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Abstract
We review cosmology from the viewpoint of particle physicist. We empha-

size the expected impact of the LHC into the understanding of the major
cosmological issues, such as the nature and origin of dark matter and gener-
ation of matter-antimatter asymmetry. We give several examples showing the
LHC potential: WIMPs as cold dark matter candidates, gravitinos as warm
dark matter candidates, and electroweak baryogenesis as a possible mecha-
nism for generating matter-antimatter asymmetry. We also overview the
results obtained by astronomical methods and discuss expectations for future,
with emphasis on their role in revealing the properties of the present and early
Universe.

1 Introduction
The Universe we know of is full of mysteries. It hosts matter but not anti-matter, and
after more than 40 years since it was understood that this fact is actually a problem,
we do not have an established theory explaining this asymmetry. The Universe hosts
dark matter, and we do not know what dark matter it made of. There is dark energy
in the Universe whose nature is even more obscure.

Uncovering the physics behind these mysteries is a challenge for both astron-
omy and particle physics. In particular, strong impact is expected from the LHC.
Optimistically, the LHC experiments may discover dark matter particles and their
companions, and establish the mechanism of the generation of the matter-antimatter
asymmetry. Otherwise they will rule out some very plausible scenarios; this will also
have profound consequences on our understanding of the early Universe. There are
also exotic hypotheses on physics beyond the Standard Model, like TeV scale gravity;
their support by the LHC will have dramatic effect on early cosmology, which is hard
to overestimate.

In part of these lectures we concentrate on examples showing the LHC cosmological
potential. Before coming to that, we introduce the basic notions of cosmology that
will be useful for our main discussion. We then turn to dark matter, and present
the WIMP scenario for cold dark matter, which is currently the most popular one
– for good reason. We also consider light gravitino scenario for warm dark matter.
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Both are to be probed by the LHC, as they require rather particular new physics in
the LHC energy range. We then discuss electroweak baryogenesis – a mechanism for
the generation of matter-antimatter asymmetry that may have operated in the early
Universe at temperature of order 100 GeV. This mechanism also needs new physics
at energies 100− 300 GeV, so it will be definitely confirmed or ruled out by the LHC.

In another part of these lectures we consider in more detail the cosmological data
that have lead to the current picture of the Universe. We also discuss how this picture
may evolve as more data are accumulated. The prospects are fascinating: the new
data may give strong arguments in favor of the cosmological inflation, they may reveal
the mechanism of the generation of the cosmological perturbations thus giving a clue
to the very early Universe, they may shed light on the nature of dark energy, provide
cosmological measurement of neutrino masses, etc. We may encounter unexpected
discoveries such as the evidence for the generation of dark matter and/or baryon
asymmetry before the hot stage of the cosmological evolution, which would rule out
the currently most popular scenarios, including those outlined in these lectures.

These lectures are meant to be self-contained, but we necessarily omit numerous
details, while trying to make clear basic ideas and results. More complete accounts of
particle physics aspects of cosmology may be found in the books [1] and reviews [2].
Dark matter, including various hypotheses about its particles, is reviewed in [3].
Electroweak baryogenesis is discussed in detail in reviews [4].

In what follows we use natural units,

~ = c = 1.

We also use Mpc as the unit of length,

1 Mpc = 3 · 106 light yrs = 3 · 1024 cm.

To give an idea of length scales in the Universe, the distance of the Sun to the center
of our Galaxy is 8 kpc, the distance to the nearest galaxy – Andromeda – is 0.8 Mpc,
clusters of galaxies have sizes of a few Mpc, the size of the visible part of the Universe
is about 15 Gpc.

2 Basics of cosmology

2.1 Friedmann–Robertson–Walker metric

Two basic facts about the Universe are that it is homogeneous and isotropic at large
spatial scales, and that it expands.

There are three types of homogeneous and isotropic three-dimensional spaces.

165



Valery Rubakov

These are1 three-sphere, flat space and three-hyperboloid. Accordingly, one speaks
about closed, flat and open Universe; in the latter two cases the spatial size of the
Universe is infinite, whereas in the former the Universe is compact.

The homogeneity and isotropy of the Universe mean that its hypersurfaces of
constant time are either three-spheres or three-planes or three-hyperboloids. The
distances between points may (and in fact, do) depend on time, i.e., the interval has
the form

ds2 = dt2 − a2(t)dx2, (1)

where dx2 is the distance on unit three-sphere/plane/hyperboloid. Metric (1) is
usually called Friedmann–Robertson–Walker (FRW) metric, and a(t) is called scale
factor. In our Universe ȧ ≡ da/dt > 0, which means that the distance between points
of fixed spatial coordinates x grows, dl2 = a2(t)dx2. The space stretches out; the
Universe expands.

The coordinates x are often called comoving coordinates. It is straightforward
to check that x = const is a time-like geodesic, so a galaxy put at a certain x
at zero velocity will stay at the same x. Furthermore, as the Universe expands,
non-relativistic objects loose their velocities ẋ, i.e., they get frozen in the comoving
coordinate frame.

Observational data put strong constraints on the spatial curvature of the Universe.
They tell that to a very good approximation our Universe is spatially flat, i.e., our
3-dimensional space is Euclidean. In what follows dx2 is simply the line interval in
Euclidean 3-dimensional space.

2.2 Redshift

Like the distances between free particles in the expanding Universe, the photon wave-
length increases too. We will always label the present values of time-dependent quan-
tities by subscript 0: the present wavelength of a photon is thus denoted by λ0, the
present time is t0, the present value of the scale factor is a0 ≡ a(t0), etc. If a photon
was emitted at some moment of time t in the past, and its wavelength at the mo-
ment of emission was λ, then we receive today a photon whose physical wavelength
is longer,

λ0

λ
=

a0

a(t)
≡ 1 + z.

Here we introduced the redshift z. The wavelength at emission λ is fixed by physics
of the source, say, it is the wavelength of a photon emitted by an excited hydrogen

1Strictly speaking, this statement is valid only locally: in principle, homogeneous and isotropic
Universe may have complex global properties. As an example, spatially flat Universe may have
topology of three-torus. There is some discussion of such a possibility in literature, and fairly strong
limits have been obtained by the analyses of cosmic microwave background radiation [5].
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atom. Thus, on the one hand, the redshift z is directly measurable2, and, on the other
hand, it is related to the time of emission, and hence to the distance to the source:
the light of a very distant source that we receive today was emitted long ago, so that
source has large z.

Let us consider a “nearby” source, for which z � 1. This corresponds to relatively
small (t0 − t). Expanding a(t), one writes

a(t) = a0 − ȧ(t0)(t0 − t). (2)

To the leading order in z, the difference between the present time and the emission
time is equal to the distance to the source r (with the speed of light equal to 1). Let
us define the Hubble parameter

H(t) =
ȧ(t)

a(t)
,

and denote its present value by H0. Then eq. (2) takes the form a(t) = a0(1 −H0r),
and we get for the redshift, again to the leading non-trivial order in z,

1 + z =
1

1 −H0r
= 1 +H0r.

In this way we obtain the Hubble law,

z = H0r, z � 1. (3)

Traditionally, one tends to interpret the expansion of the Universe as runaway of
galaxies from each other, and red shift as the Doppler effect. Then at small z one
writes z = v, where v is the radial velocity of the source with respect to the Earth,
so H0 is traditionally measured in units “velocity per distance”. Observational data
give [7]

H0 = [70.1 ± 1.3]
km/s
Mpc

= (14 · 109 yrs)−1. (4)

Traditionally, the present value of the Hubble parameter is written as

H0 = h · 100
km

s · Mpc
. (5)

Thus h ≈ 0.7. We will use this value in further estimates.
Let us point out that the interpretation of redshift in terms of the Doppler effect

is actually not adequate, especially for large enough z. In fact, there is no need in
2One identifies a series of emission or absorption lines, thus obtaining λ, and measures their

actual wavelength λ0. These spectroscopic measurements give very accurate values of z even for
distant sources.
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this interpretation at all: the “radial velocity” enters neither theory nor observations,
so this notion may be safely dropped. Physically meaningful quantity is redshift z
itself.

A final comment is that H−1
0 has dimension of time, or length, as indicated in

Eq. (4). Clearly, this quantity sets the cosmological scales of time and distance at
the present epoch. Indeed, the lifetime of the Universe t0 and the size of the visible
Universe l0 up to numerical factors are equal to H−1

0 , their numerical values are3

t0 = 13.7 · 109 yrs and4 l0 = 14.5 Gpc = 44 · 109 light years.

2.3 Hot Universe

Our Universe is filled with cosmic microwave background (CMB). Cosmic microwave
background as observed today consists of photons with excellent black-body spectrum
of temperature

T0 = 2.725 ± 0.001 K. (6)

The spectrum has been precisely measured by various instruments and does not show
any deviation from the Planck spectrum [6].

Thus, the present Universe is “warm”. Earlier Universe was warmer; it cooled
down because of the expansion. While the CMB photons freely propagate today, it
was not so at early stage. When the Universe was hot, the usual matter (electrons
and protons with rather small admixture of light nuclei) was in the plasma phase. At
that time photons strongly interacted with electrons and protons in the plasma, so all
these particles were in thermal equilibrium. As the Universe cooled down, electrons
“recombined” with protons into neutral hydrogen atoms, and the Universe became
transparent to photons. The temperature scale of recombination is, very crudely
speaking, determined by the ionisation energy of hydrogen, which is of order 10 eV.
In fact, recombination occurred at lower temperature5, Trec ≈ 3000 K. An important
point is that recombination process lasted quite a bit less than the Hubble time at
that epoch; in many cases one can use an approximation that recombination occurred
instantaneously.

Another point is that even though after recombination photons no longer were in
thermal equilibrium with anything, the shape of the photon distribution function has

3The fact that t0 is numerically very close to H−1
0 is actually a coincidence.

4The fact that l0 > ct0 is due to the expansion of the Universe.
5One reason is that the number density of electrons and protons was small compared to the

number density of photons, i.e., there was large entropy per electron/proton; thus, recombination
at higher temperatures was not thermodynamically favourable because of entropy considerations.
Another way to understand this is to note that because of small number of protons and electrons,
it requires long time for an electron to find proton to recombine with; during that time hydrogen
atoms existing in the medium get disintegrated by photons from the high energy tail of the Planck
distribution. The latter process is efficient at temperatures well below 10 eV, hence the “delay” of
recombination.
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not changed, except for overall redshift. Indeed, the thermal distribution function
for ultra-relativistic particles, the Planck distribution, depends only on the ratio of
frequency to temperature, fPlanck(p, T ) = f (ωp/T ), ωp = |p|. As the Universe ex-
pands, the frequency gets redshifted, ωp → ωp/(1+ z), but the shape of the spectrum
remains Planckian, with temperature T/(1 + z). Hence, the Planckian form of the
observed spectrum is no surprise. Generally speaking, this property does not hold for
massive particles.

At even earlier times, the temperature of the Universe was even higher. The
earliest time which has been observationally probed to date is the Big Bang Nucle-
osynthesis epoch; it corresponds to temperature of order 1 MeV and lifetime of the
Universe of order 1 s.

To summarize, the effective temperature of photons scales as

T (t) ∝ a−1(t). (7)

This behaviour is characteristic to ultra-relativistic free spices (at zero chemical po-
tential) only. The same formula is valid (with qualifications, see below) for ultra-
relativistic particles (at zero chemical potential) which are in thermal equilibrium.
Thermal equilibrium means adiabatic expansion; during adiabatic expansion, the
temperature of ultra-relativistic gas scales as the inverse size of the system, accord-
ing to usual thermodynamics. The energy density of ultra-relativistic gas scales as
ρ ∝ T 4, and pressure is p = ρ/3.

Both for free photons, and for photons in thermal equilibrium, the number density
behaves as follows,

nγ = const · T 3 ∝ a−3,

and the energy density is given by the Stephan–Boltzmann law,

ργ =
π2

30
· 2 · T 4 ∝ a−4, (8)

where the factor 2 accounts for two photon polarizations. Present number density of
relic photons is

nγ,0 = 410 cm−3, (9)

and their energy density is

ργ,0 = 2.7 · 10−10 GeV
cm3

. (10)

An important characteristic of the early Universe is the entropy density. It is
given by

s =
2π2

45
g∗T

3, (11)
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where g∗ is the number of degrees of freedom6 with m . T , that is, the degrees
of freedom which are relativistic at temperature T . The point is that the entropy
density scales exactly as a−3 (entropy in comoving volume is constant during adiabatic
expansion, sa3 = const), while temperature scales approximately as a−1. The present
value of the entropy density (taking into account neutrinos as if they were massless)
is

s0 ≈ 3000 cm−3. (12)

Let us now turn to non-relativistic particles: baryons, massive neutrinos, dark
matter particles, etc. If they are not destroyed during the evolution of the Universe
(that is, they are stable and do not co-annihilate), their number density merely gets
diluted,

n ∝ a−3. (13)

This means, in particular, that the baryon-to-photon ratio stays constant,

η ≡ nB
nγ

= const ≈ 6 · 10−10, (14)

while the energy density of non-relativistic particles scales as

ρ(t) = m · n(t) ∝ a−3(t), (15)

in contrast to more rapid fall off (8) characteristic to ultra-relativistic spices.
There exists strong evidence for dark energy in the Universe, whose density does

not decrease in time as fast as in eqs. (8) or (15). We will discuss dark energy in
Section 5.5. It suffices to say here that dark energy density, conventionally denoted
by ρΛ, is approximately constant in time,

ρΛ ≈ const. (16)

If the dark energy density is exactly time-independent, it is the same thing as the
cosmological constant, or Λ-term.

2.4 Composition of the present Universe

The basic equation governing the expansion rate of the Universe is the Friedmann
equation, which we write for the case of spatially flat Universe,

H2 ≡
(
ȧ

a

)2

=
8π

3
Gρ, (17)

6Fermions contribute with a factor 7/8.
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where dot denotes derivative with respect to time t, ρ is the total energy density in
the Universe and G is Newton’s gravity constant. In natural units G = M−2

Pl , where
MPl = 1.2 · 1019 GeV is the Planck mass. Let us introduce the parameter

ρc =
3

8πG
H2

0 ≈ 5 · 10−6 GeV
cm3

. (18)

According to Eq. (17), the sum of all forms of energy density in the present Universe
is equal7 to ρc.

As we will now discuss, the cosmological data correspond to a very weird compo-
sition of the Universe.

Before proceeding, let us introduce a notion traditional in the analysis of the
composition of the present Universe. For every type of matter i with the present
energy density ρi,0, one defines the parameter

Ωi =
ρi,0
ρc
.

Then eq. (17) tells that
∑

i Ωi = 1 where the sum runs over all forms of energy. Let
us now discuss contributions of different spices to this sum.

We begin with baryons. The result (14) gives

ρB,0 = mB · nB,0 ≈ 2.4 · 10−7 GeV
cm3

. (19)

Comparing this result with the value of ρc given in (18), one finds

ΩB = 0.045.

Thus, baryons constitute rather small fraction of the present energy density in the
Universe.

Photons contribute even smaller fraction, as is clear from (10), namely Ωγ ≈
5 · 10−5. From electric neutrality, the number density of electrons is about the
same as that of baryons, so electrons contribute negligible fraction to the total mass
density. The remaining known stable particles are neutrinos. Their number density
is calculable in Hot Big Bang theory and these calculations are nicely confirmed by
Big Bang Nucleosynthesis. The number density of each type of neutrinos is nνi

=
112 cm−3 where νi are neutrino mass eigenstates. Direct limit on the mass of electron

7This would not be the case if our Universe was not spatially flat: positive spatial curvature of the
Universe (the case of 3-sphere) gives negative contribution to right hand side of the Friedmann equa-
tion, and hence ρ0 > ρc, and the opposite for negative spatial curvature (the case of 3-hyperboloid).
This is the reason for calling ρc the critical density. According to observations, spatial flatness holds
to a very good precision, corresponding to less than 2 per cent deviation of total energy density from
ρc.
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neutrino, mνe < 2.6 eV, together with the observations of neutrino oscillations suggest
that every type of neutrino has mass smaller than 2.6 eV. The energy density of all
types of neutrinos is thus smaller than ρc:

ρν,total =
∑
α

mνi
nνi

< 3 · 2.6 eV · 112
1

cm3
∼ 8 · 10−7 GeV

cm3
,

which means Ων,total < 0.16. This estimate does not make use of any cosmological
data. In fact, as we discuss in Section 5.4, cosmological observations give stronger
bound on neutrino masses, which corresponds to [7, 8]

Ων,total . 0.014. (20)

We conclude that most of the energy density in the present Universe is not in the
form of known particles; most energy in the present Universe must be in “something
unknown”. Furthermore, there is strong evidence that this “something unknown” has
two components: clustered (dark matter) and uncluttered (dark energy).

Clustered dark matter consists presumably of new stable massive particles.
These make clumps of energy density which encounter for most of the mass of galaxies
and clusters of galaxies. There are a number of ways of estimating the contribution of
non-baryonic dark matter into the total energy density of the Universe (see Refs. [3, 9]
for details):

– Composition of the Universe affects the angular anisotropy of cosmic microwave
background. Quite accurate measurements of the CMB anisotropy, available today,
enable one to estimate the total mass density of dark matter.

– Composition of the Universe, and especially the density of non-baryonic dark
matter, is crucial for structure formation of the Universe. Comparison of the results
of numerical simulations of structure formation with observational data gives reliable
estimate of the mass density of non-baryonic clustered dark matter.

The bottom line is that the non-relativistic component constitutes about 28 per
cent of the total present energy density, which means that non-baryonic dark matter
has

ΩDM ≈ 0.23, (21)

the rest is due to baryons.
There is direct evidence that dark matter exists in the largest gravitationally

bound objects – clusters of galaxies. There are various methods to determine the
gravitating mass of a cluster, and even mass distribution in a cluster, which give
consistent results. To name a few:

– One measures velocities of galaxies in galactic clusters, and makes use of the
gravitational virial theorem,

Kinetic energy of a galaxy =
1

2
Potential energy.
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In this way one obtains the gravitational potential, and thus the distribution of the
total mass in a cluster.

– Another measurement of masses of clusters makes use of intracluster gas. Its
temperature obtained from X-ray measurements is also related to the gravitational
potential.

– Fairly accurate reconstruction of mass distributions in clusters is obtained from
the observations of gravitational lensing of background galaxies by clusters.

These methods enable one to measure mass-to-light ratio in clusters of galaxies.
Assuming that this ratio applies to all matter in the Universe8, one arrives at the
estimate for the mass density of clumped matter in the present Universe. Remarkably,
this estimate coincides with (21).

Finally, dark matter exists also in galaxies. Its distribution is measured by the
observations of rotation velocities of distant stars and gas clouds around a galaxy.

Thus, cosmologists are confident that much of the energy density in our Universe
consists of new stable particles. We will see that there is good chance for the LHC to
produce these particles.

Unclustered dark energy. Non-baryonic clustered dark matter is not the whole
story. Making use of the above estimates, one obtains an estimate for the energy
density of all particles, Ωγ + ΩB + Ων,total + ΩDM ≈ 0.3. This implies that 70 per cent
of the energy density is uncluttered. This component is dark energy.

All this fits nicely to all cosmological observations, but does not fit to the Standard
Model of particle physics. It is our hope that the LHC will shed light at least on some
of the properties of the Universe.

3 Dark matter
Dark matter is characterized by the mass-to-entropy ratio,(ρDM

s

)
0

=
ΩDMρc
s0

≈ 0.23 · 5 · 10−6 GeV · cm−3

3000 cm−3
= 4 · 10−10 GeV. (22)

This ratio is constant in time since the freeze out of dark matter density: both number
density of dark matter particles nDM (and hence their mass density mDMnDM) and
entropy density dilute exactly as a−3.

Dark matter is crucial for our existence, for the following reason. Density pertur-
bations in baryon-electron-photon plasma before recombination do not grow because
of high pressure, which is mostly due to photons; instead, perturbations make sound
waves propagating in plasma. Hence, in a Universe without dark matter, density
perturbations in baryonic component would start to grow only after baryons decou-
ple from photons, i.e., after recombination. The mechanism of the growth is pretty

8This is a strong assumption, since only about 10 per cent of galaxies are in clusters.
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simple: an overdense region gravitationally attracts surrounding matter; this matter
falls into the overdense region, and the density contrast increases. In the expanding
matter dominated Universe this gravitational instability results in the density con-
trast growing like (δρ/ρ)(t) ∝ a(t). Hence, in a Universe without dark matter, the
growth factor for baryon density perturbations would be at most9

a(t0)

a(trec)
= 1 + zrec =

Trec
T0

≈ 103. (23)

The initial amplitude of density perturbations is very well known from the CMB
anisotropy measurements, δρ/ρ = 5 · 10−5. Hence, a Universe without dark matter
would still be pretty homogeneous: the density contrast would be in the range of a
few per cent. No structure would have been formed, no galaxies, no life. No structure
would be formed in future either, as the accelerated expansion due to dark energy
will soon terminate the growth of perturbations.

Since dark matter particles decoupled from plasma much earlier than baryons,
perturbations in dark matter started to grow much earlier. The corresponding growth
factor is larger than (23), so that the dark matter density contrast at galactic and sub-
galactic scales becomes of order one, perturbations enter non-linear regime and form
dense dark matter clumps at z = 5 − 10. Baryons fall into potential wells formed
by dark matter, so dark matter and baryon perturbations evolve together soon after
recombination. Galaxies get formed in the regions where dark matter was overdense
originally. The development of perturbations in our Universe is shown in Fig. 1. For
this picture to hold, dark matter particles must be non-relativistic early enough, as
relativistic particles pass through gravitational wells instead of being trapped there.

Depending on the mass of the dark matter particles and mechanism of their pro-
duction in the early Universe, dark matter may be cold (CDM) and warm (WDM).
Roughly speaking, CDM consists of heavy particles, while the masses of WDM par-
ticles are smaller,

CDM : mDM & 10 keV, (24)
WDM : mDM = 1 − 10 keV. (25)

We will discuss warm dark matter option later on, and now we move on to CDM.

3.1 WIMPS: Best guess for cold dark matter

There is a simple mechanism of the dark matter generation in the early Universe. It
applies to cold dark matter. Because of its simplicity and robustness, it is considered
by many as a very likely one, and the corresponding dark matter candidates – weakly

9Because of the presence of dark energy, the growth factor is even somewhat smaller.
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Φ
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δCDM

δγ∝ c1 + c2 ln t

Figure 1: Time dependence, in the linear regime, of density contrasts of dark matter,
baryons and photons, δDM ≡ δρDM/ρDM , δB and δγ, respectively, as well as the New-
tonian potential Φ. teq and tΛ correspond to the transitions from radiation domination
to matter domination, and from decelerated expansion to accelerated expansion.

interacting massive particles, WIMPs – as the best candidates. Let us describe this
mechanism in some detail.

Let us assume that there exists a heavy stable neutral particle Y , and that Y -
particles can only be destroyed or created via their pair-annihilation or creation, with
annihilation products being the particles of the Standard Model. We will see that the
overall cosmological behaviour of Y -particles is as follows. At high temperatures, T �
mY , the Y -particles are in thermal equilibrium with the rest of cosmic plasma; there
are lots of Y -particles in the plasma, which are continuously created and annihilate.
As the temperature drops below mY , the equilibrium number density decreases. At
some “freeze-out” temperature Tf the number density becomes so small, that Y -
particles can no longer meet each other during the Hubble time, and their annihilation
terminates. After that the number density of survived Y ’s decreases like a−3, and
these relic particles contribute to the mass density in the present Universe. Our
purpose is to estimate the range of properties of Y -particles, in which they serve as
dark matter.

Assuming thermal equilibrium, elementary considerations of mean free path of a
particle in gas give for the lifetime of a non-relativistic Y -particle in cosmic plasma,
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τann,
σann · v · τann · nY ∼ 1,

where v is the velocity of Y -particle, σann is the annihilation cross section at velocity
v and nY is the equilibrium number density given by the Boltzmann law at zero
chemical potential10,

nY = gY ·
(
mY T

2π

)3/2

e−
mY
T ,

where gY is the number of spin states of Y -particle. Let us assume for definiteness
that the annihilation occurs in s-wave (other cases give similar, but not exactly the
same results), so at non-relativistic velocities σann = σ0/v, where σ0 is a constant.
One should compare the lifetime with the Hubble time, or annihilation rate Γann ≡
τ−1
ann with the expansion rate H. At T ∼ mY , the equilibrium density is of order
nY ∼ T 3, and Γann � H for not too small σ0. This means that annihilation (and, by
reciprocity, creation) of Y -pairs is indeed rapid, and Y -particles are indeed in thermal
equilibrium with the plasma. At very low temperature, on the other hand, the number
density nY is exponentially small, and Γann � H. At low temperatures we cannot,
of course, make use of equilibrium formulas: Y -particles no longer annihilate (and,
by reciprocity, are no longer created), there is no thermal equilibrium with respect to
creation–annihilation processes, and the number density nY gets diluted only because
of the cosmological expansion.

The freeze-out temperature Tf is determined by the relation

τ−1
ann(Tf ) ≡ Γann(Tf ) ∼ H(Tf ),

where we can still use the equilibrium formulas, as Y -particles are in thermal equilib-
rium (with respect to annihilation and creation) just before freeze-out. From Eq. (17)
and the Stephan–Boltzmann law one finds that the Hubble parameter at the radiation
dominated stage is

H =
T 2

M∗
Pl

,

where M∗
Pl = MPl/(1.66

√
g∗). Making use of this relation we obtain

σ0 · nY (Tf ) ∼
T 2
f

M∗
Pl

, (26)

or

σ0 · gY ·
(
mY Tf

2π

)3/2

e
−mY

Tf ∼
T 2
f

M∗
Pl

.

10The chemical potential is zero, since Y -particles can be pair created, and their number is not
conserved.
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The latter equation gives the freeze-out temperature, which, up to loglog terms, is

Tf ≈
mY

ln(M∗
PlmY σ0)

.

Note that this temperature is somewhat smaller than mY , if the relevant microscopic
mass scale is much below MPl. This means that Y -particles freeze out when they
are indeed non-relativistic, hence the term “cold dark matter”. The fact that the
annihilation and creation of Y -particles terminates at relatively low temperature has
to do with rather slow expansion of the Universe, which should be compensated for
by the smallness of the number density nY .

At the freeze-out temperature, we make use of eq. (26) and obtain

nY (Tf ) =
T 2
f

M∗
Plσ0

.

Note that this density is inversely proportional to the annihilation cross section (up
to logarithms). The reason is that for higher annihilation cross section, the creation–
annihilation processes are longer in equilibrium, and less Y -particles survive.

Up to a numerical factor of order 1, the number-to-entropy ratio at freeze-out is

nY
s

' 1

g∗(Tf )M∗
PlTfσ0

. (27)

This ratio stays constant until the present time, so the present number density of
Y -particles is nY,0 = s0 · (nY /s)freeze−out, and the mass-to-entropy ratio is

ρY,0
s0

=
mY nY,0
s0

' ln(M∗
PlmY σ0)

g∗(Tf )M∗
Plσ0

.

This formula is remarkable. The mass density depends mostly on one parameter, the
annihilation cross section σ0. The dependence on the mass of Y -particle is through
the logarithm and through g∗(Tf ), and is very mild. The value of the logarithm
here is between 20 and 40, depending on parameters (this means, in particular, that
freeze-out occurs when the temperature drops 20 to 40 times below the mass of Y -
particle). Plugging in other numerical values (g∗(Tf ) ∼ 100, M∗

Pl ∼ 1018 GeV), as
well as numerical factor omitted in Eq. (27), and comparing with (22) we obtain the
estimate

σ0 ≡ 〈σv〉 = (1 ÷ 2) · 10−36 cm2 = (1 ÷ 2) pb. (28)

This is weak scale cross section, which tells us what the relevant energy scale is: this
is TeV scale. We note in passing that the estimate (28) is rather precise and robust.

The annihilation cross section may be parametrized as σ0 = α2/M2 where α is
some coupling constant, and M is the mass scale (which may be higher than mY ).
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This parametrization is suggested by the picture of Y pair-annihilation via exchange
of another particle of mass M . With α ∼ 10−2, the estimate for the mass scale is
roughlyM ∼ 1 TeV. Thus, with very mild assumptions, we find that the non-baryonic
dark matter may naturally originate from the TeV-scale physics. In fact, what we
have found can be understood as an approximate equality between the cosmological
parameter, mass-to-entropy ratio of dark matter, and the particle physics parameters,

mass-to-entropy ' 1

MPl

(
TeV
αW

)2

.

Both are of order 10−10 GeV, and it is very tempting to think that this is not a mere
coincidence. If it is not, the dark matter particle should be found at the LHC.

Of course, the most prominent candidate for WIMP is neutralino of the supersym-
metric extension of the Standard Model. The situation with neutralino is somewhat
tense, however. The point is that the pair-annihilation of neutralinos often occurs in
p-wave, rather than in s-wave. This gives the suppression factor in 〈σannv〉, propor-
tional to v ∼

√
Tf/mY ∼ 1/5. Hence, neutralinos tend to be overproduced in most

of the parameter space of MSSM and other models. Yet neutralino remains a good
candidate, especially at high tan β.

3.2 Warm dark matter: light gravitinos

The cold dark matter scenario successfully describes the bulk of the cosmological
data. Yet, there are clouds above it. First, according to numerical simulations, CDM
scenario tends to overproduce small objects – dwarf galaxies: it predicts hundreds of
satellite dwarf galaxies in the vicinity of a large galaxy like Milky Way whereas about
20 satellites have been observed so far. Second, again according to simulations, CDM
tends to produce too high densities in galactic centers (cusps in density profiles); this
feature is not confirmed by observations either. There is no crisis yet, but one may
be motivated to analyse a possibility that dark matter is not that cold.

An alternative to CDM is warm dark matter whose particles decouple being rela-
tivistic. Then their spatial momenta decrease as a−1, i.e., the momenta are of order
T all the time after decoupling. WDM particles become non-relativistic at T ∼ m,
where m is their mass. Only after that the WDM perturbations start to grow11: as
we mentioned above, relativistic particles escape from gravitational potentials, so the
gravitational potentials get smeared out instead of getting deeper. Before becoming
non-relativistic, WDM particles travel the distance of the order of the horizon size;
the WDM perturbations therefore are suppressed at those scales. The horizon size at
the time tnr when T ∼ m is of order

l(tnr) ' H−1(T ∼ m) =
M∗

Pl

T 2
∼ M∗

Pl

m2
.

11The situation in fact is somewhat more complicated, but this will be irrelevant for our estimates.
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Due to the expansion of the Universe, the corresponding length at present is

l0 = l(tnr)
a0

a(tnr)
∼ l(tnr)

T

T0

∼ MPl

mT0

, (29)

where we neglected (rather weak) dependence on g∗. Hence in WDM scenario, objects
of the size smaller than l0 are less abundant as compared to CDM. Let us point out
that l0 refers to the size of the perturbation as if it were in the linear regime; in other
words, this is the size of the region from which matter clumps into a compact object.

The present size of a dwarf galaxy is a few kpc, and the density is about 106 of
the average density in the Universe. Hence, the size l0 for these objects is of order
100 kpc ' 3 · 1023 cm. Requiring that perturbations of this size, but not much larger,
are suppressed, we obtain from (29) the estimate (25) for the mass of WDM particles.

To avoid confusion, we point out here that the above reasoning applies to particles
whose momenta at decoupling are of order of temperature. While this is the case for
many WDM production mechanisms, there exist dark matter production mechanisms
that grossly violate this assumption. A famous example is axions whose momenta are
always (almost) equal to zero. Despite very small mass of axion, it is a candidate to
cold dark matter.

Among candidates to WDM particles, light gravitino is probably the best moti-
vated. The gravitino mass is of order

m3/2 '
F

MPl

,

where
√
F is the supersymmetry breaking scale. Hence, gravitino masses are in the

right ballpark for rather low supersymmetry breaking scales,
√
F ∼ 106 − 107 GeV.

This situation can occur, e.g., in gauge mediation scenario. With so low mass, grav-
itino lifetime is much greater than the age of the Universe, so from this viewpoint
gravitinos can indeed serve as dark matter particles. For what follows, important
parameters are the widths of decays of other superpartners into gravitino and the
Standard Model particles. These are of order

ΓS̃ '
M5

S̃

F 2
'

M5
S̃

m2
3/2M

2
Pl

, (30)

where MS̃ is the mass of the superpartner.
One mechanism of the gravitino production in the early Universe is decays of

other superpartners. Gravitino interacts with everything else so weakly, that once
produced, it moves freely, without interacting with cosmic plasma. At production,
gravitinos are relativistic, hence they are indeed warm dark matter candidates. Let
us assume that production in decays is the dominant mechanism and consider under
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what circumstances the present mass density of gravitinos coincides with that of dark
matter.

The rate of gravitino production in decays of superpartners of the type S̃ in the
early Universe is

d(n3/2/s)

dt
=
nS̃
s

ΓS̃,

where n3/2 and nS̃ are number densities of gravitinos and superpartners, respectively,
and s is the entropy density. For superpartners in thermal equilibrium, one has
nS̃/s = const ∼ g−1

∗ for T & MS̃, and nS̃/s ∝ exp(−MS̃/T ) at T � MS̃. Hence, the
production is most efficient at T ∼MS̃, when the number density of superpartners is
still large, while the Universe expands most slowly. The density of gravitinos produced
in decays of S̃’s is thus given by

n3/2

s
'
(
d(n3/2/s)

dt
·H−1

)
T∼MS̃

' ΓS̃
g∗
H−1(T ∼MS̃) '

1

g∗
·

M5
S̃

m2
3/2M

2
Pl

· M
∗
Pl

M2
S̃

.

This gives the mass-to-entropy ratio today:

m3/2n3/2

s
'
∑
S̃

M3
S̃

g
3/2
∗ MPlm3/2

, (31)

where the sum runs over all superpartner spices which have ever been in thermal
equilibrium. The correct value (22) is obtained for gravitino masses in the range (25)
at

MS̃ = 100 − 300 GeV. (32)
Thus, the scenario with gravitino as warm dark matter particle requires light super-
partners, which are to be discovered at the LHC.

A few comments are in order. First, decays of superpartners is not the only
mechanism of gravitino production: gravitinos may also be produced in scattering
of superpartners. To avoid overproduction of gravitinos in the latter processes, one
has to assume that the maximum temperature in the Universe (reached after post-
inflationary reheating stage) is quite low, Tmax ∼ 1−10 TeV. This is not a particularly
plausible assumption, but it is consistent with phenomenology and can indeed be
realized in some models of inflation. Second, existing constraints on masses of strongly
interacting superpartners (squarks and gluinos) suggest that their masses exceed (32).
Hence, these particles should not contribute to the sum in (31), otherwise WDM
gravitinos would be overproduced. This is possible, if masses of squarks and gluinos
are larger than Tmax, so that they were never abundant in the early Universe. Finally,
the decay into gravitino and the Standard Model particles is the only decay channel
for the next-to-lightest superpartner (NLSP). Hence, the estimate for the total width
of NLSP is given by (30), so that

cτNLSP = a few · mm − a few · 100 m
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for m2/3 = 1 − 10 keV and MNLSP = 100 − 300 GeV. Thus, NLSP should either be
visible in a detector, or fly it through.

Needless to say, the outlined scenario is a lot more contrived than WIMP option.
It is reassuring, however, that it can be ruled out or confirmed by the LHC.

3.3 Discussion

If dark matter particles are indeed WIMPs, and the relevant energy scale is of order
1 TeV, then the Hot Big Bang theory will be probed experimentally up to temperature
of (a few) · (10 − 100) GeV and down to age 10−9 − 10−11 s in relatively near future
(compare to 1 MeV and 1 s accessible today through Big Bang Nucleosynthesis).
With microscopic physics to be known from collider experiments, the WIMP density
will be reliably calculated and checked against data from observational cosmology.
Thus, WIMP scenario offers a window to a very early stage of the evolution of the
Universe.

If dark matter particles are gravitinos, the prospect of accessing quantitatively so
early stage of the cosmological evolution is not so bright: it would be very hard, if at
all possible, to get an experimental handle on the value of the gravitino mass; further-
more, the present gravitino mass density depends on an unknown reheat temperature
Tmax. On the other hand, if this scenario is realized in Nature, then the whole picture
of the early Universe will be quite different from what we think today is the most
likely early cosmology. Indeed, gravitino scenario requires low reheat temperature,
which in turn calls for rather exotic mechanisms of inflation, etc.

The mechanisms discussed here are by no means the only mechanisms capable
of producing dark matter, and WIMPs and gravitinos are by no means the only
candidates for dark matter particles. Other dark matter candidates include axions,
sterile neutrinos, Q-balls, very heavy relics produced towards the end of inflation, etc.
Hence, even though there are grounds to hope that the dark matter problem will be
solved by the LHC, there is no guarantee at all.

4 Baryon asymmetry of the Universe

In the present Universe, there are baryons and almost no anti-baryons. The number
density of baryons today is characterized by the ratio η, see eq. (14). In the early
Universe, the appropriate quantity is

∆B =
nB − nB

s
,

where nB is the number density of anti-baryons, and s is the entropy density. If the
baryon number is conserved, and the Universe expands adiabatically, ∆B is constant,
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and its value is, up to a numerical factor, equal to η (cf. (9) and (12)), so that

∆B ≈ 0.8 · 10−10.

Back at early times, at temperatures well above 100 MeV, cosmic plasma contained
many quark-antiquark pairs, whose number density was of the order of the entropy
density,

nq + nq ∼ s,

while baryon number density was related to densities of quarks and antiquarks as
follows (baryon number of a quark equals 1/3),

nB =
1

3
(nq − nq).

Hence, in terms of quantities characterizing the very early epoch, the baryon asym-
metry may be expressed as

∆B ∼ nq − nq
nq + nq

.

We see that there was one extra quark per about 10 billion quark-antiquark pairs!
It is this tiny excess that is responsible for entire baryonic matter in the present
Universe.

4.1 Sakharov conditions

There is no logical contradiction to suppose that the tiny excess of quarks over an-
tiquarks was built in as an initial condition. This is not at all satisfactory for a
physicist, however. Furthermore, inflationary scenario does not provide such an ini-
tial condition for Hot Big Bang; rather, inflation theory predicts that the Universe was
baryon-symmetric just after inflation. Hence, one would like to explain the baryon
asymmetry dynamically.

The baryon asymmetry may be generated from initially symmetric state only if
three necessary conditions, dubbed Sakharov’s conditions, are satisfied. These are

(i) baryon number non-conservation;
(ii) C- and CP-violation;
(iii) deviation from thermal equilibrium.
All three conditions are easily understood. (i) If baryon number were conserved,

and initial net baryon number in the Universe was zero, the Universe today would be
symmetric rather than asymmetric. (ii) If C or CP were conserved, then the rates of
reactions with particles would be the same as the rates of reactions with antiparticles.
In other words, if the initial state of the Universe was C- and CP-symmetric, then
the asymmetry between particles and antiparticles may develop only if C and CP
is violated. (iii) Thermal equilibrium means that the system is stationary (no time
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dependence at all). Hence, if the initial baryon number is zero, it is zero forever,
unless there are deviations from thermal equilibrium.

There are two well understood mechanisms of baryon number non-conservation.
One of them emerges in Grand Unified Theories and is due to the exchange of super-
massive particles. It is very similar, say, to the mechanism of charm non-conservation
in weak interactions which occurs via the exchange of heavy W -bosons. The scale
of these new, baryon number violating interactions is the Grand Unification scale,
presumably of order 1016 GeV.

Another mechanism is non-perturbative and is related to the triangle anomaly in
the baryonic current (a keyword here is “sphaleron”). It exists already in the Standard
Model, and, possibly with slight modifications, operates in all its extensions. The two
main features of this mechanism, as applied to the early Universe, is that it is effective
over a wide range of temperatures, 100 GeV < T < 1011 GeV, and that it conserves
(B − L).

4.2 Electroweak baryon number non-conservation

Let us pause here to discuss the physics behind electroweak baryon and lepton number
non-conservation in little more detail, though still at a qualitative level. The first
thing to consider is the baryonic current,

Bµ =
1

3
·
∑
i

qiγµqi,

where the sum runs over quark flavors. Naively, baryonic current is conserved, but at
the quantum level its divergence is not zero, due to the effect called triangle anomaly
(axial anomaly in the context of QED and QCD),

∂µB
µ =

1

3
· 3colors · 3generations ·

g2
W

32π2
εµνλρF a

µνF
a
λρ,

where F a
µν and gW are the field strength of the SU(2)W gauge field and the SU(2)W

coupling, respectively. Likewise, each leptonic current (n = e, µ, τ) is anomalous,

∂µL
µ
n =

g2
W

32π2
· εµνλρF a

µνF
a
λρ.

A non-trivial fact is that there exist large field fluctuations, F a
µν(x, t) ∝ g−1

W which
have

Q ≡
∫

d3xdt
g2
W

32π2
· εµνλρF a

µνF
a
λρ 6= 0.

Furthermore, for any such fluctuation the value of Q is integer. Suppose now that a
fluctuation with non-vanishing Q has occurred. Then the baryon numbers in the end
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and beginning of the process are different,

Bfin −Bin =

∫
d3xdt ∂µB

µ = 3Q. (33)

Likewise
Ln, fin − Ln, in = Q. (34)

This explains the selection rule mentioned above: B is violated, (B − L) is not.
At zero temperature, the large field fluctuations that induce baryon and lepton

number violation are vacuum fluctuations, called instantons, which to a certain ex-
tent are similar to virtual fields that emerge and disappear in vacuum of quantum
field theory at the perturbative level. The difference is that instantons are large field
fluctuations. The latter property results in the exponential suppression of the cor-
responding probability, and hence the rate of baryon number violating processes. In
electroweak theory, the suppression factor is extremely small,

e
− 16π2

g2
W ∼ 10−165.

On the other hand, at high temperatures there are large thermal fluctuations –
“sphalerons” – whose rate is not necessarily small. And, indeed, B-violation in the
early Universe is rapid as compared to the cosmological expansion at sufficiently high
temperatures, when

〈φ〉T < T, (35)
where 〈φ〉T is the Higgs expectation value at temperature T .

One may wonder how baryon number may be not conserved even though there
are no baryon number violating terms in the Lagrangian of the Standard Model. Let
us sketch what is going on (see Ref. [10] for details). Let us consider a massless
left handed fermion field in the background of the SU(2) gauge field A(x, t), which
depends on space-time coordinates in a non-trivial way. As a technical remark, we
set the temporal component of the gauge field equal to zero, A0 = 0, by the choice of
gauge, and omit the group index. One way to understand the behavior of the fermion
field in the gauge field background is to study the system of eigenvalues of the Dirac
Hamiltonian {ω(t)}. The Hamiltonian is defined in the standard way

HDirac(t) = iαi(∂i − igAix, t)
1 − γ5

2
,

where αi = γ0γi, so that the Dirac equation has the Schrödinger form,

i
∂ψ

∂t
= HDiracψ.

We are going to discuss the eigenvalues ω(t) of the operator HDirac(t) treating t as a
parameter. These eigenvalues ωn are found from

HDirac(t)ψn = ωn(t)ψn.
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Figure 2: Fermion energy levels at
zero background gauge field.

At A = 0 the system of levels is shown
schematically in Fig. 2. Importantly, there are
both positive- and negative-energy levels. Ac-
cording to Dirac, the lowest energy state (Dirac
vacuum) has all negative energy levels filled, and
all positive energy levels empty. Occupied posi-
tive energy levels (three of them in Fig. 2) corre-
spond to real fermions, while empty negative en-
ergy levels describe anti-fermions (one in Fig. 2).
Fermion-anti-fermion annihilation is a jump of a
fermion from a positive energy level to an unoc-
cupied negative energy level.

In weak background fields, the energy lev-
els depend on time (move), but nothing dra-
matic happens. For adiabatically varying back-
ground fields, the fermions sit on their levels,
while fast changing fields generically give rise to
jumps from, say, negative- to positive-energy lev-
els, that is, creation of fermion-antifermion pairs.
Needless to say, fermion number, (Nf − Nf ) is
conserved.

Figure 3: Motion of fermion levels
in background gauge fields with
non-vanishing Q (shown is the
case Q = 2). Left panel: left-
handed fermions. Right panel:
right-handed fermions.

The situation is entirely different for the back-
ground fields with non-zero Q. The levels of left-
handed fermions move as shown in the left panel
of Fig. 3. Some levels necessarily cross zero, and
the net number of levels crossing zero from be-
low equals Q. This means that the number of
left-handed fermions is not conserved: for adia-
batically varying gauge fields A(x, t) the motion
of levels shown in the left panel of Fig. 3 corre-
sponds to the case in which the initial state of the
fermionic system is vacuum (no fermions at all)
whereas the final state contains Q real fermions
(two in the particular case shown). If the evo-
lution of the gauge field is not adiabatic, the re-
sult for the fermion number non-conservation is
the same: there may be jumps from negative en-
ergy levels to positive energy levels, or vice versa.
These correspond to creation or annihilation of
fermion-antifermion pairs, but the net change of
the fermion number (number of fermions minus
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number of anti-fermions) remains equal to Q. Importantly, the initial and final
field configurations of the gauge field may be A = 0, so that fermion number non-
conservation may occur due to a fluctuation that starts from and ends in the gauge
field vacuum12. This is precisely an instanton-like vacuum fluctuation.

If the same gauge field interacts also with right-handed fermions, the motion of
the levels of the latter is opposite to that of left-handed fermions. This is shown
in the right panel of Fig. 3. The change in the number of right-handed fermions is
equal to (−Q). So, if the gauge interaction is vector-like, the total fermion number
Nleft +Nright is conserved, while chirality Nleft −Nright is violated even for massless
fermions. This explains why there is no baryon number violation in QCD. On the
other hand, non-perturbative violation of chirality in QCD in the limit of massless
quarks has non-trivial consequences which are indeed confirmed by phenomenology.
In this sense anomalous non-conservation of fermion quantum numbers is an experi-
mentally established fact.

In electroweak theory, right-handed fermions do not interact with SU(2)W gauge
field, while left-handed fermions do. Therefore, fermion number is not conserved.
Since fermions of each SU(2)W -doublet interact with the SU(2)W gauge bosons (es-
sentially W and Z) in the same way, they are equally created in a process involving
a gauge field fluctuation with non-zero Q. This again leads to the relations (33) and
(34), i.e., to the selection rules

∆B = ∆L, ∆Le = ∆Lµ = ∆Lτ .

4.3 Electroweak baryogenesis?

It is tempting to use this mechanism of baryon number non-conservation for explaining
the baryon asymmetry of the Universe. There are two problems, however. One is
that CP-violation in the Standard Model is too weak: the CKM mechanism alone
is insufficient to generate the realistic value of the baryon asymmetry. Hence, one
needs extra sources of CP-violation. Another problem has to do with departure from
thermal equilibrium that is necessary for the generation of the baryon asymmetry. At
temperatures well above 100 GeV electroweak symmetry is restored, the expectation
value of φ is zero13, the relation (35) is valid, and the baryon number violation is rapid
as compared to the cosmological expansion. At temperatures of order 100 GeV the
relation (35) may be violated, but the Universe expands very slowly: the cosmological
time scale at these temperatures is

H−1 =
M∗

Pl

T 2
' 1018 GeV

(100 GeV)2
∼ 10−10 s, (36)

12A subtlety here is that in four-dimensional gauge theories, this is impossible for Abelian gauge
fields, so fermion number non-conservation is possible in non-Abelian gauge theories only.

13There are subtleties here which are not important for our discussion.
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Veff(φ) Veff(φ)

φ φ

Figure 4: Effective potential as function of φ at different temperatures. Left: first or-
der phase transition. Right: second order phase transition. Upper curves correspond
to higher temperatures.

which is very large by the electroweak physics standards. The only way strong de-
parture from thermal equilibrium at these temperatures may occur is through the
processes happening at the first order phase transition.

The property that at temperatures well above 100 GeV the expectation value of
the Higgs field is zero, while it is non-zero in vacuo, suggests that there may be
a phase transition from the phase with 〈φ〉 = 0 to the phase with 〈φ〉 6= 0. The
situation is pretty subtle here, as φ is not gauge invariant, and hence cannot serve
as an order parameter, so the notion of phases with 〈φ〉 = 0 or 〈φ〉 6= 0 is pretty
vague. In fact, neither electroweak theory nor most of its extensions has a gauge-
invariant order parameter, so there is no real distinction between these “phases”. The
situation here is very similar to that in liquid-vapor system, which does not have
an order parameter and may or may not experience vapor-liquid phase transition as
temperature decreases, depending on other parameters characterizing this system,
e.g., pressure. In the Standard Model the role of such a parameter is played by the
Higgs self-coupling λ or, in other words, the Higgs boson mass.

Continuing to use somewhat sloppy terminology, the interesting case for us is the
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first order phase transition. In this case the effective potential (free energy density as
the function of φ) behaves as shown in the left panel of Fig. 4. At high temperatures,
there exists one minimum of Veff at φ = 0, and the expectation value of the Higgs
field is zero. As the temperature decreases, another minimum emerges at finite φ,
which then becomes lower than the minimum at φ = 0. However, the probability
of the transition from the phase φ = 0 to the phase φ 6= 0 is very small for some
time, so the system gets overcooled. The transition occurs when the temperature
becomes sufficiently low, as shown schematically by an arrow in Fig. 4. This is to be
contrasted to the case, e.g., of the second order phase transition with the behavior of
the effective potential shown in the right panel of Fig. 4. In the latter case, the field
slowly evolves, as the temperature decreases, from zero to non-zero vacuum value,
and the system remains very close to the thermal equilibrium.

The first order phase transition occurs via spontaneous creation of bubbles of
the new phase inside the old phase. These bubbles then grow, their wall eventually
collide, and the new phase finally occupies entire space. The Universe boils. In the
cosmological context, this process happens when the bubble nucleation rate is of order
one per Hubble time per Hubble volume,

Γnucl ∼ H−4.

The velocity of the bubble wall in the relativistic cosmic plasma is roughly of the order
of the speed of light (in fact, it is somewhat smaller, from 0.1 c to 0.01 c), simply
because there are no relevant dimensionless parameters describing the system. Hence,
the bubbles grow large before their walls collide: their size at collision is roughly
of order of the Hubble size (more precisely, about 0.1H−1 to 0.01H−1). While at
nucleation the bubble is microscopic – its size is dictated by the electroweak scale
and is roughly of order (100 GeV)−1 ∼ 10−16 cm – its size at collision of walls is
macroscopic, 0.1H−1 ∼ a few mm, as follows from (36). Clearly, this boiling is a
highly inequilibrium process, and one may hope that the baryon asymmetry may be
generated at that time. And, indeed, there exist mechanisms of the generation of the
baryon asymmetry, which have to do with interactions of quarks and leptons with
moving bubble walls. The value of the resulting baryon asymmetry may well be of
order 10−10, as required by observations, provided that there is enough CP-violation
in the theory.

A necessary condition for the electroweak generation of the baryon asymmetry
is that the inequality (35) is violated just after the phase transition. Indeed, in the
opposite case the electroweak baryon number violating processes are fast after the
transition, and the baryon asymmetry, generated during the transition, is washed out
afterwards. Hence, the phase transition must be of strong enough first order. This
is not the case in the Standard Model. To see why this is so, and to get an idea
in which extensions of the Standard Model the transition may be strong enough, let
us consider the effective potential in some detail. At zero temperature, the Higgs
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potential has the standard form,

V (φ) = −m
2

2
|φ|2 +

λ

4
|φ|4 + const =

λ

4

(
|φ|2 − v2

)2
.

Here
|φ| ≡ 1

2

(
φ†φ
)1/2

, (37)

and v = 247 GeV is the Higgs expectation value in vacuo. The Higgs boson mass is
related to the latter as follows,

mH =
√

2λv. (38)

Now, in the leading order of perturbation theory the finite temperature effects modify
the effective potential into

Veff (φ, T ) =
α

2
|φ|2 − β

3
T |φ|3 +

λ

4
|φ|4, (39)

with
α(T ) = −m2 + ĝ2T 2

and
β =

1

2π
g̃3,

where ĝ2 is a positive linear combination of squares of coupling constants of all fields
to the Higgs field (in the Standard Model, a linear combination of g2, g′ 2 and y2

i , where
g and g′ are gauge couplings and yi are Yukawa couplings) while g̃3 is a positive linear
combination of cubes of coupling constants of all bosonic fields to the Higgs field. In
the Standard Model, β is a linear combination of g3, g′ 3, i.e., a linear combination of
M3

W/v
3 and M3

Z/v
3,

β =
1

2π

2M3
W +M3

Z

v3
. (40)

The cubic term in (39) is weird: in view of (37) it is not analytic in the original Higgs
field φ. Yet it is crucial for the first order phase transition: for β = 0 the phase
transition would be of the second order. The origin of the non-analytic cubic term
can be traced back to a particular behavior of the Bose–Einstein thermal distribution
function at low momenta,

fBose(p) =
1

e
√

p2+m2
a

T − 1

' T√
p2 +m2

a

at p,ma � T , where ma ' ga|φ| is the mass of the boson a that is generated due
to the non-vanishing Higgs field, and ga is the coupling constant of the field a to the
Higgs field. Clearly, at p� g|φ| the distribution function is non-analytic in φ,

fBose(p) '
T

ga|φ|
.
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It is this non-analyticity that gives rise to non-analytic cubic term in the effective
potential. Importantly, the Fermi–Dirac distribution

fFermi(p) =
1

e
√

p2+m2
a

T + 1

is analytic in m2
a, and hence φ†φ, so fermions do not contribute to the cubic term.

With the cubic term in the effective potential, the phase transition is of the first
order: at high temperatures the coefficient α is positive and large, and there is one
minimum of the effective potential at φ = 0, while for α small but still positive there
are two minima. The phase transition occurs at α ≈ 0; at that moment

Veff (φ, T ) ≈ −β
3
|φ|3 +

λ

4
|φ|4.

We find from this expression that immediately after the phase transition the minimum
of Veff is at

φ ' β

λ
=
g̃3T

λ
.

Hence, the necessary condition for successful electroweak baryogenesis, φ > T , trans-
lates into

β > λ. (41)

According to (38), λ is proportional to m2
H , whereas in the Standard Model β is

proportional to (2M3
W + M3

Z). Therefore, the relation (41) holds for small Higgs
boson masses only; in the Standard Model one makes use of (38) and (40) and finds
that this happens for mH < 50 GeV, which is ruled out14.

This discussion indicates a possible way to make the electroweak phase transition
strong enough. What one needs is the existence of new bosonic fields that have strong
enough coupling to the Higgs field(s), and hence provide large contributions to β. To
have an effect on the dynamics of the transition, the new bosons must be present in
the cosmic plasma at the transition temperature, T ∼ 100 GeV, so their masses should
not be too high, M . 300 GeV. In supersymmetric extensions of the Standard Model
natural candidate is stop whose Yukawa coupling to the Higgs field is the same as
that of top, that is, large. The light stop scenario for electroweak baryogenesis indeed
works, as has been shown by the detailed analysis in Ref. [11].

Yet another issue is the CP-violation, which has to be strong enough for successful
electroweak baryogenesis. As the asymmetry is generated in the interactions of quarks

14In fact, in the Standard Model with mH > 114 GeV, there is no phase transition at all; the
electroweak transition is smooth crossover instead. The latter fact is not visible from the expression
(39), but that expression is the lowest order perturbative result, while the perturbation theory is
not applicable for describing the transition in the Standard Model with large mH .

190



Valery Rubakov

and leptons (and their superpartners in supersymmetric extensions) with the bubble
walls, CP-violation must occur at the walls. Recall now that the walls are made of
the Higgs field(s). This points towards the necessity of CP-violation in the Higgs
sector, which may only be the case in a theory with more than one Higgs field.

To summarize, electroweak baryogenesis requires considerable extension of the
Standard Model, with masses of new particles in the range 100 − 300 GeV. Hence,
this mechanism will definitely be ruled out or confirmed by the LHC. We stress,
however, that electroweak baryogenesis is not the only option: an elegant and well
motivated competitor is leptogenesis; there are several other mechanisms that may
be responsible for the baryon asymmetry of the Universe.

5 What do we know about our Universe and what
do we hope to learn?

In this Section we are going to discuss in more detail some known features of our
Universe and the prospects for uncovering the unknown properties of the Universe
in reasonably near future. In the first place, in our discussion we will assume that
the Einstein General Relativity is the correct theory of gravity at all relevant space
and time scales. This does not mean that thinking about modifying gravity at large
scales (comparable to the present horizon, l, t ∼ H−1

0 ) or at small scales (e.g., horizon
at inflation) is pointless; in fact, this is an interesting and promising route. Still, at
the moment there is no clear evidence for such a modification, so we stick to General
Relativity as working hypothesis.

There are two classes of properties that characterize our Universe today and at
its early stages. One of these classes has to do with the composition of the Universe
and its spatial curvature. We discussed the composition in the previous Sections, and
we will have to say more about the spatial curvature later on. The second class has
to do with the properties of primordial cosmological perturbations. The latter are
extremely important, so let us discuss them now.

5.1 Primordial cosmological perturbations

The Universe is not exactly homogeneous: there are galaxies, clusters of galaxies,
gigantic voids, etc. These inhomogeneities originate from small perturbations of en-
ergy density and metrics that were somehow built in already at the beginning of
the hot stage of the cosmological evolution. The quantitative measurements of the
characteristics of these inhomogeneities in the present and recent Universe are made
precisely by studying the structures and comparing the results with theory. In par-
ticular, deep surveys of galaxies and quasars provide a three-dimensional map of the
Universe consisting of more than a million objects and extending out to distance of
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7000 Mpc (21 billion light years!). Besides this, there are other ways to measure the
structure at relatively small redshifts, z . 3 (Lyman-α forest, weak lensing, etc.). On
the other hand, the inhomogeneities in the Universe at large redshift z = 1100 are
observed as angular anisotropy of Cosmic Microwave Background (CMB), as well as
its polarization. The variation of the CMB temperature as function of the direction
on the sky is very small,

δT

T
∼ 10−5 ;

this number characterizes the density contrast at the recombination epoch, z = 1100.
Hence, cosmological perturbations were very small in amplitude at that epoch. Since
then they grew: as we already described, overdense regions had attracted surrounding
matter and had become even more overdense, until the density contrast became of
order of unity, and the non-linear gravitational collapse occurred. In this way the
first stars, galaxies and larger gravitationally bound structures were formed.

When the cosmological perturbations are small in amplitude, they can be de-
scribed within linearized theory about homogeneous and isotropic background. It is
then convenient to decompose them into spatial Fourier modes and classify according
to their helicities – this is called Lifshits decomposition. Since the linearized Ein-
stein gravity involves fields of spin 2 (graviton) and lower, there are three types of
perturbations:

– Scalar perturbations (helicity 0) are perturbations in energy density and asso-
ciated gravitational potentials. It is this type of perturbations that is responsible
for galaxies and other structures; certainly, perturbations of this type exist in our
Universe.

– Vector perturbations (helicity 1) correspond to local rotational motion of matter.
These have not been observed and are not expected to have existed, at least at
relatively late stages of the cosmological evolution. The reason is conservation of
angular momentum: as the Universe expands, the distances increase, and because of
angular momentum conservation rotational velocities decay.

– Tensor perturbations (helicity 2) are primordial gravitational waves. These
have not been observed either, but unlike vector perturbations, they may exist in the
Universe and may be detected in reasonably near future. Indeed, sizable amplitude
of tensor perturbations is predicted by a class of inflationary models, and if so, effects
of tensor perturbations on CMB may be detected.

What do we know about scalar perturbations? At the linear regime, the relevant
quantity is the energy density contrast (modulo technicalities),

δ(x, t) =
δρ(x, t)

ρ(t)
,

where ρ is the average energy density. The first property is that δ(x, t) is Gaussian

192



Valery Rubakov

random field, at least to the first approximation15.
Let us make spatial Fourier decomposition,

δ(x, t) =

∫
d3k eikxδ(k, t), (42)

with δ∗(k) = δ(−k) since δ(x) is real. Note that x are comoving coordinates, and
k is comoving (conformal) momentum. So, k is independent of time, while physical
momentum p = k/a(t) gets redshifted as the Universe expands.

Gaussian random field has the property that its correlators obey what in quantum
field theory is known as Wick’s theorem,

〈δ(k1)δ(k2)δ(k3)〉 = 0,

〈δ(k1)δ(k2)δ(k3)δ(k4〉 = 〈δ(k1)δ(k2)〉 · 〈δ(k3)δ(k4)〉 + permutations,

etc. Hence, Gaussian random field is completely characterized by its two-point cor-
relation function. Furthermore, homogeneous Gaussian random field is uncorrelated
at different momenta, so that

〈δ(k)δ∗(k′)〉 =
P (k)

(2π)3
δ(k − k′), (43)

where by isotropy of the Universe P (k) is a function of k = |k|. The quantity P (k)
is called power spectrum; it is the main characteristic of the scalar perturbations in
the Universe.

One point to note here: averaging in (43) has to be understood as averaging
over ensemble of universes. The actual field δ(x) in our, unique Universe is thus
intrinsically unpredictable. To obtain P (k) at relatively small momenta (short spatial
scales), one can consider numerous non-overlapping parts of our Universe and average
the results to obtain small statistical error. However, at small k this option is not
available, so the determination of P (k) is plagued by intrinsic uncertainty, cosmic
variance.

The power spectrum P (k) is determined at different scales by different methods.
To compare the results, one usually converts P (k, t) to the present epoch by pretending
that all perturbations are still in the linear regime, i.e., by using formulas of the
linearized theory. For small momenta (large spatial scales) the latter procedure is
unambiguous, since perturbations on these scales are in the linear regime even at the
present epoch. On the other hand, perturbations of shorter wavelengths (with present
wavelengths λ . 10 Mpc) are actually nonlinear today and at small redshift, i.e., at
the time they are observed. So, the procedure is as follows. One finds the primordial

15Search for non-Gaussianities in the data of observational cosmology is very interesting. There
have been several claims for non-Gaussianities in the CMB data, but the issue is still controversial.
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Figure 5: Present power spectrum in linearized theory [12]. Recall that h ≈ 0.7 is
the present Hubble parameter in units 100 km s−1 Mpc−1.

power spectrum from the requirement that the observed properties of structure in
the Universe are reproduced, and then evolves the primordial perturbations to the
present epoch by formally using the linearized theory. The first, difficult part of this
procedure requires comparison with non-linear theory. The latter involves numerical
simulations of structure formation, and it is believed to be precise enough to make
such a comparison meaningful.

The compilation of data on the power spectrum is shown in Fig. 5. Remark-
ably, different methods give consistent determinations of the spectrum; in particular,
observations of large scale structure at low redshift (“SDSS galaxies”) are fully con-
sistent with measurements of CMB anisotropy, the latter giving the information on
the power spectrum at z = 1100. It is also remarkable that the power spectrum does
not show any features (except for well understood baryon acoustic oscillations, BAO,
not visible in Fig. 5), which implies that the primordial spectrum is very smooth (see
below).

It is worth emphasizing that the fact that primordial perturbations are Gaussian
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random field can be viewed as a strong hint on their origin. The same property holds
for enhanced vacuum fluctuations of a linear (non-interacting) scalar field. Indeed,
the linear scalar field has the following Fourier decomposition

φ(x, t) =

∫
d3k

(2π)3/2
√

2ωk

[
eikxf

(+)
k (t)a†k + e−ikxf

(−)
k (t)ak

]
, (44)

where creation and annihilation operators obey the standard commutational relation

[ak, a
†
k′ ] = δ(k − k′).

In vacuo, positive- and negative-frequency functions are f (±)
k (t) = exp(±ωkt) This

would correspond to perturbations of wrong shape and too small amplitude of P (k).
However, vacuum perturbations may get enhanced at early, pre-hot stages of cosmo-
logical evolution. This would mean that f (±)

k are large. Still, the field (44) would obey
Wick’s theorem, meaning that its perturbations are Gaussian. This is precisely what
happens at inflation; in the simplest scenario the field φ is inflation, and its perturba-
tions are in the end converted into scalar cosmological perturbations. Enhancement
of vacuum perturbations may occur also in scenarios alternative to inflation; it ap-
pears to be a rather general mechanism of the generation of density perturbations in
the early Universe.

5.2 Adiabatic mode and isocurvature modes

Matter in the Universe is multi-component. At radiation domination, there is hot
component, baryon component and dark matter component. In principle, perturba-
tions in energy densities of these components could have different properties. So, it
is useful to classify possible initial conditions for scalar perturbations. This leads to
notions of adiabatic mode and isocurvature modes.

Perturbations in the adiabatic mode have non-vanishing δρ and δT at early radi-
ation domination epoch, but the chemical composition is the same everywhere in the
Universe. The latter property is quantified as

δ
(ρB
s

)
= δ

(ρDM
s

)
= 0.

This must be the case if dark matter and baryon asymmetry were generated at the
radiation dominated stage: physical processes leading to their generation are the same
everywhere in the Universe, so the ratios of number densities of dark matter particles
and baryons to that of photons is also the same everywhere. This observation apples
to the mechanisms we discussed in previous Sections.

Isocurvature (or entropy) modes, instead, have δT = 0, so that energy density of
dominant, ultra-relativistic component is homogeneous. Since at radiation domina-
tion one has δρ ≈ δρrad ∝ δT , there are no metric perturbations early at radiation
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dominated stage, hence the term “isocurvature”. What varies in space for these modes
are energy (mass) densities of baryons or dark matter; for baryon isocurvature per-
turbations and dark matter isocurvature perturbations one has

δ
(ρB
s

)
6= 0 and δ

(ρDM
s

)
6= 0,

respectively (hence the term “entropy perturbations”). There can be also neutrino
isocurvature modes, but it is hard to design a mechanism that would produce them,
and we will not consider them here.

In general, initial condition for scalar perturbations is a linear combination of
adiabatic and isocurvature modes. However, as we already pointed out, no admixture
of isocurvature modes would exist if baryon asymmetry and dark matter abundance
were generated at the hot stage. Conversely, any admixture of isocurvature modes
would mean that conventional mechanisms of the generation of baryon asymmetry
and/or dark matter are plainly wrong: in that case the generation must have occurred
at the same epoch when density perturbations were generated (or earlier), that is,
before the hot stage. The latter scenario is not impossible: there are models in
which dark matter (e.g., axions) originates from inflationary epoch, and the same for
baryon asymmetry (e.g., Affleck–Dine baryogenesis). Still, discovering an admixture
of isocurvature mode(s) would be major surprise in astroparticle physics.

At the moment, data are consistent with adiabatic mode only; admixture of isocur-
vature modes is smaller than about 10%. This has been established by measurements
of CMB anisotropy. Further improvements are expected in near future, especially due
to Planck experiment. Planck satellite has been launched in May 2009; when looking
at Planck data it is worth keeping in mind that a very important outcome could be
evidence for isocurvature (entropy) modes.

5.3 Understanding CMB anisotropy

The distribution of CMB on celestial sphere, as seen by WMAP experiment, is shown
in Fig. 6. It encodes a lot of physics:

– properties of primordial perturbations built in before the hot stage;
– evolution of perturbations prior to the recombination epoch; in particular, de-

velopment of sound waves from the early hot stage to recombination;
– propagation of photons after recombination, which is affected, in particular, by

the expansion history of the Universe.
To quantify the temperature distribution on celestial sphere, one performs the de-

composition in spherical harmonics (the closest analog of the Fourier decomposition),

δT (θ, ϕ) =
∑
lm

almYlm(θ, ϕ).
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difference

1-year

+200-200

+30-30

Figure 6: CMB sky. The isotropic component (T = 2.725 K) and dipole component
(δT = 3.346 mK) are subtracted – the latter is due to the motion of the Earth with
respect to CMB. The residual anisotropy is at the level of 100 µK, i.e., δT/T ∼
10−4 − 10−5.

If cosmological perturbations are Gaussian random field(s), the coefficients alm are
independent Gaussian random variables (they are linear functions of δρ/ρ). Their
correlator vanishes for different indices,

〈alma∗l′m′〉 ∝ δll′δmm′ ,

so all information is contained in

〈alma∗lm〉 ≡ Cl (45)

(because of rotational symmetry, the left hand side here is independent of m). The
coefficients Cl are measured; what is usually shown is

Dl =
l(l + 1)

2π
Cl.

Larger values of l correspond to smaller angular scales, and hence shorter wavelengths
of perturbations.

In fact, one cannot measure the average over an ensemble of universes, and the
actually measured quantity is

Cl =
1

2l + 1

∑
m

|alm|2
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for a single, our realization of the random field δT (θ, ϕ). This is of course different
from (45), and the intrinsic statistical error – cosmic variance – is

∆Cl
Cl

' 1√
2l
.

For large l this error is small, but it becomes sizable and important for low multipoles.

Figure 7: Compilation of data on CMB temperature anisotropy made by collaboration
ACBAR [13]. Note peculiar scale on horizontal axis. Error bars at low multipoles are
not experimental: they are due to cosmic variance.

One compilation of the data is shown in Fig. 7. Let us give an idea of physics
behind this plot.

In the first place, effects of tensor perturbations have not been observed so far
(details are given below). So, we assume here that the entire temperature anisotropy
is due to scalar perturbations.

Baryon-electron-photon component is a single fluid before recombination, because
of strong interaction of photons with free electrons, and Coulomb interaction between
electrons and protons. Perturbations in this component are sound waves propagating
in the plasma. For adiabatic mode the density contrast oscillates as follows:

Baryon–electron–photon :
δρ

ρ
(k, t) ∝ cos

(∫ t

0

dt
vs(t)k

a(t)

)
, (46)
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where k/a(t) is the physical momentum, vs(t) is sound velocity and vsk/a is physical
frequency. It turns out that the phase of these oscillations is fixed precisely as indi-
cated in (46). For isocurvature perturbations the phase is different; for short enough
waves the phase shift is π/2. This difference in the behaviour enables one disentangle
adiabatic and isocurvature perturbations, and set the bound on the latter, which we
discussed above.

Dark matter is pressureless well before recombination. Because of that, perturba-
tions in dark matter do not oscillate. As far as baryon-electron-photon component is
concerned, dark matter perturbations produce gravitational potentials for it.

The temperature anisotropy emerges due to four effects. Three of them occur at
recombination epoch16:

– Photon energy density is related to temperature as ργ ∝ T 4. Hence, perturba-
tions in baryon-electron-photon component give rise to perturbations of temperature
at recombination (more precisely, at the time of last scattering of photons off elec-
trons),

δT

T
=

1

4

δργ
ργ

(trec). (47)

– Perturbations in the gravitational potential Φ at recombination induce pertur-
bations of temperature of photons we see today: if the potential is negative, photons
have to climb gravitational well, and hence they loose energy, and vice versa. This
gives the contribution

δT

T
= Φ(trec). (48)

In this way dark matter perturbations affect CMB temperature; gravitational poten-
tials due to perturbations in baryon-electron-photon component are non-negligible
too, although they are subdominant (by recombination, most of the energy density
resides in dark matter).

– Motion of baryon-electron-photon plasma in sound waves gives rise to Doppler
effect, hence

δT

T
= vγ ||(trec) ∝ dργ/dt, (49)

where vγ || is the velocity along the line of sight.
The first two contributions are jointly called Sachs–Wolfe effect, while the third

one is called Doppler effect.
Finally, when travelling from the surface of last scattering to us, photons may

loose or gain energy, depending on the distribution of gravitational potential along

16At short wavelengths, i.e., large multipoles, important effects are due to relatively large mean
free path of photons at the epoch of their last scattering. These effects – Silk damping, finiteness of
the width of the sphere of last scattering, etc. – tend to wash out the temperature anisotropy. This
is seen in Fig. 7: anisotropy decreases with l at l & 1000.
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their path. This gives rise to integrated Sachs–Wolfe effect17

δT

T
= 2

∫
dt
∂Φ

∂t
, (50)

where integration runs along the photon path (the integrand is not total derivative,
the total derivative along the photon path is equal to dΦ/dt = ∂Φ/∂t + n∇Φ where
n is the direction of photon travel).

The resultant temperature anisotropy is the sum18 of (47), (48),(49) and (50). For
what follows, it is important to note that the Doppler effect and integrated Sachs–
Wolfe effect are subdominant, and to zeroth approximation the CMB temperature
anisotropy is the sum of (47) and (48). In any case, by measuring the CMB tem-
perature anisotropy (and polarization) one learns a lot about the early and present
Universe. Let us give a few examples.

Positions of peaks in the CMB angular spectrum provide the standard ruler back
at recombination epoch. Indeed, these peaks are due to the fact that according to
(46), modes of a certain wavelength develop large value of |δργ| by recombination,
while others are at the minimum of |δργ| at that time. The peaks in the angular
spectrum correspond to angular sizes of modes at maximum of |δργ|, i.e. modes of
conformal momentum kn obeying∫ trec

0

dt
vs(t)kn
a(t)

= πn, n = 1, 2, . . .

The sound velocity in the baryon-electron-photon plasma is readily calculable (it
slightly depends on baryon-to-photon ratio, but the latter is determined with high
precision from other properties of the CMB angular spectrum, see below), the time
dependence of the scale factor is also well known, so these values of k (and hence the
wavelengths at recombination) are well determined. This is precisely what is meant
by standard ruler. The angular size of this standard ruler strongly depends on spatial
curvature (and to less extent on dark energy density ΩΛ): the same interval is seen
on a sphere at larger angle as compared to plane. In this way one infers the spatial
curvature; as we already mentioned, it has been found that our space is Euclidean to
high precision.

Heights of peaks are very sensitive to baryon number density. If not for baryons,
the two contributions to the Sachs–Wolfe effect, eqs. (47) and (48), would partially
cancel each other. It is in this way that the baryon-to-photon ratio is measured by
CMB observations at high precision.

17We slightly oversimplify the discussion here. Note that the factor 2 in (50) is relativistic effect,
just as in the case of the photon propagation near the Sun.

18We do not discuss here one more effect which is due to re-ionization of cosmic medium at
z ∼ 10, the time at which the first stars form. This effect is small but important at the current level
of precision of observations; it affects particularly strongly CMB polarization.
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Of course, the CMB angular spectrum is sensitive to properties of primordial
perturbations, that is, initial data for the evolution of inhomogeneities in the Universe.
At the very early cosmological stage (but already at radiation domination era), the
Universe expands so fast that perturbations do not have time to evolve. So, primordial
perturbations are characterized by time-independent power spectrum. Let us consider
adiabatic perturbations and introduce convenient notation,

Ps(k) =
k3Pinit(k)

2π2
,

where Pinit(k) is primordial power spectrum of scalar perturbations. The meaning of
Ps(k) is best understood by considering the fluctuation of the density contrast at a
given point in space. Making use of eqs. (42) and (43), we find

〈δ2x〉 =

∫ ∞

0

dk

k
Ps(k),

where integration runs over modulus of spatial momentum. Hence, Ps(k) gives the
contribution of a logarithmic interval of momenta into the fluctuation. It is traditional
to parametrize the primordial power spectrum as follows,

Ps(k) = As

(
k

k∗

)ns−1

. (51)

Here As is the scalar amplitude, k∗ is some fiducial value of conformal momentum
(the choice of WMAP is k∗/a0 = (500 Mpc)−1) and ns is the scalar spectral index.
We will discuss the simplest parametrization in which ns is independent of k, though
weak dependence of ns on k is also often included into fits by writing ns(k) = ns(k∗)+
(dns/d ln k) · ln(k/k∗). The reference point is ns = 1, that is flat, Harrison–Zeldovich
spectrum. ns < 1 and ns > 1 correspond to red and blue tilted spectra, producing
more power at low and high multipoles, respectively. Inflationary scenarios typically
predict a few per cent tilt, (ns−1) ∼ (a few)·10−2, whose sign depends on a particular
model of inflation.

Inflationary models often predict also sizable tensor modes. These are parametrized
in analogy to (51) (definitions of the spectral index here and in (51) are a matter of
tradition),

PT (k) = AT

(
k

k∗

)nT

.

In the simplest models of inflation the tensor amplitude AT is somewhat smaller than
the scalar one, but not very much smaller. In terms of the ratio

r =
AT
As
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this means that the prediction of these models is in the range r ∼ (a few) · 10−1. It is
worth noting that alternatives to inflation typically do not predict sizable amplitude
of tensor perturbations, so the discovery of tensor modes would be a very strong
argument in favor of inflation.

Figure 8: Regions in (ns, r) plane allowed at 1σ and 2σ level [7]. Small circles corre-
spond to various inflationary models with different number of e-foldings N . Square
shows the Harrison–Zeldovich point ns = 1, r = 0.

The present observational situation is summarized in Fig. 8. Tensor perturbations
would enhance the CMB angular spectrum mostly at low multipoles (amplitude of
gravitational waves decays as a−1, starting from the time when k/a(t) ∼ H(t); hence,
high momentum modes are suppressed by recombination, while low momentum modes
are not). Similar effect would be produced by red scalar tilt, ns < 1. Observational
data appear to favor more power at low multipoles, which is an indication of either
red tilt or admixture of tensor modes, or both. This result is still not conclusive; the
situation may change dramatically in near future.

Further opportunity to detect tensor perturbations – relic gravitational waves –
comes from the fact that they produce very specific polarization pattern in CMB,
which cannot be due to scalar perturbations. Not going into details, we mention
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that there are two possible types of polarization, called E- and B-modes. Scalar
perturbations produce polarization in E-mode, and this effect has been observed.
Tensor perturbations give rise to B-mode (together with E-mode), whose observation
would mean the discovery of primordial gravity waves. It goes without saying that
this would be an event of utmost importance.

5.4 Neutrino masses and cosmology

One more aspect of cosmology related to particle physics is the effect of neutrino on
structure formation in the Universe. Neutrino number density in comoving volume
freezes out at temperature 2−3 MeV, when electrons and positrons are still relativistic,
and hence abundant in the plasma. After that (at T . me = 0.5 MeV) electron-
positron annihilation heats up the photon component, while neutrino component
does not feel this effect. Hence, effective temperature of neutrinos at T � me is
somewhat smaller than temperature of photons, and the number density of each type
of neutrinos is quite a bit smaller than that of photons. Without going into details,
we again quote the result for the present number density of neutrinos,

nν1 = nν2 = nν3 = 112 cm−3,

where νi denote neutrino mass eigenstates.
Neutrino oscillation data imply that if neutrinos are heavier than 0.1 eV, they are

degenerate in mass. Relatively heavy neutrinos would make rather large portion of
dark matter. As an example, for mν = 0.3 eV the present mass density of neutrinos
is

ρν,total = 3 · 0.3 eV · 112 cm−3 = 10−7 GeV · cm−3 = 0.1ρDM,0, (52)

where we used the estimate for the present dark matter density ρDM,0 ≈ 0.2ρc =
0.2 · 5 · 10−6 GeV cm−3. The estimate (52) shows that effect of neutrinos on stricture
formation may indeed be sizable.

Neutrino is hot component of dark matter. Repeating the discussion in the be-
ginning of Section 3.2, we find that neutrinos tend to wash out structures up to very
large size. The predictions for power spectrum for various neutrino masses and the
observational data are shown in Fig. 9. It is clear from this figure that heavy neutri-
nos suppress the density perturbations too strongly, and hence they are inconsistent
with cosmology. Different authors obtain different bounds on neutrino masses; we
give here a fairly conservative bound [7],∑

i

mνi
< 0.6 eV,

meaning that the mass of each neutrino spices is bounded by mν < 0.2 eV. This is
stronger than experimental bounds. Interestingly, the progress in cosmological obser-
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Figure 9: Predictions for the power spectrum for mass of each neutrino spices equal to
0.09 eV (solid line), 0.5 eV (dotted line) and 1 eV (dashed line), and their comparison
with data [14].

vations (and in theory of structure formation) may lead to cosmological determination
of neutrino mass before its experimental measurement.

5.5 Dark energy

Dark energy is probably the most mysterious form of energy in our Universe; its
discovery was a shock to many particle physicists. By definition, dark energy density
either does not change in time at all, or changes very slowly, much slower than, say,
the energy (mass) density of non-relativistic matter. Because of that, the Hubble
parameter also changes in time slowly. Indeed, according to eq. (17), for constant in
time ρ = ρΛ the Hubble parameter would not change in time at all.

Dark energy shows up in the Universe exclusively through the expansion rate at
late times. This in turn affects the distance-redshift relation: for given present value
of the Hubble parameter H0, the Universe with dark energy expands faster in the
recent past, so the distance to objects of given redshift is larger as compared to the
Universe without dark energy. This is shown in Fig. 10. Note that the effect similar
to dark energy may be produced by negative spatial curvature; however, this is not

204



Valery Rubakov

an option since, as we discussed above, CMB data show that the spatial curvature of
our Universe is either zero or very close to zero.

1 2 3 4
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0.5

0.75

1

1.25

1.5

1.75

Figure 10: Distance-redshift relation for different cosmological models: ΩM = ΩDM +
ΩB = 0.24, ΩΛ = 0.76, wDE = −1 (black line); ΩM = 1, ΩΛ = 0 (dark gray line);
ΩM = 0.24, ΩΛ = 0, negative spatial curvature (light gray line).

One way to measure the redshift-distance relation is to make use of “standard can-
dles”, objects whose absolute luminosity is assumed to be known. Then the distance
to a given object is found simply by measuring its visible luminosity, while measuring
its redshift is a standard (and accurate) procedure in astronomy. The standard can-
dles used in practice are supernovae of type 1a (SNe1a); their observations show that
they are significantly dimmer than what one would expect in the Universe without
dark energy (see Refs. [9, 15] for reviews).

It is important to note that SNe1a are not the only probes of dark energy: there
are independent (but less precise) ways to measure the dark energy density. As an
example, rapid expansion of the Universe filled with dark energy suppresses formation
of structure at late times. The strongest effect occurs for clusters of galaxies which
are formed only recently. This effect has indeed been observed, see Fig. 11; note that
these observations disentangle the dark energy and spatial curvature. Dark energy
affects also CMB temperature anisotropy, its correlation with large scale structure
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(via integrated Sachs–Wolfe effect), etc. One likes it or not, the existence of dark
energy in our Universe is a fact19.

Figure 11: Abundance of clusters of galaxies (number density of clusters with mass
greater than shown on horizontal axis) at different redshifts in the Universe with dark
energy (left panel) and in the Universe without dark energy but with negative spatial
curvature (right panel) [16].

To quantify what we know about dark energy, let us begin with the general expres-
sion for the energy-momentum tensor of any kind of matter in homogeneous isotropic
case (in locally Lorentz frame),

Tµν = diag(ρ, p, p, p),

where ρ is energy density and p is (effective) pressure. It is convenient to parametrize
the relation between pressure and energy density (effective equation of state) as fol-
lows,

p = wρ,

where the parameter w may depend on time. Elementary application of the first law
of thermodynamics in the expanding Universe gives the rate at which energy density
changes:

ρ̇ = −3
ȧ

a
(ρ+ p) = −3(1 + w)

ȧ

a
.

19This is true within General Relativity. The observational fact is that the expansion of the
Universe accelerates. An alternative explanation of this phenomenon would be the modification of
General Relativity at cosmological scales; there has been quite an activity in the latter direction in
recent years.
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Hence, dark energy density does not change in time at all if wDE = −1, i.e., pDE =
−ρDE ≡ −ρΛ. This is the case for vacuum energy density (or cosmological constant,
which is the same thing at least with present understanding of this issue). Indeed, by
Lorentz-invariance the vacuum energy-momentum tensor in locally Lorentz frame is
equal to

T vacµν = ρΛ · ηµν ,
where ηµν is Minkowski tensor, and ρΛ is independent of time – this is a fundamental
constant of Nature. The problem with vacuum as dark energy is that the value of ρΛ

is ridiculously small by particle physics standards: ρΛ = (2 · 10−3 eV)4. Explaining so
small value is a problem which has not been solved (except for anthropic argument,
see Ref. [17]).

Another possibility is that the dark energy is the energy of some light field. If this
is more or less usual field (modulo energy scale which remains unexplained), then
wDE > −1, and dark energy density decreases in time. Such a field is generically
called quintessence. More exotic is phantom, field whose energy density increases in
time despite the expansion of the Universe; phantom has wDE < −1. Generically,
phantom fields have instabilities, but time scale for an instability may be very long,
so it may not get developed our expanding Universe. Both for quintessence and
phantom, the equation of state parameter wDE changes in time; in many concrete
models this is slow change, |ẇDE| . H0, i.e., |dwDE/dz| . 1.

The current situation with observations is as follows. If the parameter w is allowed
to change in time, its present value is within the range [7]

−1.4 < wDE,0 < −0.8,

while w′
DE = dwDE/dz is bounded by

−0.5 < w′
DE < 1.5.

Hence, significant deviation from vacuum equation of state is still allowed, and the
entire situation is presently rather uncertain.

5.6 What do we hope to learn from cosmological observations

It is clear from the above discussion that there are many questions which still have
not been answered by observations, and which will hopefully be clarified by future
cosmological data. Some of these questions have to do with properties of primordial
perturbations, and some have to do with matter content in our Universe. Let us
summarize them.

1. The questions on primordial perturbations include:
1.1. Is there tilt in the scalar spectrum? The tilt is predicted by most models of

inflation and many alternatives to inflation. It is even somewhat alarming that the
tilt is so low that its decisive determination has not been made yet.

207



Valery Rubakov

1.2. Are there primordial gravity waves? Many (but by no means all) inflationary
models predict sizable amplitude of tensor perturbations. Their discovery would be a
very strong argument for inflation, especially if the tensor spectrum would be nearly
flat.

1.3. Are there isocurvature (entropy) scalar perturbations? These should not ex-
ist for currently popular models in which the generation of dark matter and baryon
asymmetry occur at the hot stage. Conversely, if an admixture of isocurvature per-
turbations is found, no matter how small, dark matter and/or baryon asymmetry
generation would be shifted to pre-hot stage, like late inflationary epoch or reheating
epoch just after inflation.

1.4. Are scalar perturbations Gaussian? Simple models of the generation of pri-
mordial perturbations, in which they originate from vacuum fluctuations of inflation
field, predict very low level and specific form of non-Gaussianity. However, in more
complicated models non-Gaussianity may be much stronger, and its character may
be quite different.

All these issues are fascinating, as they have to do with very early, pre-hot stage
of the cosmological evolution. We hope to open soon the window to the very first
instants of our Universe.

2. Composition of the Universe is of particular interest to particle physics. The
unsolved questions include:

2.1. Is dark matter cold or warm? The answer to this question is crucial for
choosing between dark matter particle candidates and mechanisms of dark matter
generation in the early Universe.

2.2. Is dark energy constant in time? Dark energy density is time-independent
if and only if it is vacuum energy = cosmological constant. Observation of time
dependence of the dark energy density would mean that dark energy is due to new
light, very weakly interacting field – quintessence or phantom, or (and?) General
Relativity is not valid at cosmological scales.

2.3. How large are neutrino masses? Interestingly, this question may first be
answered by cosmology, and only later by particle physics experiment.

Of course, there is always room for something unexpected – and hence even more
interesting!

6 Concluding remarks

The ideas we discussed in these lectures may well be not the right ones: we can
only hypothesize on physics beyond the Standard Model and its role in the early
Universe. TeV scale physics may be dramatically different from physics we get used
to. As an example, it is not excluded that TeV is not only electroweak, but also
gravitational scale. This is the case in models with large extra dimensions, in which
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the Planck scale is related to the fundamental gravity scale in a way that involves the
volume of extra dimensions, and hence the fundamental scale can be much below MPl

(for reviews see, e.g., Ref. [18]). If the LHC will find that, indeed, the fundamental
gravity scale is in the TeV range, this would have most profound consequences for
both microscopic physics and cosmology. On the microscopic physics side, this would
enable one to study quantum gravity and its high-energy extension at colliders, while
on the cosmological side, the entire picture of the early Universe will have to be
revised. The highest temperatures in the usual expansion history would in that case
be at most at TeV range, so dark matter and baryon asymmetry generation would
have to occur either below those temperatures or in quantum gravity regime. Even
more intriguing will be the study of quantum gravity cosmological epoch, with hints
from colliders on quantum gravity gradually coming. This, probably, is too bright a
prospective to hope for it seriously.

It is more likely that the LHC will find something entirely new, something theorists
have not thought about. Or, conversely, find so little that one will have to get
serious about anthropic principle. In any case, the LHC results together with new
cosmological observations will definitely change the landscape of both particle physics
and cosmology.
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