty proper subspace. If the representation
𝜋 has no nontrivial invariant subspaces, then one calls 𝜋 an irreducible represen-
tation. If 𝑊 ⊆ 𝑉 is invariant and if it contains no proper invariant subspaces, then
𝑊 is an irreducible subspace of Π. Note that saying 𝑉 is an irreducible subspace

3Meaning it preserves + and [·, ·]
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of itself is the same as saying that the representation 𝑉 is irreducible. A represen-
tation Π is called unitary if Π(𝑔) is a unitary operator on 𝑉 for each 𝑔 ∈ 𝐺. Any
finite-dimensional unitary representation of a group is completely reducible, meaning
that it is isomorphic to a direct sum of a finite number of irreps.

Irreps in physics are often denoted by their dimension. For example, the adjoint
of 𝑆𝑈(3) is 8-dimensional, the fundamental and anti-fundamental representations are
3-dimensional, and the singlet (trivial) representation is 1-dimensional. The adjoint
is denoted 8, the fundamental 3, the anti-fundamental 3, and the singlet 1. One will
often see equations written out in physics books that look like:

3⊗ 3̄ = 8⊕ 1. (B.6)

All this means is that if the fundamental with the anti-fundamental representations
are tensored together, this product splits as a direct sum of the adjoint plus the
singlet.

B.3 Constructions

B.3.1 Sums and Products of Representations

Recall the direct sum 𝑉1 ⊕ 𝑉2 of two vector spaces 𝑉1 and 𝑉2 is simply a fancy way
of writing the Cartesian product 𝑉1 × 𝑉2 after it is given with the canonical vector
space structure. Let 𝐺 be a Lie group with two representations 𝜋1 : 𝐺 → 𝑉1 and
𝜋2 : 𝐺→ 𝑉2. One can form a representation of 𝐺 on 𝑉1 ⊕ 𝑉2 in the obvious way:

𝜋1 ⊕ 𝜋2 : 𝐺→ Aut(𝑉1 ⊕ 𝑉2), (B.7)

where 𝜋1 ⊕ 𝜋2(𝑔) acts on elements (𝑣1, 𝑣2) ∈ 𝑉1 ⊕ 𝑉2 by:

[(𝜋1 ⊕ 𝜋2)𝑔](𝑣1, 𝑣2) := ((𝜋1𝑔)𝑣1, (𝜋2𝑔)𝑣2). (B.8)

The sum of two Lie algebra representations is defined in an analogous way. Note that
when two representations are summed, their dimensions add because the direct sum
adds dimensions of vector spaces:

dim(𝜋1 ⊕ 𝜋2) = dim(𝜋1) + dim(𝜋2). (B.9)
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§ B.3.1. Sums and Products of Representations

Let Π1 : 𝐺→ Aut(𝑉 ) and Π2 : 𝐻 → Aut(𝑊 ) be representations of groups 𝐺 and
𝐻. Then the induced canonical representation of 𝐺 ×𝐻 is denoted Π1 ⊗ Π2, and is
defined as

Π1 ⊗ Π2 : 𝐺×𝐻 → Aut(𝑉 ⊗𝑊 ) (𝑔, ℎ) ↦→ (Π1𝑔)⊗ (Π2ℎ), (B.10)

because (Π1𝑔)⊗ (Π2ℎ) is clearly a morphism on the space 𝑉 ⊗𝑊 by its definition.

Suppose that 𝐻 = 𝐺, so Π1 and Π2 are two representations of 𝑉 with codomains
𝑉 and 𝑊 , respectively. Using the previous construction and embedding 𝐺 into 𝐺×𝐺
via the diagonal map,

𝐺 →˓ 𝐺×𝐺 Π1⊗Π2−−−−→ Aut(𝑉 ⊗𝑊 ), (B.11)

to form a new representation of 𝐺, one which acts on 𝑉 ⊗ 𝑊 as (Π1 ⊗ Π2)(𝑔) =

(𝜋1𝑔)⊗ (𝜋2𝑔). The dimensionality of the new representation is:

dim(Π1 ⊗ Π2) = dim(Π1) dim(Π2). (B.12)

In general, the product of irreducible representations is not reducible, and the factor-
ization of the product of irreps into a sum of irreps is the basis for the Clebsch-Gordan
theory often studied in the context of adding angular momentum in quantum mechan-
ics. For example, in 𝑆𝑈(3), 3 ⊗ 3̄ (the fundamental times the antifundamental) is
reducible, and in fact 3⊗ 3̄ = 8⊕ 1, the sum of the adjoint 8 and the singlet 1.

There is a corresponding induced representation of the Lie algebra on the tensor
product. Given two Lie algebra representations 𝜋1 : g → End(𝑉 ) and 𝜋2 : g →
End(𝑊 ), the tensor product representation of g is the representation:

𝜋1 ⊗ 𝜋2 : g→ End(𝑉 ⊗𝑊 ) (𝜋1 ⊗ 𝜋2)(𝑋) = 𝜋1(𝑋)⊗ 𝐼 + 𝐼 ⊗ 𝜋2(𝑋) (B.13)

This exponentiates to the correct representation of G because [𝜋1(𝑋)⊗𝐼, 𝐼⊗𝜋2(𝑋)] =

0,
𝑒𝑖(𝜋1⊗𝜋2)(𝑋) = 𝑒𝑖𝜋1(𝑋)⊗𝐼+𝑖𝐼⊗𝜋2(𝑋) = 𝑒𝑖𝜋1(𝑋) ⊗ 𝑒𝑖𝜋2(𝑋). (B.14)

The direct sum of representations is not equivalent to the direct sum of Lie algebras
or Lie groups. While the operation is still defined in this case, it acts on different
objects, and can have profound differences. Namely, note that (of course) the direct
sum of irreps is not an irrep, because doing this gives an explicit decomposition of
the representation. However, if two Lie algebras are summed, then in fact there is a
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way to construct an irrep on the direct sum from the individual irreps.

Theorem B.3.1. Let g, h be two Lie algebras. Then the irreps of g⊕ h are precisely
the tensor products of the irreps of g and of h. In other words, if (𝜋𝑎, 𝑉𝑎) are the
irreps of g and (𝜑𝑏,𝑊𝑏) are the irreps of h, then the irreps of g⊕ h are precisely the
tensor products:

{(𝜋𝑎 ⊗ 𝜑𝑏, 𝑉𝑎 ⊗𝑊𝑏)}𝑎,𝑏 (B.15)

This theorem is extremely useful in constructing the irreps of the Lorentz group
(Section B.4).

B.3.2 Conjugate (dual) representations

Let (𝜋, 𝑉 ) be a complex representation of a Lie algebra g. Then the conjugate
representation to (𝜋, 𝑉 ) is the representation 𝜋* : g → 𝐸𝑛𝑑(𝑉 *) (where 𝑉 * is the
dual space of 𝑉 ) defined as:

𝜋*(𝑋) := −𝜋(𝑋)𝑇 . (B.16)

Note that for the case where the generators {𝜋(𝑋)} are unitary (as in the case of
the fundamental representation of 𝑆𝑈(𝑁)), then −𝜋(𝑋)𝑇 = −𝜋(𝑋)* where * is the
conjugate, so often one sees this definition instead. For representations of Lie groups
(Π, 𝑉 ), this induces a representation Π* : 𝐺→ 𝐴𝑢𝑡(𝑉 *),

Π*(𝑔) = Π(𝑔−1)𝑇 . (B.17)

In physics, one often see the generators of the fundamental representation written
with less jargon. If 𝑇 𝑎𝑟 = 𝜋(𝑋𝑎) are the images of the generators {𝑋𝑎} of a Lie algebra
g in a representation 𝑟, then the generators of the conjugate representation 𝑇 𝑎𝑟 are:

(𝑇 𝑎𝑟 )𝑖𝑗 = −(𝑇 𝑎𝑟 )*𝑖𝑗 = −(𝑇 𝑎𝑟 )𝑗𝑖. (B.18)

As a point of notation, if r is denoting a representation of 𝐺 (i.e. for 𝑆𝑈(3) the
fundamental is denoted by 3) then its conjugate representation is denoted by r̄. The
conjugate of the fundamental representation is called the anti-fundamental repre-
sentation. A representation is called real if it equals its conjugate representation.
In the case of 𝑆𝑈(𝑁), for 𝑁 > 2 the fundamental representation is complex. For
arbitrary 𝑆𝑈(𝑁), the adjoint representation is always a real representation.
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B.4 The Lorentz Group 𝑆𝑂(1, 3) and its Representa-

tions

The Lorentz Group 𝑆𝑂(1, 3) is the group of symmetries of spacetime which preserve
the Minkowski metric 𝜂 ≡ diag(1,−1,−1,−1). The group has corresponding algebra
so(1, 3) which has six generators, denoted 𝒥𝜇𝜈 for 𝜇 < 𝜈. 𝒥𝜇𝜈 is an antisymmetric
tensor, hence an arbitrary Lorentz transformation (in the connected component of 1,
𝑆𝑂(1, 3)+) may be written as

Λ = exp

(︂
− 𝑖
2
𝜔𝜇𝜈𝒥 𝜇𝜈

)︂
. (B.19)

Note that 𝜔𝜇𝜈 can be taken to be antisymmetric WLOG, as the symmetric part will
vanish when contracted with 𝒥 𝜇𝜈 . The Lorentz algebra is:

[𝒥𝜇𝜈 ,𝒥𝜌𝜎] = 𝑖(𝑔𝜇𝜎𝒥𝜈𝜌 + 𝑔𝜈𝜌𝒥𝜇𝜎 − 𝑔𝜇𝜌𝒥𝜈𝜎 − 𝑔𝜈𝜎𝒥𝜇𝜌) (B.20)

The other way the generators of 𝑆𝑂(1, 3) are conventionally written is as a angular
momentum generator 𝐽𝑖 and a boost generator 𝐾𝑖 for 𝑖 ∈ {1, 2, 3}. This decompo-
sition comes from separating the time-like parts of 𝒥𝜇𝜈 from the space-like parts of
𝒥𝜇𝜈 . The generators are defined as

𝐽 𝑖 :=
1

2
𝜖𝑖𝑗𝑘𝒥𝑗𝑘 𝐾𝑖 := 𝒥 0𝑖. (B.21)

In particular, this implies the decomposition,

𝒥𝜇𝜈 =

⎛⎜⎜⎜⎜⎝
0 𝐾1 𝐾2 𝐾3

−𝐾1 0 𝐽3 −𝐽2

−𝐾2 −𝐽3 0 𝐽1

−𝐾3 𝐽2 −𝐽1 0

⎞⎟⎟⎟⎟⎠ 𝜔𝜇𝜈 =

⎛⎜⎜⎜⎜⎝
0 𝜆1 𝜆2 𝜆3

−𝜆1 0 𝜃3 −𝜃2
−𝜆2 −𝜃3 0 𝜃1

−𝜆3 𝜃2 −𝜃1 0

⎞⎟⎟⎟⎟⎠ , (B.22)

where the three boost parameters are 𝜆⃗ and the rotation parameters are 𝜃. They
satisfy the algebra:

[𝐽𝑖, 𝐽𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘

[𝐽𝑖, 𝐾𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐾𝑘 (B.23)

[𝐾𝑖, 𝐾𝑗] = −𝑖𝜖𝑖𝑗𝑘𝐽𝑘
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which makes it clear that the elements 𝐽𝑖 generate rotations (their algebra is so(3) ∼=
su(2)) and hence are generators of 𝑆𝑂(3).

The boost generators are more complicated, and do not generate anything as
simple as 𝑆𝑂(3). However, the algebra can be simplified dramatically by taking a
specific linear combination of the generators:

𝐽±𝑖 :=
1

2
(𝐽𝑖 ± 𝑖𝐾𝑖) (B.24)

These {𝐽±𝑖 } also generate so(1, 3). More importantly, their algebra is easier to deal
than how the Lorentz algebra was previously cast:

[𝐽±𝑖 , 𝐽
±
𝑗 ] = 𝑖𝜖𝑖𝑗𝑘𝐽

±
𝑘 [𝐽±𝑖 , 𝐽𝑗∓] = 0 (B.25)

This makes it explicit that {𝐽+
𝑖 } and {𝐽−𝑖 } each generate their own independent su(2)

subalgebra of so(1, 3). Because of this, the entire algebra so(1, 3) has a decomposition
as a sum,

so(1, 3) = su(2)⊕ su(2). (B.26)

B.4.1 Representation theory of the Lorentz group

Because the Lorentz group implements Lorentz transformations, understanding its
representation theory is crucial. Scalars, vectors, and tensors transform in different
representations of the Lorentz group. Consider a vector 𝑉𝜇. This lives in R4, and a
Lorentz transformation Λ ∈ 𝑆𝑂(1, 3) acts on the vector as:

𝑉 𝜇 ↦→ Λ𝜇𝜈𝑉
𝜈 . (B.27)

Suppressing the indices, this is 𝑉 ↦→ 𝐷(Λ)𝑉 , where 𝐷(Λ) has the components Λ𝜇𝜈 ,
i.e., 𝐷 is simply the identity. Thus whenever one works with vectors in special
relativity, one is simply using the fundamental representation of the Lorentz
group. Written out explicitly, this representation is 𝑖𝑑 : 𝑆𝑂(1, 3) → Aut(R4), Λ ↦→
Λ𝜇𝜈 . Here one views Λ ∈ 𝑆𝑂(1, 3) as an abstract element of a group (which is
defined as a matrix group), and one explicitly views 𝑖𝑑(Λ) as a 4 × 4 matrix which
has components Λ𝜇𝜈 . The fundamental representation by 4, its dimension.

In a similar way, scalars and tensors are also representations of the Lorentz group.
Scalars live in the singlet representation 1 since a scalar 𝜑 does not transform, i.e.,
𝐷(Λ)𝜑 = 𝜑. 2-tensors 𝑇 𝜇𝜈 live in the tensor product representation 16 = 4 ⊗ 4,
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because under a Lorentz transformation Λ ∈ 𝑆𝑂(1, 3) they transform as:

𝑇 𝜇𝜈 ↦→ Λ𝜇𝜌Λ
𝜈
𝜎𝑇

𝜌𝜎. (B.28)

This can be written out as a matrix equation 𝑇 ↦→ 𝐷(Λ)𝑇 , where 𝑇 is viewed as a
16 dimensional vector and 𝐷(Λ) = Λ ⊗ Λ ∈ Aut(R16) (viewing Λ as a matrix) is a
16× 16 dimensional matrix. Thus 2-tensors 𝑇 𝜇𝜈 live in the representation 16.

Unlike the representations 1 and 4, the representation 16 is a reducible repre-
sentation. Let (𝐷16, 𝑉16) be this representation. One defines 3 subspaces of 𝑉16 as
follows:

𝑊 :=

{︂
1

4
𝑇𝛼𝛼 𝑔

𝜇𝜈 : 𝑇 𝜇𝜈 ∈ 𝑉16
}︂

𝐴 :=

{︂
1

2
(𝑇 𝜇𝜈 − 𝑇 𝜈𝜇) : 𝑇 𝜇𝜈 ∈ 𝑉16

}︂
(B.29)

𝑆 :=

{︂
1

2
(𝑇 𝜇𝜈 + 𝑇 𝜈𝜇)− 1

4
𝑇𝛼𝛼 𝑔

𝜇𝜈 : 𝑇 𝜇𝜈 ∈ 𝑉16
}︂

These are respectively the subspaces of traces, antisymmetric tensors, and traceless
symmetric tensors. Note that dim(𝑊 ) = 1, dim(𝐴) = 6, and dim(𝑆) = 9, so they are
denoted respectively by 1, 6, and 9.

The space 𝑉16 of all 2-tensors splits as a direct sum of these subspaces, as each
tensor 𝑇 𝜇𝜈 can be written as a sum of a symmetric and antisymmetric component,
and the symmetric component can further be split into a trace part and a traceless
part. Thus one has the decomposition:

𝑉16 = 𝑊 ⊕ 𝐴⊕ 𝑆 (B.30)

which is written as 16 = 1⊕6⊕9 by denoting each irrep with its dimensionality. Fur-
thermore, each of these subspaces is invariant under the action of the Lorentz group
because tensor transformations preserve symmetry and antisymmetry, and trace is
a Lorentz singlet. The representation 6 of antisymmetric tensors is the adjoint rep-
resentation because the Lorentz group has 6 generators. The representation 9 of
symmetric traceless tensors is irreducible. 9 plays an important role in QFT, as one
often attempts to decompose tensor operators into a sum of tensors which live in
irreps of the Lorentz group4.

4In quantum mechanics, this procedure carried out for Euclidean tensors 𝑉𝑖𝑗 gives a similar
decomposition, and the corresponding decomposition of symmetric and traceless tensors gives an
irreducible tensor operator for which the Wigner-Eckart theorem can be applied (although because

237



§ B.4.1. Representation theory of the Lorentz group

From the decomposition in Eq. (B.26), one can classify all the irreps of so(1, 3)
using the decomposition theorem for irreps of a direct sum, which implies that the
irreps of a sum of Lie algebras are exactly the tensor products of their individual
irreps. The irreps of su(2) are uniquely labeled by a (half) integer 𝑗 ∈ {0, 1

2
, 1, 3

2
, ...},

and the corresponding irrep 𝜋𝑗 has dimension 2𝑗 + 1. Thus, one can label all the
irreps of 𝑆𝑂(1, 3) by a pair:

(𝑗+, 𝑗−) (B.31)

with 𝑗+, 𝑗− ∈ {0, 12 , 1, 32 , ...}, and (𝑗+, 𝑗−) denoting the tensor product representation
𝜋𝑗+ ⊗ 𝜋𝑗− . Note that the irrep (𝑗+, 𝑗−) has a dimensionality 𝐷𝑝,𝑞 given by,

𝐷𝑗+,𝑗− = dim(𝜋𝑗+ ⊗ 𝜋𝑗−) = (2𝑗+ + 1)(2𝑗− + 1), (B.32)

and furthermore, that the irrep of dimension k is the unique such irrep of that di-
mension.

The fundamental irrep 4 can be denoted in this convention as (1
2
, 1
2
), and the irrep

9 of symmetric traceless tensors is denoted (1, 1). If 𝑗+ + 𝑗− is an integer the irrep
(𝑗+, 𝑗−) is called a tensor representation and if 𝑗+ + 𝑗− is a half integer one calls
the irrep a spinor representation. The reason for this comes from QFT. If a field
lives in a tensor irrep, then it will have a Lorentz index, which is why a spin 1 particle
like the photon 𝐴𝜇 will have a single Lorentz index.

A spinor representation (𝑗+, 𝑗−) will have spinor indices and not Lorentz indices.
The example of this which should come to mind is Dirac spinors. The representations
(1
2
, 0) and (0, 1

2
) are equivalent the spin 1

2
representations of su(2), and so they are 2

dimensional and 𝐽+
𝑖 and 𝐽−𝑖 are represented on each by either the Pauli matrices, or

zero. Physically, these correspond to right and left handed spinors 𝜓𝐿 and 𝜓𝑅, which
is why these spinors have 2 components. The Dirac representation of 𝑆𝑂(1, 3)
(also called the bispinor representation) is the sum (1

2
, 0) ⊕ (0, 1

2
), and this is the

representation that one typically uses to study spin 1
2

particles in QFT. The basis
that shows this decomposition of (1

2
, 0)⊕ (0, 1

2
) explicitly is the Weyl basis, which is

why Weyl spinors decouple into 2 dimensional left and right spinors.
Of particular interest is the adjoint representation 6. Although 𝐷

1
2
,1 = 6, it is im-

portant to note that (1
2
, 1) and 6 are different representations. 6 can be decomposed

into a direct sum 6 = (1,0)⊕ (0,1), and so in fact 6 is a reducible tensor representa-
tion. Physically, this is because the antisymmetric field strength tensor 𝐹𝜇𝜈 must live
in a tensor representation because it is constructed from the photon field 𝐴𝜇. One

the dimensions are different this subspace is only 5 dimensional in QM)
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§ B.4.2. Weyl Spinors

can decompose 𝐹𝜇𝜈 into this invariant decomposition (1, 0)⊕ (0, 1) by taking specific
linear combinations of 𝐸⃗ and 𝐵⃗ which rotate into themselves under boosts, as these
spatial vectors live in the representations (1, 0) and (0, 1) which each have dimension
3.

To summarize, some of the most common irreps are enumerated in Table B.1.

Name (𝑗+, 𝑗−) label Dimension Irrep?
Singlet (0, 0) 1 Y

Left Weyl (𝜓𝑎) (1
2
, 0) 2 Y

Right Weyl (𝜓𝑎̇) (0, 1
2
) 2 Y

Dirac (bispinor) (1
2
, 0)⊕ (0, 1

2
) 4 N

Vector (𝑉𝜇) (1
2
, 1
2
) 4 Y

Adjoint (curvature 𝐹𝜇𝜈) (1, 0)⊕ (0, 1) 6 N
— (1, 1

2
) 6 Y

Symmetric Tensor (𝑆𝜇𝜈) (1, 1) 9 Y

Table B.1. Low dimensional representations of the Lorentz group.

B.4.2 Weyl Spinors

Spin 1
2

representations of the Lorentz group are important because they provide an
example of spinor representations, which fermions live in. In particular, the fun-
damental fermion fields in the Standard Model are all left-handed Weyl
or right-handed Weyl spinors, and so to understand the Standard Model it is
important to understand how Weyl spinors work.

Before diving into the indices that will be used to study these representations,
a good starting place is to see what Lorentz transformations actually look like in
the 𝐷𝐿 := (1

2
, 0) and 𝐷𝑅 := (0, 1

2
) representations of 𝑆𝑂(1, 3). For the left handed

representation, 𝑗+ = 1
2

and 𝑗− = 0, so,

𝐷𝐿(𝐽
+
𝑖 ) =

1

2
[𝐷𝐿(𝐽𝑖) + 𝑖𝐷𝐿(𝐾𝑖)] =

1

2
𝜎𝑖 𝐷𝐿(𝐽

−
𝑖 ) =

1

2
[𝐷𝐿(𝐽𝑖)− 𝑖𝐷𝐿(𝐾𝑖)] = 0.

(B.33)

This implies that in the left-handed Weyl irrep, the generators are mapped to:

(𝐽𝑖)𝐿 =
1

2
𝜎𝑖, (𝐾𝑖)𝐿 = −𝑖1

2
𝜎𝑖. (B.34)

The notation here uses the subscript 𝐿 to denote that 𝐽 𝑖 or 𝐾𝑖 is in the left-handed
Weyl representation, i.e., 𝐽 𝑖𝐿 = 𝐷𝐿(𝐽

𝑖), and applies likewise for 𝐾𝑖 and right-handed
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§ B.4.2. Weyl Spinors

spinors. This can be extended to show how a left-handed spinor 𝜓𝐿 transforms un-
der the Lorentz group. In the right handed representation 𝐷𝑅, 𝐷𝑅(𝐽

+
𝑖 ) = 0 and

𝐷𝑅(𝐽
−
𝑖 ) =

1
2
𝜎𝑖, so the boost generator flips sign:

(𝐽𝑖)𝑅 =
1

2
𝜎𝑖, (𝐾𝑖)𝑅 = 𝑖

1

2
𝜎𝑖. (B.35)

To perform a Lorentz transformation on a Weyl spinor in either the 𝐷𝐿 or 𝐷𝑅 rep-
resentations, one substitutes how the generators 𝐽𝑖 and 𝐾𝑖 look in the corresponding
representation, and then applies Eq. (??). Often these generators are packaged into
a tensor form,

𝑆𝜇𝜈𝐿 = 𝐷𝐿(𝒥 𝜇𝜈) 𝑆𝜇𝜈𝑅 = 𝐷𝑅(𝒥 𝜇𝜈), (B.36)

and so for an arbitrary Weyl spinor 𝜓𝐿 or 𝜓𝑅, 𝑆𝐿 and 𝑆𝑅 generate the corresponding
Lorentz transformation Λ with parameters 𝜔𝜇𝜈 as,

𝜓𝑎𝐿(𝑥) ↦→ exp

(︂
− 𝑖
2
𝜔𝜇𝜈𝑆

𝜇𝜈
𝐿

)︂𝑎
𝑏

𝜓𝑏(Λ−1𝑥) 𝜓𝑎̇𝑅(𝑥) ↦→ exp

(︂
− 𝑖
2
𝜔𝜇𝜈𝑆

𝜇𝜈
𝑅

)︂𝑎̇
𝑏̇

𝜓𝑏̇(Λ−1𝑥).

(B.37)

Compactly, the generators 𝑆𝐿 and 𝑆𝑅 in the left/right-handed Weyl irreps are related
by negation and conjugation:

(𝑆𝜇𝜈𝑅 )𝑏̇𝑎̇ = −[(𝑆𝜇𝜈𝐿 )𝑏𝑎]
*. (B.38)

Conventionally, one uses undotted indices 𝑎 to denote the 𝐷𝐿 = (1
2
, 0) represen-

tation, and dotted indices 𝑎̇ to denote the 𝐷𝑅 = (0, 1
2
) representation. This is helpful

because a Lorentz invariant can only be formed by contracting the same
type of indices, i.e., if 𝜑𝑎 and 𝜒𝑏̇ are a left and right handed spinor respectively
then 𝜑𝑎𝜒𝑎̇ is not Lorentz invariant. Hermitian conjugation interchanges dotted and
undotted indices, that is, it maps left handed spinors to right handed spinors and
vice versa. This is because of how the generators are defined as 𝐽±𝑖 = 1

2
(𝐽𝑖 ± 𝑖𝐾𝑖).

Since the 𝐽𝑖 and 𝐾𝑖 are hermitian, (𝐽±𝑖 )† = 𝐽∓𝑖 , which implies that † maps (1
2
, 0) into

(0, 1
2
), and vice versa. If 𝜓𝐿 is a left handed Weyl spinor, then it has an undotted

index 𝜓𝑎𝐿. However, its Hermitian conjugate is a right handed spinor, and so has a
dotted index, (𝜓†𝐿)

𝑎̇.
The Clebsch-Gordan theory for 𝑆𝑈(2) carries over to spin 1/2 particles. As an

example, consider a tensor 𝐶𝛼𝛽 which has two undotted indices, and therefore lives in
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§ B.4.3. Dirac and Majorana spinors

(1
2
, 0)⊗(1

2
, 0). One wishes to see if this is irreducible, or if it can be decomposed into a

sum of terms which each do not mix with one another. Since the first component has
the relation 1

2
⊗ 1

2
= 0⊕ 1 in 𝑆𝑈(2), this relation follows in the Lorentz algebra. Note

that the singlet 0 is antisymmetric and the triplet 1 is symmetric, so that implies that
one can decompose any tensor 𝐶𝑎𝑏 as:

𝐶𝑎𝑏 = 𝜖𝑎𝑏𝐷 +𝐺𝑎𝑏 (B.39)

where 𝜖𝑎𝑏 is the totally antisymmetric 2d Levi-Civita symbol:

𝜖12 = −𝜖21 = 1 = 𝜖21 = −𝜖12 (B.40)

and 𝐺𝑎𝑏 is a symmetric tensor, i.e. in matrix form:

𝜖𝑎𝑏 =

(︃
0 1

−1 0

)︃
𝜖𝑎𝑏 =

(︃
0 −1
1 0

)︃
. (B.41)

Note that 𝜖𝑎𝑏 = −𝜖𝑎𝑏, so it is important to keep the upper and lower indices in mind
when working with this symbol. The Levi-Civita symbol 𝜖 is also used to raise and
lower indices on spinors, i.e. 𝜓𝑎𝐿 = 𝜖𝑎𝑏(𝜓𝐿)𝑏.

B.4.3 Dirac and Majorana spinors

Although left- and right-handed Weyl spinors are the simplest types of spin 1
2

objects
that can be considered, one often works with different types of fermions and larger
dimensional representations. Another spin 1

2
representation that is frequently used is

the Dirac (bispinor) representation of (1
2
, 0)⊕(0, 1

2
). Spinors are often introduced

in this representation as it is easier to get here from the physics of quantum mechanics
than to start with the representation theory of the Lorentz group. Dirac fermions
are most easily expanded in the Weyl basis, in which the Dirac spinor is a four-
component spinor made by stacking a left-handed and right-handed spinor on top of
one another. Consider two left-handed fields, 𝜒𝑎 and 𝜉𝑎 (note they both start with a
lowered index). Then the Dirac spinor containing these fields is:

Ψ =

(︃
𝜒𝑎

𝜉†𝑎̇

)︃
. (B.42)
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§ B.4.3. Dirac and Majorana spinors

Care must be taken when working with these equations in spinor form. Because
indices are raised with 𝜖𝑎𝑏 = 𝑖𝜎2, when explicitly written out in components, this
implies the Dirac spinor is formed from 𝜒𝑎 and 𝜉𝑎 as:

Ψ =

(︃
𝜒𝑎

𝜖𝑎̇𝑏̇𝜉†
𝑏̇

)︃
=

(︃
𝜒

𝑖𝜎2𝜉*

)︃
(B.43)

since 𝜖𝑎𝑏 = 𝑖𝜎2 and 𝜖𝑎𝑏 = −𝑖𝜎2. The four 𝛾 matrices 𝛾𝜇 can be encoded as follows:

𝛾𝜇 =

(︃
0 𝜎𝜇

𝜎𝜇 0

)︃
𝛾5 =

(︃
−1 0

0 1

)︃
. (B.44)

When working with a Dirac fermion Ψ, one typically does not use the Hermitian
conjugate Ψ†, but rather consider the Dirac conjugate of Ψ,

Ψ = Ψ†𝛽, (B.45)

where as a matrix, 𝛽 = 𝛾0 (𝛽 is used here because 𝛾0 is part of a four vector 𝛾𝜇). To
see this is used, note that in the Weyl basis, the difference between Ψ† and Ψ is a
swapping of chiral components:

Ψ =
(︁
𝜉𝑎 𝜒†𝑎̇

)︁
Ψ† =

(︁
𝜒†𝑎̇ 𝜉𝑎

)︁
. (B.46)

This implies that 𝜒† and 𝜒 cannot be contracted, and one cannot form a Lorentz
invariant from them,

Ψ†Ψ = 𝜒†𝜒+ 𝜉†𝜉 = (𝜒†)𝑎̇𝜒𝑎 + 𝜉𝑎𝜉†𝑎̇, (B.47)

as can be clearly seen because 𝜒 and 𝜒† have different indices, one dotted and one
undotted. Consider instead Ψ. In this case, the correct left- and right-handed Weyl
spinors are contracted with one another, i.e., the dotted and undotted indices agree:

ΨΨ = 𝜉𝑎𝜒𝑎 + 𝜒†𝑎̇𝜉
†𝑎̇. (B.48)

When added to the Lagrangian, this is called the Dirac mass term. The full La-
grangian for a Dirac field is

ℒDirac = Ψ(𝑖𝛾𝜇𝜕𝜇 −𝑚)Ψ. (B.49)
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§ B.4.3. Dirac and Majorana spinors

When written in the Weyl basis, Eq. (B.49) splits into the two Weyl Lagrangians,
one for the left-handed field and another for the right-handed field.

Because most computational tools are for Dirac spinors, one often projects Dirac
spinors onto a state of definite chirality. This allows one to embed two-component
Weyl spinors into four-component Dirac spinors. Projectors onto the left- and right-
handed subspaces are given by,

𝑃𝐿 =
1

2
(1− 𝛾5) 𝑃𝑅 =

1

2
(1 + 𝛾5). (B.50)

For Standard Model calculations, these projectors will always be inserted in front of
the fermion fields that are being used since the Standard Model only contains Weyl
fermions. Using {𝛾𝜇, 𝛾5} = 0, one can rearrange the projectors, as 𝛾𝜇𝑃𝐿 = 𝑃𝑅𝛾

𝜇, and
this self-consistently connects spinors with the correct handedness as dictated by the
indices.

In the Dirac representation, the generators of the Lorentz group 𝒥 𝜇𝜈 may be
expanded using the 𝜎𝜇𝜈 matrices:

𝜎𝜇𝜈 =
𝑖

2
[𝛾𝜇, 𝛾𝜈 ]. (B.51)

The generator 𝐽𝜇𝜈 in the bispinor representation can be expressed as,

𝐷bispinor(𝒥 𝜇𝜈) =
1

2
𝜎𝜇𝜈 , (B.52)

which explains why 𝜎𝜇𝜈 plays such an important role in Dirac algebra computations.
This generator of the bispinor representation can also be related to the two generators
of the left- and right-handed representations,

1

2
𝜎𝜇𝜈 =

(︃
(𝑆𝜇𝜈𝐿 )𝑐𝑎 0

0 −(𝑆𝜇𝜈𝑅 )𝑎̇𝑐̇

)︃
. (B.53)

Weyl spinors can form mass terms as well. When one discusses massive chiral
fermions, one often usesMajorana spinors, which allows one to embed a chiral
Weyl fermion into the bispinor representation. Given a left-handed Weyl fermion 𝜓,
the spinor 𝜓†𝑎̇ is right-handed. The associated Majorana spinor Ψ is then constructed
as a Dirac spinor using 𝜓 and 𝜓†:

Ψ =

(︃
𝜓𝑎

𝜓†𝑎̇

)︃
=

(︃
𝜓

𝑖𝜎2𝜓*.

)︃
(B.54)

243



§ B.4.4. Spinor indices and invariant symbols

This is exactly how the Dirac spinor was defined, but the right-handed component is
𝜓†𝑎̇ = 𝜖𝑎̇𝑏̇𝜓†

𝑏̇
= 𝜖𝜓*. A Majorana fermion has two degrees of freedom and four

components, because it is in the bispinor representation but corresponds exactly to
a chiral Weyl fermion with 2 components. From a Majorana spinor, one can form a
mass term conventionally called a Majorana mass,

𝑚
(︀
𝜓𝜓 + 𝜓†𝜓†

)︀
= 𝑚

(︁
𝜖𝑎𝑏𝜓𝑎𝜓𝑏 + 𝜖𝑎̇𝑏̇𝜓†𝑎̇𝜓

†
𝑏̇

)︁
= 𝑚

(︀
𝜓𝑇 𝑖𝜎2𝜓 + 𝜓*𝑇 𝑖𝜎2𝜓*

)︀
. (B.55)

To determine if a Dirac spinor is Majorana, one can see if it satisfies the reality
constraint: a Dirac spinor Ψ is Majorana if and only if it equals its charge conjugate,

Ψ = ΨC. (B.56)

Charge conjugation will be defined rigorously in Appendix B.4.4, and essentially
switches the corresponding left- and right-handed fields inside the Dirac spinor. For
now, it suffices to observe that for a Dirac spinor made up of left-handed Weyl spinors
𝜒 and 𝜉:

Ψ =

(︃
𝜒𝑎

𝜉†𝑎̇

)︃
, (B.57)

its charge conjugate ΨC is:

ΨC =

(︃
𝜉𝑎

𝜒†𝑎̇

)︃
. (B.58)

A Dirac spinor is hence Majorana iff 𝜒 = 𝜉, i.e., if it is composed of the same spinor.
If Ψ is not Majorana, then its upper and lower components correspond to different
particles, and not simply conjugates of the same particle.

B.4.4 Spinor indices and invariant symbols

The Levi-Civita tensor is also called an invariant symbol of the Lorentz group,
because under boosts it does not change, i.e. for Λ ∈ 𝑆𝑂(1, 3),

𝐷𝐿(Λ)
𝑐
𝑎𝐷𝐿(Λ)

𝑑
𝑏𝜖𝑐𝑑 = 𝜖𝑎𝑏, (B.59)

just as the metric does not change under Lorentz transformations in the fundamen-
tal, i.e. Λ𝜌𝜇Λ

𝜎
𝜈𝑔𝜌𝜎 = 𝑔𝜇𝜈 . The close relation of 𝜖 to the metric 𝑔 means that one can

use the 𝜖 tensor to raise and dotted and undotted indices. In general, an invariant
symbol is a tensor which lives in the singlet representation. To find invariant symbols
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§ B.4.4. Spinor indices and invariant symbols

for specific representations / tensors, one can look at the Clebsch-Gordan decompo-
sition. Common invariant symbols that one will find and the corresponding tensor
decompositions are given in Table B.2; note the existence of an invariant symbol is a
direct result of the decomposition containing the singlet (0, 0). Because each invariant
symbol lives in a singlet representation, there is a generalized version of Eq. (B.59) for
each corresponding invariant, which one can use it to change indices with impunity
because the symbol will not change under Lorentz transformation.

Symbol Tensor decomposition
𝜖𝑎𝑏 (1

2
, 0)⊗ (1

2
, 0) = (0, 0)𝐴 ⊕ (1, 0)

𝜖𝑎̇𝑏̇ (0, 1
2
)⊗ (0, 1

2
) = (0, 0)𝐴 ⊕ (0, 1)

𝑔𝜇𝜈 (1
2
, 1
2
)⊗ (1

2
, 1
2
) = (0, 0)𝑆 ⊕ (0, 1)⊕ (1, 0)⊕ (1, 1)

𝜖𝜇𝜈𝛼𝛽 (1
2
, 1
2
)⊗4 = (0, 0)𝐴 ⊕ ...

𝜎𝜇
𝑎𝑏̇

(1
2
, 0)⊗ (0, 1

2
)⊗ (1

2
, 1
2
) = (0, 0)⊕ ...

Table B.2. Some common invariant symbols used in spinor analysis. Note that the
representation (1

2
, 1
2
) is the fundamental vector representation of the Lorentz group.

The subscripts 𝐴 and 𝑆 on the representations mean that they are either “antisym-
metric" or “symmetric".

As an example, the fundamental representation 4 is the same representation as
(1
2
, 1
2
). So, one should be able to translate the components of a four vector 𝑉𝜇 into

components of a tensor 𝑉𝑎𝑎̇. This is done with the invariant symbol 𝜎𝜇
𝑎𝑏̇

, and simply
contracting it with 𝑉𝜇 gives the desired components:

𝑉𝑎𝑎̇ = 𝜎𝜇𝑎𝑎̇𝑉𝜇. (B.60)

This is an explicit decomposition of the four-vector 𝑉𝜇 into components in the (1
2
, 1
2
)

representation of the Lorentz group.
Explicitly, the invariant symbol 𝜎𝜇𝑎𝑎̇ is given by the 𝜎𝜇 tensor, and has a counterpart

in the 𝜎 tensor,

𝜎𝜇 =
(︁
1 𝜎𝑖

)︁
, 𝜎𝜇 =

(︁
1 −𝜎𝑖

)︁
, (B.61)

𝜎𝜇𝑎𝑎̇ = 𝜎𝜇, 𝜎𝜇𝑎̇𝑎 = 𝜎𝜇. (B.62)

The generators 𝒥𝜇𝜈 in the (1
2
, 0) and (0, 1

2
) irreps can be covariantly expressed in terms

of 𝜎 and 𝜎 as,

(𝑆𝜇𝜈𝐿 )𝑏𝑎 =
𝑖

4
(𝜎𝜇𝜎𝜈 − 𝜎𝜈𝜎𝜇)𝑏𝑎, (𝑆𝜇𝜈𝑅 )𝑏̇𝑎̇ = −

𝑖

4
(𝜎𝜇𝜎𝜈 − 𝜎𝜈𝜎𝜇)𝑏̇𝑎̇. (B.63)
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B.4.5 Discrete symmetries

Because parity does not respect handedness, parity does not exist for Weyl spinors. To
include parity in a theory, one must consider the Dirac representation of (1

2
, 0)⊕(0, 1

2
).

The parity operator in the bispinor representation is just equal to 𝛾0, since this
connects 𝜓𝐿 ↦→ 𝜓𝑅 and 𝜓𝑅 ↦→ 𝜓𝐿,

𝐷bispinor(𝑃 ) = 𝛾0 =

(︃
0 1

1 0

)︃
. (B.64)

Charge conjugation 𝐶 is another symmetry that must be discussed. There are a
few ways to implement this symmetry. First, one can suppress all Dirac indices and
use spinor notation. On a bispinor Ψ, charge conjugation acts as:

Ψ
𝐶−→ −𝑖𝛾2Ψ* =: ΨC. (B.65)

If one instead uses spinor indices for Ψ, it is clear what this incredibly opaque defini-
tion is doing,

Ψ =

(︃
𝜒𝑎

𝜉†𝑎̇

)︃
↦→
(︃

0 −𝑖𝜎2

𝑖𝜎2 0

)︃(︃
𝜒*

𝜉†*

)︃
=

(︃
−𝑖𝜎2𝜉𝑎

𝑖𝜎2𝜒*

)︃
=

(︃
𝜖𝑎𝑏𝜉

𝑏

𝜖𝑎̇𝑏̇𝜒
†𝑏̇

)︃
(B.66)

as 𝜖𝑎𝑏 = 𝑖𝜎2 = −𝜖𝑎𝑏. The easiest way to remember this symmetry is through its
action on spinor indices. From this point of view, charge conjugation acts by
interchanging the left- and right-handed pieces inside Ψ and raising and
lowering the appropriate indices,(︃

𝜒𝑎

𝜉†𝑎̇

)︃
𝐶−→
(︃
𝜉𝑎

𝜒†𝑎̇

)︃
. (B.67)

Note that as a matrix, −𝑖𝛾2 appears because it contains the 𝜖 tensors,

−𝑖𝛾2 =
(︃

0 −𝑖𝜎2

𝑖𝜎2 0

)︃
=

(︃
0 𝜖𝑎𝑏

𝜖𝑎𝑏 0

)︃
. (B.68)

Conventionally, charge conjugation can also be defined as Ψ ↦→ 𝐶Ψ
𝑇 , where 𝐶 is

essentially the same matrix as −𝛾2, just block-diagonal, as in this definition the upper
and lower components of Ψ have already been flipped through Dirac conjugation.
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Explicitly:

𝐶 =

(︃
𝜖𝑎𝑏 0

0 𝜖𝑎𝑏

)︃
. (B.69)
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Appendix C

Gamma Matrices in 𝑑 = 4

C.1 Gamma Matrix Conventions

The Euclidean 𝛾 matrices are the set of 4 × 4 matrices in spin space {𝛾0, 𝛾1, 𝛾2, 𝛾3}
are constructed to satisfy the Dirac algebra,

{𝛾𝜇, 𝛾𝜈} = 2 𝛿𝜇𝜈 (C.1)

where there is an implicit multiplication by the matrix 14×4 on the right-hand side of
Eq. (C.1). There are a number of bases that one can express 𝛾𝜇 in; our work will use
the Weyl (chiral) basis,

𝛾0
·
=

(︃
0 𝑖𝜎1

−𝑖𝜎1 0

)︃
𝛾1

·
=

(︃
0 −𝑖𝜎2

𝑖𝜎2 0

)︃
𝛾2

·
=

(︃
0 𝑖𝜎3

−𝑖𝜎3 0

)︃
𝛾3

·
=

(︃
0 1

1 0

)︃
,

(C.2)

defined in terms of the 2× 2 identity matrix 1 and the Pauli matrices,

𝜎1 =

(︃
0 1

1 0

)︃
𝜎2 =

(︃
0 −𝑖
𝑖 0

)︃
𝜎3 =

(︃
1 0

0 −1

)︃
, (C.3)

unless otherwise specified. We use the notation ·
= to denote “equal to in a basis”,

in this case in the basis of Eq. (C.2). Note that in other conventions, 𝛾0 is often
expressed as 𝛾4. We also will not specify between upper and lower indices in Euclidean
spacetime, as the metric 𝛿𝜇𝜈 is trivial.

Chiral transformations are implemented by the Dirac matrix

𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3 (C.4)
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which, in the basis of Eq. (C.2), is

𝛾5
·
=

(︃
1 0

0 −1

)︃
. (C.5)

Observe that the Weyl basis is chosen to make 𝛾5 diagonal. From 𝛾5, we construct
left- and right-handed projectors,

𝑃𝐿 ≡
1− 𝛾5

2
·
=

(︃
0 0

0 1

)︃
𝑃𝑅 ≡

1 + 𝛾5
2

·
=

(︃
1 0

0 0

)︃
(C.6)

which projects a Dirac spinor 𝜓(𝑥) onto its left- and right-handed components.
Given a Dirac fermion 𝜓(𝑥), the charge-conjugate of 𝜓(𝑥) is the field,

𝜓𝑐(𝑥) ≡ 𝐶𝜓
𝑇
(𝑥) 𝐶 = −𝑖𝛾0𝛾2. (C.7)

Charge conjugation is discussed in greater depth in Appendix B.4. The operation
essentially evaluates 𝜓*(𝑥) in such a way that 𝜓𝑐(𝑥) has the proper Dirac fermion
structure. This is simplest to see in the index notation introduced in Appendix B.4,
as the index notation makes it clear what spinor quantities are Lorentz covariant: it
is rather opaque as formulated in Eq. (C.7).

C.2 Dirac Bilinears

We adopt the QDP convention for the basis of all Dirac matrix bilinears in 𝑑 = 4

Euclidean spacetime dimensions [305],

Γ𝑎 = 𝛾𝑎00 𝛾
𝑎1
1 𝛾

𝑎2
2 𝛾

𝑎3
3 (C.8)

where 𝑎 ∈ {0, 1, 2, ..., 15} is written in binary as (𝑎)base 2 = 𝑎3𝑎2𝑎1𝑎0 in terms of the
one-bit variables 𝑎𝑖 ∈ {0, 1}. For convenience, we list the 𝛾 matrix basis explicitly in
Table C.1 in terms of the bilinears

𝑆 = 1 𝑃 = 𝛾5 𝑉 𝜇 = 𝛾𝜇 𝐴𝜇 = 𝛾𝜇𝛾5 𝑇 𝜇𝜈 =
1

2
[𝛾𝜇, 𝛾𝜈 ] = 𝛾𝜇𝛾𝜈 . (C.9)
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Γ𝑎 Dirac Bilinear
Γ0 𝑆
Γ1 𝑉 0

Γ2 𝑉 1

Γ3 𝑇 01

Γ4 𝑉 2

Γ5 𝑇 02

Γ6 𝑇 12

Γ7 −𝐴3

Γ𝑎 Dirac Bilinear
Γ8 𝑉 3

Γ9 𝑇 03

Γ10 𝑇 13

Γ11 𝐴2

Γ12 𝑇 23

Γ13 −𝐴1

Γ14 𝐴0

Γ15 𝑃

Table C.1. Basis of Dirac bilinears {Γ𝑎}15𝑎=0, listed in terms of the bilinear structures
𝑆, 𝑃 , 𝑉 , 𝐴, and 𝑇 with the QDP++ 𝛾-matrix conventions [305].
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Appendix D

Fierz Identities

Fierz identities allow one to relate different combinations of indices of Dirac matrices
to one another in a linear fashion. Recall that in 𝑑 = 4 spacetime dimensions, there
are 16 independent Dirac bilinears {Γ𝑎}15𝑎=0 that may be written in terms of the 𝛾
matrices {𝛾0, 𝛾1, 𝛾2, 𝛾3} (Appendix C.2). We define a skew-symmetric 2-form on the
space {Γ𝑎}15𝑎=0 as

𝑔𝑎𝑏 ≡ Tr [Γ𝑎Γ𝑏] . (D.1)

We will treat 𝑔𝛼𝛽 as a metric to raise and lower tensor indices on this space, but note
that it is more similar to a symplectic form than to a proper metric. The Dirac Fierz
identities [306] state that

(Γ𝑎)𝑖𝑗(Γ𝑏)𝑘ℓ =
∑︁
𝑐𝑑

𝐶 𝑐𝑑
𝑎𝑏 (Γ𝑐)𝑖ℓ(Γ𝑑)𝑘𝑗 (D.2)

where the tensor 𝐶 𝑐𝑑
𝑎𝑏 essentially acts as a curvature is defined as

𝐶 𝑐𝑑
𝑎𝑏 = 𝑔𝑐𝑒𝑔𝑑𝑓𝐶𝑎𝑏𝑒𝑓 , 𝐶𝑎𝑏𝑐𝑑 ≡ Tr [Γ𝑎Γ𝑏Γ𝑐Γ𝑑] . (D.3)

These coefficients 𝐶 𝑐𝑑
𝑎𝑏 can be precomputed with standard Dirac algebra manipula-

tions and explicitly used to convert between these two configurations of indices on
Dirac bilinears.

There are additional color Fierz identities that play a similar role in rewriting the
indices of products of 𝑆𝑈(3) generators. Let 𝑡𝑎 ∈ su(3) denote the 8 generators of
the algebra. The color Fierz identities state that [306]

𝑡𝑎𝑖𝑘𝑡
𝑎
𝑗ℓ =

1

2

(︂
𝛿𝑖ℓ𝛿𝑗𝑘 −

1

3
𝛿𝑖𝑘𝛿𝑗ℓ

)︂
, (D.4)

and can be used to simplify color algebra.
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In this work, Fierz identities have played a important role in simplifying opera-
tor bases used in the renormalization of short-distance 0𝜈𝛽𝛽 decay operators (Sec-
tion 5.5).

For the vector operators 𝒱𝜇1′ and 𝒱𝜇2′ (Eq. (??)), the color Fierz identities are first
applied to rewrite 𝑡𝑎 in terms of open and closed Takahashi brackets:

𝒱𝜇1′ =
1

2
(𝑢𝛾𝜇𝑃𝐿𝑑][𝑢𝑃𝑅𝑑)−

1

6
(𝑢𝛾𝜇𝑃𝐿𝑑)[𝑢𝑃𝑅𝑑] + (𝐿↔ 𝑅)

=
1

4
((𝑉 𝜇][𝑆)− (𝐴𝜇][𝑃 ))− 1

12
(𝑉 𝜇𝑆 − 𝐴𝜇𝑃 ) ,

𝒱𝜇2′ =
1

2
(𝑢𝛾𝜇𝑃𝐿𝑑][𝑢𝑃𝐿𝑑)−

1

6
(𝑢𝛾𝜇𝑃𝐿𝑑)[𝑢𝑃𝐿𝑑] + (𝐿↔ 𝑅)

=
1

4
((𝑉 𝜇][𝑆) + (𝐴𝜇][𝑃 ))− 1

12
(𝑉 𝜇𝑆 + 𝐴𝜇𝑃 )

(D.5)

Here a Takahashi bracket around a pair of Dirac bilinears denotes the color and Dirac
indices are contracted in a different pattern, for example the contraction (Γ1][Γ2) =

𝑢𝑎𝛼 (Γ1)𝛼𝛽 𝑑
𝑏
𝛽 𝑢

𝑏
𝛾 (Γ2)𝛾𝛿 𝑑

𝑎
𝛿 . The spinor Fierz transformation may now be applied to

compute the color-mixed pieces, which yields

(𝑉 𝜇][𝑆) =
1

2

(︂
𝑉 𝜇𝑆 +

𝑖

2
𝜖𝜇𝜈𝛼𝛽𝐴𝜈𝑇𝛼𝛽

)︂
,

(𝐴𝜇][𝑃 ) =
1

2
(𝐴𝜇𝑃 − 𝑇 𝜇𝜈𝑉 𝜈) .

(D.6)
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Appendix E

Mathematical Background for

Nevanlinna-Pick Interpolation

E.1 Hardy Spaces

For 1 ≤ 𝑝 ≤ ∞, the Hardy space 𝐻𝑝 is defined as the set of holomorphic functions
on the disk 𝑓 : D→ D such that

||𝑓 ||𝑝 := sup
0≤𝑟<1

||𝑓𝑟||𝐿𝑝(T) <∞, (E.1)

where 𝑓𝑟 is the angular function defined on the unit circle T := 𝜕D as

𝑓𝑟 : T→ D 𝑓𝑟(𝑒
𝑖𝜃) := 𝑓(𝑟𝑒𝑖𝜃). (E.2)

The Hardy spaces (𝐻𝑝, || · ||𝑝) are Banach spaces. The 𝐿𝑝(T)-norm || · ||𝐿𝑝(T) for
complex-valued functions 𝑔 : T→ C on T is defined for 1 ≤ 𝑝 <∞ as

||𝑔||𝐿𝑝(T) :=

(︂∫︁
T
|𝑔|𝑝𝑑𝑚

)︂ 1
𝑝

=

(︂
1

2𝜋

∫︁ 2𝜋

0

|𝑔(𝑒𝑖𝜃)|𝑑𝜃
)︂ 1

𝑝

, (E.3)

where 𝑚 is the normalized Lebesgue measure on T, i.e. 𝑑𝑚(𝜃) = 𝑑𝜃/2𝜋. For 𝑝 =∞,
the ∞-norm is defined as the essential supremum of |𝑔|,

||𝑓 ||𝐿∞(T) := ess supT |𝑔|, := inf{𝑎 ∈ R : |𝑔| ≤ 𝑎 a.e.} (E.4)

where the essential supremum acts as a supremum except on sets of measure zero.

For 1 ≤ 𝑝 ≤ ∞, the definition (Eq. E.1) of 𝐻𝑝 implies that for any 𝑓 ∈ 𝐻𝑝, the
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radial limit of 𝑓 ,
𝑓(𝜃) := lim

𝑟↑1
𝑓(𝑟𝑒𝑖𝜃) (E.5)

exists a.e. as a map 𝑓 : T→ D and is finite, with 𝐿𝑝(T) norm

||𝑓 ||𝐿𝑝(T) = ||𝑓 ||𝑝. (E.6)

The function 𝑓 may be obtained from its radial limit 𝑓 by convolution,

𝑓(𝑟𝑒𝑖𝜃) = 𝑃𝑟 * 𝑓 :=

∫︁
T
𝑃𝑟(𝑡− 𝜃)𝑓(𝑒𝑖𝑡) 𝑑𝑚(𝑡) =

1

2𝜋

∫︁ 2𝜋

0

𝑃𝑟(𝑡− 𝜃)𝑓(𝑒𝑖𝑡) 𝑑𝑡, (E.7)

where 𝑃𝑟(𝜃) is the Poisson kernel,

𝑃𝑟(𝜃) :=
1− 𝑟2
|1− 𝑟𝑒𝑖𝜃|2 . (E.8)

Note that because the map [1,∞] ∋ 𝑝 ↦→ ||𝑓 ||𝑝 is non-decreasing for any 𝑓 ∈ Hol(D),
we have the increasing tower 𝐻∞ ⊆ 𝐻𝑝 ⊆ 𝐻𝑞 ⊆ 𝐻1 for any 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞.

E.2 Matrix-vector notation for continued fractions

The continued fractions expansion used in Chapter 4 are often denoted with a matrix-
vector multiplication, and it remains to show that this notation is well-defined. Let
𝑎, 𝑏, 𝑐, 𝑑, 𝑔 : D → D be analytic functions, and define 𝑓 : D → D via the continued
fractions expansion,

𝑓(𝜁) =
𝑎(𝜁)𝑔(𝜁) + 𝑏(𝜁)

𝑐(𝜁)𝑔(𝜁) + 𝑑(𝜁)
=: 𝐹 (𝜁)𝑔(𝜁) 𝐹 (𝜁) :=

(︃
𝑎(𝜁) 𝑏(𝜁)

𝑐(𝜁) 𝑑(𝜁)

)︃
(E.9)

Note that one may regard 𝑔(𝜁) in the above equation as the column vector 𝑔(𝜁) →(︃
𝑔(𝜁)

1

)︃
. This notation is degenerate in that scalar multiplication of a matrix 𝐹 (𝜁)

by 𝑎 ̸= 0 does not change its action on functions. If 𝐹 (𝜁) → 𝑎𝐹 (𝜁), this multiplies
both the numerator and the denominator of the resulting matrix-vector product by
𝑎, which cancels out. For example, in the definition of 𝑈𝑛(𝜁) in Eq. (4.81), the

normalization of the matrix by 1/
√︁
1−

⃒⃒
𝑤

(𝑛−1)
𝑛

⃒⃒2 does not affect the final value of
any continued fractions expansion containing 𝑈𝑛.

To make this notation well-defined, one shows that matrix-matrix and matrix-
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vector products yield the equivalent function compositions, and that matrix inversion
corresponds to the inverse function composition.

∙ As in the case of 𝑔 →
(︃
𝑔

1

)︃
, functions 𝑔 are regarded as column vectors whose

top component is their numerator and whose bottom component is their denom-
inator. In this way, matrix-vector multiplication exactly reproduces function
composition. To see this, Eq. (E.9) is recast in this notation,(︃

num(𝑓)

denom(𝑓)

)︃
=

(︃
𝑎(𝜁) 𝑏(𝜁)

𝑐(𝜁) 𝑑(𝜁)

)︃(︃
𝑔(𝜁)

1

)︃
=

(︃
𝑎(𝜁)𝑔(𝜁) 𝑏(𝜁)

𝑐(𝜁)𝑔(𝜁) 𝑑(𝜁)

)︃
, (E.10)

which equals 𝑓(𝜁) = 𝑎(𝜁)𝑔(𝜁)+𝑏(𝜁)
𝑐(𝜁)𝑔(𝜁)+𝑑(𝜁)

, as desired.

∙ Matrix-matrix multiplication preserves function composition. Consider expand-
ing 𝑔(𝜁) as a continued fraction in terms of ℎ(𝜁).

𝑔(𝜁) =
𝑎′(𝜁)ℎ(𝜁) + 𝑏′(𝜁)

𝑐′(𝜁)ℎ(𝜁) + 𝑑′(𝜁)
=

(︃
𝑎′(𝜁) 𝑏′(𝜁)

𝑐′(𝜁) 𝑑′(𝜁)

)︃
ℎ(𝜁). (E.11)

The expansion of 𝑓(𝜁) (Eq. (E.9)) in terms of ℎ(𝜁) is

𝑓(𝜁) =
𝑎(𝜁)𝑎

′(𝜁)ℎ(𝜁)+𝑏′(𝜁)
𝑐′(𝜁)ℎ(𝜁)+𝑑′(𝜁) + 𝑏(𝜁)

𝑐(𝜁)𝑎
′(𝜁)ℎ(𝜁)+𝑏′(𝜁)
𝑐′(𝜁)ℎ(𝜁)+𝑑′(𝜁) + 𝑑(𝜁)

=
𝑎(𝜁)𝑎′(𝜁)ℎ(𝜁) + 𝑎(𝜁)𝑏′(𝜁) + 𝑏(𝜁)𝑐′(𝜁)ℎ(𝜁) + 𝑏(𝜁)𝑑′(𝜁)

𝑐(𝜁)𝑎′(𝜁)ℎ(𝜁) + 𝑐(𝜁)𝑏′(𝜁) + 𝑑(𝜁)𝑐′(𝜁)ℎ(𝜁) + 𝑑(𝜁)𝑑′(𝜁)
.

(E.12)

For the notation to be well-defined, 𝐹 (𝜁)𝐹 ′(𝜁)ℎ(𝜁) must equal this value, where

𝐹 ′(𝜁) =

(︃
𝑎′(𝜁) 𝑏′(𝜁)

𝑐′(𝜁) 𝑑′(𝜁)

)︃
. Upon computation,

𝐹 (𝜁)𝐹 ′(𝜁)ℎ(𝜁) =

(︃
𝑎(𝜁) 𝑏(𝜁)

𝑐(𝜁) 𝑑(𝜁)

)︃(︃
𝑎′(𝜁) 𝑏′(𝜁)

𝑐′(𝜁) 𝑑′(𝜁)

)︃(︃
ℎ(𝜁)

1

)︃

=

(︃
𝑎(𝜁) 𝑏(𝜁)

𝑐(𝜁) 𝑑(𝜁)

)︃(︃
𝑎′(𝜁)ℎ(𝜁) + 𝑏′(𝜁)

𝑐′(𝜁)ℎ(𝜁) + 𝑑′(𝜁)

)︃

=

(︃
𝑎(𝜁)𝑎′(𝜁)ℎ(𝜁) + 𝑎(𝜁)𝑏′(𝜁) + 𝑏(𝜁)𝑐′(𝜁)ℎ(𝜁) + 𝑏(𝜁)𝑑′(𝜁)

𝑐(𝜁)𝑎′(𝜁)ℎ(𝜁) + 𝑐(𝜁)𝑏′(𝜁) + 𝑑(𝜁)𝑐′(𝜁)ℎ(𝜁) + 𝑑(𝜁)𝑑′(𝜁)

)︃
,

(E.13)
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it is clear that this exactly yields Eq. (E.12).

∙ Matrix inversion: Matrix inversion must correspond to inverting the continued
fractions expansion. Upon inverting Eq. (E.9) for 𝑔(𝜁),

𝑔(𝜁) =
𝑑(𝜁)𝑓(𝜁)− 𝑏(𝜁)
−𝑐(𝜁)𝑓(𝜁) + 𝑎(𝜁)

. (E.14)

The inverse of the 2×2 matrix (neglecting the scale factor from the determinant)
is

𝐹 (𝜁)−1 =

(︃
𝑑(𝜁) −𝑏(𝜁)
−𝑐(𝜁) 𝑎(𝜁)

)︃
, (E.15)

which is exactly the matrix representation of Eq. (E.14).

E.3 Blaschke Products

For a given set of points {𝜁𝑘}, the Blaschke factors 𝑏𝑘(𝑧) and their product 𝐵𝑁(𝑧),

𝑏𝑘(𝑧) ≡
|𝜁𝑘|
𝜁𝑘

𝜁𝑘 − 𝑧
1− 𝜁*𝑘𝑧

𝐵𝑁(𝑧) ≡
𝑁∏︁
𝑘=1

𝑏𝑘(𝑧) (E.16)

are interesting to study in their own right [136, 307], as their properties inform many
properties of the Nevanlinna coefficients 𝑃𝑁 , 𝑄𝑁 , 𝑅𝑁 , and 𝑆𝑁 . Note that the points
where the interpolation problem is fixed, 𝜁𝑘, all lie on the real axis in D,

𝜁𝑘 = ℎ(𝑖𝜔𝑘) ∈ D ∩ R (E.17)

since the Matsubara frequencies are purely imaginary. With this simplification, the
phase factor can be neglected,

𝑏𝑘(𝑧) =
𝜁𝑘 − 𝑧
1− 𝜁𝑘𝑧

. (E.18)

There are two main regions to consider 𝑏𝑘 and 𝐵𝑁 : on the real axis of D, and as
we approach the boundary of D. In the first case, note that by construction, 𝑏𝑘(𝑧)
must vanish as we approach 𝜁𝑘, hence we expect 𝐵𝑁(𝑧) to have 𝑁 zeros at {𝜁𝑘}𝑁𝑘=1.
Fig. E.1 shows the Mobiüs transform of the first 20 nonzero Matsubara frequencies,
𝜁𝑘, on a lattice with 𝛽 = 48, along with the corresponding Blaschke factors 𝑏𝑘 and
the Blaschke product 𝐵𝑁 . Note that each 𝑏𝑘 vanishes at the corresponding 𝜁𝑘. The
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Blaschke product 𝐵𝑁 is very small in the bulk of the disk D, but approaches 1 at the
boundary of the disk, 𝜕D.
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Figure E.1. Evaluation of the Blaschke factors and the Blaschke product on the
real axis of the disk, D∩R. The Mobiüs transform of the Matsubara frequencies, 𝜁𝑘,
are shown in red, while the Blaschke product 𝐵𝑁 is the black curve, and the colored
curves are the corresponding Blaschke factors 𝑏𝑘. The depicted Matsubara frequencies
are the first 20 non-zero frequencies on a lattice with temporal extent 𝛽 = 48.

The fact that 𝐵𝑁(𝑧) → 1 as 𝑧 → D is not a coincidence, and can be seen by
considering the behavior of each Blaschke factor 𝑏𝑘(𝑧) as one approaches 𝜕D. As
𝑧 → 𝑒𝑖𝛼 ∈ 𝜕D, one can expand out the individual Blaschke product 𝑏𝑘(𝑧) as

𝑏𝑘(𝑧)→
𝜁𝑘 − 𝑒𝑖𝛼
1− 𝜁𝑘𝑒𝑖𝛼

(︂
1 + 𝜁𝑘𝑒

−𝑖𝛼

1 + 𝜁𝑘𝑒−𝑖𝛼

)︂
= 𝑒−𝑖𝛼

(︂
𝜁2𝑘 − 1

1− 2𝜁𝑘 sin𝛼− 𝜁2𝑘

)︂
. (E.19)

Note that 𝛼 = 0 corresponds to evaluation of the Blaschke factor on the real axis, as
in Fig. E.1, and we see that |𝑏𝑘(𝑧)| → 1 in this case, as is depicted in the data.

What does 𝐵𝑁(𝑧) look like for 𝛼 ̸= 0? We can prove a general bound with the
(reverse) triangle inequality,

|𝑏𝑘(𝑧)| =
⃒⃒⃒⃒
𝜁𝑘 − 𝑧
1− 𝜁𝑘𝑧

⃒⃒⃒⃒
≥ ||𝑧| − |𝜁𝑘||

1 + |𝜁𝑘𝑧|
|𝑧|→1−−−→ 1− |𝜁𝑘|

1 + |𝜁𝑘|
. (E.20)

If we plot the Blaschke factors on an evaluation contour ℎ(𝜔+𝑖𝜂), we can numerically
study its behavior. We see that as we approach 1 ∈ D (equivalently, 𝜔 → ∞ where
𝜔 + 𝑖𝜂 ∈ C+ is the domain of the Matsubara frequencies), the Blaschke factors all
approach 1, while as we approach −1 ∈ D (equivalently, 𝜔 → 0) the Blaschke factors
do not approach 1 at fixed 𝜂. However, varying 𝜂 and sending 𝜂 ↓ 0 sends each
Blaschke factor to 1 asymptotically.
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Figure E.2. Blaschke factors evaluated on the evaluation contour ℎ(𝜔+ 𝑖𝜂) ∈ D, for
𝜔 ∈ [0, 2] and 𝜂 = 0.01. The further 𝜁𝑘 is from the boundary of the disk, the closer
𝑏𝑘 remains to 1.
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Appendix F

Three-Point Contractions for

Short-Distance 𝜋−→ 𝜋+𝑒−𝑒−

The correlation functions of Eq. (5.20) can be written in terms of the following con-
traction structures,

1
Γ1Γ2

=
∑︁
𝑥

Tr
[︀
𝛾5Γ1𝑆𝑑(𝑡− → 𝑥)𝑆†𝑢(𝑡− → 𝑥)

]︀
· Tr

[︀
𝛾5Γ2𝑆𝑑 (𝑡+ → 𝑥)𝑆†𝑢(𝑡+ → 𝑥)

]︀
+ (𝑡− ↔ 𝑡+),

2
Γ1Γ2

=
∑︁
𝑥

Tr[𝛾5Γ1𝑆𝑑(𝑡− → 𝑥)𝑆†𝑢(𝑡− → 𝑥)𝛾5Γ2𝑆𝑑(𝑡+ → 𝑥)𝑆†𝑢(𝑡+ → 𝑥)] + (𝑡− ↔ 𝑡+),

3
Γ1Γ2

=
∑︁
𝑥

TrC[TrD[𝛾5Γ1𝑆𝑑(𝑡− → 𝑥)𝑆†𝑢(𝑡− → 𝑥)] · TrD[𝛾5Γ2𝑆𝑑(𝑡+ → 𝑥)𝑆†𝑢(𝑡+ → 𝑥)]]

+ (𝑡− ↔ 𝑡+),

4
Γ1Γ2

=
∑︁
𝑥

TrD[TrC[𝛾5Γ1𝑆𝑑(𝑡− → 𝑥)𝑆†𝑢(𝑡− → 𝑥)] · TrC[𝛾5Γ2𝑆𝑑(𝑡+ → 𝑥)𝑆†𝑢(𝑡+ → 𝑥)]]

+ (𝑡− ↔ 𝑡+),

(F.1)

where Γ1,Γ2 are arbitrary Dirac matrices, TrC (TrD) denotes a color (spin) trace,
Tr = TrC ∘ TrD denotes a full trace, and 𝑥 = (𝑥, 𝑡𝑥). Propagators 𝑆(𝑡src → 𝑥) are
computed with a zero three-momentum wall source at time 𝑡src ∈ {𝑡−, 𝑡+} and a point
sink at time 𝑡𝑥,

𝑆(𝑡src → 𝑥) ≡
∑︁
𝑦

𝑆((𝑦, 𝑡src)→ (𝑥, 𝑡𝑥)). (F.2)
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With the definitions of Eq. (F.1), the correlation functions are evaluated as

𝒞1(𝑡−, 𝑡𝑥, 𝑡+) = −
1

4

[︁
1
𝑉 𝑉
− 2

𝑉 𝑉
− 1

𝐴𝑉
+ 2

𝐴𝑉
+ 1

𝑉 𝐴
− 2

𝑉 𝐴
− 1

𝐴𝐴
+ 2

𝐴𝐴

]︁
,

𝒞2(𝑡−, 𝑡𝑥, 𝑡+) = −
1

2

[︁
1
𝑆𝑆
− 2

𝑆𝑆
+ 1

𝑃𝑃
− 2

𝑃𝑃

]︁
,

𝒞3(𝑡−, 𝑡𝑥, 𝑡+) = −
1

2

[︁
1
𝑉 𝑉
− 2

𝑉 𝑉
+ 1

𝐴𝐴
− 2

𝐴𝐴

]︁
,

𝒞1′(𝑡−, 𝑡𝑥, 𝑡+) = −
1

4

[︁
3
𝑉 𝑉
− 4

𝑉 𝑉
− 3

𝐴𝑉
+ 4

𝐴𝑉
+ 3

𝑉 𝐴
− 4

𝑉 𝐴
− 3

𝐴𝐴
+ 4

𝐴𝐴

]︁
,

𝒞2′(𝑡−, 𝑡𝑥, 𝑡+) = −
1

2

[︁
3
𝑆𝑆
− 4

𝑆𝑆
+ 3

𝑃𝑃
− 4

𝑃𝑃

]︁
,

(F.3)

where 𝑆 = 1, 𝑃 = 𝛾5, 𝑉 = 𝛾𝜇, and 𝐴 = 𝛾𝜇𝛾5.
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Appendix G

Effective Matrix Elements for

Short-Distance 𝜋−→ 𝜋+𝑒−𝑒−

Figs. (G.1)-(G.4) display the remaining fits to the effective matrix elements (Eq. (5.22))
that were not depicted in Fig. (5.8). The fit procedure is described in Section 5.3.1
of the main text. The number of gauge field configurations per ensemble used in
each matrix element extraction, 𝑛cfgs, and the corresponding bare matrix elements in
lattice units, Eq. (5.21), are shown in Table G.1.

Ensemble 𝑎𝑚ℓ 𝑛cfgs 𝑎4⟨𝜋+|𝒪1|𝜋−⟩ 𝑎4⟨𝜋+|𝒪2|𝜋−⟩ 𝑎4⟨𝜋+|𝒪3|𝜋−⟩ 𝑎4⟨𝜋+|𝒪1′ |𝜋−⟩ 𝑎4⟨𝜋+|𝒪2′|𝜋−⟩

24I 0.01 52 -0.005804(41) -0.010023(91) 0.0003442(16) -0.01794(13) 0.002445(22)
0.005 53 -0.004891(38) -0.00834(11) 0.0001742(14) -0.01533(12) 0.002043(26)

32I
0.008 33 -0.001862(17) -0.002917(34) 0.00008286(58) -0.005791(53) 0.0007248(86)
0.006 42 -0.001644(16) -0.002587(36) 0.00005600(40) -0.005145(50) 0.0006445(87)
0.004 47 -0.001482(15) -0.002331(31) 0.00003391(40) -0.004669(47) 0.0005822(78)

Table G.1. Determination of bare matrix elements 𝑎4⟨𝜋+|𝒪𝑘(𝑝 = 0)|𝜋−⟩ on each
ensemble for each operator 𝒪𝑘(𝑥) in the BSM basis, Eq. (5.12), extracted from fits
to the effective matrix elements (Eq. (5.22)) as described in the text. The effective
matrix elements are computed on 𝑛cfgs configurations on the respective ensemble.
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Figure G.1. Effective matrix elements, Eq. (5.22), for the operators 𝒪𝑘(𝑝 = 0) on
the 24I, 𝑎𝑚ℓ = 0.01 ensemble. The constant grey band denotes the fit results for
each bare, dimensionless matrix element 𝑎4⟨𝜋+|𝒪𝑘(𝑝 = 0)|𝜋−⟩, and the colored data
points and colored band denote the effective matrix element data and extrapolation
band, respectively. The fit procedure is detailed in Section 5.3.1.
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Figure G.2. As in Fig. (G.1), for the 24I, 𝑎𝑚ℓ = 0.005 ensemble.
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Figure G.3. As in Fig. (G.1), for the 32I, 𝑎𝑚ℓ = 0.008 ensemble.
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Figure G.4. As in Fig. (G.1), for the 32I, 𝑎𝑚ℓ = 0.006 ensemble.
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Appendix H

Vector and Axial-Vector

Renormalization Coefficients for

Short-Distance 𝜋−→ 𝜋+𝑒−𝑒−

Calculation of the scale and scheme-independent vector and axial-vector-current renor-
malization coefficients 𝒵𝑗(𝑎), with 𝑗 ∈ {𝑉,𝐴}, proceeds through the vector (Eq. (5.56))
and axial-vector three-point functions,

𝐺𝜇
𝐴(𝑞; 𝑎,𝑚ℓ) =

1

𝑉

∑︁
𝑥,𝑥1,𝑥2

𝑒𝑖(𝑝1·𝑥1−𝑝2·𝑥2+𝑞·𝑥)⟨0|𝑢(𝑥1)𝐴𝜇(𝑥)𝑑(𝑥2)|0⟩, (H.1)

where 𝐴𝜇(𝑥) = 𝑢(𝑥)𝛾𝜇𝛾5𝑑(𝑥). The momenta 𝑝1, 𝑝2, and 𝑞 are subject to the symmetric
constraint, Eq. (5.46), and parameterized identically to the modes used in the calcu-
lation of the four-quark operator renormalizations (Eq. (5.47)) with 𝑘 ∈ {2, 3, 4, 5}.
The lattice spacing dependence is made explicit in this section. The amputated three-
point functions

Λ𝜇𝑗 (𝑞; 𝑎,𝑚ℓ) = 𝑆−1(𝑝1; 𝑎,𝑚ℓ)𝐺
𝜇
𝑗 (𝑞; 𝑎,𝑚ℓ)𝑆

−1(𝑝2; 𝑎,𝑚ℓ), (H.2)

with 𝑗 ∈ {𝑉,𝐴}, are used to compute the renormalization coefficients,

1

12𝑞2
𝒵𝑉 (𝜇2; 𝑎,𝑚ℓ)

𝒵RI/sMOM
𝑞 (𝜇2; 𝑎,𝑚ℓ)

Tr [𝑞𝜇Λ
𝜇
𝑉 (𝑞; 𝑎,𝑚ℓ)/̃𝑞]

⃒⃒⃒⃒
sym

= 1,

1

12𝑞2
𝒵𝐴(𝜇2; 𝑎,𝑚ℓ)

𝒵RI/sMOM
𝑞 (𝜇2; 𝑎,𝑚ℓ)

Tr [𝑞𝜇Λ
𝜇
𝐴(𝑞; 𝑎,𝑚ℓ)𝛾5/̃𝑞]

⃒⃒⃒⃒
sym

= 1,

(H.3)
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Short-Distance 𝜋− → 𝜋+𝑒−𝑒−

where 𝑝𝜇 = 2
𝑎
sin(𝑎

2
𝑝𝜇) is the lattice momentum. Note that the quark-field renormal-

ization in Eq. (H.3) is defined in the RI/sMOM scheme [211],

𝒵RI/sMOM
𝑞 (𝜇2; 𝑎,𝑚ℓ)

⃒⃒⃒⃒
𝑝2=𝜇2

=
𝑖

12𝑝2
Tr[𝑆−1(𝑝; 𝑎,𝑚ℓ)/̃𝑝]

⃒⃒⃒⃒
𝑝2=𝜇2

, (H.4)

which differs from the RI𝛾 scheme [212] of Eq. (5.55); 𝒵𝑉 and 𝒵𝐴 are scheme-
independent, hence may be computed in any scheme. The chiral limits 𝒵𝑉 (𝜇2; 𝑎)

and 𝒵𝐴(𝜇2; 𝑎) of 𝒵𝑉 (𝜇2; 𝑎,𝑚ℓ) and 𝒵𝐴(𝜇2; 𝑎,𝑚ℓ) are evaluated by a joint, correlated
linear extrapolation of {𝒵RI/sMOM

𝑞 ,𝒵𝑉 ,𝒵𝐴} in 𝑚ℓ, identical to the procedure used in
the 𝑎𝑚ℓ → 0 extrapolation of {𝒵RI𝛾

𝑞 /𝒵𝑉 , 𝐹𝑛𝑚}, as described in Section 5.5 of the text
(Eqs. (5.50)-(5.57)).
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Figure H.1. Vector and axial-vector renormalization coefficients computed by the
procedure described in the text, and extrapolated to 𝜇2 = 0 with the model given
in Eq. (H.5). The red data points are the computed data, Eq. (H.3), the blue bands
show the extrapolation to 𝜇2 → 0, and the green bands denote the chiral limit value
of 𝒵𝐴 and 𝒵𝑉 computed in Refs. [12, 206].
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§ Appendix H. Vector and Axial-Vector Renormalization Coefficients for
Short-Distance 𝜋− → 𝜋+𝑒−𝑒−

Although the renormalization coefficients 𝒵𝑉 , 𝒵𝐴 are scale-independent, the RI
procedure introduces scale-dependence from the kinematic setup (Eq. (5.46)). This
scale-dependence is removed by fitting 𝒵𝑗(𝜇2; 𝑎) to a power series in 𝜇2 and taking
the 𝜇2 → 0 limit as described in Ref. [1], with fit model:

𝒵𝑗(𝜇2; 𝑎) = 𝒵𝑗(𝑎) + 𝑐
(1)
𝑗 (𝑎)𝜇2 + 𝑐

(2)
𝑗 (𝑎)𝜇4. (H.5)

Here 𝒵𝑗(𝑎), 𝑐(1)𝑗 (𝑎), and 𝑐
(2)
𝑗 (𝑎) are coefficients which are determined by correlated

𝜒2 minimization. The fits are shown in Fig. (H.1). The fits have 𝜒2/dof ranging
between 0.15 and 0.71. The best-fit value of 𝒵𝑗(𝑎) is the value that is taken for the
renormalization factor, and it is determined that

𝒵𝑉 (0.11 fm) = 0.7119(20) 𝒵𝑉 (0.08 fm) = 0.7472(24)

𝒵𝐴(0.11 fm) = 0.7137(19) 𝒵𝐴(0.08 fm) = 0.7462(23).
(H.6)

The results show that 𝒵𝑉 = 𝒵𝐴 within statistical precision as expected. The determi-
nation presented in this work is consistent with the determination of 𝒵𝑉 in Ref. [206]
for the 𝑎 = 0.08 fm and 𝑎 = 0.11 fm ensembles, and with 𝒵𝐴 in Ref. [12] for the
𝑎 = 0.08 fm ensembles, although 𝒵𝐴 differs from the 𝑎 = 0.11 fm value in that work
by about one standard deviation. This deviation may be due to discrepancies in the
procedure used to extract 𝒵𝐴, as the fit model (Eq. (H.5)) does not capture all the
discretization artifacts present in the data.
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Appendix I

Renormalization coefficient

𝑎𝑚ℓ→ 0 extrapolation

Figures (I.1)-(I.8) display the 𝑎𝑚ℓ → 0 extrapolations of 𝒵RI𝛾
𝑞 /𝒵𝑉 and 𝐹𝑛𝑚, as de-

scribed in Section 5.5 of the text. Each renormalization coefficient is evaluated at
𝑞 = 2𝜋

𝐿
(4, 4, 0, 0), which is the lattice momentum corresponding to the scale 𝜇 = 𝜇4.

In each of Figures (I.1)-(I.8), the 𝜇 dependence of (𝒵RI𝛾
𝑞 /𝒵𝑉 )(𝜇2; 𝑎) and the 𝑞 depen-

dence of 𝐹𝑛𝑚(𝑞; 𝑎) has been suppressed for clarity. The data is observed to have very
mild dependence on 𝑎𝑚ℓ.
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Figure I.1. The 𝑎𝑚ℓ → 0 extrapolation for the RI quark-field renormalization
𝒵RI𝛾
𝑞 /𝒵𝑉 , Eq. (5.55), computed on the 𝑎 = 0.11 fm ensembles at 𝑞 = 2𝜋

𝑎𝐿
(4, 4, 0, 0)

and extrapolated to the chiral limit via a joint correlated linear extrapolation in
𝑎𝑚ℓ (Eq. (5.57)). The data is depicted in red, and the shaded band denotes the
extrapolation.
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§ Appendix I. Renormalization coefficient 𝑎𝑚ℓ → 0 extrapolation
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Figure I.2. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝐹𝑛𝑚 on the first irreducible
chiral subspace {𝐹11}, for the 𝑎 = 0.11 fm ensembles.
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Figure I.3. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝐹𝑛𝑚 on the second
irreducible chiral subspace {𝐹22, 𝐹23, 𝐹32, 𝐹33}, for the 𝑎 = 0.11 fm ensembles.

274



§ Appendix I. Renormalization coefficient 𝑎𝑚ℓ → 0 extrapolation

0.0 0.005 0.01
am`

632

633

634

635

F
44

(a
=

0
.1

1
fm

)

0.0 0.005 0.01
am`

450

451

452

453

F
45

(a
=

0
.1

1
fm

)

0.0 0.005 0.01
am`

465

466

467

468

469

F
54

(a
=

0.
11

fm
)

0.0 0.005 0.01
am`

2220.0

2222.5

2225.0

2227.5

2230.0

2232.5
F

55
(a

=
0.

11
fm

)

Figure I.4. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝐹𝑛𝑚 on the third irre-
ducible chiral subspace {𝐹44, 𝐹45, 𝐹54, 𝐹55}, for the 𝑎 = 0.11 fm ensembles.
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Figure I.5. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝒵RI𝛾
𝑞 /𝒵𝑉 , for the 𝑎 =

0.08 fm ensembles.
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Figure I.6. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝐹𝑛𝑚 on the first irreducible
chiral subspace {𝐹11}, for the 𝑎 = 0.08 fm ensembles.
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Figure I.7. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝐹𝑛𝑚 on the second
irreducible chiral subspace {𝐹22, 𝐹23, 𝐹32, 𝐹33}, for the 𝑎 = 0.08 fm ensembles.
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Figure I.8. As in Figure (I.1), 𝑎𝑚ℓ → 0 extrapolation for 𝐹𝑛𝑚 on the third irre-
ducible chiral subspace {𝐹44, 𝐹45, 𝐹54, 𝐹55}, for the 𝑎 = 0.08 fm ensembles.
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Appendix J

Spinors in 𝑑 = 2

J.1 Bispinors in 𝑑 = 2

Recall that the Lorentz group in 𝑑 dimensions is generated by a 𝑑× 𝑑 antisymmetric
tensor 𝒥 𝜇𝜈 and parameterized by a 𝑑×𝑑 antisymmetric tensor 𝜔𝜇𝜈 . In two dimensions,
this reduces to a single generator and parameter,

𝒥 𝜇𝜈 =

(︃
0 𝐽

−𝐽 0

)︃
𝜔𝜇𝜈 =

(︃
0 𝜃

−𝜃 0

)︃
(J.1)

In Euclidean space, 𝐽 is the generator of rotations in R2, and 𝜃 is the rotation angle.
A general Lorentz transformation can be expressed as

Λ(𝜔) = Λ(𝜃) = 𝑒−
𝑖
2
𝜔𝜇𝜈𝒥 𝜇𝜈

= 𝑒−𝑖𝜃𝐽 , (J.2)

which is simply rotation in R2 by the angle 𝜃.

In 𝑑 dimensions, the (Euclidean space) Dirac 𝛾-matrices satisfy the defining anti-
commutation relation1,

{𝛾𝜇, 𝛾𝜈} = 2𝛿𝜇𝜈 . (J.3)

A particular basis which satisfies this relation is the Weyl basis,

𝛾1 = 𝜎1 =

(︃
0 1

1 0

)︃
𝛾2 = 𝜎3 =

(︃
1 0

0 −1

)︃
𝛾5 = 𝑖𝛾1𝛾2 = 𝑖

(︃
0 −1
1 0

)︃
= 𝜎2. (J.4)

1The Minkowski space 𝛾 matrices can be found in David Tong’s lecture notes [308] and are
𝛾0 = 𝜎1, 𝛾1 = 𝑖𝜎2, and 𝛾5 = −𝛾0𝛾1 = 𝜎3
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§ J.2. Majorana Spinors in 𝑑 = 2

We have the usual identities,

{𝛾𝜇, 𝛾𝜈} = 2𝛿𝜇𝜈 {𝛾𝜇, 𝛾5} = 0 𝛾†𝜇 = 𝛾𝜇, 𝛾
†
5 = 𝛾5. (J.5)

Any representation of the Lorentz group is specified by where 𝐽 is sent to. Recall
that in 4 dimensions, the bispinor representation is characterized as

𝑆𝑑=4
bispinor(𝒥 𝜇𝜈) =

1

2
𝜎𝜇𝜈 𝜎𝜇𝜈 =

𝑖

2
[𝛾𝜇, 𝛾𝜈 ]. (J.6)

By the analogy to the four-dimensional case, in 𝑑 = 2 the rotation generator 𝐽 is sent
to

𝑆𝑑=2
bispinor(𝐽) = 𝑆𝑑=2

bispinor(𝒥 01) =
𝑖

4
[𝛾0, 𝛾1] =

𝑖

2
𝛾0𝛾1 =

1

2
𝛾5. (J.7)

Thus, Lorentz transformations with angle 𝜃 act on bispinors as

𝜓
𝜃−→ 𝑒𝑖𝜃𝑆(𝐽) = 𝑒

𝑖
2
𝜃𝛾5 ·

=

(︃
cos(𝜃/2) sin(𝜃/2)

− sin(𝜃/2) cos(𝜃/2)

)︃
(J.8)

which is simply a rotation matrix with angle 𝜃.

J.2 Majorana Spinors in 𝑑 = 2

The two-component Dirac fermion 𝜓 can be split into two Weyl components, which
act as Majorana spinors. In this basis, the two-component Majorana fermion is
represented as2

𝜓𝑎 =

(︃
𝜓𝑎1

𝜓𝑎2

)︃
. (J.9)

These are related to the chiral components 𝜓𝑎± by the usual projection formulas,

𝑃± =
1

2
(1± 𝛾) 𝜓𝑎± = 𝑃±𝜓

𝑎. (J.10)

The other important thing to consider is charge conjugation. Charge conjugation
is defined to satisfy the relation,

𝐶𝛾𝑇𝜇𝐶
−1 = −𝛾𝜇. (J.11)

2Note that in this basis, the matrix 𝛾 is not diagonal. This is the 𝑑 = 2 version of the Dirac
basis, while the Weyl basis can be determined by diagonalizing 𝛾, resulting in 𝛾 = 𝜎3. In the Weyl

basis the Dirac fermion splits as 𝜓𝑎 =

(︂
𝜓𝑎
+

𝜓𝑎
−

)︂
.
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§ J.3. Dirac Bilinears in 𝑑 = 2

The simplest way to satisfy this is by choosing

𝐶 = 𝛾5 = 𝜎2. (J.12)

Note that this also satisfies 𝐶𝛾5𝐶 = 𝛾5, since 𝛾25 = 1. One also has the identity,

𝜓 = 𝜓†𝛾0 =

(︃
𝜓2

𝜓1

)︃
= 𝜓𝑇𝐶(𝑖𝛾2). (J.13)

J.3 Dirac Bilinears in 𝑑 = 2

This section closely follows Artur Avkhadiev’s notes [? ]. In 𝑑 = 4, the Dirac algebra
{Γ(𝑑=4)} contains 16 elements. Each of the 16 elements is characterized by its quantum
numbers, and has the quantum numbers of either a scalar, pseudoscalar, vector, axial-
vector, or tensor (the explicit decomposition is given in Appendix C.2). In 𝑑 = 2, a
similar story holds, but the transformation properties of each bilinear are different.
In this case, there are four elements of the Dirac algebra, {Γ} = {1, 𝛾5, 𝛾0, 𝛾1}. Each
element of this algebra is characterized by its transformation properties under parity
and charge conjugation,

𝑃 = 𝛾0 𝐶 = 𝛾5. (J.14)

One determines the quantum numbers 𝑃 and 𝐶 of an element of the Dirac algebra
by transforming the corresponding Dirac bilinear 𝜓Γ𝜓 with the transformation, and
noting the incurred sign. The quantum numbers for each bilinear are found in Ta-
ble J.1. Note that in 𝑑 = 2, angular momentum 𝐽 = 0, and there are no vector,
axial-vector, or tensor states: the only two states are scalar (𝑃𝐶 = ++) and pseu-
doscalar (𝑃𝐶 = −−). Interestingly enough, the different components of 𝛾𝜇 excite
different states: 𝛾0 maps to the pseudoscalar, and 𝛾1 maps to the scalar.

Γ 1 𝛾5 𝛾0 𝛾1

𝑃𝐶 ++ −− −− ++

Table J.1. Transformation properties for the Dirac algebra in 𝑑 = 2.
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Appendix K

Computation of the QCD2 Driving

Forces

K.1 The Gauge Force

This section computes the gauge derivative 𝛿𝑆𝑔 [𝜔]

𝛿𝜔𝑎
𝜇(𝑛)

(Eq. (6.56)), where 𝑆𝑔[𝑈 ] is the
Wilson gauge action (Eq. (3.13)),

𝑆𝑔 = 𝛽
∑︁
𝑥∈Λ

(︂
1− 1

𝑁
ReTr𝑃 (𝑥)

)︂
= 𝛽|Λ| − 𝛽

2𝑁

∑︁
𝑥∈Λ

Tr
[︀
𝑃 (𝑥) + 𝑃 †(𝑥)

]︀
(K.1)

where the plaquette 𝑃 (𝑥) = 𝑃01(𝑥) = 𝑈0(𝑥)𝑈1(𝑥+0̂)𝑈 †0(𝑥+1̂)𝑈 †1(𝑥) (Eq. (3.11)) only
has one independent ordering, which is in the (0, 1) plane. The derivative of this is
the staple in the corresponding direction of differentiation:

(𝐹𝑔)
𝑎
𝜇(𝑛)[𝜔] =

𝜕𝑆𝑔
𝜕𝜔𝑎𝜇(𝑛)

= − 𝛽

2𝑁

𝜕

𝜕𝜔𝑎𝜇(𝑛)

∑︁
𝑥∈Λ

Tr
[︀
𝑃 (𝑥) + 𝑃 (𝑥)†

]︀
= − 𝛽

2𝑁

𝜕

𝜕𝜔𝑎𝜇(𝑛)

∑︁
𝑥∈Λ

Tr
[︀
𝑈𝜌(𝑥)𝐴𝜌(𝑥) + 𝐴†𝜌(𝑥)𝑈

†
𝜌(𝑥)

]︀
= − 𝛽

2𝑁
Tr
[︀
(𝑖𝑡𝑎)𝑈𝜇(𝑛)𝐴𝜇(𝑛) + 𝐴†𝜇(𝑛)𝑈

†
𝜇(𝑛)(−𝑖𝑡𝑎)

]︀
= − 𝑖𝛽

2𝑁
Tr
[︀
𝑡𝑎𝑈𝜇(𝑛)𝐴𝜇(𝑛)− 𝐴†𝜇(𝑛)𝑈 †𝜇(𝑛)𝑡𝑎

]︀
(K.2)
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§ K.2. The Pseudofermion Force

where here 𝐴𝜇(𝑛) is the staple formed from removing the link 𝑈𝜇(𝑛) from the sum on
plaquettes

∑︀
𝑥∈Λ 𝑃 (𝑥), which is given by Eq. 4.20 in Ref. [78],

𝐴𝜇(𝑛) = [𝑈𝜈(𝑛+ 𝜇̂)𝑈−𝜇(𝑛+ 𝜇̂+ 𝜈)𝑈−𝜈(𝑛+ 𝜈) + 𝑈−𝜈(𝑛+ 𝜇̂)𝑈−𝜇(𝑛+ 𝜇̂− 𝜈)𝑈𝜈(𝑛− 𝜈)]
⃒⃒⃒⃒
𝜈 ̸=𝜇

=
[︀
𝑈𝜈(𝑛+ 𝜇̂)𝑈 †𝜇(𝑛+ 𝜈)𝑈 †𝜈(𝑛) + 𝑈 †𝜈(𝑛+ 𝜇̂− 𝜈)𝑈 †𝜇(𝑛− 𝜈)𝑈𝜈(𝑛− 𝜈)

]︀ ⃒⃒⃒⃒
𝜈 ̸=𝜇

.

(K.3)

It is useful to re-express Eq. (K.2) in the algebra su(𝑁) using the following trick.
Let 𝑐𝑎𝑡𝑎 ∈ su(𝑁), where 𝑐𝑎 are coefficients given by 𝑐𝑎 = Tr[𝑡𝑎𝜁] and 𝜁 ∈ su(𝑁) is
some other element of the algebra. Expanding 𝜁 = 𝜁𝑏𝑡𝑏, one obtains:

𝑐𝑎𝑡𝑎 = Tr[𝑡𝑎𝜁]𝑡𝑎 = Tr[𝜁𝑏𝑡𝑎𝑡𝑏]𝑡𝑎 =

(︂
1

2
𝜁𝑏𝛿𝑎𝑏

)︂
𝑡𝑎 =

1

2
𝜁. (K.4)

This implies that the coefficients 𝑐𝑎 can be brought back to the algebra after the trace,
as this simply induces a factor of 1

2
. Cycling the 𝑡𝑎 factors to the front of Eq. (K.2)

reveals the expression for the algebra-valued force,

(𝐹𝑔)𝜇(𝑛)[𝜔] = (𝐹𝑔)
𝑎
𝜇(𝑛)[𝜔]𝑡

𝑎 = − 𝑖𝛽

4𝑁

(︀
𝑈𝜇(𝑛)𝐴𝜇(𝑛)− 𝐴†𝜇(𝑛)𝑈 †𝜇(𝑛)

)︀
. (K.5)

K.2 The Pseudofermion Force

The pseudofermion force is significantly more complicated to compute than the gauge
force. Recall the pseudofermion force is,

(𝐹pf)
𝑎
𝜇(𝑛) = Φ†

𝛿𝐾[𝜔]−1/4

𝛿𝜔𝑎𝜇(𝑛)
Φ, (K.6)

which after applying the rational approximation (Eq. (6.46)), becomes

𝐾−1/4[𝜔]Φ ≈ 𝑟(−1/4)(𝐾[𝜔])Φ = 𝛼
(−1/4)
0 Φ +

𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖 (𝐾 + 𝛽

(−1/4)
𝑖 )−1Φ. (K.7)

For a Lie derivative,
𝜕

𝜕𝜔
𝐴−1 = −𝐴−1𝜕𝐴

𝜕𝜔
𝐴−1, (K.8)
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which implies that

𝜕

𝜕𝜔𝑎𝜇(𝑛)
𝐾−1/4Φ =

𝜕

𝜕𝜔𝑎𝜇(𝑛)

(︃
𝛼
(−1/4)
0 Φ +

𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖

(︁
𝐾 + 𝛽

(−1/4)
𝑖

)︁−1
Φ

)︃

= −
𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖

(︁
𝐾 + 𝛽

(−1/4)
𝑖

)︁−1 𝜕𝐾

𝜕𝜔𝑎𝜇(𝑛)

(︁
𝐾 + 𝛽

(−1/4)
𝑖

)︁−1
Φ.

(K.9)

Next 𝜕𝐾/𝜕𝜔 must be evaluated, which is done by exploiting the hermiticity of 𝑄:

𝜕𝐾

𝜕𝜔𝑎𝜇(𝑛)
=

𝜕

𝜕𝜔𝑎𝜇(𝑛)
𝑄†𝑄 =

𝜕𝑄†

𝜕𝜔𝑎𝜇(𝑛)
𝑄+𝑄†

𝜕𝑄

𝜕𝜔𝑎𝜇(𝑛)

=
𝜕𝑄

𝜕𝜔𝑎𝜇(𝑛)
𝑄+𝑄†

𝜕𝑄†

𝜕𝜔𝑎𝜇(𝑛)

= 2Re

[︂
𝑄

𝜕𝑄

𝜕𝜔𝑎𝜇(𝑛)

]︂
.

(K.10)

Putting this together shows that,

(𝐹pf)
𝑎
𝜇(𝑛) = −2

𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖 Re

[︂
𝜓†𝑖𝑄[𝜔]

𝜕𝑄[𝜔]

𝜕𝜔𝑎𝜇(𝑛)
𝜓𝑖

]︂

= −2
𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖 Re

[︂
(𝑄[𝜔]𝜓𝑖)

† 𝜕𝑄[𝜔]

𝜕𝜔𝑎𝜇(𝑛)
𝜓𝑖

]︂

= −2
𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖 Re

[︂
(𝒟[𝜔]𝜓𝑖)†

𝜕𝒟[𝜔]
𝜕𝜔𝑎𝜇(𝑛)

𝜓𝑖

]︂
(K.11)

where (note that (𝐾 + 𝛽
(−1/4)
𝑖 )−1 is Hermitian),

𝜓𝑖 =
(︁
𝐾 + 𝛽

(−1/4)
𝑖

)︁−1
Φ. (K.12)

The variables 𝜓𝑖 may be computed with a conjugate gradient (CG) solver [? ].

The remaining piece to compute is 𝜕𝒟[𝜔]/𝜕𝜔𝑎𝜇(𝑛). Note that,

𝜕

𝜕𝜔𝑎𝜇(𝑛)
𝑉 𝑏𝑐
𝜈 (𝑥) = 2

𝜕

𝜕𝜔𝑎𝜇(𝑛)
Tr
(︀
𝑈 †𝜈(𝑥)𝑡

𝑏𝑈𝜈(𝑥)𝑡
𝑐
)︀

= 2𝑖𝛿𝑛𝑥𝛿𝜇𝜈Tr
(︀
−𝑡𝑎𝑈 †𝜈(𝑥)𝑡𝑏𝑈𝜈(𝑥)𝑡𝑐 + 𝑈 †𝜈(𝑥)𝑡

𝑏𝑡𝑎𝑈𝜈(𝑥)𝑡
𝑐
)︀

𝜕

𝜕𝜔𝑎𝜇(𝑛)
(𝑉 𝑏𝑐

𝜈 )𝑇 (𝑦) = 2𝑖𝛿𝑛𝑦𝛿𝜇𝜈Tr
(︀
−𝑡𝑎𝑈 †𝜈(𝑦)𝑡𝑐𝑈𝜈(𝑦)𝑡𝑏 + 𝑈 †𝜈(𝑦)𝑡

𝑐𝑡𝑎𝑈𝜈(𝑦)𝑡
𝑏
)︀
.

(K.13)
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Applying these identities to the Wilson-Dirac operator 𝒟𝑊 [𝜔] (Eq. (6.21)) yields,

𝜕

𝜕𝜔𝑎𝜇(𝑛)
𝒟𝑏𝑐𝛽𝛾(𝑥, 𝑦) = −𝜅

2∑︁
𝜈=1

𝜕

𝜕𝜔𝑎𝜇(𝑛)

[︀
𝑉 𝑏𝑐
𝜈 (𝑥)(1− 𝛾𝜈)𝛽𝛾𝛿𝑥+𝜈,𝑦 + (𝑉 𝑇

𝜈 )𝑏𝑐(𝑦)(1 + 𝛾𝜈)𝛽𝛾𝛿𝑥−𝜈,𝑦
]︀

= 2𝑖𝜅

[︂
𝛿𝑛𝑥Tr

(︀
𝑡𝑐𝑡𝑎𝑈 †𝜇(𝑥)𝑡

𝑏𝑈𝜇(𝑥)− 𝑡𝑏𝑡𝑎𝑈𝜇(𝑥)𝑡𝑐𝑈 †𝜇(𝑥)
)︀
(1− 𝛾𝜇)𝛽𝛾𝛿𝑥+𝜇̂,𝑦

+ 𝛿𝑛𝑦Tr
(︀
𝑡𝑏𝑡𝑎𝑈 †𝜇(𝑦)𝑡

𝑐𝑈𝜇(𝑦)− 𝑡𝑐𝑡𝑎𝑈𝜇(𝑦)𝑡𝑏𝑈 †𝜇(𝑦)
)︀
(1 + 𝛾𝜇)𝛽𝛾𝛿𝑥−𝜇̂,𝑦

]︂
(K.14)

Upon acting this expression on 𝜓𝑖, one obtains,(︂
𝜕𝒟𝑊
𝜕𝜔𝑎𝜇(𝑛)

𝜓𝑖

)︂𝑏
𝛽

(𝑥) =
∑︁
𝑦

𝜕

𝜕𝜔𝑎𝜇(𝑛)
(𝐷𝑊 )𝑏𝑐𝛽𝛾(𝑥, 𝑦)𝜓

𝑐
𝛾(𝑦)

= 2𝑖𝜅

[︂
𝛿𝑛𝑥Tr

(︀
𝑡𝑎
(︀
𝑈 †𝜇(𝑛)𝑡

𝑏𝑈𝜇(𝑛)𝑡
𝑐 − 𝑈𝜇(𝑛)𝑡𝑐𝑈 †𝜇(𝑛)𝑡𝑏

)︀)︀
(1− 𝛾𝜇)𝛽𝛾𝜓𝑐𝛾(𝑛+ 𝜇̂)

+ 𝛿𝑛+𝜇̂,𝑥Tr
(︀
𝑡𝑎
(︀
𝑈 †𝜇(𝑛)𝑡

𝑐𝑈𝜇(𝑛)𝑡
𝑏 − 𝑈𝜇(𝑛)𝑡𝑏𝑈 †𝜇(𝑛)𝑡𝑐

)︀)︀
(1 + 𝛾𝜇)𝛽𝛾𝜓

𝑐
𝛾(𝑛)

]︂
(K.15)

This equation is simplified using the tensor,

𝒲𝑎𝑏
𝜇 ≡ 𝑈 †𝜇(𝑛)𝑡

𝑎𝑈𝜇(𝑛)𝑡
𝑏 − 𝑈𝜇(𝑛)𝑡𝑏𝑈 †𝜇(𝑛)𝑡𝑎 Tr𝒲𝑎𝑏

𝜇 =
1

2
(𝑉 𝑎𝑏

𝜇 − 𝑉 𝑎𝑏
𝜇 ) = 0. (K.16)

Note that 𝒲𝑎𝑏
𝜇 also has fundamental color indices, (𝒲𝑎𝑏

𝜇 )𝑖𝑗(𝑛). This definition sim-
plifies the expression for 𝜕𝒟𝑊/𝜕𝜔 after acting on 𝜓𝑖,(︂

𝜕𝒟𝑊
𝜕𝜔𝑎𝜇(𝑛)

𝜓𝑖

)︂𝑏
𝛽

(𝑥) = 2𝑖𝜅

[︂
𝛿𝑛𝑥Tr

(︀
𝑡𝑎𝒲𝑏𝑐

𝜇 (𝑛)
)︀
(1− 𝛾𝜇)𝛽𝛾𝜓𝑐𝛾(𝑛+ 𝜇̂)

+ 𝛿𝑛+𝜇̂,𝑥Tr
(︀
𝑡𝑎𝒲𝑐𝑏

𝜇 (𝑛)
)︀
(1 + 𝛾𝜇)𝛽𝛾𝜓

𝑐
𝛾(𝑛)

]︂
.

(K.17)

The best way to compute this is thus to precompute the traceless quantity 𝒲𝜇, then
form the appropriate tensor contractions. The result in Eq. (K.17) has been confirmed
numerically with the autodifferentiation library JAX in Python.

This section concludes with a bit of bookkeeping, combining the previous results
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and making indices explicit:

(𝐹pf)
𝑎
𝜇(𝑛) = −2

𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖 Re

[︂
(𝒟[𝜔]𝜓𝑖)†

𝜕𝒟[𝜔]
𝜕𝜔𝑎𝜇(𝑛)

𝜓𝑖

]︂

= −2
𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖

∑︁
𝑥

Re

[︃(︀
(𝒟[𝜔]𝜓𝑖)†

)︀𝑏
𝛽
(𝑥)

(︂
𝜕𝒟[𝜔]
𝜕𝜔𝑎𝜇(𝑛)

𝜓𝑖

)︂𝑏
𝛽

(𝑥)

]︃

= −4𝑖𝐾
𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖

∑︁
𝑥

Re

[︂ (︀
(𝒟[𝜔]𝜓𝑖)†

)︀𝑏
𝛽
(𝑥)

[︂
𝛿𝑛𝑥Tr

(︀
𝑡𝑎𝒲𝑏𝑐

𝜇 (𝑛)
)︀
(1− 𝛾𝜇)𝛽𝛾𝜓𝑐𝛾(𝑛+ 𝜇̂)

+ 𝛿𝑛+𝜇̂,𝑥Tr
(︀
𝑡𝑎𝒲𝑐𝑏

𝜇 (𝑛)
)︀
(1 + 𝛾𝜇)𝛽𝛾𝜓

𝑐
𝛾(𝑛)

]︂]︂
.

(K.18)

Simplifying the sum yields the following result for the pseudofermion force:

(𝐹pf)
𝑎
𝜇(𝑛) = −4𝑖𝜅

𝑃∑︁
𝑖=1

𝛼
(−1/4)
𝑖 Re

[︂ (︀
(𝒟𝜓𝑖)†

)︀𝑏
(𝑛) Tr

(︀
𝑡𝑎𝒲𝑏𝑐

𝜇 (𝑛)
)︀
(1− 𝛾𝜇)𝜓𝑐(𝑛+ 𝜇̂)

+
(︀
(𝒟𝜓𝑖)†

)︀𝑏
(𝑛+ 𝜇̂) Tr

(︀
𝑡𝑎𝒲𝑐𝑏

𝜇 (𝑛)
)︀
(1 + 𝛾𝜇)𝜓

𝑐(𝑛)

]︂
.

(K.19)
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